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Superconductivity is a field with a great many branches and applications. In this

dissertation, we focus on two specific processes in superconductors – light-induced

enhancement and hybridization of collective modes – in two types of quasi-two

dimensional materials – either the loosely coupled planes of a layered superconductor

or a superconducting thin film.

Motivated by experiments in the cuprates that have seen evidence of a transient

superconducting state upon optical excitation we study the effects of inter-plane

tunneling on the competition between superconductivity and charge order. We find

that an optical pump can suppress the charge order and simultaneously enhance

superconductivity, due to the inherent competition between the two. Taking into

account that the charge order empirically shows a broad peak in c-axis momentum,

we consider a model of randomly oriented charge ordering domains and study how

interlayer coupling affects the competition of this order with superconductivity.

Also in the cuprates, several groups have reported observations of collective

modes of the charge order present in underdoped cuprates. Motivated by these

experiments, we study theoretically the oscillations of the order parameters, both



in the case of pure charge order, and for charge order coexisting with superconduc-

tivity. Using a hot-spot approximation we find in the coexistence regime two Higgs

modes arising from hybridization of the amplitude oscillations of the different order

parameters. We explore the damping channels of these hybrid modes.

As another means of enhancing superconductivity we consider coupling a two-

dimensional superconducting film to the quantized electromagnetic modes of a

microwave resonator cavity. We find that when the photon and quasiparticle systems

are out of thermal equilibrium, a redistribution of quasiparticles into a more favorable

non-equilibrium steady-state occurs, thereby enhancing superconductivity in the

sample, a fluctuation analog of a phenomenon known as the Eliashberg effect.

Finally, following the recent success of realizing exciton-polariton condensates

in cavities, we examine the hybridization of cavity photons with two types of col-

lective modes in superconductors. Enabled by the recently predicted and observed

supercurrent-induced linear coupling between these excitations and light, we find

that significant hybridization between the superconductor’s collective modes and

resonant cavity photons can occur.
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Chapter 1: Introduction1

Superconductivity has been of profound interest since its discovery over a century

ago [1], due both to its practical applications and the mystery of the mechanism

behind its striking behavior. Indeed, while phenomenological description of the

superconducting state was put forth by the London brothers [2] and Ginzburg

and Landau [3] it took more than 45 years before the microscopic Bardeen-Cooper-

Schrieffer (BCS) theory of superconductivity was developed [4]. In combination with

pioneering works by Bogoliubov [5], Valatin [6], Abrikosov [7], Gor’kov [8, 9] and

many others, it now became possible to theoretically study a wealth of phenomena

related to superconductivity.

The discovery, three decades later, of the cuprate high temperature superconduc-

tors [10], opened up consideration of a wider array of superconducting systems and

therefore more phenomena to investigate. Since then many families of superconduc-

tor have been discovered with a panoply of properties and underlying mechanisms,

the nature of which is still an active area of research.

Of particular interest are the collective modes of superconductors and the inter-

action of the materials with electromagnetic fields, given the central role both of

these play in the defining features of superconductivity [11]. In this dissertation, we

study a selection of electromagnetic effects in superconductors focusing on exter-

nally driven enhancement of superconductivity and the behavior of collective modes.

In what follows the systems playing host to these effects will be quasi-two dimen-

sional superconductors: either the layered superconducting copper-oxide planes of a

cuprate high-temperature superconductor, or a thin-film BCS superconductor inside

a photonic cavity.
1Parts of this introduction are adapted from the works listed in the List of Publications. Those

published in Physical Review B and Physical Review Letters are © American Physical Society.
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1.1 Overview of dissertation

The structure of this dissertation is as follows. In Chapter 2, we investigate

photo-induced enhancement of superconductivity in hole-doped cuprates. Motivated

by pump-probe experiments described in Section 1.2.2, we study the effects of a

light driven modification of interlayer structure on superconductivity in cuprates.

Specifically, our focus is on the role of competition between superconductivity and

experimentally observed coexistent charge order.

Chapter 3 then considers the same system for the purposes of investigating the

amplitude collective modes of the competing orders. In this chapter, we calculate the

dispersion relation and character of amplitude modes of the coexistent charge order

and superconductivity. In particular, we investigate the emergence of a hybridized

sub-gap amplitude mode.

Following this we turn our attention to coupled photonic cavity-superconductor

systems for the remainder of the dissertation. In Chapter 4, we propose a means of

enhancing superconductivity via coupling to a suitably engineered photon reservoir.

We show how, in analogy with the Eliashberg effect discussed in Section 1.2.1, a

photon bath can modify superconductivity by changing the occupation probabilities

of Bogoliubov quasi-particles.

Finally, in Chapter 5 we investigate the possibility of hybridizing collective modes

of superconductors with photons to form superconductor-polaritons. Such hybrid

light-matter excitations are especially of interest due to the possibility of their con-

densation at high temperatures, similar to the examples discussed in Section 1.3.2.

In the rest of this chapter, we give a brief introduction to the background and

formalism of the aforementioned topics in order to provide context for the treatment

that follows.
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1.2 Light induced enhancement of superconductivity

1.2.1 The Eliashberg Effect

At the simplest level, one expects the introduction of external Electromagnetic

(EM) fields to be detrimental to superconductivity, either due to heating or through

depletion of the condensate. There are, however, notable experimentally observed

exceptions to this notion.

The first of these dates back to the 1960s, when enhancement of the critical

current was observed for superconducting junctions subjected to microwave radi-

ation [12, 13]. Several years later Eliashberg [14] proposed a theory explaining

the effect as a redistribution of quasi-particles in the non-equilibrium steady state

(NESS). The Eliashberg – or Wyatt-Dayem – effect2 can be understood simply from

the BCS gap equation
1
𝑔

= ∫ dk
(2𝜋)𝑑

1 − 2𝑛(𝐸k)
𝐸k

(1.1)

and the Boltzmann equation

�̇� + v ⋅ 𝛁𝑟𝑛 + F ⋅ 𝛁𝑝𝑛 = 𝐼coll[𝑛]. (1.2)

We begin by rewriting Eq. (1.1) in the quasi-classical approximation

1
𝑔𝜈

= ∫
∞

Δ
d𝜖 1 − 2𝑛(𝜖)√

𝜖2 − Δ2
(1.3)

where Δ is the BCS gap and 𝜈 is the density of states at the Fermi surface. Because

the quasi-particle density of states (DOS) 𝜌BQP = 𝜖/
√

𝜖2 − Δ2 is sharply peaked near

the gap edge 𝜖 ∼ Δ, these low-energy particles matter most for determining the gap

strength. Note that the left side of Eq. (1.3) is independent of the driving field. Thus,
2The Eliashberg effect should not be confused with the Migdal-Eliashberg theory of strong-coupling

phonon-mediated superconductivity.
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any change to 𝑛 must cause a change in Δ to leave the integral invariant, as this is

the only other free parameter. If the occupation of quasi-particles is redistributed

such that particles near the gap edge are pushed to higher energies, this will have

a similar effect to cooling the system, as in both cases the density of most relevant

quasi-particles is depleted. This is the root of the Eliashberg effect. Concretely, we

can consider the Ginzburg-Landau (GL) equation including the modification of the

distribution function (c.f. Ivlev, Lisitsyn, and Eliashberg [15])

𝑇𝑐 − 𝑇
𝑇𝑐

− 7𝜁(3)
8𝜋2

Δ2

𝑇 2
𝑐

− 2 ∫
∞

Δ

𝑑𝜖√
𝜖2 − Δ2

𝑛1(𝜖) = 0. (1.4)

where 𝑛1 = 𝑛 − 𝑛𝐹 is the deviation from the equlibrium Fermi occupation function.

To lowest order in the correction 𝛿Δ = Δ − Δ0 and 𝑛1 we then have

7𝜁(3)
4𝜋2

Δ0𝛿Δ
𝑇 2

𝑐
− 2 ∫

∞

Δ0

𝑑𝜖
√𝜖2 − Δ2

0
𝑛1(𝜖) = 0. (1.5)

or
𝛿Δ
Δ0

= 𝑇𝑐
𝑇𝑐 − 𝑇

∫
∞

Δ0

𝑑𝜖
√𝜖2 − Δ2

0
𝑛1(𝜖) (1.6)

where we have used the equilibrium GL equation to re-express Δ0 in terms of 𝑇𝑐.

We can see from Eq. (1.6) that for 𝑇 < 𝑇𝑐 the enhancement of Δ is proportional to

the depletion of 𝑛1 scaled by the DOS factor (𝜖2 − Δ2)−1/2.

To see how this happens we consider the uniform NESS in the absence of external

forces.3 The Boltzmann equation then simply becomes 𝐼coll[𝑛] = 0. The collision

integral can be broken up into contributions leading to thermalization – due to i.e.

phonons – which we treat here in the relaxation approximation and a contribution
3We include the external microwave field in the collision integral.
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from the microwave field.

𝐼coll[𝑛] ≈ −𝑛 − 𝑛𝐹
𝜏in

+ 𝐼MWcoll [𝑛,A]. (1.7)

Here 𝜏in is the (inelastic) relaxation time. For the case where the final distribution is

close to the Fermi distribution, we can linearize Eq. (1.7) in the deviation 𝑛1 = 𝑛−𝑛𝐹

and obtain

𝑛1 ≈ 𝜏in𝐼MWcoll [𝑛𝐹,A]. (1.8)

𝐼MWcoll can be calculated using the quasi-classical equations for a superconductor i.e.

Usadel equation [16, 17] or Keldysh Non-Linear σ Model (KNLσM) [18, 19]. Doing

so one finds

𝐼MWcoll [𝑛𝐹] = 2𝛼𝐷
𝑐

× [(1 − 𝑛𝐹(𝜖) − 𝑛𝐹(𝜔 − 𝜖))𝑃(𝜖, 𝜔 − 𝜖)𝜌BQP(𝜔 − 𝜖)Θ(𝜖 − Δ)Θ(𝜔 − Δ − 𝜖)

+ (𝑛𝐹(𝜖 + 𝜔) − 𝑛𝐹(𝜖))𝐿(𝜖, 𝜖 + 𝜔)𝜌BQP(𝜖 + 𝜔)Θ(𝜖 − Δ)

+(𝑛𝐹(𝜖) − 𝑛𝐹(𝜖 − 𝜔))𝐿(𝜖 − 𝜔, 𝜖)𝜌BQP(𝜖 − 𝜔)Θ(𝜖 − 𝜔 − Δ)] (1.9)

where 𝐷 is the diffusion constant, 𝛼 is the fine-structure constant, and (𝐿/𝑃)(𝑥, 𝑦) =

1 ± Δ2/(𝑥𝑦) are coherence factors arising from the Bogoliubov rotation of the

electron operators. We can identify each of the three terms: pair production and

recombination, upward scattering, and downward scattering, respectively. The

linearized correction due to Eq. (1.9) is plotted in Fig. 1.1. The most salient feature

is that for a range of driving frequencies 𝜔min < 𝜔 ⪅ 2Δ the correction 𝑛1 is negative

for electron energies 𝜖 ∼ Δ near the gap edge. We, therefore, see an enhancement

of superconductivity.
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Figure 1.1: (a) Correction to the distribution function due to the collision integral in
Eq. (1.9). (b) The correction scaled by the DOS factor 1/

√
𝜖2 − Δ2. The area under

the curve is negative, indicating with Eq. (1.6) that 𝛿Δ > 0 and superconductivity
is enhanced.

1.2.2 Transient enhancement of pairing in cuprates

Separate from the established physics of the Eliashberg effect (c.f. Section 1.2.1)

the last decade has seen the advent of a new series of experiments showing evi-

dence of photon-induced enhancement of superconductivity. In 2011, a transient

Josephson plasmon resonance (JPR) feature was observed in pump-probe reflectivity

measurements of Lanthanum-Europium-Strontium-Copper-Oxide (LESCO) follow-

ing mid-infrared excitation of the sample [20]. Additionally, the onset of the JPR

coincides with the emergence of a 1/𝜔-like dependence of the imaginary part of the

optical conductivity Im𝜎(𝜔) at low frequencies and a strong decrease of Re𝜎(𝜔) at

low frequencies. The strength of this dependence can of course be related to the

superfluid density via the Kramers-Kronig relations

Im𝜎(𝜔) = 1
𝜋

∫ d𝜔′ Re𝜎(𝜔′)
𝜔 − 𝜔′ ⟹ Im𝜎(𝜔) = 𝑒2𝜌𝑠

𝑚𝑐𝜔
+ 𝒪(𝜔). (1.10)

where 𝜌𝑠 is the superfluid density. The quantity lim𝜔→0 𝜔 ImΔ𝜎(𝜔) – where Δ𝜎(𝜔)

is the difference of the conductivity from the equilibrium state – is seen to follow

mean field-like square root temperature dependence with a 𝑇𝑐 approaching room

temperature [21].
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In contrast to the Eliashberg effect, the response seen in these experiments ex-

hibited a sharp frequency dependence, with the JPR appearing only when the pump

pulse was resonant with a particular lattice phonon. Subsequently, these experi-

ments were repeated in other materials, including Yttrium-Barium-Copper-Oxide

(YBCO) [21–24], Lanthanum-Barium-Copper-Oxide (LBCO) [25], and K3C60 [26].

Specifically in YBCO, resonant X-ray spectroscopy suggested that coexisting charge

order is suppressed in the same region of the phase diagram where superconductiv-

ity is enhanced in the optical excitation experiments [24]. This suggests that the

experimental drive may be enhancing superconductivity by melting a competing

instability in cuprates. This possibility is investigated in Chapter 2.

1.3 Hybridization of Collective Modes

1.3.1 d-form-factor density wave order in cuprates

Despite the decades of intense research efforts, superconductivity in cuprates

remains a profound mystery. However, recently there has been a lot of progress in

clarifying and refining the phase diagram of these materials experimentally [27, 28].

In particular, there is growing evidence of a charge order existing in the pseudogap

state of several cuprate families [24, 29–34], which also coexists and competes with

superconductivity at lower temperatures. Furthermore, it appears that this order

has a non-trivial 𝑑-wave phase factor [33–35], implying that within a one-band model

of copper sites it describes ordering entirely on the links. For this reason it has been

dubbed bond-density-wave (BDW) or d-form-factor density wave (dFF-DW).4

One model for such order is a density-wave instability emerging from nesting of

the Fermi surface [36, 37]; this is the model we employ in this dissertation. A detailed

examination of the instability is given in Sections 2.2 and 2.3, but a few salient

details are described here. The model we use is a 1-band model of cuprates, and as
4This is not to be confused with the similarly named d-density wave.
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mentioned above, while the observed charge oscillation is physically on the oxygen

sites of the copper-oxide plane, within the model it is described by a modulation

on the links of the lattice – a spatial variation of the hopping between copper sites.

Explicitly, the mean field Hamiltonian is

𝐻 = ∑
𝑖𝑗

(𝑡𝑖𝑗 + 𝜙𝑖𝑗 cos(Q ⋅
r𝑖 + r𝑗

2
))𝑐†

𝑖𝜎𝑐𝑗𝜎 + ℎ.𝑐., (1.11)

where 𝑐†
𝑖𝜎 is the electron creation operator for site 𝑖 with spin 𝜎. Here the charge

order 𝜙𝑖𝑗 has structure

𝜙𝑖𝑗 = 𝜙0

⎧
{
{
{
⎨
{
{
{
⎩

1 r𝑖 − r𝑗 = ±𝑎 ̂𝑥

−1 r𝑖 − r𝑗 = ±𝑎 ̂𝑦

0 otherwise

(1.12)

with 𝑎 being the lattice constant. That is, the form factor is non-zero only for

nearest-neighbors and has opposite signs on 𝑥-links and 𝑦-links.

The 𝑑𝐹𝐹 − 𝐷𝑊 order, being a complex order parameter in the usual Landau

paradigm, has a nominally gapless phase mode and a massive amplitude mode. The

fact that this order competes with superconductivity suggests a coupling between

the dFF-DW and superconductor order parameters. This in turn indicates that

there should be a coupling between the collective modes of the two orders, a topic

which is the subject of Chapter 3.

1.3.2 Light-matter hybridization: Polaritons

Beyond enhancement of the superconducting state, there are other avenues for

interfacing superconductors with light. Specifically, one can also consider how the

fluctuation modes of the material hybridize with light. There is general precedent
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for looking at hybrid light-matter excitations in semiconductors and metals in the

well studied exciton-polaritons [38], surface-plasmon-polaritons [39, 40], phonon

polaritons [41, 42], and others. In this section, we give a brief introduction to

the notion of polaritons. For thorough overview of the field we refer the reader to

Carusotto and Ciuti [43].

Generally polaritons are considered in a Hamiltonian framework, where a matter

mode is coupled linearly to photons through a dipole coupling.

𝐻 =
⎛⎜⎜⎜
⎝

Ωmatter 𝑔

𝑔 𝜔q

⎞⎟⎟⎟
⎠

. (1.13)

Typically the dispersion of the matter excitation can be ignored as the velocity of

the mode is much less than the speed of light. The eigenstates of this Hamiltonian

are polaritons, whose existence can most easily be seen by the avoided crossing in

the photonic dispersion such as in Fig. 1.2

Much work has recently focused cavity exciton-polaritons, that is polaritons

formed from cavity-confined photons and the excitons of a material (e.g. a semi-

conductor quantum well) placed within the cavity. A major appeal of this construc-

tion is that the polaritons have small effective mass and thus high Bose condensation

temperatures. Cavity exciton-polariton condensation has in fact been observed up

to room temperature [44, 45].

Another appeal of cavity polaritons is that their overlap with the cavity photons

means they can be observed as signatures in the electromagnetic behavior of the

cavity. In fact, the dispersion of the polaritons can be imaged by mapping the

energy of photons injected into the cavity as a function of in plane momentum [46,

47].
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q

ω

Figure 1.2: Dispersion of a matter excitation (e.g. an exciton) and a cavity photon
(dashed lines) and the polariton states formed from them (solid lines).The resulting
polaritons have an effective kinetic mass much smaller than that of the original
matter excitation.

1.4 Formalism: Keldysh Field Theory

In this section, we introduce the Keldysh formalism for many body systems

used in Chapters 3 and 4. We give here a brief overview of the technique and its

accompanying notation. For a fuller introduction we refer the reader to Rammer

and Smith [48], Altland and Simons [49], Kamenev [50], and Morawetz [51].

In any Green’s function treatment of condensed matter theory one must encode

in the formalism both the single-particle states of the system and the occupation

of these states. In equilibrium formalisms, the latter information is redundant and

so a complete theory can be written in terms of a single type of Green’s function

e.g. the Feynman (time-ordered) or Matsubara (imaginary-time) Green’s functions.

However, in the general case, the density matrix of the system is an additional

quantity to be solved for and so must be encoded into the variables of the system.

This can be done in a compact manner by introducing an auxiliary Green’s function

to keep track of the density matrix in the system. In the Keldysh formalism,

we therefore enlarge our Green’s function space to include three types of Green’s

function, the retarded, advanced, and Keldysh Green’s functions. The retarded
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and advanced components are redundant, but their inclusion allows for a matrix

formalism which follows the usual Feynman rules and automatically maintains the

appropriate analytic properties of the correlators in the theory.

Below we briefly outline obtaining the analog Keldysh field integral corresponding

to a Gaussian zero-temperature action to illustrate the general approach. Then

in Section 1.4.1 we employ these techniques to derive the KNLσM of disordered

superconductors which will be used in Chapters 4 and 5.

Figure 1.3: The Schwinger-Keldysh contour in the complex time plane. Time or-
dering of operators on this contour allows for a coherent state functional integral
construction which can encode the non-equilibrium properties of the density ma-
trix. The retarded, advanced, and Keldysh Green’s functions can be obtained as
expectations values of operators on different parts of the contour.

Let us begin with the usual 𝑇 = 0 time-ordered coherent state functional integral

⟨⋯⟩𝑇 =0 = ∫ 𝒟[𝜒, �̄�](⋯) exp⎡
⎢
⎣

𝑖 ∫
∞

−∞
d𝑡 �̄�(𝑖𝜕𝑡 − �̂�)𝜒⏟⏟⏟⏟⏟

𝑆

⎤
⎥
⎦

. (1.14)

To express the analogous Keldysh theory we begin by taking the above theory

on the time contour from 𝑡 = −∞ to 𝑡 = ∞ and extending it to a complex time
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contour containing forward and backward branches as in Fig. 1.3

𝑆 = ∫
∞

−∞
d𝑡 �̄�(𝑖𝜕𝑡 − �̂�)𝜒 → ∮

𝒞
d𝑡 �̄�(𝑖𝜕𝑡 − �̂�)𝜒. (1.15)

∮
𝒞
denotes integration over the Keldysh contour. By defining fields on the upper

and lower branches of the contour, this can again be written as an integral over the

real time axis

𝑆 = ∫
∞

−∞
d𝑡 [�̄�+(𝑖𝜕𝑡 − �̂�)𝜒+ − �̄�−(𝑖𝜕𝑡 − �̂�)𝜒−] (1.16)

where 𝜒± is a field on the upper/lower contour as shown in Fig. 1.3. From these

operators one can define four types of correlators

𝑖𝐺𝑇 = ⟨𝜒+�̄�+⟩ 𝑖𝐺 ̃𝑇 = ⟨𝜒−�̄�−⟩

𝑖𝐺> = ⟨𝜒−�̄�+⟩ 𝑖𝐺< = ⟨𝜒+�̄�−⟩ ,
(1.17)

the time-ordered, anti-time-ordered, greater, and lesser Green’s functions, respec-

tively. Due to the boundary conditions of the field integral, these functions are

not all independent. It is therefore convenient to perform a change of basis on our

field operators; the most useful choice of basis differs for bosons and fermions. For

bosons, one performs the Keldysh rotation

⎛⎜⎜⎜
⎝

𝜙𝑐

𝜙𝑞

⎞⎟⎟⎟
⎠

= 1√
2

⎛⎜⎜⎜
⎝

1 1

1 −1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝜙+

𝜙−

⎞⎟⎟⎟
⎠

(1.18)

to the basis of classical and quantum components. In terms of these fields the action

is

𝑆 = ∫ d𝑡 ̄𝜙 ̂𝐺−1𝜙 (1.19)
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defining a matrix Green’s function

̌𝐺 =
⎛⎜⎜⎜
⎝

̂𝐺𝐾
̂𝐺𝑅

̂𝐺𝐴 0

⎞⎟⎟⎟
⎠

. (1.20)

with retarded (advanced) Green’s functions 𝑖 ̂𝐺𝑅(𝐴) = ⟨𝜙𝑐𝑙(𝑞)
̄𝜙𝑞(𝑐𝑙)⟩ satisfying 𝐺†

𝑅 =

𝐺𝐴, and the anti-Hermitian Keldysh Green’s function 𝑖 ̂𝐺𝐾 = ⟨𝜙𝑐𝑙
̄𝜙𝑐𝑙⟩.

For fermions we can use the fact that ̄𝜓 and 𝜓 are actually unrelated Grassman

fields to instead perform the Larkin-Ovchinnikov change of basis

⎛⎜⎜⎜
⎝

𝜓1

𝜓2

⎞⎟⎟⎟
⎠

= 1√
2

⎛⎜⎜⎜
⎝

1 1

1 −1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝜓+

𝜓−

⎞⎟⎟⎟
⎠

(1.21)

( ̄𝜓1
̄𝜓2) = 1√

2
( ̄𝜓+

̄𝜓−)
⎛⎜⎜⎜
⎝

1 1

−1 1

⎞⎟⎟⎟
⎠

(1.22)

leading to a fermionic action

𝑆 = ∫ d𝑡 ̄𝜓 ̌𝐺−1𝜓 (1.23)

with

̌𝐺 =
⎛⎜⎜⎜
⎝

̂𝐺𝑅
̂𝐺𝐾

0 ̂𝐺𝐴

⎞⎟⎟⎟
⎠

. (1.24)

Finally, in both the fermionic and bosonic cases we can parameterize the anti-

Hermitian Green’s function in terms of a Hermitian function ̂𝐹

̂𝐺𝐾 = ̂𝐺𝑅 ̂𝐹 − ̂𝐹 ̂𝐺𝐴. (1.25)

The retarded and advanced functions describe the states of the system, with tr [ ̂𝐺𝑅 − ̂𝐺𝐴] =

−2𝜋𝑖𝒜 giving the spectral function 𝒜 from which can be extracted the DOS
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𝜌(𝜔) = ∫
q
tr𝒜(𝜔,q). The generalized distribution function ̂𝐹 describes the occupa-

tion of states and in equilibrium is given by coth(𝜔/2𝑇) for bosons and tanh(𝜖/2𝑇)

for fermions.

Functionally, then, the Keldysh formalism as employed in this dissertation com-

prises extending all fields with an extra matrix degree of freedom, �̂�(r, 𝑡) → �̂�𝛼(r, 𝑡),

in what we henceforth refer to as Keldysh space. This leads to an additional Keldysh

space matrix structure for all Green’s functions which can be treated via simple

matrix multiplication. The analytic structure of the components of the matrix en-

forces that any product of matrix Green’s functions will result in the same matrix

form. The result is that the Keldysh matrix structure of the correlators keeps track

of both the spectral and correlation aspects of the theory automatically with no

other explicit work required in the calculation. The price that we have paid is the

introduction of extra degrees of freedom, and new matrix structure in the coupling

between bosonic and fermionic fields arising from the Keldysh rotations. Quantities

of interest can be calculated in the usual manner of the functional integral

⟨ ̂𝒪⟩ = ∫ 𝒟[�̄�, 𝜒] ̂𝒪𝑒𝑖𝑆𝐾[�̄�,𝜒]. (1.26)

Typically, one is concerned with obtaining causal (retarded) objects.

1.4.1 Keldysh Non-Linear σ model

We now outline here a construction of the Keldysh Non-Linear σ Model (KN-

LσM), which will be used to obtain the results in Chapter 4. For more details on

the KNLσM we refer the reader to Feigel’man, Larkin, and Skvortsov [18], Kamenev

[50], and Kamenev and Levchenko [52].

The derivation of the σ model begins with a minimally coupled BCS action in

the presence of a random impurity potential, which we have, as described above,
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extended to the Keldysh contour

𝑆 = ∮
𝒞

𝑑𝑡𝑑𝐱 [ ̄𝜓 (𝑖𝜕𝑡 − ̂𝜖(−𝑖𝛁 + 𝑒
𝑐
𝐀) + 𝜇 − 𝑉imp) 𝜓 + 𝜆

𝜈
̄𝜓↑

̄𝜓↓𝜓↓𝜓↑] . (1.27)

Here ̂𝜖 is the quasi-electron energy, 𝜇 the chemical potential, 𝜈 the density of states

at the Fermi surface, 𝜆 the BCS coupling strength5, and 𝑉imp the impurity potential.

One now averages over Gaussian disorder which induces an effective disorder

interaction in the usual manner

𝑖𝑆dis = − 1
4𝜋𝜈𝜏

∮
𝒞
d𝑡d𝑡′d𝐱 ̄𝜓(𝑡)𝜓(𝑡) ̄𝜓(𝑡′)𝜓(𝑡′). (1.28)

The bilinears ̄𝜓(𝑡)𝜓(𝑡) describe rapidly varying modes on the scale of the impurities.

However, the bilinears ̄𝜓(𝑡)𝜓(𝑡′) describe slowly varying degrees of freedom. There-

fore a Hubbard-Stratonovich field 𝑄 dual to ̄𝜓(𝑡)𝜓(𝑡′) is introduced to decouple

the disorder interaction. The BCS interaction is also decoupled via the Hubbard-

Stratonovich field Δ in the usual fashion. Coupling to the 𝐴-field is handled via

the paramagnetic coupling 𝐣 ⋅ 𝐀 ≈ 𝑒
𝑐𝐯𝐹 ⋅ 𝐀. At this point one performs the Larkin-

Ovchinnikov rotation and integrates out the fermions. This leads to an action for

the Hubbard-Stratonovich fields 𝑄 and Δ

𝑖𝑆 = −𝜋𝜈
8𝜏
Tr �̌�2 + Tr ln [ ̌𝐺−1 + 𝑖

2𝜏
�̌� − 𝑒

𝑐
𝐯𝐹 ⋅ �̌� + Δ̌] (1.29)

where 𝐺 is the Bogoliubov-de Gennes Green’s function. Tr in the above indicates

a trace over all indices: both matrix and space-time. The notation �̌� indicates a

matrix in Nambu and Keldysh spaces. The matrix �̌�, describing the soft electronic

degrees of freedom, is a function of position r and two time coordinates 𝑡, 𝑡′. One

then performs an expansion about the saddle-point solution for 𝑄 as well as a
5In terms of the usual BCS coupling constant 𝑔, 𝜆 = 𝑔𝜈.
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gradient expansion. One notes that the Tr �̌�2 vanishes on the soft manifold �̌�2 = ̌1

—where we must keep in mind that the unit matrix must have the proper analyticity

structure —indicating that such modes are massless.6 The result of these expansions

along with the non-linear constraint gives the KNLσM

𝑖𝑆𝑁𝐿𝑆𝑀 = −𝜋𝜈
8
Tr [𝐷(𝜕�̌�)

2
+ 4𝑖 (𝑖 ̂𝜏3𝜕𝑡�̌� + Δ̌�̌�)] − 𝑖 𝜈

2𝜆
Tr Δ̌† ̂𝛾𝑞Δ̌. (1.30)

where 𝐷 = 𝑣𝐹𝜏2
imp/2 is the diffusion constant, 𝜈 = 𝜈↑ + 𝜈↓ is the total electronic

density of states at the Fermi surface, and 𝜆 is the strength of the BCS type coupling.

The photon field 𝐀 couples to the model through the covariant derivative

𝜕�̌� = ∇�̌� − 𝑖𝑒
𝑐
[�̌�, �̌�]. (1.31)

All matrices in the model are 4 × 4 in the product of Keldysh and Nambu spaces.

