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Abstract
We study the problem of approximating the value of a Unique Game instance in the streaming model.
A simple count of the number of constraints divided by p, the alphabet size of the Unique Game,
gives a trivial p-approximation that can be computed in O(logn) space. Meanwhile, with high
probability, a sample of Õ(n) constraints suffices to estimate the optimal value to (1 + ε) accuracy.
We prove that any single-pass streaming algorithm that achieves a (p− ε)-approximation requires
Ωε(
√
n) space. Our proof is via a reduction from lower bounds for a communication problem that

is a p-ary variant of the Boolean Hidden Matching problem studied in the literature. Given the
utility of Unique Games as a starting point for reduction to other optimization problems, our strong
hardness for approximating Unique Games could lead to downstream hardness results for streaming
approximability for other CSP-like problems.
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1 Introduction

The Unique Games (UG) problem is a type of constraint satisfaction problem on a graph.
Given an alphabet [p] = {0, 1, . . . , p− 1} and a graph G = (V,E), we need to find a label
assignment x : V → [p]. The constraint on an edge (u, v) ∈ E is specified described by a
permutation πuv : [p]→ [p] and we want to find the assignment to maximize the number of
equations πuv(xu) = xv that are satisfied. This maximum possible value over all possible
assignments is called the optimal value of the UG instance. Simply picking a random
assignments satisfies a fraction 1/p of the constraints in expectation, giving a trivial factor p
approximation algorithm to the optimal value of any instance. More sophisticated algorithms
based on semidefinite programming give better approximation guarantees [1], but even on
almost-satisfiable instances where the optimal value is a (1− ε) fraction of the total number
of constraints, the algorithm satisfies only a fraction ≈ p−ε/2 of the constraints. Under
Khot’s celebrated Unique Games conjecture [11], this guarantee cannot be improved [12],

1 Now affiliated with Columbia University, New York, USA.
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5:2 Streaming Hardness of Unique Games

and the conjecture further implies optimal hardness results for a host of problems. In terms
of proven hardness results (under say the standard assumption that P 6= NP), we know that
Unique Games does not admit any constant factor approximations [3], and in an exciting
recent line of work this was also established on instances that have optimum value close to a
fraction 1/2 [2, 15].

To shed further light on the (difficulty of the) Unique Games problem from a different
angle, in this work, we consider the Unique Games problem in the streaming model of
computation. The constraints are assumed to arrive one-by-one in a single pass. The
algorithm is only given a limited amount of memory, so cannot store the entire instance as it
passes by. The goal of the algorithm is to estimate the optimal value of the Unique Games
instance. That is, it must output a value T which is a lower bound on the optimum number
of constraints that can be satisfied, and which is at most an approximation factor f from the
optimum. In recent years, numerous algorithms and hardness for problems in the streaming
model have been developed, and this work address the important Unique Games problem
from the streaming perspective.

The simple-minded algorithm which simply counts the number of constraints and outputs
a 1/p fraction of it as a valid estimate for every instance (by virtue of the random assign-
ment algorithm), and delivers a factor p approximation. This algorithm can obviously be
implemented in the streaming model using O(logn) space. Meanwhile, if we are given Õ(n)
space, we can sample a random Õ(n)-size subset of constraints and the answer of sampled
unique game gives us an arbitrarily close approximation for the original stream.2 A natural
question which arises, and which motivates this work, is thus: can we do better than the
trivial factor p approximation in polylogarithmic space?

In a beautiful work, Kapralov, Khanna, and Sudan [9] showed that the problem of
Max-CUT, which is a special case of the Unique Games problem with alphabet size 2, does
not admit an approximation better than the trivial factor 2 in o(

√
n) space in the streaming

model where the edges arrive one-by-one. On the other hand, a recent work [7] showed that
for the Max 2CSP problem (arbitrary Boolean arity two constraints) and Max-DICUT (the
analog of Max-CUT on directed graphs), one can in fact beat the trivial factor 4 algorithm
(that outputs 1/4’th the number of constraints, which is the expected value of a random
assignment), and achieve a ≈ 5/2-approximation using O(logn) space. The status of the
streaming approximability of Unique Games over larger alphabet sizes was not addressed
and remained open until our work.

