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Abstract
Random geometric graph (Gilbert, 1961) is a basic model of random graphs for spatial networks
proposed shortly after the introduction of the Erdős-Rényi random graphs. The geometric block
model (GBM) is a probabilistic model for community detection defined over random geometric graphs
(RGG) similar in spirit to the popular stochastic block model which is defined over Erdős-Rényi
random graphs. The GBM naturally inherits many desirable properties of RGGs such as transitivity
(“friends having common friends’) and has been shown to model many real-world networks better
than the stochastic block model. Analyzing the properties of a GBM requires new tools and
perspectives to handle correlation in edge formation. In this paper, we study the necessary and
sufficient conditions for community recovery over GBM in the connectivity regime. We provide
efficient algorithms that recover the communities exactly with high probability and match the
lower bound within a small constant factor. This requires us to prove new connectivity results
for vertex-random graphs or random annulus graphs which are natural generalizations of random
geometric graphs.

A vertex-random graph is a model of random graphs where the randomness lies in the vertices as
opposed to an Erdős-Rényi random graph where the randomness lies in the edges. A vertex-random
graph G(n, [r1, r2]), 0 ≤ r1 < r2 ≤ 1 with n vertices is defined by assigning a real number in [0, 1]
randomly and uniformly to each vertices and adding an edge between two vertices if the “distance”
between the corresponding two random numbers is between r1 and r2. For the special case of r1 = 0,
this corresponds to random geometric graph in one dimension. We can extend this model naturally
to higher dimensions; these higher dimensional counterparts are referred to as random annulus
graphs. Random annulus graphs appear naturally whenever the well-known Goldilocks principle
(“not too close, not too far’) holds in a network. In this paper, we study the connectivity properties
of such graphs, providing both necessary and sufficient conditions. We show a surprising long edge
phenomena for vertex-random graphs: the minimum gap for connectivity between r1 and r2 is
significantly less when r1 > 0 vs when r1 = 0 (RGG). We then extend the connectivity results to
high dimensions. These results play a crucial role in analyzing the GBM.
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1 Introduction

Models of random graphs are ubiquitous with Erdős-Rényi graphs [12, 17] at the forefront.
Studies of the properties of random graphs have led to many fundamental theoretical
observations as well as many engineering applications. In an Erdős-Rényi graph G(n, p), n ∈
Z+, p ∈ [0, 1], the randomness lies in how the edges are chosen: each possible pair of vertices
forms an edge independently with probability p. It is also possible to consider models of
graphs where randomness lies in the vertices.

Keeping up with the simplicity of the Erdős-Rényi model, one can define a vertex-random
graph (VRG) in the following way. Given two reals 0 ≤ r1 ≤ r2 ≤ 1/2, the vertex-random
graph VRG(n, [r1, r2]) is a random graph with n vertices. Each vertex u is assigned a random
point Xu selected uniformly from the circumference of a circle of perimeter 1. Two vertices
u and v are connected by an edge, if and only if the distance of the corresponding points
on the circle (the geodesic distance) is between r1 and r2. This definition is by no means
new. For the case of r1 = 0, this is the random geometric graphs (RGG) in one dimension.
Random Geometric graphs were defined first by [18] and constitute the first and simplest
model of spatial networks. Since then, they have found wide-spread applications in modeling
wireless (ad-hoc) communication networks [9, 19], information propagation in social networks
[13, 31] etc., and have been studied extensively [4, 5, 6]. The definition of VRG has been
previously mentioned in [9]. The interval [r1, r2] is called the connectivity interval in VRGs.

Vertex random graphs inherit many desirable properties of RGGs such as vertices with
high modularity and the degree associativity property (high degree nodes tend to connect),
which in turn led to the popularity of RGGs [13, 31]. In addition, VRGs naturally arise
whenever the Goldilocks principle (not too close, not too far) is applicable in networks. For
example, in a co-purchase network, a person who bought a bike may buy similar products like
a helmet along with it, but not another bike [15]. Understanding connectivity properties of
VRGs can shed light in co-purchasing behavior and product recommendation. Interestingly,
the connectivity properties of VRGs turn out to be crucial to develop and analyze community
detection algorithms for the geometric block model [15].

Connectivity of Vertex Random Graph (VRG). Threshold properties of Erdős-Rényi
graphs have been at the center of much interest, and in particular it is known that many
graph properties exhibit sharp phase transition phenomena [14]. Random geometric graphs
also exhibit similar threshold properties [26]. Our first contribution in this work is to identify
such connectivity threshold for VRGs. Consider a VRG(n, [0, r]) defined above with r = a lnn

n .
It is known that VRG(n, [0, r]) is connected with high probability if and only if a > 1 (I.e.,
VRG(n, [0, (1+ε) lnn

n ]) is connected for any ε > 0. We will ignore this ε and just mention
connectivity threshold as lnn

n ). Now let us consider the graph VRG(n, [ b lnn
n , lnn

n ]), b > 0.
Clearly this graph has less edges than VRG(n, [0, lnn

n ]). Is this graph still connected?
Surprisingly, we show that the modified graph remains connected as long as b ≤ 0.5. Therefore,
VRG(n, [ 0.5 lnn

n , lnn
n ]) is connected, but VRG(n, [0, (1−ε) lnn

n ]) is not ∀ε > 0.
Can we explain this striking shift in connectivity interval, when one goes from b = 0

to b > 0? Note that the VRG(n, [ 0.50 lnn
n , lnn

n ]) is obtained from the VRG(n, [0, lnn
n ]) by

deleting all “short-distance” edges. It turns out the “long-distance” edges are sufficient to
maintain connectivity, because they can connect points over multiple hops in the graph.
Another possible explanation is that connectivity threshold for VRG is not dictated by
isolated nodes as is the case in Erdős-Rényi graphs. Thus, after the connectivity threshold
has been achieved, removing short edges still retains connectivity.
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The Geometric Block Model. We are motivated to study the threshold phenomena of
vertex-random graphs, because it appears naturally in the analysis of the geometric block
model (GBM) [15]. The geometric block model is a probabilistic generative model of
communities and is a spatial analogue to the popular stochastic block model (SBM) [22,
10, 8, 2, 1, 20, 7, 24]. The SBM generalizes the Erdős-Rényi graphs in the following way.
Consider a graph G(V,E), where V = V1 t V2 t · · · t Vk is a disjoint union of k clusters
denoted by V1, . . . , Vk. The edges of the graph are drawn randomly: there is an edge between
u ∈ Vi and v ∈ Vj with probability qi,j , 1 ≤ i, j ≤ k. Given the adjacency matrix of such a
graph, the task is to find the partition V1 t V2 t · · · t Vk of V .

This model has been incredibly popular both in theoretical and practical domains of
community detection. Recent theoretical works focus on characterizing sharp threshold of
recovering the partition in the SBM. For example, when there are only two communities
of exactly equal sizes, and the inter-cluster edge probability is b lnn

n and intra-cluster edge
probability is a lnn

n , it is known that exact recovery is possible if and only if
√
a−
√
b >
√

2
[1, 24]. The regime of the probabilities being Θ

(
lnn
n

)
has been put forward as one of most

interesting ones, because in an Erdős-Rényi random graph, this is the threshold for graph
connectivity [4]. Note that the results are not only of theoretical interest, many real-world
networks exhibit a “sparsely connected” community feature [23], and any efficient recovery
algorithm for sparse SBM has many potential applications.

While the SBM is a popular model (because of its apparent simplicity), there are many
aspects of real social networks, such as “transitivity rule” (“friends having common friends’)
and other community structures that are not accounted for in SBM. Defining a block model
over a random geometric graph, the geometric block model (GBM), circumvents this since
GBMs naturally inherit the transitivity property of random geometric graphs. In a previous
work [15], we showed GBMs model community structures better than an SBM in many real
world networks (e.g. DBLP collaboration network, Amazon co-purchase network etc.). The
GBM depends on the basic definition of the random geometric graph in the same way the
SBM depends on Erdős-Rényi graphs. The two-cluster GBM with vertex set V = V1 t V2,
V1 = V2 is a random graph defined in the following way. Suppose, 0 ≤ rd < rs ≤ 1/2 be
two real numbers. For each vertex u ∈ V randomly and independently choose a point Xu

from the circumference of a circle of unit perimeter. There will be an edge between u and v
if and only if,

dL(Xu, Xv) ≤ rs when u, v ∈ V1 or u, v ∈ V2

dL(Xu, Xv) ≤ rd when u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1,

where dL denotes the geodesic distance. Let us denote this random graph as GBM(rs, rd).
Given this graph GBM(rs, rd), the main problem of community detection is to recover the
partition (i.e., V1 and V2). The GBM provides a systematic way to introduce correlation
during edge formation, an important aspect in real networks that often renders a problem
theoretically intractable. The tool set needed to recover communities under a GBM thus
differs significantly than what has been used to analyze the SBM.