We employ a slightly modified Non-Linear σ Model (NLσM) which includes

coupling to a thermal bath

𝑖𝑆𝑁𝐿𝑆𝑀 = −𝜋𝜈
8
Tr [𝐷(𝜕�̌�)

2
+ 4𝑖 (𝑖 ̂𝜏3𝜕𝑡�̌� + 𝑖𝛾

2
�̌�rel�̌� + Δ̌�̌�)] − 𝑖 𝜈

2𝜆
Tr Δ̌† ̂𝛾𝑞Δ̌

(1.32)

In what follows we employ the conventions used in Ref. [52]. Explicitly

�̌�rel(𝜖) =
⎛⎜⎜⎜
⎝

1 2𝐹eq(𝜖)

0 −1

⎞⎟⎟⎟
⎠𝐾

�̌� = ∑
𝛼

𝐚𝛼 ̂𝛾𝛼 ⊗ ̂𝜏3, Δ̌ = ∑
𝛼

(Δ𝛼 ̂𝛾𝛼 ⊗ ̂𝜏+ − Δ∗
𝛼 ̂𝛾𝛼 ⊗ ̂𝜏−)

(1.33)

6This is a little subtle. For causality, the matrix 1̌ must mean diag (1̂𝑅, 1̂𝐴) where the superscript
indicates the retarded/advanced unit function. The trace is then Tr{1̌} = Tr{1̂𝑅} +Tr{1̂𝐴}. The
vanishing of the trace is then a consequence of the proper regularization of 1̂𝑅/𝐴. For more details
see [52].
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where the index 𝛼 runs over (cl, q) and 𝛾cl = 𝜎0 and 𝛾q = 𝜎1 are matrices in Keldysh

space. We model inelastic relaxation through a linear coupling to a bath �̂�rel with

temperature 𝑇 [19]. This is equivalent to the relaxation (1/𝜏) approximation in the

kinetic equation. In particular 𝛾 = 1/𝜏in is the inelastic scattering rate.

The saddle-point equations of Eq. (1.32) for Δ∗
𝑞 and �̌� respectively correspond

to the BCS gap equation and the Usadel equation [16] for the quasi-classical Green’s

function �̌�. In the absence of external field 𝐀, the saddle point of �̌� is

𝜕 (𝐷�̌�𝜕�̌�) + 𝑖{𝑖 ̂𝜏3𝜕𝑡, �̌�} + 𝑖 [𝑖𝜏2Δ0 + 𝑖𝛾
2

�̌�rel, �̌�] = 0 (1.34)

where we have assumed Δ𝑐𝑙 to be homogeneous and real. Assuming a homogeneous,

steady state solution �̌�sp(𝑡 − 𝑡′) we may Fourier transform to obtain

𝑖𝜖[ ̂𝜏3, �̌�(𝜖)] + 𝑖[𝑖𝜏2Δ0, �̌�(𝜖)] + 𝛾/2 [�̌�rel(𝜖), �̌�(𝜖)] = 0. (1.35)

The saddle-point solution �̌�sp will have the structure

�̌�sp =
⎛⎜⎜⎜
⎝

�̂�𝑅
sp �̂�𝑅

sp ̂𝐹 − ̂𝐹 �̂�𝐴
sp

0 �̂�𝐴
sp

⎞⎟⎟⎟
⎠

as governed by fluctuation-dissipation.

1.4.2 Gaussian Fluctuations

Gaussian fluctuations about the saddle point can be parameterized in a number

of ways, but in this dissertation we will use the exponential parameterization

�̌� = ̌𝑈 ̌𝑉 −1𝑒−�̌�/2(�̂�3 ⊗ ̂𝜏3)𝑒�̌�/2 ̌𝑉 ̌𝑈 . (1.36)
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with

̌𝑈(𝜖) =
⎛⎜⎜⎜
⎝

1 𝐹eq(𝜖)

0 −1

⎞⎟⎟⎟
⎠𝐾

⊗ ̂𝜏0, ̌𝑉 (𝜖) =
⎛⎜⎜⎜
⎝

𝑒𝜏1𝜃/2 0

0 𝑒𝜏1𝜃∗/2

⎞⎟⎟⎟
⎠𝐾

(1.37)

where the subscript 𝐾 indicates that a matrix is in the Keldysh space. Here,

𝜃(𝜖) is a complex angle which is determined by the Usadel equation, and satisfies

𝜃(−𝜖) = −𝜃∗(𝜖). The matrices 𝑈 and 𝑉 are a change of basis which allows us to

separate the equilibrium and saddle point properties from the fluctuation effects: 𝑈

encodes the fluctuation dissipation relation, while 𝑉 parameterizes the solution to

the retarded Usadel equation. The matrix �̌� is then composed of fields multiplying

the generators of the algebra of the target manifold of the theory. In particular,

the matrix �̌� anticommutes with 𝜎3𝜏3 and for �̌� = 0 Eq. (1.36) reduces to the

saddle-point solution. By expanding the exponential in this parameterization we

can capture the Gaussian fluctuations along the soft manifold. �̌� has 4 independent

components that couple to the vector potential, explicitly,

�̌� (𝐫, 𝑡, 𝑡′) = 𝑖
⎛⎜⎜⎜
⎝

𝑐𝑅(𝐫, 𝑡, 𝑡′)𝜏1 𝑑𝑐𝑙(𝐫, 𝑡, 𝑡′)𝜏0

𝑑𝑞(𝐫, 𝑡, 𝑡′)𝜏0 𝑐𝐴(𝐫, 𝑡, 𝑡′)𝜏1

⎞⎟⎟⎟
⎠𝐾

, (1.38)

which we call the cooperon (𝑐𝑅, 𝑐𝐴) and diffuson (𝑑𝑐𝑙, 𝑑𝑞) fields.

We now expand Eq. (1.32) to quadratic order in the cooperon and diffuson fields

𝑐 and 𝑑, generating the quadratic diffusive action

𝑖𝑆𝑐𝑑 = 𝜋𝜈
4

∫ 𝑑𝜖
2𝜋

∫ 𝑑𝜖′

2𝜋
tr [ ⃗𝑑𝜖′𝜖�̂�−1

𝜖𝜖′
⃗𝑑𝜖𝜖′ + ⃗𝑐𝜖′𝜖

̂𝒞−1
𝜖𝜖′ ⃗𝑐𝜖𝜖′] (1.39)
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where we have defined the vector notation

⃗𝑑 = (𝑑𝑐𝑙, 𝑑𝑞), ⃗𝑐 = (𝑐𝑅, 𝑐𝐴)

�̂�−1
𝜖𝜖′ = 𝒟−1

𝜖′𝜖𝜎+ + 𝒟−1
𝜖𝜖′𝜎−, ̂𝒞−1

𝜖𝜖′ = diag (𝒞𝑅
𝜖𝜖′ , 𝒞𝐴

𝜖𝜖′)
−1

,
(1.40)

and the diffuson and cooperon propagators

𝒟−1
𝜖𝜖′ = ℰ𝑅(𝜖) + ℰ𝐴(𝜖′), [𝒞𝑅/𝐴]−1

𝜖𝜖′ = ℰ𝑅/𝐴(𝜖) + ℰ𝑅/𝐴(𝜖′)

ℰ𝑅(𝜖) = 𝑖 (𝜖 + 𝑖𝛾
2

) cosh 𝜃𝜖 − 𝑖Δ sinh 𝜃𝜖, ℰ𝐴(𝜖) = (ℰ𝑅(𝜖))∗
(1.41)

where 𝜃𝜖 is the spectral angle appearing in Eq. (1.37). We have thus arrived at a

theory where the electronic behavior of the system is described in terms of low-lying

diffuson and cooperon modes.



Chapter 2: Enhancement of superconductivity via periodic

modulation in cuprate superconductors

This chapter is based upon Raines, Stanev, and Galitski [53] and Raines [54, ©

American Physical Society].

2.1 Overview

The past several years have brought exciting new experimental works in under-

doped cuprates on transient states showing signatures of electron-electron pairing [20,

21, 23, 25]. In these experiments, the system is excited via mid-infrared laser pulses

which drive phonon modes of the system and can lead to quasi-static changes of

the lattice structure via non-linear phonon couplings [22]. Reflectivity measure-

ments are taken as a function of time delay, from which the frequency dependent

conductivity can be extracted. For times close to the pump, features reminiscent

of superconductivity can be seen in the optical conductivity 𝜎(𝜔), e.g. a 1/𝜔 diver-

gence in Im𝜎(𝜔) and Josephson plasmon resonances (JPRs) [24]. Furthermore, the

nature of this enhancement seems to be different from the already well known effect

due to quasi-particle photo-excitation [14, 15, 21, 55, 56]. While the traditional

light induced enhancement (c.f. Section 1.2.1 and Chapter 4) occurs for light in the

microwave region and has a broad frequency dependence, the effects observed in

these non-linear phononics experiments occur for only a narrow frequency range in

the mid-infrared, when the incident light is resonant with a particular phonon mode

of the apical oxygens.

The nature of the photo-excitation employed in experiments, as well as previous

theoretical works, have suggested that it is important to understand the effect of

interlayer coupling. Indeed, several works have investigated these experiments and

20
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proposed an increase of inter-layer coupling as one of the dominant effects [22, 57].

Specifically, one consequence of driving the 𝑐-axis phonon modes is a transient quasi-

static modification of the interlayer spacing [22], leading to an enhancement of the

hopping between the planes. Here we focus on its role in the competition between

charge order and superconductivity to have a full understanding of the effects seen

under mid-infrared excitation. In particular, one scenario suggests melting of the

competing charge order [53, 58] via modulation of the interlayer coupling as the

underlying mechanism, motivated in particular by the suppression of charge ordering

peaks in X-ray coinciding with the transient pairing state [24].

To address this problem we start from the 𝑡 − 𝐽 − 𝑉 model of the quasi two

dimensional CuO2 planes [59, 60], which can naturally support the coexistence and

competition between charge ordering and superconductivity [37, 61, 62]. This model

is similar in spirit to previous studies of the cuprates e.g. Refs. [63–66]. Furthermore,

we focus on the low energy physics of fermions near the so-called ‘hot-spots’, where

the Fermi surface intersects the magnetic Brillouin zone [36, 67]. In particular, we

consider ordering of the d-form-factor density wave type discussed in Section 1.3.1.

We extend the model by introducing an effective Hamiltonian, describing stacked

planes, coupled by a c-axis tunneling term 𝑡𝑧. Then we investigate the phase diagram

of this extended model by utilizing a Landau expansion of the free energy. Quite

surprisingly, we observe a non-monotonic behavior of the critical temperatures of the

two orders with increasing 𝑡𝑧, and we provide an intuitive physical explanation of

this interesting feature. Finally, we consider different effects of the photo-excitations

of the system, particularly focusing on the role of the apical oxygens, which are

thought to play a key role in the experiments [21–23]. We find that, quite generally,

there is a parameter region where an optical pump can lead to a melting of the

charge order and a corresponding enhancement in superconductivity, due to the

competition between the two orders.
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It should be noted that the 𝑡 − 𝐽 − 𝑉 model and its variants tend to have as their

leading instability a (𝑄, 𝑄) type in-plane ordering vector [37, 61, 68], with the (𝑄, 0)

ordering vector seen in experiment [33] as a sub-leading instability (with both orders

having predominantly 𝑑-wave symmetry). While several extensions of the model

have been proposed as a way to stabilize the experimentally observed order [62,

69, 70], they introduce additional, and for our purposes unnecessary, complications.

The physical content of our results lead us to expect that the qualitative behavior

of the effects would be similar for the experimentally relevant (𝑄, 0) charge order.

Regarding the out-of-plane structure, while the 𝑐-axis momentum seen in experi-

ments is peaked about 𝑄𝑧 = 𝜋, the feature is quite broad [30]. Along with scanning

tunneling microscopy results [33], this suggests a picture of patches of in-plane order

which are only weakly correlated between planes. Indeed the importance of defects

in stabilizing the form of the order has been experimentally established [71]. We

therefore extend consideration to the case where the local phase and orientation of

charge order are pinned by e.g. lattice impurities or distortions. Taking this phase

and orientation to be random variables, we consider the Landau theory obtained by

averaging over all such regions in the system. In general, we find that when in-plane

pinning of the charge order is taken into account an increase of interlayer coupling

leads to a melting of charge order and an enhancement of superconductivity.

The outline of the chapter is as follows. In Section 2.2, we describe the 𝑡 − 𝐽 − 𝑉

model [59, 60] of the planes and consider the non-interacting susceptibility in the

charge ordering channel to find the wavevector of the strongest instability. In

Section 2.3, we consider the effect of interlayer tunneling in the case where charge

order is constant along the 𝑐-axis. Then, in Section 2.5, we study the effect of charge

order phase pinning of the competition between order. To this end we construct

the averaged Landau free energy of competing superconductivity and order and

study how interlayer coupling affects the competition between the two orders. Time-
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dependent perturbation of the inter-layer coupling 𝑡𝑧 is introduced in Section 2.6,

and the high-frequency limit is studied. Finally, in Section 2.7, we summarize and

discuss our results.

2.2 Model

In order to study the interplay of d-form-factor density wave (dFF-DW) and

d-wave superconductivity (dSC) orders we employ a 2D 𝑡 − 𝐽 − 𝑉 model of a CuO2

plane [37, 59, 60, 62]. It provides a natural platform for exploring the general

features of the interaction and the coupling between these two orders within a single

copper oxide plane. The Hamiltonian is

𝐻 = ∑
𝑖,𝑗

𝑡𝑖𝑗𝑐
†
𝜎,𝑖𝑐𝜎,𝑗 + 1

2
∑
⟨𝑖,𝑗⟩

𝐽 ⃗𝑆𝑖 ⋅ ⃗𝑆𝑗 + 1
2

∑
⟨𝑖,𝑗⟩

𝑉 𝑛𝑖𝑛𝑗, (2.1)

where 𝑉 and 𝐽 are nearest neighbor interactions, 𝑛𝑖 = ∑𝜎 𝑐†
𝑖,𝜎𝑐𝑖,𝜎 is the charge

density, and S𝑖 = 1
2 ∑𝜎 𝑐†

𝑖,𝑎�⃗�𝑎𝑏𝑐𝑖,𝑏 is the site spin density, with 𝑖 and 𝑗 being site

indices, and 𝜎, 𝑎, and 𝑏 spin indices. The term 𝑡𝑖𝑗 contains nearest, next to nearest,

and next to next to nearest hopping1. 𝑉 describes the nearest-neighbor tail of

the Coulomb repulsion, which tends to suppress the 𝑑-wave superconductivity and

enhance the dFF-DW order. 𝐽 is the usual nearest neighbor anti-ferromagnetic

exchange interaction.

Of course, the pure 𝑡 − 𝐽 model has been extensively used in the studies of

cuprates as an effective one-band description of the CuO2 planes [72]. It naturally

leads to a 𝑑-wave superconductivity as its dominant instability. In order to have

a region where superconductivity and dFF-DW order coexist the model can be

extended by the introduction of 𝑉, which suppresses superconductivity and boosts

the charge order – this is the rationale behind the 𝑡 − 𝐽 − 𝑉 model.
1In this work we used 𝑡1 = 430meV, 𝑡2 = −0.32𝑡1, 𝑡3 = −0.5𝑡2, and 𝜇 = −1.1856𝑡1.
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Table 2.1: Basis functions for factorization of nearest neighbor interactions catego-
rized by the representation of 𝐷4 to which they belong.

𝑙 𝑓 𝑙(k) Representation

1 cos 𝑘𝑥 − cos 𝑘𝑦 𝐵1

2 cos 𝑘𝑥 + cos 𝑘𝑦 𝐴1

3 sin 𝑘𝑥 − sin 𝑘𝑦 𝐸4 sin 𝑘𝑥 + sin 𝑘𝑦

The nearest neighbor form of the interaction allows us to decompose the potential

into a sum of factorizable potentials

𝐽k−k′ = 1
2

𝐽 ∑
𝑙

𝑓 𝑙(𝑘)𝑓 𝑙(𝑘′) (2.2)

𝑉k−k′ = 1
2

𝑉 ∑
𝑙

𝑓 𝑙(𝑘)𝑓 𝑙(𝑘′). (2.3)

Here, the functions 𝑓 𝑙(𝑘), listed in Table 2.1, form a basis of nearest neighbor in-

plane interaction vertices which transform as representations of 𝐷4 [70]. Since we

are interested in dSC and dFF-DW we will be focusing on the terms containing

𝑓1(k) = cos 𝑘𝑥 − cos 𝑘𝑦, which correspond to a 𝑑𝑥2−𝑦2-like form factor. In real space

such a form factor corresponds to the case where 𝑥-links and 𝑦-links have opposite

signs. Self-energy effects due to interactions in other channels will be assumed to

have already been taken into account in the free dispersion.

We may then undertake a decoupling in the dFF-DW and dSC channels. Due

to the form of the interaction, we consider only layer-local order parameters. The

superconducting order is taken to be d-wave and constant along the 𝑐-axis.
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With these restrictions, at the mean-field level, we consider the order parameters

𝜙(Q) =
𝑔𝜙

2
∑
k,𝜎

𝑓1(k) ⟨𝑐†
k−Q/2,𝜎𝑐k+Q/2,𝜎⟩

Δ = 𝑔Δ
4

∑
k,𝜎,𝜎′

𝑓1(k) ⟨𝑐−k,𝜎(−𝑖𝜎2
𝜎𝜎′)𝑐k,𝜎′⟩

(2.4)

where 𝑔𝜙,Δ = 3𝐽
4 ± 𝑉 and ⟨⋯⟩ indicates an ensemble average.
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Figure 2.1: Maximum eigenvalue of the matrix density wave susceptibility Π̂𝜙 as a
function of in-plane ordering vector in the Brillouin zone. The strongest instability is
generically at in-plane wavevector (𝑄, 𝑄) with 𝑄 ∼ 1.14 and out of plane wavevector
𝑄𝑧 = 𝜋.

Having defined the order parameters we can also define associated normal state

susceptibilities in these channels. In particular, we define the matrix dFF-DW
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susceptibility

Π(q)𝑖𝑗 = − ∑
𝑘

[𝑓1(k)]2 tr𝐿,𝜎 [ ̂𝐺0(𝜖𝑛,k+Q/2) ̂𝑣𝑖
̂𝐺0(𝜖𝑛,k−Q/2) ̂𝑣𝑗] . (2.5)

where ̂𝐺0 is the non-interacting Green’s function and ∑𝑘 includes an integral over

in-plane momentum and a sum of the Fermionic Matsubara frequency 𝜖𝑛.

In order to determine the in-plane charge-ordering wavevector, we calculated the

susceptibility at various values of Q and compared the maximum eigenvalues. An

intensity plot of the strongest instability by wavevector is shown in Fig. 2.1. For

the in-plane component, we generically find the susceptibility to be greatest for a

diagonal (𝑄, 𝑄) nesting wavevector as is generally the case in such models [37, 61,

68].

1

2

4

3

Figure 2.2: The leading instability has an in-plane ordering momentum which
connects the ‘hot-spots’, the points where the Fermi surface intersects the magnetic
Brillouin zone boundary, across the edge of the Brillouin zone, e.g. the hot-spots
labeled 1 and 2. The symmetry of the problem allows the mean-field Hamiltonian
at only hot regions 1 and 2 to be considered.
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2.3 Hot-Spot model and the charge ordering instability

Superconductivity Density Wave

Normal

T

V

SC +

DW

Figure 2.3: Schematic phase diagram of competing d-wave superconductivity and
d-form-factor density wave. 𝑉, the nearest-neighbor Coulomb repulsion, acts as a
tuning parameter for the relative strength of the two instabilities.

We now construct a low-energy effective model by restricting our attention to

fermions living within a limited region surrounding ‘hot-spots’ – points where the

Fermi surface intersects the magnetic Brillioun zone boundary, as depicted in Fig. 2.4

(such models have been introduced and used in a number of studies of charge order

in cuprates [37, 61, 73, 74]). These points are of special interest because the Fermi

surface is nested with wave-vector K = (𝜋, 𝜋), and given the importance of anti-

ferromagnetic spin fluctuations to pairing in the cuprates [37, 75, 76], we expect that

the most relevant interactions will be those with exchanged momentum K. Close

to the hot-spots we can replace the interactions 𝐽q, 𝑉q with constants 𝐽K, 𝑉K, and

restrict the two unconstrained fermion momenta �⃗� − �⃗�′ = ⃗𝑞 to lie in hot regions

separated by K.
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1

2

4

3

2

Figure 2.4: Hot-Spots exist where the Fermi surface intersects the magnetic Brillioun
zone boundary. The charge ordering vectors are given by the separations between
hot-spots 1 and 2 across the Brillouin zone border and the rotated vector (𝑄, −𝑄).

Furthermore, we only consider a charge ordering instability with a diagonal

(𝑄, 𝑄) ordering vector and a d-wave form factor, as this is the strongest mean field

instability. If we further enforce time reversal symmetry this allows us to concentrate

our attention to four hot-spots. Having restricted our fermions to live within a range

Λ of the hot-spots we obtain an effective Hamiltonian

𝐻 = ∑
k,𝑖

𝜉𝑖,k𝑐
†
𝑖,k,𝜎𝑐𝑖,k,𝜎 + 𝑔𝑎𝑏𝑐𝑑 ∑

k,p
[𝑐†

1,k,𝑎𝑐2,k,𝑑𝑐†
4,p,𝑐𝑐3,p,𝑏 − 𝑐†

1,k,𝑎𝑐†
2,−k,𝑐𝑐4,−p,𝑑𝑐3,p,𝑏] ,

(2.6)

where the interaction is

𝑔𝑎𝑏𝑐𝑑 = −1
4

𝐽K�⃗�𝑎𝑏 ⋅ �⃗�𝑐𝑑 − 𝑉K𝛿𝑎𝑏𝛿𝑐𝑑, (2.7)

k and p are now the deviations from the hot-spots, 𝑎−𝑑 are the electron spin indices,

and 𝑖 is now a hot-spot index (e.g. as shown in Fig. 2.2). Inversion symmetry allows
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us to restrict attention to half of the hot-spots in the Brillouin zone.

At this point we undertake a mean field decomposition of the interaction (four-

fermion) terms of the Hamiltonian simultaneously in the dFF-DW and dSC, where

a 𝑑-wave form factor is assumed for both orders, by defining

𝑖𝜎𝑦
𝑎𝑏Δ̄ = −𝑔Δ ∑

k
⟨𝑐†

1,k,𝑎𝑐†
2,−k,𝑏⟩ = 𝑔Δ ∑

k
⟨𝑐†

3,k,𝑎𝑐†
4,−k,𝑏⟩ , (2.8)

and

𝜙𝛿𝑎𝑏 = −𝑔𝜙 ∑
k

⟨𝑐†
1,k,𝑎𝑐2,k,𝑏⟩ = 𝑔𝜙 ∑

k
⟨𝑐†

3,k,𝑎𝑐4,k,𝑏⟩ , (2.9)

where
𝑔Δ = 1

2
∑

𝑎,𝑏,𝑐,𝑑
𝑔𝑎𝑏𝑐𝑑(𝑖𝜎𝑦

𝑎𝑐)(𝑖𝜎𝑦
𝑑𝑏) = 3𝐽

4
− 4𝑉

𝑔𝜙 = 1
2

∑
𝑎,𝑏,𝑐,𝑑

𝑔𝑎𝑏𝑐𝑑𝛿𝑎𝑑𝛿𝑏𝑐 = 3𝐽
4

+ 𝑉 ,
(2.10)

are the effective couplings in the superconducting and charge channels respectively.

The order Δ is the projection of uniform d-wave superconductivity onto the hot-

spots, and 𝜙 describes a 𝑑-wave charge order, that lives on the bonds between copper

sites, and has modulation vector Q given by the separation between hot-spots. It is

clear that 𝑉 enhances superconductivity and simultaneously suppresses charge order.

Because of the 𝑑-wave form factor of the order parameters, two of the remaining

hot-spots become redundant and at the mean field level the behavior of the system

may be described by a 4 × 4 Hamiltonian in hot-spot-Nambu space. Defining a

Nambu spinor 𝜓�⃗� = (𝑐1,�⃗�,↑, 𝑐2,�⃗�,↑, 𝑐†
2,−�⃗�,↓

, 𝑐†
1,−�⃗�,↓

)
𝑇
the Hamiltonian takes the form

ℋ = ∑
k

𝜓†
k�̂�MF(k)𝜓k + 2

𝑔Δ
|Δ|2 + 2

𝑔𝜙
|𝜙|2, (2.11)
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where

�̂�MF(k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜉1(k) ̄𝜙 Δ 0

𝜙 𝜉2(k) 0 Δ

Δ̄ 0 −𝜉1(k) − ̄𝜙

0 Δ̄ −𝜙 −𝜉2(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.12)

and Δ and 𝜙 are the superconductivity and dFF-DW order parameters respectively.

Both order parameters are generally complex numbers, which we can write as

Δ = |Δ|𝑒𝑖𝜃Δ and 𝜙 = |𝜙|𝑒𝑖𝜃𝜙 . However, since we can always remove the complex

phases (at the mean-field level) via a gauge transformation2 𝑐1 → 𝑐1𝑒−𝑖(𝜃Δ−𝜃𝜙)/2,

𝑐2 → 𝑐2𝑒−𝑖(𝜃𝜙+𝜃Δ)/2, we will consider only real and non-negative values for 𝜙 and Δ

in our analysis.

From Eq. (2.11) we can readily derive a Landau free energy for the Δ and 𝜙

orders. Evaluating 𝑓 = 𝑓𝑀𝐹 + 1
𝑁 ⟨𝐻 − 𝐻𝑀𝐹⟩𝑀𝐹, using the above decoupling and

expanding to fourth order in the order parameters, we obtain

𝑓 = [ 2
𝑔𝜙

− Π𝜙] 𝜙2 + [ 2
𝑔Δ

− ΠΔ] Δ2 + 𝛽𝜙𝜙4 + 𝛽ΔΔ4 + 𝑤𝜙2Δ2, (2.13)

with 𝑤, 𝛽𝜙, 𝛽Δ > 0. The exact expressions for the coefficients are given in Table 2.2.

It is in fact possible to solve the mean field problem exactly via a sequence of

Bogoliubov transformations. This method breaks down, however, once we introduce

c-axis hopping or move beyond the hot-spot approximation, and so, in anticipation

of this extension of the model, we have chosen instead to work with a Landau

expansion, which will carry over to the more complicated cases.

In what follows we hold 𝐽 fixed and use 𝑉 to adjust the splitting between the

superconducting and dFF-DW instabilities. Doing so, we obtain a phase diagram

such as that in Fig. 2.5. In it we see the following easy-to-understand behavior:
2The ability to gauge away the phase degrees of freedom requires that we be considering only

superconductivity and a single charge order and applies only to the hot-spot model at the mean field
level.
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Table 2.2: Microscopic expressions for coefficients of the Landau theory. 𝑛𝐹 is the
Fermi function and 𝑛′

𝐹 the derivative of the Fermi function with respect to energy.

Term Expression

ΠΔ ∫
k

1−2𝑛𝐹(𝜉1)
𝜉1

Π𝜙 2 ∫
k

𝑛𝐹(𝜉2)−𝑛𝐹(𝜉1)
𝜉1−𝜉2

𝛽Δ ∫
k

1
2𝜉2

1
[𝑛′(𝜉) + 1−2𝑛𝐹(𝜉)

2𝜉1
]

𝛽𝜙 ∫
k

1
(𝜉1−𝜉2)2 [𝑛′(𝜉1) + 𝑛′(𝜉2) + 2𝑛𝐹(𝜉2)−𝑛𝐹(𝜉1)

𝜉1−𝜉2
]

𝛾 2 ∫
k

1
𝜉1(𝜉1−𝜉2)[𝑛′(𝜉1) + 1−2𝑛𝐹(𝜉1)

2𝜉1
]
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Figure 2.5: Phase diagram of the 2D model, for fixed 𝐽. The regions are from left to
right, dSC, dFF-DW + dSC, and dFF-DW, with the white region at the top being
the normal phase. Note that the temperature does not extend down to 𝑇 = 0 as
the Landau theory is not valid in this limit.
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when 𝑉 is zero or very small the 𝑑 wave superconductivity is the only relevant

instability of the model. With 𝑉 increasing, superconductivity is suppressed and

eventually dFF-DW appears as the leading order. Notably, in the region where these

instabilities are comparable there is a (rather narrow) coexistence phase. These

features are consistent with previous studies of the model [37].

We expect this phase diagram to be strictly valid only close to 𝑇𝑐 and in the

region in which the critical temperatures of both orders are comparable. However,

comparing the Landau expansion with the exact numerical mean-field solution shows

that even for intermediate temperatures there is only a small, purely quantitative

correction to the shape of the coexistence region.

2.4 Extension to stacked planes

Motivated by the experiments which have used optical excitation polarized along

the c-axis to create transient states of enhanced superconductivity [21, 23, 25], we

seek to extend the purely two-dimensional model from the previous section to include

coupling between planes. The simplest model that encapsulates this behavior can

be represented by the following Hamiltonian:

𝐻3𝐷 = ∑
𝑙

𝐻𝑙 + 𝐻T. (2.14)

Here 𝑙 is a layer index, and 𝐻𝑙 is the single-layer Hamiltonian considered in Eq. (2.1).

There are 𝑁𝑧 copies of those, which are coupled via a c-axis tunneling term

𝐻T = ∑
�⃗�∥,𝑘𝑧

𝑐†
�⃗�∥,𝑘𝑧𝜎

𝑡𝑧(�⃗�∥, 𝑘𝑧)𝑐�⃗�∥,𝑘𝑧,𝜎, (2.15)

where c-axis momentum 𝑘𝑧 is conjugate to the plane index 𝑙.

In what follows we will consider and compare three different forms for the
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tunneling 𝑡𝑧 in Eq. (2.15). The exact expressions for each tunneling type are

presented in Table 2.3. Type A tunneling (nearest neighbor hopping along the

c-axis) we introduce mainly for its simplicity, type B comes from a one-band tight

binding fit to band structure calculations for Lanthanum-Strontium-Copper-Oxide

(LSCO) [77], and type C was proposed as an approximate tunneling form for several

families of cuprate superconductor [78]. Despite the significant differences between

these tunneling forms, it turns out that the effects we obtain are not specific to any

of them, but are in all cases qualitatively similar.

