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Abstract
The Maximal points in a set S are those that are not dominated by any other point in S. Such points
arise in multiple application settings and are called by a variety of different names, e.g., maxima,
Pareto optimums, skylines. Their ubiquity has inspired a large literature on the expected number of
maxima in a set S of n points chosen IID from some distribution. Most such results assume that
the underlying distribution is uniform over some spatial region and strongly use this uniformity in
their analysis.

This research was initially motivated by the question of how this expected number changes if
the input distribution is perturbed by random noise. More specifically, let Bp denote the uniform
distribution from the 2-dimensional unit ball in the metric Lp. Let δBq denote the 2-dimensional
Lq-ball, of radius δ and Bp + δBq be the convolution of the two distributions, i.e., a point v ∈ Bp

is reported with an error chosen from δBq. The question is how the expected number of maxima
change as a function of δ. Although the original motivation is for small δ, the problem is well defined
for any δ and our analysis treats the general case.

More specifically, we study, as a function of n, δ, the expected number of maximal points when
the n points in S are chosen IID from distributions of the type Bp + δBq where p, q ∈ {1, 2,∞} for
δ > 0 and also of the type B∞ + δBq where q ∈ [1,∞) for δ > 0.

For fixed p, q we show that this function changes “smoothly” as a function of δ but that this
smooth behavior sometimes transitions unexpectedly between different growth behaviors.
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1 Introduction

Let S be a set of 2-dimensional points. The “largest” points in S are the maximal points of
S and are a well-studied object. More formally

I Definition 1. For u ∈ <2 let u.x (u.y) denote the x (y) coordinate of u. For u, v ∈ <2, u
is dominated by v if u 6= v, u.x ≤ v.x and u.y ≤ v.y. If S ⊂ <2 then

MAX(S) = {u ∈ S : u is not dominated by any point in S \ {u}}.

MAX(S) are the maximal points of S. See Fig. 1.
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Figure 1 The diagram shows MAX(Sn) for two point sets Sn. In both (a) and (b) the circles
denote the points in Sn and the (red) filled circles are MAX(Sn). If the points are considered as
being drawn from region D, P (v), as introduced in Def. 2, denotes the region in D that dominates
v. In (a), D is the dotted square; in (b), D is the dotted circle.

The problems of finding and estimating the number of maximal points of a set in <2

appear very often in many fields under different names: maximal vectors, skylines, Pareto
frontier/points and others, see e.g. [5, 12, 15, 17, 18] for a more exhaustive history of the
problems, uses in Computer Science and further references, Sections 1 and 2 in [7].

Let Sn denote a set of n points chosen Independently Identically Distributed (IID) from
some 2-D distribution D and Mn = |MAX(Sn)| be the random variable counting the number
of maximal points in Sn. Because maxima are so ubiquitous, understanding the expected
number of maxima has been important in different areas and many properties of Mn have
been studied. More specifically, if D is the uniform distribution drawn from an Lp ball with
p ≥ 1, then it is well known [2, 6, 12, 14], that

If p =∞, then E [Mn] = Hn ∼ lnn.
The same result holds if the points are drawn from some distribution D = (X,Y) where
X and Y are any two 1-dimensional distributions that are independent of each other.
If p ≥ 1, then limn→∞

E[Mn]√
n

= Cp, where Cp is a constant dependent only upon p.
Similar upper bounds to the above, i.e., that E [Mn] = O(

√
n), derived using similar

techniques, are known if D is a uniform distribution from ANY convex region [11].

It is also known [16] that if the n points are chosen IID from a 2-D Gaussian distribution
then E [Mn] ∼ lnn. There are also generalizations of these results (both the Bp ones and
the Gaussian one) to higher dimensions. See [14] for a table containing most known results.

Surprisingly, given the importance of the problem, not much is known for other distribu-
tions. The motivation for this work is to extend the family of distributions for which E [Mn]
can be derived.

Consider a point u originally generated from a uniform distribution over a unit Lp ball
but measured or reported with an error, in the Lq metric, of at most δ. The actual reported
point can be equivalently considered as being chosen from a new distribution which we denote
by Bp + δBq (the next section provides formal definitions). The support of this distribution
is the Minkowksi sum of the two balls but the distribution is not uniform over this support.
Fig. 2 shows the support of Bp + δBq, for different values of p and q.

