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Abstract
The `2 tracking problem is the task of obtaining a streaming algorithm that, given access to a stream
of items a1, a2, a3, . . . from a universe [n], outputs at each time t an estimate to the `2 norm of the
frequency vector f (t) ∈ Rn (where f (t)

i is the number of occurrences of item i in the stream up to
time t). The previous work [Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff, PODS 2017] gave
a streaming algorithm with (the optimal) space using O(ε−2 log(1/δ)) words and O(ε−2 log(1/δ))
update time to obtain an ε-accurate estimate with probability at least 1 − δ. We give the first
algorithm that achieves update time of O(log 1/δ) which is independent of the accuracy parameter
ε, together with the nearly optimal space using O(ε−2 log(1/δ)) words. Our algorithm is obtained
using the Count Sketch of [Charilkar-Chen-Farach-Colton, ICALP 2002].
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1 Introduction

The streaming model considers the following setting. One is given a list a1, a2, . . . , am ∈ [n]
as input where we think of n as extremely large. The algorithm is only allowed to read the
input once in a stream and the goal is to answer some predetermined queries using space of
size logarithmic in n. For each i ∈ [n] and time t ∈ [m], define f (t)

i = |{1 ≤ j ≤ t : aj = i}|
as the frequency of i at time t. Many classical streaming problems are concerned with
approximating statistics of f (m) such as the distinct element problem (i.e., ‖f (m)‖0). One of
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2:2 Tracking the `2 Norm with Constant Update Time

the most well-studied problems is the one-shot `2 estimation problem where the goal is to
estimate ‖f (m)‖22 within multiplicative error (1± ε) and had been achieved by the seminal
AMS sketch by Alon et al. [1].

We consider a streaming algorithm A that maintains some logarithmic space and outputs
an estimation σt at the tth step of the computation. A achieves `2 (ε, δ)-tracking if for every
input stream a1, a2, . . . , am ∈ [n]

Pr
[
∃t∈[m]

∣∣σt − ‖f (t)‖22
∣∣ > ε∆t

]
≤ δ

where the “normalization factor” ∆t differs between strong tracking and weak tracking. For
(ε, δ)-strong tracking, ∆t = ‖f (t)‖22 is the norm squared of the frequency vector up to the time
t, while for (ε, δ)-weak tracking, ∆t = ‖f (m)‖22 is the norm squared of the overall frequency
vector. Note that strong tracking implies weak tracking and weak tracking implies one-shot
approximation. In this work, we focus on `2 tracking via linear sketching, where we specify a
distribution D on matrices Π ∈ Rk×n, and maintain a sketch vector at time t as f̃ (t) , Πf (t).
Then the estimate σt is defined as ‖f̃ (t)‖22. The space complexity of A is the number of
machine words1 required by A. The update time complexity of A is the time to update σt,
in terms of number of arithmetic operations.

Both weak tracking and strong tracking have been studied in different context [11, 5, 4]
and the focus of this paper is on the update time complexity. Specifically, we are interested
in the dependency of update time on the approximation factor ε. The state-of-the-art result
prior to our work is by Braverman et al. [4] showing that AMS provides weak tracking with
O(ε−2 log(1/δ)) update time and O(ε−2 log(1/δ)) words of space.

Apart from tracking, there have been several sketching algorithms for one-shot approxim-
ation that have faster update time. Dasgupta et al. [8] and Kane and Nelson [16] showed
that sparse JL achieves Oδ(ε−1) 2 update time for `2 one-shot approximation. Charikar,
Chen, and Farach-Colton [6] designed the CountSketch algorithm for the heavy hitter prob-
lem and Thorup and Zhang [23] showed that it achieve Oδ(1) update time for `2 one-shot
approximation.

Update time

Unlike the space complexity in streaming model, there have been less studies in the update
time complexity though it is of great importance in applications. For example, the packet
passing problem [21] requires the `2 estimation in the streaming model with input arrival
rate as high as 7.75× 106 packets 3 per second. Thorup and Zhang [24] improved the update
time from 182 nanoseconds to 50 nanoseconds and made the algorithm more practical.

While some streaming problems have algorithms with constant update time (e.g., distinct
elements [19] and `2 estimation [24]), some other important problems do not (`p estimation
for p 6= 2 [17], heavy hitters problems4 [6, 7], and tracking problems [4]). Larsen et al. [22]
systematically studies the update time complexity and showed lower bounds against heavy
hitters, point query, entropy estimation, and moment estimation in the non-adaptive turnstile
streaming model. In particular, they show that O(ε−2)-space algorithms for `2 estimation of
vectors over Rn, with failure probability δ, must have update time roughly Ω(log(1/δ)/

√
logn).

Note that their lower bound does not depend on ε.

1 Following convention, we assume the size of a machine word is at least Ω(max(logn, logm)) bits.
2 Oδ(·) is the same as the usual big O notation except treating δ as a constant.
3 Each packet has 40 bytes (320 bits).
4 There is a memory and update time tradeoff for heavy hitter from space O(ε−2 log(n/δ)) to O(ε−2(n/δ))

to get constant update time. However, achieving constant update time and logarithmic space simultan-
eously is unknown.
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Space lower bounds

For one-shot estimation of the `2 norm, Kane et al. [20] showed that Θ(ε−2 logm+ log logn)
bits of space are required, for any streaming algorithm. This space lower bound is tight due
to the AMS sketch. However, this only applies in the constant failure probability regime.