Table 2.3: c-axis tunneling elements used in the calculation

Type c-axis tunneling

A −2𝑡𝑧 cos 𝑘𝑧

B [77] −2𝑡𝑧 cos(𝑘𝑧
2 ) (cos 𝑘𝑥 − cos 𝑘𝑦)

2
cos(𝑘𝑥

2 ) cos(𝑘𝑦
2 )

C [78] −2𝑡𝑧 cos(𝑘𝑧)(cos 𝑘𝑥 − cos 𝑘𝑦)2

We now retrace the same steps as in Section 2.2. The derivation proceeds

similarly, but there are some subtleties that need to be considered first.

Due to the model containing solely in-plane interactions, we only need to consider

pairing of quasi-particles within the same plane. As a consequence of this, the

order parameters do not depend on 𝑘𝑧 and the vector Q which separates fermions

contributing to pairing in the charge channel cannot change with 𝑘𝑧. Because of

this restriction, we find that while at 𝑘𝑧 = 0 superconductivity and dFF-DW pair

the same points in the 2D Brillioun zone, this is no longer true for 𝑘𝑧 ≠ 0, 𝑡𝑧 ≠ 0.

The particle and hole being paired in the dFF-DW channel must remain separated

by �⃗� = (𝑄, 𝑄) even when the Fermi surface is no longer nested with this vector, as

can be seen in Fig. 2.6. Superconductivity on the other hand continues to pair k

and −k for all 𝑘𝑧. As a consequence, one has to be careful to define the hot regions

properly in this case. There are several ways one might do so, but fortunately, as

shown in Appendix A.1, they all lead to the same qualitative behavior.
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That being the case, we implement the following procedure. At each 𝑘𝑧 there is a

region centered on where the 2D Fermi surface intersects the 2D magnetic Brillioun

zone. 𝜙 now pairs quasi-particles separated by the fixed charge ordering vector and

is only non-zero when the momenta of both fall within a hot region. With this

procedure in place, the free energy takes the same form as Eq. (2.13) but with the

coefficients now being the three dimensional integrals shown in Table 2.4. Here,

we have made the simplifying assumptions that Δ and 𝜙 are not modulated along

the 𝑐-axis.3 As can readily be seen, the expressions in Table 2.4 reduce to those in

Table 2.2 in the limit of no c-axis hopping.

Figure 2.6: Bending of the Fermi surface as a function of 𝑐-axis angular momentum
leads to a destruction of nesting away from 𝑘𝑧 = 0. As the Fermi surface nesting
vector is a function of 𝑘𝑧 but the ordering vector Q is not, the Fermi surface cannot
remain nested at Q for all 𝑘𝑧. This leads to a weakening of the dFF-DW nesting
instability.

3As discussed above this is not the whole picture. We will investigate the extensions to non-trivial
out of plane ordering vector in Section 2.5.
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Table 2.4: Microscopic expressions for the coefficients of the Landau theory. 𝜉1−𝑄
is the energy at a point at the point �⃗�′ = �⃗� + �⃗�HS − �⃗�. Primed integration indicates
a restriction of the integral to regions where both �⃗� and ⃗𝑘′ lie within a hot region.
The 𝑘𝑧 integration is from −𝜋 to 𝜋.

Term Expression

ΠΔ ∫
k

1−2𝑛𝐹(𝜉1)
𝜉1

Π𝜙 2 ∫′
k

𝑛𝐹(𝜉1−𝑄)−𝑛𝐹(𝜉1)
𝜉1−𝜉1−𝑄

𝛽Δ ∫
k

1
2𝜉2 [𝑛′

𝐹(𝜉) + 1−2𝑛𝐹(𝜉)
2𝜉 ]

𝛽𝜙 ∫′
k

1
(𝜉1−𝜉1−𝑄)2 [𝑛′

𝐹(𝜉1) + 𝑛′
𝐹(𝜉1−𝑄) + 2𝑛𝐹(𝜉1−𝑄)−𝑛𝐹(𝜉1)

𝜉1−𝜉1−𝑄
]

𝛾 2 ∫′
k

1
𝜉1(𝜉1−𝜉1−𝑄) [𝑛′

𝐹(𝜉1) + 1−2𝑛𝐹(𝜉1)
2𝜉1

]

Using each of the three tunneling forms, we calculated the state which minimized

the free energy for a range of 𝑇, 𝑉 and 𝑡𝑧. The (𝑄, 𝑄) order remains the leading

charge instability at the quadratic level, so we again only decouple in this channel

and the d-wave superconducting channel. The phase diagram for tunneling type B

is presented on Fig. 2.7 (the other two types lead to qualitatively similar diagrams).

We start (for 𝑡𝑧 = 0) with the coexistence case in which dFF-DW is the leading

instability. As we can see, for small but finite 𝑡𝑧 the charge order is further enhanced

at the expense of superconductivity. However, once 𝑡𝑧 becomes sufficiently large,

the tendency reverses, and superconductivity is boosted by the increase of three-

dimensionality, until it becomes the leading instability.

To understand this peculiar shape of the phase diagram, we look at the quadratic

coefficients in the free energy. The behavior of the superconducting coefficients, ΠΔ

and 𝛽Δ, can be explained entirely by the dependence of the density of states and

bandwidth, 𝜌(𝜉, 𝑡𝑧) and 𝑊(𝑡𝑧). As can be seen in Fig. 2.8, these lead to only a small

effect on the superconducting susceptibility. Thus, the features visible in Fig. 2.7 are

mostly determined by the behavior of the charge instability and its indirect effect

on superconductivity through the biquadratic term in the free energy.
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Figure 2.7: Phase diagram of a system of stacked planes at a fixed coupling strength
for tunneling type B in Table 2.3. Types A and C exhibit qualitatively similar
behavior, but with different scales on the 𝑡𝑧 axis. The inset indicates where the
starting point at 𝑡𝑧 = 0 lies in 𝑉 − 𝑇 plane of Fig. 2.5 (𝑉 = 110meV).
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The non-monotonic behavior of the charge susceptibility Π𝜙 can be understood

as a competition of two effects. First, it is well known within this model that in

the absence of Fermi surface curvature, the diagonal dFF-DW order exhibits a BCS

type transition characterized by a logarithmic divergence. Curvature however cuts

off the divergence of the logarithm and weakens the charge instability [36, 37, 79].

Specifically, we can write the dispersions as

𝜉1 = 𝜉+ + 𝜉− (2.16)

𝜉2 = 𝜉+ − 𝜉− (2.17)

In that case the charge susceptibility becomes

Π𝜙 = ∫
k

sinh 𝜉−
2𝑇 cosh

𝜉−
2𝑇

𝜉−[sinh2 𝜉+
2𝑇 + cosh2 𝜉−

2𝑇 ]
(2.18)

in the 2D limit. One can see clearly that in the limit that 𝜉+ → 0, the absence of

curvature, the charge (particle-hole) instability becomes as strong as the supercon-

ducting (particle-particle) one, and for any non-zero 𝜉+ the charge susceptibility is

weaker compared to that of the BCS case.

As the c-axis hopping 𝑡𝑧 increases the 2D curvature decreases. This is because

the 𝑘𝑧 = 0 component for all tunneling types is of the form −𝑡𝑧𝜂(k∥)𝑐†
k∥

𝑐k∥
, with

𝜂 > 0. Near the hot-spots this acts as an effective upward shift in the chemical

potential, which moves the hot-spots such that 𝜉+ is decreased relative to 𝜉−. As

a result, for increasing 𝑡𝑧, the 𝑘𝑧 = 0 Fermi surfaces changes in such a way as to

effectively enhance the charge instability. Fundamentally, this is a consequence of

the effect of the tunneling term on the properties of the Fermi surface of each plane.

In opposition to the aforementioned effect, increasing 𝑡𝑧 will lead to a progressive

destruction of nesting away from 𝑘𝑧 = 0, as depicted in Fig. 2.6. For 𝑡𝑧 = 0, the

Fermi surface is nested at the hot-spots for all 𝑘𝑧. However, as 𝑡𝑧 increases the
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Fermi surface warps more with 𝑘𝑧, decreasing the portion of the phase space for

which there is approximate nesting, and thus weakening the charge susceptibility.

For small 𝑡𝑧 the warping of the Fermi surface is small, and so the 2D decrease

of curvature is nearly the same for a wide range of 𝑘𝑧 values, leading to an overall

strengthening of the charge instability. However, as 𝑡𝑧 increases Fermi surface

warping along the c-axis becomes more pronounced. As a consequence, the available

phase space for charge ordering is substantially reduced, while at the same time

the significance of the decreased curvature is lessened away from 𝑘𝑧 = 0, together

eventually causing a weakening of the charge ordering instability. The non-monotonic

shape of the phase diagram can consequently be understood as demonstrating a

crossover between regimes in which the 2D and the 3D effects of 𝑡𝑧 dominate.

Interestingly, the value of 𝑡𝑧 for which superconductivity reaches a minimum is of

similar magnitude to the strength of c-axis hopping for various families of cuprates

obtained as a fit to band structure [77]. Given this, if we imagine a system where

𝑡𝑧 is near or greater than the point of minimum superconducting 𝑇𝑐 in Fig. 2.7,

then enhancements of 𝑡𝑧 will generally lead to suppression of charge order and

enhancement of superconductivity.

It should be noted that the effects demonstrated here are obtained within the

grand canonical ensemble at fixed chemical potential. In anticipation of Section 2.6

the experimental program we envision comprises placing a sample in contact with its

environment, which functions as a particle bath maintaining 𝜇, and then applying

perturbations that will lead to a change of 𝑡𝑧 in the effective Hamiltonian. This,

however, means that the volume enclosed by the Fermi surface is not constant and

therefore average particle number is not conserved. If one were instead to consider

a system where such a constraint were important this might change the behavior

of the phase diagram at small 𝑡𝑧, where the effects are largely governed by the

position of the 𝑘𝑧 = 0 Fermi surface. However, larger 𝑡𝑧 should still lead to Fermi
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Figure 2.8: Quadratic susceptibilities and quartic coefficients of the Landau free
energy as a function of 𝑡𝑧, scaled by their value at 𝑡𝑧 = 0, for type B tunneling (at
fixed temperature). Types A and C again exhibit similar behavior. Note that there
is no significance to the crossing of lines for different coefficients, as the leading
instability will be determined by 𝑔Π.
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surface warping and thus the enhancement of superconductivity in that regime

should remain. Therefore, while the 2D effects that are important predominantly

at small 𝑡𝑧 could be washed away, the suppression of charge order (via destruction

of nesting), and thus the enhancement of superconductivity, appears much more

robust.

2.5 Effects of phase pinning

As previously mentioned, the above argument is complicated by the possibility

of a non-zero out-of-plane ordering vector. Due to the nearest neighbor nature of

the inter-plane hopping, the Fermi surface is always nested perfectly at the wave

vector (0, 0, 𝜋). Therefore if the dFF-DW wavevector is (𝑄, 𝑄, 𝜋) it will be largely

unaffected by the change in interlayer tunneling, and the effect disappears.

The susceptibility analysis of Section 2.2 indeed confirms, that one can instead

have an instability toward an order which oscillates with wavenumber 𝜋 along the

𝑐-axis. Over a range of parameters, the strongest dFF-DW instability is overwhelm-

ingly of such form. Nevertheless, there are reasons to believe that the experimental

situation is a little more complicated. Empirically, the 𝑐-axis ordering vector 𝑄𝑧

of the density wave phase is broadly peaked around 𝜋, with a correlation length of

approximately 0.6 lattice units [30]. Motivated by this we consider the case in which

the interlayer ordering is not defined by a single wavevector. Instead, we propose

a charge order 𝜙𝐿 = |𝜙|𝑒𝑖𝜃𝐿 at in-plane wavevector Q𝐿, where the relative phase

𝜃 = 𝜃1 − 𝜃2 in between two layers and the relative orientation Q1 ⋅Q2 ∈ {0, 𝑄2} of

the ordering vector on the layers are taken to be random variables determined by

disorder. To study this more quantitatively we restrict our attention to 𝑡 − 𝐽 − 𝑉

model of two coupled planes. We model each Cu-O plane as a 𝑡 − 𝐽 − 𝑉 model [37,

59, 60, 62] on a square lattice, setting the lattice constant 𝑎 to 1. Our model takes
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the form 𝐻 = 𝐻0 + 𝐻int. The free part is given by

𝐻0 = ∫
k

𝜓†
k (𝜉kΛ̂0 + 𝑡kΛ̂1) ⊗ �̂�0𝜓k

𝑡k = 𝑡𝑧(cos 𝑘𝑥 − cos 𝑘𝑦)2/4
(2.19)

where Λ𝑖 are Pauli matrices acting in the layer space and 𝜎𝑖 act in the spin space.

where 𝜉k is as in Section 2.2 and 𝑡𝑘 describes the hopping between layers [78, 80].

As before, we add to this the layer-local interactions

𝐻int = 1
2

∑
⟨𝑖,𝑗⟩

∑
𝐿

(𝑉 𝑛𝑖,𝐿𝑛𝑗,𝐿 + 𝐽S𝑖,𝐿 ⋅ S𝑗,𝐿) . (2.20)

where 𝐿 is a layer index.

For the model under consideration, the Landau free energy generically takes the

form

ℱ𝑂[𝜃] = 𝛼Δ|Δ|2 + 𝛽Δ|Δ|4 + 𝛼𝜙,𝑂[𝜃]|𝜙|2 + 𝛽𝜙,𝑂[𝜃]|𝜙|4 + 𝛾𝑂[𝜃]|𝜙|2|Δ|2, (2.21)

where 𝜃 is as above, 𝑂 =∥, ⟂ is the relative orientation of the ordering vectors in the

two planes, and Δ and 𝜙 are the superconducting and density wave order parameters,

respectively. The coefficients may be calculated diagrammatically from the free

particle action and depend parametrically on the interlayer couplings through the

single-particle dispersion. The microscopic expressions for the Landau coefficients

are given in Appendix A.2. We again find 𝛾 > 0, indicating competition between

the two orders. For purposes of calculation it is useful to express the coefficients as

a power series in cos(𝜃)

𝑐∥(𝜃) = ∑
𝑛

𝑐(𝑛) cos𝑛 𝜃, 𝑐⟂ = 1
2𝜋

∫
2𝜋

0
d𝜃𝑐∥(𝜃) (2.22)
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where 𝑐 ∈ {𝛼, 𝛽, 𝛾} and for a term including 𝜙𝑚 the coefficients 𝑐(𝑛) = 0 for 𝑛 > 𝑚/2.

This form allows moments of the terms to be calculated easily in terms of the circular

moments ⟨𝑒𝑖𝑛𝜃⟩
𝜃
.

The corresponding saddle-point equations admit three non-trivial solutions: a

superconducting phase, a density wave phase, and a coexistent phase:

|Δ| = √− 𝛼Δ
2𝛽Δ

, 𝜙 = 0

Δ = 0, |𝜙| = √−
𝛼𝜙

2𝛽𝜙

|Δ| = √
2𝛽𝜙𝛼Δ − 𝛾𝛼𝜙

𝛾2 − 4𝛽Δ𝛽𝜙
, |𝜙| = √

2𝛽Δ𝛼𝜙 − 𝛾𝛼Δ

𝛾2 − 4𝛽Δ𝛽𝜙
.

(2.23)
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Figure 2.9: Charge susceptibility as a function of interlayer coupling for relative
phase 𝜃 = 0 (solid blue), 𝜃 = 𝜋 (dashed green), and averaged with respect to 𝜃
(orange dot-dashed). Notably, there is little effect for 𝜃 = 𝜋, while for 𝜃 = 0 there
is a noticeable suppression of charge ordering. The averaged case sits somewhere
between the two, but the suppression of charge order is still significant.

To understand the effect of increased 𝑐-axis coupling on the dFF-DW we first

consider the effect on the charge susceptibility Π𝜙 = −𝛼𝜙 + 1
𝑔𝜙
, where 𝑔𝜙 is the
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strength of the interaction in the dFF-DW channel. As can be seen in Fig. 2.9,

increasing 𝑡𝑧 leads to a notable suppression for order at 𝜃 = 0 while 𝜃 = 𝜋 sees a slight

enhancement (due to the change in carrier density at fixed chemical potential [53]).

Now let us look at the averaged susceptibility. We take the relative orientation of

the wave-vectors to obey a Bernoulli distribution, where alignment has probability

𝑝, and we take 𝜃 to be distributed according to a wrapped normal distribution4with

mean 𝜇 = 𝜋, and standard deviation 𝜎

𝑃 [𝜃] = 1
𝜎

√
2𝜋

∞
∑

𝑘=−∞
exp(−(𝜃 − 𝜇 + 2𝜋𝑘)2

2𝜎2 ) . (2.24)

This is the simplest extension of a Gaussian distribution to a periodic variable. Our

choice of distribution corresponds to the approximation that the relative phase is

mostly determined by its first and second moments. Here, we have set the mean of

the distribution to 𝜋 to reflect both the fact that this is the energetically favored

orientation in absence of disorder and that this is experimentally observed to be the

peak ordering vector.

After the averaging process, we find

Π𝜙 = ∑
𝑂

∫
2𝜋

0
d𝜃𝑃 [𝜃]𝑃 [𝑂]Π𝜙[𝑂, 𝜃] = Π(0)

𝜙 + 1
2

(1
2

+ 𝑒−𝜎2/2 cos𝜇) Π(1)
𝜙 (2.25)

with Π(𝑖) defined as in Eq. (2.22).

As is shown in Fig. 2.9 the averaged susceptibility, like the 𝜃 = 0 case, shows

a noticeable decrease as 𝑡𝑧 is increased, indicating a melting of charge order. Min-

imizing the averaged free energy density ̄𝐹 we find that an increase in interlayer

coupling leads to an observable melting of dFF-DW and a concomitant enhance-
4The wrapped normal distribution is a straightforward extension of the normal distribution to a

periodic variable. It is a close cousin of the Von Mises distribution, which is the eigendistribution
of diffusion for a periodic variable with a harmonic confinement but is somewhat more analytically
convenient. We have explicitly checked that there is no qualitative difference between the results for
the two distributions.
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Figure 2.10: Phase diagram as a function of interlayer coupling 𝑡𝑧 and temperature
𝑇 for a fixed value of interaction strength. Increasing 𝑡𝑧 leads to a suppression of
charge ordering and a coinciding enhancement of superconductivity.

ment of superconductivity as can be seen in Fig. 2.10. In fact, tuning of interlayer

coupling at fixed temperature can tune between charge-ordered, coexistent, and

superconducting phases.

Changing the variance of the phase leads to a quantitative difference but results

are qualitatively similar. In particular, we considered various values of 𝜎 with the

dFF-DW ordering temperature at 𝑡𝑧 = 30meV held fixed. As shown in Fig. 2.11 for

a wide range of 𝜎 an increase in interlayer tunneling leads to a melting of dFF-DW

and an associated enhancement of dSC. The salient point is that pinning of the

dFF-DW phase in general frustrates the interlayer ordering of the density wave state

which would otherwise make it insensitive to changes in interlayer coupling. So

while, in an idealized system the interlayer coupling strength should not appreciably

affect the competition between dFF-DW and dSC order, in a realistic system an

increase of the interlayer coupling generically leads to a melting of dFF-DW and

enhancement of dSC. One way to visualize this effect is that domains with distinct
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Figure 2.11: dFF-DW order parameter 𝜙 (top) and superconducting order parameter
Δ (bottom) vs interlayer coupling for various values of 𝜎, the standard deviation
of the interlayer dFF-DW phase difference. The coupling constants of the model
have been normalized to keep the bare charge ordering temperature at 𝑡𝑧 = 30mev
fixed. Increasing 𝑡𝑧 in general leads to a melting of dFF-DW and enhancement of
dSC with the effect becoming more pronounced as 𝜎 is increased.
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phase differences form and these domains are susceptible to melting to different

degrees. Such a picture is consistent with experiments where inhomogeneous en-

hancement of electron-electron pairing is observed [22], as one might expect from

inhomogeneous melting of dFF-DW domains.

2.6 Enhancement of superconductivity via periodic modulation

It has been argued that in YBCO the c-axis vibrations, induced by the external

field, can change the equilibrium lattice structure [22]. The result is a transient shift

of the CuO2 planes – the intra-bilayer distance increases, while the inter-bilayer

one decreases. In our model this would lead to effectively bringing the layers closer.

Intuitively, it is clear that this should lead to enhancement of the inter-plane coupling

𝑡𝑧. In this the role of the apical oxygen seems quite significant; previous experimental

works have found that there is a range of dopings for which the inter-layer hopping

exhibits a roughly exponential dependence on the hole-doping [81] while the bond

length between the plane copper and the apical oxygen exhibits a roughly linear

dependence on doping through the same region [82]. A natural interpretation is

that the hopping exhibits an exponential dependence on an effective barrier width

𝑑:

𝑡𝑧 = 𝐴𝑒−𝛼𝑑, (2.26)

where 𝑑 is approximately linear in the distance between the plane and the apical

oxygen [81, 83]. Thus, decreasing the interlayer distance leads to an exponential

increase of the c-axis tunneling.

There is a second, more subtle, way in which driving the apical oxygens can

enhance the interlayer tunneling. Let us consider a vibration of these ions without

change of their equilibrium positions. Then, in line with the above reasoning, we can

model the effect of harmonic oscillations of the apical oxygen on 𝑡𝑧 as oscillations



Chapter 2 47

of the effective barrier width, leading to a time dependent hopping element

𝑡𝑧(𝑡) = 𝐴𝑒−𝛼𝑑(𝑡) = 𝑡𝑧0 exp[−𝛼𝑑1 cos(Ω𝑡)], (2.27)

where 𝑑(𝑡) = 𝑑0 + 𝑑1 cos(Ω𝑡), and 𝑡𝑧0 = 𝐴𝑒−𝛼𝑑0 .

Let us consider the high frequency limit. Then, we expect that the quasi-particles

will see an effective time averaged Hamiltonian. While in experiment the frequencies

are not extremely high, we consider this limit as a particularly simple case, from

which we may extract relevant qualitative trends. More formally, we can obtain

a Floquet Hamiltonian related to the time dependent hoppings. The stroboscopic

dynamics of the system will be governed by this Floquet Hamiltonian, which can be

obtained as series in 1/Ω via a Magnus expansion of the time evolution operator [84].

For a high frequency oscillation, we keep only the first term of this expansion,

which is just the time-dependent Hamiltonian averaged over one period. In this

case the Floquet Hamiltonian is the original Hamiltonian (Eq. (2.14)), but with the

modification

𝑡𝑧 → ⟨𝑡𝑧(𝑡)⟩ = Ω ∫
2𝜋
Ω

0

𝑑𝑡
2𝜋

𝑡𝑧(𝑡) = 𝑡𝑧0𝐼0(𝛼𝑑1), (2.28)

where 𝐼0 is the modified Bessel function of the first kind. 𝐼0 is bounded below by

1, and increases monotonically with the magnitude of 𝑑1. Therefore, within this ap-

proximation, any oscillation of the apical oxygens unavoidably leads to enhancement

of the effective c-axis tunneling 𝑡𝑧. This can be easily understood from the expo-

nential dependence of the tunneling on the apical oxygen position: in the tail of the

exponent, a stronger enhancement is obtained from decreasing the argument than

the suppression when increasing it at 𝜋/Ω time later. Thus, the tunneling amplitude

is, on average, enhanced. Note that this observation is rather general, and likely

applicable well beyond the region of validity of the high-frequency approximation

used above.
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By using data from Refs. [81, 82] we can obtain an estimate to the magnitude

of both the oscillatory enhancement and the slower, quasi-static, effect5. Assuming

an oscillation distance of 𝑑1 ∼ 4.5 pm, as is observed in the experiments discussed

in Ref. [22], we find approximately a 55% enhancement of 𝑡𝑧 in the steady state

average. This in turn may lead to a few percent up to around a 40% enhancement in

the superconducting 𝑇𝑐 depending where in the non-monotonic structure of Fig. 2.7

the sample is before perturbation. A stronger effect is the shift of the equilibrium

position of the apical oxygen. A quasi-static shift of the apical oxygen position

by 2.4 pm (again see Ref. [22]) can increase 𝑡𝑧 by as much as 110%, subsequently

enhancing 𝑇𝑐 by up to about 60%. The difference in magnitudes arises from the

fact that the quasi-static shift of the apical oxygens produces a direct increase of

𝑡𝑧, whereas oscillation leads to an imperfect cancellation of weaker and stronger

tunneling at different times in a period due to the nonlinear dependence of 𝑡𝑧 on 𝑑1.

These effects provide a qualitative picture of a possible mechanism underlying the

explanation given in Ref. [22].

2.7 Discussion and Conclusion

The primary motivation for this investigation came from the recent experiments

on transient enhancement of superconductivity in the cuprates via mid-infrared

optical excitations [21–23, 25]. To model these experiments we considered an ex-

tension of the 𝑡 − 𝐽 − 𝑉 model of cuprates to three dimensions, and the effects of

this three-dimensionality on the competition between superconductivity and bond
5As discussed in Ref. [81], we may relate their measurements of the integrated c- spectral weight

𝑁𝑐
eff to the c-axis tunneling strength via the c-axis plasma frequency. If we take the exponential

behavior of this quantity to be dominated by the c-axis tunneling with form 𝑡𝑧 ∝ 𝑒−𝛼𝑑(𝑥), with 𝑑
the Cu(1)-O(4) (in-plane copper to apical oxygen) bond length, we may write 𝑁𝑐

eff ∼ 𝐴𝑒−2𝛼𝑑(𝑥),
where 𝐴 is effectively a constant. The data in Ref. [81] is for 𝑁𝑐

eff as a function of doping, but
Ref. [82] provides data showing a quasi-linear dependence of the Cu(1)-O(4) bond length on doping.
Thus, we model 𝑑(𝑥) = 𝑑0 − 𝜂𝑥 with 𝑥 the hole doping. We may now obtain a rough estimate of
𝜂 ≈ 0.075Å and 𝛼 ≈ 31Å−1 by approximating the data points presented in figures in Refs. [81, 82]
in order to reproduce the observed data.
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density wave orders. We showed that for our extended model, increased inter-plane

tunneling leads to a suppression of charge ordering, and a coinciding enhancement

of superconductivity due to the inherent competition between the two orders. The

evolution of charge order takes place in two steps, corresponding to the regions

where 2D and 3D effects of increased interlayer coupling, respectively dominate.

The primary effect of interest is that the charge instability is sensitive to the c-axis

curvature of the Fermi surface, which destroys nesting at the charge ordering vector.

This effect is generic across several tunneling forms proposed for various cuprate

materials. Notably the presence of phase pinning of the dFF-DW is essential to this

effect.

These results provide a physical picture explaining the enhancement of supercon-

ductivity by the decrease of the inter-bilayer distance, caused by optical excitation.

We further showed that periodic oscillations of the apical oxygens (identified in the

experiments as important) can also lead to an effective increase of the inter-layer

coupling. Both these effects indirectly promote superconductivity via a suppres-

sion of the competing charge ordering. We believe that the mechanism presented

here could play a significant part in the observed enhancement of superconduc-

tivity and could be useful in pursuing new ways to raise 𝑇𝑐. Other mechanisms

have been proposed with regard to these experiments: the suppression of phase

fluctuations [57, 85] as well as the usual enhancement of superconductivity due to

microwave stimulation [14] could certainly play a complementary role.

While the 𝑐-axis curvature effects seem to be too weak to explain the observed

enhancement of superconducting correlations alone, there are still other theoreti-

cal [58] and experimental [24] reasons to believe that melting of charge order plays

an important role. Other explanations have been considered for this effect such

as redistribution of spectral weight [57], suppression of superconducting phase fluc-

tuations [86], or other routes to melting of dFF-DW order [58]. Most likely the
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complete explanation is some combination of factors, with a number of these frame-

works forming complementary rather than competing mechanisms.

At the end, let us also note that this work considers only the mean field behavior

of such a system. As is well known, fluctuations play an extremely important role in

the superconducting transition of cuprates [87–89]. Nevertheless, we expect that the

effects discussed here on a mean field level will remain important in a more complete

description of the system (entering through the relevant energy scales, for example).

The mean field theory presented in this paper is only the first necessary step in the

study of these effects, and including fluctuations is an important direction for future

work.



Chapter 3: Hybridization of Higgs mode in a bond-density-

wave state

This chapter is based upon Raines, Stanev, and Galitski [90, © American

Physical Society], published in Physical Review B.

3.1 Overview

Recently, several groups employed time-domain reflectivity [91] as a tool to study

the charge order seen in cuprates [92–95], and, in particular, its collective modes.

In some cases they were able to extract the amplitude and phase oscillations and to

track them as the system became superconducting.

These results can provide valuable insights into the physics of both pseudogap

and superconducting states, and, thus, it is desirable to have a better theoretical

understanding of the possible collective modes of these systems. One particularly

interesting point is that the coexistence of charge order and superconductivity makes

possible the direct observation of the superconducting Higgs mode, as first pointed

out in the pioneering work of Littlewood and Varma [96].

In this chapter we present a theoretical study of the Higgs modes, 1 or oscillations

of the amplitude2, of the order parameters in underdoped cuprates. We consider

both the pure BDW state, as well as the coexistent BDW-superconductivity phase.

We use the so-called “hot-spot” model [36, 37, 53, 62, 67, 68, 70, 73] of the pseudogap

phase, which is based on a picture of a metallic state close to a magnetic instability,

and considers the physics of the special points on the Fermi surface connected by the

magnetic ordering vector. Although relatively simple, this model has seen extensive
1Higgs modes have a long history in condensed matter physics, being first observed in 3He: [97,

98]
2For a review of Higgs modes in condensed matter see e.g. Refs. [99, 100]

51
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use recently, as it naturally leads to coexistence between BDW and superconductivity,

and also correctly predicts the 𝑑-wave phase factor of the charge order [36, 37, 73].

Our results provide a general framework for identifying and understanding order-

parameter collective modes of the system. In the single-order phase (i.e., only

BDW or superconductivity) we find, as expected, a single amplitude mode, which

is coupled with the quasiparticle continuum and is always damped. However, the

coexistence regime is much more interesting – the fluctuations of the different order

parameters become intertwined [96].