Although the problem described above originally assumed small δ, it is well defined for
all δ > 0, which is the problem analyzed in this paper. More specifically, the motivation for
the present work is twofold:
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Explain how E [Mn] changes when the distribution is perturbed.
(Note: the perturbation size δ may be specified as a function of the sample size n.)
Increase the families of distributions for which E [Mn] is understood.

The idea of analyzing how quantities change under perturbations could also be considered
from the perspective of smoothed analysis [20, 21]. In the classic setting, smoothed analysis of
the number of maxima would mean analyzing how, given a fixed set Sn, E [Mn] would change
under small perturbations (as a function of the original set Sn). This was the approach in
[9, 8] (see similar work for convex hulls in [10]). This paper differs in that it is the Distribution
that is being smoothed (or convoluted) and not the point set. This paper also differs from
recent work [22, 1] on the most-likely skyline and convex hull problems. Those papers assume
each point has a given probability distribution and are attempting to find the subset of
points that has the highest probability of being the skyline (or convex hull).

Outline of the paper. The next section defines the problem and states and explains our
results. Sec. 3 describes key technical and conceptual ideas and tools used to achieve the
main result. Sec. 4 describes how these tools are used to derive the result. Sec. 5 provides a
review and a collection of open problems and possible extensions.

Due to space limitations, the proofs of many of the lemmas and theorems are not included.
For the full proofs, please see the extended version of this paper [13] posted on Arxiv.

2 Definitions and Results

Let “p ∈ [1,∞)” and “p ≥ 1” both denote that p is a finite real number ≥ 1. p = ∞ also
being permitted will be denoted by p ∈ [1,∞].

Recall: Let δ ≥ 0.
For u ∈ <2, δu = (δ · u.x, δ · u.y). For u, v ∈ <2, u+ v = (u.x+ v.x, u.y + v.y).
If D ⊆ <2, δD = {(δu : u ∈ D}.
For D1, D2 ⊆ <2, D1 +D2 = {u1 + u2 : u1 ∈ D1, u2 ∈ D2} will denote the Minkowski sum
of D1 and D2.

For u ∈ <2, u+D will denote {u}+D.

Balls and Unit Balls: Let u ∈ <2, r > 0 and p ∈ [1,∞). Define:
The Lp ball of radius r around u as Bp(u, r) = {(x, y) : |x− u.x|p + |y − u.y|p ≤ rp} .
The L∞ ball of radius r around u as B∞(u, r) = {(x, y) : max(|x− u.x|, |y − u.y|) ≤ r} .
The respective unit balls as Bp = Bp((0, 0), 1) and B∞ = B∞((0, 0), 1).

Set ap = Area(Bp) to be the area of the Lp unit ball. Then a∞ = 4, a1 = 2, a2 = π. We
use the fact that ap = Θ(1).

Generation of a probability distribution: Let D be a distribution with support D ⊂ <2.
Then

If δ ≥ 0, the distribution δD is generated by choosing a point u using D and then
returning the point δu.
Let D1,D2 be two distributions over <2. Generate the convolution D1 + D2 by choosing
a point u1 from D1 and a point u2 from D2 and returning u1 + u2.

A set Sn = {u1, . . . , un} is said to be chosen from D if each ui is generated independently
and identically distributed (IID) using the distribution D.

APPROX/RANDOM 2019
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Uniform distribution on unit balls: For all p ∈ [1,∞], Bp will denote the uniform distribu-
tion that selects a point uniformly from Bp. This distribution has support Bp with uniform
density 1/ap within Bp.

Convolution of two distributions: Let Bp + δBq be the convolution of distributions Bp

and δBq.
(Bp + δBq)’s support of this distribution is the Minkowski sum Bp + δBq. Observe that the
density of Bp + δBq is not uniform in Bp + δBq. It is this non-uniformity that will cause
complications in calculating E [Mn]. The main result of this paper is

I Theorem 1. Fix p, q so that either p, q ∈ {1, 2,∞} or p =∞ and q ≥ 1.
Let Sn be n points chosen from the distribution Bp + δBq and Mn = |MAX(Sn)|.
Let δ ≥ 0 be a function of n. Then E [Mn] behaves as below:

(a) (b) (c) (d) (e) (f)
D = 0 ≤ δ δ = 1

(i) B∞ + δB∞ Θ (lnn) Θ (lnn)

