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Abstract
In the matroid center problem, which generalizes the k-center problem, we need to pick a set of
centers that is an independent set of a matroid with rank r. We study this problem in streaming,
where elements of the ground set arrive in the stream. We first show that any randomized one-pass
streaming algorithm that computes a better than ∆-approximation for partition-matroid center
must use Ω(r2) bits of space, where ∆ is the aspect ratio of the metric and can be arbitrarily large.
This shows a quadratic separation between matroid center and k-center, for which the Doubling
algorithm [7] gives an 8-approximation using O(k)-space and one pass. To complement this, we give
a one-pass algorithm for matroid center that stores at most O(r2 log(1/ε)/ε) points (viz., stream
summary) among which a (7 + ε)-approximate solution exists, which can be found by brute force, or
a (17 + ε)-approximation can be found with an efficient algorithm. If we are allowed a second pass,
we can compute a (3 + ε)-approximation efficiently.

We also consider the problem of matroid center with z outliers and give a one-pass algorithm
that outputs a set of O((r2 + rz) log(1/ε)/ε) points that contains a (15 + ε)-approximate solution.
Our techniques extend to knapsack center and knapsack center with z outliers in a straightforward
way, and we get algorithms that use space linear in the size of a largest feasible set (as opposed to
quadratic space for matroid center).
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1 Introduction

In the k-center problem, the input is a metric, and we need to select a set of k centers that
minimizes the maximum distance between a point and its nearest center. Matroid center is
a natural generalization of k-center, where, along with a metric over a set, the input also
contains a matroid of rank r over the same set. We then need to choose a set of centers that is
an independent set of the matroid that minimizes the maximum distance between a point and
its nearest center. Then k-center is rank-k-uniform-matroid center. Examples of clustering
problems where the set of centers needs to form an independent set of a partition matroid
arise in content distribution networks (see Hajiaghayi et al. [16] and references therein). A
partition matroid constraint can also be used to enforce fairness conditions such as having
kM centers of type M and kW centers of type W. As another example, say the input points
lie in a euclidean space, and we are required to output linearly independent centers, then
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20:2 Small Space Stream Summary for Matroid Center

this is the linear-matroid center problem. Studying a combinatorial optimization problem in
the streaming model is worthwhile not only in its own right, but also because it can lead to
discovery of much faster algorithms1.

In the streaming model, the input points arrive in the stream, and we are interested
in designing algorithms that use space sublinear in the input size. We study the matroid
center problem in the streaming model. By a clean reduction from the index problem, we
first show that any randomized one-pass streaming algorithm that computes a better than
∆-approximation for matroid center must use Ω(r2) bits of space, where ∆ is the aspect
ratio of the metric (ratio of the largest distance to the smallest distance between two points),
which can be arbitrarily large. Since the Doubling algorithm [7] gives an 8-approximation
for k-center in one pass over the stream by storing at most k points, we get a quadratic
separation between matroid center and k-center. We then give a one-pass algorithm that
computes a (7 + ε)-approximation using a stream summary of O(r2 log(1/ε)/ε) points. The
algorithm maintains an efficiently-updatable summary, and runs a brute-force step when the
end of the stream is reached. We can replace the brute-force step by an efficient algorithm to
get a (17 + ε)-approximation. Alternatively, using a second pass, we can (efficiently) compute
a (3 + ε)-approximation. Our algorithms assume only oracle accesses to the metric and to
the matroid.

In k-center or matroid center, even very few rogue points can wreck up the solution,
which motivates the outlier versions where we can choose up to z points that our solution
will not serve. McCutchen and Khuller [28] give a one-pass (4 + ε)-approximation algorithm
for k-center with z outliers that uses space O(kz log(1/ε)/ε). Building on their ideas, we
give a (15 + ε)-approximation one-pass algorithm for matroid center with z outliers, using
a brute-force search through the summary as the last step, and a (51 + ε)-approximation
algorithm if we want an efficient implementation in the last step.

To the best of our knowledge, matroid center problems have not been considered in
streaming. Chen, Li, Liang, and Wang [11] give an offline 3-approximation algorithm for
matroid center and a 7-approximation algorithm for the outlier version; this approximation
ratio is improved to 3 by Harris et al. [19]. These algorithms are not easily adaptable to
the streaming setting if we are allowed only one pass, though, our two-pass algorithm for
matroid center may be thought of as running multiple copies of Chen et al.’s 3-approximation
algorithm. We mention that optimization problems over matroid or related constraints have
been studied before in streaming [2, 3, 10].

The Doubling algorithm [7] gives an 8-approximation for k-center. Guha [15], using
his technique of “stream-strapping”, improves this to 2 + ε. We use the stream-strapping
technique in this paper to reduce space-usage of our algorithms as well. Known streaming
algorithms for k-center problems do not extend to the matroid center problems. Indeed, the
gap between the space complexities of k-center and matroid center, exhibited by our lower
bound, warrants the need for new ideas.

1 This is demonstrated by Chakrabarti and Kale [3] who give streaming algorithms for submodular
maximization problems that make only 2|E| total submodular-oracle calls (Õ(|E|) total time) and
achieve constant-factor approximations, where E is the ground set. On the other hand earlier fastest
algorithms were greedy and potentially could make Ω(|E|2) oracle calls. Trivially, |E| oracle calls are
needed for any non-trivial approximation.
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1.1 Techniques
At the heart of many algorithms for k-center is Gonzalez’s [13] furthest point heuristic that
gives a 2-approximation. It first chooses an arbitrary point and adds it to the current set
C of centers. Then it chooses a point that is farthest from C and adds it to C. This is
repeated until C has k centers. Let CE be the set of centers returned by this algorithm,
and let p be the point that is farthest from CE . Then d(p, CE) is the cost of the solution,
whereas the set CE ∪ {p} of size k + 1 acts as a certificate that an optimum solution must
have cost at least d(p, CE)/2. This can be easily implemented in streaming if we are given a
“guess” τ of OPT, i.e., the cost of an optimum solution. When we see a new point e in the
stream, we add it to C if d(e, C) > 2τ . Assuming that we know the aspect ratio ∆, we can
do this for 2 log1+ε ∆ guesses of OPT to get a (2 + ε)-approximation as follows. Let R be the
distance between first two points in the stream. Then maintain the set C as described above
for guesses τ ∈ {R/∆, (1 + ε)R/∆, (1 + ε)2R/∆, . . . , R∆}. The stream-strapping technique
reduces the number of active guesses to O(log(1/ε)/ε).

In extending this to matroid center, the biggest challenge is deciding which point to make
a center. In a solution to k-center, if we replace a point by another point that is very close to
it, then the cost can change only slightly, whereas if we do the same in a solution to matroid
center, the solution might just become infeasible. Therefore, if we maintain a set C as earlier,
it might quickly lose its independence in the matroid. The idea is to store, for each of the
at most r points c ∈ C, a maximal independent set Ic of points close to c; here, by close
we mean close in terms of the guess τ . This way, we store at most r2 + r points. Storing a
maximal independent set for each point in C may seem wasteful, but our lower bound shows
that it is necessary. Our first algorithmic insight is to show that this idea works for a correct
guess. We show that if each optimum center s is in the span of an independent set Ic for a c
that is close to s, then we can recover an independent set of small cost from the summary⋃
c∈CE

Ic. And as our second insight, we show how to extend the stream-strapping approach
to reduce the number of active guesses, which helps us reduce the space usage. These ideas
naturally combine with those of McCutchen and Khuller [28] and help us design an algorithm
for matroid center with z outliers, but it is nontrivial to prove that the combination of these
ideas works.

Knapsack center

In the knapsack center problem, each point e has a non-negative weight w(e), and the goal is
to select a set C of centers that minimizes the maximum distance between a point and its
nearest center subject to the constraint that

∑
c∈C w(c) 6 B, where B is the budget. The

k-center problem is a special case with unit weights and B = k. In the streaming setting,
our algorithms for matroid center and matroid center with outliers can be extended to get
constant approximations using space proportional to the size of a largest feasible set, i.e.,
max{|S| :

∑
e∈S w(e) 6 B}. As described earlier, we maintain a set C of potential centers

using the guess τ , and for each potential center c, we also maintain a smallest weight point,
say sc, in its vicinity. Then, in the end, the summary {sc : c ∈ C} contains a good solution.
This idea works because replacing a center by a nearby point with a smaller weight does
not affect the feasibility in the knapsack setting (which could destroy independence in the
matroid setting).