In the regime of sub-constant failure probability δ, known tight lower-bounds on Distribu-
tional JL [15, 14] imply that Ω(ε−2 log(1/δ)) rows are necessary for the special case of linear
sketching algorithms. 5 For linear sketches, this lower bound on number of rows is equivalent
to a lower bound on the words of space.

For the regime of faster update time, Kane and Nelson [16] shows that CountSketch-type
of constructions (with the optimal Ω(ε−2 log(1/δ)) rows) require sparsity i.e. number of
non-zero elements Ω̃(ε−1 log(1/δ)) 6 per column to achieve distortion ε and failure probability
δ. But, this does not preclude a sketch with suboptimal dependency on δ in the number of
rows from having constant sparsity, for example a sketch with Ωδ(ε−2) rows and constant
sparsity – indeed, this is what CountSketch achieves. Note that in our setting, we can boost
constant-failure probability to arbitrarily small failure probability by taking medians of
estimators.7 Thus, we may be able to bypass the lower-bounds for linear sketches.

To summarize the situation: for constant failure probability, it is only known that linear
sketches require dimension Ω(ε−2), and it is not known if super-constant sparsity is required
for tracking with this optimal dimension. In particular, it was not known how to achieve say
(ε, O(1))-weak tracking for `2, with O(ε−2) words of space and constant update time.

Our contributions

In this paper, we show that there is a streaming algorithm with O(log(1/δ)) update time
and space using O(ε−2 log(1/δ)) words that achieves `2 (ε, δ)-weak tracking.

I Theorem 1 (informal). For any ε > 0, δ ∈ (0, 1), and n ∈ N. For any insertion-only stream
over [n] with frequencies f (1), f (2), . . . , f (m), there exists a streaming algorithm providing `2
(ε, δ)-weak tracking with space using O(ε−2 log(1/δ)) words and O(log(1/δ)) update time.

Further, by applying a standard union bound argument in Lemma 13, the same algorithm
can achieve `2 strong tracking as well.

I Corollary 2. For any ε > 0, δ ∈ (0, 1), and n ∈ N. For any insertion-only stream over
[n] with frequencies f (1), f (2), . . . , f (m), there exists a streaming algorithm providing `2 (ε, δ)-
strong tracking with O(ε−2 log(1/δ) log logm) words and O(log(1/δ) log logm) update time.

The algorithm in the main theorem is obtained by running O(log(1/δ)) many copies of
CountSketch and taking the median.

The main techniques used in the proof are the chaining argument and Hansen-Wright
inequality which are also used in [4] to show the tracking properties of AMS. However, direct
applications of these tools on the CountSketch algorithm would not give the desired bounds
due to the sparse structure of the sketching matrix. To overcome this issue, we have to dig
into the structure of sketching matrix of CountSketch. We will compare the difference between
our techniques and that in [4] after presenting the proof of Theorem 1 (see Remark 12).

5 Note that an (ε, δ)-weak tracking via linear sketch defines a distribution over matrices that satisfies the
Distributional JL guarantee, with distortion (1± ε) and failure probability δ.

6 Ω̃(·) is the same as the Ω(·) notation by ignoring extra logarithmic factor.
7 This is not immediate for weak tracking.
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2:4 Tracking the `2 Norm with Constant Update Time

The rest of the paper is organized as follows. Some preliminaries are provided in Section 2.
In Section 3, we prove our main theorem showing that CountSketch with O(ε−2) rows achieves
`2 (ε, O(1))-weak tracking with constant update time. As for the `2 strong tracking, we
discuss some upper and lower bounds in Section 4. In Section 5, we discuss some future
directions and open problems.

2 Preliminaries

In the following, n ∈ N denotes the size of the universe, k denotes the number of rows
of the sketching matrix, t denotes the time, and m denote the final time. We let [n] =
{1, 2, . . . , n} and use Õ(·) and Ω̃(·) to denote the usual O(·) and Ω(·) with some extra
poly-logarithmic factor.

The input of the streaming algorithm is a list a1, a2, . . . , am ∈ [n]. For each i ∈ [n] and
time t ∈ [m], define f (t)

i = |{1 ≤ j ≤ t : aj = i}| as the frequency of i at time t. The one-shot
`2 approximation problem is to produce an estimate for ‖f (m)‖22 with (1± ε) multiplicative
error and success probability at least 1− δ for ε > 0 and δ ∈ (0, 1).

2.1 `2 tracking
Here, we give the formal definition of `2 tracking for sketching algorithm.

I Definition 3 (`2 tracking). For any ε > 0, δ ∈ (0, 1), and n,m ∈ N. Let f (1), f (2), . . . , f (m)

be the frequency of an insertion-only stream over [n] and f̃ (1), f̃ (2), . . . , f̃ (m) be its (random-
ized) approximation produced by a sketching algorithm. We say the algorithm provides `2
(ε, δ)-strong tracking if

Pr
[
∃t∈[m],

∣∣∣‖f̃ (t)‖22 − ‖f (t)‖22
∣∣∣ > ε‖f (t)‖22

]
≤ δ.

We say the algorithm provides `2 (ε, δ)-weak tracking if

Pr
[
∃t∈[m],

∣∣∣‖f̃ (t)‖22 − ‖f (t)‖22
∣∣∣ > ε‖f (m)‖22

]
≤ δ.

