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Topic models discover latent topics in documents and summarize documents

at a high level. To improve topic models’ topic quality and extrinsic performance,

external knowledge is often incorporated as part of the generative story. One form

of external knowledge is weighted text links that indicate similarity or relatedness

between the connected objects. This dissertation 1) uncovers the latent structures

in observed weighted links and integrates them into topic modeling, and 2) learns

latent weighted links from other external knowledge to improve topic modeling.

We consider incorporating links at three different levels: documents, words,

and topics. We first look at binary document links, e.g., citation links of papers.

Document links indicate topic similarity of the connected documents. Past methods

model the document links separately, ignoring the entire link density. We instead



uncover latent document blocks in which documents are densely connected and tend

to talk about similar topics. We introduce LBH-RTM, a relational topic model with

lexical weights, block priors, and hinge loss. It extracts informative topic priors from

the document blocks for documents’ topic generation. It predicts unseen document

links with block and lexical features and hinge loss, in addition to topical features.

It outperforms past methods in link prediction and gives more coherent topics.

Like document links, words are also linked, but usually with real-valued weights.

Word links are known as word associations and indicate the semantic relatedness

of the connected words. They provide more information about word relationships

in addition to the co-occurrence patterns in the training corpora. To extract and

incorporate the knowledge in word associations, we introduce methods to find the

most salient word pairs. The methods organize the words in a tree structure, which

serves as a prior (i.e., tree prior) for tree LDA. The methods are straightforward but

effective, yielding more coherent topics than vanilla LDA, and slightly improving

the extrinsic classification performance.

Weighted topic links are different. Topics are latent, so it is difficult to obtain

ground-truth topic links, but learned weighted topic links could bridge the topics

across languages. We introduce a multilingual topic model (MTM) that assumes

each language has its own topic distributions over the words only in that language

and learns weighted topic links based on word translations and words’ topic distri-

butions. It does not force the topic spaces of different languages to be aligned and

is more robust than previous MTMs that do. It outperforms past MTMs in classi-

fication while still giving coherent topics on less comparable and smaller corpora.
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Chapter 1: Introduction

Given a collection of documents, people want to understand and summarize it

at a high level. More specifically, people are interested in what topics the documents

are talking about without reading the documents. Text documents contain a large

amount of word co-occurrence patterns, which is perfect for statistical models to

identify latent topics automatically, hence topic models (Boyd-Graber et al., 2017).

Given the document and the words in Figure 1.1, topic models infer latent topics.

Each latent topic is a distribution over the words and represented by the dominant

words, i.e., the words with the highest probabilities. We can then summarize each

topic manually by the dominant words. For instance, the first topic’s dominant

words are “new”, “film”, “show”, “music”, and “movie”. We can summarize that

it is an Arts topic. In addition to topic distributions over words, topic models also

give the document distributions over topics (i.e., documents’ topic proportions) as

indicated by the colors of topics and words in the document. This helps users under-

stand the documents at a high level and forms a three-level hierarchy: documents,

words, and topics (Figure 1.1).

Topic models are useful because they are unsupervised, although they can

be extended to supervised models if necessary (McAuliffe and Blei, 2008). They
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Documents

Topics

Words
billion budget child children education film million 

movie music new people program school schools show 

students tax teachers women years

The William Randolph Hearst Foundation will give 

$1.25 million to Lincoln Center, Metropolitan Opera 

Co., New York Philharmonic and Juilliard School.
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Figure 1.1: An example of the three-level hierarchy in a topic model: high-level doc-
uments, low-level words, and mid-level latent topics. A document is a multinomial
distribution over latent topics. A topic is a multinomial distribution over words.
Topic names are summarized manually.

only require minimal human effort on data preparation (e.g., document collection

and preprocessing) and do not need any expensive annotation. In addition to the

data, the user only needs to specify the number of topics and the models often give

excellent results, although in some cases the model can find the best number of

topics by itself (Teh et al., 2006; Blei et al., 2007).

Early topic models are deterministic, applying linear algebra directly on the

document-word matrix (Deerwester et al., 1990; Papadimitriou et al., 1998). How-

ever, it is often difficult and even awkward to extend the deterministic topic mod-
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els for adding new components and/or incorporating external knowledge, so topic

models soon go probabilistic (Hofmann, 1999). Probabilistic topic models are more

powerful than deterministic ones, because they are more flexible to add and/or

modify the latent variables and probabilistic distributions, which represent docu-

ments, words, and topics, based on the data characteristics and available external

knowledge. We will discuss in more depth in Chapter 2.

Among all probabilistic topic models, latent Dirichlet allocation (Blei et al.,

2003, LDA) is a powerful and flexible framework. It assumes that the document

and words are generated from multinomial distributions of topics and words with

Dirichlet priors and yields coherent topics. LDA can be flexibly extended because

of its probabilistic nature, so it serves as the base framework for a variety of ap-

plications besides the topic discovery (Griffiths and Steyvers, 2004): providing fea-

tures for ad-hoc information retrieval (Wei and Croft, 2006), disambiguating word

senses with WordNet (Boyd-Graber et al., 2007), segmenting multi-party spoken

discourse (Purver et al., 2006), modeling user rating profiles for collaborative fil-

tering (Marlin, 2003), and even learning natural scene categories in computer vi-

sion (Fei-Fei and Perona, 2005). This dissertation also builds topic models based on

LDA.

People extend LDA because they want to add additional constraints and/or

guidance to the latent topics so that LDA can take this information into account and

produce better topics. Such constraints and guidances are often referred to external

knowledge, which sometimes comes with the text as metadata or, in other cases, is

collected separately. For instance, an Amazon product review often comes with a
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Figure 1.2: A positive Amazon review for an SD card with five stars.

