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This dissertation comprises two studies of equilibrium models with both dy-

namic demand and dynamic supply sides. The first is an empirical study of the US

video games industry, and the second is a theoretical study.

Chapters 1 and 2 develop a model for quantifying the role of social learning

in consumers’ dynamic demand and finding optimal intertemporal prices for profit

maximizing firms in a market populated by forward-looking social learners. Optimal

prices are a result of a Markov perfect equilibrium played between the firm and

the consumers. Nested in the market equilibrium is a demand equilibrium played

among consumers who make the “right” purchase/wait decisions given endogenously

produced product information. The empirical exercises are conducted in two steps.

The first step estimates demand parameters, including those associated with social

learning. Endogeneity of prices is remedied with a pseudo pricing policy function

of relevant state variables. In the second step, optimal prices are found by the

Mathematical Programming with Equilibrium Constraints (MPEC) approach. The



model is applied to the US video games industry with sales data of PlayStation

3 games. The results reveal that (1) compared to static social learning, forward-

looking social learning reduces equilibrium profits of games in the sample by $5.2M

(28.4%) on average; (2) an incorrect belief of consumers’ forward-looking behavior

reduces a firm’s profits by a maximum of 29.92%. These results indicate great value

for researches on consumers’ forward-looking social learning behavior.

In chapter 3 we study the effect of adding strategic buyers to the computational

model of dynamic price competition when sellers experience learning-by-doing and

organizational forgetting developed by Besanko et al. (2010) (BDKS). The addition

is motivated by the presence of repeat buyers in many industries where learning-

by-doing has been documented, and the role that the assumption of a monopsony

strategic buyer has played in the theoretical literature. We characterize the degree

of strategic buyer behavior using a single parameter, and show that even quite

limited strategic behavior changes the equilibrium correspondance by almost entirely

eliminating the multiplicity of equilibria emphasized by BDKS, and ensuring that

no seller is likely to dominate the industry in the long-run. We examine how the

welfare of both buyers and sellers varies with the degree of strategic buyer behavior.
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Chapter 1: Demand Estimation with Forward-looking Social Learn-

ers: The Case of the US Video Games Industry

1.1 Introduction

“Single digits (of online reviews) didn’t seem to move the needle at all. It

wasn’t enough to get people comfortable with making that purchase decision.”

— John McAteer, Google Retail and Tech

The modern era has greatly transformed retailing. On the one hand, many

products have become increasingly sophisticated and harder to appraise before pur-

chase. On the other hand, the abundance of product review information in the

public domain has greatly eased consumers’ anxiety of “making the right choice”.

Such information is especially important for durable goods, including consumer elec-

tronics like smart phones and personal computers and entertainment products like

video games and movies, for which each consumer typically has only a unit demand.

Barring opportunities to try out the product at a store and the like, consumers of

durable goods largely need to rely on so-called social learning to resolve their uncer-

tainty, which means learning the opinions of others either in the real world or on the

Internet. Indeed, according to a recent poll by the Ipsos company, 78% of Americans
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read online reviews before they make purchases (Bassig 2013). Perhaps inevitably,

the desire to become more informed leads to purchase delay for the sake of better

information, as is evidenced by the above quote by John McAteer, who runs shop-

ping.google.com. While strategic informational delay poses new challenges for retail

practitioners, it also opens up new channels through which consumers’ purchase de-

cisions can be influenced by a firm. In this paper, I focus on the pricing policies for

sellers of durable experience goods. Set in the US video games industry, I attempt to

answer the three following questions. 1) How important a role does social learning

play in consumers’ purchase decisions? 2) How should a profit-maximizing firm set

optimal intertemporal prices to a population of forward-looking social learners? 3)

What is the implication of consumers’ forward-looking social learning behavior for

the firm’s profits?

My answer to the first question is that relative to their prior beliefs, con-

sumers on average assign a weight of 65.5% to social learning in the first month

that a product in the sample is released to the market. To answer the second ques-

tion, I use the method of Mathematical Programming with Equilibrium Constraints

(MPEC) and develop an algorithm to find optimal intertemporal prices as functions

of relevant state variables, which include consumers’ belief variables. Armed with

optimal prices, I find the answer to the third question by making two counterfac-

tual comparisons: 1) Compared to myopic social learners, a market populated by

forward-looking social learners reduces a firm’s maximum profits by 28.4%; 2) Com-

pared to correctly assessing their patience level, wrong belief of consumers’ ability

to look forward costs a firm up to 29.92% of its optimal profits.
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To answer these questions, I develop an empirical model with which to analyze

the optimal pricing policy of a firm selling a durable good with initially uncertain

quality to a population of homogeneous consumers. At the beginning, consumers

hold a common prior belief of a product’s quality. This belief then evolves in a

Bayesian manner as more consumers buy and report their experiences to the public

opinion pool. Such mechanism of endogenous information accumulation creates

an interdependence of decisions among consumers: a consumer’s value of waiting

depends on how many other consumers make purchases in the current period. The

demand equilibrium concept then naturally arises: demand is in equilibrium when

the marginal consumer finds it equally beneficial to purchase and to wait.1 Put

differently, when more consumers than the equilibrium level make purchases, too

much information is generated that some of them prefer to wait. Conversely, when

too few consumers buy, some delayers shall deem the informational gain too small to

justify the wait. This demand equilibrium is nested in the market equilibrium, which

is a Markov Perfect equilibrium (MPE) where both the firm and the consumers play

best responses to the other party’s action in every state. That is, consumers make

the correct purchase/wait decisions according to firm’s optimal prices; and the firm

sets prices to maximize its present discounted value (PDV) of future profits, fully

accounting for consumers’ decisions and the resulting evolution of state variables.

The empirical exercise is conducted in two steps. In the first step, I use the de-

mand model to find demand estimates. In the second step, these estimates are input

1The model is actually of a continuum of consumers. I use the discrete language because it’s
more intuitive.
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to the equilibrium-finding algorithm, which solves for optimal prices. In demand es-

timation, an endogeneity problem arises because price potentially depends on both

the unobserved product characteristic and the (also unobserved) belief variables. I

control for this problem by estimating the demand side together with a pseudo pric-

ing policy function, which is a polynomial function of the relevant state variables.

This function also serves as a proxy for the firm’s true pricing function, which is

used when consumers calculate value of waiting. Simulating evolution of unobserved

belief variables, I use Maximum Simulated Likelihood approach to find demand pa-

rameters. Finding optimal prices requires the firm to maximize its value function in

every state given consumers’ optimal responses and the resulting state evolutions. I

solve this problem by the Mathematical Programming with Equilibrium Constraints

(MPEC) approach, which is shown by Su and Judd (2012) to be more efficient than

the nested fixed point (NFXP) approach. In this approach, the firm’s problem is

written in such a way that, in addition to the pricing function, consumers’ value

function of waiting is also regarded as a control variable, and the two functions

satisfy the constraint that consumers play the demand equilibrium given the firm’s

pricing function in every state.

I apply this framework to the US video games industry. The data I use are

monthly sales prices and quantities obtained from NPD Group of video games re-

leased on the SONY PlayStation 3 between January and December 2009. I observe

the complete history of sales prices and quantities since the introduction of every

product. Demand estimates are consistent with the observed downward-sloping pat-

terns of prices. They also reveal that social learning is an important determinant in

4



consumers’ purchase decisions. To be precise, for the games in the sample, in the

first month after their introduction, an average weight of 65.5% is assigned to the

social learning signal when consumers make their purchase decision. This weight

gradually decreases over time and most learning happens within the first three to

four months, however, it’s clear that social learning plays a significant role in con-

sumers’ purchase decisions.

Demand estimates are then used to find equilibrium prices and profits for the

firm. These results allow me to do two counterfactual exercises. In the first exercise,

I compare firm profits in two different worlds: one where consumers are static de-

cision makers who learn; one where consumers are forward-looking social learners.

The result shows that the forward-looking behavior reduces firm’s profits by $5.2M

(28.4%) on average. This result is regardless of whether the product is introduced

with a quality belief higher or lower than its true quality. The intuition is that

forward-looking social learners are more rational than their myopic counterparts in

that they recognize the value of waiting for better information. This additional ratio-

nality limits the firm’s ability to extract profits. In the second exercise, I calculate

the firm’s profit loss when it incorrectly assumes consumers’ discount parameter.

With the true patience level set at 0.975, the firm loses 4.81%, 8.21% and 17.58% of

its optimal profits when it assumes consumers’ patience level is 0.9, 0.75 and 0.5 re-

spectively. In the extreme case where patient consumers are assumed to be myopic,

firm suffers a loss of 29.92% of its PDV of profits. This exercise quantifies the mon-

etary value to the firm of the information about the extent to which consumers look

forward. It indicates that researches regarding consumers’ forward-looking learning
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behavior is immensely valuable to the firm.

The rest of the first two chapters is organized as follows. Section 1.2 reviews

the relevant literature. Section 1.3 describes the model. Section 1.4 then discusses

the empirical strategy and derives the simulated likelihood function for estimation

of the dynamic model of consumer demand. Section 1.5 introduces the video game

data and discusses the demand estimates. The firm’s decisions are discussed in

chapter 2. Section 2.1 develops the firm model. Section 2.2 discusses the pricing

implications corresponding to these estimates of demand. Section 2.3 concludes.

1.2 Related literature

The social learning literature and the dynamic pricing literature are both ex-

pansive.2 In this section, I review only researches most relevant to my study.

Of the theoretical literature on social learning, Frick and Ishii (2016) is the

only paper that studies the innovation adoption problem of forward-looking social

learners. They provide a careful analysis of consumers’ informational incentives and

their dependence on quantitative and qualitative features of the news environment

through which social learning occurs. They show that qualitatively different news

environments give rise to observable differences in aggregate adoption dynamics,

which implies a purely informational explanation for two of the most commonly

observed adoption patterns (S-shaped vs. concave curves). Quantitatively, they

identify news environments where beyond a certain level, increased opportunities for

2See Mobius and Rosenblat (2014) for a review of the theoretical and empirical literature of
social learning. Gönsch et al. (2013) provides a review of the newer theoretical literature of dynamic
pricing. Chan et al. (2009) reviews structural studies of the empirical pricing problem.
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social learning can slow down adoption and learning and do not increase consumer

welfare. These results depend non-trivially on the ease and nature of information

transmission of the news environment.

On the empirical side, many researchers have used reduced form studies to

show that social learning exists in many industries, and often has sizable impact

on consumers’ adoption decisions and firms’ profits. In the movie industry, Moretti

(2011) uses the number of screens dedicated to a movie in its opening weekend to

identify ex ante demand expectations. He then compares the sales trajectories of

movies with positive surprise and negative surprise in the opening weekend, i.e.

movies with higher than expected demand and lower than expected demand. Based

on a few pieces of evidence, he concludes that social learning is an important de-

terminant of sales in the movie industry, accounting for 32% of sales for the typical

movie with positive surprise. In the book industry, Chevalier and Mayzlin (2006)

studies the valence of online book reviews. They use public data from Amazon.com

and Barnesandnoble.com. By comparing the sales of the same book on the two

platforms with a “differences-in-differences” approach, they find that the addition

of new, favorable reviews at one site results in an increase in the sales of a book at

that site relative to the other site. Furthermore, analysis of the length of reviews

suggest that consumers actually read and respond to written reviews, not merely

the summary statistics provided by the websites. In agriculture, there is also evi-

dence for forward-looking social learning: Bandiera and Rasul (2006) analyze the

decision of farmers in Mozambique to adopt a new crop, sunflower. They find that

if a farmer’s network of friends and family contains many adopters of the new crop,

7



knowing one more adopter may make him less likely to initially adopt it himself.

Munshi and Myaux (2006) compares farmers’ willingness to experiment with new

high-yield varieties (HYV) across rice and wheat growing areas in India. Farmers

in rice growing regions, which compared with wheat growing regions display greater

heterogeneity in growing conditions that make learning from others’ experiences less

feasible, are found to be more likely to experiment with HYV than farmers in wheat

growing areas. Ching (2010) is one of the few structural studies of social learn-

ing. He investigates the prescription drug market after patent expiration during the

80s, when the diffusion of generic drugs is fairly slow. He estimates consumer de-

mand for both branded and generic drugs in a static setting, and find evidence that

brand-name firms might set their prices lower than what they would do if they were

myopic, in order to slow down the learning process for generic qualities. Compared

to the previous works, mine is the first to incorporate a structural demand side with

forward-looking social learners.

There has been a long series of theoretical work studying the pricing of ex-

perience goods in economics. Early works include Shapiro (1983) , Cremer (1984),

Milgrom and Roberts (1986), Farrell (1986), Tirole (1988). These studies either

assume myopic consumers (Shapiro 1983), consider only the commitment price path

(Cremer 1984), or have unbiased expectations (Milgrom and Roberts 1986, Farrell

1986, Tirole 1988). More recently, Villas-Boas (2004) considers the equilibrium pric-

ing of experience goods in a duopoly model with differentiation along a location and

a taste dimension. The location is known at the outset whereas tastes are learned

through experience. It presents a sufficient condition on the skewness of the distri-
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bution under which brand loyalty exists in equilibrium. A common feature of these

papers is that they consider private learning only, i.e. they study repeat purchase

products, rather than durable goods. Bergemann and Välimäki (2006) was the first

to study experience goods pricing in a fully dynamic model with a population of

heterogeneous buyers with independent private valuations. They concluded that

optimal paths of sales and prices can be either decreasing or increasing depending

on whether the market is “mass” or “niche”. In an extension of their model, the

authors integrate elements of social learning. The opportunity to learn from other

buyers is transformed into an increase in the discount rate. In consequence, the

equilibrium policies of the seller are exactly as if he would face buyers with a larger

discount rate. Papanastasiou and Savva (2017)’s setup is closest to this study. They

investigated how the presence of social learning affects the strategic interaction be-

tween a dynamic-pricing monopolist and a forward-looking consumer population,

within a two-period model. They find that with the presence of social learning,

firm’s responsive pricing could be either increasing or decreasing. Moreover, even

though the social learning process exacerbates strategic consumer behavior (i.e., in-

creases strategic purchasing delays), its presence results in an increase in expected

firm profit.