δ ≤ 1√
n

1√
n
≤ δ ≤ 1 1 ≤ δ ≤

√
n

√
n ≤ δ

(ii) B1 + δB1 Θ (
√
n) Θ

(
n1/3

δ1/3

)
Θ
(
δ1/3n1/3) Θ (

√
n) Θ

(
n1/3)

(iii) B2 + δB2 Θ (
√
n) Θ

(
n2/7

δ3/7

)
Θ
(
δ3/7n2/7) Θ (

√
n) Θ

(
n2/7)

δ ≤ 1√
n

1√
n
≤ δ ≤

√
n

√
n ≤ δ

(iv) B∞ + δBq Θ (lnn) Θ
(

lnn+
√
δn1/4

)
Θ (
√
n) Θ

(
n1/4)

δ ≤ 1√
n

1√
n
≤ δ ≤ n1/26 n1/26 ≤ δ ≤

√
n
√
n ≤ δ

(v) B1 + δB2 Θ (
√
n) Θ

(
n2/7

δ3/7

)
Θ
(√

δn1/4
)

Θ (
√
n) Θ

(
n2/7)

Interpretation of the table:
1. When p = q =∞, Mn has exactly the same distribution as if Sn were chosen from B∞,

so row (i) is an uninteresting case, only included for completeness.
2. When δ is small enough (≤ 1/

√
n), E [Mn] behaves almost as if Sn were chosen from Bp

and when δ is large enough (≥
√
n) E [Mn] behaves almost as if Sn were chosen from Bq.

This is reflected in columns (b) and (e).
3. Lemma 8 states that Mn has the same distribution for Sn chosen from both Bp + δBq

and Bq + 1
δBp. Thus row (iv) gives the behavior for Bq + δB∞ for any q ≥ 1 and row (v)

the behavior for B2 + δB1.

4. When p = q ∈ {1, 2}, E [Mn] starts at Θ(
√
n), smoothly decreases until reaching δ = 1

and then increases again until reaching Θ(
√
n). The behavior at δ = 1 is different for

p = q = 1 and p = q = 2. In both cases there is symmetry between δ and 1/δ (from
Lemma 8).

5. When p = 1, q = 2 there is no symmetry. The behavior starts at Θ(
√
n), decreases to

Θ
(
n7/26) at δ = n1/26 and then increases again at a different rate to Θ(

√
n).

6. When p = ∞, the behavior is asymptotically equivalent for all q ∈ [1,∞), not just
q = 1, 2. The only difference is in the value of the constant hidden by the Θ. The behavior
starts at Θ(lnn), stays there for a short while and then smoothly increases to Θ(

√
n).
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B∞ + δB2 small δ B∞ +B2

B∞ + δB2
large δ

B∞ + δB1 small δ B∞ +B1 B∞ + δB1 large δ

B1 + δB2 small δ B1 +B2 B1 + δB2 large δ

B∞ + δB∞ B1 + δB1 B2 + δB2

Figure 2 Illustrations of the supports of some of the different distributions in the form Bp + δBq

examined in Theorem 1. The dotted lines denote the Bp and δBq balls centred at 0. Note that in all
cases the density is uniform near the centre of the support but then decreases to 0 as the boundary
is approached. The grey areas denote, approximately, where the maxima of Sn are concentrated.

APPROX/RANDOM 2019
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Figure 3 Illustration of definitions of P (v) and P ′(v) for Bp + δBq. Left side is is B∞ + δB2;
right is B1 + δB1. In both diagrams the interior ball (heavy boundary) is the Bp ball centered at the
origin a. P (v) is the set of points in Bp + δBq that dominate v and P ′(v) is the preimage of v in Bp.

3 Basic Lemmas

The following collection of Lemmas comprise the basic toolkit used to derive Theorem 1.

Recall: Let D be a distribution over <2, x ∈ <2 and A ⊂ <2 a measurable region. Then
fD(x) will denote the density function of D, and µD(A) =

∫
A
fD(x)dx will denote the

measure of A under distribution D. If D is understood, we often simply write f(x) and µ(A).

I Definition 2. (See Fig. 3)
Let D ⊆ <2, v ∈ D and A ⊆ D.
Define: P (v) = {u ∈ D : u dominates v} ∪ {v}, and P (A) =

⋃
v∈A P (v).