Figure 1.3: A negative Amazon review for an SD card with one star.

rating that indicates the satisfaction of the author towards the product. In positive

reviews with five stars, we can usually find words like “love”, “great”, “awesome”,

and “reliable” (Figure 1.2). In negative ones, “disappointed”, “bad”, “waste”, and

“return” frequently appear (Figure 1.3). This is a useful signal for topic models of

what words are likely to appear in positive and negative reviews. Thus, the number

of stars can be incorporated and jointly modeled in the generative process (McAuliffe

and Blei, 2008). Moreover, if we convert the number of stars to binary labels (e.g.,

four- and five-star reviews as positive and one- and two-star reviews as negative),

we can even apply more advanced techniques in binary classification (Zhu et al.,

2012, 2014).

Among all types of external knowledge, weighted links are very useful because
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they indicate some similarity or relatedness between the connected objects. How-

ever, it is not easy to model the weighted links and incorporate them into topic

modeling, because the links can have different forms and represent different types

of similarity or relatedness. For instance, the links can have different densities (e.g.,

dense versus sparse), amount of information, and types of weights (e.g., integer-

valued, real-valued, or non-negative real-valued). This makes a one-for-all model

impossible, so we have to develop separate solutions for various types of weighted

links. This dissertation studies three distinct types of representative weighted links

that correspond to the three-level hierarchy in topic models (documents, words, and

topics). Each type of link has its distinct properties and potential applications, and

this dissertation introduces methods for incorporating them into topic modeling.

The methods are easy to generalize and the ideas behind these methods can be

applied to other similar problems involving weighted links.

This dissertation first studies observed binary-valued document links and easy-

to-obtain real-valued word links. Document links indicate topic similarities between

the connected documents, e.g., a paper cites another one because they are in the

same research area; a Twitter user, if we treat the user’s tweets as a document,

mentions/retweets/follows another user because of mutual interests. Word links,

or word association scores, indicate words’ semantic relatedness, e.g., pointwise mu-

tual information (Church and Hanks, 1990, PMI), log-likelihood-ratio (Moore, 2004,

LLR), and Fisher’s exact test (Upton, 1992, FET). For these observed and/or easy-

to-obtain weighted links, this dissertation develops methods that uncover the latent

structures in the weighted links and jointly models them with topics. For the un-
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observed weighted links, such as the links between latent topics, this dissertation

studies how to learn them based on available information. For instance, topics in

different languages can be connected if they have similar words according to word

translations. We run all experiments on open datasets. Although the datasets are

relatively small, they are big enough to validate our methods.

Modeling the links with topics can potentially be helpful in several applica-

tions/tasks, according to the link types. With a good topic model for document

links, we can use it for suggesting potential links, which can help people explore

relevant documents that are not yet linked. By adding word links into topic models,

in addition to more coherent topics, we can get richer word relationship informa-

tion from topic models, which is potentially useful for other tasks such as word

sense disambiguation. Weighted topic links are particularly helpful for modeling

low-resource languages which have limited data. By modeling them along with high-

resource languages, the topic patterns on high-resource languages can be transferred

to low-resource languages via the topic links, which yields a better topic model on

low-resource languages. This will be useful when document analysis is suddenly

needed for a low-resource language, such as in the case of disasters: we can quickly

obtain a relatively good topic model on the low-resource language with little effort

(e.g., finding a dictionary), understand the situation, and send out corresponding

rescue resource.

Besides these specific applications, the work in this dissertation has a broader

impact to other research areas. This dissertation demonstrates an existing key in-

sight of induction and deduction in a computational manner: when studying the
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objects we are interested in, it is beneficial to summarize their commonalities and

find common patterns from their properties (induction), and apply the summarized

patterns to new objects with the same properties (deduction). The commonalities

of objects (e.g., documents’ topic distributions, words’ semantic relatedness, and

shared topics across languages) are summarized using statistics and probabilistic

distributions, and then applied to understanding new objects with the same prop-

erties (e.g., documents in the same block, words in the same subtree, and topics in

low-resource languages). The work in this dissertation also benefits other research

areas where text is involved. For instance, in computational social science (CSS),

people prefer large amounts of data to find interesting patterns (Lazer et al., 2009).

Topic models can help them understand the text data at a high level. With the

work in this dissertation, CSS people can add more available information to obtain

more accurate results (e.g., adding document co-authorship for topic analysis) and

perform more analysis (e.g., the culture difference when framing about the same

incident).

1.1 Topic Modeling with Document Network

Many documents are organized in networks with binary edges. Scientific pa-

pers, including this dissertation, cite other papers because of the relevance in back-

ground, methods, and/or datasets. A webpage (e.g., the homepage of a professor)

has hyperlinks to other pages because the two pages are related in some way (e.g., the

professor’s students, publications, and/or courses). Twitter users mention, retweet,
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and/or follow each other based on mutual interests. All these examples indicate

that if two documents are linked, they must share some topics, which could be

useful external knowledge for topic modeling.

The Relational Topic Model (Chang and Blei, 2010, RTM) jointly models doc-

uments’ topics and document links. Besides generating the words in documents,

it assumes that each binary document link is generated probabilistically from the

weighted sum of the Hadamard (element-wise) product of the two documents’ pos-

terior topic distributions.

However, RTM ignores the large amount of information in the latent struc-

tures of the document network—the link density could split the network into blocks

(Figure 1.4). Each block is defined as a subset of documents that are densely con-

nected, but sparsely connected with the ones in other blocks. This allows the model

to extract information of every block’s topic patterns and use it as informative priors

for generating the documents’ topics in the blocks.

Thus, Chapter 3 introduces LBH-RTM, which integrates a weighted stochastic

block model (Aicher et al., 2014, WSBM) for block discovery (Figure 1.4) and then

learns the blocks’ topic distributions to assist document topic modeling. In contrast

to RTM, which uses only topical features for link prediction, LBH-RTM also includes

the similarity of documents’ word usage and the relationship between the documents’

assigned blocks. Moreover, it obtains the document link probability with a max-

margin objective function which is more robust than the sigmoid function in binary

classification. On both scientific paper abstracts and webpages, it better predicts

citations and hyperlinks and gives more coherent topics.
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Figure 1.4: WSBM identifies blocks in a network as denoted by colors and dashed
boxes. Each block is a subset of nodes (denoted by circles) that are densely con-
nected with each other but sparsely connected with the nodes in other blocks. We
integrate WSBM into topic models and extract the blocks’ topic patterns for better
modeling documents’ topics and predicting document links.