1.1 Our Result

We show that for Unique Games with alphabet size p, a single-pass streaming algorithm
requires at least Ω̃(

√
n) space to have any chance of delivering a better estimate than the

trivial factor p approximation. In particular, we cannot beat the trivial constraint-counting
algorithm in the worst-case in polylogarithmic space.

I Theorem 1. Let p ≥ 2 be an integer and ε > 0 be a small constant. Any streaming
algorithm giving (p− ε)-approximation for Unique Games with alphabet size p with success
probability at least 9/10 over its internal randomness must use cp,ε

√
n space, for some positive

constant cp,ε that depends only on p, ε.

2 Note that We do not place any computational restriction on the algorithm, only on the amount of space
it may use. Also, since we are talking about sub-linear space, we do not focus on finding an approximate
solution, but only outputting an estimate of the optimal value. Since our focus in on lower bounds, this
only makes our technical result stronger.
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Furthermore, the hardness holds for distinguishing between satisfiable instances and those
for which at most a fraction (1/p+ε) of the constraints can be satisfied by any assignment, and
when the Unique Games constraints are linear (of the form xu+xv = αuv over integers mod p).

1.2 Proof Structure
In our proof, we first introduce in Section 3, a communication problem called the p-ary
Hidden Matching problem, which is a p-ary variant of the (Boolean) Hidden Matching
problem proposed by Gavinsky et al.[4] and first used for streaming lower bounds by Verbin
and Yu in [16]. The (distributional) p-ary Hidden Matching problem is a two-party one-way
communication problem where Alice holds a random p-ary vector x ∈ Znp and Bob holds a
random matching of size r = αn (for some suitable α ∈ (0, 1)) and a vector w ∈ Zrp. Alice
must send one message to Bob, based on which he must distinguish between two distributions
on the inputs. In both distributions x is uniformly random, and M is a random matching of
the prescribed size. In the YES distribution, we set we = xu + xv for each e = (u, v) in the
matching (i.e., w = Mx where M ∈ {0, 1}αn×n is the incidence matrix of the matching); in
the NO distribution, w is uniformly random. We prove a communication lower bound of this
problem using Fourier-analytic methods, which is similar to [8].

The vector w and the matching in the p-ary Hidden Matching problem can be seen as a
description of some Unique Game constraints xu + xv = we. Of course each such instance
individually is trivially always satisfiable. We can construct hard instances of Unique Game by
combining together O(1/ε2) independent copies of the random matching and corresponding
w. In the YES case, we let w be according to the same (random) x, so that the constraints
can be satisfied by x. In the NO case, the various choices of w are random and independent.
This implies that every assignment x ∈ Znp is close in performance to a random assignment,
and thus satisfies only ≈ 1/p of the constraints, by concentration bounds.

We prove that a low-space streaming algorithm cannot distinguish between these dis-
tributions, which then implies Theorem 1. To prove this indistinguishability result, we
give a reduction from the p-ary Hidden Matching problem. The proof is a classical hy-
brid argument since the streaming instance can be seen as a “multi-stage” version of the
communication problem.

1.3 Differences from [9]
Our approach heavily borrows from the Max-CUT streaming lower bound from of Kapralov,
Khanna, and Sudan [9]. Compared to their work, we only prove Theorem 1 for a worst-case
arrival order of constraints, whereas the Max-CUT hardness result is shown even for a
random arrival order for the edges. At each stage, instead a matching, Kapralov et. al. used
a sub-critical random Erdös-Rényi graph with edge probability ≈ α/n. If the parameter α is
sufficiently small, the graph obtained by putting together edges from all the stages is close
in distribution to a random graph. As a result the arrival of edges in a random order does
not help the streaming algorithm. For the analysis of each stage, they use a communication
problem called the Boolean Hidden Partition problem that is variant of the Boolean Hidden
Matching problem, since they have to work with Erdös-Rényi graphs rather than random
matchings. This requires changes to some components in the proof outline of [4, 16].