1.2 Related Work
The k-center problem was considered in the ’60s [17, 18]. It is NP-hard to achieve a factor
of better than 2 [23], and polynomial-time 2-approximation algorithms exist [13, 21]. As
mentioned earlier, Chen et al. [11] give a 3-approximation algorithm for matroid center
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and a 7-approximation algorithm for the outlier version, and this approximation ratio is
improved to 3 by Harris et al. [19]. Motivated by applications in content distribution networks,
the matroid median problem is considered as well [16, 25]. The problem of k-center with
outliers was first studied by Charikar et al. [8] who gave a 3-approximation algorithm. The
approximation ratio was recently improved to 2 by Chakrabarty et al. [4]. We mention the
work of Lattanzi et al. [26] that considers hierarchical k-center with outliers.

For knapsack center, a 3-approximation was given by Hochbaum and Shmoys [22]. For
the outlier version of knapsack center, very recently, Chakrabarty and Negahbani [5] gave
the first non-trivial approximation (a 3-approximation).

Streaming

Charikar et al. [9] and Guha et al. [14] consider k-median with and without outliers in
streaming. Guha [15] gives a (2 + ε)-approximation one-pass algorithm for k-center that
uses O(k log(1/ε)/ε) space, and McCutchen and Khuller [28] give a (4 + ε)-approximation
one-pass algorithm for k-center with z outliers that uses O(kz log(1/ε)/ε) space. The special
cases of 1-center (or, the minimum enclosing ball problem) and 2-center in euclidean spaces
have been considered [29, 24, 20] and better approximation ratios than the general k-center
problem are known in streaming. Correlation clustering is studied in streaming by Ahn et
al. [1]. Cohen-Addad et al. [12] give streaming algorithms for k-center in the sliding windows
model, where we want to maintain a solution for only some number of the most recent points
in the stream. Guha [15] also gives a space lower bound of Ω(n) for one-pass algorithms
that give a better than 2 approximation for (even the special case of) 1-center by a simple
reduction from index, where n is the number of points.

k-center in different models

Chan et al. [6] consider k-center in the fully dynamic adversarial setting, where points can be
added or deleted from the input, and the goal is to always maintain a solution by processing
the input updates quickly. Malkomes et al. [27] study distributed k-center with outliers.

1.3 Organization of the Paper
We define the model and the problems in Section 2. Section 3 is on the lower bound. In
Section 4, we give our important algorithmic ideas and discuss our algorithm for matroid
center, and then in Section 5, we discuss the outlier version. In Appendix A, we give the
improved space bounds.

2 Preliminaries

A matroid M is a pair (E, I), where E is a finite set and is called the ground set of the
matroid, and I is a collection of subsets of E that satisfies the following axioms:
1. ∅ ∈ I,
2. if J ∈ I and I ⊆ J , then I ∈ I, and
3. if I, J ∈ I and |I| < |J |, then there exists e ∈ J \ I such that I ∪ {e} ∈ I.
If a set A ⊆ E is in I, then it is called an independent set of the matroid M, otherwise
it is called a dependent set. A singleton dependent set is called a loop. Rank of a set A,
denoted by rank(A), is the size of a maximal independent set within A; note that rank is a
well-defined function because of the third axiom, which is called the exchange axiom. Clearly,
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for A ⊆ B, rank(A) 6 rank(B). Rank of a matroid is the size of a maximal independent set
within E. Span of a set A, denoted by span(A), is the largest set that contains A and has the
same rank as A (it can be shown that such a set is unique). We will also use submodularity
of the rank function, i.e., for A,B ⊆ E,

rank(A ∪B) + rank(A ∩B) 6 rank(A) + rank(B) . (1)

A matroid (E, I) is a partition matroid if there exists a partition {E1, E2, . . . , Ep} of E
and nonnegative integers `1, `2, . . . , `p, such that I = {A ⊆ E : ∀i ∈ [p], |A ∩Ei| 6 `i}. We
say that `i is the capacity of part Ei. Observe that the rank of the matroid is

∑p
i=1 `i.

A metric d over E is a (distance) function d : E × E → R+ that satisfies the following
properties for all e1, e2, e3 ∈ E:
1. d(e1, e2) = 0 if and only if e1 = e2,
2. d(e1, e2) = d(e2, e1), and
3. d(e1, e3) 6 d(e1, e2) + d(e2, e3); this property is called the triangle inequality.
We sometimes call elements in E points. For a point e and a positive number α, the closed ball
of radius α around e, denoted by B(e, α), is the set {x ∈ E : d(e, x) 6 α}. We overload d by
defining d(e,A) := minx∈A d(e, x) for e ∈ E and A ⊆ E. The aspect ratio ∆ of a metric is the
ratio of the largest distance to the smallest in the metric, i.e., maxx,y d(x, y)/minx,y d(x, y).

The input for the matroid center problem is a matroidM = (E, I) of rank r and a metric
d over E. The goal is to output an independent set S such that its cost maxe∈E d(e, S) is
minimized. We are interested in algorithms that assume oracle (or black-box) accesses to
the matroid and the metric. The algorithm can ask the matroid oracle whether a set is
independent or not, and it can ask the metric oracle (or distance oracle) what the distance
between given two points is. In the streaming model, elements of E arrive one by one, and
we want to design an algorithm that uses small (sublinear in the input) space. The algorithm
can query the oracles only with the elements of E. If the algorithm queries an oracle with
an element not in E, then we say that it fails. A streaming algorithm can only remember a
small part of the input, and the aforementioned restriction disallows plausible learning about
forgotten elements indirectly from oracle calls. Also, an algorithm cannot just enumerate
elements of E on the fly without looking at the stream, because it does not know the names
of the elements in advance.

The input for matroid center with z outliers is also a matroidM = (E, I) and a metric d
over E, but the goal is to output an independent set whose cost is computed with respect to
|E| − z closest points. Formally, cost of a set S is min{α ∈ R+ : |E \ (

⋃
s∈SB(s, α))| 6 z}.

We denote by OPT the cost of an optimum solution of the instance in the context.

3 Space Lower Bound for One Pass Matroid Center

We show that Ω(r2) space is required to achieve better than ∆-approximation for a one-
pass algorithm for matroid center. We reduce from the communication problem of index.
This reduction is based on the simple reduction for the maximum-matching-size problem:
see Figure 1. In indexN , Alice holds an N -bit string and Bob holds an index I ∈ [N ]; Alice
sends a message to Bob, who has to determine the bit at position I. It is known that Alice
has to send a message of size at least (1−H2(3/4))N > 2N/11 for Bob to output correctly
with a success probability of 3/4, where H2 is the binary entropy function.

APPROX/RANDOM 2019
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u

v

CAVB VA CB

Figure 1 If we have a one-pass streaming algorithm that computes the size of a maximum
matching of a k vertex bipartite graph using o(k2) space, then we can solve indexN using o(N)
communication, which would be a contradiction. Alice and Bob agree on a bijection from [N ] to
the edges of a complete bipartite graph Kk,k and construct a graph G as follows. If `th bit is 1,
Alice adds the corresponding edge (shown in solid red). If the index corresponds to the edge {u, v}
(shown as a dotted orange edge), Bob adds a new perfect matching between all but vertices u and v

and 2k − 2 new vertices (shown as dashed black edges). Alice runs the matching-size estimation
algorithm and sends the memory contents to Bob, who continues running it and computes the
output. By design, if the index is 1, then maximum-matching-size is 2k − 1, otherwise it is 2k − 2,
and an exact algorithm can distinguish between the two cases.

3.1 Reduction from Index to Partition-Matroid Center
We prove the following theorem.

I Theorem 1. Any one-pass algorithm for partition-matroid center that outputs a better
than ∆-approximation with probability at least 3/4 must use at least r2/24 bits of space.