In stark contrast to the richness of theoretical models is the sparsity of em-

pirical studies on dynamic pricing, even in the absence of the experience good as-

pect.3 Che et al. (2007) study pricing competition when consumer demand is state-

3Without specifically studying dynamic pricing, quite a few recent papers incorporate a dynamic
demand side. Some of these papers are Gandal et al. (2000), Hendel and Nevo (2006) Esteban
and Shum (2007), Melnikov (2012), Song and Chintagunta (2003), Gordon (2009) Goettler and
Gordon (2011) and Gowrisankaran and Rysman (2012).
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dependent (e.g. switching cost, inertia or variety-seeking in consumer behavior) in

the breakfast cereal market. They assume firms are forward-looking but boundedly

rational. They find that observed retail prices are consistent with firms having short

time horizons when setting prices (i.e., they look ahead by only one period). Nair

(2007) builds a dynamic model of demand incorporating forward-looking behavior

of heterogeneous consumers and a forward-looking firm that takes this consumer

behavior into account in formulating its optimal pricing policy. He presents an

empirical application to the video games market and show that consumer forward-

looking behavior has a significant effect on optimal pricing of games in the industry.

Relative to the existing empirical literature on dynamic pricing, my paper is the

first to study the fully dynamic pricing problem of a firm with a dynamic demand

side and social learning.

1.3 Model

This section discusses the main model of the paper. The model describes

the market dynamics of a monopoly firm selling a product with uncertain quality

to a population of forward-looking consumers who resolve the quality uncertainty

through social learning. I develop a discrete-time finite-horizon dynamic program-

ming model that has two parts: a demand model of forward-looking social learners,

and a supply model of a firm who maximizes present discounted value (PDV) of

future profits by dynamically setting prices over time. That is, the firm does not

commit to a price path beforehand.
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At the beginning of the first period, the firm introduces a product with un-

certain quality. Both the firm and the consumers are equally uninformed, and they

always share the same belief of the product’s quality. The uncertainty is gradually

resolved through social learning. The firm can set a different price in each period

with the purpose of maximizing future profits. The market is populated by a contin-

uum of ex-ante homogeneous consumers, who choose to buy or wait in every period.

Because the product is durable, once a purchase is made, the consumer leaves the

market. The sale process ends in finite periods. If consumers miss the last chance

to buy, they drop out of the market and get zero utility. The sequence of the events

are:

1. At the beginning of the first period, the firm introduces a product. How-

ever, the true quality Aj is unknown to both the firm and the consumers and

they share a common prior ζj1 of the quality, which is unobservable to the

econometrician.

2. At the beginning of every period, period-specific product characteristic ξjt and

belief of quality ζjt is learnt by both the firm and the consumers. The firm

sets a price pjt for the product for the current period.

3. Consumers observe the price and choose between (i) wait and enter the next

period, (ii) purchase and leave the market.

4. Buyers experience a utility and may report their experiences of the product

to form an aggregate signal. It is then used to update the population’s belief.
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5. By the end of the last period, if a consumer has not purchased the product,

he drops out of the market and gets zero utility.

Below I describe different pieces of the model in detail. Since the model is monop-

olistic, I suppress product subscript j when it’s not confusing.

1.3.1 Demand

The consumption of the product yields the following ex-post indirect utility

for consumer i:

υit = αA+ rA2 + ωht + γpt + ξt + εi1t. (1.1)

A is the present discounted lifetime utility, or “true quality” of the product. It is

the also the object of learning. r is a measure of consumers’ risk attitude. ht is a

time indicator defined as

ht =


t− 1 if t ≤ 12,

12 if t > 12.

(1.2)

This variable reflects the fact that consumers value the “newness” of the product:

the longer the product has been on the market, the less its value. However, after

the first year, “newness” no longer matters. pt is the period t price. ξt is a period-

specific product characteristic, observable to the firm and the consumers, but not

to the econometrician. This could be factors such as the screening of a movie that

is based on the game, or the good performance of a soccer star that is featured in
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a soccer game, etc. εi1t is an individual-specific demand shock for purchase that is

only observed by consumer i. Assume εit ≡ (εi0t, εi1t)
i.i.d.∼ Type I extreme value,

where εi0t is the idiosyncratic shock for waiting, which will be introduced below.

Bayesian social learning. The ex-post indirect utility is unknown to con-

sumer i at the time of making a purchase because A is uncertain. I now describe the

social learning process through which consumers establish and update their beliefs

of this uncertainty.

As is conventional in the learning literature (Ching et al. 2013), I assume nor-

mality for beliefs of quality. These are denoted by ζt ∼ N(At, σ
2
t ). Similarly, the ag-

gregate signal produced by early buyers is also assumed normal: Āt ∼ N(A, σ2
e/Qt).

σ2
e signifies precision of the aggregate signal, a result of both the credibility of indi-

vidual consumer’s signal and the number of quality reports the public can access.

Qt is the units sold in period t. The assumptions are that the aggregate signal

is centered on the true quality, and that its precision (inverse of variance) of the

aggregate signal is proportional to the demand in period t, i.e. the more sales are

made in a period, the more precise the aggregate signal.

Bayesian updating implies the following transition rule for the mean and vari-

ance of the belief:

At+1 = (1− ηt)At + ηtĀt, (1.3)

σ2
t+1 =

1

1/σ2
t +Qt/σ2

e

. (1.4)

Some discussion is in order regarding ηt, the weight placed on the aggregate
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signal. The Bayesian formula gives:

ηt =
σ2
t

σ2
t + σ2

e/Qt

. (1.5)

Define ιt ≡ σ2
t

σ2
e/Qt

, then ηt = ιt
ιt+1

is increasing in ιt. ιt is the ratio of period t

starting quality uncertainty and the uncertainty in the aggregate signal. When

ιt → 0, social learning is irrelevant. Either the quality of the product is certain

(σ2
t → 0) or consumers’ reports are pure noises (σ2

e → ∞). When ιt → ∞, social

learning is instantaneous: the population is either completely uninformed about the

product (σ2
t → ∞) or are capable of producing fully revealing signals (σ2

e → 0).

Thus ι1 =
σ2
1

σ2
e/Q1

can tell us how relevant social learning is when the product is first

introduced.

Expected utilities. Armed with quality beliefs, consumer i can form an

expectation of the ex-post indirect utility from purchase using the time t belief:

ui1t ≡ Et[υit] = αAt + r(A2
t + σ2

t ) + ωht + γpt + ξt︸ ︷︷ ︸
δ(pt,xt)

+εi1t. (1.6)

Both ξt and εi1t are known to the consumer and pass through the expectation

operation. For simplicity, we can denote the period-specific part of the expected

utility by δ(pt,xt). xt denotes the non-price (public) state variables of period t.

The value of consumer i waiting till the next period is defined recursively as

ui0t = βcEt[max(ui1,t+1, ui0,t+1)] + εi0t, (1.7)
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where βc is consumers’ discount factor, and εi0t is the demand shock associated with

waiting. Et represents the period t conditional expectation of the stochastic state

variables: pt+1, At+1 and ξt+1.

Regarding pt+1, I make the assumption that consumers are rational predictors

of the future price. That is, consumers know firm’s pricing policy function p(xt),

and they form correct expectation of pt+1 based on how state variables evolve.

The distinguishing feature of consumer i’s’ option value of waiting in this

model, however, is that it depends on other consumers’ actions. To see this, refer to

equations (1.6), (1.3), (1.4) and (1.5) and notice that the both At+1 and σ2
t+1 depend

on Qt, which is determined by all consumers’ “purchase/wait” decisions. Therefore,

to pinpoint the value of waiting, I introduce the demand equilibrium concept.

Value of waiting in demand equilibrium. I now describe how consumers’

value of waiting is determined in the demand equilibrium. Firstly, following Rust

(1987), the equilibrium value of waiting can be written in a “choice-specific” value

function:

ui0t = W (xt) + εi0t. (1.8)

Given the Type I extreme value distribution of εi,t+1, I can further write

W (xt) =

∫
log
[
exp(δ(p(xt+1),xt+1)) + exp(W (xt+1))

]
dF (xt+1|xt). (1.9)

In all but the last period, consumers play a game of “buy or wait” among

themselves. Each consumer has public state variables (pt,xt) and private state
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variables εit and choose between actions {Wait, Buy}, or {0, 1}. I look for a sym-

metric Bayesian Nash equilibrium in which consumers play the same strategy. I use

s′(xt, εit) to denote a generic strategy, and use s′(xt) to denote the probability of

purchase implied by s′(xt, εit):

s′(xt) = Eε[s
′(xt, εit) = 1]. (1.10)

Let ũi0t be consumer i’s generic expected payoff from waiting, then

ũi0t(s
′(xt, εit)) = Ψ(xt, s

′(xt)) + εi0t, (1.11)

where Ψ(·) is the generic value of waiting. That is

Ψ(xt, s
′(xt)) =

∫
log
[
exp(δ(p(xt+1),xt+1|s′)) + exp(W (xt+1|s′))

]
dF (xt+1|s′).

(1.12)

Here xt+1|s′ means the distribution of xt+1 conditional on all consumers playing

strategy s′. Since we are considering only the stage game of period t, we only

allow consumers to deviate from the equilibrium for this period, and force them

to comply to the equilibrium strategies for all future periods. Therefore, the right

hand side of equation (1.12) has W (·) rather than Ψ(·). In plain words, the generic

value of waiting is the option value of waiting until the next period, with state

variables’ evolution dictated by a generic strategy, and given optimal strategies in

future periods.
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Consumer i’s payoff of purchase is independent of other consumers’ actions,

so

ũi1t = ui1t = δ(pt,xt) + εi1t. (1.13)

Therefore, consumer i’s optimal strategy is simply

s′(xt, εit) =


1 if ũi1t ≥ ũi0t,

0 if ũi1t < ũi0t.
(1.14)

Definition 1. A Bayesian Nash equilibrium is a decision rule s(xt, εit) such that

equations (1.11), (1.13), and (1.14) hold for (almost) all consumers for (almost) all

εit.

Because the optimal strategy is of the “cutoff” form, I can simply describe the

equilibrium in terms of consumers’ choice probability. s′(xt) ∈ [0, 1] constitutes an

equilibrium of consumers’ game if

s′(xt) =
exp(δ(pt,xt))

exp(δ(pt,xt)) + exp(Ψ(xt, s′(xt)))
. (1.15)

Denote the equilibrium purchase probabilities with s(xt). Then the (equilib-

rium) value function of waiting is

W (xt) ≡ Ψ(xt, s(xt)). (1.16)
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Consumers’ purchase probability is given by

s(pt,xt) =
exp(δ(pt,xt))

exp(δ(pt,xt)) + exp(W (xt))
. (1.17)

Although equation (1.17) is of the familiar logit form, it’s important to recognize

that s(pt,xt) and W (xt) enter the definition of the other, and that both are results

of equilibrium consumer decisions.

Then period t demand is

D(pt,xt) = Qt = Mts(pt,xt), (1.18)

where Mt is the period t market size.

Discussion of demand equilibrium. Before turning to the firm’s problem,

I provide a brief discussion of the demand equilibrium concept to make it more

concrete.

Demand
Equilibrium

Future

State

Value of Wait
in

g

P
u
rc
ha
se
Pr

ob
.

Figure 1.1: A graphical illustration of demand equilibrium

Figure 1.1 provides a graphical illustration of the demand equilibrium concept.
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In the demand model, consumers’ purchase probability determines the distribution

of state variables of the next period, which in turn determines the value of waiting.

Consumers’ rationality then links their value of waiting back to the purchase prob-

ability. The demand is in equilibrium when this feedback loop is at a fixed point.

That is, consumers at the margin shall find buying and waiting equally preferable.

Put differently, when the purchase level is higher than the equilibrium level, infor-

mation generated by buyers is so much that some buyers are better off waiting until

the next period. On the other hand, if the purchase level is lower than equilibrium,

then some of the consumers who delay shall find it unworthwhile to do so, as there’s

not enough information being generated.

1.3.2 Evolution of state variables

The model’s non-price state variables are xt = (ht, At, σ
2
t , ξt,Mt). The transi-

tion of (At, σ
2
t ) has been described in subsection 1.3.1. I now state the assumptions

for Mt and ξt.

Transition of market size. In the video games industry, with the sales of

new hardware (video game consoles such as PlayStation 3) in each period, buyers of

these hardware become potential consumers for video game software. For simplicity,

I assume a constant inflow of N new consumers per period, and I calculate N as

the average of monthly hardware sales. The transition of market size is then:

Mt+1 = Mt(1− s(pt,xt)) +N. (1.19)
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Unobserved product characteristic. The unobserved product charac-

teristic ξjt is assumed to be i.i.d. across periods and products with mean 0, i.e.

ξjt ∼ N(0, σ2
ξ ).

1.4 Demand estimation and numerical strategy

In this section, I will use the demand model to estimate demand parameters.

The assumption is that the observed data are from demand equilibria. However, I

do not assume the firms to be profit maximizing as described in section 2.1.1. This

is due to two reasons: 1) the purpose of this paper is to find optimal prices for the

firm, so I do not assume the prices to be already optimal; 2) estimating demand with

a reduced-form supply side, as I will describe in subsection 1.4.1, is computationally

easier than doing it with a fully structural supply side. In the following, I first

discuss the price endogeneity problem and the pseudo pricing function approach

that I adopt to alleviate this problem. I then discuss the details of the maximum

simulated likelihood approach for demand estimation.

1.4.1 Pseudo pricing policy function

Because the researcher does not know the firm’ true pricing policy functions, he

faces two challenges in demand estimation. First, the researcher cannot use firms’

true pricing policy functions to proxy consumers’ expectations for future prices.

Second, he has to address the fact that unobserved product characteristic ξt and the

public information variable At may be correlated with prices. If such correlation is
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uncontrolled for, an endogeneity problem arises in demand estimation and parameter

estimates will be biased.

Nair (2007) employed a “limited information” approach to deal with the en-

dogeneoty problem, which effectively uses lagged price as an instrument for current

price. This approach is however not appropriate for my model. This is because un-

observed demand shock At in my model is serially correlated by design. Therefore,

if pt is endogenous, so is pt−1.

The technique I adopt is known as the pseudo policy function approach (e.g.