Note that the difference between the two tracking guarantee is that in strong tracking we
bound the deviation of the estimate from the true norm squared by ε‖f (t)‖22 while in the
weak tracking we bound this deviation by ε‖f (m)‖22.

2.2 AMS sketch and CountSketch
Alon et al. [1] proposed the seminal AMS sketch for `2 approximation in the streaming model.
In AMS sketch, consider Π ∈ Rk×n where Πj,i = σj,i/

√
k and σj,i is i.i.d. Rademacher for

each j ∈ [m], i ∈ [n]. When k = O(ε−2), AMS sketch approximates `2 norm within (1± ε)
multiplicative error. Note that the update time of AMS sketch is k since the matrix Π is dense.

Charikar, Chen, and Farach-Colton [6] proposed the following CountSketch algorithm
for the heavy hitter problem and Thorup and Zhang [23] showed that CountSketch is also
able to solve the `2 approximation. Here, consider Π ∈ Rk×n where we denote the ith
column of Π as Πi for each i ∈ [n]. Πi is defined as follows. First, pick j ∈ [k] uniformly
and set Πj,i to be an independent Rademacher. Next, set the other entries in Πi to be
0. Note that unlike AMS sketch, the normalization term in CountSketch is 1 since there is
exactly one non-zero entry in each column. [6] showed that CountSketch provides one-shot `2
approximation with O(ε−2) rows.
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I Lemma 4 ([6, 23]). Let ε > 0, δ ∈ (0, 1), and n ∈ N. Pick k = Ω(ε−2δ−1), we have for
any x ∈ Rn,

Pr
Π

[
|‖Πx‖22 − ‖x‖22| > ε‖x‖22

]
≤ δ.

Implement CountSketch in logarithmic space

Previously, we defined CountSketch using uniformly independent randomness, which requires
space Ω(nk). However, one could see that in the proof of Theorem 8 we actually only need
8-wise independence. Thus, the space required can be reduced to O(logn) for each row. It
is well known that CountSketch with k rows can be implemented with 8-wise independent
hash family using O(k) words. We describe the whole implementation in Appendix A
for completeness.

2.3 ε-net for insertion-only stream
In our analysis, we will use the following existence of a small ε-net for insertion-only streams.

I Definition 5 (ε-net). Let S ⊆ Rn be a set of vectors. For any ε > 0, we say E ⊆ Rn
is an ε-net for S with respect to `2 norm if for any x ∈ S, there exists y ∈ E such that
‖x− y‖2 ≤ ε.

I Lemma 6 ([5]). Let {x(t)}t∈[m] be an insertion-only stream. For any ε > 0, there exists a
size

(
1 + ε−2 · ‖x(m)‖2

)
ε-net for {x(t)}t∈[m] with respect to `2 norm. Moreover, the elements

in the net are all from {x(t)}t∈[m].

Proof Sketch. The idea is to use a greedy algorithm, by scanning through the stream from
the beginning and adding an element x(t) into the net if there does not already exist an
element in the net that is ε-close to x(t). J

2.4 Concentration inequalities
Our analysis crucially relies on the following Hanson-Wright inequality [10].

I Lemma 7 (Hanson-Wright inequality [10]). For any symmetric B ∈ Rn×n, σ ∈ {±1}n
being independent Rademacher vector, and integer p ≥ 1, we have

‖σ>Bσ − Eσ[σ>Bσ]‖p ≤ O (√p‖B‖F + p‖B‖) = O(p‖B‖F ),

where ‖X‖p is defined as E[|X|p]1/p and ‖ · ‖F is the Frobenius norm.

Note that the only randomness in σ>Bσ − Eσ[σ>Bσ] is the Rademacher vector σ.

3 CountSketch with O(ε−2) rows provides `2 weak tracking

In this section we will show that CountSketch with O(ε−2) rows provides (ε, O(1))-weak
tracking.

I Theorem 8 (CountSketch with O(ε−2) rows provides `2 weak tracking). For any ε > 0,
δ ∈ (0, 1), and n ∈ N. Pick k = Ω(ε−2δ−1). For any insertion-only stream over [n] with
frequency f (1), f (2), . . . , f (m), the CountSketch algorithm with k rows provides `2 (ε, δ)-weak
tracking.

APPROX/RANDOM 2019



2:6 Tracking the `2 Norm with Constant Update Time

I Remark. Note that for linear sketches, the dependency of number of rows on ε is tight
in Theorem 8. This is implied by known lower-bounds on Distributional JL [15, 14], which
imply lower-bounds on one-shot `2 approximation.
I Remark. Recall that the number of rows in linear sketches is proportional to the number
of words needed in the algorithm.

Using the standard median trick, we can run O(log(1/δ)) copies of CountSketch with
k = O(ε−2) in parallel and output the median. With this, Theorem 8 immediately gives the
following corollary with better dependency on δ.

I Corollary 9. For any ε > 0, δ ∈ (0, 1), and n ∈ N. For any insertion-only stream over [n]
with frequency f (1), f (2), . . . , f (m), there exists a streaming algorithm providing `2 (ε, δ)-weak
tracking with k = O(ε−2 log(1/δ)) rows and update time O(log(1/δ)).