Proof. Assume, towards a contradiction, that there exists a one-pass algorithm for partition-
matroid center that outputs a better than ∆-approximation using at most r2/24 bits of
space. Then we use it to solve the index problem. Given an input for index, Alice and
Bob first construct a bipartite graph G just as described in Figure 1. Then they construct
a partition-matroid center instance based on G. Before formalizing the construction, we
emphasize that the metric does not correspond to the graph metric given by G, but each
edge in G will become a point in the metric. The vertex set they use is union of four sets
CA, VA, each of size q, and CB , VB, each of size q − 1. Alice constructs a subset of edges
between CA and VA based on her N -bit string, so we use N = q2. We say that these edges
are owned by Alice. If the index that Bob holds corresponds to an edge {u, v} with u ∈ CA
and v ∈ VA, he adds a perfect matching M between CA \ {u} and VB and a perfect matching
M ′ between VA \ {v} and CB . The edges in M ∪M ′ are owned by Bob.

To each u ∈ CA ∪ CB , we associate a cluster C(u) of at most q points in the metric that
we will construct, and to each v ∈ VA ∪VB , we associate a part P (v) in the partition matroid
with capacity 1. Thus, rank of the matroid r = 2q − 1 because |VA ∪ VB | = 2q − 1. By our
design, no two clusters will intersect and no two parts will intersect, i.e., C(u)∩C(u′) = ∅ for
u 6= u′, and P (v)∩P (v′) = ∅ for v 6= v′. The metric is as follows. Any two points in the same
cluster are a unit distance apart and any two points in two different clusters are distance ∆
apart. This trivially forms a metric, because the clusters are disjoint. For each u ∈ CA, Bob
adds a point p(u) in the cluster C(u), so that it is nonempty. Add P ′ := {p(u) : u ∈ CA}
as a part in the partition matroid with capacity 0, so no p(u) can be a center. For each
edge {u, v} in G with u ∈ CA ∪ CB and v ∈ VA ∪ VB , whoever owns that edge adds a point
p({u, v}) that goes in cluster C(u) and part P (v). Now, Alice runs the partition-matroid
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center algorithm on the points she constructed. She can do this because she knows the metric
and the part identity of each point, so she can simulate the distance and matroid oracles.
Note that if the algorithm expects an explicit description of the partition matroid, Alice can
also send along with each point the identity of the part to which it belongs and the capacity
of the part (which is always 1 for her points). She then sends the memory contents to Bob,
who continues running the algorithm on his points and computes the cost of the output. We
note that Bob can also simulate the distance and matroid oracles. Any point he does not
own corresponds to a red edge, and using the identity of that edge, he can figure out the
part and cluster to which the point belongs.

Now we prove the correctness of the reduction. Say Bob holds the index corresponding
to the edge {u, v}, where u ∈ CA and v ∈ VA. If the index is 1, then {u, v} exists in the
graph, then opening centers at points corresponding to edges in M ∪M ′ ∪ {u, v} satisfies
the partition matroid constraint and also for each u ∈ CA ∪ CB , we have a center opened in
C(u), so the cost is 1. Let the index be 0. We want to show that there is no independent
set of cost less than ∆. For a contradiction, assume there is such an independent set. Now,
recall that p(u) cannot be a center, so it has to be served by some center in C(u), otherwise
the cost will be ∆. Let p(u) be served by some p({u, v′}) for v′ 6= v. Then p({v′, w}), where
{v′, w} ∈M ′, cannot be a center, because both p({u, v′} and p({v′, w}) belong to the part
P (v′) with capacity 1. The point p({v′, w}) is the lone point in its cluster, and since it
cannot be a center, the cost is ∆. If the algorithm is better than ∆-approximation, then Bob
can distinguish between these two cases, and thus, solve indexN using communication at
most r2/24 6 4q2/24 = N/6 bits, which is a contradiction. J

After seeing the lower bound, a remark is in order. The difficulty in designing an algorithm
is as follows. Even if we know that one center must lie in a ball of small radius centered
at a known point, we do not know which points in that ball to store so as to recover an
independent set of the matroid.

4 Matroid Center

Our algorithm for matroid center can be seen as a generalization of the algorithm by
Hochbaum and Shmoys for k-center [21] adapted to the streaming setting. We first quickly
describe the algorithm for k-center. Given an upper bound τ on the optimum cost, the
algorithm stores a set C of up to k pivots such that distance between any two pivots is more
than 2τ . When the algorithm sees a new point e in the stream such that distance between e
and any pivot is more than 2τ , it makes e a pivot. The size of C cannot exceed k in this
way, because τ is an upper bound on the optimum cost, so no two pivots are served by a
single optimum center. Also, any other point is within distance 2τ of some pivot. In the end,
the algorithm designates all pivots as centers. In generalizing this to matroid center, one
obvious issue is that the set C of pivots constructed as above may not be an independent set
for the given general matroid2. What we do know is that there has to be an optimum center
within distance τ of each pivot. Formally, for c ∈ C, there exists sc such that d(c, sc) 6 τ

and {sc : c ∈ C} is an independent set. For each pivot c, we maintain an independent set Ic
of nearby points. We prove that it is enough to have each sc be spanned by some Ic′ to get a
good solution within

⋃
c∈C Ic. Algorithm 1 gives a formal description.

2 This is precisely why we call points in C “pivots” rather than “centers” in this paper.

APPROX/RANDOM 2019
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Note that in Algorithm 1 if we try to add e to Ic under the condition that d(e, c) 6 τ ,
then we may miss spanning some sc. This will happen if d(sc, C) ∈ (τ, 2τ ], where C is the
set of pivots when sc arrived. Using the condition d(e, c) 6 τ works if each sc arrives after c
though (we use it in the second pass of our two-pass algorithm).

Algorithm 1 One pass algorithm for matroid center.
1: function MatroidCenter(τ ,flag)
2: Initialize pivot-set C ← ∅.
3: for each point e in the stream do
4: if there is a pivot c ∈ C such that d(e, c) 6 2τ (pick arbitrary such c) then
5: if Ic ∪ {e} is independent then
6: Ic ← Ic ∪ {e}.
7: else if |C| = r then . We cannot have more pivots than the rank.
8: Abort. . Because C ∪ {e} acts as a certificate that the guess is incorrect.
9: else

10: C ← C ∪ {e}. . Make e a pivot.
11: If {e} is not a loop, Ie ← {e}, else Ie ← ∅.
12: if flag = “brute force” then
13: Find an independent set C ′B in

⋃
c∈C Ic such that d(c, C ′B) 6 5τ for c ∈ C.

14: If such C ′B does not exist, then abort, else return C ′B .
15: return EfficientMatroidCenter(5τ , C, (Ic)c∈C , M) (given in Algorithm 6

in Appendix B).

First, we quickly bound the space usage.

I Lemma 2. In any call to MatroidCenter, we store at most r2 + r points.

Proof. The check on Line 7 ensures that |C| 6 r. For each pivot c, the size of its independent
set Ic is at most r, hence the total number of points stored is at most r2 + r. J

Consider a call to MatroidCenter with τ > OPT. Let CE be the set of pivots at the end
of the stream. As alluded to earlier, for an optimum independent set I∗, the following holds:
for each c ∈ CE , there exists sc ∈ I∗ such that d(c, sc) 6 τ , and also sc 6= sc′ for c 6= c′,
because d(c, c′) > 2τ . Now, we prove the following structural lemma that we need later.

I Lemma 3. Let I1, . . . , It and S = {s1, . . . , su} be independent sets of a matroid such that
there is an onto function f : [u] → [t] with the property that si is in the span of If(i) for
i ∈ [u]. Then there exists an independent set B such that |B ∩ Ij | > 1 for j ∈ [t].