Ching (2010)). This technique approaches firm’s true policy function with polyno-

mials of the relevant state variables. 4 For now, I use the linear policy function:

ρjt(xjt) = ρj0 + ρ1t+ ρ2Ajt + ρ3σ
2
jt + ρ4ξjt + ρ5Mjt + εjt, (1.20)

where εjt ∼ N(0, σ2
ε). This function directly builds in correlation between pjt and

(Ajt, ξjt), which are represented by the coefficients ρ2 and ρ4. By estimating this

pseudo pricing policy function together with the demand side, any linear correlation

should be picked up by these coefficients. However, it’s possible that we could miss

correlation of pjt with higher orders of Ajt and ξjt.

4The theoretical foundation for this method is the Stone-Weierstrass theorem. One implication
of this theorem is that if the firm’s true pricing policy function is a continuous function ρ(x) on
N∏

n=1

[an, bn] ⊂ RN , then ∀ε there exists a polynomial function p(x) such that |p(x) − ρ(x)| < ε,

∀x ∈
N∏

n=1

[an, bn]. Moreover, the Stone-Weierstrass theorem implies that the tensor product bases

of orthogonal polynomials are also dense in C[RN ]. The orthogonal polynomials I use are the
Chebyshev polynomials. Details of these results can be found in Chapter 6 of Judd (1998). The
caveat of this method, however, is that only finite explorations of polynomial approximations can
be done. If the polynomials I use are of orders too low or that I miss relevant state variables as
covariates, the estimation results will be biased.
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1.4.2 Maximum simulated likelihood estimation

The demand is estimated with the Maximum Simulated Likelihood approach

(e.g. Cameron and Trivedi 2005). Let {Qjt, Pjt}(J,T )(j,t)=(1,1) be the monthly units

sold and prices data of all products in the sample, and denote all parameters to

estimate by Θ, i.e. Θ = (γ, ω, σ2
ε , σ

2
ξ , {Aj}Jj=1, {Aj1}Jj=1, {σ2

j1}Jj=1, {ρj0}Jj=1, {ρk}5k=1).

In demand equilibrium, the randomness in the model has 3 pieces: ξjt, εjt and Ajt.

Given {Aj1}Jj=1, {σ2
j1}Jj=1 and {Qjt}(J,T )(j,t)=(1,1), I simulate {Ajt}(J,T )(j,t)=(1,2) according to

the Bayesian formulas. Given a simulated Ajt, the demand and pricing functions

can be inverted to find the unobserved values:

ξ̂jt =D−1(Qjt, Pjt;Ajt) = log(
Qjt

Mjt −Qjt

)− αAjt − r(A2
jt + σ2

jt)− ωhjt

− γPjt +Wjt(Ajt)

(1.21)

ε̂jt = ρ−1jt (Pjt;Ajt, ξ̂jt) = Pjt − ρj0 − ρ1t− ρ2Ajt − ρ3σ2
jt − ρ4ξ̂jt − ρ5Mjt (1.22)

In demand equilibrium, the log-likelihood of observing data {Qjt, Pjt}(J,T )(j,t)=(1,1) is

L(Θ; {Qjt, Pjt}(J,T )(j,t)=(1,1)) =
J∑
j=1

T∑
t=1

log

{∫
fξ,ε(ξ̂jt, ε̂jt;Ajt)

∂(ξ̂jt, ε̂jt)

∂(Qjt, Pjt)
dF (Ajt)

}
.

(1.23)
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Based on (1.21) and (1.22) and the distribution assumptions for ξjt and εjt,

fξ,ε(ξ̂jt, ε̂jt;Ajt) = fξ(ξ̂jt;Ajt)fε(ε̂jt;Ajt, ξ̂jt)

=
1

σξ
φ(
ξ̂jt(Ajt)

σξ
)

1

σε
φ(
ε̂jt(Ajt, ξ̂jt)

σε
),

where φ(x) = 1√
2π
e−1/2x

2
is the pdf of the standard normal distribution. And the

Jacobian is given by

∂(ξ̂jt, ε̂jt)

∂(Qjt, Pjt)
= =

∣∣∣∣∣∣∣∣∣det


∂ξ̂jt
∂Qjt

,
∂ξ̂jt
∂Pjt

∂ε̂jt
∂Qjt

,
∂ε̂jt
∂Pjt


∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣det


∂ξ̂jt
∂Qjt

, γ

−ρ4 ∂ξ̂jt∂Qjt
, 1− ρ4γ


∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣(1− ρ4γ)
∂ξ̂jt
∂Qjt

+ ρ4γ
∂ξ̂jt
∂Qjt

∣∣∣∣∣
=

∣∣∣∣∣ ∂ξ̂jt∂Qjt

∣∣∣∣∣
=

Mjt

Qjt(Mjt −Qjt)

1.4.2.1 Values of waiting

For the purpose of demand estimation, the assumption is that the observed

data are from a demand equilibrium. Therefore, the product-and-period-specific

value function needs only to depend on Ajt. This is because first, given initial con-

ditions and data, hjt, σ
2
jt and Mjt are deterministic; second, ξjt doesn’t affect values

of waiting as it’s assumed to be non-correlated over time. Given the assumption
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that consumers are rational price predictors, and that we use the pseudo pricing pol-

icy function as proxy pricing policy function, value functions of waiting are defined

recursively as:

WjT (·) = 0,

and

Wjt(Ajt) =βc

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

log

{
exp

[
x− r(x2 + σ2

jt)− ωhj,t+1 − γρj,t+1 + z
]}

+
{

exp
[
Wj,t+1(x)

]} 1

σt[Ajt+1]
φ(
x− µt[Ajt+1]

σt[Ajt+1]
)

1

σε
φ(
y

σε
)

1

σξ
φ(

z

σξ
) dxdydz,

for t = 1, . . . , T − 1, where

ρj,t+1 = ρj0 + ρ1ht+1 + ρ2x+ ρ3σ
2
j,t+1 + ρ4z + ρ5Mj,t+1 + y

is the pseudo pricing policy function. Also,

µt[Aj,t+1] = E(Aj,t+1|Ajt),

σt[Aj,t+1] = (σ2
Aj,t+1

|Ajt)1/2

are the conditional mean and standard deviation of Aj,t+1 given Ajt.

1.5 Data and estimation results

In this section, I first briefly describe the video games industry and the data

I use. I then present estimates of demand and the pseudo pricing policy function.
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1.5.1 The video games industry

The computer and video games industry is a major entertainment industry

with 67% of American households playing computer or video games. The hardware

medium that runs the game software separates these markets: computer games can

be run on general computers, whereas video games are only run on game consoles

they are specifically designed for. The main players in the so-called 7th generation

video game era (since 2005) include Microsoft, Sony and Nitendo. These companies

develop and sell consoles (Xbox 360, PlayStation 3 and Wii, respectively), and

charge royalty fees to firms producing software. Software firms, mainly independent

publishers, develop games for one or more consoles, and pay royalty fees to the

hardware manufacturers for every game unit sold. Traditionally, the hardware has

been sold at or below cost, subsidizing the sales of the software, which in turn

accounts for most of the profits. In 2009, software revenues from video games in

the US totaled $9.9 billion, and more than 250 million units of video game software

were sold (Williams 2002, Entertainment Software Association 2010).

Critic reviews vs consumer reviews. Many review platforms exist in the

video games industry. The more popular ones include metacritic.com, IGN.com,

GameSpot.com and YouTube.com. There are two types of reviews: critic reviews

written by product experts and consumer reviews written by regular buyers. Critic

reviews are typically released in the early days of the life cycle of the game, while

consumer reviews are gradually accumulated as more sales are made. The two types

of reviews often agree, but discrepancies, even sharp differences, frequently occur.
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For example, Call of Duty: Ghost, a sequel game of a highly successful video game

franchise, Call of Duty, received critic ratings of 8.0 and 8.8 from GameSpot.com

and IGN.com, respectively. However, it only received an average consumer rating

of 5.7 on GameSpot.com over the first two months post-release (Liu and Ishihara

2017). 5

1.5.2 Data

The data I use are units sold and prices of all new video games released on

the Sony PlayStation 3 in the US market between January and December 2009.

The sample includes the complete history of aggregate retail sales and prices of 131

games since their date of introduction. The Point of Sales (POS) data were collected

by the NPD Group using scanners linked to over 90% of the consumer electronics

retail ACV in the US.6

The three main stylized features of the data are as follows:

• Though not monotonic, prices generally trend downwards. The average rate

of change over the first 18 months ranges from 0.96% to 15.38%, with the

median monthly rate of decline being 2.9%.

• Units sold have a less pronounced time trend. The average monthly decline

rate for all games in the sample is 0.8% or 4,416 units.

• There is wide variance in the unit sales of the games. The least successful

5As critic reviews are early and influential, it’s considered by other researches (e.g. Liu and
Ishihara 2017 ) to form consumers’ prior beliefs. In this version, the source of consumer learning
is unobserved. In future iterations, I shall make the learning process more concrete.

6The data doesn’t include digital downloads.
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game in the data (“Tornado Outbreak”) had 3,942 units sold, while the most

successful game (“Call Of Duty: Modern Warfare 2”) had a total of 4,789,738

units sold.

• Most sales and revenues are made early in the game’s life cycle. By the end

of the first 18 months, all games in the sample have made over 92% of their

lifetime sales and earned 97% of their lifetime revenue.

Figure 1.2 and table 1.1 provide more detailed exposition of these facts.

Figure 1.2: Time trends in price and units sold

1.5.3 Estimates of demand and pseudo pricing function parameters

Table 1.2 displays estimates for parameters in the demand function and the

pseudo pricing policy function. By reading the demand estimates, it can be seen

that all parameters are of the expected signs. Also, of all estimates, only the coeffi-

cient for market size in the pseudo pricing policy function is insignificant. All other

parameters are significant at least at the 5% level. Some features of consumers’

demand are: first, the consumers value high quality products, and are slightly risk

averse. In general, belief variance is much less important than belief mean to the
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Age of game
Prices Unit sales

Mean Std. dev. Mean Std. dev.

1 52.47 9.62 77,216.56 196,804.66
2 50.78 9.69 43,369.63 121,218.89
3 48.42 11.10 22,622.25 44,331.13
4 46.64 11.25 16,010.11 33,682.85
5 42.78 12.79 14,202.47 40,857.52
6 40.20 13.22 9,072.98 15,814.85
7 37.21 12.66 7,889.43 12,725.45
8 34.53 11.94 7,294.43 14,390.28
9 32.70 11.40 6,350.20 10,579.07
10 31.39 11.48 6,245.35 9,481.39
11 29.69 10.74 5,126.00 8,509.35
12 27.94 9.53 4,226.94 6,272.46
13 26.24 9.14 3,854.08 6,695.44
14 24.64 8.53 4,046.75 7,969.64
15 23.73 7.80 3,736.96 6,115.56
16 23.58 7.57 3,310.58 8,075.67
17 23.34 7.90 2,388.32 3,976.90
18 22.70 7.84 2,138.36 3,780.19

Table 1.1: Summary statistics for price and units sold over time

consumers. Second, the negative value of ω means that consumers value the “new-

ness” of the products. This fact is consistent with the downward-sloping prices we

observe in the data. The monetary equivalent of a product being one month newer

is $2.35 on average. Lastly, the mean of ιj1 = σ2
j1/(σ

2
e/Qj1) for the sample prod-

ucts is 1.90, which translates to an average weight parameter of 0.655. That is,

consumers on average place a weight of 65.5% on the aggregate signal in the first

month that the product is introduced. While this weight decreases over time as

belief variance decreases, it’s however clear that social learning plays an important

role in consumers’ purchase decisions.
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Variable Parameter Std. err.

Demand parameters
Belief mean (α) 0.9447*** 0.1962
Risk attitude (r) -0.0018*** 0.0005
Price (γ) -0.2016*** 0.0309
Newness (ω) -0.4747*** 0.1554

Demand shock variance (σ2ξ ) 2.1518** 0.9702

Signal noisinessc (σ2e) 1.9832** 1.0057

Pseudo pricing parameters
Time (ρ1) -0.0360*** 0.0095
Belief mean (ρ2) 6.3809*** 2.0186
Belief variance (ρ3) -3.3329*** 0.7653
Demand shock (ρ4) 2.5148*** 0.8522
Market size in millions (ρ5) 4.7354 10.4075
Log-likelihood -760.67
Number of observations 360

a. Full set of prior mean, variance and true quality,
as well as price intercepts estimated, but not reported.

b. ***: significant at 1%, **: significant at 5%
c. Quantity measured in millions

Table 1.2: Demand and pseudo pricing parameter estimates

1.5.4 An example of the importance of social learning

To make the impact of social learning more concrete, I provide an illustration

using an example game named “Borderlands”. This game is estimated to have true

quality A = 53.24, prior mean of quality A1 = 22.73, and prior variance of mean

σ2
1 = 16.58. To separate the effect of social learning, I fix price at pt = $50, and

unobserved demand shock ξt = 0.

Figure 1.3 plots the demand dynamics of “Borderlands” with and without

social learning. Firstly, as expected, belief variance monotonically decreases over

time. Secondly, the dashed horizontal red line plots the true quality, and it can be

seen that belief mean gradually approaches this value as time passes. Belief mean,
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however, does not converge to the true quality, because after a few months, belief

variance is so low that new information does not matter much for the consumers

and learning effectively stops barring small disturbances. Lastly, the blue lines plot

purchase probabilities with and without social learning. Without social learning, the

probability monotonically decreases. With social learning, the purchase probability

increases at first as a result of belief mean being corrected upwards, and eventually

decreases as the “newness” effect dominates after a few months. The total sales

quantity over 18 months with social learning is 2,835,502. Compared to the sales of

1,643,736 units without social learning, the total impact of social learning is a 72%

increase in sales for this game. However, this result obviously depends on the fact

that the prior mean is lower than the true quality. If the relation of the two values

is reversed, then social learning shall hurt sales compared to when consumers don’t

learn.
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Figure 1.3: An illustration of the impact of social learning

31



Chapter 2: Dynamic Pricing with Forward-looking Social Learners:

The Case of the US Video Games Industry

In this chapter, the demand estimates obtained in chapter 1 are used as inputs

to find optimal prices for each game. I first develop the model of the firm’s behavior

and define the market equilibrium concept. I then present the MPEC algorithm

I use to find the optimal prices. Next I describe patterns of firm’s optimal prices

and compare market outcomes from optimal pricing with the observed data. Lastly,

I will conduct two counterfactual exercises to study the effect of forward-looking

social learning for the firm’s profits.