The proof of Theorem 8 uses the Dudley-like chaining technique similar to other tracking
proofs [4]. However, direct application of the chaining argument would not suffice and we
have to utilize the structure of the sketching matrix of CountSketch (see Remark 12 for
comparison). We will prove Theorem 8 in Subsection 3.1.

3.1 Proof of Theorem 8
In this subsection, we give a formal proof for our main theorem. Let us start with some
notations for CountSketch. Recall that for any i ∈ [n], the ith column of Π is defined by
(i) picking j ∈ [k] uniformly and set Πj,i to be a Rademacher random variable and (ii) set
the other entries in Πi to be 0. Denote Πj,i = σj,iηj,i, where σj,i is a Rademacher random
variable, and ηj,i is the indicator for choosing the jth row in the ith column. Note that there
is exactly one non-zero entry in each column and the probability distribution is uniform.
The approximation error of Π for a vector x ∈ Rn is denoted as γ(x) :=

∣∣‖Πx‖22 − ‖x‖22
∣∣. To

show weak tracking, it suffices to upper bound the supremum of γ(f (t)).

EΠ sup
t∈[m]

γ(f (t)) = EΠ sup
t∈[m]

∣∣∣‖Πf (t)‖22 − ‖f (t)‖22
∣∣∣. (1)

The first observation8 is that one can rewrite the error γ(x) as follows.

γ(x) =
∣∣x>Π>Πx− x>x

∣∣ =
∣∣σ>Bη,xσ − x>x

∣∣ =
∣∣σ>B̃η,xσ∣∣ ,

where σ ∈ {−1, 1}n is an independent Rademacher random vector and for any i, i′ ∈ [n],

(B̃η,x)i,i′ =
{

xixi′ , i 6= i′ and ∃j ∈ [k], ηj,i = ηj,i′ = 1
0, else.

Note that the diagonals of B̃η,x are all zero as follow.

B̃η,x =


0 x1x2〈Π1,Π2〉 · · · x1xn〈Π1,Πn〉

x2x1〈Π2,Π1〉 0 · · · x2xn〈Π2,Πn〉
...

...
. . .

...
xnx1〈Πn,Π1〉 xnx2〈Πn,Π2〉 · · · 0

 .

8 Note that the matrix B̃x we are using is different from the matrix used in the previous analysis of [4].
This difference is crucial since the matrix of [4] does not work for CountSketch.
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For convenience, for any matrix B ∈ Rn×n, we overload the notation γ by denoting γ(B) =
σ>Bσ. That is, γ(B̃η,x) = γ(x). One benefit of writing `2 weak tracking error into the above
quadratic form is that Hanson-Wright inequality (see Lemma 7) is now applicable.

The lemma below shows that the expectation of the weak tracking error is upper bounded
by the Frobenius norm of B̃η,f(m) .

I Lemma 10. Let {f (t)}t∈[m] be the frequencies of an insertion-only stream. We have

E

[
sup
t∈[m]

γ(f (t)) | η
]

= O(‖B̃η,f(m)‖F ).

The proof of Lemma 10 uses the Dudley-like chaining argument. For the smooth of
presentation, we postpone the details to Subsection 3.2. Next, the following lemma shows
that for any vector x ∈ Rn, with high probability, ‖B̃η,x‖F = O(‖x‖22/

√
k).

I Lemma 11. For any δ ∈ (0, 1) and x ∈ Rn,

Pr
[
‖B̃η,x‖F >

√
2‖x‖22√
δ · k

]
≤ δ

2 .

Lemma 11 has similar flavor as Lemma 4. The proof can be found in Subsection 3.2.
Finally, Theorem 8 is an immediate corollary of Lemma 10 and Lemma 11. Here we provide
a proof for completeness.

Proof of Theorem 8. Recall that to prove Theorem 8, it suffices to show that with prob-
ability at least 1 − δ over η, supt∈[m] γ(f (t)) ≤ ε. From Lemma 10, for a fixed η, we have
Pr
[
supt∈[m] γ(f (t)) > C1‖B̃η,f(m)‖F

]
≤ δ/2 for some constant C1 > 0. Next, from Lemma 11,

we have ‖B̃η,f(m)‖F ≤ ‖f (m)‖22 ·k−1/2 ·δ−1/2 with probability at least 1−δ/2 over the random-
ness in η for some constant C2 > 0. Pick m ≥ C1C2 · ε−2 · δ−1, we have
Pr
[
supt∈[m] γ(f (t)) > ε‖f (m)‖22

]
≤ δ and complete the proof. J

3.2 Proof of the two key lemmas
In this subsection, we provide the proofs for Lemma 10 and Lemma 11. Let us start
with Lemma 10 which shows that the tracking error can be upper bounded by the Frobenius
norm of B̃η,f(m) .

Proof of Lemma 10. Recall that we define B̃η,x such that γ(x) = σ>B̃η,xσ where σ is 8-wise
independent Rademacher random vector. An important trick here is that we think of fixing9
η in the following.

The starting point of chaining argument is constructing a sequence of ε-nets with expo-
nentially decreasing error for {B̃η,f(t)}t∈[m]. Note that here {B̃η,f(t)}t∈[m] are matrices but
one can view it as a vector and apply Lemma 6 where `2 norm for a vector becomes Frobenius
norm for a matrix. Namely, for any non-negative integer `, let Tη,` be the (‖B̃η,f(m)‖F /2`)-net
for {B̃η,f(t)}t∈[m] under Frobenius norm where |Tη,`| ≤ 1 + 22`. Note that here we fixed η
first and then constructed the nets. Thus, for each t ∈ [m], one can rewrite B̃η,f(t) into a
chain as follows.