Proof. For each ` ∈ {0, 1, . . . , u}, we construct an independent set S` such that |S`| = u,
|S` ∩ If(j)| > 1 for j 6 `, and s`+1, . . . , su ∈ S`, then Su is our desired set B. Start with
S0 = S, and assume that we have constructed S0, S1, . . . , S`−1. If s` ∈ If(`), we are done,
so let s` /∈ If(`), then we claim that rank((S`−1 \ {s`}) ∪ If(`)) > u. To see this, observe
that rank(S`−1) = u, so by monotonicity of the rank function, rank(S`−1 ∪ If(`)) > u, but
s` ∈ span(If(`)), so removing s` from S`−1 ∪ If(`) would not reduce its rank. We now give a
formal argument for completeness. We have (If(`)∪{s`})∪((S`−1\{s`})∪If(`)) = S`−1∪If(`),
and (If(`) ∪ {s`}) ∩ ((S`−1 \ {s`}) ∪ If(`)) = If(`). By submodularity of the rank function
(see (1) in Section 2), we have

rank(S`−1 ∪ If(`)) + rank(If(`)) 6 rank(If(`) ∪ {s`}) + rank((S`−1 \ {s`}) ∪ If(`)) .
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Let q = rank(If(`)). Since s` ∈ span(If(`)), we have rank(If(`) ∪ {s`}) = q and the above
inequality gives

u+ q 6 q + rank((S`−1 \ {s`}) ∪ If(`)) ,

which proves the claim. Now, rank(S`−1 \ {s`}) = u − 1 < rank((S`−1 \ {s`}) ∪ If(`)),
therefore there exists a ∈ If(`) such that S` := (S`−1 \ {s`}) ∪ {a} is independent by the
exchange axiom. J

I Lemma 4 (Small stream summary for matroid center). Consider a call to MatroidCenter
with τ > OPT. Then there exists an independent set B ⊆

⋃
c∈CE

Ic such that d(e,B) 6 7τ
for any point e and d(c,B) 6 5τ for any pivot c ∈ CE.

Proof. For c ∈ CE , denote by sc the optimum center that serves it, so d(c, sc) 6 τ . Let
c′ ∈ CE be such that we tried to add sc to Ic′ either on Line 6 or on Line 11; note that c′
may not be the same as c if we added it on Line 6. For an x ∈ I∗, let a(x) ∈ CE denote
the pivot whose independent set Ia(x) we tried to add x to. Either we succeeded, in which
case x ∈ Ia(x), or we failed, in which case x ∈ span(Ia(x)). In any case, by Lemma 3, for
A := {Ia(x) : x ∈ I∗} there exists an independent set B such that |I ∩B| > 1 for all I ∈ A.

Now, we will bound the cost of B. See Figure 2. Consider any point e in the stream. Let
c(e) ∈ CE be such that d(e, c(e)) 6 2τ ,
sc(e) be the optimum center that serves c(e), so d(c(e), sc(e)) 6 τ ,
a(sc(e)) ∈ CE be the pivot whose independent set we tried to add sc(e), so d(sc(e), a(sc(e)))
is at most 2τ ,
c′(e) be an arbitrary point in Ia(sc(e))∩B, so d(a(sc(e)), c′(e)) 6 2τ because c′(e) ∈ Ia(sc(e)).

Then by triangle inequality, d(e,B) is at most

d(e, c′(e)) 6 d(e, c(e))+d(c(e), sc(e))+d(sc(e), a(sc(e)))+d(a(sc(e)), c′(e)) 6 2τ+τ+2τ+2τ ,

which is 7τ ; this proves the first part of the lemma.
For any c ∈ CE , we can bound d(c,B) in a similar way. Let sc be the optimum center

that serves c, and similarly define a(sc) to be the pivot such that d(sc, a(sc)) 6 2τ . Also, let
c′ be the point in B such that d(asc

, c′) 6 2τ . This gives that d(c,B) 6 d(c, c′) 6 5τ . J

e
2τ

c(e)
τ sc(e)

2τ a(sc(e))
2τ

c′(e)

Figure 2 To see how to bound the cost of the independent set B, let e be any point in the stream,
c(e) ∈ CE be the pivot close to e, sc(e) be the optimum center that covers c(e), a(sc(e)) ∈ CE be
the pivot close to sc(e), and c′(e) be a point in B that covers a(sc(e)).

Before proving our main theorem, we need the following guarantee on the efficient offline
3-approximation algorithm denoted by EfficientMatroidCenter. This algorithm is based
on the offline algorithm for matroid center by Chen et al. [11]. We give it as input α = 5τ ,
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the set CE of pivots, their independent sets (Ic)c∈CE
, and the underlying matroidM with

the promise on the input that there is an independent set B ⊆
⋃
c∈CE

Ic such that for c ∈ CE ,
it holds that d(c,B) 6 5τ = α.

I Theorem 5. If EfficientMatroidCenter does not fail, then it outputs a set C ′ such that
d(c, C ′) 6 3α for each c ∈ CE. If the input promise holds, then EfficientMatroidCenter
does not fail.

Proof. This theorem is proved as Theorem 22 in the appendix. See Appendix B. J

Now we prove the main result.

I Theorem 6. There is an efficient (17 + ε)-approximation one-pass algorithm for matroid
center that stores at most 2(r2 + r) log(1+ε/17) ∆ points. With a brute force algorithm, one
can get a (7 + ε)-approximation.

Proof. The algorithm is as follows. Let δ be the distance between the first two points. Then
for 2 log1+ε/17 ∆ guesses τ of OPT starting from δ/∆ to δ∆, we run MatroidCenter(τ ,
flag). We return the set of centers returned by the instance corresponding to the smallest
guess τ . Lemma 2 gives the desired space bound.
Case 1. flag = “brute force”.

Suppose the algorithm returned C ′B. Lemma 4 guarantees that for τ ∈ [OPT, (1 +
ε/17) OPT), the algorithm will not abort. Then, by the check on Line 14, cost of C ′B is
at most 7τ 6 (7 + ε) OPT.

Case 2. flag = “efficient algorithm”.
Let the algorithm returned C ′. Theorem 5 guarantees that for τ ∈ [OPT, (1+ε/17) OPT),
the algorithm will not abort. By Theorem 5 for any c ∈ CE , we have d(c, C ′) 6 15τ .
Since we forget only the points within distance 2τ of CE , we get that for any point e in
the stream, d(e, C ′) 6 17τ 6 (17 + ε) OPT. J

We make some remarks.

I Remark 7. We do need to know the rank of the matroid (or an upper bound), otherwise
we cannot control the space usage. The instances run using a very small guess may store a
very large number of pivots without the check on Line 7.

I Remark 8. We can decrease the space usage to O(r2 log(1/ε)/ε) points using the parallel-
ization ideas of Guha [15]. To make the ideas work, we do need some properties of matroids.
We give the details in Appendix A.

I Remark 9. By running
(|E|

2
)
guesses, EfficientMatroidCenter can be used to get an

offline 3-approximation algorithm for a more general version of matroid center, where the
cost is computed with respect to a subset CE of E and any point in E can be a center.

4.1 Extension to Knapsack Center
Recall that in the knapsack center problem, each point e has a non-negative weight w(e),
and the goal is to select a set C of centers that minimizes the maximum distance between a
point and its nearest center subject to the constraint that

∑
c∈C w(c) 6 B, where B is the

budget. We modify Algorithm 1 slightly to give an algorithm for knapsack center using space
r factor smaller than the matroid case, where, in this case, r is the size of a largest feasible
set. We make sure that all Ic variables are singletons, so the algorithm stores at most 2r
points. Instead of the if condition on Line 5, we replace the point x in Ic by e if w(x) > w(e).
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This idea works because replacing a point by a nearby point with a smaller weight does
not affect the feasibility in the knapsack setting (which could destroy independence in the
matroid setting). Let CE be the set of pivots at the end of the stream. By almost the same
argument as in the proof of Lemma 4, we get the following.

I Lemma 10. Let τ > OPT. Then there exists a feasible set K ⊆
⋃
c∈CE

Ic such that
d(e,K) 6 7τ for any point e and d(c,K) 6 5τ for any pivot c ∈ CE.

For the efficient version, we then use the 3-approximation algorithm by Hochbaum and
Shmoys [22].