Say that A is dominant in D or a dominant region in D, if P (A) = A.

Note that, by definition, ∀v ∈ D, P (v) is a dominant region in D. It is straightforward to
see that

I Lemma 1. Let v and Sn be chosen from D and A ⊆ D. Then

(a) Pr(v ∈ A) = µ(A).
(b) E [|A ∩ Sn|] = nµ(A).
(c) Pr(A ∩ Sn = ∅) = (1− µ(A))n .

The following observation will be used to prove most of our lower bounds.

I Lemma 2 (Lower Bound). Let Sn be chosen from D. Further let A1, A2, . . . , Am be a
collection of pairwise disjoint dominant regions in D with µ(Ai) = Ω(1/n) for all i. Then

E [Mn] ≥ E
[∣∣∣∣∣MAX

(
Sn ∩

m⋃
i=1

Ai

)∣∣∣∣∣
]

= Ω(m).

Proof. From Lemma 1, Pr(Sn ∩Ai = ∅) = (1− µ(Ai))n . Thus µ(Ai) = Ω(1/n) implies

Pr(Sn ∩Ai 6= ∅) = 1− Pr(Sn ∩Ai = ∅) = Ω(1).
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If region A is dominant then points in A can only be dominated by other points in A
then A ∩MAX(Sn) = MAX(Sn ∩A). Since each Ai is dominant, this implies

E [|MAX(Sn) ∩Ai|] ≥ Pr(Sn ∩Ai 6= ∅) = Ω(1).

Since the Ai are pairwise disjoint,

E [|MAX(Sn)|] ≥ E
[∣∣∣∣∣MAX(Sn) ∩

(⋃
i

Ai

)∣∣∣∣∣
]
≥

m∑
i=1

Ω(1) = Ω(m). J

I Definition 3. (See Fig. 3)
Let D = Bp + δBq. For v ∈ D define the preimage of v in Bp as

P ′(v) = Bq(v, δ) ∩Bp = (v + δBq) ∩Bp.

I Lemma 3. Fix p, q ∈ [1,∞]. Let D = Bp + δBq and let v be a point chosen from D. Let
A ⊆ <2. Then

f(v) = 1
apaq

Area({u ∈ Bp : v − u ∈ δBq})
δ2 = 1

apaq

Area(P ′v)
δ2 (1)

µ(A) = 1
apaq

∫
u∈Bp

Area((u+ δBq) ∩A)
δ2 du. (2)

Proof. Note that for u ∈ Bp, fBp
(u) = 1

ap
and for u′ ∈ δBq, fδBq

(u′) = 1
aqδ2 . To see Eq. 2,

µ(A) =
∫
u∈Bp

∫
w∈δBq

u+w∈A

fδBq (w)dw

 fBp(u)du = 1
apaq

∫
u∈Bp

Area ((u+ δBq) ∩A)
δ2 du.

For Eq. 1, use a change of variables v = u+ w,

µ(A) = 1
apaqδ2

∫
u∈Bp

(∫
w∈δBq

u+w∈A

dw

)
du

= 1
apaqδ2

∫
u∈Bp

(∫
v∈u+δBq

v∈A

dv

)
du = 1

apaq

∫
v∈A

Area {u ∈ Bp : v − u ∈ δBq}
δ2 dv.

Differentiating around v yields Eq. 1. J

I Lemma 4. Fix p, q ∈ [1,∞]. Let D = Bp + δBq and κ > 0 be any constant. Then

(a) v ∈ D ⇒ f(v) = O(1).
(b) v ∈ Bp and δ ≤ κ ⇒ f(v) = Θ(1).
(c) A ⊆ D ⇒ µ(A) = O(Area(A)).
(d) A ⊆ Bp and δ ≤ κ ⇒ µ(A) = Θ(Area(A)).

The constants implicit in the O() in (a) and (c) are only dependent upon p, q, while the
constants implicit in the Θ() in (b) and (d) are only dependent upon p, q, κ.

Proof.
(a) Use the fact that, for ∀u ∈ Bp,

Area(Bp ∩ (u+ δBq))) ≤ Area(u+ δBq) = aqδ
2,

so from Eq. 1, f(v) = O(1).

APPROX/RANDOM 2019
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δ

(0, 0) t′

1

1

1 1δ

δ

δ
A

B

A(t′)

B(t′)

v

u

w

Sn ∩B(t′) = {u,w}.