As a consequence, in this region we find two Higgs modes, which represent coupled

oscillations of the order parameters. One of the modes is slow, with frequency well

below the amplitude of the order parameters, but which is, nevertheless, weakly

damped. The other mode is pushed inside the high-energy continuum, and quickly

becomes overdamped. We follow the slow mode in the entire coexistence phase,

and find its frequency to be a non-monotonic function of temperature. This mode

is weakly damped through an unusual low-energy decay channel for the antinodal

quasi-particles, caused by the coexistence of the two orders and the associated

band reconstruction. Even more unusually, this damping initially increases with the

decrease of temperature.

To account for the damping from the gapless degrees of freedom present at

the nodal regions we develop a phenomenological time-dependent Ginzburg-Landau

theory. We demonstrate that, by allowing for significant damping, the in-gap mode

is strongly suppressed, while the frequency of the high-energy mode is brought down.

Our results provide a characterization of the amplitude modes of the coexistent

superconductivity BDW system which can be compared with the experimental data

and used to identify the appropriate Higgs modes of the system.
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3.2 Microscopic calculation of collective modes frequencies

We will consider here the collective modes in a 2D “hot-spot” model described in

Section 2.2. Such a model can be obtained as a low-energy theory from the 2D t-J-V

model, [36, 37, 67, 73] which contains hoppings 𝑡(1/2/3) on a square lattice as well

as nearest-neighbor exchange and Coulomb interactions 𝐽 and 𝑉. Specifically, one

projects the lattice theory onto regions in the vicinity of 8 “hot-spots” where the Fermi

surface intersects the magnetic Brillouin zone boundary. In the vicinity of these hot-

spots the nearest-neighbor interactions 𝐽 and 𝑉 can be approximated by constants.

Time reversal symmetry allows the problem to be reduced to considering fermions

near 4 inequivalent hot-spots where, in the channels of interest, the interactions take

the form

ℋΔ
int = 𝑔𝑠

4
∑
𝑘,𝑝,𝑞

Ψ†
𝑘+𝑞,𝑎

̌𝑉ΔΨ𝑘,𝑎Ψ†
𝑝−𝑞,𝑏

̌𝑉ΔΨ𝑝,𝑏, (3.1)

ℋ𝜙
int = 𝑔𝑐

4
∑
𝑘,𝑝,𝑞

Ψ†
𝑘+𝑞,𝑎

̌𝑉𝜙Ψ𝑘,𝑎Ψ†
𝑝−𝑞,𝑏

̌𝑉𝜙Ψ𝑝,𝑏, (3.2)

where Ψ𝑎,𝑏 are Nambu spinors in pairs of hot-regions separated by the antiferromag-

netic wave-vector K = (𝜋, 𝜋) and 𝑔𝑠 and 𝑔𝑐 are the non-retarded components of the

interaction in the superconducting and BDW channels, respectively. ̌𝑉Δ and ̌𝑉𝜙 are

the vertices for pairing in the superconducting and BDW channels. Their explicit

forms for the system studied here are shown in Eq. (3.4).

Due to the 𝑑-wave symmetry of the order parameters one can further restrict

attention to 2 of the 8 hot regions [37]. The interaction terms can be decoupled via

a Hubbard-Stratonovich transformation. In the usual manner, the saddle point of

the zero-frequency terms of the decoupling fields leads to a mean-field theory, which
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in this case has mean-field Hamiltonian

ℋ = ∑
k

Ψ†
k�̌�MF(k)Ψk + 2

𝑔𝑠
|Δ|2 + 2

𝑔𝑐
|𝜙|2, (3.3)

where now Ψ is a Nambu spinor (𝑐𝑘1↑, 𝑐𝑘2,↓, 𝑐†
−𝑘2↓, 𝑐†

−𝑘1↑)𝑇 describing one pair of

hot-spots. The mean-field Hamiltonian describes two species (denoted 1 and 2) of

spinful fermions which pair only with each other.

Specifically,
�̌�MF = �̌�0 + Δ ̌𝑉Δ + 𝜙 ̌𝑉𝜙,

�̌�0 = diag(𝜉1, 𝜉2) ⊗ ̂𝜏𝑧,

̌𝑉Δ = ̂𝜌0 ⊗ ̂𝜏1, ̌𝑉𝜙 = ̂𝜌1 ⊗ ̂𝜏3,

(3.4)

where ̂𝜏𝑖 and ̂𝜌𝑖 are Pauli matrices acting in particle-hole space and species space,

respectively, andΔ describes 𝑑-wave superconductivity while 𝜙 is the BDW order [37].

Here, and in what follows, �̌� denotes a matrix in the 4 × 4 Nambu-hot-spot space,

and �̂� a 2 × 2 matrix. The self-consistency equations associated with Eq. (3.4) are

Δ = 𝑔𝑠
4

𝑇 ∑
𝑘
tr ̌𝑉Δ

̌𝐺𝑘,

𝜙 = 𝑔𝑐
4

𝑇 ∑
𝑘
tr ̌𝑉𝜙

̌𝐺𝑘,
(3.5)

where ̌𝐺𝑘 is the matrix Matsubara Green’s function of the Hamiltonian in Eq. (3.3),

which is described below, and 𝑘 = (𝑖𝜖𝑛,k), with 𝜖𝑛 being a fermionic Matsubara

frequency. Here we have considered Δ and 𝜙 to be real and non-negative (they can

always be brought to this form via a gauge transformation).

In the case of a hot-spot model of cuprates, the two species correspond to fermions

within a vicinity of inequivalent “hot-spots” in the Brillouin zone. Close to the hot-

spot points the electron dispersion can be modeled as 𝜉1(k) = 𝜉2(−k) = 𝑣𝐹𝑘𝑥 + 𝛾𝑘2
𝑦,

where we include the curvature 𝛾 as it plays an important role in breaking the
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degeneracy between the two orders and allowing coexistence [37, 79].

The matrix Matsubara Green’s function of Eq. (3.3) can be obtained by two

consecutive Bogoliubov transformations in subspaces of the Nambu-spinor matrix

structure. Doing so allows for the Green’s function to be written in terms of the

eigenvalues of the Hamiltonian as

̌𝐺𝑘 = ̌𝑈𝑘 ̌𝑔𝑘
̌𝑈†
𝑘 , (3.6)

̌𝑔−1
𝑘 = 𝑖𝜖𝑛 ̌1 − diag (𝐸+

𝑘 , 𝐸−
𝑘 , −𝐸+

𝑘 , −𝐸−
𝑘 ) , (3.7)

where the energies of the Bogoliubov quasiparticles are given by

𝐸± = √(𝜆±)2 + Δ2, 𝜆± = 𝜉+ ± √𝜉2
− + 𝜙2,

𝜉± = 𝜉1 ± 𝜉2
2

.
(3.8)

The diagonalization matrix can be written in terms of the matrices ̂𝐴 = 𝑤 ̂𝜏0 − 𝑖 ̂𝜌2𝑧,

and �̂�± = 𝑢± ̂𝜏0 − 𝑖 ̂𝜏2𝑣±, as

̌𝑈 = ( ̂𝐴 ⊗ ̂𝜏0) (∑
±

̂𝑃 ± ⊗ �̂�±) ,

̂𝑃 ± = 1
2

( ̂𝜌0 ± ̂𝜌3)

(3.9)

where

𝑤 = √1
2

[1 + 𝜉− (𝜉2
− + 𝜙2)−1/2], 𝑧 = √1

2
[1 − 𝜉− (𝜉2

− + 𝜙2)−1/2],

𝑢± = √1
2

(1 + 𝜆±

𝐸± ), 𝑣± = √1
2

(1 − 𝜆±

𝐸± ).
(3.10)

We follow Ref. [37] by choosing units where 𝑣𝐹 = 1, 𝛾 = 1/Λ = 𝜋, with Λ being

the hot-spot cutoff, and parametrize {𝑔𝑐, 𝑔𝑠} = 3𝐽 ± 4𝑉 with 𝐽 = 1.2. Note that 𝑉

strengthens the interaction in the charge channel, while decreasing the interaction
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in the superconducting channel,3 and thus can be used to tune the coexistence

(as depicted in Fig. 3.1). We consider two qualitatively different cases of coexist-

ing charge order and superconductivity corresponding to the two dashed lines in

Fig. 3.1: one where charge order disappears for some finite temperature below the

superconducting 𝑇𝑐 (𝑉 = 0.2), and one where charge order survives all the way

down to 𝑇 = 0 (𝑉 = 0.21). In both of these cases, the BDW order will onset at a

temperature 𝑇BDW > 𝑇𝑐. The competition between the two orders can be readily

confirmed by a decrease in 𝜙 below the superconducting 𝑇𝑐.

dFF-DW

Normal

Superconductivity

SC +
dFF-DW

Figure 3.1: Schematic phase diagram of the hot-spot model, [37, 53] which illustrates
the transition from superconductivity to charge order, tuned by 𝑉 (nearest-neighbor
Coulomb interaction). In this chapter we consider the transition from BDW to
BDW-superconducting mixed state along the “trajectories” indicated by the dashed
lines. Depending on the exact value of 𝑉 the 𝑇 → 0 limit of the system could be
either in a pure superconducting state (indicated by the blue dashed line), or in a
mixed state (green dot-dashed line).

The ordering vector of the BDW is determined by the separation in the Brillouin

zone of the hot-spots being paired. [36, 37, 62, 67, 68, 70] It is important to note that
3We note that previous works (such Refs. [67, 73]) have investigated an emergent SU(2) symmetry

of the superconducting and charge order, associated with particle-hole transformation on one of the
hot-spots. However, this emergent symmetry is explicitly broken by the curvature in the electron
dispersion as well as the 𝑉 term in the interaction Hamiltonian, so we do not consider its effects here.
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we are considering a BDW with ordering vector (𝑄, 𝑄), which is known to be the

leading instability of this simple model. [36, 37, 62, 68, 70] This is different from the

experimentally observed bond-oriented ordering directions (𝑄, 0) and (0, 𝑄), which

correspond to a different choice of hot-spots for the BDW pairing to occur between.

It is possible to stabilize the (𝑄, 0) and (0, 𝑄) orders, [61, 62, 70] but at the price

of significantly complicating the model, and we will not pursue these modifications

here.

We expect that most of our results and conclusions are applicable to the (𝑄, 0)/(0, 𝑄)

orders as well.

3.2.1 Hybridized Higgs modes

The collective modes of coexisting charge-density-wave and superconducting

states have been studied theoretically previously [96, 101–106], and we apply the

methods developed in these earlier works. In general, the collective modes of the

system are described by a 5 × 5 matrix, which includes the amplitude and the phase

modes of each order parameter, as well as the density oscillations of the fermions.

However, this matrix factorizes into two decoupled sectors, [102] with a 2 × 2 block

describing the interacting amplitude modes, and the other – 3 × 3 – block describing

the order parameters phases coupled to each other, as well as to the fermionic

density.4 This being the case, we devote our attention to the amplitude mode sector.

In particular, we consider amplitude fluctuations of these order parameters with

finite frequency 𝜔, but zero wave-vector. Doing so allows us to calculate the mass of

the collective modes: the minimum energy required to excite the collective modes

of the ordered state.
4The oscillations of the phase of superconductor are usually pushed up to plasma frequencies by

coupling with the Coulomb interaction. In contrast, the phase mode of an incommensurate charge
order is theoretically a Goldstone mode of the system, but in real materials this degree of freedom is
usually pinned by disorder.
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Returning to the Hubbard-Stratonovich decoupling of the hot-spot model’s inter-

actions, inclusion of the finite-frequency components of the decoupling fields leads

to the action

𝑆 = 𝑆MF + ∑
𝑘,q,𝜔𝑚

Ψ̄k+q,𝜖𝑛+𝜔𝑚
(Δq,𝜔𝑚

̌𝑉Δ + 𝜙q,𝜔𝑚
̌𝑉𝜙) Ψk,𝜖𝑛

+ 2
𝑔𝑠

∑
q,𝜔𝑚

|Δq,𝜔𝑚
|2 + 2

𝑔𝑐
∑
𝜔𝑚,q

|𝜙q,𝜔𝑚
|2, (3.11)

where 𝑆MF is the action corresponding to Eq. (3.3), which describes the mean-field

state, and we are working in imaginary time. We have kept here the fluctuations

Δ(𝜏), 𝜙(𝜏) which are along the direction ofΔ, 𝜙 in the complex plane,5 corresponding

to the amplitude modes,6 which are described by the remaning terms in Eq. (3.11)

Particularly we will be interested in the 2 × 2 matrix collective mode propagator

𝐷𝑖𝑗(𝜔𝑚,q) = ⟨𝑂𝑖,𝜔𝑚,q𝑂𝑗,−𝜔𝑚,−q⟩, (3.12)

where 𝑂1,𝜔𝑚,q = Δ𝜔𝑚,q and 𝑂2,𝜔𝑚,q = 𝜙𝜔𝑚,q, and the related object 𝐷𝑅
𝑖𝑗(𝜔,q) =

𝐷𝑖𝑗(𝑖𝜔𝑚 → 𝜔 + 𝑖0+,q), which can be obtained via analytic continuation. The off-

diagonal elements of this matrix are in general non-zero and this is what leads to

the hybridization of collective modes. The poles of the retarded propagator �̂�𝑅 will

describe the on-shell collective mode energies.

After integrating out the fermionic degrees of freedom, �̂�(𝜔𝑚,q) can be expressed

(at the quadratic level) as

�̂�−1(𝜔𝑚,q) = (�̂�0)−1 − �̂�(𝜔𝑚,q), (3.13)
5Δ(𝜏) and 𝜙(𝜏) may be treated, then, as real fields since they may always be brought to lie along

the real axis via a gauge transformation.
6This is a parametrization in terms of longitudinal and transverse modes such as considered in

Refs. [101, 102] as opposed to radial and angular modes (c.f. Ref. [99]).
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where we have defined

�̂�0 ≡ 1
4

⎡
⎢⎢
⎣

𝑔𝑠 0

0 𝑔𝑐

⎤
⎥⎥
⎦

. (3.14)

Here 𝑄𝑖𝑗, also a 2×2 matrix, is the self-energy of the collective modes due to the

fermionic quasiparticles (this treatment is equivalent to obtaining the generalized

susceptibilities of the order parameters within the random phase approximation

(RPA)). Since, �̂�0 is already known, �̂� is the object of interest.

Specifically, �̂� is given by

𝑄𝑖𝑗(𝑖𝜔𝑚,q) = −𝑇 ∑
k,𝜖𝑛

tr [ ̌𝐺(k, 𝜖𝑛) ̌𝑉𝑖
̌𝐺(k− q, 𝜖𝑛 − 𝜔𝑚) ̌𝑉𝑗] , (3.15)

where 𝑖, 𝑗 ∈ {Δ, 𝜙}.

After performing the fermionic Matsubara sums in Eq. (3.15) we analytically con-

tinue the bosonic frequency to the real axis, in order to obtain the finite-temperature,

retarded self-energy 𝑄𝑅(𝜔,q).7

The long-wavelength frequencies of the amplitude modes are given by the solu-

tions of

det[(�̂�0)−1 − �̂�𝑅(𝜔0 − 𝑖Γ0,q → 0)] = 0, (3.16)

where

𝜔0 ≡ Re[𝜔(𝑞 → 0)], Γ0 ≡ −Im[𝜔(𝑞 → 0)], (3.17)

are, respectively, the mass and the decay rate of the Higgs mode in the long wave-

length limit. The in-gap collective modes, are those for which 𝜔0 < 2min(𝜙, Δ).

One can explicitly show that the diagonal components of �̂�𝑅 reproduce the

usual 2𝜙/2Δ amplitude modes [96] in the limit where one of the order parameters

vanishes. However, in our case, we focus our attention on the eigenmodes of the
7We have verified that 𝑄𝑅 satisfies the Kramers-Kronig relations, both exactly in its analytic

form (in terms of integrals), and approximately in our numerics for the regions of interest to within
the same degree of accuracy as that of 𝑄𝑅 itself.
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response function, which describe hybridized modes of the system8 and which cannot

be obtained from purely considering the superconducting and BDW susceptibilities.

Because we are interested in weakly damped oscillations such that it makes sense

to describe them as collective modes, we are able to employ a technique to determine

the complex frequency of the oscillations from considerations of the response function

on the real frequency line. In particular, we obtain the real part of the frequency as

the solution to the equation Re[𝜆(𝜔0)] = 0 where 𝜆 is a solution to the eigenvalue

problem

[(�̂�0)−1 − �̂�𝑅(𝜔) − 𝜆(𝜔) ̂𝐼]
⎛⎜⎜⎜
⎝

Δ𝜔

𝜙𝜔

⎞⎟⎟⎟
⎠

= 0. (3.18)

The imaginary part of the frequency can then be calculated by expanding the

eigenvalue as a function of complex 𝜔 about the real frequency. [101, 107] We defer

analysis of the imaginary part (shown in Fig. 3.3) until Sec. 3.2.2 and focus now on

the real part.

In order to track the temperature dependence of the collective modes, we explic-

itly solve the mean field equations for a range of temperatures and then calculate

the collective mode frequencies at each temperature. Below 𝑇BDW, in the pure BDW

phase, we find an amplitude mode starting at frequency 2𝜙, as expected. [96] With

the onset of superconductivity, another mode appears inside the gap. Physically,

it represents coupled oscillations of the two order parameters, wherein pairs are

excited in both the BDW and superconducting channels. The mixing of the two

orders arises due to the off-diagonal elements of �̂�𝑅, proportional to 𝜙Δ. Intuitively,

one might anticipate the presence of such an in-gap mode by arguing that one could

convert one type of pairing into the other at a smaller energy than it would take to

completely break a pair.
8A similar framework was recently used in Ref. [106]. However, the focus of that work was on the

effects of the superconducting gap on the charge order, and the off-diagonal terms of �̂�𝑅 (and thus
the mixing) were assumed to be small.



Chapter 3 61

The temperature dependence of the mode’s frequency is non-trivial – initially it

grows, but then reaches a maximum and goes down with the decrease of either 𝜙

or Δ. Depending on the shape of the coexistence region, this mode either survives

all the way down to 𝑇 = 0 or it vanishes at the second transition to a single-order-

parameter phase. This behavior can be seen in Fig. 3.2. Note that near the phase

transitions, this mode approaches the 2𝜙/2Δ amplitude mode of the order that

vanishes at that temperature, which is the reason for the softening of the mode in

the vicinity of these points.

At the onset of the coexistent phase, the other (2𝜙) mode is pushed to higher

energies, enters the quasiparticle continuum, and quickly becomes overdamped.

Thus, it is outside the region of validity of our method of finding 𝜔, and so we do

not track it.

3.2.2 Damping from antinodal quasiparticles

As explained in Sec. 3.2.1, the damping rate Γ0, can be obtained by expanding

the eigenvalues of Eq. (3.18) about the real part of the zero momentum dispersion 𝜔0.

The temperature dependence of this damping rate is shown in Fig. 3.3. Although the

in-gap mode stays below the (2Δ, 2𝜙) threshold, its frequency has a finite damping

rate, which, furthermore, initially increases as temperature goes down. This unusual

behavior of the damping arises from the BDW bubble 𝑄𝑅
𝜙𝜙; when just charge order

is present, the only scattering which could lead to damping requires at least energy

2𝜙 (as can be seen in Fig. 3.4(b)). All other types of scattering have zero matrix

element, and thus there is no damping at 𝑞 = 0 for 𝜔0 < 2𝜙. However, as soon as

Δ becomes non-zero the bands are reconstructed due to hybridization of the BDW

bands with their corresponding hole bands, and simultaneously scattering matrix

elements between all bands become non-zero, allowing transitions between any two

bands to contribute (c.f. Fig. 3.4(a)). As a result, there now exist transitions for
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Figure 3.2: Mass of the in-gap hybrid Higgs mode 𝜔0 = Re[𝜔(𝑞 → 0)] as obtained
from Eq. (3.16). The frequency is plotted as a function of temperature for two
different cases of 𝜙(𝑇 → 0) (𝑉 = 0.2, 0.21) as depicted by the dashed lines in
Fig. 3.1, using the units of Ref. [37]. A soft mixed mode emerges in both cases
below the superconducting 𝑇𝑐. For reference, twice the single-particle energy gap,
which is determined by 2min(Δ, 𝜙), is plotted in the black dashed line. In proximity
of a phase transition, the in-gap mode approaches the 2Δ/2𝜙 Higgs mode of the
vanishing order.
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Figure 3.3: Damping rate Γ0 of the in-gap collective mode in the long wavelength
limit for two different values of 𝑉 corresponding to the two trajectories depicted in
Fig. 3.1. Damping is an order of magnitude smaller in the case where 𝜙(𝑇 → 0) ≠ 0
(lower line), and is exponentially suppressed at low temperature due a lack of
thermally excited quasiparticles. In both cases, the decay rate is strongly suppressed
in the vicinity of the superconducting 𝑇𝑐. The transition temperatures are marked
for 𝜙(𝑇 → 0) = 0 (𝜙(𝑇 → 0) ≠ 0) by the dashed (dot-dashed) vertical lines. 𝑇𝑐
denotes the onset temperature of superconductivity, while 𝑇< indicates the boundary
between the coexistent and pure superconductivity phases for the case of the blue
curve (c.f. the upper plot of Fig. 3.2).

arbitrarily small frequency (between the two particle/hole bands), giving rise to the

damping of collective modes within the gap.

The specific temperature dependence of the damping results from a combination

of two effects. Because we are considering energies 𝜔0 < 2min(𝜙, Δ), we see that

transitions from a particle to a hole band (or vice versa) cannot contribute as they

will always have energy equal or greater than 2Δ. Thus, damping must be solely

due to scattering between the hole or particle bands. As 𝜙 decreases, the two

particle (and correspondingly the two hole) bands become more similar (in the limit

𝜙 → 0 they are degenerate), increasing the phase space for low energy transitions



Chapter 3 64

and therefore leading to greater damping of the BDW amplitude mode. This in

turn leads to an increased damping of the mixed mode, which is visible in Fig. 3.3.

However, in opposition to this effect, as 𝜙 → 0, the matrix element for scattering

between these bands will begin to vanish, as it is proportional to 𝜙. At some point

this second effect will overcome the increase due to the larger phase space, leading

to a disappearance of the damping as we approach the critical point at which the

charge order disappears.

The competition between scattering elements and band structure generically

leads to a non-monotonic temperature dependence of the damping, which in turn

means that there exists a region of maximal damping away from which the decay

rate remains weak (within the gap). In the case with 𝜙(𝑇 → 0) ≠ 0, the BDW order

remains sufficiently large that the system never approaches this region of larger

damping and thus the decay rate is noticeably smaller than for 𝜙(𝑇 → 0) = 0.

In all cases where the mixed phase exists down to 𝑇 = 0, this damping term will

be exponentially suppressed at low temperatures as there are no thermally excited

quasiparticles available to scatter.

3.3 Damping from nodal quasiparticles

The hot-spot model we have used so far is only defined in the antinodal regions,

and thus completely ignores the gapless degrees of freedom existing close to the

nodes. These can have a particularly strong effect on the damping of the collective

modes by providing a low-energy decay channel. However, the contribution of these

quasiparticles is different for the different orders.

We expect the charge order to couple only weakly to the nodal quasiparticles,

due to the mismatch between its wavevector (𝑄, 𝑄) and the wavevector separating

the nodes [108] [note that the same argument applies to BDW with (𝑄, 0) or (0, 𝑄)
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Figure 3.4: Slices of the quasiparticle band structure for 𝑘𝑦 = 0. Dashed lines indi-
cate the particle hole conjugate of the band of the same color. (a) The normal state
(gray) and BDW state (green/blue) dispersions. Only transitions between the two
solid/dashed bands contribute to Im𝑄𝑅

𝜙𝜙. The onset of superconductivity hybridizes
the green/blue bands with their particle-hole conjugates. (b) Bogoliubov band dis-
persions in the coexistent state. Transitions between all bands may contribute to
Im𝑄𝑅

𝜙𝜙 leading to damping of the Higgs modes (even for those with mass less than
2Δ.). Processes indicated by horizontal arrows are of particular importance as they
occupy a finite phase space for arbitrary frequencies within the gap.
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wavevector]. There is no such restriction for the superconductivity, however, and its

amplitude fluctuations are unavoidably damped by the nodal excitations.

To include these effects and to study their consequences for the collective modes,

we supplement the calculation from the previous section with a phenomenological

time-dependent Ginzburg-Landau theory. In addition to the more familiar quadratic

and quartic in the order parameters terms, this theory contains also first and second

derivatives in (real) time. The time-dependent Ginsburg-Landau equations can be

written in the following form:9

−𝜕2Δ
𝜕𝑡2 − 𝛾Δ

𝜕Δ
𝜕𝑡

= 𝜕ℱ𝐺𝐿
𝜕Δ∗ , −𝜕2𝜙

𝜕𝑡2 − 𝛾𝜙
𝜕𝜙
𝜕𝑡

= 𝜕ℱ𝐺𝐿
𝜕𝜙∗ , (3.19)

where the Ginsburg-Landau action is given by:

ℱ𝐺𝐿 = 𝛼𝜙|𝜙|2 + 𝛼Δ|Δ|2 + 𝛽𝜙|𝜙|4 + 𝛽Δ|Δ|4 + 𝑢|𝜙|2|Δ|2.

The quadratic coefficients 𝛼 have the usual linear-in-temperature dependence, whereas

𝛽 and 𝑢 (which parametrises the competition between the two orders) are temperature-

independent.10 Note that expressions for the coefficients in ℱ𝐺𝐿 can be straightfor-

wardly derived from the microscopic theory presented in the previous section [110]

(spatial derivative terms are not included since we are considering only uniform

states). Although the Ginzburg-Landau theory is strictly applicable only close to

the critical region, it can be used beyond its region of validity as an effective model for

the collective modes of the system. [99] For this reason we keep the second-order time

derivative terms, which are usually omitted close to the critical temperature. [111]
9In general, there is no simple time-dependent extension of Ginzburg-Landau theory, precisely

due to the presence of damping, which introduces non-analytic terms (see, for example, I. J. R.
Aitchison, G. Metikas, and D. J. Lee, Phys. Rev. B 62, 6638 (2000), and references therein). We
circumvent this difficulty by considering only the 𝑞 = 0 limit.
10We can also add coupling to the lattice degrees of freedom, by including bi-linear terms like

𝑔ep𝜙𝑏 and 𝑔ΔΔ𝑏, where 𝑏 is a phonon mode, and 𝑔ep and 𝑔Δ are coupling constants. [109] However,
the effects of these couplings appear modest (see Appendix B), so we will not include them.
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The coefficients 𝛾𝜙 and 𝛾Δ are responsible for the damping of the collective

modes. It is important to note that despite the symmetric way these terms enter

Eq. (3.19), they encode very different physics.

The 𝛾𝜙 term is native to the hot-spot regions. At low energies it is proportional

to Δ, since it is only allowed by the band reconstruction (see the discussion in

the previous section), whereas above 2min(Δ, 𝜙) we can treat it as a constant,

originating from the coupling of the fluctuations to the high-energy quasiparticle

continuum. In contrast, the main contribution to the 𝛾Δ term originates from the

nodal regions (and thus is completely absent in the hot-spot-only approach of the

previous section). Close to 𝑇𝑐 we can obtain its temperature dependence from

the following qualitative considerations. This term is proportional to the number

of available states at the oscillation frequency, given by ∼ 𝜌(𝜔) tanh (𝜔/4𝑇 ). [112]

Linearizing the density of states close to the nodes 𝜌(𝜔) ∼ 𝜔, and approximating

the frequency as 𝜔 ≈ 2Δ we finally get for the damping terms of the slow mode

𝛾Δ ≈ 𝛾0
ΔΔ2 = 𝛾0

Δ(𝑇𝑐 − 𝑇 ), 𝛾𝜙 ≈ 𝛾0
𝜙Δ = 𝛾0

𝜙√𝑇𝑐 − 𝑇

(we have expanded in powers of Δ). Note that we have thus determined the tempera-

ture dependence of 𝛾𝜙 and 𝛾Δ, but their relative strength at some fixed temperature

depends on the parameters of the microscopic models (like 𝑉), which cannot be

estimated within our phenomenological theory. However, given the general tem-

perature dependence of 𝛾𝜙 and 𝛾Δ, we expect the antinodal particles to dominate

damping sufficiently close to 𝑇𝑐 (Δ vs. Δ2), whereas at low temperatures the nodal

excitations take over – 𝛾Δ stays finite for 𝑇 → 0, while 𝛾𝜙 goes to zero exponentially.

To obtain the frequencies and damping of the mixed modes we expand 𝜙(𝑡)

and Δ(𝑡) around the mean field values of the order parameters 𝜙0 and Δ0: 𝜙(𝑡) =

𝜙0 + 𝛿𝜙(𝑡) and Δ(𝑡) = Δ0 + 𝛿Δ(𝑡). Assuming that 𝛿𝜙(𝑡) and 𝛿Δ(𝑡) are relatively
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small we can simplify Eq. (3.19) by keeping only the terms linear in 𝛿𝜙 and 𝛿Δ.

Since we are interested in the collective modes we write their time dependence as

𝑒−𝑖𝜔𝑡. Inserting this ansatz in the linearized equations, we can exclude 𝛿𝜙 and 𝛿Δ

altogether, and finally arrive at the following equation for 𝜔:

𝜔2 + 𝑖𝛾𝜙𝜔 + 2(𝛼𝜙 + 𝑢Δ2
0) − (2𝑢𝜙0Δ0)2

2(𝛼Δ + 𝑢𝜙2
0) + 𝑖𝛾Δ𝜔 + 𝜔2 = 0. (3.20)

We solve it numerically (with 𝜙0(𝑇 ) and Δ0(𝑇 ) determined by the time-independent

mean-field equations), and obtain both complex and purely imaginary solutions for 𝜔.