1.2 Topic Modeling with Word Associations

Real-valued word association scores link words using traditional statistical

methods or more recent word embedding techniques (Mikolov et al., 2013; Penning-

ton et al., 2014). Word associations denote the semantic relatedness of the connected

words. Higher association scores denote higher relatedness and more frequent co-

occurrences. For example, “science” often co-occurs with “technology”, so their

association score is high, but “science” is likely to have a low association score with

“cat” because they rarely co-occur. Word association scores are easy to obtain and

contain a vast amount of information of words’ semantic relatedness. Topic models

infer latent topics which consist of semantically related words. It is therefore useful

to incorporate word association scores into topic modeling.
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However, there is redundancy in the word association scores which have a

complexity of O(V 2) where V is the size of the vocabulary. Some word association

scores have different assumptions from topic models. For instance, word embeddings

estimate word associations based on local context windows, while topic models infer

topics based on document context. Thus, it is necessary to extract key information

and reduce redundancy in word association scores.

In Chapter 4, we introduce three methods to organize the words based on the

word association scores in a tree structure, also referred to as tree prior. The meth-

ods filter large amounts of redundancy in word association scores and only keep the

most salient word links. In a tree prior, words with high association scores are placed

in the same small subtree. When tree LDA (Boyd-Graber et al., 2007, tLDA) learns

a topic on the tree prior, the probabilities of generating these words are correlated

even if the words’ term frequencies differ a lot. Experimental results show substan-

tial improvement in topic coherence over LDA on both 20NewsGroups and Amazon

review corpora. tLDA also slightly improves the extrinsic classification performance

of predicting news documents’ categories and positive/negative Amazon reviews.

1.3 Topic Model for Learning Weighted Topic Links

Unlike observed documents and words, topics are latent, so it is difficult to

find ground-truth topic links. However, topic links are useful, especially in a multi-

lingual case where topic links connect similar topics based on word semantics across

languages. For instance, an English Sports topic with top words “sports”, “game”,
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“referee”, “champion”, and “coach” can be connected with a high weight with a

Chinese topic of “运动 (yùn dòng)”, “比赛 (b̌ı sài)”, “裁判 (cái pàn)”, “冠军 (guàn

jūn)”, and “教练 (jiào liàn)”, which are direct translations of the English top words,

but should not be connected with a topic of “经济 (j̄ıng j̀ı)”, “收入 (shōu rù)”, “资产

(z̄ı chǎn)”, “投资 (tóu z̄ı)”, and “股票 (gǔ piào)” in Economy.1 The weighted topic

links can be particularly helpful when modeling low-resource languages in which we

have little data to train a good topic model, as they can transfer the well-learned

topic patterns from high-resource languages to the low-resource ones and improve

the topic model quality on low-resource languages. This can be applied to the case

when a disaster takes place at an area where a low-resource language is often used.

With the weighted topic links, we can quickly understand the situation from the

limited media coverage and social media discussions with the help of high-resource

language data and provide assistance needed.

To learn the weighted topic links across languages, we introduce a multilingual

topic model (MTM) in Chapter 5. Unlike previous MTMs that require the same

numbers of topics or even force the topic spaces to be aligned across languages,

our MTM assumes that each language has its own topic distributions over its own

words while the numbers of topics do not have to be the same across languages, and

only connects topics when their dominant words are close in senses based on a word

translation dictionary. This keeps the model robust and giving coherent topics when

the corpora are less comparable across languages. The topic links are learned by

1The English translations of the Chinese Economy words are “economics”, “income”, “assets”,

“invest”, and “stock”.
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minimizing the translation pairs’ topic distribution distances after transformation

by the topic link weights. We validate the model on bilingual classification tasks

where we use the topic posteriors of the documents as features. Results show that

our MTM substantially outperforms previous MTMs and monolingual LDA both

intra- and cross-lingually. Also, our MTM gives coherent topics when the corpora

get less comparable or even incomparable, and the corpora sizes get small, in which

case previous MTMs sacrifice topic coherence for topic alignment.

1.4 Additional Contributions

Although the methods introduced in this dissertation incorporate and learn

weighted links in the text, the intuition and ideas behind the methods apply to more

general settings with some extension and/or adaptation. Besides the introduced

specific topic models, this dissertation also makes the following contributions to the

fields of machine learning and natural language processing:2

• This dissertation introduces the idea of uncovering the latent structures in

weighted links when jointly modeling links and topics. This applies to other

research problems involving joint modeling with weighted links or networks, no

matter they are dense or sparse. For dense networks, hierarchical clustering

could reduce redundancy while keeping important information (Chapter 4);

for sparse ones, identifying small blocks helps to categorize the nodes and

2The code for Chapters 3 and 4 is available at https://github.com/ywwbill/YWWTools. The

work in Chapter 5 is submitted and being reviewed at EMNLP 2019 as of the submission of this

dissertation, so the code for Chapter 5 will be added to the repository upon paper acceptance.

12

https://github.com/ywwbill/YWWTools


facilitate downstream tasks (Chapter 3).

• This dissertation shows the superiority of hinge loss over the conventional

sigmoid loss and integrates it with topic modeling in a joint framework. The

hinge loss is known for its robustness and good performance. Although we use

it for link prediction, it is easy to generalize it to any probabilistic model for

binary classification tasks.

• This dissertation introduces a novel and robust multilingual topic model from

a new angle which does not align topic spaces across languages but instead

connects topics only when necessary (Chapter 5). Although the MTM is in-

troduced in a bilingual case, it can be easily extended to multilingual ones.

Multilingual knowledge is encoded via a posterior regularizer, and is therefore

very flexible to encode the knowledge by any other formulas without changing

the model’s main structure.
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Chapter 2: Background

This chapter introduces topic models with an emphasis on latent Dirichlet

allocation (Blei et al., 2003, LDA), including its generative process, posterior infer-

ence, and evaluation methods. This chapter also includes some extension methods

for LDA that are relevant to our work.