Any point in A(t) dominates all points in B\B(t).

⇒ MAX(Sn) ∩B ⊆ (Sn ∩B(t′))

= X(t′)

⇒ |MAX(Sn) ∩B| ≤ 2

Distribution is D = B∞ + δB2.

A is D above the x-axis.
B is D below the x-axis.

A(t) = {u ∈ A : u.x ≥ 1 + δ − t}
B(t) = {u ∈ B : u.x ≥ 1 + δ − t}

X(t′) = |Sn ∩B(t′)| = 2

∀t, A(t) and B(t) have the same measure.

Figure 4 Illustration of Lemmas 5 and 6. The regions A and B are each swept by parameter t
and it is required that µ(B(t)) = O(µ(A(t)). In the case above, by the symmetry of distribution
D, µ(B(t)) = µ(A(t)) trivially. t′ is the first time a point in A(t) is found. Since every point in
A(t) dominates all points in B \ B(t), all maxima in Sn ∩ B must be in B(t′). The definition of
t′ intuitively implies that µ(A(t′)) ∼ 1

n
so, also intuitively, the expectation of |Sn ∩Bn| should be

nµ(B(t′)) ∼ 1. This is proven formally in the text.

(b) If u ∈ Bp then

Area(Bp ∩ (u+ δBq))) ≥ cArea(u+ δBq) = caqδ
2,

where c is only dependent upon p, q, κ. Thus, from Eq. 1, f(v) = Θ(1).

The proofs for (c) and (d) follow from plugging (a) and (b) into Eq. 2. J

I Lemma 5. (See Fig. 4)
Let D be any distribution with a continuous density function f(u) and Sn a set of points
chosen from D. Let A,B be two disjoint regions in the support D that are parameterized by
t ∈ [0, T ] and satisfy:

µ(A(0)) = ∅.
A(T ) = A; B(T ) = B.
(Monotonicity in t) ∀t1 < t2, A(t1) ⊆ A(t2) and B(t1) ⊆ B(t2).
µ(B(t)), µ(A(t)) are both continuous in t.
(Asymptotic dominance in measure) ∀t, µ(B(t)) = O(µ(A(t)).

Define the random variables

X = |Sn ∩B(t′)|, t′ =
{

min{t : A(t) ∩ Sn 6= ∅} if A ∩ Sn 6= ∅,
T if A ∩ Sn = ∅.

Then, E [X] = O(1). (3)

Proof. W.l.o.g. rescale t so that µ(A(t)) = t, and T = µ(A).
The proof’s intuition is that since the “first” point in A appears at t′, then µ(A(t′)) ∼ 1

n .

As B is asymptotically dominated by A, µ(B(t′))=O(1/n) and E [X(t′)] = nµ(B(t′)) = O(1).
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Formally, by the continuity of the measure, Pr(|Sn ∩A(t′)| = 1) = 1. So we may assume
that |D \A(t′)| = n− 1.

Conditioned on known t′, the remaining n − 1 points in Sn are chosen from D \ A(t′)
with the associated conditional distribution. If u is one of those n− 1 points,

Pr
(
u ∈ B(t′)

∣∣∣ t′) = µ(B(t′))
µ(D \A(t′)) = µ(B(t′))

1− µ(A(t′)) .

Thus, conditioning on t′, and applying Lemma 1(b)

E
[
X
∣∣∣ t′] = (n− 1) µ(B(t′))

1− µ(A(t′)) ,

therefore E [X] = E
[
E
[
X
∣∣∣ t′]] = E

[
(n− 1) µ(B(t′))

1− µ(A(t′))

]
.

From the definition of t′ and Lemma 1 (c), µ(A(t′)) > 1/2 with exponentially low
probability. Therefore, recalling that µ(A(t)) = t,

E [X] = (n− 1)E [O(µ(B(t′)))] = (n− 1)E [O(µ(A(t′)))] = (n− 1)O (E [t′]) .

Using Lemma 1 (c) : E [t′] =
∫ T
α=0 Pr(t′ ≥ α)dα = O

(
1

n−1

)
. J

I Lemma 6 (Sweep). (See Fig. 4)
Let D be any distribution with a continuous density function f(u), and let Sn be a set of
points chosen from D.

