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Abstract
Designing simple appointment systems that under uncertainty in service times, try to achieve both
high utilization of expensive medical equipment and personnel as well as short waiting time for
patients, has long been an interesting and challenging problem in health care. We consider a robust
version of the appointment scheduling problem, introduced by Mittal et al. (2014), with the goal of
finding simple and easy-to-use algorithms. Previous work focused on the special case where per-unit
costs due to under-utilization of equipment/personnel are homogeneous i.e., costs are linear and
identical. We consider the heterogeneous case and devise an LP that has a simple closed-form
solution. This solution yields the first constant-factor approximation for the problem. We also find
special cases beyond homogeneous costs where the LP leads to closed form optimal schedules. Our
approach and results extend more generally to convex piece-wise linear costs.

For the case where the order of patients is changeable, we focus on linear costs and show that
the problem is strongly NP-hard when the under-utilization costs are heterogeneous. For changeable
order with homogeneous under-utilization costs, it was previously shown that an EPTAS exists. We
instead find an extremely simple, ratio-based ordering that is 1.0604 approximate.
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1 Introduction

Consider the problem of scheduling appointments in service operations where customers are
served sequentially by a single server. Service times of customers are uncertain, and we wish
to assign time slots for serving the customers in advance. An important practical setting
where this problem arises everyday is in health care services, where there are numerous
instances that require efficient scheduling of appointments, such as scheduling outpatient
appointments in primary care and specialty clinics, scheduling surgeries for operating rooms,
or appointments for MRI scans. Often in these settings the order in which patients undergo
the procedure is known in advance. Then a day before the procedures, a hospital manager
determines planned start times and how much time to allot to each procedure. If the manager
allots too small an interval to a procedure, it could easily go overtime and delay the next
procedure. The inconvenience and costs resulting from such a delay are referred to as the
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25:2 Robust Appointment Scheduling with Heterogeneous Costs

overage cost for that procedure. On the contrary, if the manager assigns a very large interval,
then the procedure will likely end much sooner. In this case the hospital incurs an underage
cost as the equipment and personnel may be left idle until the scheduled start of the next
procedure. We would like to design an appointment schedule that can achieve the desired
trade-off between overage and underage costs.

In an influential survey on outpatient scheduling, Cayirli and Veral [6] concluded that the
“biggest challenge for future research will be to develop easy-to-use heuristics”. Traditionally,
most models for the problem are stochastic in nature and assume distributional knowledge
of the uncertain service times. While such models are very powerful, estimating distributions
accurately can require large amounts of data. There are many settings where such data is
in fact available but, in applications related to health care appointment scheduling there
is evidence (ref. [17, 18, 8]) that the amount of data available by surgery types, let alone
by surgery types and surgeons, is extremely limited. Moreover, computing an objective
function that involves finding the expectation of a high dimensional non-linear function can
be computationally burdensome. Further, Mak et al. [18] and Mittal et al. [20] point out
that methods proposed for solving stochastic models often use sophisticated subroutines,
such as submodular function minimization and Monte-Carlo techniques, that may not always
be practical. Robust optimization (e.g., [4, 5, 3]) offers an alternative framework to address
uncertainty that avoids distributional assumptions. Instead, it uses deterministic uncertainty
sets and performs a worst-case analysis w.r.t. to the uncertainty. This addresses the problems
arising out of insufficient data and often these models are more tractable.1 Indeed, for the
case of appointment scheduling, Mittal et al. [20] introduced the following robust formulation
for the problem.

Referring to the procedures/services in any given context simply as “jobs”, in the robust
appointment scheduling problem we are given n jobs with uncertain service times {ti}.
Assume that the time ti for job i can be anything in the range [pi − δ̂i, pi + δi]. The range
is known to us but the value of ti can be chosen adversarially. Our task is to propose an
appointment start time for each job. A job will be available to process after this start
time and jobs will be served in order of increasing index i. The order in which jobs are
processed is fixed a priori. Due to uncertainty in service times, a job may have to wait to be
processed after its appointed start time. The overage cost incurred per unit of wait is given
by oi ≥ 0. Similarly, ui ≥ 0 is the per-unit underage cost associated with job i. Given a set
of appointment start times, an adversary chooses the worst possible instantiation of service
durations ti i.e., one that maximizes the overall overage/underage cost. We seek start times
to minimize this worst case total cost.

Mittal et al. [20] found closed-form optimal solutions for the special case of homogeneous
underage costs i.e., ui = u for all jobs i. We study more general cases2, where a direct
generalization of their solution can be arbitrarily bad. Our central goal here is to find simple,
easy to implement, and theoretically well founded algorithms. In the following we summarize
our contributions and discuss closely related work.

1 Sometimes at the expense of being too conservative.
2 Arguably, just as processing times and uncertainty vary across procedures, so can personnel and

equipment. Thus, in general the per-unit underage costs will vary across procedures. Moreover, it is
also reasonable to assume that the per-unit cost changes with the amount of underage/overage. For
instance, keeping patients waiting for another unit of time becomes less and less desirable with every
unit of delay. This prompts the study of piece-wise linear overage and underage costs.
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Robust Appointment Scheduling (RAS). We explore the structure of optimal appointment
schedules and find several properties that all optimal schedules must satisfy. Somewhat
surprisingly, we find that in every optimal appointment schedule, the case of all jobs underaged
as well as the case of all jobs overaged are always worst-cases for the adversary’s problem.
Casting these in the form of linear (in)equalities gives an LP, resulting in a 2-approximation.
Further simplification yields a closed-form solution to the LP that could be implemented
even on a spreadsheet. More generally, when the per-unit costs are allowed to change with
the amount of overage/underage and the cost functions are piece-wise linear and convex
(and non-decreasing), we are able to generalize these properties to obtain a 2-approximation
for the problem via solving a min-cost flow problem on a graph with convex piece-wise
linear arc costs.

Previously, Mittal et al. [20] examined the special case of identical underage costs and,
quite remarkably, found a closed-form optimal solution in that case. While their analysis
was tailored for the special case, our different approach allows us to characterize exactly
when such a result holds, and we discover more general conditions under which there exists a
closed-form optimal solution to the problem. We also show a similar extension for the case
of convex piece-wise linear costs, where we give a simple iterative algorithm that gives an
optimal allocation under additional assumptions on the cost functions.