2.1 Firm Model

2.1.1 Firm decisions

The firm’s per-period profit is given by:

π(pt,xt) = D(pt,xt)(pt − c), (2.1)

where c is the constant marginal cost. Assume the firm to be risk neutral, and

maximizes present discounted value of current and future profits. Its value function
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is:

V (xt) = max
pt>0

[π(pt,xt) + δf

∫
V (xt+1)dF (xt+1|xt)], (2.2)

where δf is the firm’s discount factor.

The firm’s pricing policy function is the maximizer of the value function:

p∗(xt) = argmax
p(xt)>0

[V (xt)]. (2.3)

2.1.2 Market equilibrium

I now present the equilibrium concept of the entire model.

Definition 2. A Markov-perfect equilibrium in prices in the above model is defined

by a set of value functions of waiting W (xt), t = 1, 2, . . . , T−1, and pricing functions

p∗(xt), such that equations (1.17), (1.18), (2.1), (2.2) and (2.3) are satisfied at every

state xt.

In plain words, the market equilibrium requires that in every state, every

period, consumers play the equilibrium strategy in their game of information waiting.

The firm maximizes its PDV of profits by setting optimal prices, fully accounting

for consumers’ actions and the resulting evolution of state variables.

It turns out that the market equilibrium is unique. This result is shown by

Proposition 5 of Papanastasiou and Savva (2017). The authors use a two-period

model and show this result by (1) showing that in the last (second) period, there

is a unique equilibrium in the pricing-adoption game between the firm and the
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consumers; (2) there is a unique optimal purchasing strategy by the consumers in

the previous (first) period. It is straightforward to adapt this proof to any finite-

horizon game by backward induction and realize that these two conditions are all I

need to guarantee uniqueness of equilibrium. Result (1) is obvious. As for result (2),

there are two differences between my model and theirs. The first is that consumers in

their model is risk neutral with respect to product quality while mine are potentially

risk-averse. This difference does not change the result as the fact that information

is beneficial is true no matter consumers’ attitude toward risk and therefore doesn’t

change the fact that consumers’ optimal purchasing strategy is unique in every state.

The second difference is the unobserved product characteristic that I assume. When

consumers calculate their value of waiting, however, this value is integrated out as it

is not serially correlated. It therefore also has no effect on the uniqueness of consumer

strategy in early periods. Therefore, I conclude that given initial conditions x1 and

appropriate parameter values, there is a unique Markov perfect market equilibrium

played between the firm and the consumers in the T -period pricing-adoption game.

2.2 Pricing implications

2.2.1 The algorithm to find optimal prices

I solve for the equilibrium prices using the method of Mathematical Program-

ming with Equilibrium Constraints (MPEC), first discussed in Su and Judd (2012).

The key to this method is that in addition to the traditional control variables, which

are the pricing functions for my case, some auxiliary variables are also considered as
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control variables. These two types of control variables are required to satisfy some

equilibrium constraints, which take the place of solving explicitly for the auxiliary

variables for given control variables as done in the Nested Fixed Point (NFXP) ap-

proach. Su and Judd (2012) show that MPEC in general is much faster than NFXP.

For my model, the auxiliary variables are the value functions of waiting, and the

equilibrium constraints are the demand equilibrium conditions.

The steps of the algorithm are as follows:

1. Discretize the state space of xt = (At, σ
2
t , ξt,Mt) into G points.

2. Start backwards from period T , at each state, find optimal price by solving

VT (xT ) = max
p>0

MT
exp(δ(p,xT ))

exp(δ(p,xT )) + 1
(p− c).

3. Starting from period T − 1, in every state, solve

Vt(xt) = max
p>0,Wt(xt)

Mts(p,xt,W (xt))(p− c) + βfEtVt+1(xt+1)

s.t. (demand equilibrium conditions)

(a) calculate st(p,xt) according to equation (1.17), Mt+1 according to (1.19),

Qt according to equation (1.18).

(b) calculate belief variance and weight σ2
t+1, ηt according to equations (1.4)

and (1.5).

(c) calculate conditional mean and variance of At+1: µt[At+1] = (1− ηt)At +
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ηtA, σ2
t [At+1] = η2t

σ2
e

Qt
.

(d) The below updated value function is equal to W (xt), with expectation

taken with respect to At+1, ξt+1:

TWt(xt) = βcEt log
{

exp
[
δ(pt+1(xt+1),xt+1)

]
+ exp

[
Wt+1(xt+1)

]}

4. Stop after period 1 problem is solved.

The expectation in the above calculation is done numerically with Gauss-

Hermite quadrature with 8 nodes.

2.2.2 Equilibrium pricing policy

Figure 2.1 displays equilibrium pricing policy in period 1 and 7 of the game

“Borderlands”, which has a estimated true quality of 53.24, prior quality mean of

22.73, and prior quality variance 16.58. Several qualitative features of equilibrium

pricing are obvious. 1). Equilibrium prices are increasing in the mean of consumer

belief and decreasing in its variance. 2). Equilibrium prices are monotonically

related to the demand shock. 3). Equilibrium prices trend down over time.

Figure 2.2 presents firm’s value function of the game “Borderlands” in peri-

ods 1 and 7. The value function decreases with time. It is increasing in consumer

belief mean, and is decreasing in its variance, with the former having a more signif-

icant effect. Demand shock shifts value function, but its effect is transient and less

pronounced than that in equilibrium prices.

For consumers’ value of waiting and purchase hazard, similar to Nair (2007),
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Figure 2.1: Equilibrium pricing policy of “Borderlands” in period 1 and 7

Figure 2.2: Firm value function in equilibrium of “Borderlands” in period 1 and 7
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I plot against usual price points. For period 1, I set belief mean and variance at the

estimated values, i.e. A1 = 22.73 and σ2
1 = 16.58. To find period 7 values, I take 30

demand shock paths {(ξ1, ξ2, . . . , ξ7)}, and for each shock path I simulate 30 paths

of belief mean {A1, A2, . . . , A7}, resulting in a total of 900 demand realizations. I

plot the mean value of waiting and purchase hazard of these realizations.

Figure 2.3: Consumer value of waiting and purchase hazard of “Borderlands”

Purchase hazard is inversely related to price, and value of waiting is positively

related with price. In Nair (2007), price declining is correlated with time passing,

high value consumers leaving and low value consumers taking over the market.

Without consumer heterogeneity and for a specific time period, however, the results

are driven by consumer learning rather than change of population composition.

Because the game “Borderlands” start with a disadvantage (prior mean smaller

than true quality), the firm will initially price low. With social learning in motion,

belief mean will increase and belief variance decrease, both leading to higher prices.

When product uncertainty is largely resolved after some time, the only driving forces

of price change will be consumer’s valuation of game “newness” and their discount
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of late consumption. Comparing period 1 with period 7, we see consumer’s value of

waiting is larger for period 1. This is largely driven by lower initial valuation of the

product. However, due to product “newness”, purchase hazard for period 1 is still

higher. While the relationship between price and purchase probability for a given

time period remains negative, the relationship between price and value of waiting is

not general. This is because the value of waiting depends on two different forces. On

the one hand, high price leads to low sales and low informational gain from waiting.

On the other hand, disadvantaged belief means that firm will price low in the next

period, which increases the value of waiting. That is, the informational incentive

and price incentive of waiting may counteract each other, leading to undetermined

relationship between price and value of waiting.

2.2.3 Observed vs. predicted prices

Table 2.1 compares the observed prices and the predicted equilibrium prices.

Again, for each game, I simulate 30 paths of {ξ1, ξ2, . . . , ξ18}, and for each of these

paths, I simulate 30 paths of A1, A2, . . . , A18. The presented numbers are averages

of the simulated ones. In general, predicted prices are lower than the observed

ones. However, caution is advised when making conclusions, because firm’s prices

correspond to only one history of realization of the unobserved variables.
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Age of game
Observed prices Predicted prices

Mean Std. dev. Mean Std. dev.

1 52.47 9.62 48.55 15.67
2 50.78 9.69 47.55 12.98
3 48.42 11.10 46.91 10.74
4 46.64 11.25 44.69 8.66
5 42.78 12.79 40.22 7.63
6 40.20 13.22 38.50 6.23
7 37.21 12.66 34.77 6.17
8 34.53 11.94 29.93 5.16
9 32.70 11.40 26.60 5.27
10 31.39 11.48 21.40 5.05
11 29.69 10.74 18.30 5.18
12 27.94 9.53 15.99 6.02
13 26.24 9.14 12.95 5.96
14 24.64 8.53 11.91 5.56
15 23.73 7.80 10.54 6.01
16 23.58 7.57 9.58 4.70
17 23.34 7.90 9.33 4.43
18 22.70 7.84 8.19 3.38

Table 2.1: Observed and predicted prices for games in sample

2.2.4 Impact of consumer rationality

I now return to the main empirical question raised at the beginning of this

study: what is the implication of consumers’ forward-looking social learning be-

havior on firms’ profits? The next two subsections answer this question from two

different perspectives. In this subsection, I consider two different types of consumers

and compare firm’s optimal prices when faced with each: (1) forward-looking social

learners; (2) “myopic social learners”: short-lived consumers who exit the market

after one period no matter the purchase decisions, who nevertheless report their ex-

periences if they buy and are able to utilize the updated information in the market.
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These assumptions represent two levels of consumer rationality: both types of con-

sumers have the ability to correct wrong beliefs, with the latter further recognizing

the value of waiting for better information.

Figure 2.4: Equilibrium pricing policies of “Band Hero” in 2 scenarios

Figure 2.4 plots the equilibrium pricing policies of the game “Band Hero” in

these 2 worlds. This game is estimated to have a true quality of 22.73, but sales start

with an advantage at prior mean 35.33, prior variance 11.14. The results show that

optimal prices with forward-looking consumers is lower than the static ones. This is
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intuitive because the forward-looking consumers value waiting for information, and

is therefore less inclined to buy at the same price than their static counterparts. This

is true for both high and low values of belief mean: the rationality of the forward-

looking social learners limit the firm’s ability to profit even when they overvalue the

product.

To investigate the profit impact of consumer rationality, I compare firms’

profits with myopic vs. forward-looking social learners. For each game in the

sample, I simulate 30 paths of demand shocks {ξ1, ξ2, . . . , ξ18}. For each path of

demand shocks, I simulate 30 belief evolutions {A1, A2, . . . , A18} for both myopic

and forward-looking consumers. Difference in profits for each game is the difference

in the means for both worlds. I then take the average over the entire sample.

Figure 2.5 plots the difference in firm’s PDV of profits with different consumers.

Firms make an average of $18.3M with myopic social learners, and $13.1M with

forward-looking social learners. The total difference (period 1 number) is $5.2M,

i.e. forward-looking social learners reduce firms’ profits by about 28.4%.

2.2.5 Profit loss from wrong rationality assessment

The above results show that the level of consumer rationality has a big impact

on firms’ profitability. To further gauge the value of information on consumers’

forward-lookingness, I consider the situation where consumers are forward-looking

social learners, but firm holds incorrect belief of their discount factor. In this ex-

ercise, consumers’ value functions of waiting Wt(At, σ
2
t , ξt,Mt), t = 1, . . . , T − 1 are
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Figure 2.5: Difference in firm PDV under myopic and forward-looking social learners

solved for patience level (βc) 0.975. But firm’s optimal prices are solved at 4 lower

levels: 0.9, 0.75, 0.5 and 0, where discount level of zero means that consumers are

myopic. I then simulate 30 paths of demand shocks for each game in the sample,

and 30 paths of belief evolution for each demand shock path. Demand is calculated

with equations (1.17) and (1.18). The results are then averaged across all demand

shock and belief evolution simulations.

Figure 2.6 reports the average difference in firm’s PDV of profits when the

firm uses different levels of incorrect discount factors for the consumers. I find that

when the firm uses a discount factor of 0.9, its profits are on average 4.81% lower

than the optimal case. When discount factor is set at 0.75, 8.21% profits will be lost.

Discount factor of 0.5 results in 17.58% of profits loss. In the extreme case where

patient consumers are assumed to be myopic, firm suffers a 29.92% profit loss.
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Figure 2.6: Effect of incorrect beliefs of firm about consumer forward-looking be-
havior on profits

These results place a monetary value on the correct information regarding the

extent to which consumers look forward. It’s therefore a worthwhile exercise for the

firms to conduct researches into this value.
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2.3 Conclusions

In this paper, I study the dynamic pricing of durable experience goods with

forward-looking social learning consumers. I propose a finite-horizon dynamic pro-

gramming framework that produces firm’s optimal pricing strategy as result of a

Markov perfect equilibrium between the firm and the consumers. The distinguish-

ing feature of consumers’ forward-looking social learning behavior is that consumers

play a coordination game when they strategically wait for better information. The

demand equilibrium from this game is nested in the Markov equilibrium between

the firm and consumers.

To ease computational burden, I take 2 steps to find optimal prices. In the first

step, I estimate demand parameters together with a pseudo pricing policy function

of the firm, which is potentially non-optimal. Because of unobserved information

evolution, demand is estimated with the Maximum Simulated Likelihood approach.

In the second step, I use demand estimates as inputs and find optimal prices using

the Mathematical Programming with Equilibrium Constraints (MPEC) approach.

The estimated parameters show that learning plays an important part in de-

mand and are consistent with the downward-sloping observed prices. I use the equi-

librium solution to explore the implications of consumers’ forward-looking social

learning on profits for the video-game firms in the sample. For the firms in the sam-

ple, I find that (1) compared to static demand with social learning, forward-looking

social learning reduces equilibrium firm profits significantly; (2) firm’s incorrect be-

lief of the extent to which forward-looking social learning happens also materially
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detriments profits.

A limitation of the model is that I don’t consider consumer heterogeneity.

A heterogeneous model assumes that consumers in the market comprise two or

more discrete types, differentiated by some aspects of their preferences (e.g. pa-

tience levels, valuations of the product). Such differences lead to different purchase

probabilities, therefore endogenously varying type composition over time and richer

demand dynamics. While the loss of this richness is partly remedied with the time

trend in product value of the homogeneous model (one could consider this time

trend to reflect the fact that over time, there are more low-valuation consumers and

fewer high-valuation ones), this control nevertheless is simplistic, and heterogene-

ity remains a key element for the model to be considered comprehensive enough to

guide real-world practice. This limitation is mainly due to the significant curse of

dimensionality heterogeneity brings as I need at least one more state variable to char-

acterize the population composition. Moreover, a heterogeneous model would also

be more difficult to estimate. These difficulties could hopefully be solved by more

efficient algorithms or by simply running the programs on more powerful hardware.