Our communication problem still concerns matchings (rather than sub-critical Erdös-
Rényi graphs), though we allow for (components of) x,w to take values from Zp instead of
Boolean values. By using Fourier analysis over the group Zp instead of Z2, we are able to
adapt the communication lower bound of [4].

APPROX/RANDOM 2019
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It remains an interesting question to prove a streaming hardness for Unique Games similar
to Theorem 1 for the case of random arrival order of constraints.

2 Preliminaries

Let Zp = {0, 1, . . . , p− 1} be the ring with addition and multiplication modulo p. (We do not
assume that p is a prime.) Fourier analysis over Znp plays a key role in our proof. Consider
the space of functions Znp → C. We define the inner product and 2-norm in it by

〈f, g〉 = 1
pn

∑
x∈Znp

f(x)g(x) ‖f‖2
2 = 〈f, f〉 = 1

pn

∑
x∈Znp

|f(x)|2

The Fourier transform of f is a function f̂ : Znp → C defined by

f̂(z) = 〈f, χz〉 = 1
pn

∑
x∈Znp

f(x)ωz·x

where χz : Znp → C is the character χz(x) = ωz·x with “·” being the scalar product and
ω = e2πi/p being the primitive p’th root of unity. For z ∈ Znp , we denote by |z| the number
of nonzero entries in z.

In our later proof, we use the following two lemmas concerning Parseval’s identity and
hypercontractivity.

I Lemma 2 (Parseval). For every function f : Znp → C, we have

‖f‖2
2 =

∑
z∈Znp

|f̂(z)|2.

I Lemma 3 (Hypercontractivity Theorem, [13]). For function f ∈ L2(Znp ), if 1 < q < 2 and
0 ≤ ρ ≤

√
q − 1(1/p)1/q−1/2, we have∥∥Tρf∥∥2 ≤‖f‖q

where Tρ is the operator defined by Tρf(x) =
∑
z∈Znp

f̂(z)ρ|z|χz(x).

Using the above theorem, we can derive an estimate on the sum of Fourier coefficients
weighted by its support size.

I Lemma 4. For a set A ⊆ Znp and let f be its indicator function and let |z| denote the
number of non-zero coordinates of z ∈ Znp . Then for every δ ∈ [0, 1/p], we have

∑
z∈Znp

δ|z||f̂(z)|2 ≤
(
|A|
pn

)2/(1+pδ)
.

Proof. Let ρ =
√
q − 1(1/p)1/2 ≤

√
q − 1(1/p)1/q−1/2, then q = 1 + pρ2. By the hypercon-

tractivity theorem, we know that∥∥Tρf∥∥2 ≤‖f‖1+pρ2

Meanwhile, we have
∥∥Tρf∥∥2

2 =
∑
z∈Znp

ρ2|z||f̂(z)|2. Taking the square of the equation
above and setting δ = ρ2 will get our desired result. J
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3 p-ary Hidden Matching

In this section, we analyze a two-party (distributional) one-way communication problem,
defined as follows.

p-ary Hidden Matching problem. Alice gets a random vector x ∈ Znp . Bob gets a random
α-partial matching G (i.e., a matching of size αn on {1, 2, . . . , n}) and a vector w ∈ Zαnp .
Let M ∈ {0, 1}αn×n be the incidence matrix of G, i.e., Mev = 1 if v is an endpoint of e and
0 otherwise. There are two choices for the distribution of w, distinguishing which is the
communication problem.

In the YES distribution w is correlated with x as w = Mx (arithmetic done in Zp);
in the NO distribution, w is uniformly random in Znp (and thus independent of x).