The former solutions are oscillatory (with Re[𝜔] giving the frequency of the uniform

oscillations around the mean field values), while the latter represent exponential

decay. We show the real and the imaginary parts of the two 𝜔 solutions as a function

of temperature in Fig. 3.5. There we plot 𝜔0 and Γ0 for two different strengths of 𝛾0
Δ,

as a comparison between small and large contribution from the nodal quasiparticles,

respectively. For small 𝛾0
Δ we can see that both the real and imaginary parts of

the frequency of the hybridized modes show behavior similar to that obtained in

the previous section. However, when we increase 𝛾0
Δ we see not only enhancement

of the damping of both modes, but also decrease of their real frequencies (the top

panel of Fig. 3.5). Although the effect is more dramatic for the in-gap mode, which

now exists only in a narrow region below 𝑇𝑐, it is significant for the fast one as well.

This is a consequence of one important feature of Eq. (3.20) – the coupling of the

two channels mixes their real and imaginary parts. Thus, increase of the damping

leads to the gradual suppression of the real part of both mixed modes. Note also

that the disappearance of 𝜔0 of the in-gap mode corresponds to a peak in its Γ0.
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Figure 3.5: The evolution of 𝜔0 (top panel) and Γ0 (bottom panel) of the two Higgs
modes with temperature. For each mode the cases of weak and strong damping from
the nodal regions are shown [𝛾Δ = 0.1𝛼 (dashed line) and 𝛾Δ = 0.6𝛼 (solid line),
respectively]. 𝛾𝜙, the damping from antinodal region, is the same on both plots.
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3.4 Discussion and Conclusion

Note that our calculation is to some extent complementary to those in Refs. [79,

113]. These works studied the dynamics of the system after an external perturba-

tion, and were done in the time domain, thus allowing direct comparison with the

experimental data. The temperature dependence of the frequencies extracted in

Ref. [113] appears consistent with our calculation, as it shows a low-frequency mode

appearing below the superconducting transition.

The experiments [93–95] have not observed a soft mode close to either charge or

superconducting transition temperatures. Instead, Refs. [93, 94] identify a single am-

plitude mode, with intensity that goes down with temperature, but whose frequency

stays almost constant, with only a small decrease at the superconducting 𝑇𝑐 observed

in Ref. [93], and no clear change seen in Ref. [94].11 In contrast to these, Ref. [95]

reported two collective modes at the wavevector corresponding to the charge order,

with one of them disappearing close to the superconducting transition (the other –

higher-frequency – one follows behavior similar to that observed in Refs. [93, 94]).

This seems to be a direct confirmation of the coupling between the charge order

and superconductivity, and in agreement with our theory. However, the frequency

of this mode remains constant with temperature, without any signs of softening.

The absence of softening close to either 𝑇𝑐 or 𝑇𝐵𝐷𝑊 appears incompatible with our

calculation, and requires alternative explanations (such as optical phonons). [93]

There remains an important point regarding the experimental signatures of the

amplitude modes. Since the superconducting Higgs mode does not directly couple to

the electromagnetic field (although it could be detected by indirect methods [114]),

the mixing provides a convenient way of observing it. However, it can be easily shown
11This is consistent with the behavior of the high-energy mode in the case of strong damping from

the nodal regions (see section 3.3). This damping could lead to a decrease of the frequency of the
fast mode, observed in Ref. [93] (note that a different phenomenological explanation for this decrease,
based on time-independent Ginzburg-Landau theory, was given in Ref. [93]).
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that the soft mode’s coupling to reflectivity is proportional to Δ0, and is thus small

just below the superconducting transition. Combined with the fact that damping

from the nodal regions can restrict this mode to a small region in the vicinity of the

superconducting transition (as explored in Sec. 3.3), this might explain why some

groups [93, 94] have not observed a low-frequency mode at temperatures below the

superconducting 𝑇𝑐.

In conclusion, we have studied the collective modes for the BDW and supercon-

ducting order parameters expected to exist in the pseudogap state of cuprates. In

the pure BDW phase we observed the conventional amplitude mode with frequency

starting at 2𝜙. In the coexistent phase two collective modes representing the coupled

oscillations of the amplitudes of the order parameters are present. One of them

is soft at the superconducting critical temperature, and despite having frequency

𝜔0 < 2min(𝜙, Δ) is (weakly) damped, due to band-structure reconstruction caused

by superconductivity. The other mixed mode is continuously connected to the pure

BDW mode, with frequency pushed up in the coexisting regime. To study the effects

of damping originating from the nodal regions, we developed a phenomenological

time-dependent Ginzburg-Landau theory. We demonstrated that strong damping

can have significant effect on the real frequency of the modes.



Chapter 4: Cavity Quantum Eliashberg Enhancement of Su-

perconductivity

This work is based on Curtis, Raines, Allocca, Hafezi, and Galitski [115, ©

American Physical Society], published in Physical Review Letters.

4.1 Overview

It has been known since the late 1960’s that subjecting a superconductor to strong

microwave radiation can lead to an enhancement of superconductivity [12, 13]. The

explanation of this was first provided by Eliashberg et. al. [14, 15, 17], who showed

that the irradiation yields a non-thermal distribution of the Bogoliubov excitations

with an effectively colder band edge. The degree of enhancement can be obtained by

using standard BCS theory with a non-thermal quasi-particle distribution function.

In the subsequent decades, Eliashberg’s theoretical explanation for this effect has

been extended and applied to a variety of other systems [19, 56, 85, 116–119].

In recent years there has been a renewed interest in non-equilibrium supercon-

ductivity motivated in-part the pump-probe experiments, discussed in Chapter 2,

which have found that materials subjected to intense Terrahertz (THz) pulses ex-

hibit transient superconducting properties up to very high sample temperatures [22,

26, 120]. Understanding these transient states has led to a variety of theoretical

models which go beyond the quasi-particle redistribution effect [58, 121–125].

All of these systems concern the interaction between quantum matter and a

classical external field. Particularly interesting and novel however, is the effect that

a fluctuating quantum gauge field has on quantum matter. Indeed, it has been a

long-standing focus in the field of cavity-quantum-electrodynamics to realize the

dynamical quantum nature of the electromagnetic field through the use of resonant

72
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electromagnetic cavities [126–130]. Recently there have been many advances in this

area including the realization of exciton-polariton condensates [131, 132], states

formed from hybridizing cavity photons and semiconductor excitons.

This chapter extends some of these concepts to superconducting systems with

an eye on cavity-induced Eliashberg-type enhancement of superconductivity. The

central observation is that even in a non-equilibrium steady-state the BCS self-

consistency equation

1
𝑔𝜈

= ∫
∞

0

𝑑𝜖
𝜖

𝜌BQP(𝜖) [1 − 2𝑛(𝜖)] (4.1)

can be solved for a non-thermal quasi-particle distribution function 𝑛(𝜖), where

𝜌BQP = |𝜖|/
√

𝜖2 − Δ2 is the quasi-particle density of states. The solution of this equa-

tion – the BCS superconducting gap Δ – is therefore a functional of the distribution

function 𝑛(𝜖) as well as the BCS coupling constant 𝑔. Of particular interest are cases

where the gap exceeds its equilibrium thermal value, 𝛿Δ = Δ[𝑛𝐹 + 𝛿𝑛] − Δ[𝑛𝐹] > 0.

In the classical Eliashberg effect, this is achieved via irradiation with a coherent

microwave field. For frequencies smaller than 2Δ, pair breaking is suppressed and

existing thermal quasi-particles are scattered up to higher energies, where their de-

bilitating effect is lessened by the reduced relative density of states. This emptying

of states near the band edge increases Δ above its equilibrium value. In this chapter

we generalize this idea to include the dynamical fluctuations of the electromagnetic

field in a microwave cavity, depicted in the inset of Fig. 4.1(b). Our main result is

that, by appropriately tuning the parameters of the cavity environment (e.g. res-

onance, line-width, temperature, etc), an enhancement in the BCS gap strength

may be obtained, now in the absence of coherent electromagnetic radiation. This

gap enhancement is shown in Fig. 4.1(a), which illustrates the change in the BCS

gap strength 𝛿Δ as a function of the cavity resonant frequency 𝜔0. The rest of the
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(a)

(b)

(c)

Figure 4.1: (a) Relative enhancement of the gap function as a function of cavity
frequency 𝜔0 for a particular value of the overall scaling constant 𝜋𝛼𝑋𝐷𝜏in/𝑐2 (we
take 𝑋 = 133 and 𝜋𝛼𝐷𝜏in𝑇 2

𝑐 /𝑐2 = 9.17 × 10−5 with 𝑇𝑐 set to unity). Curves are
colored and labeled according to the ratio 𝑇cav/𝑇qp, comparing the photon and quasi-
particle temperatures. The enhancement is seen set in after the cavity frequency
surpasses the pair-breaking energy 2Δ0. (b) Schematic picture of the system used
for calculation. The lowest cavity resonator mode with cutoff frequency 𝜔0 is shown.
(c) Depiction of the various processes which contribute to the quasi-particle collision
integral, plotted against the equilibrium 𝑛(𝐸). The blue arrows depict the down-
scattering terms captured by 𝑓(Ω, 𝐸), the red arrows depict the up-scattering terms
captured by 𝑓(−Ω, 𝐸) and the green arrows represent the pair-processes captured
by 𝑓(−Ω, −𝐸), where 𝑓 is defined in Eq. (4.34).



Chapter 4 75

chapter is devoted to deriving this result.

4.2 Types of Processes

In order to better understand the types of processes that occur when coupling

a superconductor to cavity photons, we begin with a model of an s-wave supercon-

ductor described by the BCS Hamiltonian (setting ℏ = 𝑘𝐵 = 1)

𝐻 = ∫ 𝑑2𝑟 [𝜓†
𝜎 (−𝐃2

2𝑚
− 𝜇) 𝜓𝜎 − 𝑔𝜓†

↑𝜓†
↓𝜓↓𝜓↑] , (4.2)

where 𝜓𝜎 is the electron field operator, which is minimally coupled to the electromag-

netic vector potential A through the gauge covariant derivative D = 𝛁 − 𝑖(𝑒/𝑐)A.

Throughout we will employ the radiation gauge ∇ ⋅A = 0. The interaction is decou-

pled via standard mean-field theory, and the resulting Hamiltonian is diagonalized

with a Bogoliubov transformation

⎛⎜⎜⎜
⎝

𝜓𝐩,↑

𝜓†
−𝐩,↓

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

𝑢𝐩 −𝑣𝐩

𝑣𝐩 𝑢𝐩

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝛾𝐩,+

𝛾†
−𝐩,−

⎞⎟⎟⎟
⎠

, 𝑢, 𝑣 = √1
2

(1 ± 𝜉
𝐸

), (4.3)

where 𝛾𝐩± are the Bogoliubov quasi-particle annihilation operators, 𝐸𝐩 = √𝜉2
𝐩 + Δ2

is the quasi-particle dispersion, and 𝜉𝐩 = 𝐩2/2𝑚−𝜇. The electromagnetic field 𝐀 is

subject to cavity quantization of the transverse-momentum, leading to a dispersion

relation for in-plane momentum 𝐪 of

𝜔𝑛,𝐪 = √(𝑛𝜋𝑐
𝐿

)
2

+ 𝑐2𝐪2 ≡ √𝑛2𝜔2
0 + 𝑐2𝐪2 (4.4)

where 𝑛 = 1, 2, 3, … indexes the harmonic of the confined mode. For simplicity, we

will only consider the fundamental 𝑛 = 1 harmonic and place the superconducting
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sample at the anti-node where the coupling to the field is strongest, as depicted in

Fig. 4.1(b).

To leading order, the interaction between photons and quasi-particles obtained

from Eq. (4.2) occurs through the coupling of the vector potential to the electronic

current via

𝐻 int = −𝑒
𝑐

∫ 𝑑𝑑𝑟𝐣 ⋅ 𝐀. (4.5)

Applying the Bogoliubov transformation and Fourier transforming to momentum

space this becomes

jq = ∫ d𝑝
(2𝜋)2

p
𝑚

[(𝑢p−
𝑢p+

+ 𝑣p−
𝑣p+

) 𝛾†
p−,𝜎𝛾p+,𝜎

+ (𝑢p−
𝑣p+

− 𝑣p−
𝑢p+

) (𝛾†
p−,+𝛾†

−p+,− − 𝛾p+,+𝛾−(p−,−)] , (4.6)

where we use the shorthand p± = p ± q/2. There are three types of matrix

element appearing in Eq. (4.6), corresponding to scattering (by both emission and

absorption of photons), pair-breaking, and pair-recombination respectively. Through

these processes, the fluctuating cavity photon field will induce transitions amongst

the quasi-particle eigenstates, resulting in a redistribution of the quasi-particle

occupations. This is described by a kinetic equation

𝜕𝑛𝐩

𝜕𝑡
= ℐcav[𝑛] −

𝑛𝐩 − 𝑛𝐹 (𝐸𝐩, 𝑇qp)
𝜏in

. (4.7)

The first term on the right hand side describes the photon-induced pairing/de-

pairing and scattering of quasi-particles while the second term describes a generic

inelastic relaxation mechanism which describes the coupling to a phonon bath at

temperature 𝑇qp. The approximation here is that the inelastic relaxation rate 𝜏−1
in

is small compared to other energy scales, as was assumed in the original work of

Eliashberg [15, 116, 117].



Chapter 4 77

In this limit we can perturbatively solve for the steady-state of the kinetic equa-

tion Eq. (4.7) by expanding in small deviations 𝛿𝑛 = 𝑛 − 𝑛𝐹 from equilibrium. To

lowest order, the correction is 𝛿𝑛 = 𝜏inℐcav[𝑛𝐹]. Utilizing the detailed balance prop-

erties of thermal equilibrium, this will end up depending on the photon occupation

function 𝑁(𝜔) through its deviation from equilibrium:

𝛿𝑁cav(𝜔) ≡ 𝑁(𝜔) − 𝑛𝐵 (𝜔, 𝑇qp) , (4.8)

where 𝑛𝐵(𝑧) is the Bose occupation function.

4.3 Cavity Enhancement of Superconductivity

To derive the correction to the distribution function we employ the KNLσM

of a disordered superconductor as introduced in Section 1.4.1.1 We begin with

Eq. (1.32) which we briefly recap here

𝑖𝑆 = −𝜋𝜈
8
Tr [𝐷(𝜕�̌�)

2
+ 4𝑖 (𝑖 ̂𝜏3𝜕𝑡�̌� + 𝑖𝛾

2
�̌�rel�̌� + Δ̌�̌�)] − 𝑖 𝜈

2𝜆
Tr Δ̌† ̂𝛾𝑞Δ̌ (4.9)

where 𝐷 = 𝑣𝐹𝜏2
imp/2 is the diffusion constant, 𝜈 = 𝜈↑ + 𝜈↓ is the total electronic

density of states at the Fermi surface, 𝜆 is the strength of the BCS type coupling, and

𝐀 couples to the model through the covariant derivative 𝜕�̌� = ∇�̌� − 𝑖(𝑒/𝑐)[�̌�, �̌�].

The variables of the model are the vector potential 𝐀, the BCS gap Δ, and the

quasi-classical Green’s function �̌� which obeys the non-linear constraint �̌� ∘ �̌� = ̌1.

The relaxation approximation is included through coupling to a bath

�̌�rel(𝜖) =
⎛⎜⎜⎜
⎝

1 2 tanh( 𝜖
2𝑇QP

)

0 −1

⎞⎟⎟⎟
⎠𝐾

(4.10)

1The results obtained below can be found through general, although non-rigorous arguments
using the Boltzmann equation and Fermi’s Golden rule. For more details see Curtis, Raines, Allocca,
Hafezi, and Galitski [115].
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via 𝛾 = 1/𝜏in is the inelastic scattering rate.

Our general strategy follows that employed by Tikhonov, Skvortsov, and Klap-

wijk [19]. We recall that the BCS gap equation is the saddle-point of 𝑖𝑆 with respect

to the quantum component of the gap Δ𝑞 (c.f. Section 1.4.1). We may thus directly

obtain the correction due to cavity photons by deriving the linear-in-Δ𝑞 term arising

from the coupling to photons.

To begin, we employ the exponential parameterization Eq. (1.36) to expand

Eq. (1.32) to quadratic order in the diffuson and cooperon fields as described in

Section 1.4.1 leading to the quadratic diffusive action Eq. (1.39), which we repeat

here for reference

𝑖𝑆𝑐𝑑 = 𝜋𝜈
4

∫ 𝑑𝜖
2𝜋

∫ 𝑑𝜖′

2𝜋
tr [ ⃗𝑑𝜖′𝜖�̂�−1

𝜖𝜖′
⃗𝑑𝜖𝜖′ + ⃗𝑐𝜖′𝜖

̂𝒞−1
𝜖𝜖′ ⃗𝑐𝜖𝜖′] (4.11)

with

�̂�−1
𝜖𝜖′ = 𝒟−1

𝜖′𝜖𝜎1, ̂𝒞−1
𝜖𝜖′ = diag ([𝒞𝑅

𝜖𝜖′ ]−1, [𝒞𝐴
𝜖𝜖′ ]−1) , (4.12)

and the diffuson and cooperon propagators

𝒟−1
𝜖𝜖′ = ℰ𝑅(𝜖) + ℰ𝐴(𝜖′), [𝒞𝑅/𝐴]−1

𝜖𝜖′ = ℰ𝑅/𝐴(𝜖) + ℰ𝑅/𝐴(𝜖′)

ℰ𝑅(𝜖) = 𝑖 (𝜖 + 𝑖𝛾
2

) cosh 𝜃𝜖 − 𝑖Δ sinh 𝜃𝜖

ℰ𝐴(𝜖) = (ℰ𝑅(𝜖))∗ .

(4.13)

Additionally, at linear order we have a coupling between diffusive modes and the

gap

𝑖𝑆Δ−𝑐𝑑 = 𝜋𝜈 ∫ 𝑑𝜖
2𝜋

[ ⃗𝑐𝜖𝜖 ⋅ ⃗𝑠𝑐
𝜖 + ⃗𝑑𝜖𝜖�̂�1 ⃗𝑠𝑑

𝜖 ] (4.14)
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where we have taken Δ𝑞 to be homogeneous and real, and a coupling of the diffusons

and cooperons to the photon field

𝑖𝑆𝐴−𝑐𝑑 = 𝜋𝜈𝐷 ∫ 𝑑𝜔
2𝜋

𝐀𝛼
−𝜔,−q ⋅ 𝐀𝛽

𝜔,q ∫ 𝑑𝜖
2𝜋

∫ 𝑑q
(2𝜋)2 [ ⃗𝑐𝜖𝜖 ⋅ ⃗𝑟𝑐;𝛼𝛽

𝜖 + ⃗𝑑𝜖𝜖�̂�1 ⃗𝑟𝑑;𝛼𝛽
𝜖 ] (4.15)

where for now we have absorbed the paramagnetic coupling strength into the defini-

tion of the 𝐀 field. We will restore it at the end of the calculation.

The ⃗𝑟𝑖;𝛼𝛽 are matrices in the photon Keldysh space and vectors in the sense

induced by Eq. (1.40). They are determined by the structure of the saddle-point

solution and arise from expanding to covariant derivative term in Eq. (1.32) to

lowest order in the 𝑊 matrix fields.

The coupling to the diffusive modes may be removed by making a shift of the

fields

⃗𝑐𝜖𝜖 → ⃗𝑐𝜖𝜖 − 2Δ𝑞 ̂𝒞𝜖𝜖 ⃗𝑠𝑐
𝜖 − 2𝐷 ∫ 𝑑𝜔

2𝜋
∫ 𝑑q

(2𝜋)2 𝐀𝛼
−𝜔,−q𝐀

𝛽
𝜔,q ̂𝒞𝜖𝜖 ⃗𝑟𝑐;𝛼𝛽

𝜖 (4.16)

⃗𝑑𝜖𝜖 → ⃗𝑑𝜖𝜖 − 2Δ𝑞�̂�𝜖𝜖 ̂𝜎1 ⃗𝑠𝑑
𝜖 − 2𝐷 ∫ 𝑑𝜔

2𝜋
∫ 𝑑q

(2𝜋)2 𝐀𝛼
−𝜔,−q𝐀

𝛽
𝜔,q�̂�𝜖𝜖 ̂𝜎1 ⃗𝑟𝑑;𝛼𝛽

𝜖 . (4.17)

This shift has three effects: The first two are to create a nonlinear term in the

photon action, which we will ignore as we are not considering non-linear effects, and

to create a term at second order in Δ𝑞 which we can ignore as Δ𝑞 will be taken to

0 at the end. The important effect is that a coupling between photons and Δ𝑞 is

induced

𝑖𝑆Δ−𝐴 = 2𝜋𝜈𝐷Δ𝑞 ∫ 𝑑𝜔
2𝜋

∫ 𝑑q
(2𝜋)2A

𝛼
−𝜔,−q⋅A

𝛽
𝜔,q ∫ 𝑑𝜖

2𝜋
[ ⃗𝑠𝑐

𝜖
̂𝒞𝜖𝜖 ⃗𝑟𝑐;𝛼𝛽

𝜖 + ⃗𝑠𝑑
𝜖 �̂�1�̂�𝜖𝜖�̂�1 ⃗𝑟𝑑;𝛼𝛽

𝜖 ] .

(4.18)
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At this point we may safely integrate out the 𝑑 modes and henceforth ignore

them.2 Making the definition

−𝑖Π𝛼𝛽 = 2𝜋𝜈𝐷Δ𝑞 ∫ 𝑑𝜖
2𝜋

[ ⃗𝑠𝑐
𝜖

̂𝒞𝜖𝜖 ⃗𝑟𝑐;𝛼𝛽
𝜖 + ⃗𝑠𝑑

𝜖 �̂�𝜖𝜖 ⃗𝑟𝑑;𝛼𝛽
𝜖 ] (4.19)

we can write the photon action as

𝑖𝑆𝐴 = 𝑖 ∫ 𝑑𝜔
2𝜋

∫ 𝑑q
(2𝜋)2A

𝛼
−𝜔,−q ( ̌𝑆−1

0 (𝜔,q) − Π̌(𝜔,q))A𝛽
𝜔,q. (4.20)

Integrating out A we obtain

𝑖𝑆 = −1
2
Tr ln [−𝑖 ( ̌𝑆−1

0 − Π̌)] ≈ 1
2
Tr [ ̌𝑆0Π̌] (4.21)

where we have expanded to linear order in Δ𝑞. Since the momentum 𝐪 appears only

in ̌𝑆 we can immediately integrate over it. Similarly we can trace over the in-plane

components of A. We thus define

�̂�(𝜔) = ∑
𝑖∈{𝑥,𝑦}

∫ 𝑑𝐪
(2𝜋)2

̂𝑆𝑖𝑖(𝜔, 𝐪). (4.22)

We assume the photon modes to be governed by a density matrix which is diagonal

in energy. �̂� can then be written in the usual fluctuation-dissipation form

�̂�(𝜔) =
⎛⎜⎜⎜
⎝

𝐹𝐵(𝜔)(𝐷𝑅(𝜔) − 𝐷𝐴(𝜔)) 𝐷𝑅(𝜔)

𝐷𝐴(𝜔) 0

⎞⎟⎟⎟
⎠

(4.23)

where 𝐹𝐵 is the generalized occupation function, related to the Bose occupation

function by 𝐹𝐵 = 1 + 2𝑁. Defining −2𝜋𝑖𝐽(𝜔) = 𝐷𝑅(𝜔) − 𝐷𝐴(𝜔) and, using the
2We are free to ignore the residual coupling to Δ as the saddle-point equation guarantees that it

vanishes.
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analytic properties of �̂�, Eq. (4.21) can be written

𝑖𝑆 = − 𝑖
2

∫ 𝑑𝜔𝐽(𝜔) [𝐹𝐵(𝜔)Π0,0(𝜔) − (Π𝑅(𝜔) − Π𝐴(𝜔))] (4.24)

where we have defined Π𝑅/𝐴 as the retarded/advanced part of Π01/10. We now

decompose the self-energy into rescaled cooperon and diffuson terms 𝑃 (𝑐/𝑑)

𝜈Δ𝑞 (𝑃 𝑐
𝛼𝛽(𝜔) + 𝑃 𝑑

𝛼𝛽(𝜔)) = −𝑖Π𝛼𝛽 (4.25)

𝐵(𝜔) =
𝑃 𝑑

𝑅(𝜔) − 𝑃 𝑑
𝐴(𝜔)

𝑃 𝑑
0 (𝜔)

(4.26)

with 𝑃 0 = 𝑃00 and 𝑃 𝑅/𝐴 defined analogously to Π𝑅/𝐴 as the retarded (advanced)

part of 𝑃 01/10. The correction to the gap equation can then be separated into

two contributions. The first is the equilibrium self-energy correction to the cavity

photons

𝑖𝑆𝑐
eq = 𝜈Δ𝑞

2
∫ 𝑑𝜔𝐽(𝜔) [𝐵(𝜔)𝑃 𝑐

0 (𝜔) − (𝑃 𝑐
𝑅(𝜔) − 𝑃 𝑐

𝐴(𝜔))] . (4.27)

This term should be included in the bare equilibrium result as it is a property of the

equilibrium cavity-superconductor system and we therefore subtract it off henceforth.

The other term

𝑖𝑆fluc = 𝜈Δ𝑞

2
∫ 𝑑𝜔𝐽(𝜔)(𝐹𝐵(𝜔) − 𝐵(𝜔))(𝑃 𝑐

0 (𝜔) + 𝑃 𝑑
0 (𝜔)) (4.28)

is the fluctuation induced enhancement to superconductivity. This is to be compared

with the correction term due to a classical monochromatic field (i.e. the original

Eliashberg effect)

𝑖𝑆 = (−𝑖Π0,0(𝜔)−𝑖Π0,0(−𝜔))|A𝜔|2 = 𝜈Δ𝑞(𝑃0(𝜔)+𝑃0(−𝜔))|A𝜔|2 ≡ 𝜈Δ𝑞𝑌 (𝜔)|A𝜔|2.

(4.29)
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Using the functional dependence of the classical Eliashberg effect on frequency 𝑌 (𝜔)

the quantum Eliashberg effect can be written in a fluctuation-dissipation-like form

𝑖𝑆fluc = 𝜈Δ𝑞

2
∫

∞

0
𝑑𝜔𝐽(𝜔)(𝐹𝐵(𝜔) − 𝐵(𝜔))𝑌 (𝜔). (4.30)

It should be noted that in the linearized regime 𝑃 𝑑
0 goes as 𝛾−1 while 𝑃 𝑐

0 goes as 𝛾0.

Thus, in the limit of 𝛾 → 0 we expect the diffuson contribution to be dominant.

4.3.1 Gap Equation

As mentioned previously, the BCS gap equation is the saddle-point equation

of our action with respect to the source field Δ𝑞. Including the correction term

Eq. (4.30) the gap equation then becomes

0 = 𝛿𝑖𝑆
𝛿Δ𝑞

∣
Δ𝑞=0

= −4𝑖 𝜈
𝜆

Δ+ 𝜋𝜈
2
Tr �̂�𝐾 ̂𝜏2 + 𝜈

2
∫

∞

0
𝑑𝜔𝐽(𝜔)(𝐹𝐵(𝜔)−𝐵(𝜔))𝑌 (𝜔) (4.31)

We therefore define

𝐹BCS = 1
𝜆

+ 𝑖𝜋
8Δ

Tr �̂�𝐾 ̂𝜏2, 𝐹phot = 𝑖𝜈
8Δ

∫
∞

0
𝑑𝜔𝐽(𝜔)(𝐹𝐵(𝜔) − 𝐵(𝜔))𝑌 (𝜔) (4.32)

Which allows us to write the gap equation as 𝐹BCS = −𝐹phot. Furthermore, 𝐹phot can

be broken up into a kinetic contribution 𝐹 kin arising from modification of the quasi-

particle occupation function and a spectral contribution 𝐹 spec due to modification

of the density of states from self-energy effects, as discussed above. Most notably,

because the gap equation is linearly related to the action, the corrections to the gap

equation are related to the conventional Eliashberg effect via the same fluctuation-

dissipation-like relation.
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4.4 Corrections to the distribution function

Using the correspondence in Eq. (4.30) we find that the correction to the distri-

bution function is

𝛿𝑛(𝐸) = 𝜏in
𝛼𝐷
𝑐

∫
∞

−∞
𝑑Ω𝐽cav(Ω)𝛿𝑁cav(Ω)𝐾(Ω, 𝐸), (4.33)

where 𝛿𝑁cav is as in Eq. (4.8) and 𝐾(Ω, 𝐸) = 𝑓(Ω, 𝐸) + 𝑓(−Ω, 𝐸) − 𝑓(−Ω, −𝐸),

with

𝑓(Ω, 𝜖) = Θ(𝜖−Ω−Δ)𝜌BQP(𝜖−Ω) (1 + Δ2

𝜖(𝜖 − Ω)
) [𝑛𝐹 (𝜖 − Ω, 𝑇qp) − 𝑛𝐹 (𝜖, 𝑇qp)] .

(4.34)

Here Θ(𝑥) is the Heaviside function. The three 𝑓 terms appearing in 𝐾(Ω, 𝐸) are

depicted schematically in Fig. 4.1(c), alongside the various processes they describe.

The coupling to the cavity is effectively characterized by the coupling function 𝐽(Ω).

In particular, the derivation above is valid for any photonic spectral function and

generalized occupation.

For a BCS gap of order Δ = 10K we find a corresponding resonance frequency

𝜔0 ∼ 1.3THz. Recently, a number of advances have lead to large enhancements in

the strength and tunability of the light-matter coupling strength in this frequency

regime, such that 𝐽cav(Ω) may potentially exceed what is expected from our simple

planar cavity model by many orders of magnitude [133–136]. We incorporate this

fact by rescaling the spectral function 𝐽 by a phenomenological factor 𝑋, so that

𝐽(Ω) → ̃𝐽(Ω) = 𝑋𝐽cav(Ω).