At any rate, in future iterations of this paper, I shall try to incorporate consumer

heterogeneity.

Finally, the learning process in this model is totally unobserved. Given the

richness of critics’ and consumers’ review data. This should be possible to be im-

proved. To make the learning process more concrete, I shall make use of the reviews

data to supplement the sales data.
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3.1 Introduction

In a series of papers that provide some of the most well-known and widely-

cited applications of computational economics to Industrial Organization, David

Besanko and co-authors analyze duopoly models where there is the potential that

firms may lower their marginal costs by accumulating production experience, but

a firm’s rival is also able to lose this know-how. In Besanko et al. (2010) (BDKS)

learning-by-doing is combined with the possibility of “organizational forgetting”,

so that both firms can move both up or down their marginal cost curves, while

in Besanko et al. (2014) (BDK) and Besanko et al. (2017) a firm can choose to

exit the industry so that it is possible that a firm will face a new rival at the top

of its cost curve in the future. The papers show that these features can generate

“aggressive” price equilibria where firms set very low prices, including prices that

are well below marginal cost, in some states firms not only try to lower their own

marginal costs but also to reduce their rival’s future efficiency or cause their rival

to exit (in BDK the equilibria are thought of as involving “predation”). While

customers can obviously benefit from low prices in the states where they are offered,

aggressive price equilibria also tend to lead to a single firm dominating the industry

in the long-run and, once dominance is achieved, that firm is able to charge high

margins, reducing long-run consumer surplus.

BDK and BDKS show that the parameter values that support aggressive price

equilibria can also often support equilibria that can be viewed as more “accomoda-

tive”, where equilibrium pricing behavior tends to sustain the existence of fairly
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symmetric competitors in the long-run. While accomodative prices tend to be signif-

icantly above marginal costs, these equilibria often tend to generate higher long-run

welfare (this point is made more explicitly in BDK). From a policy perspective, the

papers raise a natural question: how likely are aggressive price equilibria? Within

the BDK and BDKS frameworks, this amounts to asking whether the parameters

(for example, the progress ratio (measured by a parameter ρ) and the probability

of forgetting (δ) in BDKS) that can support aggressive equilibria are plausible for

real-world industries. The authors argue that they are (e.g., BDKS p. 462). This

leads the authors to suggest that antitrust policy towards predatory pricing poten-

tially faces a delicate balancing act between a real need to try to prevent dominance

while avoiding undermining firms’ incentives to lower their costs by generating sales

(BDK, conclusion).

However, it is also relevant to ask whether the conclusions of BDK and BDKS

are robust to changing their model in ways that make sense for the types of industry

where sizable learning-by-doing effects can occur. In this paper we consider one

simple change to these models, the addition of “strategic buyers”, and investigates

how this affects the multiplicity of equilibria, the level of equilibrium prices, long-

run market structure and welfare. By “strategic buyers” we mean customers who

are forward-looking and take into account how their purchases may affect future

market structure, and therefore the prices they may have to pay if they want to

buy in future periods. Given the computational burden of trying to enumerate as

many equilibria as possible in these models, we do so by changing the BDKS model

(the same analysis with the BDK model is in progress) in the simplest way possible.
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In their models, each buyer is assumed to purchase just once, and then disappears

from the market forever. We assume instead that, when she is able to make a

purchase, each buyer assumes that she will be selected to be the buyer in any future

period with probability, bp (“buyer-p” ). The BDKS framework would correspond

to the case when bp = 0. A monopsonist buyer would correspond to bp = 1 and

an industry with 20 symmetric buyers, one of whom is called to purchase in each

period, would correspond to bp = 0.05. While not allowing a buyer to commit to its

future behavior, buyers can act strategically by allowing their interest in the future

evolution of the industry to affect their current decision about which company to buy

from given the prices that are set. Under this approach the state space remains the

same as in the models with short-lived buyers, and the only additional complexity

is that we need to keep track of the value functions of a representative buyer as well

as the value functions of the sellers.1

One could imagine augmenting the BDKS model in many other interesting

ways (for example, allowing multiple unit purchases, allowing buyers to tend to pre-

fer to buy from a single supplier or replacing take-it-or-leave-it price competition

with some element of bargaining or negotiation). Our decision to focus on strate-

gic buyers is motivated by two considerations. First, many of the industries where

substantial learning-by-doing effects have been identified, such as aircraft manufac-

ture (Alchian (1963), Benkard (2000)), shipbuilding (Thompson (2001), Thornton

and Thompson (2001)), semiconductors (Irwin and Klenow (1994), Dick (1991))

1In particular, a strategic buyer does not care about how many times he has purchased or
which firm he has purchased from in the past, and instead she is only concerned about which
states, defined by combinations of seller know-how, she may experience in the future.
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and chemicals (Lieberman (1984), Lieberman (1987)), have a non-trivial number of

large, repeat customers. Even in learning-by-doing markets where one might as-

sume that individual customers reflect only a tiny proportion of the volume, such

as hospital procedures (Gaynor et al. (2005), Dafny (2005)), it is plausible that

intermediaries that can affect the flow of purchases and are able to extract some

customer surplus, such as local physician groups or insurance companies, would act

in the type of strategic, forward-looking way considered in our model.

Second, strategic buyers have been a subject of much focus in the analytical

theory literature on dynamic models with duopoly sellers, where dynamics arise

through learning-by-doing, switching costs or capacity constraints. For example

Lewis and Yildirim (2002) consider a model where two sellers, who benefit from

learning-by-doing, with no forgetting, compete for sales to a single forward-looking

buyer who repeatedly makes purchases in a infinite horizon model. The paper shows

that there is a unique equilibrium where the buyer will generally skew his purchasing

in a way that, relative to a myopic buyer, slows learning but maintains competition.

Subsequent papers by Lewis and Yildirim (2005) and Anton et al. (2014) consider

models with a single strategic buyer whose choices are influenced by the desire to

maintain competition, even if this type of behavior ends up increasing equilibrium

prices. Saini (2012) solves a computational model to show that a strategic monop-

sonist procurer may purchase in a way to preserve competition. However, it is un-

clear from this literature how far strategic buyer behavior should affect equilibrium

prices and market structure outside of the extreme case of monopsony.2 To address

2One paper that does consider the non-monopsonist case is Clark and Polborn (2011). They
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this question, we introduce strategic buyer behavior into the computational frame-

work of BDKS. More broadly one can view our paper as contributing to research on

the topical question of “buyer power”, by analyzing a setting with dynamics arising

from learning-by-doing on the supply side.

We find two main results. First, as soon as we raise the degree of strategic

buyer behavior, the area of the (ρ, δ) parameter space that supports multiple equilib-

ria becomes smaller.3 For intermediate values of bp above 0.1 we find no multiplicity

for parameter values that have any economic relevance. We provide intuition for

the existence of single equilibria as bp increases by examining changes to the implied

demand functions of buyers, and the effects that this have on what we label the

“dynamic best response functions” of buyers. The basic pattern is that when we

consider equilibria where sellers price aggressively to establish dominance and gain

significant market power, the demand of strategic buyers tends to shift in a way

that makes this type of strategy unprofitable.

Second, we analyze how different values of bp affects long-run market structure

and the welfare of sellers and customers. Not surprisingly, what happens reflects

a trade-off between the strategic buyer’s incentive to try to lower producer costs

(which will tend to favor buying from the lower cost firm, promoting dominance) and

constraining market power. For (ρ, δ) parameters which imply that concentration

analyze a model with two periods, duopoly sellers, no learning-by-doing but some possibility that
a seller may exit after the first period. They show that N buyers may purchase strategically in
order to prevent exit from happening, so that they maintain competition in the second period.

3To find multiple equilibria we use the “homotopy path-following” approach used by BDKS and
BDK for different values of bp. The homotopy approach is not guaranteed to find all equilibria in
the type of model that we considering, but we have also found that other approaches, for example,
by solving the set of equations implied by equilibrium behavior from a large number of different
starting values would lead to similar conclusions.
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is the only way to offset forgetting, strategic buyers will tend to produce a more

concentrated, and more efficient, market structure. However, these outcomes are

not necessarily associated with the type of aggressive pricing that characterizes

concentrated market structures with no strategic buyers.

Before continuing, we should be clear that we do not view our paper as imply-

ing any type of criticism of the BDKS or BDK models, which we view as highlighting

how computation can shed light on the economics at play in rich strategic interac-

tions that analytical approaches may not be able to isolate. Instead, we interpret

the fact that multiplicity is much less of an issue when we introduce strategic buyers

as a positive result, in the sense that it is much easier to use any type of model to

guide policy and as the basis for empirical analysis when is not so concerned that

multiple equilibria are a pervasive feature of the model.

The rest of the paper proceeds as follows. Section 3.2 explains the model with

and without strategic buyers (in the latter case, it corresponds exactly to the BDKS

model). Section 3.3 briefly explains how we search and identify multiple equilibria,

with the many numerical details presented in the Appendix. Our main results are

presented in Sections 3.4 and 3.5, together with our presentation of the intuition for

the changes in the nature of equilibria that we identify. Section 3.6 concludes.

3.2 Model

We begin with a short presentation of the BDKS model where buyers are not

strategic, which is the limiting case of our model (bp = 0). We then explain what
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changes when bp > 0.

3.2.1 Learning by Doing and Organizational Forgetting with Non-

Strategic Buyers

States and Costs. Consider a discrete time, discrete state infinite horizon game

between ex-ante symmetric duopolists, n = 1, 2. The common discount factor is

β = 0.95. Each firm’s know-how can take on values en = 1, ...,M . The marginal

cost of firm n, c(en) is κeηn for 1 ≤ en ≤ m and κmη for m ≤ en ≤ M . η = log2 ρ,

where ρ is the “progress ratio”. For BDKS’s computations, and our own, m = 15

and M = 30. The state of the model consists of the marginal costs of each firm

e = (e1, e2) ∈ ((1, 1), (1, 2)...(M,M − 1), (M,M)). It is assumed that the state is

observed by both firms throughout the game.4 Figure 3.1 shows the implied marginal

cost curves for four values of ρ. As can be seen high values of ρ imply that marginal

costs will be low once a relatively low level of know-how has been achieved, but

implies that there might be quite intense competition to sell the first few units as it

will create a large cost advantage.

Demand. A short-lived buyer who wants to buy a single unit arrives in each period.

At the beginning of the period the firms simultaneously set prices, and then the

buyer makes her purchase decision. The indirect utility of purchasing from firm n

is v − pn + σεn where pn is the price set by firm n, ε is a private information Type

4Asker et al. (2018), Sweeting et al. (2019a) and Sweeting et al. (2019b) consider dynamic
models where a persistent state variable is private information. In these games solving for a
single equilibrium imposes a significant computational burden, and the type of search over a wide
parameter space that we consider here would likely be completely infeasible.

54



0 5 10 15 20 25 30

Know How State

0

1

2

3

4

5

6

7

8

9

10

M
ar

gi
na

l C
os

t

 = 0.1
 = 0.25
 = 0.5
 = 0.9

Figure 3.1: Marginal Cost Functions for Different ρs

I extreme value preference shock, and σ is a scaling parameter. We follow BDKS

in assuming that there is no “outside good”, so that the buyer must buy from one

of the firms. The probability that the buyer purchases from firm n given prices pn

and p−n is simply

Dn(pn, p−n) =
1

1 + exp
(
pn−p−n

σ

) (3.1)

so that demand only depends on the scaled difference in prices. We use BDKS’s

baseline assumption that σ=1.

State Transitions. Dynamics are generated by learning-by-doing and organizational

forgetting. Specifically,

en,t+1 = en,t + qn,t − fn,t

55



where qn,t is equal to one if n makes a sale in period t (0 otherwise) and fn,t is

equal to one with probability ∆(en) = 1 − (1 − δ)en with δ ∈ [0, 1] (0 otherwise),

except at the boundaries of the state space.5 A firm that makes a sale can therefore

either have more or the same know-how in the next period, whereas a firm that

does not make a sale will have either the same or lower know-how. This structure

means that a firm will have an incentive to price aggressively both to lower its own

marginal cost (all else equal, this will allow it to earn higher margins and/or make

more sales in future periods) and to try to raise its rival’s marginal cost (reducing

future competition). The assumed functional form implies that the probability of

(one unit of) forgetting increases with know-how, but at a decreasing rate, and that

the probability of forgetting is quite high for en > 10 even when δ is small. This

is illustrated in Figure 3.2 for three different values of δ. For example, several of

BDKS’s examples involve δ = 0.0275 and δ = 0.08. For these values, the probability

of forgetting when en = 10 are 0.24 and 0.56 respectively. This implies that if a firm

makes sales less frequently than its rival because of a small cost disadvantage, the

size of that disadvantage may tend to increase quite rapidly.

Equilibrium. BDKS use the notion of symmetric Markov Perfect Equilibrium (Maskin

and Tirole (2001), Ericson and Pakes (1995), Pakes and McGuire (1994)), which re-

stricts strategies to be functions of the current values of the payoff-relevant state

variables, which are the know-how states in this model. The symmetry assumption

implies that firm 2 in state (e1, e2) will use the same price as firm 1 in state (e2, e1),

5For example, when en,t = 1 and qn,t = 0 the firm n cannot forget, and when en,t = M and
qn,t = 1 the firm n has to forget.
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Figure 3.2: Probability of Forgetting for Different Values of δ

so that we can define the equilibrium using the prices and value functions of firm

1 only. The model is stationary in the sense that current and future payoffs only

depend on the know-how states, not the time period t.

The seller’s value function, V S(e), is defined at the beginning of a period before

the buyer’s payoff shocks are realized. To specify the Bellman equation, it is useful

to first define the “conditional value functions” that defines the seller’s continuation

value as a function of which seller the buyer decides to purchase from. For example,

in the case where seller 1 makes the sale, the conditional value function is defined

as

V
S

1 (e) = β

e1+1∑
e′1=e1

e2∑
e′2=e2−1

V S(e′) Pr(e′1|e1, 1) Pr(e′2|e2, 0)

where Pr(e′1|e1, 1) is the probability that firm 1 transitions to know-how state e′1 in
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the next period given that firm 1’s current know-how state is e and it makes the sale,

and the sums are taken over the experience states that can be reached given any

possible realization of forgetting for each firm. The value function is then defined

from the Bellman equation

V S(e) = max
p1

D1(p1, p2(e))(p− c(e1)) +
∑
k=1,2

Dk(p1, p2(e))V
S

k (e)

where p2(e) is the pricing policy function of firm 2, and D represents the demand

function defined in equation 3.1.