I Theorem 11. There is an efficient (17+ε)-approximation one-pass algorithm for knapsack
center that stores at most 4r log(1+ε/17) ∆ points, where r is the size of a largest feasible set.
With a brute force algorithm, one can get a (7 + ε)-approximation.

4.2 An Efficient Two Pass Algorithm
This algorithm is a streaming two-pass simulation of the offline 3-approximation algorithm of
Chen et al. [11] for matroid center. We describe the algorithm and give the analysis below.

In our one-pass algorithm, i.e. Algorithm 1, say we are promised that for any pivot c,
the optimum center that serves it appears after c. Then it is enough to try to add e to
Ic whenever d(e, c) 6 τ ; we call this a modified check. Let CE be the set of pivots in the
end, then (Ic)c∈CE

form a partition such that if we pick one point from each Ic to get set
B, we can serve each point in CE using B with cost at most τ . With the modified check,
for c, c′ ∈ CE such that c 6= c′, the optimum points sc and sc′ that serve them are also
different because d(c, c′) > 2τ . Now, sc ∈ span(Ic) due to the promise that sc arrived after c,
and Lemma 3 gives us the required independent set B. We then define a partition matroid
MC with partition (Ic)c∈CE

and capacities 1 and solve the matroid intersection problem on
Mc andM restricted to

⋃
c∈CE

Ic and get the output C ′. Existence of B guarantees that
|C ′| = |CE |, thus we are able to serve all points in CE at a cost of τ . Since the points we
forget are within distance 2τ of CE , our total cost is at most 3τ by triangle inequality. We
can get rid of the assumption that sc arrives after c by having a second pass through the
stream. We give a formal description in Algorithm 2.

As in the one-pass algorithm, we run 2 log1+ε/3 ∆ guesses τ of OPT. We return the
set of centers returned by the instance corresponding to the smallest guess. For τ ∈
[OPT, (1 + ε/3) OPT), the algorithm will not abort due to existence of the independent set
B (which we argued earlier). This gives us the following theorem.

I Theorem 12. There is an efficient (3 + ε)-approximation two-pass algorithm for matroid
center that stores at most 2(r2 + r) log(1+ε/3) ∆ points.

5 Matroid Center with Outliers

We first present a simplified analysis of McCutchen and Khuller’s algorithm [28] for k-center
with z outliers. This abstracts their ideas and sets the stage for the matroid version that we
will see later.

5.1 McCutchen and Khuller’s Algorithm
As usual, we start with a guess τ for the optimum cost. The algorithm maintains a set C of
pivots such that |B(c, 2τ)| > z + 1 for any c ∈ C, so the optimum has to serve at least one
of these nearby points. (Recall that B(e, α) = {x ∈ E : d(e, x) 6 α}.) When a new point
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Algorithm 2 Two pass algorithm for matroid center.
1: function MatroidCenter2p(τ)
2: C ← ∅.
3: for each point e in the stream do . First pass.
4: if d(e, C) > 2τ then
5: C ← C ∪ {e}.
6: If {e} is not a loop, Ie ← {e}, else Ie ← ∅.
7: for each point e in the stream do . Second pass.
8: if ∃c ∈ C such that d(e, c) 6 τ (there can be at most one such c) then
9: if Ic ∪ {e} is independent then
10: Ic ← Ic ∪ {e}.
11: Let MC = (

⋃
c∈C Ic, IC) be a partition matroid with partition {Ic : c ∈ C} and

capacities 1.
12: LetM′ be the matroidM restricted to

⋃
c∈C Ic.

13: C ′ ← matroid-intersection(MC ,M′)
14: if |C ′| < |C| then
15: Return fail with C as certificate.
16: Return C ′.

arrives, it is ignored if it is within distance 4τ of C. Otherwise it is added to the set F of
“free” points. As soon as the size of F reaches (k − |C|+ 1)z + 1, we know for sure that, for
a correct guess, the optimum will have to serve the free points with at most k − |C| clusters,
and one of those clusters will have more than z points by the generalized pigeonhole principle.
Hence, there must exist a free point that has at least z other points within distance 2τ in F ,
because its cluster diameter is at most 2τ . This gives us a new pivot c ∈ F with its support
points. We remove those points in F that are within distance 4τ of c and continue to the
next element in the stream. In the end, we will be left with at most (k−|C|+ 1)z free points,
and they are served by at most k− |C| optimum centers. On these remaining free points, we
run an offline 2-approximation algorithm for (k − |C|)-center with z outliers, e.g., that of
Chakrabarty et al.[4]. Algorithm 3 gives a formal description. We note that we do not need
the sets Ac for c ∈ C in the algorithm, but we need them in the analysis.

Let us bound the space usage first. The variable C contains at most k pivots, otherwise
we abort on Section 5.1, and Section 5.1 make sure that the variable F contains at most
(k + 1)z + 1 points. In total, we store at most (k + 1)z + 1 points at any moment.

I Lemma 13. For τ > OPT, k-center-z-outliers(τ) stores at most (k + 1)z + 1 points,
and the cost of C ′ returned by k-center-z-outliers(τ) is at most 4τ .

Proof. Let CE be the set of pivots and FE be the set of free points when the stream ended,
and let |CE | = `E . We claim that for any c 6= c′, where c, c′ ∈ CE , e ∈ Ac, and e′ ∈ Ac′ , we
have d(e, e′) > 2τ . We now prove this claim. Assume without loss of generality that c was
made a pivot before c′ by the algorithm. So points within distance 4τ of c were removed
from F . Any point that existed in F after this removal, in particular e′, must be farther
than 4τ from c. This implies that

4τ < d(c, e′) 6 d(c, e) + d(e, e′), and d(e, e′) > 2τ ,

because d(c, e) 6 2τ . Now, we know that for c ∈ CE , there exists xc ∈ Ac that has to be
served by an optimum center, say sc, because |Ac| > z, so not all of the points in Ac can be
outliers. By the earlier claim, for c 6= c′, we have d(xc, xc′) > 2τ implying that sc 6= sc′ and
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Algorithm 3 McCutchen and Khuller’s algorithm [28] for k-center with z outliers.
1: function k-center-z-outliers(τ)
2: Pivot-set C ← ∅, free-point set F ← ∅, and `← 0.
3: for each point e in the stream do
4: if d(e, C) > 4τ then
5: F ← F ∪ {e}.
6: if |F | = (k − `+ 1)z + 1 then . there is a new pivot among the free points;
7: Let c ∈ F be s.t. |B(c, 2τ) ∩ F | > z + 1 . such c exists for a correct guess.
8: If such c does not exist, then abort.
9: C ← C ∪ {c}.
10: F ← F \B(c, 4τ).
11: Ac ← {c}∪ arbitrary subset of B(c, 2τ) \ {c} of size z.
12: `← `+ 1.
13: If ` = k + 1, then abort. . guess is wrong.
14: CF ← 2-approx for (k− `)-center with z outliers on F by an efficient offline algorithm.
15: return C ′ ← C ∪ CF .

`E 6 k. Also note that none of these optimum centers can serve a point in FE , because by
triangle inequality

d(sc, FE) > d(c, FE)− d(c, xc)− d(xc, sc) > 4τ − 2τ − τ = τ

for c ∈ CE . This shows that all but z points in FE have to be served by at most k − `E
optimum centers with cost at most τ . For each of these optimum centers, there exists a free
point in FE within distance τ . So there exists a set BF of k− `E points in FE , such that BF
covers all but at most z points of FE with cost 2τ . So a 2-approximation algorithm recovers
k− `E centers with cost at most 4τ . Observing that we only forget points in the stream that
are within distance 4τ of some pivot in CE finishes the proof. J

By running k-center-z-outliers(τ) for at most O(log(1/ε)/ε) geometrically-increasing
active guesses, we get the (4 + ε)-approximation algorithm for k-center with z outliers. This
analysis is based on that of McCutchen and Khuller [28].

5.2 Matroid Center with Outliers
It is now possible to naturally combine the ideas used for matroid center and those used for
k-center with z outliers to develop an algorithm for matroid center with z outliers.