B̃η,f(t) = B
(t)
η,0 +

∞∑
`=1

B
(t)
η,` −B

(t)
η,`−1, (2)

9 We do this by conditioning on η.

APPROX/RANDOM 2019



2:8 Tracking the `2 Norm with Constant Update Time

where B(t)
η,` ∈ Tη,` and ‖B̃η,f(t) − B(t)

η,`‖F ≤ 2−` · ‖B̃η,f(m)‖F . Moreover, from Equation 2
we have

E sup
t∈[m]

γ(f (t)) ≤ E sup
t∈[m]

γ(B(t)
η,0) +

∞∑
`=1

E sup
t∈[m]

γ(B(t)
η,` −B

(t)
η,`−1). (3)

To bound the first term of Equation 3, observe that Tη,0 = {B̃η,f(1)} where B̃η,f(1) is
the all zero matrix. Namely, the first term of Equation 3 is zero. As for the second term
of Equation 3, we apply the chaining argument as follows. For any positive integer `, denote
A` = {B(t)

η,` −B
(t)
η,`−1}t∈[m]. Note that from the construction of ε-net in Lemma 6, we have

|A`| ≤ 2|Tη,`| ≤ 22`+2 by triangle inequality.

E

[
sup
t∈[m]

γ(B(t)
η,` −B

(t)
η,`−1)

]
=
∫ ∞

0
Pr
[

sup
A∈A`

γ(A) > u

]
du

≤ u∗` +
∫ ∞
u∗

`

Pr
[

sup
A∈A`

γ(A) > u

]
du, (4)

where u∗` > 0 will be chosen later. For any A ∈ A` and integer p ≥ 2, by Markov’s inequality
and Hanson-Wright inequality, we have

Pr[γ(A) > u] ≤ E[γ(A)p]
up

=
‖σ>Aσ‖pp

up
≤
(
C · √p‖A‖F + C · p‖A‖

)p
up

for some constant C > 0. Note that the randomness here is only in σ and thus we
can apply the Hanson-Wright inequality. Let R` = supA∈A`

(
C · √p‖A‖F + C · p‖A‖

)
≤

C ′p·‖B̃η,f(m)‖F ·2−` for some C ′ > 0. The last inequality holds because of ‖·‖ ≤ ‖·‖F and the
choice of ε-net. Now, choose u∗` = 2S` ·R` where S` will be decided later, Equation 4 becomes

E

[
sup
t∈[m]

γ(B(t)
η,` −B

(t)
η,`−1)

]
≤ u∗` +

∫ ∞
u∗

`

|A`| ·
R`

p

up
du (5)

≤ 2S`R` + |A`| ·
R`

p

(2S`R`)p−1

≤ 2S`C ′p · ‖B̃η,f(m)‖F ·2−` + |A`| ·
C ′p · ‖B̃η,f(m)‖F

Sp−1
`

·2−`

where the second term of Equation 5 is due to union bound. Now, Equation 3 becomes

E sup
t∈[m]

γ(f (t)) ≤
∞∑
`=1

2S`C ′p · ‖B̃η,f(m)‖F ·2−` + |A`| ·
C ′p · ‖B̃η,f(m)‖F

Sp−1
`

·2−`

≤ ‖B̃η,f(m)‖F ·

( ∞∑
`=1

2C ′pS` · 2−` + 2`C ′p
Sp−1
`

)
. (6)

Choose S` = 23`/4 and p ≥ 4, the summation term in Equation 6 can thus be upper
bounded by a constant. We conclude that

E sup
t∈[m]

γ(f (t)) = O(‖B̃η,f(m)‖F ).

Note that this also means that 8-wise independence suffices and thus the sketching matrix
can be efficiently stored (see Appendix A for more details). J
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Next, we prove Lemma 11 which upper bounds the expectation of ‖B̃η,x‖ for any x ∈ Rn.

Proof of Lemma 11. We first show that Eη‖B̃η,x‖2F ≤
‖x‖4

2
k and the lemma immediately

holds due to Markov’s inequality.
Let 1ii′ be the indicator for whether there exists j ∈ [k] such that ηij = ηi′j = 1. Note

that for i 6= i′, E[1ii′ ] = 1/k and the only randomness here is in η.

E‖B̃η,x‖2F = E
∑

i,i′∈[n]

(B̃η,x)2
i,i′ = E

∑
(i,i′)∈[n]2, i 6=i′

x2
ix

2
i′1ii′

= 1
k

∑
(i,i′)∈[n]2, i 6=i′

x2
ix

2
i′ ≤

‖x‖42
k

,

where the last inequality is by Cauchy-Schwarz. Note that 8-wise independence is sufficient
in the above argument. J

I Remark 12. Here, let us briefly compare the difference between our techniques and that
in [4]. There are two key observations on the structure of the sketching matrix of CountSketch.
First, we observe that the Frobenius norm of Π>Π is dominated by its diagonal and thus
removing the diagonal would give us a more accurate analysis on the contribution from
the off-diagonal term. However, removing the diagonal of Π>Π destroys the symmetric
structure and thus the standard ε-net argument (e.g., in [4]) would not work. To overcome
this, we observe that one can directly construct ε-net for the matrix obtained by removing
the diagonal from Π>Π. Combining these two observations and standard chaining argument,
we are able to show that CountSketch provides `2 weak tracking.