Topic models find latent topics among a set of documents. They are unsu-

pervised, so they do not require expensive annotations but only limited effort of

data collection and preprocessing. They infer latent topics and tell people the doc-

uments’ proportions of topics which serve as high-level summaries of documents.

Thus, topic models make it easier for people to analyze extensive collections of un-

structured text and reveal insights without reading the documents (Griffiths and

Steyvers, 2004; Marwick, 2013; Yang et al., 2011).

Topic models assume that each document d is a distribution of K topics and

each topic k is a distribution of V words, denoted by θd and φk respectively. Early

topic models like latent semantic analysis (Dumais, 2004, LSA) apply determinis-

tic linear algebra on the document-word matrix M of size V × D where D is the

number of documents. Each cell, Mv,d, denotes the term frequency of word v in

document d. LSA then applies singular value decomposition (SVD) which breaks
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Figure 2.1: The Graphical Model of LDA.

down the matrix M with the number of topics K into the product of three matrices

namely 1) φ of size V × K, 2) Σ of size K × K, and 3) θ of size K × D. Each

column of φ denotes a topic distribution over words and each column of θ denotes

a document distribution over topics.1

Unfortunately, due to the deterministic characteristics, LSA is challenging to

extend or incorporate external knowledge. With the emergence of Bayesian methods

and conjugate priors, which are more flexible than LSA, recent topic models are

developed based on probabilistic methods like LDA.

2.1 LDA Introduction

Latent Dirichlet allocation (Blei et al., 2003, LDA) is a probabilistic generative

model. It assumes that each document d is a mixture of K topics, denoted by a

vector θd of length K. Each latent topic k is a distribution over the vocabulary

of size V , denoted by a vector φk of length V . For instance, if we apply LDA on

1In LDA, we assume φ is of size K × V and each row denotes a topic distribution over words

and so for θ.
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Topic Top Words

countries, africa, india, china, country, billion, states, chinese,
Country

economy, global, population, united, economic, growth, health
cancer, disease, health, patient, heart, cells, patients,

Health
body, blood, care, treatment, hiv, medical, drug, data
school, social, kids, education, children, learn, ideas, community,

Education
learning, group, students, game, places, schools, problems
universe, space, earth, light, science, planet, stars,

Astronomy
matter, black, physics, mars, theory, sun, dark, billion

Information data, computer, information, technology, internet, machine, video,
Technology web, computers, digital, media, phone, online, robots, software

Table 2.1: Five example topics obtained from the TED talk corpus using LDA. Each
topic is represented by the top fifteen words with the highest probabilities in that
topic. Topic categories are obtained manually.

English TED talks with fifteen topics, five of them may be similar with the ones in

Table 2.1, as represented by the words with highest probability masses in the topics.

To generate a token in document d, LDA first picks a topic k from the doc-

ument’s topic distribution θd and then picks a word from topic k’s word distribu-

tion φk. In the formal description, the generative process of LDA is as follows and

corresponds to the graphical model in Figure 2.1.

1. For each topic k ∈ {1, . . . , K}

(a) Draw word distribution φk ∼ Dirichlet(β)

2. For each document d ∈ {1, . . . , D}

(a) Draw topic distribution θd ∼ Dirichlet(α)

(b) For each token td,n in document d

i. Draw a topic zd,n ∼ Multinomial(θd)

ii. Draw a word wd,n ∼ Multinomial(φzd,n)
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where α and β are pre-defined hyperparameters of the (conjugate) Dirichlet priors

for θ and φ respectively.

2.1.1 Posterior Inference

Once we define the generative process and obtain the documents, the next step

is to infer the parameters in latent variables θ and φ that best fit the observed data,

i.e., posterior inference. Gibbs sampling is a commonly used method to perform pos-

terior inference (Geman and Geman, 1984; Resnik and Hardisty, 2010). It assumes

that every token is assigned to a topic which is randomly chosen during initializa-

tion. Then it iteratively updates every token’s topic assignment with probabilities

calculated based on some statistics excluding the current token. The equations for

computing the topics’ probabilities are called Gibbs sampling equations which are

the core of Gibbs sampling.

To obtain the Gibbs sampling equation, we first define the joint probability of

generating the tokens w and tokens’ topic assignments z with current parameters θ,

φ, α, and β:

Pr (w, z |α, β) = Pr (z |α)︸ ︷︷ ︸
Genearting topic assignments.

Pr (w | z, β)︸ ︷︷ ︸
Generating tokens.

(2.1)

=

∫
Pr (z |θ) Pr (θ |α) dθ

∫
Pr (w | z,φ) Pr (φ | β) dφ, (2.2)

where the expansions are based on the definition of the generative process and

graphical model.

Then we replace the probabilities in Equation 2.2 with the definitions of Dirich-
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let and multinomial distributions:

Pr (w, z |α, β) =

∫ ( D∏
d=1

K∏
k=1

θ
Nd,k

d,k

)
︸ ︷︷ ︸

Multinomial

(
D∏
d=1

Γ (Kα)∏K
k=1 Γ (α)

K∏
k=1

θα−1d,k

)
︸ ︷︷ ︸

Dirichlet

dθ

∫ ( K∏
k=1

V∏
v=1

φ
Nk,v

k,v

)
︸ ︷︷ ︸

Multinomial

(
K∏
k=1

Γ (V β)∏V
v=1 Γ (β)

V∏
v=1

φβ−1k,v

)
︸ ︷︷ ︸

Dirichlet

dφ, (2.3)

where Nd,k denotes the number of tokens in document d that are assigned to topic k;

Nk,v denotes the number of times that word v is assigned to topic k; Γ(·) is the

Gamma function:

Γ(x) =

∫ ∞
0

tx−1e−tdt. (2.4)

Here, we use its property

Γ(x+ 1) = xΓ(x). (2.5)

We then drop the constants and combine the terms in Equation 2.3:

Pr (w, z |α, β) ∝
∫ D∏

d=1

K∏
k=1

θ
Nd,k+α−1
d,k dθ

∫ K∏
k=1

V∏
v=1

φ
Nk,v+β−1
k,v dφ. (2.6)

The elegant property of the conjugacy of Dirichlet and multinomial distri-

butions allows us to integrate out θ and φ from Equation 2.6, after adding some
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constants:

Pr (w, z |α, β) (2.7)

∝
D∏
d=1

∏K
k=1 Γ (Nd,k + α)

Γ (Nd,· +Kα)

∫ D∏
d=1

Γ (Nd,· +Kα)∏K
k=1 Γ (Nd,k + α)

K∏
k=1

θ
Nd,k+α−1
d,k dθ︸ ︷︷ ︸

Dirichlet posterior equals to 1.