Alice must send a message to Bob, based on which Bob needs to distinguish distribution
w belongs to. Formally, Bob must output Yes or No (based on Alice’s message and his
input w), and we say a protocol achieves advantage ε if the difference in probability of Bob
outputting Yes differs under the Yes and No distributions by at least ε. The following shows
that Alice needs to send at least Ω(

√
n) bits for Bob to achieve constant advantage.

I Theorem 5. For α ∈ (0, 1/4], any protocol that achieves advantage ε > 0 for the p-ary
Hidden Matching problem requires at least Ω(ε

√
n) bits of communication from Alice to Bob.

The proof of the above lemma is the main result of this section. Our proof closely follows
the structure of [4], from which the main difference is that our proof has to work for the
p-ary case.

Before we embark on the proof, we need some more lemmas. We begin with an application
of hypercontractivity to bound the Fourier mass at any level.

I Lemma 6. For a set A ⊆ Znp with size at least pn/2c and let f be its indicator function
and let |z| denote the number of non-zero coordinates of z ∈ Znp . Then for every k ≤ 4c
we have

p2n

|A|2
∑
|z|=k

|f̂(z)|2 ≤
(

4
√

2pc
k

)k
.

Proof. By Lemma 4, given some constant 0 ≤ δ ≤ 1/p, we have

p2n

|A|2
∑
|z|=k

|f̂(z)|2 ≤ p2n

|A|2
1
δk

∑
z∈Znp

δ|z||f̂(z)|2

≤ p2n

|A|2
1
δk

(
|A|
pn

)2/(1+pδ)

= 1
δk

(
pn

|A|

)2pδ/(1+pδ)

≤ 1
δk

(
pn

|A|

)2pδ
.

Choosing δ = k/4cp will give our desired result. J

We also need a combinatorial lemma about counting of some matchings.

APPROX/RANDOM 2019



5:6 Streaming Hardness of Unique Games

I Lemma 7. Let G be a uniformly random α-partial matching and M be its incidence matrix.
If x ∈ Znp has |x| = k for some even3 k, then

Pr
G

[∃z ∈ Zαnp s.t.MT z = x] ≤
(
αn

k/2

)/(
n

k

)
.

Proof. We know that the total number of all α-partial matchings of n vertices is
n!/(2αn(αn)!(n− 2αn)!). And if there exists some z such that MT z = x, then G must have
exactly k/2 edges between those vertices v with xv 6= 0. There are k!/(2k/2(k/2)!) number of
ways to choose those edges. Also, we need to choose αn− k/2 edges amongst those v whose
xv = 0, which we have (n− k)!/(2n−k(αn− k/2)!(n− 2αn)!) ways to do. Combining them
together leads to the lemma. J

From the lemmas above, we can derive an important result in our proof.

I Lemma 8. Let A ⊆ Znp be of size at least pn/2c for some c ≥ 1, G be a uniformly random
α-partial matching for some 0 < α ≤ 1/4 and M be its incidence matrix. There exists a
constant γ independent of n, c and α, such that for all ε > 0, if c ≤ γε

√
n/α then

EM [‖pM − U‖tvd] ≤ ε,

where pM (w) = |{x ∈ A |Mx = w}/|A| is the distribution of w in the YES case when x is
uniformly random in A.

Proof. To show that EM [‖pM − U‖tvd] ≤ ε, we can start by bounding the Fourier coefficients
of pM . In fact they are closely related to f̂ (where recall that f is the indicator function for
membership in the set A):

p̂M (z) = 1
pαn

∑
w∈Zαnp

pM (z)ω−w·z

= 1
|A|pαn

p−1∑
k=0

ω−k|{x ∈ A|(Mx) · z = k}|

= 1
|A|pαn

p−1∑
k=0

ω−k|{x ∈ A|x · (MT z) = k}|

= 1
|A|pαn

∑
x∈A

ω−x·(M
T z)

= pn

|A|pαn
f̂(MT z)

From the bound of Fourier coefficients, we can give a bound on squared total variation
distance

EM [‖pM − U‖2
tvd] ≤ p

2αnEM [‖pM − U‖2
2]