In order to simplify the calculation, we will study the system in the Ginzburg-

Landau (GL) regime (𝑇qp ≲ 𝑇𝑐), which allows us to expand the gap equation in

powers of Δ. Including the non-equilibrium distribution function contribution, this
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A

C

B

Figure 4.2: Change in quasi-particle distribution function due to cavity photons.
The two curves are at the same temperature (𝑇cav/𝑇qp = 0.5) but different cavity
frequencies 𝜔0/Δ0. For low cavity frequency (orange), the gapΔ is diminished due to
an accumulation of cooler quasi-particles near the gap-edge, due to a down-scattering
of particles. For higher cavity frequency (blue), the recombination processes are
more dominant and lead to a net reduction in quasi-particles, enhancing the gap Δ.
The kink-features labeled 𝐴 and 𝐶 reflect the onset of the term 𝑓(Ω, 𝐸) in Eq. (4.33),
which is only non-zero for 𝐸 > 𝜔0 + Δ0. At higher cavity frequencies (𝜔0 > 2Δ0) an
additional kink-feature (located at 𝐵) emerges at 𝐸 = 𝜔0 − Δ0. For 𝐸 < 𝜔0 − Δ0,
the term 𝑓(−Ω, 𝐸) (which represents the pair-processes) contributes over the entire
integration region of Ω > 𝜔0, while for 𝐸 > 𝜔0 − Δ0 the integral only captures some
of the frequencies where this term contributes.
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results in

(
𝑇𝑐 − 𝑇qp

𝑇𝑐
− 7𝜁(3)

8𝜋2
Δ2

𝑇 2
𝑐

− 2 ∫
∞

Δ

𝑑𝜖
𝜖

𝜌BQP(𝜖)𝛿𝑛(𝜖)) Δ = 0. (4.35)

To leading order in the gap change, we obtain the correction to the BCS gap

𝛿Δ
Δ0

= − 𝑇𝑐
𝑇𝑐 − 𝑇qp

∫
∞

Δ0

𝑑𝜖
𝜖

𝜌BQP(𝜖)𝛿𝑛(𝜖). (4.36)

This is plotted in Fig. 4.1(a) as a function of the cavity frequency 𝜔0 for different

photon temperatures relative to the quasi-particle temperature 𝑇qp. The enhance-

ment is ultimately driven by the enhanced quasi-particle recombination rate which,

for a cold photon reservoir serves to remove detrimental quasi-particles.

This can be seen explicitly in Fig. 4.2, which shows the change in the distribution

function 𝛿𝑛 for two different cavity frequencies. When the cavity frequency is too

low, scattering-processes dominate and the photons cool the existing quasi-particles,

leading to a build-up of particles near the gap edge. At higher cavity frequencies

the pair-processes dominate, leading to an enhancement as photons now cool the

system by reducing the total number of harmful quasi-particles.

While the effect we predict here essentially relies on the cooling ability of the cold

photon reservoir, we also remark that our formula for 𝛿𝑛(𝐸), presented in Eq. (4.33),

is valid for a wide-variety of photon spectral functions. In particular, switching from

a multi-mode planar cavity, where 𝐽cav(Ω) ∼ 𝜔0(1 + 𝜔2
0/Ω2)Θ(Ω − 𝜔0) is roughly

constant for Ω > 𝜔0, to a simpler single-mode cavity, where 𝐽cav ∼ 𝜔2
0

2𝜅
(Ω−𝜔0)2+𝜅2 is

peaked at the resonant frequency, will allow for an enhancement in 𝛿Δ even when

the photon reservoir is hotter than the sample.3 This is explicitly demonstrated in

Fig. 4.3, where we plot 𝛿Δ against 𝜔0 for the case of a single-mode 𝐽cav(Ω). The
3Calculation of the coupling function for the planar and single-mode cavities are performed in

Appendix C.
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enhancement in 𝛿Δ due to hot photons is now qualitatively similar to the classical

Eliashberg effect, albeit with a narrow spectral broadening applied to the driving

and supplied power related to the energy density of the bath. For cold photons, the

enhancement is similar to that seen in the multi-mode system and results from the

photons cooling the sample via enhanced quasi-particle recombination.

1 2 3 4 5 6 7 8
ω0/∆0
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0.020

0.015
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0.000

0.005
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δ∆
/∆

0 0.50
0.90
1.10
1.50

Figure 4.3: Gap enhancement 𝛿Δ0 for a single-mode cavity, for both cold and hot
photons. The y-axis is determined by the overall scale 4𝜋𝛼𝐷𝜏in𝑇 2

𝑐 /((𝜋
√

3)3𝑐2)𝑋;
with the same values chosen for 𝑋 and 𝜏in, 𝜏el, 𝑣𝐹/𝑐 as in Fig. 4.1. Curves are colored
and labeled according to the ratio 𝑇cav/𝑇qp, comparing the photon and quasi-particle
temperatures. Here the cavity width is held fixed at 1/2𝜏cav = 10𝜔0.

4.5 Conclusion

In conclusion, we have generalized the classical Eliashberg effect to include both

quantum and thermal fluctuations, as realized by a thermal microwave resonator

cavity. In the appropriate parameter regime, we show that the photonic reservoir can

be used to drive the quasi-particles into a non-equilibrium state which enhances the

superconducting gap Δ. In our calculation, we assumed that the cavity relaxation

rate 𝜏−1
cav was fast, allowing us to essentially ignore the dynamics and kinetics of
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the photons themselves. We should not expect this to remain the case when we go

to the limit of a high-quality cavity, in which the relaxation rate 𝜏−1
cav is no longer

small compared to all the other energy scales in the problem. In the high-quality

limit, a more elaborate treatment which treats the joint evolution of fermion-photon

system is required. Though potentially much more complicated, the inclusion of

photons as a participating dynamical degree of freedom may unveil many new and

interesting phenomena. These range from the formation of new collective modes

(including polaritons) [137, 138], superradiant phases [128, 139], and potentially

photon-mediated superconductivity [140]. The prospect of exploring the full breadth

of these joint matter-gauge systems is an exciting development in the fields of

quantum optics and condensed matter physics.



Chapter 5: Cavity Superconductor-Polaritons

This chapter is based upon Allocca, Raines, Curtis, and Galitski [138, © Amer-

ican Physical Society] and Raines, Allocca, and Galitski [141].

5.1 Overview

A prototypical example of strong light-matter coupling is the exciton-polariton [38],

a superposition of photon states and exciton states in condensed matter systems [43].

These objects have drawn much attention due to their experimentally observed Bose

condensation at temperatures up to and above room temperature [45, 47, 142, 143].

Furthermore, there has been a recent surge in interest in the physics of supercon-

ductors coupled to cavity

acqed systems. A number of schemes for realizing superconductivity with novel

pairing mechanisms [140, 144, 145] and for enhancing the strength of the super-

conducting state [115, 137] have been proposed using these types of systems. This

provides an opportunity for marrying developments in the coupling of cavity photons

to matter with the advances in accessing the collective modes of superconductors.

Particularly of interest in this context are two collective modes which are particularly

difficult to couple to with light: the Bardasis-Schrieffer mode, and the Higgs mode.

Some schemes are known for accessing these states electromagnetically, through e.g.

intense laser pulses [146–148] or Raman spectroscopy [106, 149–151]. These schemes

rely on couplings in the non-linear regime since these modes do not couple to light

at the linear response level [99, 152]. However, it has recently been understood that

a linear coupling between photons and typically inactive modes of a superconductor

can be induced with the addition of a uniform supercurrent [138, 153]. Indeed, such

88
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a supercurrent-mediated linear coupling has recently been implemented successfully

in NbN [154], allowing for observation of the Higgs mode in optical measurements.

In this chapter we demonstrate two examples of polaritons formed from cavity

photons and the collective modes of a quasi-2D superconductor using the super-

current induced coupling construction. Our primary results, presented in Figs. 5.1

and 5.4, the existence of Bardasis-Schrieffer- and Higgs-polaritons, respectively. The

degree of hybridization is dependent on the strength of the externally imposed su-

percurrent allowing for the nature of the modes to be tuned in situ. Motivated by

the condensation of cavity exciton-polaritons seen in experiments, we speculate on

the implications of forming a finite coherent density of these polaritons.

5.2 Bardasis-Schrieffer Polaritons

Not long after the advent of BCS theory, Bardasis and Schrieffer [155] showed

the existence of exciton-like excitations in superconductors with pairing potentials

in competing channels.

We consider a setup consisting of a two-dimensional electron system at the center

of a perfectly reflecting parallel mirror

acqed cavity, as shown in the inset of Fig. 5.1. The 2D electron system is described

by a single-band fermion action with a BCS interaction decomposed into angular

momentum channels. With ℏ = 1 it is

𝑆𝜓 = ∑
𝑘,𝜎

̄𝜓𝑘,𝜎 (−𝑖𝜖𝑛 + 𝜉𝑘) 𝜓𝑘,𝜎 − 1
𝛽

∑
𝑞

∑
ℓ=𝑠,𝑑

𝑔ℓ�̄�ℓ
𝑞𝜑ℓ

𝑞, (5.1)

with 𝜉𝑘 = 𝑘2/2𝑚∗ − 𝜇 the energy measured from the Fermi surface, 𝜎 labeling spin,

𝑘 and 𝑞 each representing momentum and Matsubara frequency, 𝑔ℓ the interaction



Chapter 5 90

d

0.0 0.1 0.2 0.3 0.4
cq/∆

0.34

0.36

0.38

0.40

0.42

ω
/2
∆

polaritons

"dark" photon
ss d

Mirror
2D SC
layer

L

Mirror
d-wave
mode

s-wave pairs
ss ss Is

Figure 5.1: The dispersion of the Bardasis-Schrieffer-polariton modes (dot-dashed).
An external supercurrent causes the BS mode and cavity photons to hybridize, and
the polariton states have significant overlap with each. The “dark” photon mode
(dashed) remains decoupled. The splitting of otherwise degenerate photon modes is
a result of a supercurrent-induced self-energy contribution. Temperature and super-
current angle are chosen to maximize hybridization (see Fig. 5.2). Inset — schematic
of the system: a 2-dimensional superconductor with an applied supercurrent 𝐼𝑆 at
the center of a planar cavity.
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strength in the ℓ-channel, and the interaction written in terms of bilinears,

𝜑ℓ
𝑞 = ∑

𝑘
𝑓ℓ(𝜙𝑘)𝜓−𝑘+ 𝑞

2 ,↓𝜓𝑘+ 𝑞
2 ,↑. (5.2)

Importantly, following Bardasis and Schrieffer [155] we assume the interaction is

sizable in both 𝑠-wave and 𝑑-wave channels, but a stronger 𝑠-wave component,

𝑔𝑠 > 𝑔𝑑, leads to a purely 𝑠-wave superconducting ground state. The form factors

are taken to be 𝑓𝑠(𝜙𝑘) = 1 and 𝑓𝑑(𝜙𝑘) =
√

2 cos(2𝜙𝑘). This choice of 𝑓𝑑 breaks

the model’s full rotational symmetry by choosing an explicit reference axis from

which the angle of k, here called 𝜙𝑘, is measured, which we expect to be chosen

by the underlying crystal structure of the system — not explicitly present in our

continuum model. The interaction can be decoupled in both angular momentum

channels simultaneously with a Hubbard-Stratonovich transformation

𝑆 = ∑
𝑘

Ψ̄𝑘 (−𝑖𝜖𝑛 ̂𝜏0 + 𝜉𝑘 ̂𝜏3) Ψ𝑘 + 1
𝛽

∑
𝑞,ℓ

1
𝑔ℓ

|Δℓ
𝑞|2

− 1
𝛽

∑
𝑘,𝑞

Ψ̄𝑘+ 𝑞
2

∑
ℓ

𝑓ℓ(𝜙𝑘)(Δℓ
𝑞 ̂𝜏+ + Δ̄ℓ

−𝑞 ̂𝜏−)Ψ𝑘− 𝑞
2
, (5.3)

where Ψ𝑘 = (𝜓𝑘,↑, ̄𝜓−𝑘,↓) are Nambu spinors, ̂𝜏𝑖 are the Pauli matrices in Nambu

space with ̂𝜏0 the identity, and Δℓ
𝑞 are the complex Hubbard-Stratonovich decoupling

fields labeled by angular momentum channel.

The model of the photonic sector used in this chapter is that of a parallel mirror

cavity consisting of two conducting plates of infinite extent in the 𝑥 − 𝑦 plane and

separated by a distance 𝐿 along the 𝑧 axis. The action for photons inside the empty

cavity is (with 𝑐 = 1)

𝑆cav = − 1
2𝛽

∑
𝑞,𝑛,𝛼

𝐴𝛼,𝑛,−𝑞 [(𝑖Ω𝑚)2 − 𝜔2
𝑛,𝑞] 𝐴𝛼,𝑛,𝑞. (5.4)
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Here 𝛼 indexes the two cavity polarizations, 𝑛 labels the quantized modes resulting

from the confinement in 𝑧, and 𝜔2
𝑛,𝑞 = 𝑛2𝜔2

0 +𝑞2, with 𝜔𝑛,0 = 𝑛𝜋/𝐿, is the dispersion

of photons inside the cavity. We consider just the 𝑛 = 1 mode and drop the index;

all other modes are higher in energy and far from the resonance we tune to later.

The vector potential is written in terms of polarizations as A𝑞(𝑧) = ∑𝛼 𝝐𝛼,q(𝑧)𝐴𝛼,𝑞,

with 𝝐𝛼,q(𝑧) the polarization vectors inside the cavity. In particular, we have chosen

to work with the 𝑛 = 1 transverse electric and transverse magnetic solutions, which

in the Coulomb gauge have polarization vectors

𝝐1(q, 𝑧) = 𝑖√ 2
𝐿
sin(𝜋𝑧

𝐿
) ̂z× q̂

𝝐2(q, 𝑧) = √ 2
𝐿

1
𝜔q

(𝑐𝑞 cos(𝜋𝑧
𝐿

) ̂z− 𝑖𝜔0 sin(𝜋𝑧
𝐿

) ̂q) ,
(5.5)

where the 𝑧 axis is perpendicular to the plane of the superconductor and the mo-

mentum q is in the plane, ẑ and q̂ are the unit vectors along z and q, and photon

dispersion 𝜔q as above. The electron system is located in the middle of the cavity,

so only 𝑧 = 𝐿/2 must be considered

𝝐1(q, 𝐿/2) = 𝑖√ 2
𝐿
ẑ× q̂, 𝝐2(q, 𝐿/2) = −𝑖√ 2

𝐿
𝜔0
𝜔q

̂q, (5.6)

Note that in the limit of small q these eigenvectors form an approximately orthonor-

mal basis.1

Minimal coupling between the cavity photon and the electron system generates

a paramagnetic term proportional to 𝑒vk ⋅A𝑞, with the electron velocity operator

vk = k/𝑚∗, and a diamagnetic term proportional to 𝑒2𝐴2
𝑞 . We drop the diamagnetic

term since it is unimportant both in the weak-field regime [134] and for the cavity
1In the basis of the components of A the diagonal components of the vector potential action

go as 1 + (𝜔q/𝜔0)
2
, while the off diagonal components go as 1 − (𝜔q/𝜔0)

2
. Thus, as long as

1 + 2(𝜔0/𝑐𝑞)2 ≫ 1, we can treat the vector potential action as approximately diagonal.
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photon self-energy in the presence of disorder, which is ubiquitous in 2D [49, 50].

Note that our cavity geometry is chosen for calculation simplicity, but in real

microwave cavities the transverse nature of the of photon amplitude envelope is

more complicated. The effect of this is to increase the strength of the paramagnetic

coupling, which we include via a phenomenological enhancement in the light-matter

coupling term [134, 136, 140].

We now consider externally driving a homogeneous supercurrent through the

system. A supercurrent can be understood as the superconducting condensate

moving at constant uniform velocity with respect to the lab frame, with Bogoliubov

quasi-particles being defined in the comoving frame, i.e. the supercurrent can be

included via a simple Galilean transformation. Calling the condensate superfluid

velocity v𝑆, we have vk → vk+v𝑆. The angle of v𝑆 with respect to the axis defined

by 𝑓𝑑(𝜙𝑘), as depicted in the inset in Fig. 5.2, is denoted 𝜃𝑆. This modifies the

quasi-particle dispersion in the lab frame

𝜉𝑘 → 𝜉𝑘 + k ⋅ v𝑆 + 1
2

𝑚𝑣2
𝑆 ≡ 𝜉𝑆

𝑘 + k ⋅ v𝑆. (5.7)

The term linear in k is a Doppler shift in the energy while the 𝑣2
𝑆 term can be

absorbed into a (negligible) redefinition of the chemical potential. The velocity shift

also affects the paramagnetic coupling,

𝑆𝜓−𝐴 → 𝑋
𝛽

∑
𝑘,𝑞

Ψ̄𝑘+ 𝑞
2

(−𝑒vk ̂𝜏0 − 𝑒v𝑆 ̂𝜏3) ⋅A𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡�̂�𝑘,𝑞[𝐴]

Ψ𝑘− 𝑞
2
. (5.8)

Here 𝑋 denotes the phenomenological coupling enhancement described above [134,

136, 140], which we absorb into a redefinition of the charge. Crucially the Nambu

structure for the paramagnetic and supercurrent-induced terms are different, since

particle and hole velocities are shifted in opposite senses, ultimately allowing the
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coupling of the BS mode to light. The supercurrent can equivalently be included

as a uniform phase winding of Δ𝑠 which, upon appropriate gauge transformation,

reproduces these results while maintaining explicit gauge invariance.

We make the mean-field approximation on the 𝑠-wave gap function

𝑆 = 𝑆Δ,𝑠 + 𝑆Δ,𝑑 + 𝑆cav− ∑
𝑘

Ψ̄𝑘
̂𝐺−1
𝑘 Ψ𝑘 + 1

𝛽
∑
𝑘,𝑞

Ψ̄𝑘+ 𝑞
2

(�̂�𝑘,𝑞[𝐴] − Δ̂𝑑
𝑘,𝑞) Ψ𝑘− 𝑞

2
, (5.9)

with 𝑆Δ,𝑠 = 𝛽|Δ|2/𝑔𝑠 describing the static, homogeneous 𝑠-wave component Δ,

𝑆Δ,𝑑 = 𝛽−1 ∑𝑞 |Δ𝑑
𝑞 |2/𝑔𝑑 describing the 𝑑-wave fluctuations, ̂𝐺−1

𝑘 = (𝑖𝜖𝑛 −k ⋅v𝑆) ̂𝜏0 −

𝜉𝑆
𝑘 ̂𝜏3 + Δ ̂𝜏1 the inverse Nambu Green’s function, and

Δ̂𝑑
𝑘,𝑞 = 𝑓𝑑(𝜙𝑘)

⎛⎜⎜⎜
⎝

0 Δ𝑑
𝑞

Δ̄𝑑
−𝑞 0

⎞⎟⎟⎟
⎠

. (5.10)

The mean field value of Δ is obtained as the saddle point solution in the absence of

A and Δ𝑑 but in the presence of the supercurrent, in keeping with the approximation

that Δ is unaffected by 𝑑-wave fluctuations and photons.

We now integrate out the fermions and expand to second order in Δ̂𝑑 and �̂�,

giving

𝑆eff = 𝑆𝑑 + 𝑆𝐴 + 𝑆𝑑−𝐴. (5.11)

These three terms are defined as the parts of the action describing free 𝑑-wave

fluctuations, cavity photons in the presence of the superconducting system, and the

supercurrent-generated coupling between them, respectively.

Since the 𝑑-wave fluctuations have much greater kinetic mass than photons,

we approximate them with a flat dispersion: their energy in the limit q → 0.

Additionally, we drop all terms which vanish in the quasi-classical 𝜉-approximation.

Writing Δ𝑑 in terms of its real and imaginary components, 𝑆𝑑 decouples into an

action for each. The real mode is within the Bogoliubov quasi-particle continuum,
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and is therefore over-damped [152, 155]. It also remains decoupled from photons

despite the supercurrent so we do not consider it further. The imaginary mode is

the in-gap Bardasis-Schrieffer mode. Naming this mode 𝑑𝑞, the BS mode action is

𝑆𝑑 = 1
𝛽

∑
𝑞

𝑑−𝑞 [ 1
𝑔𝑑

+ ∑
k

𝑓𝑑(𝜙𝑘)2 2𝜆𝑘(𝑛𝐹(𝐸−
k ) − 𝑛𝐹(𝐸+

k ))
(𝑖Ω𝑚)2 − (2𝜆𝑘)2 ] 𝑑𝑞, (5.12)

where ̄𝑑𝑞 = 𝑑−𝑞, 𝜆𝑘 = √(𝜉𝑆
𝑘 )

2
+ Δ2 is the quasi-particle energy in the comoving

frame, 𝑛𝐹 is the Fermi function, and 𝐸±
k = ±𝜆𝑘 + k ⋅ v𝑆 is the Doppler-shifted

energy.

The photon sector of the action consists of the empty cavity action 𝑆cav plus a

self-energy term due to the superconductor,

𝑆𝐴 = − 1
2𝛽

∑
𝑞,𝛼,𝛽

𝐴𝛼,−𝑞 [((𝑖Ω𝑚)2 − 𝜔2
𝑞) 𝛿𝛼𝛽 − Π𝛼𝛽,𝑞] 𝐴𝛽,𝑞. (5.13)

The matrix Π𝛼𝛽,𝑞 is the electromagnetic linear response function of the supercon-

ducting system written in the cavity polarization basis.

Within the approximations discussed above the coupling between photons and

the BS mode arises entirely through the supercurrent-induced term,

𝑆𝑑−𝐴 = −𝑖𝑒Δ
𝛽

∑
k,𝑞,𝛼

𝑓𝑑(𝜙𝑘)
𝑖Ω𝑚(𝑛𝐹(𝐸−

k ) − 𝑛𝐹(𝐸+
k ))

(𝑖Ω𝑚)2 − (2𝜆𝑘)2
v𝑆 ⋅ 𝝐𝛼,𝑞

𝜆𝑘
(𝐴𝛼,𝑞 𝑑−𝑞 − 𝐴𝛼,−𝑞 𝑑𝑞) ,

(5.14)

consistent with the known result that the BS mode does not normally couple linearly

to light. As a consequence, the BS mode only couples to the component of the vector

potential parallel to the supercurrent.

The action is then straightforwardly written in terms of a hybrid inverse Green’s

function

𝑆eff = 1
2𝛽

∑
𝑞

(𝑑−𝑞, 𝐴𝛼,−𝑞)
⎛⎜⎜⎜
⎝

𝐷−1
BS,𝑞 𝑔𝛽,𝑞

𝑔∗
𝛼,𝑞 𝐷−1

𝛼𝛽,𝑞

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝑑𝑞

𝐴𝛽,𝑞

⎞⎟⎟⎟
⎠

, (5.15)
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with sums over repeated indices and with 𝐷−1
BS,𝑞, 𝐷−1

𝛼𝛽,𝑞, and 𝑔𝛼,𝑞 defined implicitly

through Eq. (5.12)–(5.14). A more intuitive description can be obtained by first

making a harmonic approximation to the BS action: continue 𝐷−1
BS to complex

frequency, expand around the saddle point solution ΩBS, then restrict back to

imaginary frequency. In our clean model ΩBS is purely real, so the BS mode is

undamped. We then expand in terms of BS and photon mode operators, 𝑑𝑞 =

(𝑏𝑞 +�̄�−𝑞)/√2𝐾ΩBS and 𝐴𝛼,𝑞 = (𝑎𝛼,𝑞 + ̄𝑎𝛼,−𝑞)/√2𝜔𝑞, where 𝐾 is a constant coming

from the harmonic expansion. We make the standard approximation of dropping the

counter-rotating terms (𝑎𝑎, ̄𝑎 ̄𝑎) – an approximation we verify post-hoc – and perform

a change of basis from photon polarizations to components parallel and perpendicular

to the supercurrent. Inside the coupling and photon terms, we analytically continue

to real frequency 𝑖Ω𝑚 → Ω + 𝑖0, then expand around relevant frequencies. The

imaginary parts exactly vanish, and the action becomes

𝑆eff ≈ 1
𝛽

∑
𝑞

(�̄�𝑞, ̄𝑎∥
𝑞, ̄𝑎⟂

𝑞 ) (−𝑖Ω𝑚�̌� + �̌�eff
q )

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑏𝑞

𝑎∥
𝑞

𝑎⟂
𝑞

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.16)

now written in terms of an effective Hamiltonian2

�̌�eff
𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

ΩBS 𝑔𝑞 0

𝑔𝑞 𝜔𝑞 + Π𝑆
𝑞 0

0 0 𝜔𝑞

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.17)

2The parameters of the Hamiltonian can be obtained via an analytic method under suitable
approximation. A complete derivation of the Hamiltonian was performed by Andrew Allocca. For
details see the supplement of Ref. [138].
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where 𝑞 = |q|, Π𝑆
𝑞 is a self-energy shift in the photon mode polarized parallel to the

supercurrent, coming from a supercurrent-dependent term in Π𝛼𝛽,𝑞, and

𝑔𝑞 = 𝑒𝑣𝑆Δ√ 2 ΩBS
𝐿 𝐾𝜔𝑞

∑
k

𝑓𝑑(𝜙𝑘)
𝜆𝑘

𝑛𝐹(𝐸−
k ) − 𝑛𝐹(𝐸+

k )
Ω2
BS − (2𝜆𝑘)2 . (5.18)

For small q, only one photon mode hybridizes with the BS mode in the Hamiltonian

approximation. This photon mode and the BS mode can be made resonant by

tuning parameters of the system, most straightforwardly the cavity size 𝐿, allowing

them to strongly hybridize.

For numerical calculations we use material parameters motivated by iron-based

superconductors [156–159], where BS modes have been experimentally detected. We

set the Fermi energy 𝜖𝐹 = 100meV, the effective mass 𝑚∗ = 4𝑚𝑒
3, where 𝑚𝑒 is

the electron mass, and critical temperature 𝑇𝑐 = 35 K. We put 1/𝑔𝑑 − 1/𝑔𝑠 = 0.1𝜈,

where 𝜈 = 𝑚∗/2𝜋 is the density of states, and tune the size of the cavity 𝐿 so

that 𝜔0 = 𝜋/𝐿 = 0.96 ΩBS(𝜃𝑆 = 0), putting photons and the BS mode very near

resonance. Finally, we set the phenomenological coupling enhancement to 𝑋 = 10,

although enhancements of 𝑋 = 102 or greater have been predicted in similar cavity

systems [134, 136, 140].

First consider the dependence of coupling strength 𝑔𝑞 on temperature, superfluid

velocity 𝑣𝑆, and supercurrent angle 𝜃𝑆, as shown in Fig. 5.2. The coupling is

mediated by thermally excited quasi-particles and so vanishes for 𝑇 → 0. It also

vanishes for 𝑇 → 𝑇𝑐 since Δ → 0. The result is a unique maximum of 𝑔(𝑇 ) at an

intermediate temperature, 𝑇max ≈ 0.42𝑇𝑐, which we use for all other computations.

Similarly, 𝑔 vanishes for small 𝑣𝑆 — this can be verified by expansion of the Fermi

functions — and also as 𝑣𝑆 approaches a value corresponding to the critical current,
3In the quasi-classical approximation the value of the effective mass cancels everywhere, since

only 𝑣𝑆 ∝ 1/𝑘𝐹 ∝ 1/
√

𝑚∗, 𝐾 ∝ 𝜈 = 𝑚∗/2𝜋, and ∑k ∼ 𝜈 ∫ 𝑑𝜉 depend on it. Therefore, the
choice of effective mass is mostly unimportant.
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Figure 5.2: The hybridization matrix element 𝑔 in the effective Hamiltonian as a
function of temperature, superfluid velocity, and 𝜃𝑆, the angle between the direction
of the supercurrent and the axis defined implicitly by the 𝑑-wave form factor 𝑓𝑑(𝜙𝑘),
all scaled by their respective maxima. (Left) 𝑔(𝑇 ) is maximized for a temperature
𝑇max ≈ 0.42𝑇𝑐. (Center) 𝑔(𝑣𝑆) is sharply peaked for large superfluid velocity around
𝑣𝑆 ≈ 0.96Δ(𝑣𝑆 = 0)/𝑘𝐹. (Note, Δ0 ≡ Δ(𝑣𝑆 = 0).) (Right) 𝑔(𝜃𝑆) is maximal for
𝜃𝑆 = 𝑚𝜋/2, 𝑚 ∈ ℤ, and vanishes when the supercurrent runs along a node of
𝑓𝑑, 𝜃𝑆 = (2𝑚 + 1)𝜋/4. Inset — the orientation of the supercurrent with respect
to the 𝑑-wave form factor. The color of the lobes gives the relative sign of 𝑓𝑑 for
different angles, and the dashed lines are the nodes where 𝑓𝑑 = 0. The plots use
𝑇 = 𝑇max, 𝑣𝑆 = 0.9Δ(𝑣𝑆 = 0)/𝑘𝐹, and 𝜃𝑆 = 0 where applicable, and fixed detuning
𝜔0 = 0.96ΩBS.
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where the superconducting state vanishes. We set 𝑣𝑆 = 0.9Δ(𝑣𝑆 = 0)/𝑘𝐹 in our

calculations, near the value giving the maximum coupling but not too near the

critical value 4. Dependence on the supercurrent angle 𝜃𝑆 comes through the 𝑑-wave

form factor. The coupling is strongest when the supercurrent is along an anti-node

of the form factor – 𝜃𝑆 = 𝑚𝜋/2, 𝑚 ∈ ℤ – and vanishes when the supercurrent is

along a node – 𝜃𝑆 = (2𝑚 + 1)𝜋/4. We use 𝜃𝑆 = 0 for all other calculations.

To obtain the polariton modes we both directly solve for the poles of the hy-

bridized Green’s function (5.15) and calculate the eigenvalues of the effective Hamil-

tonian (5.17), which can be diagonalized analytically. The results of both approaches

are in excellent agreement; the dispersions are plotted for both methods in Fig. 5.1.

One of the photon modes can be made to strongly hybridize with the BS mode,

while the other “dark” photon remains distinct. This is made especially clear by

examining the BS component of the eigenvectors of the effective Hamiltonian, as

shown in Fig. 5.3. Because the strength of the hybridization is controlled exclusively

by 𝑔, any of the parameters on which it depends, namely 𝑇 , 𝑣𝑆, or 𝜃𝑆, can be used

to directly control the strength of the effect.