Let A,B be two disjoint regions in the support D that are parameterized by t ∈ [0, T ],
satisfy conditions 1-3 of Lemma 5 and, in addition satisfy that

∀t ∈ [0, T ], if u ∈ A(t) and v ∈ B \B(t) then u dominates v.

In such a case we say that A continuously dominates B. Then

E [|MAX(Sn) ∩B|] = O(1). (4)

Proof. By the definition of t′, |A(t′) ∩ Sn| ≥ 1. Since all points in B \B(t′) are dominated
by all points in A(t′), MAX(Sn) ∩ (B \B(t′)) = ∅. Thus from Lemma 5,

E [|MAX(Sn) ∩B|] = E [|MAX(Sn) ∩B(t′)|] ≤ E [|Sn ∩B(t′)|] = O(1). J

I Corollary 7. Fix p, q ∈ [1,∞] and choose Sn from D = Bp + δBq. Let Q1 be the positive
(upper-right) quadrant of the plane and O1 the first octant , i.e., Q1 = {u ∈ <2 : 0 ≤
u.x, 0 ≤ u.y} and O1 = {u ∈ <2 : 0 ≤ u.y ≤ u.x}. Then

E [Mn] = E [|MAX(Sn)|] = E [|Q1 ∩MAX(Sn)|] +O(1) (5)

= Θ
(

E [|O1 ∩MAX(Sn)|]
)
. (6)

Proof. Restrict t ∈ [0, 2 + 2δ] and set

A = D ∩ {u ∈ <2 : u.y ≥ 0}, A(t) = {u ∈ A : u.x ≥ 1 + δ − t},
B = D ∩ {u ∈ <2 : u.y < 0}, B(t) = {u ∈ B : u.x ≥ 1 + δ − t}.

Conditions (1) and (2) of Lemma 5 trivially hold. Condition (3) holds because, by x-axis
symmetry, µ(B(t)) = µ(A(t)). The additional condition of Lemma 6 holds because every
point in B \B(t) is below and to the left of every point in A(t). Thus the expected number
of maximal points in Sn below the x-axis is O(1). Note that this is independent of n.
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Similarly, the expected number of maximal points to the left of the y-axis is O(1). This
proves Eq. 5.

To prove Eq. 6 define the second octant to be O2 = {u ∈ <2 : 0 ≤ u.x ≤ u.y}. By the
symmetry between the x and y coordinates in the distribution,

E [|O1 ∩MAX(Sn)|] = E [|O2 ∩MAX(Sn)|] .

Futhermore, since O1 and O2 partition Q1,

E [|Q1 ∩MAX(Sn)|] = E [|O1 ∩MAX(Sn)|]+E [|O2 ∩MAX(Sn)|] = 2E [|O1 ∩MAX(Sn)|] .

Thus

E [Mn] = E [Q1 ∩ |MAX(Sn)|] +O(1) = Θ (E [|O1 ∩MAX(Sn)|]) . J

The fact that for δ > 0, u dominates v if and only if δu dominates δv implies the following
result which is used very often in this work,

I Lemma 8 (Scaling). Fix p, q ∈ [1,∞], D = Bp + δBq and D′ = Bq + 1
δBp.

Let Sn be n points chosen from D and let S′n be n points chosen from D′.
Then |MAX(Sn)| and |MAX(S′n)| have exactly the same distribution.
In particular, E [|MAX(Sn)|] = E [|MAX(S′n)|] .

Proof. Let Sn = {u1, . . . , un} be chosen from D. Recall that the process of choosing point u
from D is to choose w from Bp, v from Bq and return u = w+ δv. Choosing a point u′ from
D′ is the same except that it returns u′ = v + 1

δw = 1
δu. Thus the distribution of choosing

Sn = {u1, . . . , un} from D is exactly the same as choosing Sn = { 1
δu1, . . . ,

1
δun} from D′.

Finally, note that dominance is invariant under multiplication by a scalar, i.e., pi dominates
pj if and only if 1

δpi dominates 1
δpj .

Thus |MAX(Sn)| and |MAX(S′n)| have the same distribution, so E [|MAX(Sn)|] =
E [|MAX(S′n)|] . J

The next lemma formalizes the intuition that for small values of δ, the value of E [Mn]
for Bp + δBq is the same as the value for Bp.