Motivated by the SBM literature, we here also look at the GBM in the connectivity
regime, i.e., when rs = a lnn

n , rd = b lnn
n . Our first contribution in this part is to provide a

lower bound that shows that it is impossible to recover the parts from GBM(a lnn
n , b lnn

n )
when a− b < 1/2. No lower bound for recovery was known before. We also derive a relation
between a and b that defines a sufficient condition of recovery in GBM(a lnn

n , b lnn
n ), closely

matching the lower bound. The analysis crucially exploits the connectivity properties of
vertex-random graphs.

APPROX/RANDOM 2019
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It is possible to generalize the GBM to include different distributions, different metric
spaces and multiple parts. It is also possible to construct other type of spatial block models
such as the one very recently being put forward in [28] which rely on the random dot product
graphs [30]. In [28], edges are drawn between vertices randomly and independently as a
function of the distance between the corresponding vertex random variables. In contrast,
in GBM edges are drawn deterministically given the vertex random variables, and edges
are dependent unconditionally. Moreover [28] only considers the recovery scenario where
in addition to the graph, values of the vertex random variables are provided. Note that in
GBM, we only observe the graph. In particular, it will be later clear that if we are given the
corresponding random variables (locations) to the vertices in addition to the graph, then
recovery of the partitions in GBM(a lnn

n , b lnn
n ) is possible if and only if a− b > 0.5 and a > 1,

that is we can identify the recovery threshold exactly.

VRG in Higher Dimension: The Random Annulus Graphs. It is natural to ask similar
question of connectivity for VRGs in higher dimension. In a VRG at dimension t, we may
assign t-dimensional random vectors to each of the vertices, and use a standard metric
such as the Euclidean distance to decide whether there should be an edge between two
vertices. Formally, let us define the t-dimensional sphere as St ≡ {x ∈ Rt+1 | ||x||2 = 1}.
Given two reals 0 ≤ r1 ≤ r2 ≤ 2, the random annulus graph RAGt(n, [r1, r2]) is a random
graph with n vertices. Each vertex u is assigned a random vector Xu selected randomly
and uniformly from St. Two vertices u and v are connected by an edge, if and only if
r1 ≤ d(u, v) ≡ ‖Xu −Xv‖2 ≤ r2. Note that for t = 1 an RAG1(n, [r1, r2]) is nothing but a
VRG as defined above, where we need to convert the Euclidean distance to the geodesic
distance and scale the probabilities by a factor of 2π. The RAGt(n, [0, r]) gives the standard
definition of random geometric graphs in t dimensions (for example, see [6] or [26]).

We refer to high-dimensional VRGs as the random annulus graph (RAG) since here two
vertices are connected iff one is within an “annulus” centered at the other. For the random
annulus graphs, we extend our connectivity results of t = 1 to general t. In particular,
we show that there exists an isolated vertex in the RAGt(n, [b( lnn

n ) 1
t , a( lnn

n ) 1
t ]) with high

probability if and only if

at − bt <
√
π(t+ 1)Γ( t+2

2 )
Γ( t+3

2 )
≡ ψ(t),

where Γ(·) is the gamma function. Computing the connectivity threshold of RAG exactly
is highly challenging, and we have to use several approximations of high dimensional geo-
metry. Our arguments crucially rely on VC dimensions of sets of geometric objects such
as intersections of high dimensional annuluses and hyperplanes. Overall we find that the
RAGt(n, [b( lnn

n ) 1
t , a( lnn

n ) 1
t ]) is connected with high probability if

(a/2)t − bt ≥ 8(t+ 1)ψ(t) and a > 2b.

Using the connectivity result for RAGt, the results for the geometric block model can be
extended to high dimensions. The latent feature space of nodes in most networks are high-
dimensional. For example, road networks are two-dimensional whereas the number of features
used in a social network may have much higher dimensions. In a “high-dimensional” GBM:
for any t > 1, instead of assigning a random variable from [0, 1] we assign a random vector
Xu ∈ St to each vertex u; and two vertices in the same part is connected if and only if their
Euclidean distance is less than rs, whereas two vertices from different parts are connected if
and only if their distance is less than rd. We show the algorithm developed for one dimension
extends to higher dimensions with nearly tight lower and upper bounds.
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In this paper, we consistently refer to the t = 1 case for RAG as the vertex-random graph.
The paper is organized as follows. In Section 2, we provide the formal definitions and

the main results of the paper. In Section 3, the sharp connectivity phase transition results
for vertex-random graphs are proven. In Section 4, the connectivity results are proven for
high dimensional random annulus graphs (details in full version [16]). Finally, in Section 5,
a lower bound for the geometric block model as well as the main recovery algorithm are
presented (details for the high-dimensional case in full version [16]).

2 Main Results

We formally define the random graph models, and state our results here.

I Definition 1 (Vertex-Random Graph). A vertex-random graph VRG(n, [r1, r2]) on n vertices
has parameters n, and a pair of real numbers r1, r2 ∈ [0, 1/2], r1 ≤ r2. It is defined by assigning
a number Xi ∈ R to vertex i, 1 ≤ i ≤ n, where Xi’s are independent and identical random
variables uniformly distributed in [0, 1]. There will be an edge between vertices i and j, i 6= j,

if and only if r1 ≤ dL(Xi, Xj) ≤ r2 where dL(Xi, Xj) ≡ min{|Xi −Xj |, 1− |Xi −Xj |}.

We choose dL(Xi, Xj) = min{|Xi−Xj |, 1−|Xi−Xj |} to ignore the boundary effect, although
the results extend identically to the scenario when dL(Xi, Xj) = |Xi −Xj |. One can also
interpret Xi, 1 ≤ i ≤ n, to be uniformly distributed on the perimeter of a circle with radius
1

2π and the distance dL(·, ·) to be the geodesic distance. As a shorthand, for any two vertices
u, v, let d(u, v) denote dL(Xu, Xv) where Xu, Xv are the random variables corresponding to
the vertices. We also use d(u, v) to denote the distance between a vertex u (or the embedding
of that vertex in [0, 1]) and a point v ∈ [0, 1] naturally. Our main result regarding VRGs is
summarized in the following theorem.

I Theorem 2 (Connectivity threshold of vertex-random graphs). The VRG(n, [ b lnn
n , a lnn

n ])
is connected with probability 1 − o(1) if a > 1 and a − b > 0.5. On the other hand, the
VRG(n, [ b lnn

n , a lnn
n ]) is not connected with probability 1− o(1) if a < 1 or a− b < 0.5.

Only for the special case of b = 0, the connectivity result was known before [25, 26]. See
also [27]. Generalization to b > 0 is both nontrivial and counter-intuitive (the minimum
connectivity gap is no longer a − b ≥ 1). Indeed, our analysis also leads to an alternate
simple proof of connectivity for one-dimensional RGGs.

I Definition 3 (The Random Annulus Graph). Let us define the t-dimensional unit sphere
as St ≡ {x ∈ Rt+1 | ||x||2 = 1}. A random annulus graph RAGt(n, [r1, r2]) on n vertices
has parameters n, t ∈ Z+, and a pair of real numbers r1, r2 ∈ [0, 2], r1 ≤ r2. It is defined by
assigning a number Xi ∈ St to vertex i, 1 ≤ i ≤ n, where Xi’s are independent and identical
random vectors uniformly distributed in St. There will be an edge between vertices i and
j, i 6= j, if and only if r1 ≤ ‖Xi −Xj‖2 ≤ r2 where ‖ · ‖2 denote the `2 norm.

When from the context it is clear that we are in high dimensions, we use d(u, v) to denote
‖Xu−Xv‖2 or just the `2 distance between the arguments1. The following result summarizes
the condition for the existence of isolated vertices in RAGs.

1 If we substitute t = 1, then RAG1(n, [r1, r2]) is a random graph where each vertex is associated with a
random variable uniformly distributed in the unit circle. The distance between two vertices is the length
of the chord connecting the random variables corresponding to the two vertices. If the length of the chord
is r ≤ 2, then the length of the corresponding (smaller) chord length of the corresponding arc between
the vertices along the circumference of the circle is 2 sin−1 r

2 . If we normalize the circumference of the
circle by 2π, we obtain a random graph model that is equivalent to our definition of the vertex-random
graphs. Since handling geodesic distances is more cumbersome in the higher dimensions, we resorted to
Euclidean distance.