5.3 Higgs Polaritons

We now investigate coupling to a mode which is a little further from the analogous

exciton-polariton case: the Higgs or amplitude mode. As with the Bardasis-Schrieffer

mode there is no linear coupling between the Higgs mode and light in the absence

of a supercurrent. However, as shown by Moor, Volkov, and Efetov [153], in the

presence of a supercurrent and disorder, the linear coupling is finite.
4The value Δ(𝑣𝑆 = 0)/𝑘𝐹 yields an approximate critical current consistent with values measured

in iron-based systems, though in type II materials the current is limited by vortex pinning rather
than condensate depletion [160, 161].
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Figure 5.3: The Bardasis-Schrieffer component of the eigenvectors of the effective
Hamiltonian, Eq. (5.17). The upper (solid) and lower (dot-dashed) polaritons have
significant photon and Bardasis-Schrieffer character, indicating strong hybridization
between the systems. One can also clearly see the “dark” photon mode (dashed)
which does not hybridize with the superconductor’s collective mode.

Our goal will be to obtain a coupled bosonic action

𝑆 = 1
2

∫
𝜔,q

(ℎ⃗(−𝑞) A⃗(−𝑞)) ̌𝐺−1(𝜔,q)
⎛⎜⎜⎜
⎝

ℎ⃗(𝑞)

A⃗(𝑞)

⎞⎟⎟⎟
⎠

(5.19)

describing the coupled evolution of the Higgs mode and cavity photons. From this we

will extract the spectral function −2𝜋𝑖𝒜 = 𝐺𝑅(𝜔,q) − 𝐺𝐴(𝜔,q) shown in Fig. 5.4.

To this end we will employ the following procedure. We consider a quasi-2D

disordered superconductor within a planar photonic cavity. We expand the action

of the coupled system about the saddle-point solution corresponding to the BCS

ground state, including Gaussian amplitude fluctuations (the Higgs mode) and the

hydrodynamic diffusive modes of the electron fluid (cooperons and diffusons). Upon

integrating out the electronic modes, a linear coupling is generated between the

Higgs and the photons, as well as self-energy terms for both bosonic fields, leading

to Eq. (5.19).
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Figure 5.4: (Color Online) The Higgs-polariton spectral function as a function mo-
mentum 𝑞 and frequency 𝜔. All quantities are given in units of the superconducting
gap Δ. The uncoupled Higgs and photon dispersions are plotted as dotted lines.
Gray dashed lines indicate the local maxima of the spectral function. A well defined
lower polariton exists below the quasi-particle continuum as well as a broadened
upper polariton above 2Δ. Of note is that the lower polariton mode is clearly
distinct from the original photon branch, indicating the hybridized character of the
excitation.
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5.3.1 Cavity Photons

The photon sector is described by the Keldysh action

𝑆cav[𝑎, ̄𝑎] = ∫
𝜔,q

̄𝑎𝜔,q,𝛼
⎛⎜⎜⎜
⎝

0 𝜔 − 𝑖𝜅 − 𝜔q

𝜔 + 𝑖𝜅 − 𝜔q 2𝑖𝜅𝑁(𝜔)

⎞⎟⎟⎟
⎠𝐾

𝑎𝜔,q,𝛼 (5.20)

with equilibrium distribution 𝑁(𝜔) = coth(𝜔/2𝑇). We consider a dispersion 𝜔q =

√𝜔2
0 + 𝑐2𝑞2, due to quantization resulting from confinement perpendicular to the

plane. The subscript 𝐾 denotes that the matrix is in Keldysh space. The frequency

𝜔0 = 𝜋𝑐/𝐿, where 𝐿 is the size of the cavity, is chosen to be near the bare Higgs

frequency ΩHiggs ∼ 2Δ. The cavity confinement naturally leads to a quantization of

the photon field into discrete modes and we consider just the lowest of these, with

all higher modes at an energy far from resonance with the Higgs frequency. The

decay of photons in the cavity is described by the constant 𝜅.

The action for the photon mode operators is supplemented by the polarization

vectors for the corresponding modes: Eq. (5.6). The vector potential is expressed in

terms of mode operators 𝑎 as

A𝜔,q = √2𝜋𝑐2

𝜔q
(𝝐𝛼(q)𝑎𝜔,q,𝛼 + 𝝐∗

𝛼(−q) ̄𝑎−𝜔,−q,𝛼) (5.21)

where 𝜖𝑖(q) are the two polarization vectors of the photon mode and we take the

photon field to be in the radiation gauge ∇ ⋅A = 0.
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5.3.2 Superconductor

The superconductor is described by a Keldysh Non-Linear σ Model (KNLσM) [18,

52], as discussed in Section 1.4.1 and Chapter 4,

𝑖𝑆NLσM = −𝑖 𝜈
4𝜆
Tr Δ̌†( ̂𝛾𝑞 ⊗ ̂𝜏0)Δ̌

− 𝜋𝜈
8
Tr [𝐷(𝜕�̌�)

2
+ 4𝑖 (𝑖(�̂�0 ⊗ ̂𝜏3)𝜕𝑡 + 𝑖𝛾�̌�bath + Δ̌) �̌�] , (5.22)

where 𝐷, 𝜈 are respectively the diffusion constant and density of states of the

fermionic normal state, 𝜆 is the BCS interaction strength, and 𝛾 is a relaxation

rate describing coupling to a bath.

All objects with a check (�̌�) are 4 × 4 matrices in the product of Nambu and

Keldysh spaces, with ̂𝜏𝑖 and �̂�𝑖 representing Pauli matrices in the Nambu and

Keldysh spaces respectively. Tr is used to represent a trace over all matrix and

space-time indices, i.e. Tr(⋯) = ∫ 𝑑𝑡𝑑𝑡′𝑑r tr(⋯) and ̌𝐴 ∘ �̌� indicates a matrix

multiplication over all relevant indices (including convolutions over time indices).

𝜕�̌� = ∇�̌� − 𝑖(𝑒/𝑐)[Ǎ, �̌�] denotes a matrix covariant derivative, the means by

which the photonic sector couples to the electronic degrees of freedom. The bath is

modeled in the relaxation approximation by

�̌�bath(𝜖) =
⎛⎜⎜⎜
⎝

1 2𝐹(𝜖)

0 −1

⎞⎟⎟⎟
⎠𝐾

⊗ ̂𝜏0. (5.23)

The degrees of freedom of the model are the quasi-classical Green’s function

�̌�𝑡𝑡′(𝐫) – which is subject to the non-linear constraint �̌�∘�̌� = ̌1, the vector potential

�̌� = ∑𝛼 𝐀𝛼 ̂𝛾𝛼 ⊗ ̂𝜏3, and the BCS pair field Δ̌ = ∑𝛼 (Δ𝛼 ̂𝛾𝛼 ⊗ ̂𝜏+ − Δ∗
𝛼 ̂𝛾𝛼 ⊗ ̂𝜏−),

where 𝛾cl = �̂�0, 𝛾q = �̂�1 are the Keldysh space vertices for the classical and quantum

fields.
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5.3.3 Saddle-point

The saddle-point equations for Eq. (5.22) are the Usadel equation[16]

𝜕 (𝐷�̌�sp𝜕�̌�sp) + 𝑖{𝑖 ̂𝜏3𝜕𝑡, �̌�sp} + 𝑖[Δ̌ + 𝑖𝛾�̌�bath, �̌�sp] = 0 (5.24)

and BCS gap equation

1
𝜆

= 1
4Δ

∫
∞

−∞
𝑑𝜖 tr[ ̂𝜏−�̂�𝐾

sp(𝜖)] (5.25)

which together determine the mean field state. At the saddle-point level, the quasi-

classical Greens’ function has the structure

�̌�sp =
⎛⎜⎜⎜
⎝

�̂�𝑅
sp �̂�𝐾

sp

0 �̂�𝐴
sp

⎞⎟⎟⎟
⎠

, (5.26)

with the relation 𝑄𝐴
sp = − ̂𝜏3[𝑄𝑅

sp]† ̂𝜏3 due to causality and in equilibrium �̂�𝐾
sp(𝜖) =

𝐹eq(𝜖) (�̂�𝑅
sp(𝜖) − �̂�𝐴

sp(𝜖)) where 𝐹eq(𝜖) = tanh (𝜖/2𝑇) – a manifestation of the fluctuation-

dissipation relation.

In what follows we define the global 𝑈(1) phase of the order parameter such that

the mean-field value is real. All electromagnetic quantities use Gaussian units.

It is well established that the Higgs mode of a superconductor does not couple

linearly to light due to the absence of electromagnetic moments [99]. One may

readily verify that for a uniform BCS state there is no linear coupling of the photons

to diffusion modes in Eq. (5.22), and therefore no linear coupling between the Higgs

mode and photons is possible. However, as was pointed out recently [153], in the

presence of a uniform supercurrent5 there is an allowed coupling at linear order. The

supercurrent can be included into the KNLσM by the addition of a constant vector
5Disorder is also required. One can verify that in the clean limit the coupling between Higgs

mode and photon is still 0 in the limit of q → 0.



Chapter 5 105

potential term A(r, 𝑡) → A(r, 𝑡) − (𝑐/𝑒)p𝑆 where p𝑆 is the associated superfluid

momentum [19].

We now derive the action of Gaussian fluctuations about the BCS saddle point,

describing amplitude mode fluctuations, the low-energy excitations of a disordered

superconductor (diffusons and cooperons), and cavity photons. We first rotate our

global phase so that the bulk order parameter is real. Due to the causality structure

it is sufficient to solve for the retarded component of the quasi-classical Green’s

function

�̂�𝑅
sp(𝜖) = cosh(𝜃𝜖) ̂𝜏3 + 𝑖 sinh(𝜃𝜖) ̂𝜏2, (5.27)

where 𝜃𝜖 is a complex angle parameterizing the solution of the retarded Usadel

equation

Δ cosh 𝜃𝜖 − (𝜖 + 𝑖𝛾) sinh 𝜃𝜖 = 𝑖Γ
2
sinh 2𝜃𝜖, (5.28)

and Γ = 2𝐷|p𝑠|2 is the depairing energy associated with the supercurrent. Conju-

gating Eq. (5.28) and taking 𝜖 → −𝜖 establishes the useful relation −𝜃∗
−𝜖 = 𝜃𝜖. In

the absence of supercurrent the Usadel equation is solved by

cosh 𝜃0
𝜖 = 𝜖

𝜁𝑅(𝜖)
, sinh 𝜃0

𝜖 = Δ
𝜁𝑅(𝜖)

, (5.29)

where we have defined 𝜁𝑅/𝐴(𝜖) = ± sgn 𝜖√(𝜖 ± 𝑖𝛾)2 − Δ2.6 We provide an exact

solution of Eq. (5.28) in the presence of finite supercurrent in Appendix E.1.

The Usadel equation is supplemented by the BCS gap equation Eq. (5.25) to

form a closed, self-consistent system of equations for the saddle-point.
6This differs from the definition given in Ref. [153] due a choice of branch cuts. We take the

branch cut of the square root to go between −Δ and Δ.
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5.3.4 Gaussian fluctuations

Now we parameterize fluctuations of �̌� about the saddle point solution as in

Section 1.4.1

�̌� = �̌�−1 ∘ 𝑒−�̌�/2�̂�3 ̂𝜏3 ∘ 𝑒�̌�/2 ∘ �̌�. (5.30)

similar to Refs. [19, 52], where in frequency space

�̌�(𝜖) =
⎛⎜⎜⎜
⎝

𝑒 ̂𝜏1𝜃𝜖/2 0

0 𝑒 ̂𝜏1𝜃∗
𝜖/2

⎞⎟⎟⎟
⎠𝐾

⎛⎜⎜⎜
⎝

̂𝜏0 𝐹eq(𝜖) ̂𝜏0

0 − ̂𝜏0

⎞⎟⎟⎟
⎠𝐾

. (5.31)

In this parameterization the first matrix describes the spectral structure of the

saddle point, while the second enforces the fluctuation-dissipation structure on the

matrix �̌�. One can verify that for �̌� = 0, Eq. (5.31) reproduces Eq. (5.27).

The matrix �̌� anticommutes with �̂�3 ⊗ ̂𝜏3 and describes fluctuations on the soft

manifold �̌� ∘ �̌� = ̌1. There are in total 8 independent components of �̌� but only 4

of these couple to the amplitude mode or photon. We therefore write the matrix �̌�

�̌�𝜖𝜖′(q) = 𝑖
⎛⎜⎜⎜
⎝

𝑐𝑅 ̂𝜏1 𝑑cl

𝑑q 𝑐𝐴 ̂𝜏1

⎞⎟⎟⎟
⎠𝐾

(5.32)

in terms of the cooperon 𝑐𝑅/𝐴 and diffuson 𝑑𝛼 fields.

The Higgs mode is introduced by the substitution Δ̌ → (Δ0 ̂𝜏0 + ℎ𝛼 ̂𝛾𝛼) ⊗ 𝑖 ̂𝜏2,

with Δ0 a real constant. Having made these substitutions, we again expand the

action to second order in the fields 𝑐, 𝑑, ℎ, and A. Only the second order terms are

of significance as the 0-th order terms do not include the fluctuation fields and the

first order terms vanish due to the saddle point equation and gauge condition. We
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are left with

𝑖𝑆 = 𝜋𝜈 ∫
𝜖,𝜖′,q

(1
4

[ ⃗𝑑𝜖′𝜖�̂�−1
𝜖𝜖′

⃗𝑑𝜖𝜖′ + ⃗𝑐𝜖′𝜖
̂𝒞−1
𝜖𝜖′ ⃗𝑐𝜖𝜖′] + [ ⃗𝑐𝜖′𝜖 ̂𝑠𝑐

𝜖𝜖′ + ⃗𝑑𝜖′𝜖�̂�1 ̂𝑠𝑑
𝜖𝜖′] ℎ⃗(𝜖 − 𝜖′)

+𝑒
𝑐
𝐷 [ ⃗𝑐𝜖′𝜖 ̂𝑟𝑐

𝜖𝜖′ + ⃗𝑑𝜖′𝜖�̂�1 ̂𝑟𝑑
𝜖𝜖′]p𝑠 ⋅ A⃗(𝜖 − 𝜖′)) (5.33)

where the dependence on the momentum q has been suppressed, ⃗𝑐 = (𝑐𝑅, 𝑐𝐴), for

the fields 𝑑, ℎ, and A we use the notation �⃗� = (𝑋cl, 𝑋q), and

�̂�−1
𝜖𝜖′ = 𝒟−1

𝜖′𝜖�̂�+ + 𝒟−1
𝜖𝜖′ �̂�−, ̂𝒞−1

𝜖𝜖′ = diag (𝒞𝑅
𝜖𝜖′ , 𝒞𝐴

𝜖𝜖′)
−1

(5.34)

The fluctuation propagators can be expressed in terms of the function 𝜃𝜖,

𝒟𝜖𝜖′ = (−𝐷𝑞2 + ℰ𝑅(𝜖) + ℰ𝐴(𝜖′)

+Γ [1 − cosh (𝜃𝜖 − 𝜃∗
𝜖′)] cosh (𝜃𝜖 + 𝜃∗

𝜖′))
−1

𝒞(𝑅/𝐴)
𝜖𝜖′ = (−𝐷𝑞2 + ℰ(𝑅/𝐴)(𝜖) + ℰ(𝑅/𝐴)(𝜖′)

−Γ [1 + cosh (𝜃𝜖 − 𝜃𝜖′)] cosh (𝜃𝜖 + 𝜃𝜖′))−1

ℰ𝑅(𝜖) =(ℰ𝐴)∗ = 𝑖𝜖 cosh 𝜃𝜖 − 𝑖Δ0 sinh 𝜃𝜖.

(5.35)

The latter two terms of Eq. (5.33) constitute a linear coupling between diffu-

sons/cooperons and both the photons and Higgs mode.

5.3.5 Hybrid Bosonic Action

Upon integrating out the diffusion modes 𝑐 and 𝑑 this generates a linear coupling

between the Higgs mode and photon field as well as additional terms in the action

for each individually

𝑆 = 1
2

∫
𝜔,q

(ℎ⃗(−𝑞) A⃗(−𝑞)) ̌𝐺−1(𝜔,q)
⎛⎜⎜⎜
⎝

ℎ⃗(𝑞)

A⃗(𝑞)

⎞⎟⎟⎟
⎠

(5.36)
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with7

̌𝐺−1(𝜔,q) =
⎛⎜⎜⎜
⎝

−2𝜈
𝜆 �̂�1 − Π̂ℎ(𝜔) ĝ(𝜔)

ĝ(−𝜔)𝑇 �̂�−1(𝜔,q) − Π̂𝐴(𝜔)

⎞⎟⎟⎟
⎠

. (5.37)

𝐷(𝜔,q) is the correlators of the vector potential and can be obtained from the

action for the photon mode operators Eq. (5.20) and the relation Eq. (5.21). Equa-

tion (5.37), along with the explicit expressions for its elements, Eqs. (5.40), (5.42)

and (5.43), constitute one of the main results of this work.

The generated terms 𝑔 and Π are then expressed in terms of the couplings 𝑠 and

𝑟 and the diffuson and cooperon propagators 𝒟 and 𝒞(𝑅/𝐴). Explicitly, defining

ℱ[𝜔, ̂𝑥, ̂𝑦] = −𝑖𝜈 ∫ 𝑑𝜖 ([ ̂𝑥𝑐
𝜖−𝜖+

]
𝑇 ̂𝒞𝜖+𝜖−

̂𝑦𝑐
𝜖+𝜖−

+ [ ̂𝑥𝑑
𝜖−𝜖+

]
𝑇

�̂�1�̂�𝜖+𝜖−
�̂�1 ̂𝑦𝑑

𝜖+𝜖−
) , (5.38)

we have
Π̂ℎ(𝜔) = ̂ℱ(𝜔, ̂𝑠, ̂𝑠)

Π̂𝐴
𝑖𝑗(𝜔) = 𝑒2

𝑐2 𝐷2𝑝𝑖
𝑆𝑝𝑗

𝑆
̂ℱ(𝜔, ̂𝑟, ̂𝑟) + Π̂MB;𝑖𝑗

ĝ(𝜔) = 𝑒
𝑐
𝐷p𝑆

̂ℱ(𝜔, ̂𝑠, ̂𝑟),

(5.39)

where ΠMB is the photon polarization operator arising from the saddle point – the

Mattis-Bardeen[162] result – and 𝜖± = 𝜖 ± 𝜔/2. We will be particularly interested in

the retarded Green’s function which is the 𝑞 −𝑐𝑙 component of Eq. (5.37) in Keldysh

space and as such below we give the explicit forms for the elements of the retarded

Green’s function.

In evaluating these terms we set q → 0 in the fermionic bubbles since any finite

q terms are an extra factor of 𝑣𝐹/𝑐 smaller. In the absence of a supercurrent, the

action for the Higgs mode gives the well known result ReΩHiggs = 2Δ0 + 𝑂(𝛾2),

with finite imaginary part arising only from quasi-particle damping. Nonetheless,

the Higgs mode is still damped due to branch cuts in the complex plane. It is this
7One can use the gap equation to rewrite the the Higgs sector of the Green’s function in a more

useful form as a single integral over 𝜖.
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analytic structure that gives rise to the asymptotic decay ℎ(𝑡 → ∞) ∝ cos(2Δ𝑡)/
√

𝑡

derived by Volkov and Kogan [163].

While the calculation for the elements of the Green’s function can performed for

arbitrary supercurrent (c.f. Appendices E.1 and E.3) the results can be understood

by considering the behavior at small supercurrent. Working to lowest order in p𝑠

we can drop the supercurrent dependence everywhere but the prefactor to ̂g(𝜔) in

Eq. (5.39). Using the gap equation the Higgs component of the retarded propagator

takes the form

[𝐺𝑅
ℎ (𝜔)]−1 = 𝜈 ∫

∞

0
𝑑𝜖 (

2Δ2
0 − 𝜔𝑧+

𝜁𝑅(𝜖+)𝜁𝑅(𝜖−) (𝜁𝑅(𝜖+) + 𝜁𝑅(𝜖−))
𝐹(𝜖−)

− 2Δ2
0 + 𝜔𝑧∗

−
𝜁𝐴(𝜖+)𝜁𝐴(𝜖−) (𝜁𝐴(𝜖+) + 𝜁𝐴(𝜖−))

𝐹(𝜖+)

+
𝑧+𝑧∗

− + Δ2
0 + 𝜁𝑅(𝜖+)𝜁𝐴(𝜖−)

𝜁𝑅(𝜖+)𝜁𝐴(𝜖−) (𝜁𝑅(𝜖+) + 𝜁𝐴(𝜖−))
(𝐹(𝜖+) − 𝐹(𝜖−))) . (5.40)

In the limit of infinitesimal damping this is

[𝐺𝑅
ℎ (𝜔)]−1 = 2𝜈 ∫

∞

Δ0

𝑑𝜖 𝐹(𝜖)
𝜁𝑅(𝜖)

𝜔2 − 4Δ2
0

(𝜔 + 𝑖0)2 − 4𝜖2 . (5.41)

Substituting in the expressions for 𝑠 and 𝑟 allows us to write

g𝑅(𝜔) = 4𝑒
𝑐
𝐷p𝑆𝑖Δ0𝜈 ∫

∞

0
𝑑𝜖

× (𝑧
𝜁𝑅(𝜖+)𝑧− + 𝜁𝑅(𝜖−)𝑧+

𝜁2
𝑅(𝜖+)𝜁2

𝑅(𝜖−) (𝜁𝑅(𝜖+) + 𝜁𝑅(𝜖−))
𝐹(𝜖−)

− 𝑧∗ 𝜁𝐴(𝜖+)𝑧∗
− + 𝜁𝐴(𝜖−)𝑧∗

+
𝜁2

𝐴(𝜖+)𝜁2
𝐴(𝜖−) (𝜁𝐴(𝜖+) + 𝜁𝐴(𝜖−))

𝐹(𝜖+)

+𝜖
𝜁𝑅(𝜖+)𝑧∗

− + 𝜁𝐴(𝜖−)𝑧+
𝜁2

𝑅(𝜖+)𝜁2
𝐴(𝜖−) (𝜁𝑅(𝜖+) + 𝜁𝐴(𝜖−))

[𝐹(𝜖+) − 𝐹(𝜖−)]) , (5.42)

where 𝜖± = 𝜖 ± 𝜔/2, 𝑧± = 𝜖± + 𝑖𝛾 in agreement with Ref. [153], and 𝜁𝑅/𝐴 is as in
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Eq. (5.29).8 Additionally, we can see that Higgs mode couples only to the component

A along p𝑠. As discussed in Section 5.3, for small enough q the photon polarizations,

Eq. (5.6), form an orthonormal basis in the plane and we can rotate into a frame

where one photon mode is polarized along p𝑠 and one is polarized perpendicular.

We may then focus our attention on the former for the consideration of polariton

formation as this is the only component for which Eq. (5.42) is non-zero in this basis.

Finally, the contribution to the photonic self-energy is exactly the current-current

correlators responsible for the Mattis-Bardeen optical conductivity [162]. Explicit

calculation gives

Π𝑅
MB = 𝑖𝐷𝑒2

𝑐2 𝜈 ∫
∞

0
𝑑𝜖 (

𝑧+𝑧∗
− + Δ2

0
𝜁𝑅(𝜖+)𝜁𝐴(𝜖−)

[𝐹(𝜖+) − 𝐹(𝜖−)]

+
𝑧+𝑧− + Δ2

0
𝜁𝑅(𝜖+)𝜁𝑅(𝜖−)

𝐹(𝜖−) −
𝑧∗

+𝑧∗
− + Δ2

0
𝜁𝐴(𝜖+)𝜁𝐴(𝜖−)

𝐹(𝜖+)) . (5.43)

We are then left with a 2 × 2 bosonic retarded Green’s function in Higgs-photon

space. From this we can obtain the spectral function −2𝜋𝑖𝒜 = 𝐺𝑅(𝜔,q)−𝐺†
𝑅(𝜔,q).

The dispersions of the eigenmodes can be observed by considering tr𝒜(𝜔, |q|), shown

in Fig. 5.4. For our numerical calculations, we used 𝑇𝑐 = 9.5K, 𝜈 = 1.6𝑚𝑒/(2𝜋),

and 𝐷 = 9.4 cm2/s, 𝑇 = 𝑇𝑐/2. The depairing energy Γ was taken to be 0.1Δ. Cavity

parameters were 𝜔0 = 1.5Δ and 𝜅 = 0.1Δ. As expected, the upper polariton branch

is in the continuum and over-damped. The lower polariton branch, however, is below

the two particle-gap, and well defined. This can be clearly seen by looking at cuts

of the spectral function for fixed |q| as shown in Fig. 5.5.

In contrast to the BS-polaritons, the analytic structure of [𝐺𝑅
ℎ ]−1 precludes a

Hamiltonian description of the coupled bosonic sector. This is due to a branch point
8The notation 𝑧∗ = 𝜖 − 𝑖𝛾 is chosen for compactness, but in the case where one wants to

analytically continue to complex frequency 𝜖 → 𝑤 ∈ ℂ, ‘𝑧∗’ should be analytically continued to
𝑤 − 𝑖𝛾 not 𝑤∗ − 𝑖𝛾.
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Figure 5.5: (Color online) Cut of the polariton spectral function 𝒜 at 𝑞 = 0 (dashed
line) and 𝑞 = Δ (solid line). The upper polariton is a broad feature as a function of
frequency and is over-damped, but the lower polariton lies below the particle-hole
continuum and appears as a sharp peak.

at 𝜔 ≃ 2Δ0 − 2𝑖𝛾 which forbids the usual Taylor expansion of the action about the

mass-shell[106, 163]. Indeed, the momentum and frequency dependence of the action

cannot be separated in the way required to construct the usual mode operators.

5.4 Discussion and Conclusion

In this chapter we have shown that driving a supercurrent through a superconduc-

tor in a planar microcavity leads to hybridization of cavity photons with collective

modes of the superconductor i.e. the Bardasis-Schrieffer and Higgs modes. Which

modes will hybridize is a function of the disorder strength, strength of instabilities,

and resonant frequency of the gap.

In both case two polariton bands form which have significantly mixed character.

This provides a means for observation and control of the Bardasis-Schrieffer and

Higgs modes, and, as for exciton-polaritons, these dispersions could in principle

be measured with 𝑘-space imaging of the photonic component of the polariton
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states [46]. In the case of the BS-polariton, the nature of the construction allows

for tuning of the hybridization strength, and therefore the polariton states, in situ

through the externally applied supercurrent.

The condensation observed in exciton-polariton systems [45, 47, 143] suggests

proper driving of these superconductor-polariton modes could lead to their conden-

sation. In the BS case this would correspond to the formation of a non-equilibrium

𝑠 ± 𝑖𝑑 superconducting state; finite polariton density with coherence imposed exter-

nally, e.g. from a coherent drive, would produce a non-equilibrium state with 𝑠 ± 𝑖𝑑

character, which one would expect to be distinct in nature from a thermodynamic

𝑠±𝑖𝑑 state. This is not, in principle, an unreasonable possibility. Polariton-polariton

interactions, which are needed for thermalization of a driven population, naturally

arise from the quartic terms in the action describing the superconducting modes

themselves. For the BS case the polariton lifetime is set by the cavity photon lifetime

— the BS mode is in-gap and therefore undamped in this clean model.

In the Higgs case, if the bottom of the photon dispersion is detuned below the

Higgs energy, then the energy of lower polariton branch is seen to be pushed below

the quasi-particle continuum and becomes under-damped. The question of what

this state would be is complicated by the need to maintain self-consistency.

In either case it is in principle possible for polaritons to thermalize before de-

caying, allowing for a transient quasi-thermal ensemble. More work must be done,

however, before definitive statements can be made about a condensed state, espe-

cially regarding spontaneous coherence of the condensate.



Chapter 6: Conclusion

In this dissertation we have been concerned with two classes of behavior in quasi-

two dimensional superconductors: photo-induced enhancement and hybridization of

collective modes.

In Chapter 2 we considered a theoretical model of the photo-induced enhancement

of superconductivity seen in cuprates via pump-probe techniques. Therein we

established that enhancement of superconductivity can be obtained due to a melting

of competing charge order driven by an increase in interlayer coupling secondary

to the pump pulse. Importantly, the existence of this effect is dependent on phase

pinning of the charge order.

Chapter 3 considered a similar system, focusing on the behavior of collective

modes within the quasi-two dimensional copper oxide planes. Motivated by time-

domain reflectivity experiments we considered the interplay between amplitude (or

Higgs) modes of competing superconductivity and charge order. We found that in

general, the hybridization process leads to an in-gap, under-damped mode, with the

characteristic frequency evolving as a function of temperature and softening as the

boundaries of the coexistent phase.

In Chapter 4, we considered a different mechanism of photo-induced enhancement

of superconductivity. There we proposed a model of a thin-film superconductor

coupled to cavity photons and investigated the effect of the photon distribution on

superconductivity. Specifically, we derived a general expression for the enhancement

or suppression of superconductivity due to coupling to photons with a particular

distribution and cavity spectral function. Using a proof-of-principle two-temperature

model we demonstrated that depending on the nature of the cavity both a hotter

and colder photon reservoir are capable of enhancing superconductivity in the thin
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film.

In Chapter 5 we turned our attention back to hybridization of collective modes,

this time in a photonic cavity. We showed two particular examples of polariton

formation from the hybridization of a superconductor’s collective mode with cav-

ity photons. Additionaly, we characterized the parametric dependence of the hy-

bridization strength. Finally, we discussed the possible implications of achieving

condensation of the polariton modes.



Appendix A: Microscopic evaluation of the coefficients in

Ginzburg-Landau theory

A.1 Low energy model away from 𝑘𝑧 = 0

Q

Figure A.1: Different choices of hot regions for charge integrals. The gray dashed
lines denotes the unmoving hot regions. The black dashed lines represent the moving
hot regions, where one must be careful to avoid double counting. Finally the gray-
filled areas represent the truncated hot regions.