4 Strong tracking of AMS sketch and CountSketch

In this section, we are going to discuss the strong tracking of AMS sketch and CountSketch.
We start with a standard reduction from weak tracking to strong tracking via union bound.
This gives us an O(logm) blow-up in the dependency on δ. Next, we show that this is
essentially tight for both AMS sketch and CountSketch up to a logarithmic factor.

I Lemma 13 (folklore). For any ε > 0, δ ∈ (0, 1), and n,m ∈ N. If a linear sketch provides
(ε, δ) weak tracking for length m inputs having value from [n], then it also provides (2ε, δ′)
strong tracking where δ′ = min{1, (logm) · δ}.

Proof. See Subsection B.1 for details. J

From Lemma 13, we immediate have the following corollaries.

I Corollary 14. For any ε > 0 and δ ∈ (0, 1), AMS sketch with O
(
ε−2(log logm+ log(1/δ))

)
rows provides `2 (ε, δ)-strong tracking.

I Corollary 15. For any ε > 0 and δ ∈ (0, 1), CountSketch with O
(
ε−2δ−1 logm

)
rows

provides `2 (ε, δ)-strong tracking.

I Remark. After applying median trick on CountSketch, the dependency of the number
of rows on δ becomes O(log(1/δ)) and thus O

(
ε−2(log logm+ log(1/δ))

)
rows suffices to

achieve `2 (ε, δ)-strong tracking.
In the following, we are going to show that the above two upper bounds are essentially

tight for these two algorithms.
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I Theorem 16. There exists constants C > 0 such that for any ε ∈ (0, 0.1) and δ ∈ (0, 1),
there exists N0 ∈ N such that if k < C ·

(
log logm

log(1/ε) + log(1/δ)
)
and N0 ≤ n ≤ m, then fully

independent AMS sketch with k rows does not provide `2 (ε, δ)-strong tracking.

That is, AMS sketch requires Ω̃
(
ε−2(log logm+ log(1/δ))

)
rows to achieve `2 (ε, δ)-strong

tracking. Interestingly, the hard instance for AMS sketch to achieve strong tracking is simply
the stream consisting all distinct elements. See Subsection B.2 for details.

I Theorem 17. There exists a constant C > 0 such that for any ε ∈ (0, 0.5), and δ ∈ (0, 1),
there exists N0 ∈ N such that if k ≤ C · ε−2δ−1 logm

log(1/ε) and N0 ≤ n ≤ O(logm), then
CountSketch with k rows does not provide `2 (ε, δ)-strong tracking.

That is, CountSketch requires Ω̃(ε−2δ−1 logm) rows to achieve `2 (ε, δ)-strong tracking. The
hard instance for CountSketch is more complicated than that of AMS sketch. See Subsec-
tion B.3 for details.

5 Conclusion

In this work, we showed that CountSketch provides `2 weak tracking with update time having
no dependence on the error parameter ε. We also give almost tight `2 strong tracking lower
bounds for AMS sketch and CountSketch.

An immediate open problem after this work would be tracking `p with faster update time
for 0 < p < 2. The `p estimation problem had been solved by Indyk [12] via p-stable sketch
and was proven to provide weak tracking by Błasiok et al. [3]. However, same as AMS sketch,
the p-stable sketch is dense and has update time Ω(ε−2). Nevertheless, Kane et al. [18] gave a
space-optimal algorithm for `p estimation problem with update time O(log2(1/ε) log log(1/ε)).
It would be interesting to see if their algorithm also provides `p weak tracking.
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A Implementation of CountSketch

Here, we present the implementation of CountSketch for the completeness. Note that the
construction is standard and not new.

Algorithm 1 Constructing CountSketch.

1: k ←
⌈
c
ε2

⌉
for some constant c > 0.

2: f̃ ∈ Zk vector with initial value 0.
3: Sample h : [n]→ [k] from a 8-wise independent hash family.
4: Sample g : [n]→ {±1} from a 8-wise independent hash family.
5: for t = 1, 2, . . . ,m do
6: On input at = i, set f̃h(i) = f̃h(i) + g(i).

Note that both h and g can be stored in space O(logn + log(1/ε)) and be evaluated
in O(1) many arithmetic operations. f̃ can be stored in space O(ε−2 logm) bits. For the
convenience of analysis, we define the sketching matrix Π ∈ {0,±1}k×n of CountSketch by
Πh(i),i = g(i) for all i ∈ [n].

B Proofs for strong tracking

B.1 From weak tracking to strong tracking
After applying union bound on all points t = 1, 2, . . . ,m, a streaming algorithm provides `2
(ε, δ)-approximation also provides `2 (ε, δ′)-strong tracking where δ′ = min{1,mδ}. However,
the blow-up in δ is m, which is undesirable. The following lemma shows that with a more
delicate union bound argument, the reduction from weak tracking to strong tracking only
has O(logm) blow-up in δ. Note that the lemma is a folklore and we provide a proof
for completeness.