= p2αnEM

 ∑
z∈Zαnp \{0αn}

|p̂M (z)|2


= p2n

|A|2
EM

 ∑
z∈Zαnp \{0αn}

|f̂(MT z)|2


3 We note that if |x| is odd, then there can be no z such that MT z = x.
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by Cauchy-Schwarz inequality, Parseval equality and the bound above. Since there is at most
one z ∈ Zαnp such that x = MT z for given x, we have

= p2n

|A|2
EM

 ∑
x∈Znp\{0n}

|f̂(x)|2|{z ∈ Zαnp |x = MT z}|


= p2n

|A|2
∑

x∈Znp\{0n}

Pr
M

[∃z ∈ Zαnp s.t. MT z = x]|f̂(x)|2

≤ p2n

|A|2
2αn∑

k=2,keven

(
αn
k/2
)(

n
k

) ∑
|x|=k

|f̂(x)|2.

We then split the sum into two parts k < 4c and k ≥ 4c. For k < 4c, using (n/k)k ≤
(
n
k

)
≤

(en/k)k, we have

p2n

|A|2
4c−2∑

k=2,keven

(
αn
k/2
)(

n
k

) ∑
|x|=k

|f̂(x)|2 ≤
4c−2∑

k=2,keven

(2eαn/k)k/2

(n/k)k

(
4
√

2pc
k

)k
(using Lemma 6)

≤
4c−2∑

k=2,keven

(
64eγ2ε2p2

k

)k/2

,

which is at most ε2/2 when γ is sufficiently small. For k ≥ 4c note that
∑
x |f̂(x)|2 = |A|/pn

by Parseval and
(
αn
k/2
)/(

n
k

)
is decreasing for even k ≤ 2αn, we have

p2n

|A|2
2αn∑

k=4c,keven

(
αn
k/2
)(

n
k

) ∑
|x|=k

|f̂(x)|2 ≤ 2c
(
αn
2c
)(

n
4c
)

≤ 2c
(

8cαe
n

)2c

≤
(

8
√

2eγε
√
α/n

)2c
≤ ε2/2.

The last inequality holds because n ≥ 1 and c ≥ 1, and we let γ be a sufficiently small constant.
Thus, in total we have EM [‖pM − U‖2

tvd] ≤ ε2, which means by Jensen EM [‖pM − U‖tvd] ≤ ε.
J

From the lemma above, we can prove the communication lower bound of p-ary Hidden
Matching problem.

Proof of Theorem 5. By fixing the randomness of the protocol, we can assume without
loss of generality that the protocol is deterministic . Fix ε > 0 to a small constant and let
c = γε

√
n/α. Consider any protocol that communicates at most C = c− log(1/ε) bits. In the

protocol, Alice’s message gives an partition of Znp into 2C subsets. We call the sets with size
εpn/2C = pn/2c be “large sets”, then for a uniformly random x ∈ Znp , with probability 1− ε,
x belongs to a large set. When x is in a large set, by Lemma 8, Bob can get an advantage of
at most ε. Together with the advantage from small sets, the overall advantage Bob can get
is at most O(ε), which completes the proof. J

APPROX/RANDOM 2019
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4 Reduction to Streaming Algorithm for Unique Games

In this section, we will prove Theorem 1. Towards this end, we will describe a pair of
distributions, Y and N, where Y is supported on satisfiable instances of Unique Games, and
N is supported with high probability on instances where at most ≈ 1/p fraction of constraints
can be satisfied. We will then establish, via reduction from the p-ary Hidden Matching
communication problem, that any low-space streaming algorithm cannot distinguish between
these distributions, thus establishing Theorem 1.

4.1 Input distributions
We construct the above-mentioned distributions in a “multi-stage” way (using k stages)
based on the YES and NO distributions (defined at the beginning of Section 3) for p-ary
Hidden Matching. First we independently sample k α-partial matchings on n vertices a The
Unique Games instance graph G will be the union of these matchings. It will thus have n
vertices and kαn edges (we allow multiple edges should they be sampled). We next specify
the Unique Games constraints, which will be two-variable linear equations, one for each edge.