As discussed in Section 2.4 there are subtleties associated with defining the

hotspot model for stacked planes with inter-plane hopping. Specifically, one has

to define the integrals involving charge order such that the separation between

paired particles remains constant with 𝑘𝑧, despite the fact that the Fermi surface

changes shape. We considered three different methods of handling this issue. Each
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is depicted in Fig. A.1. In all cases the coefficients Π𝑆𝐶 and 𝑢𝑆𝐶 are unchanged, so

we only need to decide how to implement the other three: Π𝐵𝐷𝑊, 𝑢𝐵𝐷𝑊 and 𝑤.

0 50

tz  (meV)

Π
C
D
W

Unmoving
Moving
Truncated

Figure A.2: Quadratic susceptibilities as a function of c-axis hopping for different
choices of integration region in integrals involving charge order. The qualitative
behavior is the same for all three schemes.

The first is to define two different hot regions: one remains bound to the Fermi

surface and is associated with superconductivity, the other corresponds to the 𝑘𝑧 = 0

hot regions for all 𝑘𝑧 and is associated with charge order. All integrals involving

charge order are done over the unmoving hotspots. We label this procedure the

unmoving approximation.

Another approach is to perform the charge order integrations over the same

hot regions as the superconducting terms, but enforce that pairing occur between

particles separated by the fixed ordering vector �⃗�. We label this the moving approx-

imation.

A final approach, and the one we used in this work, is to take a similar tact as the

moving approximation, but to further restrict the integration such that both of the

paired particles lie in a hot region. We will call this the truncated approximation. If

we are committed to the notion that only fermions near the hotspots are important,
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this seems the most natural of the approximations, as we are then only counting the

fermions that live within the true hot regions. The coefficients Π𝐵𝐷𝑊, 𝑢𝐵𝐷𝑊, and

𝑤 are shown for a range of 𝑡𝑧 in Fig. A.2. As can be seen, while the results differ

numerically, the qualitative behavior is the same. Since the hotspot model is itself

a qualitative model, we chose to adopt the truncated approximation as it seemed

the most in line with the spirit of the model.

While these issues make the 3D model slightly more complicated, the qualitative

behavior of the system appears to be fairly robust to their method of resolution.

This suggests that the extended model, like its simpler progenitor, can be used as a

tool to uncover general physical mechanisms underlying the complicated behavior

of various lattice models.

A.2 Microscopic expressions for Landau coefficients

As discussed in Section 2.5, the Landau theory for competing orders in this

model takes the form

ℱ𝑂[𝜃] = 𝛼Δ|Δ|2 + 𝛽Δ|Δ|4 + 𝛼𝜙,𝑂[𝜃]|𝜙|2 + 𝛽𝜙,𝑂[𝜃]|𝜙|4 + 𝛾𝑂[𝜃]|𝜙|2|Δ|2, (A.1)

The quadratic Landau coefficients are simply related to the susceptibilities in

the corresponding channels

𝛼Δ = 1
𝑔Δ

− ΠΔ, 𝛼𝜙 = 1
𝑔𝜙

− Π𝜙 (A.2)

The superconducting terms are simplest, with

ΠΔ = ∑
k

𝑓1(k)2 ∑
±

tanh 𝜖k,±
2𝑇

2𝜖k,±
(A.3)
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and

𝛽Δ = ∑
k

𝑓1(k)2 ∑
±

1
2𝜖k,±

[
tanh 𝜖k,±

2𝑇
2𝜖k,±

+ 𝑛′
𝑓(𝜖k,±)] , (A.4)

where 𝜖k,± = 𝜉k ± 𝑡k are the eigenvalues of the free Hamiltonian.

As mentioned above the terms involving 𝜙 can be broken into coefficients of

cos𝑛 𝜃. Beginning with the dFF-DW susceptibility

Π(𝑛)
𝜙 = ∑

k
𝑓1(k)2 ∑

𝜆𝜆′

(−1)𝑛(𝜆−𝜆′)Π(𝜖k,𝜆, 𝜖k,𝜆′) (A.5)

where

Π(𝜖1, 𝜖2) =
𝑛𝑓(𝜖2) − 𝑛𝑓(𝜖1)

𝜖1 − 𝜖2
. (A.6)

The quartic dFF-DW terms are

𝛽(1)
𝜙 = ∑

k
∑
𝜆𝜆′

(−1)𝜆−𝜆′
[1

2
𝑓1(k)4𝑀𝛽,1(𝜖𝜆(k+Q2), 𝜖𝜆′(k−Q2))

+𝑓1(k+Q)2𝑓1(k−Q)2𝑀𝛽,2(𝜖𝜆(k), 𝜖𝜆′(k−Q), 𝜖𝜆′(k+Q))] (A.7)

and

𝛽(0,2)
𝜙 = ∑

k

⎧{
⎨{⎩

𝑓1(k)4 [1
4

∑
𝜆𝜆′

𝑀𝛽,1(𝜖𝜆(k+Q2), 𝜖𝜆′(k−Q2))

∓𝑀𝛽,3({𝜖𝜆(k+ 𝜁Q)}𝜆,𝜁) ± ∑
𝜆

𝑀𝛽,2(𝜖𝜆(k−Q/2), 𝜖𝜆′(k+Q/2), 𝜖−𝜆(k+Q/2))]

+𝑓1(k+Q)2𝑓1(k−Q)2 ⎡⎢
⎣

1
2

∑
𝜆1,𝜆2,𝜆3

(±1)𝜆2−𝜆3𝑀𝛽,2(𝜖𝜆1
(k), 𝜖𝜆2

(k−Q), 𝜖𝜆3
(k+Q))

∓ ∑
𝜆𝜆′

(−1)𝜆−𝜆′
𝑀𝛽,3({𝜖+(k), 𝜖−(k), 𝜖𝜆(k+Q), 𝜖𝜆′(k−Q)})]

⎫}
⎬}⎭

, (A.8)
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where we have defined

𝑀𝛽,1(𝑥, 𝑦) = 1
(𝑥 − 𝑦)2 (

tanh 𝑥
2𝑇 − tanh 𝑦

2𝑇
𝑥 − 𝑦

+ 𝑛′
𝑓(𝑥) + 𝑛′

𝑓(𝑦))

𝑀𝛽,2(𝑥, 𝑦, 𝑧) = 1
𝑧 − 𝑦

(
𝑛𝑓(𝑧)

(𝑥 − 𝑧)2 −
𝑛𝑓(𝑦)

(𝑥 − 𝑦)2 )

+ 1
(𝑥 − 𝑧)(𝑥 − 𝑦)

[𝑛′
𝑓(𝑥) − 𝑛𝑓(𝑥) ( 1

𝑥 − 𝑧
+ 1

𝑥 − 𝑦
)]

𝑀𝛽,3({𝑥𝑖}) = ∑
𝑖

∏
𝑗≠𝑖

𝑛𝑓(𝑥𝑖)
𝑥𝑖 − 𝑥𝑗

.

(A.9)

Finally for the competition term

𝛾(𝑛) = ∑
k

𝑓1(k)2𝑓1(k+) ∑
𝜆𝜆′

× (−1)𝑛(𝜆−𝜆′) [𝑓1(k+)𝑀𝛾,2(𝜖𝜆(k+), 𝜖𝜆(k−))

−𝑓1(k−)𝑀𝛾,1(𝜖𝜆(k+), 𝜖𝜆(k−))] (A.10)

where k± = k±Q/2 and we have defined

𝑀𝛾,1(𝑥, 𝑦) = 1
(𝑥)2 − (𝑦)2 (

tanh 𝑦
2𝑇

2𝑦
−
tanh 𝑥

2𝑇
2𝑥

)

𝑀𝛾,2(𝑥, 𝑦) = 1
2𝑥

[
𝑛′

𝑓(𝑥)
𝑥 − 𝑦

−
tanh( 𝑥

2𝑇)
2𝑥(𝑥 + 𝑦)

] + (𝑥 ↔ 𝑦).
(A.11)



Appendix B: Effect of phonons on hybridization of Higgs

modes

Beyond just the non-retarded interaction considered above, one can also consider

the effect of phonons on the collective modes. Here we will take this into account

by considering the contribution of the frequency dependent phonon-mediated inter-

action between electrons to the collective mode propagators. In particular, we will

project this interaction onto a hot-spot model by taking the phonon momentum to

be the fixed wavevector Q separating the hot-spots which are being paired – this is

the same approximation that one uses on the non-retarded interaction in deriving

the hot-spot model.

A simple 𝐴1𝑔 symmetry phonon has no effect on the collective modes due to the

pure 𝑑-wave symmetry of the order parameters. However, in reality we expect some

direct order parameter-phonon coupling, either because there is a phonon mode with

the correct symmetry (𝐵1𝑔), or because in real systems the order parameter would

not necessarily have a pure 𝑑-wave symmetry, but could have an 𝑠-wave component

admixed. Regardless of the exact nature of the coupling, it gives rise to a term in

the mean field theory which includes the phonon-mediated interaction as

𝐻𝑝ℎ = 𝑓 ∑
𝑘,𝜖𝑛,𝜔𝑚

𝑈(𝜔𝑚) (𝜙(𝜔𝑚)𝑐†
1𝜎(𝑘, 𝜖𝑛 − 𝜔𝑚)𝑐2𝜎(𝑘, 𝜖𝑛) + ℎ.𝑐.) (B.1)

where

𝑈(𝜔𝑚) =
𝑔2
ep

2
Ω𝑄

𝜔2
𝑚 + Ω2

𝑄

is an Einstein phonon type propagator and 𝑓 is a constant of order one arising from

the form factor of the electron-phonon vertex.

If we consider the effect of this term on the charge collective mode, we find
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Figure B.1: The in-gap collective mode mass 𝜔0 (relative to the 𝑔ep = 0 case) as
a function of the electron phonon coupling 𝑔ep, for Ω𝑄 = 1. The 𝑔ep = 0 line
corresponds to the behavior shown in Fig. 3.2.

that it can be captured by the replacement 𝑔𝑐 → ̃𝑔𝑐(𝑖𝜔𝑚). We absorb the 𝜔 = 0

component into the definition of 𝑔𝑐 (as that is what determines the static mean-field

solution) and include the remaining frequency dependent part in our calculation of

the collective modes. Upon analytic continuation to real frequency, this amounts to

the substitution

𝑔𝑐 → ̃𝑔𝑐(𝜔) = 𝑔𝑐 −
𝑓𝑔2
ep

Ω
− 𝑓𝑔2

ep
Ω

𝜔2 − Ω2 (B.2)

in the collective mode equations (the additive constant is chosen so that we recover

̃𝑔𝑐(𝜔 = 0) = 𝑔𝑐). The previous analysis can now be repeated for a range of electron

phonon couplings. As can be seen in Fig. B.1, the coupling to phonons tends to

push the collective mode mass slightly upward, while leaving the softening at the

phase transitions unmodified. Overall, the qualitative behavior of the mode is not

markedly different.



Appendix C: Effective photonic spectral function

The function 𝐽(𝜔) which appears in Eq. (4.33) can be calculated by relating the

field 𝐀 to the cavity mode operators 𝑎, ̄𝑎. The details of this depend on the nature

of the cavity but the procedure is general. Here we demonstrate how to obtain 𝐽(𝜔)

for the two types of cavity considered in Chapter 4.

C.1 Multimode Cavity

As an example of a multimode cavity we take the cavity mode Keldysh action

to be given by

𝑖𝑆 = 𝑖 ∫ 𝑑𝜔
2𝜋

∫ 𝑑𝐪
(2𝜋)2 ̄𝑎𝑞;𝛼

⎛⎜⎜⎜
⎝

0 𝜔 − 𝑖𝜅 − 𝜔𝑞

𝜔 + 𝑖𝜅 − 𝜔𝑞 2𝑖𝜅𝑁(𝜔)

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̂𝐺−1(𝜔,𝐪)

𝑎𝑞;𝛼. (C.1)

to describe a cavity coupled to the environment [164]. Using the fact that we can

expression 𝐀 in terms of 𝑎 and ̄𝑎 (in Gaussian units) as

𝐀𝑞(𝑧) = √2𝜋𝑐2

𝜔𝑞
(𝑎𝑞;𝛼𝜖𝐪;𝛼(𝑧) + ̄𝑎−𝑞;𝛼𝜖∗

−𝐪;𝛼(𝑧)) (C.2)

we can relate the Keldysh component of 𝑆 and 𝐺

2𝑆𝐾
𝜔,𝐪;𝑖𝑖(𝐿/2, 𝐿/2) = 2𝜋𝑐2

𝜔𝑞
∑

𝛼
|𝜖𝑖

𝐪;𝛼(𝐿/2)|2 (𝐺𝐾
−𝑞 + 𝐺𝐾

𝑞 ) (C.3)

After some calculation we therefore find

𝐽MM(𝜔) = ∫ 𝑑𝐪
(2𝜋)2

𝜅𝑐2

𝜔𝑞
∑

𝛼
∣𝜖𝐪;𝛼 (𝐿

2
)∣

2

( 1
(𝜔 − 𝜔𝑞)2 + 𝜅2 − 1

(𝜔 + 𝜔𝑞)2 + 𝜅2 )

(C.4)
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where we have used the fact that 𝜖(𝐿/2) is in plane. Now with the explicit forms of

𝜖𝑖 from the main text

̂𝜖1,𝐪(𝐿/2) = −𝑖√ 2
𝐿

𝜔0
𝜔𝐪

𝐪
|𝐪|

̂𝜖2,𝐪(𝐿/2) = √ 2
𝐿

𝐞3 × 𝐪
|𝐪|

(C.5)

we can immediately evaluate the angular integral

∫ 𝑑𝜃
2𝜋

∑
𝑖∈𝑥,𝑦,𝛼

|𝜖𝑖
𝜃,𝛼(𝐿/2)|2 = 2

𝐿
(1 + 𝜔2

0
𝜔2

𝐪
) . (C.6)

We now make a change of variables from |𝐪| → 𝜔′ = 𝜔𝐪. The dispersion relation

𝜔2
𝑞 = 𝜔2

0 + 𝑐2𝑞2 implies
𝑞𝑑𝑞

2𝜋𝜔′ = 𝑑𝜔′

2𝜋𝑐2 . (C.7)

This allows us to write 𝐽 as

𝐽MM(𝜔) = 2𝜅
𝐿

∫
∞

𝜔0

𝑑𝜔′ ( 1
(𝜔 − 𝜔′)2 + 𝜅2 − 1

(𝜔 + 𝜔′)2 + 𝜅2 ) (1 + 𝜔2
0

𝜔′2 ) . (C.8)

This integral may be performed exactly to find

𝐽MM(𝜔) = 2
𝐿

[(1 + 𝜔2
0

𝜔2 − 𝜅2

(𝜔2 + 𝜅2)2 ) (tan−1 𝜔 − 𝜔0
𝜅

+ tan−1 𝜔 + 𝜔0
𝜅

)

+ 𝜅𝜔𝜔2
0

(𝜔2 + 𝜅2)2 log(
((𝜔 − 𝜔0)2 + 𝜅2) ((𝜔 + 𝜔0)2 + 𝜅2)

𝜔4
0

)] . (C.9)

We will, however, introduce a factor 𝑋 into 𝐽 which describes enhancement of the

electron-photon coupling due to e.g. squeezing of mode volume, one factor of
√

𝑋

coming from the enhancement of each vertex. In principle this enhancement should

come from a detailed study of the structure of the photon modes. However, this

physics is not captured within our simple parallel plate model and so we include the
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coupling enhancement phenomenonlogically via the factor 𝑋

𝐽eff(𝜔) = 𝑋𝐽(𝜔). (C.10)

C.2 Single mode cavity

We can also consider the effective photonic spectral function for a single mode

cavity

𝑖𝑆 = 𝑖 ∫ 𝑑𝜔
2𝜋

̄𝑎𝛼(𝜔)
⎛⎜⎜⎜
⎝

0 𝜔 − 𝑖𝜅 − 𝜔0

𝜔 + 𝑖𝜅 − 𝜔0 2𝑖𝜅𝑁(𝜔)

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̂𝐺−1(𝜔)

𝑎𝛼(𝜔). (C.11)

Following the steps outlined above we find that

𝐽eff;SM(𝜔) = 𝜅𝑐2𝑋
𝜔0

∑
𝛼

∣𝝐𝛼 (𝐿
2

)∣
2

( 1
(𝜔 − 𝜔0)2 + 𝜅2 − 1

(𝜔 + 𝜔0)2 + 𝜅2 ) . (C.12)



Appendix D: Numerical solution for modes

The numerical method begins a with the effective Gaussian Matsubara action

describing the coupled Bardasis-Schrieffer cavity-photon system. Schematically this

is

𝑆 = − 1
2𝛽

∑
𝑞

(𝑑−𝑞 A−𝑞)
⎛⎜⎜⎜
⎝

𝐷BS(𝑞)−1 g(𝑖Ω𝑚)

g(−𝑖Ω𝑚) �̂�−1
phot

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝑑𝑞

A𝑞

⎞⎟⎟⎟
⎠

, (D.1)

where the cavity propagator �̂�−1
𝑝ℎ𝑜𝑡 = �̂�−1

0 − Π̂ includes the self-energy due to the

superconductor. At this stage the polariton modes can be found by solving for the

frequency 𝑧 = 𝑖Ω𝑚 at which the inverse of the Green’s function matrix vanishes. To

do so, we numerically solve for the roots of the determinant of the inverse Green’s

function det �̂�−1(Ωq𝑖,q) = 0. In particular the following algorithm was employed

at each q: noting that there are three roots that we are searching for

1. An interval [𝜔𝑙, 𝜔𝑢] is chosen within which to search for solutions.

2. An extremum 𝑓 of det �̂�−1(Ω,q) with respect to Ω is located by finding the

roots of the first derivative with respect to Ω using the Newton-Raphson

method in the vicinity of the Bardasis-Schrieffer frequency ΩBS.

3. The other extremum is found by searching for the root of the first derivative

in the interval (𝜔𝑙, 𝑓) or (𝑓, 𝜔𝑢) as determined by the sign of the function at

the endpoints. This gives us two extrema {𝑓0, 𝑓1}.

4. Roots of det �̂�−1(Ω,q) are searched for using the Brent-Dekker method in the

intervals (𝜔𝑙, 𝑓0), (𝑓0, 𝑓1), and (𝑓1, 𝜔𝑢)

Numerical integration and root-finding were performed using the GSL Scientific

Library [165].
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Appendix E: Non-linear σ model in the case of finite super-

current

E.1 Solution of the bulk Usadel equation with a uniform supercurrent

Writing the retarded quasi-classical Green’s function as

�̂�𝑅
sp(𝜖) = cosh 𝜃𝜖 ̂𝜏3 + 𝑖 sinh 𝜃𝜖 ̂𝜏2 (E.1)

one obtains the retarded Usadel equation in the form

Δ cosh 𝜃𝜖 − 𝜖 sinh 𝜃𝜖 = 𝑖Γ
2
sinh 2𝜃𝜖. (E.2)

In the absence of a supercurrent it is straightforward to solve the Usadel equation

for a bulk superconductor

tanh 𝜃𝜖 = Δ
𝜖

. (E.3)

For a finite supercurrent the solution is not so simple. It is convenient to reparametrize

the problem using the Ricatti parametrization

cosh 𝜃𝜖 = 1 + 𝜉2
𝜖

1 − 𝜉2
𝜖

sinh 𝜃𝜖 = 2𝜉𝜖
1 − 𝜉2

𝜖
.

(E.4)

In terms of the Ricatti parameter 𝜉 the Usadel equation can be rewritten

𝜉4 + 2( ̃𝜖 + 𝑖Γ̃)𝜉3 − 2( ̃𝜖 − 𝑖Γ̃)𝜉 − 1 = 0 (E.5)

126



Appendix E 127

where we have defined ̃𝜖 = 𝜖/Δ and Γ̃ = Γ/Δ. This rewriting introduces two extra-

neous roots of complex magnitude 1, with the remaining two roots describing the

advanced and retarded solutions of the Usadel equation. Being a quartic equation,

there a closed form solutions. The difficulty arises in uniquely determining the root

corresponding to the retarded solution for every 𝜖. Here we may use our knowledge

of the structure of the solution and the limiting cases to simplify things.

First, we note that Eq. (E.5) is a self-inversive polynomial. In this case, this

implies that for any root 𝑥, −1/𝑥∗ is also a root. We also know that there are always

at least to uni-modular roots. This means that there are two possible cases, either

there are four unimodular roots are there are two unimodular extraneous roots and

two distinct physical roots 𝑥, −1/𝑥∗.

Eq. (E.5) can be rewritten

(𝑒−𝑖𝜙𝜉2 − 2𝜉𝜌 + 𝑒𝑖𝜙) (𝑒𝑖𝜙𝜉2 + 2𝑖𝜉𝜇 − 𝑒−𝑖𝜙) = 0, (E.6)

with 𝜇, 𝜌, and 𝜙 currently undetermined. By matching the coefficients of the linear

and cubic terms and comparing with the original equation we obtain a system of

equations which be solved for the relations

𝜌 = sec 2𝜙 ( ̃𝜖 cos𝜙 + Γ̃ sin𝜙)

𝜇 = − sec 2𝜙 (Γ̃ cos𝜙 + ̃𝜖 sin𝜙) .
(E.7)

The remaining non-trivial equation comes from the quadratic term and gives us the

depressed cubic equation

𝑦3 + (Γ̃2 + ̃𝜖2 − 1)𝑦 + 2 ̃𝜖Γ̃ = 0 (E.8)
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for 𝑦 = sin 2𝜙. Defining the quantities

𝑝 = Γ̃2 + ̃𝜖2 − Δ2

𝑞 = 2 ̃𝜖Γ̃
(E.9)

the nature of the solutions is different depending on the sign of 4𝑝3 + 27𝑞2. This is

the position of the branch point. For 4𝑝3 + 27𝑞2 > 0 there is only one real solution

to Eq. (E.8). For the other case we must however choose the correct root. We do

so by choosing the solution that is continuously connected to the real solution for

4𝑝3 + 27𝑞2 > 0. In this way we arrive at

𝑦 =

⎧{{{{
⎨{{{{⎩

−2√−𝑝
3 sgn 𝑞 cosh(1

3 cosh
−1 (−3|𝑞|

2𝑝 √−𝑝
3 )) , 4𝑝3 + 27𝑞2 > 0 ∩ 𝑝 < 0

2√𝑝
3 sinh(1

3 sinh
−1 ( 3𝑞

2𝑝√𝑝
3)) , 4𝑝3 + 27𝑞2 > 0 ∩ 𝑝 > 0

2√−𝑝
3 cos(1

3 cos
−1 ( 3𝑞

2𝑝√−𝑝
3 ) − 4𝜋

3 ) , 4𝑝3 + 27𝑞2 ≤ 0.

(E.10)

We must now choose the correct angle 𝜙. The four possible choices of 𝜙 correspond

to a permutation of the form of the roots. In general, we can choose a prescription

for 𝜙 such that the full solution can then be written in the form

𝜉𝜖 = 𝑒𝑖𝜙𝜖 (𝜌𝜖 − √(𝜌𝜖 + 𝑖0+)2 − 1) , (E.11)

which is to be compared with the supercurrent-free result

𝜉0
𝜖 = ̃𝜖 − √( ̃𝜖 + 𝑖0+)2 − 1. (E.12)
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The correct prescription is

sin−1(⋯) ∈ [−𝜋, 𝜋]

𝜙 =

⎧{{
⎨{{⎩

1
2 sin

−1 𝑦, |𝜖| > Γ

−𝜋
2 − 1

2 sin
−1 𝑦 |𝜖| < Γ.

(E.13)

All the above is done for the case of infinitessimal damping. The finite damping case

can be solved by analytically continuing the above solution from 𝜖 + 𝑖0+ → 𝜖 + 𝑖𝛾.

E.2 Evaluation of the diffusive mode vertices

The vertices ̂𝑟𝜖𝜖′ and ̂𝑠𝜖𝜖′ appearing in Eq. (5.33) can be expressed in terms of

the parametrization, Eq. (5.31), of the saddle-point solution as

[𝑠𝑐
𝜖𝜖′](𝑅/𝐴)𝛽

= 𝑖
2
tr ̂𝜏1

̂𝐼(𝑅/𝐴)�̌�
𝛽2
𝜖𝜖′

[𝑠𝑑
𝜖𝜖′](𝑐𝑙/𝑞)𝛽

= 𝑖
2
tr �̂�∓�̌�𝛽2

𝜖𝜖′

[𝑟𝑐
𝜖𝜖′](𝑅/𝐴)𝛽

= 𝑖
2
tr ̂𝜏1

̂𝐼(𝑅/𝐴) (�̌�03
𝜖𝜖 �̌�𝛽3

𝜖𝜖′ + �̌�𝛽3
𝜖𝜖′�̌�03

𝜖′𝜖′)

[𝑟𝑑
𝜖𝜖′](𝑐𝑙/𝑞)𝛽

= 𝑖
2
tr 𝜏1�̂�∓ (�̌�03

𝜖𝜖 �̌�𝛽3
𝜖𝜖′ + �̌�𝛽3

𝜖𝜖′�̌�03
𝜖′𝜖′) ,

(E.14)

where we have defined

�̌�𝑠𝑡
𝜖𝜖′ = �̌�𝜖�̂�𝑠 ̂𝜏𝑡�̌�−1

𝜖′ �̂�3 ̂𝜏3 (E.15)
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and ̂𝐼𝑅/𝐴 = (�̂�0 ± 𝜎3)/2. If we define ̄𝜃± = (𝜃𝜖 ± 𝜃𝜖′)/2 and ̃𝜃± = (𝜃𝜖 ± 𝜃∗
𝜖′)/2 we can

express the traces as

̂𝑠𝑐
𝜖𝜖′ =

⎡
⎢⎢
⎣

− cosh ̄𝜃+ −𝐹 cosh ̄𝜃+

cosh ̄𝜃∗
+ −𝐹 ′ cosh ̄𝜃∗

+

⎤
⎥⎥
⎦

(E.16)

̂𝑠𝑑
𝜖𝜖′ =

⎡
⎢⎢
⎣

(𝐹 ′ − 𝐹) sinh ̃𝜃+ (𝐹𝐹 ′ − 1) sinh ̃𝜃+)

0 sinh ̃𝜃∗
+

⎤
⎥⎥
⎦

(E.17)

̂𝑟𝑐
𝜖𝜖′ = 2𝑖

⎡
⎢⎢
⎣

sinh 2 ̄𝜃+ cosh ̄𝜃− 𝐹 sinh 2 ̄𝜃+ cosh ̄𝜃−

sinh 2 ̄𝜃∗
+ cosh ̄𝜃∗

− −𝐹 ′ sinh 2 ̄𝜃∗
+ cosh ̄𝜃∗

−

⎤
⎥⎥
⎦

(E.18)

̂𝑟𝑑
𝜖𝜖′ = 2𝑖

⎡
⎢⎢
⎣

(𝐹 − 𝐹 ′)𝑒 ̃𝜃+ cosh ̃𝜃+ sinh ̃𝜃− (1 − 𝐹𝐹 ′)𝑒 ̃𝜃+ cosh ̃𝜃+ sinh ̃𝜃−

0 sinh 2 ̃𝜃∗
+ sinh ̃𝜃∗

−

⎤
⎥⎥
⎦

(E.19)

where 𝐹 = 𝐹(𝜖) and 𝐹 ′ = 𝐹(𝜖′).

E.3 Exact Parametrization of the Bosonic action for finite supercurrent

The expression for the Higgs-photon action can be put into a more familiar form,

reminiscent of Ref. [153], using the parametrization

𝜃𝜖 = 𝜃0
𝜖 + 𝜙𝜖 (E.20)

where 𝜃0
𝜖 is the spectral angle for the quasi-classical Green’s function in the absence of

a supercurrent (c.f. Eq. (5.29)). In terms of the Ricatti parametrization introduced

in Appendix E.1 we have

tanh𝜙𝜖 = Δ(1 + 𝜉2
𝜖 ) − 2𝑧𝜉𝜖

𝑧(1 + 𝜉2
𝜖 ) − 2Δ𝜉𝜖

, (E.21)
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where 𝑧 = 𝜖 + 𝑖𝛾. Using this parameterization the inverse Cooperon and diffuson

propagators are

𝒟−1
𝜖+𝜖−

= − 𝐷𝑞2 + 𝑖𝜁𝑅(𝜖+) cosh𝜙+ + 𝑖𝜁𝐴(𝜖−) cosh𝜙∗
−

− Γ
𝜁𝑅(𝜖+)2𝜁𝐴(𝜖−)2

× [𝜁𝑅(𝜖+)𝜁𝐴(𝜖−) + (𝑧+𝑧′
− − Δ2

0) cosh(𝜙+ − 𝜙∗
−) − Δ0(𝜔 + 2𝑖𝛾) sinh(𝜙+ − 𝜙∗

−)]

× [(𝑧+𝑧′
− + Δ2

0) cosh(𝜙+ + 𝜙∗
−) + 2Δ0𝜖 sinh(𝜙+ + 𝜙∗

−)]

[𝒞𝑅
𝜖+𝜖−

]
−1

= − 𝐷𝑞2 + 𝑖𝜁𝑅(𝜖+) cosh𝜙+ + 𝑖𝜁𝑅(𝜖−) cosh𝜙−

− Γ
𝜁𝑅(𝜖+)2𝜁𝑅(𝜖−)2

× [𝜁𝑅(𝜖+)𝜁𝐴(𝜖−) + (𝑧+𝑧− − Δ2
0) cosh(𝜙+ − 𝜙−) − Δ0𝜔 sinh(𝜙+ − 𝜙−)]

× [(𝑧+𝑧− + Δ2
0) cosh(𝜙+ + 𝜙−) + 2Δ0𝑧 sinh(𝜙+ + 𝜙−)]

(E.22)

where 𝑧′ = 𝜖 − 𝑖𝛾. The above, in combination with the matrix elements derived

in Appendix E.2, can be inserted into Eq. (5.39) to obtain the Gaussian bosonic

propagator to all orders in the supercurrent.
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