Robust Appointment Scheduling and Ordering (RASO). While the order of patients is
often fixed in advance, there are instances where patient order is flexible and simultaneously
part of the decision making [6]. When underage costs are identical, Mittal et al. [20]
established a key connection between RASO and the theory of scheduling jobs on a single
machine to minimize the sum of a weighted nonlinear (concave) cost function of the completion
times [19, 12, 25]. Focusing on the special case, we exploit this connection further to give an
extremely practical ratio based ordering policy, inspired by Smith’s rule [24]. We call it the
Customized-Smith rule (short C-Smith) and show that it is 1.0604-approximate. Further, we
find an algorithm that is as good as C-Smith on every instance, but is also locally optimal
w.r.t. pairwise swaps of neighboring jobs. Previously, Mittal et al. [20] showed that using the
EPTAS for the related min-sum scheduling problem given by Stiller and Wiese [25], yields an
EPTAS for RASO. The runtime of the EPTAS scales as O(21/ε7

n), and its implementation
complexity makes it hard to use in practice. Mittal et al. [20] offered Smith’s rule as a
practical alternative, with approximation ratio 1.137 due to a result in Höhn and Jacobs [12].
Finally, for the general case (arbitrary underage costs), we show the problem is strongly NP
hard. We also briefly discuss the inefficacy of list ordering heuristics for the problem and
give a heuristic with a matching lower bound.

Other related work. The existing literature on appointment scheduling is quite diverse and,
in addition to the robust model we discussed above, includes numerous results on stochastic
optimization models, queueing models, as well as distributionally robust optimization models.
We only give a very brief review here and refer the reader to [6] for a broad overview of
the challenges in scheduling appointment systems in health care, and to [18, 20] for more
comprehensive surveys on past work. Starting with more recent work, Jiang et al. [14]
consider a distributionally robust model and propose a MINLP formulation that can handle
random no-shows. Mak et al. [18] consider a distributionally robust model given marginal
moments for job durations, and formulate the problem as a tractable conic program. For the
case of flexible job order, they show that under certain assumptions a simple variance based
ordering can be optimal. Prior to [18], Kong et al. [16] first considered a distributionally
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25:4 Robust Appointment Scheduling with Heterogeneous Costs

robust formulation but with cross-moments as opposed to marginal moments. They formulate
the problem as a copostive cone program and propose a tractable SDP relaxation. Wang [26]
modeled the problem using a queueing model where the processing times of the jobs are i.i.d.
exponential and new jobs may be released over time. Wang [27] generalized the model to
allow for different mean processing times for jobs. In a different direction, the problem was
modeled as a two-stage stochastic linear program in Denton and Gupta [8]. For this problem,
Robinson and Chen [23] compute near-optimal solutions using a Monte-Carlo integration
technique. Kaandorp and Koole [15] considered a local search algorithm and proved that it
converges to an optimal solution. Another stochastic model was introduced by Green et al.
[11]. They considered the problem of outpatient appointment scheduling with emergency
services and modeled it as a dynamic stochastic control problem. In highly influential work,
Begen and Queyranne [2] considered a discrete stochastic model (where job durations are
integer random variables with finite support). They showed that the problem reduces to an
instance of submodular function minimization, under certain assumptions on the per-unit
costs. Begen et al. [1] extended the idea, proving a similar result for a data-driven discrete
stochastic model. Ge et al. [10] further extended the result of Begen and Queyranne [2], to
the setting of convex piece-wise linear per-unit costs.

Assumptions on underage costs. Previous work on the stochastic and distributionally
robust models discussed above, often assumes an upper bound on the variation in underage
costs. Formally, consider jobs that are indexed in the order they are scheduled. So we have
jobs i ∈ {1, . . . , n},with per unit costs ui, oi. Now for instance, the result by Begen and
Queyranne [2], assumes that there exists values αi ≤ oi such that ui+1 ≤ ui + αi − αi+1
for every i ∈ [n− 1]. Descending underage costs for example, satisfy this condition. More
generally, [14, 18, 16, 10] assume that ui+1 ≤ oi + ui for every i ∈ [n− 1] (or that ui = u for
all i). In effect, these assumptions are satisfied as long as the underage costs don’t increase
too sharply.

In contrast, we give a closed form optimal allocation for instances where the ui values do
not decrease too sharply. For example, our results yield a closed form optimal solution for
the case of non-decreasing underage costs. This includes the case ui+1 ≥ ui + oi ∀i ∈ [n− 1],
converse of the condition assumed in some previous work. If the per-unit underage costs are
decreasing, we show that as long as the per-unit values are “large enough”, our LP still leads
to a closed form optimal allocation. In practical terms, it is quite possible that the underage
costs could be increasing or decreasing, preventing a direct comparison of our assumptions
with past work. In fact, for the RASO problem where one has the flexibility to choose the
order of jobs, an optimal order can have arbitrarily varying underage costs. From a technical
viewpoint, our results complement previous work, indicating that perhaps the robust model
is more tractable in instances where other models are not, and vice versa.

Overview of the paper. In Section 2, we introduce notation and formally state the problem.
We also make certain observations that simplify the problem w.l.o.g.. Then in Section 3, we
explore the appointment scheduling problem under fixed order. We first give our LP based
approximation for general underage costs in Section 3.1. And later in Section 3.2, we tighten
our LP formulation to obtain optimal closed form solutions under additional assumptions on
the costs. In Section 4, we consider the problem of jointly finding an optimal order as well as
appointment schedule (RASO). We show that the problem is NP hard in general and discuss
the limitations of a classes of simple heuristics in Section 4.1. In Section 4.2, we focus on the
ordering and scheduling problem in the special case of homogeneous underage costs. Here
we discuss some disadvantages of existing results and propose two new heuristics to tackle
some of the issues. Finally, we conclude with some open problems in Section 5.