APPROX/RANDOM 2019
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I Theorem 4 (Zero-One law for Isolated Vertex in RAG). For a random annulus graph

RAGt(n, [r1, r2]) where r2 = a
(

lnn
n

) 1
t and r1 = b

(
lnn
n

) 1
t , there exists isolated nodes with

probability 1− o(1) if

at − bt <
√
π(t+ 1)Γ( t+2

2 )
Γ( t+3

2 )
≡ ψ(t),

where Γ(x) =
∫∞

0 yx−1e−ydy is the gamma function, and there does not exist an isolated
vertex with probability 1− o(1) if at − bt > ψ(t).

As a corollary of the above, we observe an RAGt(n, [b
(

lnn
n

) 1
t

, a
(

lnn
n

) 1
t ]) is not connected

with probability 1− o(1) if at − bt < ψ(t). Our main result provides a sufficient condition for
the connectivity.

I Theorem 5. A t dimensional random annulus graph RAGt(n, [b
(

lnn
n

) 1
t

, a
(

lnn
n

) 1
t ]) is

connected with probability 1− o(1) if (a/2)t − bt ≥ 8(t+ 1)ψ(t) and a > 2b.

These connectivity results find immediate application in analyzing the geometric block
model (GBM), a generative model for networks with underlying community structure.

I Definition 6 (Geometric Block Model). Given V = V1 t V2, |V1| = |V2| = n
2 , choose a

random variable Xu uniformly distributed in [0, 1] for all u ∈ V . The geometric block model
GBM(rs, rd) with parameters 1/2 ≥ rs > rd is a random graph where an edge exists between
vertices u and v if and only if,

dL(Xu, Xv) ≤ rs when u, v ∈ V1 or u, v ∈ V2

dL(Xu, Xv) ≤ rd when u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1.

As a consequence of the connectivity lower bound on VRG, we are able to show community
recovery lower bound, that is we show the recovery of the partition is not possible with
high probability in GBM(a lnn

n , b lnn
n ) whenever a− b < 0.5 or a < 1 (see, Theorem 18). If

in addition the vertex locations are known, then we can show a matching lower and upper
bounds: the recovery is possible if and only if a− b > 0.5 or a > 1 (formal statement in full
version [16]).

Coming back to the actual recovery problem, our main contribution for GBM is to provide
a simple and efficient algorithm that performs well in the connectivity regime and recovers the
clusters exactly. The following theorem provides a weaker (but simpler to understand) bound.

I Theorem 7 (Recovery algorithm for GBM). Suppose we have a graph G(V,E) generated
according to GBM(rs ≡ a lnn

n , rd ≡ b lnn
n ) and b > 1

4 ln 2−2 , then there exists an efficient
algorithm (see Algorithm 1) which recovers the correct partition in G with probability 1− o(1)
if a− 8b > 1.

For the full range of parameter b, the (stronger) recovery guarantees for Algorithm 1 is
discussed in Theorem 22 in Section 5. Table 1 lists some examples of the parameters when the
proposed algorithm (Algorithm 1) can successfully recover the clusters. As can be anticipated,
the connectivity results for RAGs apply to the “high dimensional” GBM.
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Table 1 Minimum value of a, given b for which Algorithm 1 resolves clusters correctly in the
setting for GBM( a ln n

n
, b ln n

n
).

b 1 2 3 4 5 6 7
Minimum value of a 8.96 12.63 15.9 18.98 21.93 24.78 27.57

I Definition 8 (The GBM in High Dimensions). Given V = V1 t V2, |V1| = |V2| = n
2 , choose

a random vector Xu independently uniformly distributed in St for all u ∈ V . The geometric
block model GBMt(rs, rd) with parameters rs > rd is a random graph where an edge exists
between vertices u and v if and only if,

||Xu −Xv||2 ≤ rs when u, v ∈ V1 or u, v ∈ V2

||Xu −Xv||2 ≤ rd when u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1.

We extend the algorithmic results to high dimensions.

I Theorem 9. There exists a polynomial time efficient algorithm that recovers the partition
from GBMt(rs, rd) with probability 1 − o(1) if rs = Θ(( lnn

n ) 1
t ) and rs − rd = Ω(( lnn

n ) 1
t ).

Moreover, any algorithm fails to recover the parts with probability at least 1/2 if rs − rd =
o(( lnn

n ) 1
t ) or rs = o(( lnn

n ) 1
t ).

3 Connectivity of Vertex-Random Graphs

In this section we give a proof of Theorem 2.

3.1 Sufficient condition for connectivity of VRG
I Theorem 10. The vertex-random graph VRG(n, [ b lnn

n , a lnn
n ]) is connected with probability

1− o(1) if a > 1 and a− b > 0.5.

To prove this theorem we use two main technical lemmas that show two different events
happen with high probability simultaneously. First, we show that a VRG(n, [ b lnn

n , a lnn
n ])

can be decomposed into union of cycles such that each of them cover [0, 1]. Second, we show
there exists a vertex u0 such that it has at least one neighbor in each cycle2.

I Lemma 11. A set of vertices C ⊆ V is called a cover of [0, 1], if for any point y in [0, 1]
there exists a vertex v ∈ C such that d(v, y) ≤ a lnn

2n . A VRG(n, [ b lnn
n , a lnn

n ]) is a union of
cycles such that every cycle forms a cover of [0, 1] as long as a − b > 0.5 and a > 1 with
probability 1− o(1).

Let us consider a weaker condition a − b > 1 than the statement of Lemma 11. This
will be much easier to prove and already establishes the connectivity result for RGG in
one dimension. Note that since the points are on a circle, it is natural to define a right
(clockwise) and a left (counterclockwise) direction. When a− b > 1, we show each vertex has
at least one neighbor on both directions. To see this for each vertex u , assign two indicator
{0, 1}-random variables Alu and Aru, with Alu = 1 if and only if there is no node x to the left

2 If the points are assumed to be present on a unit line [0,1], the same proof works with a difference that
VRG(n, [ b ln n

n , a ln n
n ]) can now be decomposed into a collection of paths that cover [0,1] and all these

paths are connected through a vertex u0. This analysis requires us to handle the nodes present in the
boundary region – [0, a ln n

n ] and [1− a ln n
n , 1] separately.

APPROX/RANDOM 2019
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of node u such that d(u, x) ∈ [ b lnn
n , a lnn

n ]. Similarly, let Aru = 1 if and only if there is no
node x to the right of node u such that d(u, x) ∈ [ b lnn

n , a lnn
n ]. Now define A =

∑
u(Alu+Aru).

We have,

Pr(Alu = 1) = Pr(Aru = 1) = (1− (a− b) lnn
n

)n−1,

and,

E[A] = 2n(1− (a− b) lnn
n

)n−1 ≤ 2n1−(a−b).

If a− b > 1 then E[A] = o(1) which implies, by invoking Markov inequality, that with high
probability every node will have neighbors (connected by an edge in the VRG) on either side.
Therefore every vertex will lie on a cycle that covers [0, 1]. This is true for every vertex, hence
the graph is simply a union of cycles each of which is a cover of [0, 1]. The main technical
challenge is to show that this conclusion remains valid even when a− b > 0.5, which is proved
in Lemma 11 in Appendix A. Indeed, when a− b > 0.5, not every vertex will have neighbors
on both sides; rather we need to analyze the connectivity via multi-hops to establish the
desired result.

I Lemma 12. Set two real numbers k ≡ d b
(a−b)e+1 and ε < 1

2k . In an VRG(n, [ b lnn
n , a lnn

n ]),
0 < b < a, with probability 1− o(1) there exists a vertex u0 and k nodes {u1, u2, . . . , uk} to
the right of u0 such that d(u0, ui) ∈ [ (i(a−b)−2iε) lnn

n , (i(a−b)−(2i−1)ε) lnn
n ] and another set of

k nodes {v1, v2, . . . , vk} also to the right of u0 such that d(u0, vi) ∈ [ ((i(a−b)+b−(2i−1)ε) lnn
n ,

(i(a−b)+b−(2i−2)ε) lnn
n ], for i = 1, 2, . . . , k. The arrangement of the vertices is shown in

Figure 1.