K∏
k=1

∏V
v=1 Γ (Nk,v + β)

Γ (Nk,· + V β)

∫ K∏
k=1

Γ (Nk,· + V β)∏V
v=1 Γ (Nk,v + β)

V∏
v=1

φ
Nk,v+β−1
k,v dφ︸ ︷︷ ︸

Dirichlet posterior equals to 1.

(2.8)

∝

(
D∏
d=1

∏K
k=1 Γ (Nd,k + α)

Γ (Nd,· +Kα)

)
︸ ︷︷ ︸

The denominators are constants.

(
K∏
k=1

∏V
v=1 Γ (Nk,v + β)

Γ (Nk,· + V β)

)
(2.9)

∝

(
D∏
d=1

K∏
k=1

Γ (Nd,k + α)

)(
K∏
k=1

∏V
v=1 Γ (Nk,v + β)

Γ (Nk,· + V β)

)
, (2.10)

where · denotes marginal counts, i.e., Nd,· =
∑K

k=1Nd,k.

Finally, we derive the Gibbs sampling equation for updating zd,n, the topic

assignment of the n-th token in document d, as the quotient of the joint probabilities

including and excluding the token:

Pr
(
zd,n = k | z−d,n,w−d,n, wd,n = v, α, β

)
(2.11)

=
Pr
(
zd,n = k, z−d,n, wd,n = v,w−d,n |α, β

)
Pr (z−d,n,w−d,n |α, β)

(2.12)

∝

 D∏
d′=1

K∏
k′=1

Γ (Nd′,k′ + α)

Γ
(
N−d,nd′,k′ + α

)
 K∏

k′=1

Γ
(
N−d,nk′,· + V β

)
Γ (Nk′,· + V β)

V∏
v′=1

Γ (Nk′,v′ + β)

Γ
(
N−d,nk′,v′ + β

)
 (2.13)

∝ Γ (Nd,k + α)

Γ
(
N−d,nd,k + α

) Γ
(
N−d,nk,· + V β

)
Γ (Nk,· + V β)

Γ (Nk,v + β)

Γ
(
N−d,nk,v + β

) (2.14)

∝
(
N−d,nd,k + α

) N−d,nk,v + β

N−d,nk,· + V β
, (2.15)

where −d,n denotes the count excluding the n-th token in document d. The final

step is based on the property of Gamma function (Equation 2.5) and the differences
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between the numerators and denominators, e.g., Nd,k = N−d,nd,k + 1. The overall

time complexity of Gibbs sampling for LDA is O(MKN) where M is the number

iterations, K is the number of topics, and N is the total number of tokens in the

training corpus.

When the posterior inference converges, the values of θ and φ are estimated

using the final state of topic assignments as

θd,k =
Nd,k + α

Nd,· +Kα
(2.16)

φk,v =
Nk,v + β

Nk,· + V β
. (2.17)

The core of an LDA model is its φ matrix, the topic distributions over words.

Once we finish training, the φ matrix of the model is fixed and can be applied on

an unseen corpus to infer the topic distributions of new documents. Thus, in the

inference process for new documents, we fix φ and only update the θ, the document

distributions over topics:

Pr
(
zd,n = k | z−d,n,w−d,n, wd,n = v, α

)
∝
(
N−d,nd,k + α

)
φk,v. (2.18)

2.2 Topic Model Evaluation

As many other NLP methods, topic models can be evaluated both extrinsically

and intrinsically. Extrinsic evaluation applies the output of a topic model to another

task and evaluates the performance of that task. For instance, we can take each

document’s topic posteriors inferred by a topic model as a representation of the

document and use it as features for classification. If the topic posteriors are good

representations of documents, we can expect good classification performance.
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Intrinsic evaluation, on the contrary, does not involve any downstream tasks.

It evaluates topic models on one or more key metrics that can be computed inde-

pendently. A straightforward intrinsic evaluation is to estimate the likelihood of a

trained model on an unseen corpus in the same domain of the training data. If a

topic model is well trained, the likelihood of generating the unseen corpus in the

same area should be high.

It takes two steps to obtain the model’s likelihood on a new corpus. The

first step is to infer the topic assignments of all tokens in the new documents using

Equation 2.18 while ignoring all out-of-vocabulary (OOV) words. Then we compute

the log-likelihood of generating the new corpus using the current model as

L (w |θ,φ) =
D∑
d=1

Nd∑
n=1

log

(
K∑
k=1

θd,kφk,wd,n

)
, (2.19)

which is basically adding up the log likelihood of generating every token using the

trained model and the new documents’ topic distributions.

However, the scale of the log likelihood depends on the size of the unseen

corpus. The log likelihood gets lower as the size of the unseen corpus increases,

which makes the log likelihood values incomparable across corpora. Thus, people

often use perplexity which normalizes the log-likelihood by the total number of

tokens in the unseen corpus to evaluate the model quality:

P (w |θ,φ) = exp

(
−L (w |θ,φ)∑D

d=1Nd

)
. (2.20)

The perplexity can also be interpreted as the expected size of vocabulary with

uniform word distribution that the model would need to generate a token of the

unseen corpus (Heinrich, 2008). In other words, perplexity indicates the number
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Topic Words

1 dog, cat, horse, apple, pig, cow
2 car, teacher, platypugs, agile, blue, Zaire

Table 2.2: It is easy to find out an “intruder” in a coherent topic, such as “apple”
in Topic 1, but hard in an incoherent one as Topic 2 (Chang et al., 2009).

of bits the model requires to encode the data. Thus, a lower perplexity denotes a

better topic model.