Proof. Let {f (t)}t∈[m] be the frequency of an insertion-only stream and let {f̃ (t)}t∈[m] be its
(randomized) approximations produced by the linear sketch. Let w = blogmc+1 and ti = 2i−1
for each i ∈ [w]. Note that for each i ∈ [w] and ti−1 < t ≤ ti, 1

2‖f
(ti)‖22 ≤ ‖f (t)‖22 ≤ ‖f (ti)‖22.

Define the event

Ei :=
{
‖f̃ (ti)‖22 − ‖f (ti)‖22| > ε‖f (ti)‖22

}
.

Observe that for each ti−1 < t ≤ ti, |‖f̃ (t)‖22 − ‖f (ti)‖22| > 2ε · ‖f (t)‖22 would imply ¬Ei.
Namely, ¬ ∪i∈[w] Ei implies strong tracking.

By the `2 (ε, δ)-weak tracking property of the streaming algorithm, for each i ∈ [w], we
have Pr [Ei] ≤ δ and thus Pr[∪i∈[w]Ei] ≤ wδ. We conclude that the streaming algorithm
provides `2 (2ε, wδ)-strong tracking. J

B.2 Strong tracking lower bound for AMS sketch
The hard instance is simply the stream of all distinct elements, i.e., it = t for all t ∈ [m].

Proof of Theorem 16. Consider the stream of all distinct elements as the hard instance,
i.e., it = t for all t ∈ [m]. Thus, ‖f (t)‖22 = t and ‖Πf (t)‖22 =

∑
i∈[k]

(∑
j∈[t] Πi,j

)2
for all

t ∈ [m].
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Define a sequence of time {tj} as follows. t0 = 0 and tj =
∑
i∈[j] ∆i where ∆i = d10/εei.

Pick ` and m properly such that t` ≤ m. Some quick facts about the choice of parameters
here: (i) |tj −∆j | ≤ ε

5 · tj . (ii) ` = Θ( logm
log(1/ε) ).

To show AMS sketch does not provide (ε, δ)-strong tracking for ε ∈ (0, 0.1) and δ ∈
(0, 1), it suffices to show that with probability at least δ there exists j ∈ [`] such that
‖Πf (tj)‖22 − tj > (1 + ε) · tj .

For the convenience of the analysis, for any i ∈ [k] and j ∈ [`], let X(tj)
i =

∑tj
s=tj−1+1 Πi,s

which is the sum of ∆j independent Rademacher random variables divided by
√
k. Also let

Zj =
∑
i∈[k](X

(tj)
i )2. Note that E[Zj ] = ∆j/

√
k and

‖Πf (tj)‖22 =
∑
i∈[k]

∑
j′∈[j]

X
(tj′ )
i

2

= Zj +
∑
i∈[k]

 ∑
j′∈[j−1]

X
(tj′ )
i

2

+ 2
∑
i∈[k]

〈X(tj)
i ,

∑
j′∈[j−1]

X
(tj′ )
i 〉. (7)

Define an event Ej := {Zj ≥ (1+2ε) ·E[Zj ]} for each j ∈ [`]. Observe that when conditioning
on ∩j′∈[j−1]¬Ej′ , the second term of Equation 7 is bounded by O(tj−1) and the third term
is bounded by O(

√
tj−1Zj) due to Cauchy-Schwarz. By the choice of parameters, both term

can be bounded by 0.1tj . Furthermore, Ej implies ‖Πf (tj)‖22 − tj > (1 + ε) · tj . Note that
Ej is independent to E1, . . . , Ej−1. The following lemma lower bound the probability of Ej
to happen.

I Lemma 18. There exists a constant c > 0 such that Pr[Ej ] ≥ e−cε
2k for any j =

Ω(log log k).

Proof of Lemma 18. From the seminal Berry-Esseen theorem [2, 9], we know that when
tj = eΩ(k) = Ω( logm

δ ) then X(tj) is point-wisely e−Ω(k)-close to a normal distribution with
zero mean and variance ∆j . That is, kZj

∆j
is also point-wisely e−Ω(k)-close to a chi-square

distribution χ2
∆j

with mean ∆j and ∆j degree of freedom10.
Inglot and Ledwina [13] showed that the tail of chi-square random distribution can be

lower bounded as Pr[χ2
k ≥ (1 + 2ε) · k] ≥ 1

2e
−ε2k/10 when k large enough. Combine with the

Berry-Esseen theorem, we have Pr[Ej ] ≥ e−cε
2k for some constant c > 0. J

Note that as {Zj}j∈[`] are mutually independent, the events {Ej}j∈[`] are also mutually
independent. That is,

Pr
[
∃t ∈ [m],

∣∣∣‖Πf (t)‖22 − ‖f (t)‖22
∣∣∣ > 2ε‖f (t)‖22

]
≥ Pr

[
∪j∈[`]Ej

]
≥ 1−

∏
j∈[`]

Pr [¬Ej | ¬Ej′ , ∀j′ ∈ [j − 1]]

≥ 1−
(

1− e−cε
2k
)`
≥ `e−cε

2k.

J

Namely, there exists another constant C > 0 such that if k < Cε−2
(

log logm
log(1/ε) + log(1/δ)

)
≤

1
c ε
−2 log `

δ . Thus, AMS sketch does not provide (ε, δ)-strong tracking for all ε ∈ (0, 0.1).