A. S. Schulz and R. Udwani 25:5

2 Notation & Preliminaries

We start with a description of RAS, and define additional notation required for RASO in
Section 4. Recall, we have n jobs to be served in order of increasing index i ∈ {1, . . . , n}.
Service times are uncertain and modeled via a box uncertainty set: job i takes time ti
in the range [pi − δ̂i, pi + δi]. Here we assume that 0 ≤ δ̂i ≤ pi as well as δi ≥ 0, for all
jobs i. We denote by oi ≥ 0 and ui ≥ 0 the per-unit overage cost and per-unit underage
cost of job i, respectively. More generally, we represent overage and underage costs as
non-decreasing functions oi(·), ui(·) respectively. The case of constant per-unit costs is then
given by oi(x) = oi · x and ui(x) = ui · x. We would like to appoint job start times, {Ai}i,
such that every job arrives at its appointed time and is served as soon as possible after.
Given {Ai}i, consider an arbitrary instance of service times {ti}i, and let {Ci}i denote the
completion times of jobs.3 If job i is delayed and ends after the appointed start time for job
i+ 1, we incur overage cost oi(Ci −Ai+1). Similarly, if job i ends before the appointed start
time for job i+ 1, we incur underage cost ui(Ai+1 − Ci). Therefore, the cost due to job i is
max{oi(Ci −Ai+1), ui(Ai+1 − Ci)}. The RAS problem can now be stated as follows,

min
{Ai}i

(
max

ti∈[pi−δ̂i,pi+δi] ∀i∈[n]

n∑
i=1

max{oi(Ci −Ai+1), ui(Ai+1 − Ci)}
)

︸ ︷︷ ︸
Adversary’s problem, given appointment times Ai.

. (1)

The adversary’s problem in (1), finds a worst possible profile/instance of service times
T = (ti) = (t1, . . . , tn), maximizing the cost, given the schedule {Ai}i. Let c(T,A, i) =
max{oi(Ci(T )−Ai+1), ui(Ai+1−Ci(T ))} denote the cost of job i given allocation {Ai}i and
time profile T . When the allocation is clear from the context, we use the shorthand c(T, i).
Let c(T ) =

∑
i c(T, i) denote the total cost due to profile T . It is not difficult to see that

an optimal allocation needs to allocate at least pi − δ̂i time for job i, so we let pi − δ̂i = 0
for every job i, w.l.o.g. (also in Lemma 6 of [20]). To simplify notation henceforth, we let
service times be in the range [0,∆i], where ∆i = δ̂i + δi. Now, given appointment schedule
{Ai}i, consider equivalent variables xi that represent the duration allocated for a job. We
have, xi = Ai+1 − Ai, which is the difference between the start times of job i+ 1 and job
i. Equivalently, Ai =

∑i−1
j=1 xj for i ≥ 2 and A1 = 0, w.l.o.g. We call {xi}i, and sometimes

by abuse of terminology {Ai}i, the allocation. Note that in our model, job n is cost free
since there is no appointment succeeding it (An+1 =∞). W.l.o.g. we may assume that job n
also suffers from overage and underage based on its assigned end time (assign a dummy job
to succeed job n). Note, if ui(·) = 0, we allot a very large time slot for job i and jobs on
different sides of the slot become independent. Therefore, we let ui(·) 6= 0 for all i, w.l.o.g..
Also, if on(·) = 0 we can assume that xn = 0 and in fact ignore job n, therefore we also let
on(·) 6= 0, w.l.o.g.. To coalesce, the assumptions we have made w.l.o.g., so far:

(i) Service time for job i lies in [0,∆i]; (ii) for every i, ui(·) 6= 0 (ui > 0 in the constant
per-unit case); and (iii) on(·) 6= 0 (on > 0 in the constant per-unit case).

Finally, we say job i is underaged if it ends on or before time Ai+1, and overaged otherwise.
However, if ∆i = 0 and job i starts/ends at Ai+1, we consider it to be both overaged and
underaged (for technical reasons). Further, if job i takes time ∆i to be served, we say it
runs for maximum time. Note that if a job i is underaged in some worst-case T = (ti), then
w.l.o.g., ti = 0, as the underaged costs ui(·) are non-decreasing functions for every i (similar

3 Ci = max{Ci−1, Ai}+ ti for all i ≥ 1 with C0 = A1 = 0, w.l.o.g.

APPROX/RANDOM 2019



25:6 Robust Appointment Scheduling with Heterogeneous Costs

to Lemma 11 of [20]). Observe also that if a job i is underaged in some worst-case time
profile, and it has zero cost, then i must end at Ai+1 and take zero time. Otherwise, we have
a strictly worse case by underaging i (simply reduce the time taken by i by some small ε > 0).

Finally, let Si = {i, i+ 1, . . . , n} = {j|j ≥ i} be the subset of the last n− i+ 1 jobs in
the schedule. Let xSi denote the optimal time allocation for job i when considering only jobs
in a subset S that contains i. When S = [n] we often use shorthand xi. The next section
discusses a result from previous work and offers some intuition for our treatment of the
general case that follows subsequently in Section 3.

2.1 Closed Form Optimal Solution of Mittal et al. [20]

Consider a single job, with per unit costs u, o and maximum time ∆. If this job is alloted
time duration x, then the worst case cost is given by max{u(x), o(∆ − x)}, minimized at
x = ∆ o

o+u (recall, we assume that a dummy job always follows the last job, so the last job
incurs overage cost for delays). Mittal et al. [20] showed that for constant per-unit underage
costs, ui = u for every job i ∈ [n], this formula generalizes and the optimal allocation is given
simply by, xi = ∆i

o(i)
o(i)+u . Here o(i) is the sum

∑n
j=i oj , of the per unit overage costs of the

jobs succeeding job i. So each job is alloted a fraction of its maximum service time ∆i, with
a smaller fraction for larger values of u (to prevent large underage costs). Further, earlier
jobs are alloted a larger fraction of their maximum time to prevent a large cascade of delays
for jobs serviced later on.

Now, consider a natural generalization of this formula for heterogeneous underage costs
given by, xi = ∆i

o(i)
o(i)+ui

. Unfortunately, this can be a suboptimal allocation even for two
jobs with reasonable parameter values, and in general an arbitrarily bad approximation. For
example, consider two jobs that are almost identical except that job 2 (which is scheduled
later) has a small underage cost. Specifically, let ∆1 = ∆2 = 1 and suppose per unit
costs o1 = o2 = 1 and u1 = M ≥ 2, but u2 = 1. The allocation given by the formula
sets x1 to 2

M+2 and x2 to 1
2 . The worst case cost of this allocation is attained when both

jobs are underaged or both overaged (more on this later), and equals 2M
M+2 + 1

2 . For large
M , this value approaches 5

2 . Now instead, consider the following allocation, y1 = 0 and
y2 = ∆2

o2
o2+u2

+ ∆1
o(1)
o2+u2

= 1
2 + 1 (we show later in Section 3.2, that this is in fact an

optimal allocation). It is easily checked that the worst case cost is 3
2 for this allocation. More

generally, if we set o1 and u2 to a small value ε, the first allocation becomes arbitrarily bad.
Intuitively, this demonstrates that if jobs that are later in the order have small underage
costs, it is beneficial to allocate larger time to these later jobs to buffer for delays from earlier
jobs. When this is not the case (such as for homogeneous underage costs), it is better to
instead buffer by allocating larger fractions to jobs that are earlier in the order.