Whenever the free-point set becomes large enough, we create a pivot c and an independent
set Ic to which we try to add all free points within distance 4τ of c. We do the same for
a new point e in the stream that is within distance 4τ of some pivot c ∈ C, i.e., we try to
add it to Ic keeping Ic independent in the matroid. Otherwise d(e, C) > 4τ , so we make it a
free point. The structural property of matroids that we proved as Lemma 3 then enables
us to show that

⋃
c∈C Ic and the set of free points make a good summary of the stream.

See Algorithm 4 for a formal description. Here, we note that we do not need the sets Ac
for c ∈ C in the algorithm if flag is set to “brute force”, but we need them in the analysis
in any case.

Let CE be the set of pivots and FE be the set of free points when the stream ended, and
let `E = |CE |.
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Algorithm 4 One-pass algorithm for matroid center with outliers.
1: function matroid-center-z-outliers(τ , flag)
2: Pivot-set C ← ∅, free-point set F ← ∅, and `← 0.
3: for each point e in the stream do
4: if ∃c ∈ C such that d(e, c) 6 4τ then
5: If Ic ∪ {e} is independent, then Ic ← Ic ∪ {e}.
6: else
7: F ← F ∪ {e}.
8: if |F | = (r − `+ 1)z + 1 then
9: Let c ∈ F be s. t. |B(c, 2τ) ∩ F | > z + 1 (if not, we guessed wrong, so abort).
10: C ← C ∪ {c}.
11: Ac ← {c} and if {c} is not a loop, Ic ← {c}, else Ic ← ∅.
12: `← `+ 1 (if ` becomes r + 1 here, we guessed wrong, so abort).
13: for each x ∈ F ∩B(c, 4τ) do
14: F ← F \ {x}.
15: If Ic ∪ {x} is independent, then Ic ← Ic ∪ {x}.
16: If |Ac| 6 z, then Ac ← Ac ∪ {x}.
17: if flag = “brute force” then
18: Find an independent set C ′B in F ∪

⋃
c∈C Ic by brute force such that cost of C ′B

is 6 11τ with respect to C and 6 9τ with respect to all but at most z points of F .
19: If such C ′B does not exist, abort, else return C ′B .
20: if flag = “efficient” then
21: Run the offline 3-approximation algorithm by Harris et al. [19] for matroid center

with z outliers to get an independent set C ′ of centers in F ∪
⋃
c∈C(Ac ∪ Ic) such that

cost of C ′ is 6 47τ with respect to C and 6 45τ with respect to all but z points of F .
22: If such C ′ does not exist, abort, else return C ′.

I Lemma 14 (Small summary for matroid center with outliers). For τ > OPT, Algorithm 4
stores at most O(r2 + rz) points, and there exists an independent set B ⊆ FE ∪

⋃
c∈CE

Ic
such that cost of B is at most 15τ ; also d(c,B) 6 11τ for any pivot c ∈ CE, and B covers
all but at most z points of FE with cost at most 9τ .

Proof. Let I∗ be an optimum independent set of centers. By the same argument as in the
proof of Lemma 13, the following claim is true. For any c 6= c′, where c, c′ ∈ CE , e ∈ Ac, and
e′ ∈ Ac′ , we have d(e, e′) > 2τ . Now, we know that for c ∈ CE , there exists xc ∈ Ac that has
to be served by an optimum center, say sc, because |Ac| > z. By the earlier claim, for c 6= c′,
we have d(xc, xc′) > 2τ implying that sc 6= sc′ and `E 6 r. Let I∗CE

= {sc : c ∈ CE} be the
set of optimum centers that serve some xc ∈ Ac for c ∈ CE . None of the optimum centers
in I∗CE

can serve a point in FE , because d(sc, FE) > τ for c ∈ CE . This shows that all but
z points in FE have to be served by at most r − `E optimum centers with cost at most τ .
Since |Ic| 6 r for any c in the variable C, size of

⋃
c∈C Ic is always bounded by r2. Also, the

check on the size of F ensures that |F | 6 (r + 1)z + 1, so total number of points stored is at
most O(r2 + rz) at any moment.

When we first process a new point e in the stream, we either try to add it to some Ic
or to F . If e is never removed from F , then e ∈ FE , otherwise, we try to add it to some Ic.
The same argument applies to any x ∈ I∗, so if x /∈ FE , then we did try to add it to some Ic.
For an x ∈ I∗ \ FE , let a(x) ∈ CE denote the pivot whose independent set Ia(x) we tried to
add x to.
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By Lemma 3, for A := {Ia(x) : x ∈ I∗ \ FE} ∪ {{x} : x ∈ I∗ ∩ FE}, there exists an
independent set B such that |I ∩B| > 1 for all I ∈ A. Since for x ∈ I∗ ∩ FE the singleton
{x} ∈ A, the set B must contain {x}. For a free point e served by an optimum center s
such that we tried to add s to some Ic, we have that d(e,B) 6 d(e, s) + d(s, c) + d(c,B) 6
τ+4τ+4τ = 9τ , which means that B serves all but z points of FE with cost at most 9τ . Now,
we claim that for any point e in the stream, d(e,B) 6 15τ . We just saw that if e ∈ FE is
served by an optimum center, then d(e,B) 6 9τ , so assume that e /∈ FE , that means there is
a c ∈ CE such that d(e, c) 6 4τ ; denote this c by c(e). See Figure 3. Let sc(e) be the optimum
center that serves an xc(e) ∈ Ac(e) (recall that such a point exists because |Ac(e)| > z). So
d(c(e), sc(e)) 6 3τ , and a(sc(e)) ∈ CE was the pivot such that d(sc(e), a(sc(e))) 6 4τ . Let
c′(e) be an arbitrary point in Ia(sc(e)) ∩B, whose existence is guaranteed by the property of
B. We have d(a(sc(e)), c′(e)) 6 4τ , because c′(e) ∈ Ia(sc(e)). Then by triangle inequality,

d(e,B) 6 d(e, c′(e))
6 d(e, c(e)) + d(c(e), xc(e)) + d(xc(e), sc(e)) + d(sc(e), a(sc(e))) + d(a(sc(e)), c′(e))
6 4τ + 2τ + τ + 4τ + 4τ = 15τ ,

hence, cost of B is at most 15τ .
For any c ∈ CE , we can bound d(c,B) in a similar way. Let sc be the optimum center

that serves an xc ∈ Ac. Define a(sc) to be the pivot such that d(sc, a(sc)) 6 4τ . Also, let
c′ be the point in B such that d(asc

, c′) 6 4τ . This gives that d(c,B) 6 d(c, c′) 6 11τ . We
already established that B covers all but at most z points of FE with cost at most 9τ . The
proof is now complete. J

e
4τ

c(e)
2τ
xc(e)

τ sc(e) 4τ
a(sc(e))

4τ
c′(e)

Figure 3 To see how to bound the cost of the independent set B, let e be any point in the stream,
c(e) ∈ CE be the pivot close to e, xc(e) be the point in the support Ac(e) of c(e) that an optimum
center serves, sc(e) be the optimum center that serves xc(e), a(sc(e)) ∈ CE be the pivot close to
sc(e), and c′(e) be a point in B that covers a(sc(e)).

I Theorem 15. There is an efficient (51 + ε)-approximation one-pass algorithm for matroid
center with z outliers that stores at most O((r2 + rz) log ∆/ε) points. With a brute force
algorithm, one can get a (15 + ε)-approximation.
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Proof. We run O(log ∆/ε) parallel copies of matroid-center-z-outliers(τ , flag) and
return the output of the copy for the smallest unaborted guess. We claim that the copy
corresponding to guess τ ′ ∈ [OPT, (1 + ε/50) OPT), call it I(τ ′), will not abort. Denote
by CE , FE , and (Ic)c∈CE

contents of the corresponding variables in I(τ ′) at the end of the
stream (we will not abort mid-stream because τ ′ > OPT).

By Lemma 14, FE ∪
⋃
c∈CE

Ic contains a solution that has cost 11τ ′ with respect CE and
9τ ′ with respect to all but at most z of FE . These checks can be performed by the brute
force algorithm. Since any instance for guess τ forgets only those points within distance 4τ
of its pivots, the brute force algorithm outputs a (15 + ε)-approximation.