We delegate the proof of this lemma to Appendix A.

Proof of Theorem 10. We have shown that the two events mentioned in Lemmas 11 and
12 happen with high probability. Therefore they simultaneously happen under the condition
a > 1 and a− b > 0.5. Now we will show that these events together imply that the graph
is connected. To see this, consider the vertices u0, {u1, u2, . . . , uk} and {v1, v2, . . . , vk} that
satisfy the conditions of Lemma 12. We can observe that each vertex vi has an edge with ui
and ui−1, i = 1, . . . , k. This is because (see Figure 1 for a depiction)

d(ui, vi) ≥
((i(a− b) + b− (2i− 1)ε) lnn

n
− i(a− b)− (2i− 1)ε) lnn

n
= b lnn

n
and

d(ui, vi) ≤
i(a− b) + b− (2i− 2)ε lnn

n
− (i(a− b)− 2iε) lnn

n
= (b+ 2ε) lnn

n
.

Similarly,

d(ui−1, vi) ≥
((i(a− b) + b− (2i− 1)ε) lnn

n
− (i− 1)(a− b)− (2i− 3)ε) lnn

n

= (a− 2ε) lnn
n

and

d(ui−1, vi) ≤
i(a− b) + b− (2i− 2)ε lnn

n
− ((i− 1)(a− b)− 2(i− 1)ε) lnn

n
= a lnn

n
.
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v1 v2 v3u1 u2 u3

a
b

ε

a− b− 2ε

u0

Figure 1 The location of ui and vi relative to u scaled by ln n
n

in Lemma 12. Edges stemming
put of v1, v2, v3 are shown as blue, red and violet respectively.

v1 v2 v3

a
b

ε

a− b− 2ε

u

Figure 2 The line segments where v1, v2, v3 can have neighbors (scaled by log n
n

) in the proof of
Theorem 10. The point t has to lie in one of these regions.

This implies that u0 is connected to ui and vi for all i = 1, . . . , k. Using Lemma 11,
the first event implies that the connected components are cycles spanning the entire line
[0, 1]. Now consider two such disconnected components, one of which consists of the nodes
u0, {u1, u2, . . . , uk} and {v1, v2, . . . , vk}. There must exist a node t in the other component
(cycle) such that t is on the right of u0 and d(u0, t) ≡ x lnn

n ≤ a lnn
n . If x ≤ b, then there

exists an i such that i ≤ k and i(a − b) + b − a − (2i − 2)ε ≤ x ≤ i(a − b) − (2i − 1)ε (see
Figure 2). Thus, when x ≤ b, we can calculate the distance between t and vi as

d(t, vi) ≥
(i(a− b) + b− (2i− 1)ε) lnn

n
− (i(a− b)− (2i− 1)ε) lnn

n
= b lnn

n

and

d(t, vi) ≤
(i(a− b) + b− (2i− 2)ε) lnn

n
− (i(a− b) + b− a− (2i− 2)ε) lnn

n
= a lnn

n
.

Therefore t is connected to vi when x ≤ b. If x > b then t is already connected to u0. Therefore
the two components (cycles) in question are connected.This is true for all cycles and hence
there is only a single component in the entire graph. Indeed, if we consider the cycles to be
disjoint super-nodes, then we have shown that there must be a star configuration. J

The following result is an immediate corollary of the connectivity upper bound.
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I Corollary 13. Consider a random graph G(V,E) is being generated as a variant of the VRG
where each u, v ∈ V forms an edge if and only if d(u, v) ∈

[
0, c lnn

n

]
∪
[
b lnn
n , a lnn

n

]
, 0 < c <

b < a. This graph is connected with probability 1−o(1) if a− b+c > 1 or if a− b > 0.5, a > 1.

3.2 Necessary condition for connectivity of VRG
I Theorem 14 (VRG connectivity lower bound). The VRG(n, [ b lnn

n , a lnn
n ]) is not connected

with probability 1− o(1) if a < 1 or a− b < 0.5.

Proof. First of all, it is known that VRG(n, [0, a lnn
n ]) is not connected with high probability

when a < 1 [25, 26]. Therefore VRG(n, [ b lnn
n , a lnn

n ]) must not be connected with high
probability when a < 1 as the connectivity interval is a strict subset of the previous case,
and VRG(n, [ b lnn

n , a lnn
n ]) can be obtained from VRG(n, [0, a lnn

n ]) by deleting all the edges
that has the two corresponding random variables separated by distance less than b lnn

n .
Next we will show that if a − b < 0.5 then there exists an isolated vertex with high

probability. It would be easier to think of each vertex as a uniform random point in [0, 1].
Define an indicator variable Au for every node u which is 1 when node u is isolated and 0
otherwise. We have,

Pr(Au = 1) =
(

1− 2(a− b) lnn
n

)n−1
.

Define A =
∑
uAu, and hence

E[A] = n
(

1− 2(a− b) lnn
n

)n−1
= n1−2(a−b)−o(1).

Therefore, when a− b < 0.5, E[A] = Ω(1). To prove this statement with high probability we
can show that the variance of A is bounded. Since A is a sum of indicator random variables,
we have that

Var(A) ≤ E[A] +
∑
u6=v

Cov(Au, Av)

= E[A] +
∑
u6=v

(Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1)).

Now, consider the scenario when the vertices u and v are at a distance more than 2a lnn
n apart

(happens with probability 1 − 4a lnn
n ). Then the region in [0, 1] that is between distances

b lnn
n and a lnn

n from both of the vertices is empty and therefore Pr(Au = 1 ∩ Av = 1) =(
1 − 4(a−b) lnn

n

)n−2
. When the vertices are within distance 2a lnn

n of one another, then
Pr(Au = 1 ∩Av = 1) ≤ Pr(Au = 1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤(1− 4a lnn
n

)
(

1− 4(a− b) lnn
n

)n−2
+ 4a lnn

n
Pr(Au = 1)

≤ (1− 4a lnn
n

)n−4(a−b)+o(1) + 4a lnn
n

n−2(a−b)+o(1).

Consequently for large enough n,

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1) ≤ (1− 4a lnn
n

)n−4(a−b)+o(1)

+4a lnn
n

n−2(a−b)+o(1)−n−4(a−b)+o(1) ≤ 8a lnn
n

Pr(Au = 1).



S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:11

Now,

Var(A) ≤ E[A] +
(
n

2

)
8a lnn
n

Pr(Au = 1) ≤ E[A](1 + 4a lnn).

By using Chebyshev bound, with probability at least 1− 1
lnn ,

A > n1−2(a−b) −
√
n1−2(a−b)(1 + 4a lnn) lnn,

which imply for a− b < 0.5, there will exist isolated nodes with high probability. J

4 Connectivity of High Dimensional Random Annulus Graphs: Proof
of Theorem 5

In this section we provide a proof sketch of Theorem 5 to establish the sufficient condition of
connectivity of random annulus graphs. The details of the proof and the necessary conditions
are provided in the full version [16].

Note, here r1 ≡ b
( lnn
n

)1/t and r2 ≡ a
( lnn
n

)1/t. To show the upper bound for connectivity,
the very first step is to define a pole which is a vertex that is connected to all vertices within
a distance of r2 from itself. We show such a pole exists with high probability in Lemma 15.
This is a significant generalization of Lemma 12 from Section 3. We prove there exist annuli
of suitably small radii around a node u0 such that they are each non-empty and the vertices
in these annuli are connected to each other along with u0. Moreover the center of the annuli
are collinear. Every point within distance r2 from u0 is then shown to be connected to at
least one vertex in these constructed annuli.

I Lemma 15. In a RAGt

(
n,
[
b
( lnn
n

)1/t
, a
( lnn
n

)1/t])
, 0 < b < a, with probability 1− o(1)

there exists a pole.

Next, Lemma 16 shows that for every vertex u and every hyperplane L passing through u
and not too close to the tangent hyperplane at u, there will be a neighbor of u on either side
of the plane. Therefore, there should be a neighbor towards the direction of the pole. In
order to formalize this, let us define a few regions associated with a node u and a hyperplane
L : wTx = β passing through u.

R1
L ≡ {x ∈ St | r1 ≤ d(u, x) ≤ r2, w

Tx ≤ β}
R2
L ≡ {x ∈ St | r1 ≤ d(u, x) ≤ r2, w

Tx ≥ β}
AL ≡ {x | x ∈ St, wTx = β}.

Informally, R1
L and R2

L represent the partition of the annulus on either side of the hyperplane
L and AL represents the region on the sphere lying on L.