3 Robust Appointment Scheduling

3.1 Heterogeneous Per-unit Underage Costs

In this section, we focus on the case of constant per-unit costs oi, ui. The key behind our
results lies in finding useful properties satisfied by optimal allocations. Towards that end, it
will be instrumental to understand the worst cases (solutions to the adversaries’ problem)
for optimal allocations. Recall the adversary’s objective: given {Ai}i, maximize cost c(T,A)
over all possible time profiles T allowed by the uncertainty set. It turns out that for an
arbitrary allocation, there could be a unique worst-case where some jobs are overaged while
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others are underaged, and for some jobs the service time ti is neither 0 nor ∆i
4. It turns out

though, that for any given allocation the adversary’s problem can be reduced to an instance
of finding longest paths on a directed acyclic graph with n+ 1 nodes [21], and therefore can
be solved in polynomial time. However, using this fact to find an optimal allocation does not
obviously lead to a tractable problem. Instead, here we shall find properties in the form of
linear inequalities that every optimal allocation satisfies. Using these, we formulate an LP
relaxation for the problem and show that an optimal solution to the LP is 2-approximate.

As a natural next step, we then look for more structure to further tighten the formulation.
Surprisingly, we find that the adversary’s problem given an optimal allocation for problem
(1) is easily solved; in every optimal allocation, ti = ∆i for every i (all jobs taking maximum
time) and ti = 0 for all i (all jobs taking zero time) are worst-cases. Combining this with
other structural insights, in Section 3.2 we propose a strengthened formulation that leads to
closed form optimal solutions under some assumptions on underage costs. In the lemmas that
follow we introduce two properties of optimal allocations, leading to the first LP formulation.

I Lemma 1. For every optimal allocation {xi}i,
∑k
j=1 xj ≤

∑k
j=1 ∆j for all k = 1, . . . , n.

Proof. Given an optimal allocation {xi}i, let δk =
∑k
j=1 xj−

∑k
j=1 ∆j , for k ∈ [n]. Suppose,

δk > 0 for some k, and let k0 be the smallest such k. Given this, notice that even if the
first k0 jobs take maximum time, job k0 can never be overaged. Therefore, decreasing xk0

decreases the underage cost of job k0 (uk0 > 0) and thus, also the worst-case cost. So the
allocation {x′i}i where, x′k0

= xk0−δk0 and x′i = xi for all other i is clearly a better allocation,
contradiction. This lemma also follows as a direct corollary of Lemma 5 stated later on. J

I Lemma 2. Given an allocation {xi}i where
∑i
j=1 xj ≤

∑i
j=1 ∆j for all i, and a time

profile T = (ti). The cost c(T ) of profile T is at most
∑n
i=1 o(i)(∆i − xi) +

∑n
i=1 uixi.

Proof. For any given time profile T , job i is either underaged with c(T, i) ≤ uixi or overaged
with cost at most oi

∑
j≤i(∆j − xj). The latter follows from the fact that Ci ≤

∑
j≤i ∆j

since
∑k
j=1 xj ≤

∑k
j=1 ∆j for all k ∈ [i]. Therefore,

∑n
i=1 c(T, i) ≤

∑n
i=1 oi

∑i
j=1(∆j −xj) +∑n

i=1 uixi. Rearranging the sum we have,
∑n
i=1 oi

∑i
j=1(∆j−xj) =

∑n
j=1(∆j−xj)o(j). J

Using the above results, the following LP now gives us an extremely simple approximation
for the general problem that could be easily implemented on most systems.

LP-1: min
n∑
j=1

(uj − o(j))yj

s.t.
k∑
j=1

(yj −∆j) ≤ 0 ∀k ∈ [n]; (2)

yj ≥ 0 ∀j ∈ [n].

I Theorem 3. LP-1 is a (tight) 2-approximation, and the following is an optimal solution
to LP-1. Define mi = arg minj≥i(uj − o(j)), then for every i,

yi =
{

0 if ui − o(i) ≥ 0 or i 6= mi∑
j|mj=i ∆j otherwise.

4 This is in contrast to Lemma 9 in [20] for the special case of ui = u ∀i.
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Proof. The proof of optimality for the proposed solution is easy to verify. To see the
guarantee let us re-write the LP-1 objective as,

min
∑
j

ujyj +
∑
j

o(j)(∆j − yj).

From constraints (2) and Lemma 2, this is an upper bound on the worst-case cost of any
feasible solution to LP-1. Let {y∗i } denote an optimal solution to the LP. Lemma 1 implies
that every optimal allocation {xi} is a feasible solution to LP-1. Further,

∑
j ujxj denotes

the cost when all jobs take zero time and
∑
j o(j)(∆j − xj) is the cost of overaging all jobs

with each job taking maximum time (∆i). Therefore, the worst-case cost of an optimal
allocation, denoted OPT , is at least max{

∑
j ujxj ,

∑
j o(j)(∆j − xj)} (we show later that

these two costs are both in fact, equal to OPT ). Therefore,∑
j

ujy
∗
j +

∑
j

o(j)(∆j − y∗j ) ≤
∑
j

ujxj +
∑
j

o(j)(∆j − xj) ≤ 2 OPT.