Another intrinsic evaluation, word intrusion, mainly focuses on the inter-

pretability or the coherence of the topic words (Chang et al., 2009). It is designed

to evaluate manually how well each topic’s top words are related to each other.

Namely, for each topic, the human evaluators are given the words with the highest

probabilities in that topic and an irrelevant “intruder” word chosen elsewhere.

The intuition behind word intrusion is that if the topic words are of good

coherence, it is relatively easy for human evaluators to find the “intruder”. For

instance, in Topic 1 of Table 2.2, human evaluators can easily tell that this topic is

about Animals from the words “dog”, “cat”, “horse”, “pig”, and “cow”. Thus the

word “apple” is an “intruder” because it is not an animal. On the contrary, if the

topic is incoherent, like Topic 2, it is difficult to find the “intruder” or sometimes,

every word looks like an “intruder”. So the more “intruders” are found, the better

the topic model is.

A distinct disadvantage of word intrusion is that it requires a lot of human

effort, so people have developed an automatic alternative (Lau et al., 2014). Specif-

ically, it computes the average word association score of the pair-wise top words of

every topic. Given the top N words in a topic, a topic’s coherence is measured on
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a large reference corpus as

C(k) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

S(vk,i, vk,j), (2.21)

where vk,i denotes the word with the i-th highest weight in topic k; S(·, ·) denotes

the word association score of the two words on a reference corpus.2 Then the model’s

coherence is defined as the average topic coherence

C =
1

K

K∑
k=1

C(k). (2.22)

This method interprets the topic coherence as the topic’s top words’ average

association scores, which matches the intuition and correlates human evaluations

well according to experiments (Lau et al., 2014). According to the experiments, the

Pearson correlation coefficient between word intrusion and this method is 0.865 in

the domain of news articles. It also requires less human effort in evaluation, so it has

been adopted as an intrinsic evaluation metric for topic models by the community,

including this dissertation.

2.3 Topic Model Extensions

As introduced at the beginning of this chapter, a significant strength of prob-

abilistic topic models like LDA over past deterministic ones is their flexibility for

extensions. This allows people to extend the models for more general purpose and/or

include some specific characteristics of the data. To extend a topic model, one could

relax current assumptions of documents, topics, and/or words, incorporate external

knowledge, or both.

2The value of N is pre-defined.
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Figure 2.2: A portion of the hierarchy learned by hierarchical LDA on abstracts of
the Journal of ACM (Blei et al., 2007). Coarse-grained words are closer to the root,
while fine-grained words are at leaves.

2.3.1 Relaxing Current Assumptions

Relaxing the assumptions directly changes the underlying assumptions of doc-

uments, topics, words, and/or their associated distributions and yields a new topic

model. For instance, LDA assumes the number of topics and the size of vocabulary

are fixed, but with Dirichlet process (Ferguson, 1973, DP), LDA could theoretically
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have infinite numbers of topics (Teh et al., 2006) and/or vocabulary (Zhai and Boyd-

Graber, 2013). Moreover, DP can even help LDA find the number of topics that

best fits the data.

We can also change the fundamental structures of topics and words. In

“vanilla” LDA, topics are organized in a flat structure. With the help of nested

DP, topics can be organized in a hierarchy, which is called hierarchical LDA (Blei

et al., 2007, hLDA). Every node in the hierarchy is a topic, i.e., a distribution over

words. A child topic such as Algorithm, System, Programs, or Networks empha-

sizes on a certain area of its father topic (Figure 2.2). This helps to categorize the

words with information content—more coarse-grained words, such as “the” and “a”,

are more likely to be assigned to high-level topics, while more specific words are in

low-level topics.

The advantage of DP also applies to hLDA—the topic hierarchy can expand

or shrink as needed. hLDA creates new topics when the data does not fit existing

topics. It also deletes a topic when there is no token assigned to it.3

Recently, with the emergence of word embeddings, representations of words

are no longer discrete (Mikolov et al., 2013; Pennington et al., 2014). Instead, words

are mapped to a low dimensional continuous semantic space, usually between 100

and 300 dimensions. Thus LDA could be extended to generate such continuous word

vectors instead of discrete word types.

Gaussian LDA (Das et al., 2015, GLDA) assumes that a topic (red crosses in

Figure 2.3) is a Gaussian distribution in the word embedding space and generates

3The topic creation and deletion do not apply to the root topic.
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Figure 2.3: The first two principal components of word embeddings and
topic/concept vectors in Gaussian LDA (Das et al., 2015, GLDA)/latent concept
topic model (Hu and Tsujii, 2016, LCTM).

surrounding word vectors (blue dots). However, some topically related words may

be far away in the word embedding space. For instance, the words “neural” and

“net” may have very different word embeddings if the corpus has many biological

documents, but they are related in the computer science topic. GLDA is not able

to put these two words in the same topic, so it is further extended to the latent

concept topic model (Hu and Tsujii, 2016, LCTM). LCTM renames the “topics” in

GLDA to “concepts” and then defines its own “topics” as multinomial distributions

over the “concepts”. Thus the concepts for “neural” and “net” could be assigned

to the same machine learning topic.4

4However, this greatly sacrifices the topic interpretability. See Section 4.3.2.
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Figure 1: Graphical model for LDA.

build is the collapsed Gibbs sampler (Griffiths and
Steyvers, 2006). Here, the random variables β and
θ are analytically integrated out. The main sam-
pling variables are the zdn indicators (as well as
the hyperparameters: η and a, b). The conditional
distribution for zdn conditioned on all other vari-
ables in the model gives the following Gibbs sam-
pling distribution p(zdn = k):

#−dn
z=k + αkP

k′(#
−dn
z=k′ + αk′)

#−dn
z=k,w=wdn

+ ηP
k′(#

−dn
z=k′,w=wdn

+ η)
(2)

Here, #−dnχ denotes the number of times event
χ occurs in the entire corpus, excluding word n
in document d. Intuitively, the first term is a
(smoothed) relative frequency of topic k occur-
ring; the second term is a (smoothed) relative fre-
quency of topic k giving rise to word wdn.