I Lemma 16. If we sample n nodes from St according to RAGt

(
n,
[
b
( lnn
n

)1/t
, a
( lnn
n

)1/t]),
then for every node u and every hyperplane L passing through u such that AL is not all within
distance r2 of u, node u has a neighbor on both sides of the hyperplane L with probability at
least 1− 1

n provided (a/2)t − bt ≥ 8
√
π(t+1)2Γ( t+2

2 )
Γ( t+3

2 ) and a > 2b.

The proof of this lemma is quite challenging. Since, we do not know the location of the pole, we
need to show that every point has a neighbor on both sides of the plane L no matter what the
orientation of the plane. Since the number of possible orientations is uncountably infinite, we
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cannot use a union-bound type argument. To show this we have to rely on the VC Dimension of
the family of sets {x ∈ St | r1 ≤ ‖u−x‖2 ≤ r2, w

Tx ≥ β,AL:wT x=β not all within r2 of u} for
all hyperplanes L (which can be shown to be less than t+ 1). We rely on the celebrated result
of [21] (we derive a continuous version of it), see full version [16], to deduce our conclusion.

For a node u and its corresponding location Xu = (u1, u2, . . . , ut+1), define the particular
hyperplane L?u : x1 = u1 which is normal to the line joining u0 ≡ (1, 0, . . . , 0) and the origin
and passes through u. We now need one more lemma that will help us prove Theorem 5.

I Lemma 17. For a particular node u and corresponding hyperplane L?u, if every point in
AL?u is within distance r2 from u, then u must be within r2 of u0.

Proof of Theorem 5. We consider an alternate (rotated but not shifted) coordinate system
by multiplying every vector by an orthonormal matrix such that the new position of the
pole is the t+ 1-dimensional vector (1, 0, . . . , 0) where only the first coordinate is non-zero.
Let the t + 1 dimensional vector describing any node u in this new coordinate system be
û = (û1, û2, . . . , ût+1). Now consider the hyperplane L : x1 = û1 and if u is not connected to
the pole already, then by Lemma 16 and Lemma 17, the node u has a neighbor u2 which has
a higher first coordinate (û2 > û1). The same analysis applies for u2 and hence we have a
path where the first coordinate of every node is higher than the previous node. Since the
number of nodes is finite, this path cannot go on indefinitely and at some point, one of the
nodes is going to be within r2 of the pole and will be connected to the pole. Therefore every
node is going to be connected to the pole and hence our theorem is proved. J

5 The Geometric Block Model

In this section, we prove a necessary condition for exact cluster recovery of the GBM and
give an efficient algorithm that matches that within a constant factor. Very interestingly, our
algorithm is based on a simple triangle counting method, whose variants are used as popular
heuristics for community recovery in many real networks [3, 29, 11]. This further validates
the suitability of GBMs as a community detection model.

5.1 Immediate consequence of VRG connectivity
The following lower bound for GBM can be obtained as a consequence of Theorem 2.

I Theorem 18 (Impossibility in GBM). Any algorithm to recover the partition in GBM(a lnn
n ,

b lnn
n ) will give incorrect output with probability 1− o(1) if a− b < 0.5 or a < 1.

Proof. Consider the scenario that not only the geometric block model graph GBM(a lnn
n , b lnn

n )
was provided to us, but also the random values Xu ∈ [0, 1] for all vertex u in the graph were
provided. We will show that we will still not be able to recover the correct partition of the
vertex set V with probability at least 0.5 (with respect to choices of Xu, u, v ∈ V and any
randomness in the algorithm).

In this situation, the edge (u, v) where dL(Xu, Xv) ≤ b lnn
n does not give any new

information than Xu, Xv. However the edges (u, v) where b lnn
n ≤ dL(Xu, Xv) ≤ a lnn

n are
informative, as existence of such an edge will imply that u and v are in the same part. These
edges constitute a vertex-random graph VRG(n, [ b lnn

n , a lnn
n ]). But if there are more than

two components in this vertex-random graph, then it is impossible to separate out the vertices
into the correct two parts, as the connected components can be assigned to any of the two
parts and the VRG along with the location values (Xu, u ∈ V ) will still be consistent.
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What remains to be seen that VRG(n, [ b lnn
n , a lnn

n ]) will have ω(1) components with high
probability if a− b < 0.5 or a < 1. This is certainly true when a− b < 0.5 as we have seen in
Theorem 14, there can indeed be ω(1) isolated nodes with high probability. On the other
hand, when a < 1, just by using an analogous argument it is possible to show that there are
ω(1) vertices that do not have any neighbors on the left direction (counterclockwise). We
delegate the proof of this claim as Lemma 19. If there are k such vertices, there must be at
least k − 1 disjoint candidates. This completes the proof. J

I Lemma 19. A random geometric graph G(n, a lnn
n ) will have ω(1) disconnected components

for a < 1.

Proof. Define an indicator random variable Au for a node u which is 1 if it does not have a
neighbor on its left. We must have that Pr(Au) =

(
1− a lnn

n

)n−1
. Therefore we must have

that
∑
u EAu = n1−a = Ω(1) if a < 1. This statement also holds true with high probability.

To show this we need to prove that the variance of
∑
u EAu is bounded. We have

Var(A) < E[A] +
∑
u6=v

Cov(Au, Av)

= E[A] +
∑
u6=v

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1)

Now, consider the scenario when the vertices u and v are at a distance more than 2a lnn
n apart

(happens with probability at least 1− 4a lnn
n ). Then the region in [0, 1] that is within distance

a lnn
n from both of the vertices is empty and therefore Pr(Au = 1 ∩ Av = 1) = Pr(Au =

1) Pr(Av = 1|Au = 1) ≤ Pr(Au = 1) Pr(Av = 1) = (Pr(Au = 1))2. When the vertices are
within distance 2a lnn

n of one another, then Pr(Au = 1 ∩Av = 1) ≤ Pr(Au = 1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤ (1− 4a lnn
n

)(Pr(Au = 1))2 + 4a lnn
n

Pr(Au = 1).

Consequently,

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1) ≤ (1− 4a lnn
n

)(Pr(Au = 1))2

+4a lnn
n

Pr(Au = 1)−(Pr(Au = 1))2 ≤ 4a lnn
n

Pr(Au = 1).

Now,

Var(A) ≤ E[A] +
(
n

2

)
4a lnn
n

Pr(Au = 1) ≤ E[A](1 + 2a lnn).

By using Chebyshev bound, with probability at least 1− 1
lnn ,

A > n1−a −
√
n1−a(1 + 2a lnn) lnn,

Now, observe that if there exist k nodes with no neighbor on one side, then there must exist
k− 1 disconnected components. Hence the number of components in G(n, a lnn

n ) is ω(1). J

Indeed, when the locations Xu associated with every vertex u is provided, it is also
possible to recover the partition when a − b > 0.5 and a > 1, matching the above lower
bound exactly. Similar impossibility result extends to higher dimensional GBM from the
necessary condition on connectivity of RAG.
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5.2 A Recovery Algorithm for GBM

We now turn our attention to an efficient recovery algorithm for GBM. Intriguingly, we show
a simple triangle counting based algorithm works well for GBM and recovers the communities
in the connectivity regime.

Algorithm 1 Community recovery in GBM.

Require: GBM G = (V,E), rs, rd
1: for (u, v) ∈ E do
2: if process(u, v, rs, rd)=false then
3: E.remove((u, v))
4: end if
5: end for
6: return connectedComponent(V,E)

Algorithm 2 process.

Require: u,v, rs, rd
Ensure: true/false

{Comment: When a > 2b, t1 = min{t : (2b + t) ln 2b+t
2b − t > 1}, t2 = min{t : (2b −

t) ln 2b−t
2b + t > 1 and ES = (2b+ t1) lnn

n and ED = (2b− t2) lnn
n }

1: count ← |{z : (z, u) ∈ E, (z, v) ∈ E}|
2: if count

n ≥ ES(rd, rs) or count
n ≤ ED(rd, rs) then

3: return true
4: end if
5: return false

Suppose we are given a graph G = (V : |V | = n,E) with two disjoint parts, V1, V2 ⊆ V
generated according to GBM(rs, rd). The algorithm (Algorithm 1) goes over all edges
(u, v) ∈ E. It counts the number of triangles containing the edge (u, v) by calling the
process function that counts the number of common neighbors of u and v.

process outputs “true” if it is confident that the nodes u and v belong to the same
cluster and “false” otherwise. More precisely, if the count is within some prescribed values
ES and ED, it returns “false”. Note that the thresholds ES and ED refer to the maximum
and minimum value of triangle-count for an “inter-cluster” edge. The algorithm removes
the edge on getting a “false” from process function. After processing all the edges of the
network, the algorithm is left with a reduced graphs (with certain edges deleted from the
original). It then finds the connected components in the graph and returns them as the parts
V1 and V2.