For a tight instance, consider two jobs {1, 2} with ∆1 = ε→ 0, u1 = 1/ε, o1 = 1/ε− (1+ε)
and ∆2 = u2 = o2 = 1. Therefore, u2

u2+o2
= 0.5 / u1

u1+o(1) . Consider the allocation x2 = 0.5
and x1 = ε o(1)

u1+o(1) ≈ ε/2. It is easy to see that the worst-case of the allocation is when both
jobs are underaged (overaged) and hence the cost of this allocation is u1x1 + u2x2 ≈ 1. Now,
consider the solution y2 = 0.5 + ∆1o(1)

u2+o2
≈ 1 and y1 = 0. This is an optimal solution to the

LP and the worst-case occurs when job 2 is underaged and job 1 is overaged. The worst-case
cost of this allocation is o1∆1 + u2(y2 −∆1) ≈ 2. J

Beyond Constant Per-unit Costs
Suppose instead of scalar costs oi, ui, we have non-decreasing, piece-wise linear and convex
cost functions oi(·), ui(·). Then it is easy to check that Lemma 1 still holds. Similar to
Lemma 2, we have that given an allocation {xi}i, satisfying Lemma 1, the cost c(T ) for any
profile T is at most,∑

i

ui(xi) +
∑
i

oi

(∑
j≤i

(∆j − xj)
)
.

Now the problem of minimizing this objective subject to the linear constraints in LP-1, is
a min cost flow problem with arc costs given by the overage and underage cost functions.
More specifically, consider a directed graph with n+ 1 nodes and 2n edges, where there is a
directed edge from node i to node n+ 1 with cost ui(·) and an edge i→ i+ 1 with cost oi(·),
for every i ∈ [n]. Finally, there is another edge from n to n+ 1 with cost on(·). Finally, each
node i has a supply of ∆i and node n+ 1 is a sink with demand

∑
i ∆i. Given a feasible flow

in this graph, the flow on edge (i→ n+ 1) gives the time allocation for job i, and vice versa.
Now, if the costs are piece-wise linear and convex, we have from the algorithm by Pinto and
Shamir [22] for min flows with convex piece-wise linear costs, that the problem can be solved
in polynomial (in n and the maximum number of pieces in the cost functions) time. The
optimal solution to this problem is a 2-approximation, and the analysis closely resembles the
proof of Theorem 3 (details deferred to full version).

3.2 Optimal Solution to RAS for Special Cases
Let us now investigate additional properties with the goal of strengthening our LP. We start
by proving our claim from earlier – all jobs underaged (taking 0 time) and all jobs overaged
(taking maximum time) are worst-cases for optimal allocations. We break down the proof
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into smaller parts. The first lemma is very useful and appears often in proofs of other lemmas.
The key insight behind the lemma is simple – when all jobs overaged is a worst-case, if the
first job is forced to start late, then the case of all jobs overaged suffers maximum increase in
cost, and is thus still a worst case.

I Lemma 4. Given an arbitrary allocation {Ai}i, where ti = ∆i for all i is a worst-case.
Recall that w.l.o.g., A1 = 0 and consider a modified problem for the adversary, where the
first job is always forced to start at a later time t0 instead of time A1 = 0. Then, T = (ti) is
also a worst-case for the modified problem.

Proof. Let T = (∆i) denote the profile for all jobs taking maximum time. When job 1 starts
at time 0, denote the cost of job i by c(0, T, i). Since T is a worst-case by assumption, we
have c(0, T ) ≥ c(0, Z) for every profile Z. For the modified setting where job 1 starts at
time t > 0, we claim that c(t, Z, i) ≤ c(0, Z, i) + oit for every Z. To see this, suppose job 1
starts at 0 and consider two cases: (i) i overaged in Z and (ii) i underaged in Z. In case
(i), i will still be overaged when job 1 starts at time t and the completion time of i can
increase by at most t. In case (ii), if i is still underaged when job 1 starts at time t, we are
done. Else, i becomes overaged but the maximum overage cost is oit. Now for profile T ,
since all jobs are overaged when job 1 starts at time 0, c(t, T, i) = c(0, T, i) + oit. Therefore,
c(t, Z) ≤

∑
i(c(0, Z, i) + oit) ≤

∑
i c(0, T, i) +

∑
i oit = c(t, T ). J

The next lemma says that we cannot have an optimal allocation where a certain job
is underaged (overaged) in all the worst-case time profiles. Observe that if job i is always
underaged, simply reducing the allocation xi would give a strictly better allocation, con-
tradicting optimality. Indeed, Lemmas 12 and 15 in [20] argue exactly this. However, that
argument fails if there exists a worst-case where i is underaged with zero cost (occurs when
i− 1 ends at Ai+1 and ti = 0, which we defined as a case of underage in Section 2). This
gives rise to a subtle issue that demands a more involved argument (similarly for the case of
overage). We postpone the formal proof to the full version.

I Lemma 5. Given an optimal allocation, consider an arbitrary job i. There exists a worst-
case T = (ti) where i is underaged and ti = 0, as well as a worst-case where i is overaged
(with some ti that is not necessarily ∆i).

I Lemma 6. In every optimal allocation, the case of all jobs underaged, i.e., ti = 0 for every
job i, is a worst-case.

Proof. Let {Ai}i denote an optimal allocation. Lemma 5 implies there is a worst-case where
job 1 takes zero time. We proceed via induction, assuming there is a worst-case T = (ti)
where ti = 0 for i ∈ [k] = {1, . . . , k}, i.e., all jobs in [k] are underaged. We will show there
exists a worst-case where all jobs in [k + 1] are underaged.

Suppose that k + 1 is overaged in T (otherwise we are done). Lemma 5 implies there
is a worst-case, denoted T ′ = (t′i), where job k + 1 is underaged and takes zero time. Let
Ck+1 denote the completion time of job k + 1 in T . Clearly, Ck+1 > Ak+2 and k + 1 starts
at Ak+1 in T . Similarly, let C ′k+1 denote the start/completion time of job k + 1 in T ′. Then,
C ′k+1 ≤ Ak+2. Now consider a new profile Z = (zi), formed by a combination of T and T ′. We
let zi = t′i for i ∈ [k] and zi = ti for i ∈ {k+2, . . . , n}. Since the completion times of job k are
identical in T ′ and Z, we set zk+1 = Ck+1−C ′k+1 ≤ Ck+1−Ak+1 = tk+1. Therefore, job k+1
ends at time Ck+1 in Z. Now, observe that

∑
i∈[n] c(Z, i) =

∑k
i=1 c(T ′, i) +

∑n
i=k+1 c(T, i).