The policy function is then defined using a first-order condition for pricing.

D1(p
∗, p2(e)) +

(
p∗ − c(e1) + β

[
V
S

1 − V
S

2

]) ∂D1(p
∗, p2(e))

∂p
= 0

which corresponds to the standard static first-order condition and an additional

term: β
[
V 1 − V 2

]
∂D1(p∗,p2(e))

∂p
which captures the dynamics of the problem. The

form of logit demand guarantees that, holding fixed the continuation values, the

equilbrium prices are unique.6 This does not, however, imply that there is a unique

equilibrium in the dynamic model, when we allow for prices in other states to affect

continuation values.

Stacking together the Bellman equations and first-order conditions for each

6This follows from the uniqueness of static price equilibria in logit demand models for any linear
marginal costs (Caplin et al. (1991), and the fact that the difference in continuation values enters
the first-order condition in the same way as a marginal cost shift.
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state, we can express the equilibrium as a set of equations,

 F S
e (V∗,p∗)

F p
e (V∗,p∗)

 =

 V S(e)−D1(p
∗(e))(p∗(e)− c1(e))−

∑
k=1,2Dk(p

∗(e), e)V
S

k (e)

D1(p
∗(e), e) +

(
p∗(e)− c1(e) + β

[
V
S

1 (e)− V S

2 (e)
])

∂D1(p∗(e),e)
∂p

 = 0.

3.2.2 Strategic Buyers

We change the BDKS model by introducing strategic buyers. Specifically, we

assume that the buyer in any period believes that she will be chosen, by nature,

to be the buyer in any future period with probability bp. One way to rationalize

this, if bp > 0 is to imagine that there is a pool of 1
bp

potential buyers and that each

period one of them is selected randomly and with replacement, to be the customer.

However, one might also view bp as being influenced by the patience of sellers or their

probability of going out of business. The buyer’s per-period indirect utility function

remains the same as before. This implies, for example, that a buyer’s preferences do

not depend on their past purchases. Therefore, the only reason for deviating from

the static purchase probabilities shown in equation 3.1 is because a purchase may

influence the future prices that the buyer may face. If bp = 0, the model corresponds

exactly to the BDKS model.

The only change to the equilibrium equations outlined above, is that there is

now an additional equation representing the value function of buyers, and a change

to the form of the demand functions, Dn.

For the representative strategic buyer, the value function, V B(e), is defined
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before she knows whether she has been selected to be the buyer this period. It

is useful to define the mean continuation utility (in the sense that it excludes the

realized ε) for the selected buyer who chooses seller 1,

µB1 (e) = v − p1 + β

e1+1∑
e′1=e

e2∑
e′2=e2−1

V B(e′) Pr(e′1|e1, 1) Pr(e′2|e2, 0).

Given the assumed distribution of the ε’s and values for V B(e), the optimal strategy

of the selected buyer in a particular state can be characterized by the probability of

purchasing from seller 1, under the assumption that σ = 1,

D1(p1, p2(e)) =
exp(µB1 (e))

exp(µB1 (e)) + exp(µB2 (e))

=
1

1 + exp

 p1 + β
∑e1+1

e′1=e

∑e2
e′2=e2−1

V B(e′) Pr(e′1|e1, 1) Pr(e′2|e2, 0)−[
p2 + β

∑e1
e′1=e−1

∑e2+1
e′2=e2

V B(e′) Pr(e′1|e1, 0) Pr(e′2|e2, 1)
]


and, it follows that

V B(e) = bp log

∑
k=1,2

exp
(
µBk (e)

) .
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This provides a full set of equations defining the equilibrium,


F S
e (V∗,p∗)

FB
e (V∗,p∗)

F p
e (V∗,p∗)


=


V S(e)−D1(p

∗(e))(p∗(e)− c1(e))−
∑

k=1,2Dk(p
∗(e), e)V

S

k (e)

V B(e)− bp log
(∑

k=1,2 exp
(
µBk (e)

))
D1(p

∗(e), e) +

(
p∗(e)− c1(e) + β

[
V
S

1 (e)− V S

2 (e)
])

∂D1(p∗(e),e)
∂p


= 0.

(3.2)

In the BDKS model, the equilibrium is defined by the Bellman equations and

first-order conditions for 900 (M2) states, giving 1,800 equations in total, with 1,800

unknowns. With bp > 0, we add 465 equations, exploiting the fact that the buyer’s

value in (e1, e2) must be the same as in (e2, e1), giving 2,265 equations and 2,265

unknowns in total.

3.3 Computation

To find a single equilibrium in their model, for given parameters, BDKS use

the iterative best-response approach proposed by Pakes and McGuire (1994). In

practice, we find that in both the BDKS model and our augmented model it is

quicker to use the Levenberg-Marquardt algorithm with analytic gradients called by

fsolve in MATLAB.7

However, as emphasized by BDKS, some parameters of interest may support

many equilibria with different policies. BDKS propose using a path-following “ho-

motopy” routine, to trace out the equilibrium correspondance. This is implemented

7We find that this approach converges to equilibria given reasonable ranges of plausible starting
values. This equation solving approach can find equilibria that are not stable to small changes in
pricing strategies, unlike the Pakes and McGuire algorithm (BDKS, p. 467-470).
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using the HOMPACK90 Fortran algorithm (Watson et al. (1987)). The idea of the

algorithm is that, starting at a vector of values and prices that corresponds to an

equilibrium, a path can be traced that keeps all of the the equations holding as one

of the parameters (for example, the forgetting parameter δ) is changed. Multiple

equilibria can be found when a path folds back on itself, or when the same pair of

parameters is passed in another direction (for example, when changing the learning-

by-doing progress ratio parameter ρ) when following a different path of equilibria.

BDKS use this type of criss-crossing of the parameter space in different directions to

search in a systematic way for multiple equilibria, although we should be clear that

there is no guarantee that all equilibria will be identified. They begin the procedure

starting at values of ρ = 0.

We use this type of criss-crossing homotopy procedure for a discrete set of bp

values. The procedure is a multi-stage numerical process, and we describe all of

the details, including our choices of numerical tolerances and the way in which the

output of the homotopies are used to establish the number of equilibria at particular

gridpoints in (ρ, δ) space in Appendix A. We also illustrate how sensitive our results

for counting equilibria are to different choices. It is the case that using different

tolerances can change the number of equilibria that we find for very low values of

bp, including the BDKS model, but our finding that multiplicity is eliminated when

we increase bp seems entirely robust.

We do note, however, one caveat with the current results presented in the fol-

lowing sections. As noted by BDKS, homotopies can stop because the mathematical

problem that defines the homotopy is not “regular”. As a consequence, we do not
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have any equilibria for some values of (ρ, δ). However, as will become clear in some

of the diagrams, this problem is very largely restricted to values of δ > 0.2, implying

a rate of forgetting that is unlikely to be interesting. However, we can find at least

one equilibrium for these values using a simpler approach, and we will use this to

fill-in the missing values in future iterations.

3.4 Results: Strategic Buyers and Multiplicity of Equilibria

3.4.1 Extent of Multiplicity

BDKS emphasize their finding that there are many economically-plausible

values of (ρ, δ) that support multiple equilibria as one of the main results of their

analysis. The first part of this section documents how our results compare with

BDKS, in particular showing that multiplicity disappears quickly as we increase bp.

The second part of the section develops intuition for why this occurs, and connects

to our discussion in the next section where we examine the effects of strategic buyers

on equilibrium pricing, market structure and welfare.

Figures 3.3 and 3.4 shows the multiplicity results reported in BDKS, and our

equivalent results when bp = 0. The cases where the homotopies do not provide

solutions are marked as if there is a unique equilibrium (this appears to be how

BDKS have treated these outcomes). The forgetting parameter, δ, is on the x-axis

and the progress ratio, ρ is on the y-axis. As our models are the same in these

cases, we would expect equivalent results, so the differences should be explained

by differences in our numerical implementation (for example, the criteria we use to
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specify that small numerical differences in prices are sufficient to say that there are

multiple equilibria).

We identify multiplicity in broadly similar areas, but there are some differences:

for example, for low values of ρ they identify a large contiguous area with three

equilibria, whereas we identify some areas within this zone where the equilibrium

appears to be unique. However, the small area where they identify as many as

nine equilibria is common to both. For high values of ρ (learning is able to reduce

marginal costs dramatically) they identify more equilibria for slightly lower values of

δ than we do. For the moment we use the similarity between the figures as evidence

that we can replicate BDKS’s results well enough to get meaningful results.

Figures 3.5 and 3.6 show our results for values of bp = 0.01, 0.025, 0.05, 0.1

and 0.2. For the case of a monopsonist buyer we find no multiplicity for any (ρ, δ)

values.

The clear pattern is that as bp is increased, the multiplicity of equilibria is

reduced. For bp = 0.01 the pattern is similar to the bp = 0 case, but for low

values of ρ both the number of equilibria for given parameters and the range of

parameters that support multiplicity are clearly falling once bp ≥ 0.025 (equivalent

to 40 symmetric buyers). The pattern is a little bit different for very high values

of the progress ratio, as the area that supports multiplicity grows larger as we go

from bp = 0 to bp = 0.025 before falling. For bp = 0.1 (ten equally sized buyers)

multiplcity persists only in a narrow stretch of the parameter space with low progress

ratios and moderately fast forgetting. We will examine below whether the economic

differences between the equilibria in this region are also becoming less marked. For
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Figure 3.3: Extent of Multiplicity for bp = 0: BDKS Results (their Fig. 2)

LEARNING, FORGETTING, AND INDUSTRY DYNAMICS 471

“backward” to a lower state and when δ = 1, it can never move “forward” to a
higher state. Hence, backward induction can be used to establish uniqueness of
equilibrium (see Section 7 for details). In contrast, when δ ∈ (0�1), a firm can
move in either direction. These bidirectional movements break the backward
induction and make multiple equilibria possible:

PROPOSITION 4: If organizational forgetting is neither absent (δ = 0) nor cer-
tain (δ= 1), then there may be multiple equilibria.

Figure 2 proves the proposition and illustrates the extent of multiplicity. It
shows the number of equilibria that we have identified for each combination of
progress ratio ρ and forgetting rate δ. Darker shades indicate more equilibria.
As can be seen, we have found up to nine equilibria for some values of ρ and δ.
Multiplicity is especially pervasive for forgetting rates δ in the empirically rel-
evant range below 0�1.

In dynamic stochastic games with finite actions, Herings and Peeters (2004)
have shown that generically the number of MPE is odd. While they consider
both symmetric and asymmetric equilibria, in a two-player game with symmet-
ric primitives such as ours, asymmetric equilibria occur in pairs. Hence, their
result immediately implies that generically the number of symmetric equilibria

FIGURE 2.—Number of equilibria.
Figure 3.4: Extent of Multiplicity for bp = 0: Our Results
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bp = 0.2 we find multiple equilibria for a couple of gridpoints with δ close to 1,

and low progress ratios. This seems inconsistent with earlier results, and surprising

given that the industry is close to being trapped at the lowest level of know-how

for both firms, independent of what a strategic buyer does. We are investigating

whether this results reflects a numerical issue, or has some economic rationalization.

3.4.2 Explanations for Why Strategic Buyers Reduce Multiplicity

We now try to provide an explanation for why strategic buyers tend to undo the

multiplicity of equilibria. The logic behind multiplicity when bp = 0 is entirely rooted

in different types of competition amongst the suppliers: if they expect relatively even

competition in all future states, then there is little incentive to price aggressively

to gain a temporary or permanent advantage, supporting pricing functions that

are relatively flat across the states. On the other hand, if suppliers expect that

one firm will emerge as a dominant supplier then they will price aggressively to

gain an advantage when they are symmetric and a leader will also price agressively

whenever there is some chance that the rival will catch up. If both types of logic

works given the parameters, we can generate equilibrium pricing functions that are

flat and pricing functions that have significant wells and trenches, which may vary

in their depth and their precise forms.

Strategic buyers enter the picture because of their incentives to avoid purchas-

ing from firms who will exploit gaining a sale to increase future prices. If this makes

a buyer less responsive to a current price decrease, the cost of gaining an advantage
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may increase so much that the strategy becomes unprofitable. One prediction of

this logic is that we should expect to see aggressive price equilibria (i.e., those with

deep wells and trenches) eliminated whereas as those with flatter prices are likely

to survive.
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Figure 3.7: Pricing Policy Functions for Firm 1 (surface) and Firm 1 Marginal Cost
for (ρ = 0.9, δ = 0.028)

To illustrate consider the parameters ρ = 0.9 and δ = 0.028. Figure 3.7 shows

the three equilibria that we identify for those parameters when bp = 0. Two of
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them are flat (there are small differences in prices for low levels of know-how), and

one of them has a marked trench. Figure 3.10 shows the distribution over states

in each equilibrium after 8 and 32 periods (starting at (1,1)) and in the limiting

case where the game is played for an infinitely long-time. The two flat equilibria

generate almost identical distributions. Both in the short-run and the long-run the

aggressive price equilibrium is associated with a more asymmetric structure where

one firm has more know-how, although we note that in the modal state the marginal

costs of the two firms are actually equal when the states are (28, 20). However, given

the low prices in the trench, a buyer would clearly prefer the industry to be in a

state of (24,24) rather than (28,20) if firms are playing equilibrium 3.

Figure 3.9 shows how buyer demand would change given forward-looking in-

centives given these parameters, and the equilibirum pricing behavior is shown in

Figure 3.7. To understand the figure consider the middle figure in the top row.

This shows how the probability of firm 1 making a sale depends on its price given

that firm 2 charges its price in equilibrium 1 for the state, and the buyer takes into

account different degrees of future incentives, according to the value of bp, with the

red-line reflecting the actual equilibrium demand and the other lines reflecting how

a more strategic buyer would behave when facing bp = 0 prices.