It would have been natural to consider two thresholds ED and ES and if the triangle
count of an edge is closer to ES than ED, then the two end-points are assigned to the same
cluster and otherwise in separate clusters. Indeed such a natural algorithm has been analyzed
in [15]. On the other hand, here we remove an edge if the triangle count lies in an interval.
This is apparently non-intuitive, but gives a significant improvement over the previously
known bound (see Figure 3).
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Figure 3 The minimum gap between a and b permitted by our algorithm vs the previously known
bound of [15].

5.3 Analysis of Algorithm 1

Given a graph G(V,E) ≡ GBM(rs ≡ a lnn
n , rd = b lnn

n ) with two clusters V = V1 t V2, and
a pair of vertices u, v ∈ V , the events Eu,vz , z ∈ V of any other vertex z being a common
neighbor of both u and v given (u, v) ∈ E are dependent; however given the distance between
the corresponding random variables dL(Xu, Xv) = x, the events are independent. This is a
crucial observation that lets us overcome the difficulty of handling correlated edge formation.

Moreover, given the distance between two nodes u and v are the same, the probabilities
of Eu,vz | (u, v) ∈ E are different when u and v are in the same cluster and when they are in
different clusters. Therefore the count of the common neighbors are going to be different,
and substantially separated with high probability for two vertices in cases when they are
from the same cluster or from different clusters. However, this may not be the case, if we do
not restrict the distance to be the same and look at the entire range of possible distances.

The distribution of the number of common neighbors given (u, v) ∈ E and d(u, v) = x is
given in Table 2 (follows from Lemma 23 and Lemma 24 from Appendix). As throughout
this paper, we have assumed that there are only two clusters of equal size. In the table, u ∼ v
means u and v are in the same cluster and Bin(n, p) denotes a binomial random variable
with mean np.

Table 2 Distribution of triangle count for an edge (u, v) conditioned on the distance between
them d(u, v) = dL(Xu, Xv) = x, when there are two equal sized clusters.

(u, v) ∈ E Distribution of count (rs > 2rd) Distribution of count (rs ≤ 2rd)
d(u, v) = x u ∼ v, x ≤ rs u � v, x ≤ rd u ∼ v, x ≤ rs u � v, x ≤ rd

Motif : z | (z, u) ∈ E, (z, v) ∈ E Bin( n
2 − 2, 2rs −

x) + 1{x ≤
2rd}Bin( n

2 , 2rd − x)

Bin(n− 2, 2rd) Bin( n
2 − 2, 2rs − x) +

Bin( n
2 , 2rd − x)

Bin(n − 2,min(rs + rd −
x, 2rd))

At this point in a GBM(rs, rd) for any edge u, v that does not belong to the same part,
the expected total number of common neighbors of u and v does not depend on their distance.
In Lemma 20, we show that in this case the normalized total number of common neighbors
is concentrated around 2rd.
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I Lemma 20. Suppose we are given a graph G(V,E) generated according to GBM(rs ≡
a lnn
n , rd ≡ b lnn

n ), a ≥ 2b. Our algorithm with ES = (2b + t1) lnn
n and ED = (2b − t2) lnn

n ,
deletes all the edges (u, v) ∈ E such that u and v are in different parts with probability at
least 1− o(1), where

t1 = min{t : (2b+ t) ln 2b+ t

2b − t > 1}, t2 = min{t : (2b− t) ln 2b− t
2b + t > 1}.

Therefore, when Algorithm 1 finishes processing all the edges, all the “inter-cluster” edges
are removed with high probability. However some of the “in-cluster” edges are also deleted,
namely, those that have a count of common neighbors between ES and ED. In the next
lemma, we show the necessary condition on the “in-cluster” edges such that they do not get
removed by Algorithm 1.

I Lemma 21. Suppose we are given a graph G(V,E) generated according to GBM(rs ≡
a lnn
n , rd ≡ b lnn

n ), a ≥ 2b. Define t1, t2, ED, ES as in Lemma 20. Consider an edge (u, v) ∈ E
where u, v belong to the same part of the GBM and let d(u, v) ≡ x ≡ θ lnn

n . Suppose θ satisfies
either of the following conditions:
1. 1

2

(
(4b+ 2t1) ln 4b+2t1

2a−θ + 2a− θ − 4b− 2t1
)
> 1 and 0 ≤ θ ≤ 2a− 4b− 2t1

2. 1
2

(
(4b− 2t2 ln 4b−2t2

2a−θ + 2a− θ − 4b+ 2t2
)
> 1 and a ≥ θ ≥ max{2b, 2a− 4b+ 2t2}..

Then Algorithm 1 with ES = (2b+ t1) lnn
n and ED = (2b− t2) lnn

n will not remove this edge
with probability at least 1−O( 1

n(lnn)2 ).

Now we are in a position to prove our main theorem from this part.

I Theorem 22. Suppose we are given a graph G(V,E) generated according to GBM(rs ≡
a lnn
n , rd ≡ b lnn

n ), a ≥ 2b. Define t1, t2, ES and ED as in Lemma 20, and θ1 and θ2 as in
Lemma 21. Then Algorithm 1 recovers the correct partition in G with probability 1− o(1) if
a− θ2 + θ1 > 2 OR a− θ2 > 1, a > 2.

Proof. From Lemma 20, we know that after Algorithm 1 has processed all the edges,
the edges with end-points in different parts of the GBM are all deleted with probability
1 − o(1). Moreover, from Lemma 21, an intra-cluster edge (u, v) will continue to exist if
d(u, v) ∈ [0, θ1] ∪ [θ2, a] (by simply applying a union bound over at most O(n logn) edges).
From Corollary 13, it is evident that each of the two parts of size n

2 each will be connected if
either a− θ2 + θ1 > 2 or a− θ2 > 1 and a > 2. J

Theorem 7 is a weaker version of Theorem 22 which we obtain by setting specific values.

Proof of Theorem 7. Following the proof of Theorem 22, when ED = 0 and ES = (2b +
t1) lnn

n , after Algorithm 1 processes all the edges, an edge between a pair u and v will continue
to exist if d(u, v) ∈ [0, θ1] which is equivalent to setting θ2 ≤ a. Consider the case when
b > 1

4 ln 2−2 . Note that from Theorem 22, t1 = min{t : (2b+ t) ln 2b+t
2b − t > 1}. We see that

t = 2b satisfies the above condition since, (2b+ t) ln 2b+t
2b − t = 4b ln 2− 2b > 1. This shows

that t1 ≤ 2b. Similarly, from Theorem 22,

θ1 = max{θ : 1
2

(
(4b+ 2t1) ln 4b+ 2t1

2a− θ + 2a− θ − 4b− 2t1
)
> 1 and

0 ≤ θ ≤ 2a− 4b− 2t1.}
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When t1 ≤ 2b, the expression θ ≤ 2a− 4b− 2t1 is satisfied for all values of θ ≤ 2a− 8b.
Hence, we choose θ = 2a− 16b to simplify the other expression and get the following chain
of equations:

1
2

(
(4b+ 2t1) ln 4b+ 2t1

2a− θ + 2a− θ − 4b− 2t1
)

≥ 1
2

(
(4b+ 2t1) ln 4b+ 2t1

2a− θ + 2a− θ − 8b
)

= 1
2

(
(4b+ 2t1) ln 4b+ 2t1

2a− θ

)
+ 4b

≥ 1
2

(
(4b) ln 4b

2a− θ

)
+ 4b ≥ 1

2

(
(4b) ln 4b

16b

)
+ 4b = −2b ln 4 + 4b

which is greater than 1 whenever b satisfies b > 1
4−4 ln 2 . However, since we assumed that

b > 1
2(2 ln 2−1) , the condition b > 1

4−4 ln 2 is automatically satisfied as 1
2(2 ln 2−1) >

1
4−4 ln 2 .