10Recall that a chi-square random variable of d degree of freedom is equivalent to the sum of d squares of
the standard normal random variable.
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B.3 Strong tracking lower bound for CountSketch
To prove Theorem 17, we are going to construct a stream such that any CountSketch does
not provide strong tracking. Let’s start from some observation. For any i 6= i′ ∈ [n]
and a > 0, let x = a(ei + ei′) such that ‖x‖22 = 2a2. Now, observe that If Πi = Πi′ ,
then we have ‖Πx‖22 = 4a2. If Πi = −Πi′ , then we have ‖Πx‖22 = 0. Note that in both
cases, the approximation ‖Πx‖22 and the correct answer ‖x‖22 has a huge gap 2a2, i.e.,∣∣‖Πx‖22 − ‖x‖22

∣∣ ≥ ‖x‖22.
With the above observation, one can see that a collision (either Πi = Πi′ or Πi = −Πi′)

is a sufficient condition for an estimation error. As a result, to show CountSketch does not
provide strong tracking, it suffices to show the following two things: (i) there will be some
collision with constant probability and (ii) construct a stream such that once a collision
happens, the estimation error is large.

Note that (ii) is very specific to tracking since unlike `2 estimation which only cares
about the final estimation, we need to keep track of the estimation at any time. Thus, to
show the impossibility of tracking, we have to show that the estimation fails at least once at
some point.

Proof of Theorem 17. Let n be the number of elements and k be the number of rows of
CountSketch. Let ∆ = d100/εe and w = d1/εe. For any j ∈ [`], define tj =

∑
j′∈[j] ∆j′+1 =

∆j+1−∆1

∆−1 and the stream at time tj as follows.

f (tj) =

∆, . . . ,∆︸ ︷︷ ︸
w

,∆2, . . . ,∆2︸ ︷︷ ︸
w

,∆j , . . . ,∆j︸ ︷︷ ︸
w

, 0, . . . , 0

 .

We have ‖f (tj)‖22 =
∑
j′∈[j] w ·∆2j′+1 = w·∆2j+2−w·∆2

∆2−1 . Note that one can easily complete
rest of the stream {f (t)}t∈[m] for any m ≥ t`. Note that here we can pick ` = Θ( logm

log(1/ε) ).
Define the event Ej := {‖Πf (tj)‖22−‖f (tj)‖22 > ε ·‖f (tj)‖22}. To show that CountSketch

does not provide w2 (ε, δ)-strong tracking, it suffices to prove Pr[∪j∈[`]Ej ] > δ. The following
lemma lower bounds the probability of single Ej .

I Lemma 19. For each j ∈ `, we have Pr[Ej | ¬ ∪j′∈[j] Ej′ ] ≥ 1
10kε2 .

Proof. First, let f̄ (tj) = f (tj)− f (tj−1) for each j ∈ ` where we define f (0) = 0. Observe that

‖Πf (tj)‖22 − ‖f (tj)‖22 = ‖Πf̄ (tj) + Πf (tj−1)‖22 − ‖f̄ (tj) + f (tj−1)‖22
= ‖Πf̄ (tj)‖22 − ‖f̄ (tj)‖22 + ‖Πf (tj−1)‖22 − ‖f (tj−1)‖22
+ 2〈Πf̄ (tj),Πf (tj−1)〉 − 2〈f̄ (tj), f (tj−1)〉.

Further, condition on ¬ ∪j′∈[j−1] Ej′ , we have ‖f (tj−1)‖22, ‖Πf (tj−1)‖22, |〈Πf̄ (tj),Πf (tj−1)〉|,
and |〈f̄ (tj), f (tj−1)〉| are all at most (ε/10) · ‖f (tj)‖22 by the choice of ∆. Namely,

‖Πf (tj)‖22 − ‖f (tj)‖22 ≥ ‖Πf̄ (tj)‖22 − ‖f̄ (tj)‖22 −
ε

2 · ‖f
(tj)‖22. (8)

I Lemma 20. Pr
[
‖Πf̄ (tj)‖22 − ‖f̄ (tj)‖22 > 3ε · ‖f (tj)‖22

]
> 1

10kε2 .
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Proof. Let us consider the columns of Π that correspond to the non-zero entries of f̄ (tj). That
is, column ∆ ·(j−1)+1 to ∆ ·j. Note that once there are exactly one collision happens among
these columns and the both the value are the same, then ‖Πf̄ (tj)‖22 − ‖f̄ (tj)‖22 > 3ε · ‖f (tj)‖22.
The probability of the above to happen is at least the following.

1
2 ·

k ·
(
w
2
)
· (k − 1) · (k − 2) · · · (k − w + 2)

kw
≥ w2

5k >
1

10kε2 . J

Now, Lemma 19 immediately follows from Equation 8 and Lemma 20. J

Let us wrap up the proof of Theorem 17 as follows.

Pr
[
∃t ∈ [m],

∣∣∣‖Πf (t)‖22 − ‖f (t)‖22 > ε‖f (t)‖22
∣∣∣] ≥ Pr

[
∪j∈[`]Ej

]
=
∏
j∈[`]

Pr
[
Ej | ¬ ∪j′∈[j−1] Ej′

]
≥
(

1− 1
10kε2

)`
≥ 1− `

kε2
.

By the choice of parameters, the last quantity would be greater than δ and thus CountS-
ketch with k ≤ C · ε−2δ−1 log(m)

log(1/ε) rows does not provide `2 (ε, δ)-strong tracking. J
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