In the Y distribution, we sample a random z ∈ Znp uniformly. We let the constraint on
edge (u, v) of G be xu + xv = zu + zv.
In the N distribution, for each edge (u, v) of G, we let the constraint be xu + xv = q for
a random q ∈ Zp, independently chosen for each edge.

For instances sampled in the Y distribution, the best solution is obviously xu = zu for
all u ∈ [n], which satisfies all the constraints. For the N distribution, we can use Chernoff
bounds to upper bound the value of the optimal solution.

I Lemma 9. Let 0 < ε < 1. If k = Cp log p/(αε2) for some large constant C > 0, then for a
Unique Games instance sampled from the N distribution, the optimal fraction of satisfiable
constraints is at most (1 + ε)/p with high probability.

Before we proceed to the proof, we first state the Chernoff bound for negatively correlated
random variables.

I Lemma 10 ([14]). Let X1, . . . , Xn be negatively correlated Bernoulli random variables and
X = X1 + · · ·+Xn. Then we have

Pr[X ≥ (1 + ε)E[X]] ≤ exp(−E[X]ε2/3).

Proof of Lemma 9. Fix an assignment x ∈ Znp . For 1 ≤ ` ≤ k, let X(`)
ij be the indicator of

the following event: “in the `-th stage, the edge (i, j) is included in the α-partial matching
and is satisfied by the assignment x.” Then, S =

∑
`,i,j X

(`)
ij , summed over 1 ≤ `k, and

1 ≤ i < j ≤ n, is the random variable counting the number of constraints satisfied by
the assignment x. Note that E[S] = kαn/p is the expected number of constraints by the
assignment x. And we know that each X(`)

ij is a Bernoulli random variable with probability
of equaling 1 being 2αn/(pn(n− 1)).

We first claim that these random variables are negatively correlated. In fact, edges in
different stages are independent. For edges in the same stage `, consider that we know that
random variables X(`)

i1j1
, X

(`)
i2j2

, . . . , X
(`)
itjt

have value 1, and a vertex pair (i0, j0). If i0 or j0 is
occurred in some is or js, then X(`)

i0j0
must be 0. Otherwise the conditional expectation of

X
(`)
i0j0

is 2(αn− t)/(p(n− t)(n− 1− t)), which is less than the unconditional expectation of
2αn/(pn(n− 1)). In all cases we have E[X(`)

i0j0
| X(`)

i1j1
= X

(`)
i2j2

= · · · = X
(`)
itjt

= 1] ≤ E[X(`)
i0j0

],
which in turn means negative correlation.
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Thus, by Chernoff bound for negatively random variables, we know that

Pr[S ≥ (1 + ε)kαn/p] ≤ exp(−ε2kαn/3p) = p−Cn/3 ≤ p−2n.

The proof is now complete by a union bound over all pn candidate assignments. J

4.2 Reduction from p-ary Hidden Matching
Note that each stage of constraints in the Unique Games instance corresponds to the p-ary
Hidden Matching problem, with the Y distribution (resp. N distribution) coinciding with
the YES distribution (NO distribution) of the Hidden Matching problem. Using this, we
can link the hardness of the two problems via a hybrid argument. Recall that we say that a
decision algorithm distinguishes between two distributions D1 and D2 with advantage η if it
accepts samples from one distribution with probability at least η more than those from the
other distribution.

I Lemma 11. Suppose there exists a streaming algorithm ALG using c bits of memory that
can achieve advantage 1/4 in distinguishing between instances from the Y and N distributions
of Unique Games instances. Then there exists a protocol with c bits of communication for
the p-ary Hidden matching problem with advantage Ω(1/k) in distinguishing between YES
and NO distributions.