This implies that θ1 > 2a− 16b.
Using, θ1 > 2a− 16b and θ2 = a, the final condition of Theorem 22, a− θ2 + θ1 > 2 is

satisfied whenever θ1 > 2 that is, 2a− 16b > 2. Hence, whenever 2a− 16b > 2, or, a− 8b > 1,
Algorithm 1 will recover the correct partition with probability 1− o(1). J
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A Proof of Lemma 11 and Lemma 12

Proof of Lemma 11. The proof of this lemma is somewhat easily explained if we consider a
weaker result (a stronger condition) with a− b > 2/3. Let us first briefly describe this case.

Consider a node u and assume without loss of generality that the position of u is 0 (i.e.
Xu = 0). Associate four indicator {0, 1}-random variables Aiu, i = 1, 2, 3, 4 which take the
value of 1 if and only if there does not exist any node x such that
1. d(u, x) ∈ [b lnn

n , a lnn
n ] ∪ [0, a−b2

lnn
n ]} for i = 1

2. d(u, x) ∈ [b lnn
n , a lnn

n ] ∪ [−a−b2
lnn
n ,−b lnn

n ]} for i = 2
3. d(u, x) ∈ [−a lnn

n ,−b lnn
n ] ∪ [−a+b

2
lnn
n , 0]} for i = 3

4. d(u, x) ∈ [−a lnn
n ,−b lnn

n ] ∪ [b lnn
n , a+b

2
lnn
n ]} for i = 4.

http://arxiv.org/abs/1804.05013
http://arxiv.org/abs/1804.05013
http://proceedings.mlr.press/v40/Hajek15.html
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The intervals representing these random variables are shown in Figure 4.
Notice that Pr(Aiu = 1) ≤ max{

(
1− 1.5(a− b) lnn

n

)n−1
,
(

1− a lnn
n

)n−1
} and therefore∑

i,u EAiu ≤ 4 max{n1−1.5(a−b), n1−a} = 4nmin{1−1.5(a−b),1−a}. This means that for a− b ≥
0.67 and a ≥ 1,

∑
i,u EAiu = o(1). Hence there exist vertices in all the regions described

above for every node u with high probability.
Now, A1

u and A2
u being zero implies that either there is a vertex in [b lnn

n , a lnn
n ] or there

exists two vertices v1, v2 in [0, a−b2
lnn
n ] and [−a−b2

lnn
n ,−b lnn

n ] respectively (see, Figure 4). In
the second case, u is connected to v2 and v2 is connected to v1. Therefore u has nodes on
left (v2) and right (v1) and u is connected to both of them through one hop in the graph.

Similarly, A3
u and A4

u being zero implies that either there exists a vertex in [−a lnn
n ,−b lnn

n ]
or again u will have vertices on left and right and will be connected to them. So, when all
the four Aiu, i = 1, 2, 3, 4 are zero together:

A1
u = A2

u = 0 implies there is a neighbor of u on either sides or there is a single node in
[b lnn

n , a lnn
n ]

A3
u = A4

u = 0 implies there is a neighbor of u on either sides or there is a single node in
[−a lnn

n ,−b lnn
n ]

This shows that when A1
u = A2

u = 0 and A3
u = A4

u = 0 guarantee a node on only one side of u,
there are nodes in [b lnn

n , a lnn
n ] and [−a lnn

n ,−b lnn
n ]. But in that case u has direct neighbors

on both its left and right. We can conclude that every vertex u is connected to a vertex v
on its right and a vertex w on its left such that d(u, v) ∈ [0, a lnn

n ] and d(u,w) ∈ [−a lnn
n , 0];

therefore every vertex is part of a cycle that covers [0, 1].

a−b
2

A3
u

A4
u

A1
u

A2
u

b a−b−a u

Figure 4 Representation of four different random variables for Lemma 11.

We can now extend this proof to the case when a− b > 0.5.
Let c be large number to be chosen specifically later. Consider a node u and assume that

the position of u is 0. Now consider the four different regions [−a lnn
n ,−b lnn

n ], [−(a−b) lnn
n , 0],

[b lnn
n , a lnn

n ] and [0, a− b lnn
n ] around u each divided into L ≡ 2c patches (intervals) of size

θ = a−b
2c in the following way:

1. Iiu = [ (−a+(i−1)θ) lnn
n , (−a+iθ) lnn

n ]
2. J iu = [ (−(a−b)+(i−1)θ) lnn

n , (−(a−b)+iθ) lnn
n ]

3. Ki
u = [ (b+(i−1)θ) lnn

n , (b+iθ) lnn
n ]

4. M i
u = [ ((i−1)θ) lnn

n , iθ lnn
n ]

where i = 1, 2, 3, . . . , L. Note that any vertex in ∪Iiu ∪Ki
u is connected to u. See, Figure 5

for a depiction.
Consider a {0, 1}-indicator random variable Xu that is 1 if and only if there does not

exist any node in a region formed by union of any 2L− 1 patches amongst the ones described
above. Notice that when a < 2b, the patches do not overlap and the total size of 2L − 1
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u

a− b a− b
b

a
b
a

θ

Ki
uJ iu M i

uIiu

Figure 5 Pictorial representation of Ii
u, J

i
u,K

i
u,M

i
u and their connectivity as described in Lemma

11. The colored lines show the regions that are connected to each other.

patches is 2c+1−1
2c

(a−b) lnn
n and when a ≥ 2b, the patches can overlap and the total size of

the 2L − 1 patches is going to be more than min{ 2c+1−1
2c

(a−b) lnn
n , a lnn

n }. Since there are( 4L
2L−1

)
≤ n 4L

lnn possible regions that consists of 2L− 1 patches,

∑
u

EXu ≤ n
(

4L
2L− 1

)(
1−min{2c+1 − 1

2c
(a− b) lnn

n
,
a lnn
n
}
)n−1

≤ max{n1− 2c+1−1
2c (a−b)+ 4L

lnn , n1−a+ 4L
lnn }.

At this point we can choose c = cn = o(lnn) such that limn cn =∞. Hence when a− b > 1
2

and a > 1, for every vertex u there exists at least one patch amongst every 2L− 1 patches in
∪Iiu ∪ Jju ∪Kk

u , i, j, k = 1, 2, . . . , L that contains a vertex.
Consider a collection of patches ∪iIiu ∪j Kj

u, i, j = 1, 2, . . . , L. We know that there exist
two patches amongst these Iius and Kj

us that contain at least one vertices. If one of Iius and
one of Kj

us contain two vertices, we found one neighbor of u on both left and right directions
(see, Figure 5).

We consider the other case now. Without loss of generality assume that there are no vertex
in all Iius and there exist at least two patches in Ki

us that contain at least one vertex each.
Hence, there exists at least one of {Ki

u | i ∈ {1, 2, . . . , L−1}} that contains a vertex. Similarly,
we can also conclude in this case that there exists at least one of {J iu | i ∈ {2, 3 . . . , L}} which
contain a node. Assume Jφu to be the left most patch in ∪J iu | i ∈ {1, 2, . . . , L} that contains
a vertex (see, Figure 5) . From our previous observation, we can conclude that φ ≥ 2.

We can observe that any vertex in Jju is connected to the vertices in patches Kk
u ,∀k < j.

This is because for two vertices v ∈ Jju and w ∈ Kk
u , we have

d(v, w) ≥ (b+ (k − 1)θ) lnn
n

− (−(a− b) + jθ) lnn
n

= (a+ (k − j − 1)θ) lnn
n

;

d(v, w) ≤ (b+ kθ) lnn
n

− (−(a− b) + (j − 1)θ) lnn
n

= (a+ (k − j + 1)θ) lnn
n

.