Since T is a worst-case, we also have
∑k
i=1 c(T ′, i)+

∑n
i=k+1 c(T, i) ≤

∑n
i=1 c(T, i). Therefore,∑k

i=1 c(T ′, i) ≤
∑k
i=1 c(T, i). Now, consider another hybrid case Q, where jobs 1 to k are all
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underaged and take zero time as in T and jobs k+ 2 to n are as in T ′. Job k+ 1 starts/ends
at Ak+1 in Q and hence c(T ′, k + 1) ≤ c(Q, k + 1). Combining everything,

∑
i c(T ′, i) ≤∑k

i=1 c(T, i) +
∑n
k+1 c(T ′, i) ≤

∑k
i=1 c(T, i) + c(Q, k+ 1) +

∑n
k+2 c(T ′, i) =

∑
i c(Q, i). Hence,

Q is a worst-case with jobs 1 to k + 1 all underaged. J

I Lemma 7. In every optimal allocation, the case of all jobs overaged is a worst-case.
Therefore, ti = ∆i for all i is a worst-case.

Proof. Let {Ai}i denote an optimal allocation. Observe that if there exists a worst-case
where jobs Sk = {k, . . . , n} are all overaged for some k, then there exists a worst-case where
all jobs in Sk are overaged and take maximum time. We proceed by induction and show
that if there is a worst-case where every job in Sk is overaged, then there exists a worst-case
where every job in Sk−1 is overaged. For k = n, by Lemma 5 there is a worst-case where
job n is overaged. Assume there exists a worst-case where jobs k to n are overaged, denoted
as T = (ti).

Suppose that job k − 1 is underaged in profile T (otherwise we are done). Recall that
uk−1 > 0 and tk−1 = 0, since k is underaged in T . Then, since T is a worst-case profile;
restricted to the subset Sk, the profile {ti = ∆i}i≥k is a worst-case with all jobs overaged,
for allocation {Ai}i≥k. Now, by Lemma 5 for the set of all jobs [n], there exists a worst-case
where job k − 1 is overaged, denoted T ′ = (t′i). Then, consider profile Z = (zi) with zi = t′i
for jobs in S1 − Sk−1 and zi = ∆i for i ∈ Sk−1. Z is a worst-case profile since it matches the
cost in T ′ for jobs in S1 − Sk−1, and due to Lemma 4 the total costs for jobs in Sk−1 can
only be larger than the same total in T ′. J

The following equation characterizes the worst-case cost of every optimal allocation {xi}i,

n∑
i=1

o(i)(∆i − xi) =
n∑
i=1

uixi. (3)

We can already modify LP-1 by adding the equality above. However, this property alone is
not sufficient to offer improved results even for identical underage costs. To that end, we
introduce the following technical property.

I Lemma 8. Given an optimal allocation {xi}i∈[n],

n∑
j=k

(uj + o(j))yj ≥
n∑
j=k

o(j)∆j for all k ∈ [n]. (4)

To get some intuition behind the lemma, consider the objective of minimizing
∑
i uiyi for

non-negative yi subject to the equation (3). A greedy solution that sets yi =
∑

j
∆jo(j)

ui+o(i) for
i = arg minj∈[n]

uj

uj+o(j) is optimal. Here the job with the minimum ratio ui

ui+o(i) , bears the
entire burden of the equality (3). Lemma 8 says that this can only occur when i = n and
more generally, places a lower bound on the contribution to equality (3) from values yk to
yn, for all k. The proof of the lemma is rather technical and is postponed to the full version,
along with two accompanying helper lemmas. Consider now the strengthened formulation,
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LP-2: min
n∑
j=1

ujyj

s.t.
n∑
j=1

(uj + o(j))yj =
n∑
j=1

o(j)∆j (5)

n∑
j=k

(uj + o(j))yj ≥
n∑
j=k

o(j)∆j ∀k ∈ [n] (6)

k∑
j=1

(yj −∆j) ≤ 0 ∀k ∈ [n]

yj ≥ 0 ∀j ∈ [n]

Clearly, every optimal allocation is a feasible solution for the LP. However, an optimal
solution to the LP need not have all jobs underaged (or overaged) as worst-case, and hence
need not be an optimal allocation. This is demonstrated by the example used in Theorem 3,
where it is easily checked that the additional constraints given by (5) and (6) do not improve
the worst-case approximation bound from earlier. However, we show that under additional
assumptions LP-2 yields optimal allocations.

The recipe behind proving this is as follows: (i) Using the assumptions, show that there
is actually a closed-form optimal solution to the LP. (ii) Show that for this solution, all jobs
underaged and all jobs overaged are worst-cases. In particular, using this recipe for the
special case of homogeneous underage costs ui = u for every i, we find that xi = o(i)∆i

u+o(i) for
all i ∈ [n] is an optimal solution to LP-2 and an optimal allocation. More generally, we have
the following.

I Theorem 9. If ui ≤ ui+1
o(i)
o(i+1) for all i ∈ [n− 1], then the allocation given by xi = o(i)∆i

u+o(i) ,
i ∈ [n], is an optimal allocation.

This generalizes and offers a different perspective on Theorem 5 in [20] (since ui = u for
every i, implies ui ≤ ui+1

o(i)
o(i+1) for all i ∈ [n− 1]). As a direct implication of the above, we

have a closed form optimal allocation if if the underage costs are non-decreasing i.e.,

ui ≤ ui+1 ∀i ∈ [n− 1].

This includes for instance, the case of increasing underage costs where ui+1 ≥ ui + oi. As
we discussed earlier in Section 1, this complements the assumptions made in previous work,
where the common assumption is that the underage costs are not increasing too drastically
and in particular that, ui+1 ≤ ui + oi for all i ∈ [n− 1].

Next, we claim that even if ui > ui+1
o(i)
o(i+1) for some i, there may still exist an LP optimal

solution that is also an optimal allocation. This generalizes Theorem 9. A direct corollary
of the result is that if underage costs are “large enough”, we have a closed form optimal
solution even if the costs otherwise vary arbitrarily. More specifically, if the underage costs
are such that for ever pair of jobs i− l and i with ui−l > ui, we have,

ui ≥
l∑

j=1
oi−j .

Then LP-2 leads to a closed form optimal allocation.
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I Theorem 10. Given n jobs with parameters such that for i ∈ [n], whenever i 6= mi :=
min

(
arg minj≥i uj

uj+o(j)
)
, we have umi

≥ o(i)− o(mi), then the following is both an optimal
solution to the LP and an optimal allocation,

xk =
∑
i|k=mi

∆io(i)
uk + o(k) for all k ∈ [n].