Given that the buyer always buys from one of the sellers, there are no effects

on demand when the firms are symmetric (left-hand column). But when the firms

are not symmetric, strategic buyers favor the weaker (lower know-how) firm, with

the size of the preference depending on the size of the relevant bp (we do not show

the case when bp = 1 as it requires changing the scales on the plot). The effects

71



0.2 0.4 0.6 0.8

Prob(sell=1)

8

8.5

9

9.5

10

p1

e=(3,3),eqm 1

0.01
0.025
0.05
0.1
0.2
0
eqm price

0.2 0.4 0.6 0.8

Prob(sell=1)

8

8.5

9

9.5

10

p1

e=(3,1),eqm 1

0.2 0.4 0.6 0.8

Prob(sell=1)

8

8.5

9

9.5

10

p1

e=(1,3),eqm 1

0.2 0.4 0.6 0.8

Prob(sell=1)

8

8.5

9

9.5

10

p1

e=(3,3),eqm 2

0.2 0.4 0.6 0.8

Prob(sell=1)

8

8.5

9

9.5

10

p1

e=(3,1),eqm 2

0.2 0.4 0.6 0.8

Prob(sell=1)

8

8.5

9

9.5

10

p1

e=(1,3),eqm 2

0 0.5 1

Prob(sell=1)

4

6

8

10

p1

e=(3,3),eqm 3

0 0.5 1

Prob(sell=1)

4

6

8

10

p1

e=(3,1),eqm 3

0 0.5 1

Prob(sell=1)

4

6

8

10
p1

e=(1,3),eqm 3

Figure 3.9: Demand Functions for Firm 1 for (ρ = 0.9, δ = 0.028)

72



are noticeable in asymmetric states for all of the equilibria, including the flat ones,

but they are largest in equilibrium 3, consistent with a buyer potentially benefiting

from getting the industry back towards the low-price trench.

We now examine how these demand changes affect the incentives of the seller.

Recall that the motivation to set low prices in symmetric or near-symmetric states

in an aggressive price equilibrium is that it raises the probability that the seller

will end up, for a sustained period of time, in states where it is has a significant

advantage and can charge large markups. Figure 3.10 show the distribution of

states after 8, 32 and a limiting number of periods when buyers use the bp = 0.2

strategies implied by the demand curves (in all states) implied by the analysis above.

Comparing to Figure 3.10, the changes for the flat equilibria are relatively small,

whereas for the aggressive price equilibrium the expected experience levels of the

two firms become clearly more symmetric, reflecting the incentives of buyers to move

the industry towards symmetry. For lower levels of bp strategic buyer behavior has

the same directional effect (more symmetric states become more common), but the

magnitude of the changes is smaller.

To understand how this affects multiplicity we construct graphical “dynamic

reaction functions” where we can interpret multiple crossing as reflecting multiple

equilibria. Of course, to summarize the whole problem we would have to show what

happens to pricing incentives in 900 different states, which is impossible in a 2-D

figure. The reaction functions that we present are constructed as follows. Start

with bp = 0. We define the strategy of firm 1 using a single parameter λ1, which

we think of measuring the aggressiveness of firm 1’s pricing strategy. Given λ1 the
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prices charged by firm 1 will be

p(e, λ1, b
p = 0) = (1− λ1)p∗,1(e, bp = 0) + λ1p

∗,3(e, bp = 0)

where p∗,1 and p∗,3 are the vector of equilibrium prices in equilibria 1 and 3 re-

spectively so that we are using equilibrium 1 prices in all states when λ1 = 0 and

equilibrium 3 prices when λ1 = 1. We define and use λ2 in a similar way. For values

of λ1 on a fine grid, we calculate the best response λ∗2(λ1) for firm 2, i.e., the λ2 that

maximizes firm 2’s value from playing the game starting in state (1,1).8 We repeat

this process to derive the best response reaction function of firm 1. By construction,

there is an MPE, and an intersection of the best response functions, represented by

the red and blue solid lines in the Figure 3.11, for λ1 = λ2 = 0 and λ1 = λ2 = 1.

The convex shape of the reaction functions suggests that, with bp = 0, there is

an increasing return to aggressive pricing behavior as the rival firm becomes more

aggressive. The intuition is that when the rival firm is more aggressive, it becomes

even more important to gain an advantage.

The figure also includes reactions functions (with other markers) for other

values of bp. In these cases we may only have one identified equilibrium (this is the

case for bp ≥ 0.05), so we define pricing strategies as follows

p(e, λ1, b
p) = (1− λ1)pFLAT,∗(e, bp) + λ1(p

∗,3(e, bp = 0)−p∗,1(e, bp = 0))

8This means that we can identify the best response by comparing the values of the seller in this
state for different values of λ2. It is possible that if we used values in other states we might find
slightly different best responses.
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where pFLAT,∗ is the unique equilibrium (when all players account for the value

of bp) or a flat one if there is more than one. For λ1 = λ2 = 0 we still have

an intersection. While we cannot guarantee that a different way of defining best

response functions would produce different results, what happens to these reaction

functions when we increase bp is intuitive. The strategic behavior of buyers, which

tends to favor the firm with a disadvantage, makes it less valuable for a seller to

increase the aggressiveness of its own pricing behavior when its rival becomes more

aggressive. This tends to make the reaction functions both flatter and less convex

for λ > 0, and downward sloping when we consider the extreme case of bp = 1,

which tends to work against multiplicity.9

3.5 Results: Strategic Buyers, Equilibrium Pricing Strategies, Mar-

ket Concentration and Welfare

We now examine how strategic buyers affect welfare. To connect to the pre-

vious discussion, we begin by considering (ρ = 0.9, δ = 0.028). Figure 3.12 shows

how several outcomes change as a function bp. When there are multiple equilibria

the outcomes from different equilibria are shown separately, although the outcomes

from the flat equilibria are so close to being identical that there is no visible differ-

ence between these outcomes. We observe that it is the high concentration, high

expected price aggressive equilibrium that is eliminated. On the other hand the flat

9For low values of bp extrapolation beyond the right-hand edge of the figure would imply that
the reaction functions would cross consistent with the fact that we continue to find multiplicity
for these values.
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Figure 3.12: Outcomes for (ρ = 0.9, δ = 0.028). Moving clockwise the outcomes are
the long-run HHI, the long-run expected price of a purchase, consumer surplus as a
fraction of total surplus, and the total welfare of buyers.

equilibrium which persists gives very similar outcomes across the values of bp.

In this example, the market outcomes are fairly similar between the flat and

aggressive equilibria. There are examples where the differences are larger. Figure

3.13 shows an example using (ρ = 0.19, δ = 0.099) where there is a faster rate of

forgetting. In this case, some of the equilibria with low bp values involve long-run

dominance (HHI close to monopoly) and others involve relatively even competitors.

Even though the dominant firm will make most of the sales and have low costs,

expected transaction prices are much higher in the dominant equilibrium and the

welfare of buyers is much lower. When we arrive at a single equilibrium (bp > 0.1)

it is the low concentration/low price equilibriuim that survives.

These illustrations speak to which equilibria are robust to increases in strategic
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Figure 3.13: Outcomes for (ρ = 0.19, δ = 0.099)
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buyer behavior, they do not necessarily clarify what happens to choices across the

parameter space. Strategic buyers are interested in both limiting future seller market

power, but also reducing the marginal costs of the supplier that they prefer to buy

from. When forgetting is very likely, but costs would be reduced by know-how, the

only way to realize the potentially large benefits of learning may be to coordinate

purchases on a single seller.

To illustrate this point, Figures 3.14- 3.16 show the minimum and maximum

HHI (taken across equilibria) for each gridpoint for bp = 0, 0.05 and 0.2.

In these figures the speckled area to the right of δ = 0.2 reflects the fact that

our homotopies often stop in this area of fast forgetting, so that we do not have

solutions. As emphasized previously, this area is not necessarily of primary interest,

although we are working to fill in this plot with at least one equilibrium (not using a

homotopy approach). What we observe is that for low ρ but δs in the 0.1-0.2 range

that, as bp increases so does the long-run expected HHI, reflecting an increase in

concentration.

3.6 Conclusion

In this paper we augment the learning-and-forgetting model of BDKS by

adding strategic buyers, and we examine what happens as the degree of strate-

gic buyer behavior is increased. Our motivation comes from trying to understand

whether multiplicity is robust to adding a feature that seems to describe many in-

dustries where learning-by-doing effects have been documented, and the emphasis
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that BDKS and BDK give to aggressive price equilibrium that can result in markets

with ex-ante symmetric firms coming to be dominated by a single seller.

Our results document at least two types of changes that are directly related

to these motivations. First, while multiplicity remains a feature of the model for

low values of our strategic buyer parameter, the area of the parameter space that

supports multiplicity becomes progressively smaller, and by the time we consider

a model with five symmetric buyers multiplicity is essentially eliminated. Second,

we find that it is the aggressive price equilibria (i.e., those associated with more

concentration, higher long-run transaction prices and lower customer surplus) that

are eliminated and that, in general, more strategic buyer behavior increases the

welfare of buyers, at least until we reach the point where there are around 5 buyers,

when the effect of chilling competition can cause customer surplus to fall. The logic

of these effects is in line with what one might have expected from the analytical

theory literature, but the contribution of our framework is to examine this in a more

quantitative way in a model that combines features (learning-by-doing, forgetting

and multiple levels of know-how for each firm) that are analytically intractable.

There are clearly areas that we can build on from this draft. We would like to

understand in more detail why our results are not quite the same as those of BDKS

when there are no strategic buyers, and we would like to develop our intuition for

why aggressive price equilibria disappear in a more systematic way, quantifying the

changes to the benefits and costs of building dominance for different values of the

parameters. We would also like to incorporate some data from industries where

learning-by-doing is apparent, such as aircraft manufacture, to try to quantify what
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the degree of seller concentration looks like, and to use it as a starting point for

looking at the effects of buyers some of whom may be more strategic than others.
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Appendix A: Computational Methods of Dynamic Price Competi-

tion and Learning-by-Doing: The Effect of Strategic

Buyers on Equilibria

This appendix details the methods used to solve the model, with and without

strategic buyers, and to enumerate the number of equilibria for different combina-

tions of the progress ratio and forgetting parameters (ρ, δ). We briefly explain how

we have investigated the effects of a several changes to the method. We try to follow

the method outlined by Besanko et al. (2010) closely. However, because they do not

explain in detail some of the choices that need to be made when interpreting the

FORTRAN output, there are some differences in the results, especially with regard

to the number of equilibria, even when we set our strategic buyer parameter, bp,

equal to zero.

A.1 Preliminaries

We identify equilibria at particular gridpoints in (ρ, δ) space. We specify a

1000-point evenly-spaced grid for the forgetting rate δ ∈ [0, 1] and a 100-point

evenly-spaced grid for the learning progress ratio ρ ∈ [0, 1]. We perform our proce-
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dure for six different values of bp are {0 (BDKS model), 0.01, 0.025, 0.05, 0.1, 0.2, 1}.

As described in the text, the state space of the game is defined by an (30 x 30) grid

of values of the know-how of each firm.

A.2 System of Equations Defining Equilibrium

As explained in the text, a Markov Perfect Equilibrium will be a combination

of value functions for the buyer and the sellers, and a set of prices, that satisfy a

system of 2,265 equations.


F S
e (V∗,p∗)

FB
e (V∗,p∗)

F p
e (V∗,p∗)


=


V S(e)−D1(p

∗(e))(p∗(e)− c1(e))−
∑

k=1,2Dk(µ
B(e,V B(e)))V

S

k (e)

V B(e)− bp log
(∑

k=1,2 exp
(
µBk (e,V B(e))

))
D1(p

∗(e), e) +

(
p∗(e)− c1(e) + β

[
V
S

1 (e)− V S

2 (e)
])

∂D1(p∗(e),e)
∂p


= 0.

where µBk is the selected buyer’s mean continuation utility of choosing a seller k in

a state e, and will depend on both prices and the expected value to be a potential

buyer in the states that can be reached in the next period. The seller’s cost and

transition probabilities, and therefore values and prices, will depend on ρ and δ.

We can denote this system of equations F (V∗,p∗; δ, ρ) = 0.

A.3 Homotopy Algorithm: Overview

The idea of the homotopy is to trace out an equilibrium correspondance as

one of the parameters of interest (δ or ρ) is changed, holding the other fixed. First,

starting at a (unique) equilibrium where δ = 0, a numerical algorithm traces a path
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where δ, and the vectors V B(e), V S(e) and p(e) are changed together so that the

equations F continue to hold, by solving a system of differential equations. We

call this the “δ-homotopy”. The path is continued until (hopefully) δ=1. Multiple

equilibria for given values of δ can be found if the path turns back upon itself with

respect to δ. Of course, the algorithm does not necessarily identify the solutiuons at

our gridpoints, so an additional procedure is used to find the these solutions. The

equilibria found on the δ homotopies can then be used as the starting points for

ρ-homotopies, where ρ is changed and δ is held fixed. This procedure can collect

more equilibria as the new path may provide a different solution to the equations

at a particular gridpoint than the δ-homotopy did. In principle, this criss-crossing

procedure can be continued using any new equilibria that are found at each iteration.

The results in the paper are based on running a complete set of δ-homotopies and a

set of ρ-homotopies from all of the equilibria at a sparser set of gridpoints (details

below). Some experimentation indicates that many of the additional solutions that

subsequent additional runs might find would not satisfy the criteria, described below,

that we use to identify solutions as being sufficiently different from each other and

sufficiently close to the same gridpoint to count as representing distinct equilibria.

However, we are working to show that this is the case in a systematic way. In any

event, this is not an issue for higher values of bp where we find no multiplicity in

any of the δ or ρ homotopy runs.
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A.4 Homotopy Procedure Details

Step 1: Finding Equilibria for δ = 0. The first step is to find an equilibrium (i.e.,

a solution to the 2,265 equations) for δ = 0 for each value of ρ on the grid. There

will be a unique Markov Perfect equilibrium for δ = 0, as, in this case, movements

through the state space are unidirectional, so that the state will eventually end up

in the state (M,M) where no more learning is possible.1

We solve for an equilibrium using the Levenberg-Marquardt algorithm imple-

mented using fsolve in MATLAB, where we supply analytic graduents for each

equation. For ρ = 0.02, we use the solution when ρ = 0.01 as the starting values.

To ensure that the solutions are precise we use a tolerance of 10−7 for the sum of

squared values of each equation, and a relative tolerance of 10−14 for the variables

that we are solving for.