Consider a collection of 2L−1 patches {∪Iiu∪Jju∪Kk
u | i, j, k ∈ {1, . . . , L}, j > φ, k ≤ φ−1}

where φ ≥ 2. This is a collection of 2L− 1 patches out of which one must have a vertex and
since none of {Jju | j > φ} and Iiu can contain a vertex, one of {Kk

u | k ≤ φ− 1} must contain
the vertex. Recall that the vertex in Jφu is connected to any node in Kk

u for any k ≤ φ− 1
and therefore u has a node to the right direction and left direction that are connected to u.
Therefore every vertex is part of a cycle and each of the circles covers [0, 1]. J
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Proof of Lemma 12. Recall that we want to show that there exists a node u0 and k nodes
{u1, u2, . . . , uk} to the right of u0 such that d(u0, ui) ∈ [ (i(a−b)−2iε) lnn

n , (i(a−b)−(2i−1)ε) lnn
n ]

and exactly k nodes {v1, . . . , vk} to the right of u0 such that d(u0, vi) ∈ [ ((i(a−b)+b−(2i−1)ε) lnn
n ,

(i(a−b)+b−(2i−2)ε) lnn
n ], for i = 1, 2, . . . , k and ε is a constant less than 1

2k (see Figure 1 for
a depiction). Let Au be an indicator {0, 1}-random variable for every node u which is 1
if u satisfies the above conditions and 0 otherwise. We will show

∑
uAu ≥ 1 with high

probability. We have,

Pr(Au = 1) = n(n− 1) . . . (n− (2k − 1))
(ε lnn

n

)2k(
1− 2kε lnn

n

)n−2k

= c0n
−2kε(ε lnn)2k

2k−1∏
i=0

(1− i/n) = c1n
−2kε(ε lnn)2k

where c0, c1 are just absolute constants independent of n (recall k is a constant). Hence,∑
u

EAu = c1n
1−2kε(ε lnn)2k ≥ 1

as long as ε ≤ 1
2k . Now, in order to prove

∑
uAu ≥ 1 with high probability, we will show

that the variance of
∑
uAu is bounded from above. This calculation is very similar to the

one in the proof of Theorem 14. Recall that if A =
∑
uAu is a sum of indicator random

variables, we must have

Var(A) ≤ E[A]+
∑
u 6=v

Cov(Au, Av) = E[A]+
∑
u6=v

Pr(Au = 1∩Av = 1)−Pr(Au = 1) Pr(Av = 1).

Now first consider the case when vertices u and v are at a distance of at least 2(a+b) lnn
n

apart (happens with probability 1 − 4(a+b) lnn
n ). Then the region in [0, 1] that is within

distance (a+b) lnn
n from both u and v is the empty-set. In this case, Pr(Au = 1 ∩ Av =

1) = n(n− 1) . . . (n− (4k− 1))
(
ε lnn
n

)4k(
1− 4kε lnn

n

)n−4k
= c2n

−4kε(ε lnn)4k, where c2 is a
constant.

In all other cases, Pr(Au = 1 ∩Av = 1) ≤ Pr(Au = 1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤
(

1− 4(a+ b) lnn
n

)
c2n
−4kε(ε lnn)4k

+ 4(a+ b) lnn
n

c1n
−2kε(ε lnn)2k

and

Var(A) ≤ c1n1−2kε(ε lnn)2k +
(
n

2

)(
Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1)

)
≤ c1n1−2kε(ε lnn)2k + c3n

1−2kε(lnn)2k+1 ≤ c4n1−2kε(lnn)2k+1

where c3, c4 are constants. Again invoking Chebyshev’s inequality, with probability at least
1− 1

lnn

A > c1n
1−2kε(ε lnn)2k −

√
c4n1−2kε(lnn)2k+2. J
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B Missing Proofs of Section 5

I Lemma 23. For any two vertices u, v ∈ Vi : (u, v) ∈ E, i = 1, 2 belonging to the same cluster
with dL(Xu, Xv) = x, the count of common neighbors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}|
is a random variable distributed according to Bin(n2 − 2, 2rs − x) when rs ≥ x > 2rd and
according to Bin(n2 − 2, 2rs − x) + Bin(n2 , 2rd − x) when x ≤ min(2rd, rs), where Bin(n, p) is
a binomial random variable with mean np.

Proof. Without loss of generality, assume u, v ∈ V1. For any vertex z ∈ V , let Eu,vz ≡ {(u, z),
(v, z) ∈ E} be the event that z is a common neighbor. For z ∈ V1,

Pr(Eu,vz ) = Pr((z, u) ∈ E, (z, v) ∈ E)
= 2rs − x,

since dL(Xu, Xv) = x. For z ∈ V2, we have,

Pr(Eu,vz ) = Pr((z, u), (z, v) ∈ E)

=
{

2rd − x if x < 2rd
0 otherwise

.

Now since there are n
2 − 2 points in V1 \ {u, v} and n

2 points in V2, we have the statement of
the lemma. J

In a similar way, we can prove.

I Lemma 24. For any two vertices u ∈ V1, v ∈ V2 : (u, v) ∈ E belonging to different clusters
with dL(Xu, Xv) = x , the count of common neighbors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}| is
a random variable distributed according to Bin(n− 2, 2rd) when rs > 2rd and according to
Bin(n− 2,min(rs + rd − x, 2rd)) when rs ≤ 2rd and x ≤ rd.

Proofs of Lemma 20 and Lemma 21
Proof of Lemma 20. Here we will use the fact that for a ≥ 1, the number of edges in
GBM(rs ≡ a lnn

n , rd ≡ b lnn
n ) is O(n lnn) with probability 1 − 1

nΘ(1) . Consider any vertex
u ∈ V1 (symmetrically for u ∈ V2), since the vertices are thrown uniformly at random in
[0, 1], the probability that a v ∈ V1, v 6= u, is a neighbor of u is a lnn

n , and for v ∈ V2, the
corresponding probability is b lnn

n . Therefore, the expected degree of u is (a+b)
2 lnn. By a

simple Chernoff bound argument, the degree of u is therefore O(lnn) with probability 1− 1
nc

for c ≥ 2. By union bound over all the vertices, the total number of edges is O(n lnn) with
probability 1− 1

n .
Let Z denote the random variable that equals the number of common neighbors of two

nodes u, v ∈ V : (u, v) ∈ E such that u, v are from different parts of the GBM. Using Lemma
24, we know that Z is sampled from the distribution Bin(n − 2, 2rd), where rd = b lnn

n .
Therefore,

Pr(Z ≥ nES) ≤
n∑

i=nES

(
n

i

)
(2rd)i(n− 2rd)n−i ≤ exp

(
− nD

(
(2b+ t1) lnn

n
‖2b lnn

n

))
,

where D(p‖q) ≡ p ln p
q + (1 − p) ln 1−p

1−q is the KL divergence between Bernoulli(p) and
Bernoulli(q) distributions. It is easy to see that,

nD(α lnn
n
||β lnn

n
) =

(
α ln α

β
+ (α− β)

)
lnn− o(lnn).
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Therefore Pr(Z ≥ nES) ≤ 1
n(lnn)2 because (2b+ t1) ln 2b+t1

2b − t1 > 1. Similarly, we have that

Pr(Z ≤ nED) ≤
nED∑
i=0

(
n

i

)
(2rd)i(n− 2rd)n−i ≤ exp(−nD((2b− t) lnn

n
‖2b lnn

n
))

≤ 1
n(lnn)2 .

So all of the inter-cluster edges will be removed by Algorithm 1 with probability 1 −
O( n lnn

n(lnn)2 ) = 1− o(1), as with probability 1− o(1) the total number of edges in the graph is
O(n lnn). J

Proof of Lemma 21. Let Z be the number of common neighbors of u, v. Recall that, u
and v are in the same cluster. We know from Lemma 24 that Z is sampled from the
distribution Bin(n2 − 2, 2rs − x) + Bin(n2 , 2rd − x) when x ≤ 2rd, and from the distribution
Bin(n2 − 2, 2rs − x) when x ≥ 2rd. We have,

Pr(Z ≤ nES)

=



nES∑
i=0

(n
2−2
i

)
(2rs − x)i(1− 2rs + x)n2−i−2

×
nES−i∑
j=0

(n
2
j

)
(2rd − x)j(1− 2rd + x)n2−j if x ≤ 2rd

nEs∑
i=0

(n
2−2
i

)
(2rs − x)i(1− 2rs + x)n2−i otherwise

≤ e−n2D(2ES || (2a−θ) lnn
n ) since 2a− θ ≥ 4b+ 2t1

≤ e−n2D( (4b+2t1) lnn
n || (2a−θ) lnn

n ) ≤ 1
n ln2 n

,

because of Condition 1 of this lemma. Therefore, this edge will not be deleted with high
probability.

Similarly, let us find the probability of Z ≥ nED = (2b− t2) lnn. Let us just assume the
worst case when θ ≤ 2b: that the edge is being deleted (see Condition 2, this is prohibited if
that condition is satisfied). Otherwise, θ > 2b and,

Pr(Z ≥ nED) =
n∑

i=nED

(n
2 − 2
i

)
(2rs − x)i(1− 2rs + x)n2−i−2

≤ e−n2D(2ED‖ (2a−θ) lnn
n ) if 2a− θ ≤ 4b− 2t2

= e−
n
2D( (4b−2t2) lnn

n ‖ (2a−θ) lnn
n ) ≤ 1

n ln2 n

because of Condition 2 of this lemma. J
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