By Lemma 14, there exists a solution of cost 6 15τ ′, and the efficient 3-approximation
algorithm for matroid center with z outliers will return a solution C ′ with cost at most
45τ ′. Note that C ′ has to cover at least one point from Ac for each c ∈ CE , hence
d(c, C ′) 6 47τ ′. Since we forget points only within distance 4τ ′ of CE , we get the desired
approximation ratio. J
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A Handling the Guesses

We extend the ideas of Guha [15] and McCutchen and Khuller [28] to run O(log(1/ε)/ε)
active guesses. Although, to make this idea work for matroids, we do need a property
of matroids (see Lemma 16). The way to do this is to start with a lower bound R on
the optimum and spawn instances, which we call original instances, I(τ) for guesses τ =
R,R(1 + ε), . . . , R(1 + ε)β = Rα/ε, for some α that depends on the basic algorithm that
we use, e.g., for matroid center, we will use α = 2 + ε. When a guess τ ′ fails, we replace
an instance I = I(τ) for τ 6 τ ′ with a new instance, which we call its child instance,
IN = I(τ(1 + ε)β). In the new instance IN , we treat the summary that we maintained for
I(τ) as the initial stream. Since the new guess in IN is about 1/ε times larger than the
old guess in I, the distance between a point that we forgot and the summary stored by I is
about ε times the new guess. Therefore, the cost analysis does not get much affected for a
correct guess. If we forgot an optimum center, a nearby point in the summary can act as
its replacement. This statement is obvious for a uniform matroid, because all points are
treated the same way within the matroid, but it is not true for general matroids; in fact, as
exhibited by our lower bound, it is not true even for partition matroids. So with each point
in the summary, we pass to the new instance an independent set Io. The following simple
lemma shows that if an optimum center x is in the span of Io, and if we construct Ic for a
new pivot c such that Io ⊆ span(Ic), then Ic also spans the optimum center.

I Lemma 16. Let I and J be independent sets of a matroid such that J ⊆ span(I). If
e ∈ span(J), then e ∈ span(I).

Proof. Let rank(I) = q. Towards a contradiction, let rank(I∪{e}) = q+1. Since J ⊆ span(I),
rank(I ∪ J) = q. Now, e ∈ span(J), so rank(I ∪ J ∪ {e}) = q, i.e., rank(I ∪ {e}) 6 q, which
gives us the desired contradiction. J

A.1 A Smaller Space Algorithm for Matroid Center
We modify the function MatroidCenter(τ ,flag) from earlier to accept a starting stream
and an independent set for each point in the starting stream: MatroidCenter(τ , Co,
(Jco

)co∈Co
,flag). Before processing any new points in the stream we process the points in

Co as follows. When processing a co ∈ Co, if d(co, C) 6 2τ , try to add points in Jco to
Ic. Otherwise create a new pivot c in C and initialize Ic = Jco

. Once Co is processed, we
continue with the stream and work exactly as in MatroidCenter(τ). We give complete
pseudocode in Algorithm 5.

For an instance I(τ) let Co(τ) be the initial summary and J (τ) be the collection of
independent sets that we passed to it, and let E(τ) be the part of the actual stream that it
processed. Also, let I(τo) be the instance for τo = ετ/(2 + ε) from which I(τ) was spawned.

I Lemma 17. Let e be a point that arrived before the substream E(τ). Then e has a
nearby representative ρe ∈ Co(τ) such that d(e, ρe) 6 ετ and also the independent set Jρe

corresponding to ρe spans e.

Proof. We prove this claim by induction on the number of ancestors. For an original instance,
the claim holds trivially, because no point arrived before. Otherwise, there are two cases:
either e ∈ E(τo) or e arrived before E(τo). If e ∈ E(τo), then by the logic of the algorithm,
there exists a(e) ∈ Co(τ) such that d(e, a(e)) 6 2τo = 2ετ/(2 + ε) 6 ετ , and also we tried
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Algorithm 5 One pass algorithm for matroid center with smaller space.
1: Let R be the minimum distance for some two points in the first r+ 1 points in the stream.
2: for τ ∈ {R,R(1 + ε), . . . , R(1 + ε)β = (2 + ε)R/ε} in parallel do
3: MatroidCenter(τ , ∅, ∅).
4: if an instance with guess τ is aborted then
5: for all active I(τ ′) with guess τ ′ 6 τ , current pivots Co, and independent sets

(Jco)co∈Co do
6: Replace it with the child instance MatroidCenter(τ ′(1+ε)β , Co, (Jco

)co∈Co
,

flag).
7: Return the set C ′ of centers returned by the active instance with the smallest guess.
8:
9: function MatroidCenter(τ , Co, (Jco

)co∈Co
, flag)

10: C ← ∅.
11: for each point co in Co do
12: if ∃c ∈ C such that d(co, c) 6 2τ (pick arbitrary such c if there are several) then
13: for eo ∈ Jco

do
14: if Ic ∪ {eo} is independent then
15: Ic ← Ic ∪ {eo}.
16: else
17: C ← C ∪ {co}.
18: Ico

← Jco
.

19: # Processing of the old pivots finished, continue with the actual stream.
20: for each point e in the stream do
21: if there is a pivot c ∈ C such that d(e, c) 6 2τ (pick arbitrary such c) then
22: if Ic ∪ {e} is independent then
23: Ic ← Ic ∪ {e}.
24: else if |C| = r then . We cannot have more pivots than the rank.
25: Abort. . Because C ∪ {e} acts as a certificate that the guess is incorrect.
26: else
27: C ← C ∪ {e}. . Make e a pivot.
28: If {e} is not a loop, Ie ← {e}, else Ie ← ∅.
29: if flag = “brute force” then
30: Find an independent set C ′B in

⋃
c∈C Ic such that d(c, C ′B) 6 (5 + 2ε)τ for c ∈ C.

31: If such C ′B does not exist, then abort, else return C ′B .
32: return EfficientMatroidCenter((5 + 2ε)τ , C, (Ic)c∈C ,M).

to add e to Ia(e) (that became Ja(e) for the next instance I(τ)). Otherwise, by induction
hypothesis, there is a point e′ ∈ Co(τo) such that d(e, e′) 6 ετo and Je′ spans e. Now, let
ρe′ ∈ Co(τ) be such that d(e′, ρe′)) 6 2τo (such ρe′ must exist by logic of the algorithm).
Using triangle inequality and the above inequality that d(e, e′) 6 ετo, we get

d(e, ρe′) 6 d(e, e′) + d(e′, ρe′) 6 ετo + 2τo = (2 + ε)τo = (2 + ε) ετ

(2 + ε) = ετ .

Moreover, in the instance I(τo), we tried to add all points in Je′ to Iρe′ , so by Lemma 16, e ∈
span(Iρe′ ) (see that Iρe′ became Jρe′ for the next instance I(τ)), which proves the claim. J
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I Theorem 18. There is an efficient ((17 + 7ε)(1 + ε))-approximation one-pass algorithm
for matroid center that stores at most O(r2 log(1/ε)/ε) points. With a brute force algorithm,
one can get a ((7 + 3ε)(1 + ε))-approximation.

Proof. Space usage is easy to analyze. At any time, we have at most O(log1+ε(1/ε)) =
O(log(1/ε)/ε) active instances and each instance stores at most O(r2) points.

Consider the instance I(τ ′) for which we returned on Line 7 in Algorithm 5, and suppose
the outputs were C ′ or C ′B (depending on “flag”). We note that some active copy will return,
because τ cannot keep on increasing indefinitely. E.g., consider τ larger than the maximum
distance between any two points. Let CE be the contents of the variable C in I(τ ′) at the
end of the stream. Then we know that costs of C ′B and C ′ are at most (5 + 2ε)τ ′ and
(15 + 6ε)τ ′ with respect to CE due to the check that we do on Line 31 and by Theorem 5 for
EfficientMatroidCenter. By Lemma 17, any point that arrived before E(τ ′) is within
distance ετ ′ of Co(τ ′), and each point in Co(τ ′) is within distance 2τ ′ of CE , which shows
that costs of C ′B and C ′ are at most (7 + 3ε)τ ′ and (17 + 7ε)τ ′ with respect to the whole
stream (by triangle inequality). Next, we show that τ ′ 6 (1 + ε) OPT, and that will finish
the proof.