We now prepare for the proof of Lemma 11. Our proof follows along the lines of a similar
argument in [9]. In the execution of ALG on instances from the Y and N distributions, let the
memory after receiving the i-th stage constraints be SYi and SNi respectively. Thus SYi , SNi
are random variables in {0, 1}c. Without loss of generality, we assume that SY0 = SN0 = 0.

We now define the notion of an informative index, as in [9].

I Definition 12 (Informative index). An index j ∈ {0, . . . , k − 1} is said to be δ-informative
for δ > 0 if∥∥∥SYj+1 − SNj+1

∥∥∥
tvd
≥
∥∥∥SYj − SNj ∥∥∥

tvd
+ δ

We now show the existence of a Ω(1/k)-informative index for any streaming algorithm that
distinguishes between Y and N distributions.

I Lemma 13. Suppose a streaming algorithm ALG uses c bits of memory and distinguishes
the Y and N distributions with advantage 1/4. Then the algorithm has a Ω(1/k)-informative
index.

Proof. At first,
∥∥SY0 − SN0 ∥∥tvd = 0; at the end of the algorithm, since advantage is at least

1/4,
∥∥SYk − SNk ∥∥tvd must be at least some constant C. Let j be the first index such that∥∥∥SYj+1 − SNj+1

∥∥∥
tvd
≥ C(j + 1)/k, then j is a C/k-informative index. J

Let j∗ be a Ω(1/k)-informative index of a streaming algorithm ALG. Using ALG, we
can devise a communication protocol for the p-ary Hidden Matching problem as follows.

1. Suppose Alice holds as input a random string x ∈ Znp . She samples j∗ random α-partial
matchings and feeds the streaming algorithm UG constraints for the first j∗ stages that
follow the Y distribution with the setting z = x.

2. Alice sends the memory contents of ALG after j∗ stages to Bob.

APPROX/RANDOM 2019
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3. Bob samples an α-partial matching and gives constraints xu + xv = we for e = (u, v)
according to his w. He then continues running ALG on these constraints as the (j∗+1)’th
stage.
Let the memory Bob gets be s.

4. Let the resulting memory distribution under the two cases (depending on w’s distribution)
be S̃YES and S̃NO. (Note that these distribution can be computed by Bob since ALG
is known.)
Bob outputs 1 if Pr[S̃YES = s] ≥ Pr[S̃NO = s], and otherwise 0.

The above completes the description of the reduction. Before we analyze it and proceed
to the proof of Lemma 11, we need the following fact about the statistical (total variation)
distance between random variabls.

I Lemma 14 (Claim 6.5, [9]). Let X,Y be two random variables and W be independent of
(X,Y ). Then for any function f , we have∥∥f(X,W )− f(Y,W )

∥∥
tvd
≤‖X − Y ‖tvd .

Proof of Lemma 11. We argue that the above protocol for p-ary Hidden Matching achieves
the claimed advantage of Ω(1/k) in distinguishing between YES and NO distributions.

Let f be the function that maps the memory after stage j∗ and constraints of stage
(j∗ + 1) to the memory after stage (j∗ + 1). Thus we have S̃YES = SYj∗+1 = f(SYj , CY ) and
S̃NO = f(SYj , CN ), where CY , CN be the constraints Bob generated in both cases. We also
know that SNj∗+1 = f(SNj , CN ).

By Lemma 14, we know that∥∥∥S̃NO − SNj∗+1

∥∥∥
tvd

=
∥∥∥f(SYj∗ , CN )− f(SNj∗ , CN )

∥∥∥
tvd
≤
∥∥∥SYj∗ − SNj∗

∥∥∥
tvd

.

Hence, we have∥∥∥S̃YES − S̃NO
∥∥∥
tvd
≥
∥∥∥SYj∗+1 − SNj∗+1

∥∥∥
tvd
−
∥∥∥S̃NO − SNj∗+1

∥∥∥
tvd

≥
∥∥∥SYj∗+1 − SNj∗+1

∥∥∥
tvd
−
∥∥∥SYj∗ − SNj∗

∥∥∥
tvd

≥ Ω(1/k).