I Lemma 9 (Limiting Behavior). Let p ∈ [1,∞], q ∈ [1,∞), δ = O(1/
√
n) and Sn chosen

from D = Bp + δBq. Then

E [Mn] =
{

Θ(lnn) if p =∞,
Θ(
√
n) if p 6=∞.

4 General approach to proving Theorem 1

Note that if u is chosen from B∞, then u.x and u.y are independent random variables. Thus,
for any δ > 0 if v is chosen from D = B∞ + δB∞, v.x and v.y are independent random
variables. As noted in the introduction, this means that if Sn is chosen from D, E [Mn] is
exactly the same as if Sn was chosen from B∞, i.e., E [Mn] = Θ(lnn), proving row (i).

Lemma 9 combined with Lemma 8 imply the limiting behavior in columns (b) and (e)
of the table in Theorem 1. Note too that for rows (ii) and (iii), column (d) follows directly
from applying Lemma 8 to column (c).

Thus, proving Theorem 1 reduces to proving cells (ii) c, (iii) c, (iv) c, d and (v) c, d.
Proving Theorem 1 will require case-by-case analyses of D = Bp + δBq for the different

pairs p, q. The analysis for each pair will all follow the same 4 step pattern:
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(1, 0)(−1, 0)

(0, 1)

(0,−1)

Q1Q2

Q3 Q4
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(0, 1)

(1, 0)

p0

p1

pi−2

pi−1

pi

pm−3

pm−2

pm−1

Pi = D(pi)

(0, 0)

(0, 1)

(1, 0)

p0

piri
B′i

Bi

Ai

pi =
(
i
m , 1−

i+1
m

) ri =
(
i−1
m , 1− i+1

m

)

(a) (b) (c)

B̄i = Bi ∪B′i

Figure 5 Illustration of proof E [Mn] = Θ(
√
n) when Sn is chosen from B1 All but O(1) maxima

will be in quadrant Q1; (b) and (c) illustrate Q1. (b) illustrates the lower bound and (c) the upper.

4.1 A Simple Example: D = B1

Before sketching our results it is instructive to see how the Lemmas in the previous section
can be used to re-derive that fact that, if D = B1 then E [Mn] = Θ(

√
n). See Fig. 5.

Even though the behavior for D = B1 is already well known we provide this to illustrate
the generic steps for deriving E [Mn]. These are exactly the same steps that are needed when
D = Bp + δBq and this example permits identifying where the complications can arise in
those more general cases. Set m = b

√
nc and let pi, ri be the points defined in the figure

with Pi = P (pi) and B′i = P (ri). Also set

Bi =
{

(x, y) : i− 1
m
≤ x ≤ i

m
, 0 ≤ y ≤ 1− i+ 1

m

}
, Ai =

(
1
m
, 0
)

+Bi

and B̄i = Bi ∪B′i. Finally, for 0 ≤ t ≤ (1 + i)/m set Bi(t) = Bi ∩{(x, y) : y ≤ (1 + i)/m− t}
and Ai(t) =

( 1
m , 0

)
+Bi(t). The steps in the derivation are.

Step 1: Restricting to first Quadrant:
Corollary 7 states that E [Mn] = E [|Q1 ∩MAX(Sn)|] +O(1).

Step 2: Calculating Density and Measure:
Because D has a uniform density, µ(A) = Θ(Area(A)) for all regions A ⊆ D.

Step 3: Lower Bound:
The Pi are a collection of m pairwise disjoint dominant regions with

µ(Pi) = Θ(Area(Pi)) = Θ(m−2) = Θ(1/n).

Thus, from Lemma 2, E [Mn] = Ω(m) = Ω(
√
n).

Step 4: Upper bound:
Note that Q1 ∩D =

(⋃m−1
i=1 B̄i

)
∪B′m so

E [|MAX(Sn) ∩Q1|] = E
[∣∣∣∣∣MAX(Sn) ∩

(
m⋃
i=1

B̄i

)∣∣∣∣∣
]

+ E [|MAX(Sn) ∩B′m|] ,

E
[∣∣∣∣∣MAX(Sn) ∩

(
m⋃
i=1

B̄i

)∣∣∣∣∣
]
≤

m∑
i=1

E [|MAX(Sn) ∩Bi|] +
m∑
i=1

E [|MAX(Sn) ∩B′i|] .