Optimal Allocation Beyond Constant Per-unit Costs
For non-decreasing, piece-wise linear and convex costs oi(·), ui(·), let oi, oi denote the largest
and smallest slope for oi(·) and, ui, ui the largest and smallest slope for ui(·). By generalizing
insights from the case of constant per-unit costs, we show that Algorithm 1 finds the
optimal allocation when ui+1 ≥ ui, for all i ∈ [n− 1]. This condition is satisfied for instance
if ui(x) = u · x for all i ∈ [n], and oi(·) is an arbitrary non decreasing, convex piece-wise
linear function. Similar to the case of constant per-unit costs, our assumption complements
assumptions made in previous work on the stochastic setting of the problem. For instance,
in the stochastic setting Ge et al. [10], gave a polynomial time algorithm for non decreasing,
piece-wise linear and convex costs when ui+1 ≤ ui + oi, for all i ∈ [n− 1].

Algorithm 1 Allocation for Non-Linear Costs.

1: for i = n to 1 do
2: ôi(x) :=

∑
j≥i

(
oj(∆i − x+

∑
k|i<k≤j(∆k − xk))− oj(

∑
k|i<k≤j(∆k − xk))

)
3: xi = argmin

x≥0
max{ui(x), oi(∆i − x) + ôi(x)}

4: Output: {xi}i

I Remark. Given two sets of jobs Sk−1 = {k− 1, . . . , n} and Sk = {k, . . . , n}. Let the output
of Algorithm 1 over set Sk−1 be {xk−1

i }, and over set Sk be {xki }. Then we have, xk−1
i = xki

for all i ∈ Sk. Also, note that the algorithm takes n iterations, each involves a minimization
of the maximum of two convex piece-wise linear functions (as ui(x) and oi(∆i−x)+ ôi(x) are
both piece-wise linear and convex in x). Therefore, each step involves finding the minimum
of a convex piece-wise linear function. Hence, the algorithm runs in polynomial time (in n
and the number of pieces in the cost functions).

4 Robust Appointment Scheduling and Ordering

So far, we assumed that jobs are given to us in fixed order and our task was to find an
optimal appointment schedule. Focusing on the case of constant per-unit costs, we now
consider the joint problem of finding an ordering and an appointment schedule such that
the resulting cost is minimized. More formally, consider a permutation π over the set [n],
that determines the order of appointments. So given an ordering π, job i is the π(i)-th
appointment in the schedule. We let Ai, Ci denote the start time and the completion time of
the i-th appointment (or the π−1(i)-th job). The joint scheduling and ordering problem can
now be stated as,

min
π:[n]→[n],{Ai}i

max
ti∈[0,∆i] ∀i

n∑
i=1

max{oπ−1(i)(Ci −Ai+1), uπ−1(i)(Ai+1 − Ci)}. (7)
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Recall that under homogeneous underage costs ui = u∀i, we have a closed form solution for
the problem for fixed permutation π. Letting o(i) =

∑
j|π(j)≥π(i) oj , the objective in this

special case can be more simply stated as,

min
π:[n]→[n]

n∑
i=1

∆io(i)u
o(i) + u

.

Let us call this problem RASO-H for brevity. Mittal et al. [20] showed that RASO-H reduces
to an instance of min-sum scheduling with concave costs 1||

∑
wjf(Cj). Here given jobs j

with processing time pj , weight wj , and a concave function f(·) over completion times Cj ,
the goal is to find an ordering that achieves the following,

min
{Cj}j

n∑
j=1

wjf(Cj). (8)

Indeed, letting wj = ∆j , pj = oj and f(Cj) = uCj

Cj+u , we see that any ordering π for RASO-H
is equivalent to an order π′ in, 1||

∑
wjf(Cj). Here π′(j) = n − π(j) + 1 (i.e., orders are

reversed as we move between the two problems). This reduces RASO-H to an instance of
1||
∑
wjf(Cj), while preserving the objective value. Therefore, algorithms for 1||

∑
wjf(Cj)

can be used directly for RASO-H without any loss in guarantee. Using a result in [12], the
following rule,

Smith’s rule: Schedule jobs in the order of descending ratios wj

pj
(or ascending ratios ∆j

oj
),

is 1.137 approximate for RASO-H. In fact, there is an EPTAS for RASO-H due to the
EPTAS for 1||

∑
wjf(Cj) [25]. Howevever, the hardness of RASO with a single underage

cost, and more generally of 1||
∑
wjf(Cj), remains an intriguing open problem in scheduling

theory [25, 19, 12, 20].
In the upcoming section, we consider the general problem for which no results were

previously known. We give evidence indicating that the problem becomes much harder
without the homogeneous underage costs assumption.

4.1 RASO with General Underage Costs
We show that RASO is strongly NP-hard when there are at least two different underage
costs via a reduction from the strongly NP hard problem of min-sum scheduling on identical
parallel machines, P ||

∑
wjCj (problem SS13 in Garey and Johnson [9]). Further, we also

show that no list ordering rule (such as Smith’s rule) can be better than O(n) approximate
for the problem, ruling out the existence of “simple” approximation heuristics. We defer the
details and proofs to the full version.

To develop approximation heuristics for RASO, unlike RASO-H, we cannot rely on a
closed-form solution for the optimal allocation problem to simplify the problem. However,
we do have a closed-form solution with cost guaranteed to be within a constant factor of
the optimal due to Theorem 3. This does not immediately lead to a tractable problem,
and taking a different approach we instead consider the closed form allocation given by the
formula xi = ∆io(i)

ui+o(i) . Given order π, let o(i) =
∑
j|π(j)≥π(i) oj . For this allocation rule the

ordering problem simplifies to,

min
π:[n]→[n]

n∑
j=1

∆jo(j)uj
o(j) + uj

. (9)
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This is equivalent to a min-sum scheduling problem of the form,

min
{Cj}j

∑
j

fj(Cj).