A Markov random field specifies a joint dis-
tribution over a collection of random variables
x1, . . . , xN . An undirected graph structure stip-
ulates how the joint distribution factorizes over
these variables. Given a graph G = (V,E), where
V = {x1, . . . , xN}, let C denote a subset of all
the cliques of G. Then, the MRF specifies the joint
distribution as: p(x) = 1

Z

∏
c∈C ψc(xc). Here,

Z =
∑

x

∏
c∈C ψc(xc) is the partition function,

xc is the subset of x contained in clique c and ψc
is any non-negative function that measures how
“good” a particular configuration of variables xc
is. The ψs are called potential functions.

3 Markov Random Topic Fields
Suppose that we have access to a collection of
documents, but do not believe that these docu-
ments are all independent. In this case, the gener-
ative story of LDA no longer makes sense: related
documents are more likely to have “similar” topic
structures. For instance, in the scientific commu-
nity, if paper A cites paper B, we would (a priori)
expect the topic distributions for papers A and B
to be related. Similarly, if two papers share an au-
thor, we might expect them to be topically related.

Doc 1 Doc 2

Doc 3

Doc 4Doc 5

Doc 6

wzθ
N

wzθ
N

wzθ
N

wzθ
N

wzθ
N

wzθ
N

Figure 2: Example Markov Random Topic Field (variables
α and β are excluded for clarify).

Of if they are both published at EMNLP. Or if they
are published in the same year, or come out of the
same institution, or many other possibilities.

Regardless of the source of this notion of simi-
larity, we suppose that we can represent the rela-
tionship between documents in the form of a graph
G = (V,E). The vertices in this graph are the doc-
uments and the edges indicate relatedness. Note
that the resulting model will not be fully genera-
tive, but is still probabilistically well defined.

3.1 Single Graph
There are multiple possibilities for augmenting
LDA with such graph structure. We could “link”
the topic distributions θ over related documents;
we could “like” the topic indicators z over related
documents. We consider the former because it
leads to a more natural model. The idea is to “un-
roll” the D-plate in the graphical model for LDA
(Figure 1) and connect (via undirected links) the
θ variables associated with connected documents.
Figure 2 shows an example MRTF over six docu-
ments, with thick edges connecting the θ variables
of “related” documents. Note that each θ still has
α as a parent and each w has β as a parent: these
are left off for figure clarity.

The model is a straightforward “integration” of
LDA and an MRF specified by the document re-
lationships G. We begin with the joint distribution
specified by LDA (see Eq (1)) and add in edge po-
tentials for each edge in the document graph G that
“encourage” the topic distributions of neighboring
documents to be similar. The potentials all have
the form:

ψd,d′(θd,θd′) = exp
[−`d,d′ρ(θd,θd′)] (3)

Here, `d,d′ is a “measure of strength” of the im-
portance of the connection between d and d′ (and
will be inferred as part of the model). ρ is a dis-
tance metric measuring the dissimilarity between
θd and θd′ . For now, this is Euclidean distance

294

Figure 2.4: An example Markov random topic field in which each document propa-
gates its topic distributions to other ones via links (Daumé III, 2009).

2.3.2 Incorporating External Knowledge

As introduced in Chapter 1, external knowledge, such as document labels and

document links, includes valuable extra information for topic models in addition to

word co-occurrence patterns. Thus incorporating external knowledge is a straight-

forward and effective method to improve topic models.

Generally, there are two directions for incorporating external knowledge: up-

stream and downstream models. The major difference between the two methods

is the dependency between external knowledge and topic assignments. Upstream

models assume that the topic assignments are conditioned on external knowledge,

while downstream models generate external knowledge from topic assignments.
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Figure 2.5: An upstream topic model. Topics are conditioned on external knowledge.

2.3.2.1 Upstream Models

In an upstream model, the generation of topic assignments depends on external

knowledge. The conditional probability is then written as Pr (z |α,θ, external knowledge),

using the notations of vanilla LDA (Equation 2.2). For instance, the external knowl-

edge is document links which indicate the connected documents’ topic similarities.

By using a Markov random topic field (Daumé III, 2009, MRTF) built on document

links, a document’s topic distribution depends on those of its linked documents

(Figure 2.4).

Mimno and McCallum (2012) introduce another upstream topic model which

could incorporate arbitrary features for more general settings. It assumes that

each document has a feature vector x and each topic has a weight vector λ over

the features with a Gaussian prior. The model generates α, the Dirichlet prior of

document distributions over topics, using the dot product of λ and x, which thereby

serves as an informative prior of the correlations between topics and document

features (Figure 2.5):
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1. For each topic k ∈ {1, . . . , K}

(a) Draw feature weight λk ∼ N (0, σ2I)

(b) Draw word distribution φk ∼ Dirichlet(β)

2. For each document d ∈ {1, . . . , D}

(a) For each topic k let αd,k = exp
(
x>dλk

)
(b) Draw topic distribution θd ∼ Dirichlet(αd)

(c) For each token td,n in document d

i. Draw a topic zd,n ∼ Multinomial(θd)

ii. Draw a word wd,n ∼ Multinomial(φzd,n)

In this upstream model, external knowledge (i.e., the features) connects docu-

ments and topics via the document feature vector x and the topic feature weights λ.

The dot product of x and λ is a pre-estimation of the document’s tendency towards

topics, so it is assigned to αd and the topic assignments are conditioned on it.

Such an extension can even be applied to computer vision. Fei-Fei and Perona

(2005) treat an image as a document and each patch in the image as a token in the

document. A patch’s topic is one of K intermediate themes, e.g., Foliage, Water,

and Sky. Each image is also associated with one of C high-level categories (e.g.,

coast, highway, or streets) which serve as the supervision. Fei-Fei and Perona (2005)

introduce an upstream vision topic model which generates the themes conditioned

on the image’s category (Figure 2.6):

1. For each image i ∈ {1, . . . , I}
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Figure 2.6: An upstream topic model in computer vision (Fei-Fei and Perona, 2005).
It uses the image categories as the external knowledge and generates the patches’
themes conditioned on them. Some notations are adapted for consistency.