Furthermore, ∀i, µ(B′i) = Θ(Area(B′i)) = Θ(1/n). Thus

∀i, E [|MAX(Sn) ∩B′i|] ≤ E [|Sn ∩B′i|] = O(nµ(B′i)) = O(1).
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Since m = O(
√
n) this yields

E [|MAX(Sn) ∩Q1|] ≤
m∑
i=1

E [|MAX(Sn) ∩Bi|] +O(
√
n).

The crucial observation is that, ∀i, Ai continuously dominates Bi as defined in Lemmas 5
and 6. Thus, plugging into Lemma 6 yields ∀i, E [|MAX(Sn) ∩Bi|] = O(1), leading to

E [|MAX(Sn) ∩Q1|] = O(m) +O(
√
n) = O(

√
n).

Combining the E [|MAX(Sn) ∩Q1|] = Ω(
√
n) from step (3) with the

E [|MAX(Sn) ∩Q1|] = O(
√
n) from step (4) with step (1) gives the final result

E [Mn] = E [|MAX(Sn) ∩Q1|] +O(1) = Θ(
√
n) +O(1) = Θ(

√
n).

4.2 The general approach for D = Bp + δBq

For each p, q pair the proof of Theorem 1 follows the same four steps as the analysis of
D = B1 above.

Step 1: Restricting to first Quadrant:
Corollary 7 again states that E [Mn] = E [|Q1 ∩MAX(Sn)|] +O(1).

Step 2: Calculating Density f(u) and Measure µ(A):
This step is often quite technical. In the example D = B1 case above, the density was
constant. For general D this is no longer true. The density is constant in some region in the
center of the support but decreases to zero as the boundary is approached. While Lemma
3 provides an integral formula for general D this, in many cases, is unusable. A substantial
amount of technical work is involved in finding usable functional representations for the
densities/measures in different parts of the support.

Step 3: Lower Bounding E [Mn]:
For most cases this is a relatively straightforward application of Lemma 2 using the
results of Step 2. In the general case, it is still necessary to identify a region that contains
an asymptotically dominant number of maxima. It is then necessary to partition this
region into pairwise disjoint dominant regions, all of which have measure Θ(1/n). Note
that, unlike in the example D = B1 case, these regions might no longer all have the same
shape or size.

Step 4: Upper bounding E [Mn]:
This is the most delicate part of the proof. It is proven using the Sweep Lemma (Lemma
6) with the major difficulties arising from how to decompose the support into regions that
continuously dominate each other. This decomposition strongly depends upon how the
measure/density is represented in Step 2 and can be very differently structured in different
parts of the support. In particular, in the case D = B1 + δB2, there are two different
parts of the support that require two different decompositions and the decompositions
must be designed so that the two upper bounds derived match each other.

More broadly, the density/measure representations developed for D1 = B1 + δB1 and
D2 = B2 + δB2 are quite different. The analysis of D3 = B1 + δB2 which is the most
delicate, combines the approaches developed for D1, D2. The analysis of D4 = B∞ + δBq is
different from the first three, but much more straightforward.
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5 Conclusion

This paper developed a suite of tools for deriving the expected number of maximal points in
a set of n points chosen IID from Bp + δBq, which is the convolution of two distributions.

The results presented here seem to be the first general analysis of E [Mn] for non-uniform
and non-Gaussian distributions. This paper is only a first step. Obvious next steps are

The results in the paper were only proven for p, q ∈ {1, 2,∞} and p =∞, q ∈ [1,∞.] The
next step would be to attempt to extend the results to all pairs p, q,∈ [1,∞].
There is a rich literature stretching back more than fifty years on the average number of
points on the convex hull of points chosen IID from a uniform distribution in a planar
region or a Gaussian distribution, e.g., [14, 19]. It would be interesting to see how the
convex hull evolves in the convoluted distributions Bp + δBq.
Such an analysis would require a much tighter understanding of how the distribution
behaves “close” to the boundary of its support Bp + δBq. One approach might be to
introduce some form of measure weighting to the definition of Macbeath-regions [3] (which
are a known technique for characterizing this boundary region).
Finally, we note that the results on E [Mn] for n points chosen IID from a uniform
distribution over an Lp ball have analogues in higher dimensions, i.e., Θ

(
logd−1 n

)
if

p =∞ and Θ
(
n1− 1

d

)
if p ∈ [1,∞) [4, 14]. The next step would be to attempt to extend

the results in this paper to higher dimensions.
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