Consider the guess τ ∈ (OPT, (1 + ε) OPT]. If τ was never active, that means τ ′ 6 OPT,
and we are done. Otherwise, τ was active, and we will prove that it was not aborted.
Since τ 6 OPT, we will not abort mid-stream in I(τ), so let CE be the set of pivots at
the end of the stream in I(τ). We will show that there is an independent set B such that
cost of B with respect to CE is at most (5 + 2ε)τ . By Line 31 and by Theorem 5 for
EfficientMatroidCenter, this would imply that I(τ) cannot abort.

From here on, the proof follows that of Lemma 4. Let c ∈ CE . Denote by sc the optimum
center that serves it, so d(c, sc) 6 τ . If sc ∈ E(τ), then sc ∈ span(Ic′) for some c′ ∈ CE and
d(sc, c′) 6 2τ . Otherwise, sc arrived before E(τ). Let ρsc be the representative of sc whose
existence is guaranteed by Lemma 17, so d(sc, ρsc

) 6 ετ . Then let c′ ∈ CE be such that
d(ρsc , c

′) 6 2τ and Jρsc
is spanned by Ic′ . Thus, by triangle inequality

d(sc, c′) 6 d(sc, ρsc
) + d(ρsc

, c′) 6 ετ + 2τ = (2 + ε)τ , (2)

and by Lemma 16, sc is spanned by Ic′ . Denote by A the collection of such Ic′ ’s. Now,
by Lemma 3, there exists an independent set B such that |I ∩B| > 1 for all I ∈ A. Pick cp
from Ic′ ∩B. Either cp ∈ E(τ) or it arrived before. In any case, again using Lemma 17, we
have d(cp, c′) 6 (2 + ε)τ (we use this below), and

d(c, sc) 6 τ , because sc is the optimum center that covers c,
d(sc, c′) 6 (2 + ε)τ , by Inequality (2), and
d(c′, cp) 6 (2 + ε)τ .

Thus, by triangle inequality, d(c,B) 6 (5 + 2ε)τ . So I(τ) will not abort. This finishes
the proof. J

Reducing the space usage for matroid center with z outliers can be done by naturally
combining the techniques above and those in Section 5.2. We define a similar overloading
matroid-center-z-outliers(τ , Co, (Jco

)co∈Co
, Fo, flag), where Fo contains the set of free

points in I(τo) when it aborted and this function was called with the updated guess τ . We
skip the details and state the following theorem without proof.

I Theorem 19. There is an efficient (51 + ε)-approximation one-pass algorithm for matroid
center with z outliers that stores at most O((r2 + rz) log(1/ε)/ε) points. With a brute force
algorithm, one can get a (15 + ε)-approximation.
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A.2 Extension to Knapsack Center
In Section 4.1, we saw how to modify Algorithm 1 to get an algorithm for knapsack center
that stores at most 2r points, where r is the size of a largest feasible set. Using the same
idea, algorithms for two-pass matroid center, matroid center with outliers, and smaller space
matroid center, which are Algorithms 2, 4 and 6, can be extended to the knapsack center
without losing the approximation ratio and with a space r factor smaller than the matroid
case. For the outlier version of knapsack center, to get an efficient algorithm, we use the
3-approximation algorithm by Chakrabarty and Negahbani [5]. So we get the following
theorems, where r is the size of a largest feasible set.

I Theorem 20. There is an efficient (17+ε)-approximation one-pass algorithm for knapsack
center that stores at most O(r log(1/ε)/ε) points. With a brute force algorithm, one can get
a (7 + ε)-approximation.

I Theorem 21. There is an efficient (51+ε)-approximation one-pass algorithm for knapsack
center with z outliers that stores at most O(rz log(1/ε)/ε) points. With a brute force algorithm,
one can get a (15 + ε)-approximation.

B An Implementation of Efficient Matroid Center

We now give an implementation of EfficientMatroidCenter. The input consists of α,
CE , X, such that CE ⊆ X, and the underlying matroidM defined over X. Furthermore,
the promise is that there is an independent set B ⊆ X such that for each c ∈ CE , we have
d(c,B) 6 α. Our implementation is based on the algorithm of Chen et al. [11] for matroid
center. We show that it outputs a set C ′ such that, assuming the promise, d(c, C ′) 6 3α
for c ∈ CE .

Algorithm 6 Efficient algorithm for matroid center based on the algorithm by [11].
1: function EfficientMatroidCenter(α, CE , X,M)
2: Initialize: C ← ∅.
3: while there is an unmarked point e in CE do
4: C ← C ∪ {e}, Be ← B(e, α) ∩X, and mark all points in B(e, 2α) ∩ CE .
5: Let MC = (∪c∈CBc, IC) be a partition matroid with partition {Bc : c ∈ C} and

capacities 1.
6: LetM′ be the matroidM restricted to ∪c∈CBc.
7: C ′ ← matroid-intersection(MC ,M′)
8: if |C ′| < |C| then
9: Return fail.
10: Return C ′.

I Theorem 22. If EfficientMatroidCenter does not fail, then it outputs a set C ′ such
that d(c, C ′) 6 3α for each c ∈ CE. If the input promise holds, then EfficientMatroid-
Center does not fail.

Proof. In this proof, we refer by C the contents of the variable C after the while loop ended,
and let cE be any arbitrary point in CE . Define the function Marker : CE → C such that
Marker(cE) ∈ C is the “marker” of cE , i.e., we marked cE when processing Marker(cE).
In the end, all cE ’s are marked, so Marker is a valid function. By the logic on Line 4, we
have that

d(cE ,Marker(cE)) 6 2α . (3)
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Let EfficientMatroidCenter does not fail, then |C ′| > |C| and C ′ satisfies the
partition matroid constraint ofMC . By definition ofMC , rank(MC) = |C|, hence |C ′| 6 |C|,
which implies that |C ′| = |C|. Therefore, for each c ∈ C, the set C ′ must contain exactly
one element in B(c, α) and d(c, C ′) 6 α, in particular, d(Marker(cE), C ′) 6 α. This, triangle
inequality, and Inequality (3) gives

d(cE , C ′) 6 d(cE ,Marker(cE)) + d(Marker(cE), C ′) 6 2α+ α = 3α ,

which proves the first part of the statement of the lemma. We prove the second part next.
Assume that the promise holds. Then let B be the set such that cost of B is at most α

with respect to CE , in particular, with respect to C. For c ∈ C, define Coverer(c) ∈ B to be
an arbitrarily chosen “coverer” of c, i.e.,

d(c,Coverer(c)) 6 α . (4)

Then the set B′ := {Coverer(c) : c ∈ C} is a subset of B, so it is independent in M.
Now, for c, c′ ∈ C, such that c 6= c′, we have Coverer(c) 6= Coverer(c′) by Inequality (4)
because d(c, c′) > 2α. This implies that |B′| = |C|. Next, Coverer(c) ∈ B′ ∩ Bc for each
c ∈ C, hence the set B′ is also independent in MC . Therefore B′ ∈ MC ∩ M′, and
matroid-intersection returns an independent set of size |C|, i.e., it does not fail. J

I Remark 23. By running
(|X|

2
)
guesses, EfficientMatroidCenter can be used to get an

offline 3-approximation algorithm for a more general version of matroid center, where the
cost is computed with respect to a subset CE of X and any point in X can be a center.


	Introduction
	Techniques
	Related Work
	Organization of the Paper

	Preliminaries
	Space Lower Bound for One Pass Matroid Center
	Reduction from Index to Partition-Matroid Center

	Matroid Center
	Extension to Knapsack Center
	An Efficient Two Pass Algorithm

	Matroid Center with Outliers
	McCutchen and Khuller's Algorithm
	Matroid Center with Outliers

	Handling the Guesses
	A Smaller Space Algorithm for Matroid Center
	Extension to Knapsack Center

	An Implementation of Efficient Matroid Center