Here Cj is the completion time of job j which has processing time pj = oj . Functions
fj(Cj) = ∆juj

Cj

Cj+uj
are concave, but now we have a different function for each job. We

show (details in full version) that given an α approximation for 1||
∑
j fj(Cj), there is a

4αn approximation for RASO. The additional factor of 4n arises from the fact that (9)
does not represent the true objective (7). Recall that the closed form allocation formula
xj = ∆j

o(j)
o(j)+uj

, is not only suboptimal but can be arbitrarily worse than the optimal
allocation for certain orders. So it is perhaps surprising that using this allocation we can
still achieve some approximation bound. Note that for the min-sum scheduling problem,
1||
∑
fj(Cj), [7] gives a 4 + ε approximation for arbitrary fj . Using this algorithm, we have a

(16 + ε)n approximation for RASO. We also show that no heuristic that orders jobs based on
a simple ratio can beat Ω(n). Here we use the term “simple ratio” to refer to any real valued
function evaluated independently for each job, using only the job parameters (oi,∆i, ui). A
list ordering heuristic for this function then simply orders jobs in ascending or descending
order of the function values.

4.2 Homogeneous Underage Costs
In this section, we develop some easy to implement heuristics with improved approximations
for RASO-H. As we mentioned earlier, the computational complexity of RASO-H and more
generally, 1||

∑
wjf(Cj) with concave cost function f , remains open but, there is a scaling

based EPTAS for RASO-H due to the EPTAS for 1||
∑
wjf(Cj). The EPTAS is non-trivial

and not easy to implement in practice. Practical heuristics such as Smith’s rule, can be
suboptimal for RASO-H even with just two jobs. This motivates us to consider the following
heuristic,

Customized-Smith’s rule (C-Smith): Schedule jobs in ascending order of ∆i

oi(oi+u) .

This straightforward heuristic is optimal for two jobs by design, and has an approxim-
ation guarantee of β, where 1.06036 < β < 1.06043. While the order output by C-Smith is
optimal for two jobs, we could more generally seek an order that is optimal w.r.t. exchanging
the order of any two consecutive jobs. Let us call such an order locally optimal. The schedule
output by both Smith and C-Smith is not locally optimal. In fact, no list-ordering heuristic
can be locally optimal for all instances of RASO-H. To address this we introduce Algorithm
2, which outputs a locally optimal order. While not as simple as C-Smith, it is still fairly
easy to implement – at each step, it computes a new set of ratios for the remaining jobs and
picks the one with the best ratio, removing it from further consideration. However, a naive
implementation has runtime O(n2), in contrast to O(n logn) for list ordering heuristics.

We show that Algorithm 2 outputs a solution that is at least as good as C-Smith on every
instance. Thus, it is also β approximate. There exist instances for which the algorithm is not
optimal. However, we leave finding the exact guarantee of the algorithm as an open problem.

I Theorem 11. For every instance of RASO-H, Algorithm 2 outputs an order that is at
least as good as the order given by C-Smith.

The proof is deferred to the full version. It remains to show the β approximation for
C-Smith. For this analysis it will be much more convenient both for clarity as well as
notation, to focus on analyzing C-Smith for the scheduling problem 1||

∑
j wjf(Cj), where
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Algorithm 2 Locally Optimal Algorithm.

1: Initialize: S = ∅, o(S) = 0
2: for i = 1 to n do
3: Find,

j = argmax
k∈[n]\S

∆k

ok(ok + o(S) + 1) .

In case of a tie, pick the job with largest overage cost.

4: π(j) = n− i+ 1, S = S ∪ {j}, o(S) = o(S) + oj

5: Output: π(.)

f(Cj) = Cju
Cj+u and wj = ∆j ,pj = oj . Note that we can let u = 1 w.l.o.g. Also recall, there is a

cost preserving bijection between orders for 1||
∑
j wjf(Cj) and RASO-H – reversing the order

when moving from one to the other. Therefore, we will show the following equivalent theorem.

I Theorem 12. For some constant β ∈ [1.06036, 06043]. scheduling jobs in descending order
of wj

pj(pj+1) is exactly β approximate for the scheduling problem 1||
∑
j wj

Cj

Cj+1 .

To prove the above theorem, we establish several intermediate results that characterize and
simplify the worst-case instance for C-Smith. First, we show that there is a worst-case
instance for C-Smith where all jobs are tied and in fact have ratio 1. This is shown via a
generalization of Lemma 3.5 in [12] (Lemma 21 in [25]). Then, we show that in the worst-case
C-Smith orders jobs in ascending order of processing times and the optimal order is the exact
reverse. Interestingly, this is the opposite of Lemma 3.6 in [12] (Proposition 20 in [25]) for
Smith’s rule, where the optimal order is ascending in pi and the worst order is descending.
Given these properties, we can formulate a non-convex optimization problem in infinitely
many variables, the optimal value of which is the approximation ratio, and every optimal
solution is a worst-case instance. To then get lower and upper bounds on the optimum
value, we utilize properties specific to our objective f(x) = x

x+1 to approximate the problem
(which has infinitely many variables) with a family of optimization problems, that while still
non-convex, have a finite number of variables. More complex objectives from the family give
a tighter upper bound on true approximation ratio, but the number of variables involved
increases. We find the global optimum to a problem in the family with five variables, and this
closely matches our lower bound. We solve such a non-convex problem to global optimality
by establishing upper and lower bounds on variables and using linear cuts, both of which
allow us to then effectively use a nonlinear globally optimal MINLP solver, Couenne [13]
(details in full version).

5 Conclusion & Open Problems

We considered the robust appointment scheduling problem with general underage costs. For
the appointment scheduling problem with fixed jobs order, we found a simple LP that gives a
2-approximation for the problem under constant per-unit costs. Then we further refined this
LP, resulting in a closed form solution for optimal allocations in special cases (generalizing
previous results in the robust model, and complementing similar results in other models).
We also showed that our results and approach extend more generally to convex piece-wise
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linear costs. When seeking an optimal allocation for the general case using our approach,
more complications arise and it is not clear if one can still construct a linear (or convex)
program such that an optimal solution to the program is also an optimal allocation. We leave
finding an optimal solution for the general case (or showing hardness), as an open problem.

In the second setting, we considered the problem of jointly finding the optimal order
and allocation given that order for the case of constant per-unit costs. For the case of
heterogeneous underage costs, we show that the problem is strongly NP hard and no list
ordering policy can do better than Ω(n) to approximate the optimal value. We also gave a
heuristic that achieves this bound. Finding a better approximation for this setting remains
another interesting open problem. For the case of homogeneous underage costs, we designed
two simple and practical heuristics that are guaranteed to be with ≈ 1.06 of the optimal.
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