The strategy in Step 4 that Bob uses distinguishes between S̃YES and S̃NO with advantage
exactly

∥∥∥S̃YES − S̃NO
∥∥∥
tvd

, which is at least Ω(1/k). This concludes the proof of Lemma 11.
J

Our main result, Theorem 1, now follows by choosing α = 1/8 and k = dCp log p/ε2e
for a large enough absolute constant C, and combining together Theorem 5, Lemma 11,
and Lemma 9.

5 Conclusion

We proved that Unique Games is hard for single-pass streaming algorithms in a strong
sense: even if the instance is perfectly satisfiable, the algorithm cannot certify that it is even
(1/p+ ε)-satisfiable, where p is the alphabet size, and ε > 0 is an arbitrary constant. Some
natural directions to extend our lower bound would be to multi-pass algorithms, and for
random arrival order of the constraints.
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An interesting direction for future work would be to establish limitations of streaming
algorithms for other approximation problems which are only known to be “Unique Games-
hard.” An example, which partly motivated this work initially, is the Maximum Acyclic
Subgraph (MAS) problem. The MAS problem is another one of those notorious problems for
which there is a trivial algorithm that achieves approximation ratio of 2 (the algorithm is
simply to order the vertices arbitrarily, and take either all the forward-going or backward-
going edges as an acyclic subgraph with at least 1/2 the edges), and no efficient algorithm
achieving a factor (2− ε)-approximation is known for any fixed ε > 0. On the other hand,
known NP-hardness results are rather weak, but under the Unique Games conjecture, it is
known that there is no efficient (2− ε)-approximation for MAS [6, 5].

One can try to explain the difficulty of MAS in the streaming model, by proving a
result similar in spirit to the result we established for Unique Games. Specifically, given as
input a directed graph whose edges arrive one-by-one, can a low-space single-pass streaming
algorithm distinguish between the cases when the directed graph is acyclic and when it has
no acyclic subgraph with even 1/2 + ε of the edges? (The 1/2 threshold being trivial, since
any directed graph has an acyclic subgraph with 1/2 the edges.) A result of this flavor was
shown with 1/2 replaced by 7/8 in [7].

The reduction from Unique Games to (2− ε)-approximating MAS [6] and our inapprox-
imability result for UG in the streaming model gives hope to prove the desired streaming
hardness for MAS as well, by implementing the reduction in a streaming manner. Since
reductions involving CSPs are usually local, the arrival of one constraint of problem A can
be mimicked by the arrival of the constraints of problem B that implement it. The reduction
from UG to MAS (and indeed many other CSPs), however, introduces constraints between all
pairs of variables that share a constraint with a UG vertex u. So to implement it one would
need the UG streaming hardness under a “vertex arrival” model, where the graph is bipartite,
and all constraints involving a left hand side vertex arrive in sequence. We can adapt the
reduction in [6] to something local, based only on a single constraint, thereby making it more
friendly to the edge arrival model. However, this only yields a weaker hardness result that
distinguishing DAGs from graphs whose MAS has at most ≈ 3/4 edges requires Ω(

√
n) space.

Obtaining a tight streaming hardness result for MAS, and more broadly leveraging our
tight streaming hardness result for Unique Games toward streaming inapproximability results
for other optimization problems for which we have optimal reductions from Unique Games,
are interesting directions for future work. Further, given the hardness results in this work and
[9], one can ask which CSPs and related problems admit non-trivial approximate estimation
algorithms in the streaming model. Even though one might suspect that strong hardness
results should be pervasive, it seems that it is rather non-trivial to establish strong limitations
of streaming algorithms, and the algorithms for Max 2CSP in [7] suggest that there might
be more interesting cases where streaming algorithms can provide non-trivial guarantees.

In recent work [10], Kapralov and Krachun give an Ω̃(n) space lower bound on beating a
2-approximation for MAX-CUT by a single-pass streaming algorithm. A generalization of
their techniques to the p-ary case may lead to a near-tight streaming space lower bound for
Unique Games.
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