Step 2: δ-Homotopies. Using the notation of BDKS, we explore the correspondance

F−1(ρ) = {(V∗,p∗, δ)|F (V∗,p∗; δ, ρ) = 0, δ ∈ [0, 1]},

The homotopy approach introduces an additional parameter s. Denoting

x = (V∗,p∗), F (x(s), δ(s), ρ) = 0 can be implicitly differentiated to find how x and

1BDKS discuss this result for bp = 0. It will also hold for any higher value of bp. The key to
this result is that, as well as unidirectional movements through the state space, there will be a
unique equilibrium in each state for given future values. This follows from the fact that the game
within each period is sequential: sellers first choose prices and then the buyer decides which firm
to choose from. Given future values, the buyer is choosing between the firms based on their prices
and its private information logit preference shocks, and, excepting the case of a probability zero
tie, it will have a unique optimal choice. From the perspective of the sellers, they face a buyer
with logit choice probabilities, so that the results of Caplin et al. (1991) will imply uniqueness.

87



δ must change for the equations still to hold as s changes.

∂F (x(s), δ(s), ρ)

∂x
x′(s) +

∂F (x(s), δ(s), ρ)

∂δ
δ′(s) = 0

where ∂F (x(s),δ(s),ρ)
∂x

is a (2,265 x 2,265) matrix, x′(s) and ∂F (x(s),δ(s),ρ)
∂δ

are both (2,265

x 1) vectors and δ′(s) is a scalar. The solution to these differential equations

will have the following form, where y′i(s) is the derivative of the ith element of

y(s) = (x(s), δ(s)),

y′i(s) = (−1)i+1 det

((
∂F (y(s), ρ)

∂y

)
−i

)

where −i means that the ith column is removed from the (2,266 x 2,266) ∂F (y(s),ρ)
∂y

.

To implement the path-following procedure the routine FIXPNS from HOM-

PACK90 is used, with the ADIFOR 2.0D automatic differentiation package used to

evaluate the sparse Jacobian ∂F (y(s),ρ)
∂y

and STEPNS used to find the next point on

the path.2,3

When allowed to run the FIXPNS routine will return solutions at values of δ

that are not equal to the gridpoints. Therefore we adjust the code so that after

each step, the algorithm checks whether a gridpoint has been passed and, if so, it

called the routine ROOTNX to calculate the equilibrium at the gridpoint, using

information on the solutions at either side.

2STEPNS is a predictor-corrector algorithm where hermetic cubic interpolation is used to guess
the next point, and an iterative procedure is then used to return to the path.

3For details of the HOMPACK subroutines, please consult manual of the algorithm at https:

//users.wpi.edu/~walker/Papers/hompack90,ACM-TOMS_23,1997,514-549.pdf.
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The time taken to run a homotopy is usually between one hour and seven

hours, when it is run on UMD’s BSWIFT cluster (a moderately sized cluster for the

School of Behavioral and Social Sciences).

Step 3: Verifying Solutions. The numerical nature of the procedure, and the possi-

blity that a routine such as ROOTNX will end prematurely, means that the returned

solutions may not be exactly at the gridpoints. This can matter because we would

not want to count two solutions as multiple equilibria if they are only different

because one of them is calculated using a slightly different value of δ. We there-

fore delete solutions where the Euclidean distance between the gridpoint and the

parameters is more than 10−6.

To illustrate the problem, Table A.1 provides an example of two solutions

that we find close to the gridpoint (δ = 0.194, ρ = 0.87). The first two columns

give the solutions returned by the homotopy procedure, and some elements of the

price vectors differ by more than 0.01 (fourth column). The third column shows

what happens when we use fsolve in MATLAB to solve for an equilibrium at the

gridpoint using the vector in the second column (the column that is further away

from the gridpoint) as a starting value. As can be seen from the fifth column,

the differences are very small, but still close to the values in the second column,

suggesting that we should not consider this outcome to be a different equilibrium.

Figure A.1 shows the distribution of the Euclidean distances between the grid-

point and the solution (ρ, δ) when bp = 0.025. As can be seen, our rule eliminates a

small number of solutions on this basis.
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Figure A.1: Distribution of Euclidean Distances Between the (ρ, δ) Values Returned
By the Algorithm and our Gridpoints for the δ-Homotopies and bp = 0.025

A second numerical issue is whether the returned values of x are numerically

close enough to solving the equations to be counted as equilibria. The criteria that

we use is that solutions where the objective funciton (i.e., the sum of squared de-

viations across the equations) of F(x) are more than 10−10 are rejected. Figure

A.2 shows the distribution of the value of the objective function for the solutions

that fail our restriction. As can be seen clearly, the vast majority of rejected solu-

tions represent outcomes that are not especially close to our cutoff, and so are not

plausibly equilibria.

Step 4: Dealing with Failed Homotopies. As noted by BDKS (p. 467), the ho-

motopies may stop if they reach a point where the Jacobian ∂F (y(s),ρ)
∂y

has less than

full rank. We find that this happens for around 40% of homotopy runs. While this

sounds like a major “problem” for the procedure, we do not believe that this having
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Figure A.2: Objective Functions Values for Solutions Rejected as Equilibria for the
δ-Homotopies and bp = 0.025
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a major effect on our results because it usually happens outside the range of δ where

either we or BDKS identify multiplicity (i.e., δ > 0.2), and when we use ad-hoc pro-

cedures to try to restart the homotopy we are rarely able to find additional solutions

that count as different equilibria even when we are able to do so.4

Step 5: Enumerating Equilibria. Once we have collected the solutions at each of

the (ρ, δ) gridpoints we need to identify which solutions represent distinct equilibria,

taking into account that small differences may arise because of numerical errors (or

differences in the (ρ, δ) gridpoints that are within our tolerances.For this paper, we

use the rule that solutions count as different equilibria if at least some elements of

the price vector differ by more than 0.001.

Step 6: ρ-Homotopies. With a set of equilibria from the δ homotopies in hand,

we can perform the second element of the criss-crossing procedure. In principle one

would use all of the equilibria found in the first round (when δ > 0) as starting points.

However, the richness of our grid means that this is computationally prohibitive. We

therefore use as starting points the step 2 equilibria found at the grid points (δ, ρ) ∈

{0.001, 0.002, . . . , 0.2, 0.25, 0.3, 0.35, . . . , 1}×{0.01, 0.11, 0.21, . . . , 0.91}, where × de-

notes Cartesian product.5

As an example of how the different homotopies identify equilibria, Figures A.3

4Note that because one cannot show that the problem defined by the equations must be regular it
is theoretically possible that the paths should stop at certain points. Therefore it is not necessarily
surprising that we are unable to restart them.

5This choice reflects the fact that, like BDKS, we only find evidence of multiplicity for δ < 0.2.
The same Fortran subroutines as round 1 are used to run the ρ-homotopies. Experimentation
indicates that we would not find significantly more equilibria if we used a richer grid, but we are
doing some additional analysis to confirm this statement for all values of bp. Steps 4 and 5 are
applied to the results of the ρ-homotopies in the same way as they were for the δ-homotopies.
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and Figures A.4 plot the number of new equilibria identified at each gridpoint for

bp = 0.025 in the δ- and the ρ-homotopy rounds.
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Andrew T Ching, Tülin Erdem, and Michael P Keane. Learning models: An assess-
ment of progress, challenges, and new developments. Marketing Science, 32(6):
913–938, 2013.

John Rust. Optimal Replacement of GMC Bus Engines: An Empirical Model of
Harold Zurcher. Econometrica, 55(5):999–36, September 1987.

Kenneth L Judd. Numerical Methods in Economics. MIT press, 1998.

A. Colin Cameron and Pravin K Trivedi. Microeconometrics : Methods and Appli-
cations. Cambridge University Press, August 2005.

Dmitri Williams. Structure and competition in the U.S. home video game industry.
International Journal on Media Management, 4(1):41–54, January 2002.

Entertainment Software Association. Essential Facts About The Computer And
Video Game Industry 2010. Technical report, August 2010.

Yuzhou Liu and Masakazu Ishihara. A Dynamic Structural Model of Endogenous
Consumer Reviews in Durable Goods Markets. January 2017.

David Besanko, Ulrich Doraszelski, and Yaroslav Kryukov. The economics of preda-
tion: What drives pricing when there is learning-by-doing? American Economic
Review, 104(3):868–97, 2014.

David Besanko, Ulrich Doraszelski, and Yaroslav Kryukov. How efficient is dynamic
competition? the case of price as investment. Technical Report 23829, National
Bureau of Economic Research, 2017.

Armen Alchian. Reliability of progress curves in airframe production. Econometrica:
Journal of the Econometric Society, pages 679–693, 1963.

99



C Lanier Benkard. Learning and forgetting: The dynamics of aircraft production.
American Economic Review, 90(4):1034–1054, 2000.

Peter Thompson. How much did the liberty shipbuilders learn? new evidence for
an old case study. Journal of Political Economy, 109(1):103–137, 2001.

Rebecca Achee Thornton and Peter Thompson. Learning from experience and learn-
ing from others: An exploration of learning and spillovers in wartime shipbuilding.
American Economic Review, 91(5):1350–1368, 2001.

Douglas A Irwin and Peter J Klenow. Learning-by-doing spillovers in the semicon-
ductor industry. Journal of political Economy, 102(6):1200–1227, 1994.

Andrew R Dick. Learning by doing and dumping in the semiconductor industry.
The Journal of Law and Economics, 34(1):133–159, 1991.

Marvin B Lieberman. The learning curve and pricing in the chemical processing
industries. The RAND Journal of Economics, 15(2):213–228, 1984.

Marvin B Lieberman. Patents, learning by doing, and market structure in the
chemical processing industries. International Journal of Industrial Organization,
5(3):257–276, 1987.

Martin Gaynor, Harald Seider, and William B Vogt. The volume-outcome effect,
scale economies, and learning-by-doing. American Economic Review, 95(2):243–
247, 2005.

Leemore S Dafny. Games hospitals play: Entry deterrence in hospital procedure
markets. Journal of Economics & Management Strategy, 14(3):513–542, 2005.

Tracy R. Lewis and Huseyin Yildirim. Managing dynamic competition. Amer-
ican Economic Review, 92(4):779–797, September 2002. doi: 10.1257/
00028280260344461. URL http://www.aeaweb.org/articles?id=10.1257/

00028280260344461.

Tracy R Lewis and Huseyin Yildirim. Managing switching costs in multiperiod
procurements with strategic buyers. International Economic Review, 46(4):1233–
1269, 2005.

James J Anton, Gary Biglaiser, and Nikolaos Vettas. Dynamic price competition
with capacity constraints and a strategic buyer. International Economic Review,
55(3):943–958, 2014.

Viplav Saini. Endogenous asymmetry in a dynamic procurement auction. The
RAND Journal of Economics, 43(4):726–760, 2012.

C Robert Clark and Mattias K Polborn. Strategic buying to prevent seller exit.
Journal of Economics & Management Strategy, 20(2):339–378, 2011.

100

http://www.aeaweb.org/articles?id=10.1257/00028280260344461
http://www.aeaweb.org/articles?id=10.1257/00028280260344461


John Asker, Chaim Fershtman, Jihye Jeon, and Ariel Pakes. A computational
framework for analyzing dynamic procurement auctions: The market impact of
information sharing. 2018.

Andrew Sweeting, James W Roberts, and Christopher Gedge. A model of dynamic
limit pricing with an application to the airline industry. Available at http://

econweb.umd.edu/~sweeting/SWEETING_DLP_JAN2016.pdf., 2019a.

Andrew Sweeting, Xuezhen Tao, and Xinlu Yao. Dynamic games with asymmetric
information: Implications for mergers. 2019b.

Eric Maskin and Jean Tirole. Markov perfect equilibrium: I. observable actions.
Journal of Economic Theory, 100(2):191–219, 2001.

Richard Ericson and Ariel Pakes. Markov-perfect industry dynamics: A framework
for empirical work. The Review of economic studies, 62(1):53–82, 1995.

Ariel Pakes and Paul McGuire. Computing markov-perfect nash equilibria: Numer-
ical implications of a dynamic differentiated product model. The Rand Journal
of Economics, pages 555–589, 1994.

Andrew Caplin, Barry Nalebuff, et al. Aggregation and imperfect competition: On
the existence of equilibrium. Econometrica, 59(1):25–59, 1991.

Layne T Watson, Stephen C Billups, and Alexander P Morgan. Algorithm 652:
Hompack: A suite of codes for globally convergent homotopy algorithms. ACM
Transactions on Mathematical Software (TOMS), 13(3):281–310, 1987.

101

http://econweb.umd.edu/~sweeting/SWEETING_DLP_JAN2016.pdf
http://econweb.umd.edu/~sweeting/SWEETING_DLP_JAN2016.pdf

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Demand Estimation with Forward-looking Social Learners: The Case of the US Video Games Industry
	Introduction
	Related literature
	Model
	Demand
	Evolution of state variables

	Demand estimation and numerical strategy
	Pseudo pricing policy function
	Maximum simulated likelihood estimation

	Data and estimation results
	The video games industry
	Data
	Estimates of demand and pseudo pricing function parameters 
	An example of the importance of social learning


	Dynamic Pricing with Forward-looking Social Learners: The Case of the US Video Games Industry
	Firm Model
	Firm decisions
	Market equilibrium

	Pricing implications
	The algorithm to find optimal prices
	Equilibrium pricing policy
	Observed vs. predicted prices
	Impact of consumer rationality
	Profit loss from wrong rationality assessment

	Conclusions

	Dynamic Price Competition and Learning-by-Doing: The Effect of Strategic Buyers on Equilibria
	Introduction
	Model
	Learning by Doing and Organizational Forgetting with Non-Strategic Buyers
	Strategic Buyers

	Computation
	Results: Strategic Buyers and Multiplicity of Equilibria
	Extent of Multiplicity
	Explanations for Why Strategic Buyers Reduce Multiplicity

	Results: Strategic Buyers, Equilibrium Pricing Strategies, Market Concentration and Welfare
	Conclusion

	Computational Methods of Dynamic Price Competition and Learning-by-Doing: The Effect of Strategic Buyers on Equilibria
	Preliminaries
	System of Equations Defining Equilibrium
	Homotopy Algorithm: Overview
	Homotopy Procedure Details

	Bibliography