(a) Draw a category ci ∼ Multinomial(η)

(b) Draw theme distribution θi ∼ Dirichlet(πci)

(c) For each of the N patches

i. Draw a theme zn ∼ Multinomial(θi)

ii. Draw a patch xn ∼ Multinomial(φzn)

This model is similar to the one developed by Mimno and McCallum (2012). It

encodes the category knowledge in the informative prior π and generates the image’s

theme (topic) distribution θ conditioned on the corresponding row of π according

to the image category assignment.

2.3.2.2 Downstream Models

Downstream models, on the other hand, generates external knowledge based on

topic assignments, i.e., Pr (external knowledge | z). As Yang et al. (2015b) point out,
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Figure 2.7: A general graphical model of downstream topic models. Note that
the external knowledge encoded in the posterior regularizer Ψ conditions on topic
assignments z and/or tokens w.

each prior knowledge m in the knowledge set M can be represented by a potential

function fm(z,w,d) of topic assignments z, words w, and/or documents d. Higher

value of fm(z,w,d) indicates better consistency with m at the current state. Finally,

all prior knowledge is encoded into a posterior regularizer Ψ as

Ψ (z,w,M) =
∏
m∈M

exp (fm(z,w,d)) . (2.23)

A general downstream topic model first generates tokens and topic assign-

ments following vanilla LDA, and then generates the external knowledge encoded

in the posterior regularizer Ψ from the documents, topic assignments, and/or words

(Figure 2.7):

1. For each topic k ∈ {1, . . . , K}

(a) Draw word distribution φk ∼ Dirichlet(β)
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2. For each document d ∈ {1, . . . , D}

(a) Draw topic distribution θd ∼ Dirichlet(α)

(b) For each token td,n in document d

i. Draw a topic zd,n ∼ Multinomial(θd)

ii. Draw a word wd,n ∼ Multinomial(φzd,n)

3. Draw external knowledge Ψ(z,w)

With knowledge potential functions fm(z,w,d) and posterior regularizers Ψ,

it is very flexible to incorporate various types of external knowledge. For instance,

if each document has a real-valued label yd (e.g., an Amazon review is associated

with an integer rating from one to five), we assume the knowledge potential func-

tion of each document d is the log-likelihood of drawing the label from a Gaussian

distribution as

f(z,w, d) = logN

(
yd

∣∣∣∣∣
K∑
k=1

ηk
Nd,k

Nd,·
, ρ2

)
, (2.24)

where η is a weight vector to be optimized (introduced in Equations 2.35 and 2.36

later in this chapter) and ρ is a pre-defined variance, and then we get supervised

LDA (McAuliffe and Blei, 2008, sLDA) with a posterior regularizer:

Ψ = exp

(
D∑
d=1

f(z,w, d)

)
=

D∏
d=1

N

(
yd

∣∣∣∣∣
K∑
k=1

ηk
Nd,k

Nd,·
, ρ2

)
. (2.25)

If the document label yd is a binary value with one denoting positive sentiment

and zero denoting negative sentiment, the knowledge potential function is

f(z,w, d) = log

(
ydσ

(
K∑
k=1

ηk
Nd,k

Nd,·

)
+ (1− yd)

(
1− σ

(
K∑
k=1

ηk
Nd,k

Nd,·

)))
, (2.26)
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where σ(·) is a sigmoid function that σ(x) = 1/(1 + exp(−x)), and the posterior

regularizer Ψ is

Ψ =
∏
d:yd=1

σ

(
K∑
k=1

ηk
Nd,k

Nd,·

) ∏
d′:yd′=0

(
1− σ

(
K∑
k=1

ηk
Nd′,k

Nd′,·

))
. (2.27)

Similarly, if binary document links yd,d′ are provided, we get the relational

topic model (Chang and Blei, 2010, RTM). The knowledge potential function of a

link between documents d and d′ is

f(z,w, d, d′) = log σ

(
K∑
k=1

ηk
Nd,k

Nd,·

Nd′,k

Nd′,·

)
, (2.28)

which leads to the posterior regularizer of

Ψ =
∏

(d,d′):yd,d′=1

σ

(
K∑
k=1

ηk
Nd,k

Nd,·

Nd′,k

Nd′,·

)
. (2.29)

The knowledge potential function fm(z,w,d) could also be a metric derived

from observed evidence. For instance, each word w has a must-link set Mm
w , which

contains the words highly correlated with w, and a cannot-link set M c
w with the

words not correlated with w. A knowledge potential function could be derived to

encourage highly correlated words to be assigned to the same topic and uncorrelated

words not to be assigned to the same topic (Yang et al., 2015b):

f(z, w) = log
∏

u∈Mm
w

max (λ,Nk,u)
∏
v∈Mc

w

1

max (λ,Nk,v)
, (2.30)

where λ is a smoothing hyperparameter. Then the posterior regularizer Ψ is

Ψ =
∏
w

∏
u∈Mm

w

max (λ,Nk,u)
∏
v∈Mc

w

1

max (λ,Nk,v)
. (2.31)

The posterior inference of downstream models can be derived following the

steps in Section 2.1.1. The value of the posterior regularizer without the current
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token remains a constant and can be dropped. Only the posterior regularizer with

the current token is included in the final Gibbs sampling equation:

Pr(zd,n = k | z−d,n, wd,n = v,w−d,n, α, β)

∝
(
N−d,nd,k + α

) N−d,nk,v + β

N−d,nk,· + V β︸ ︷︷ ︸
LDA Sampling

Ψ
(
zd,n = k, z−d,n,w,M

)︸ ︷︷ ︸
Posterior Regularizer

, (2.32)

where the first two terms are the same with vanilla LDA and the third term is

the posterior regularizer which encodes external knowledge. In this formulation,

the potential functions shape Gibbs sampling inference: topic assignments are more

likely when they are consistent with the external knowledge included in the poten-

tial functions. This brings significant flexibility in the expression of the potential

function fm(z,w,d). The expression is not restricted to probabilistic distributions,

exponential family, or conjugacy. It can be expressed flexibly using the combinations

of any of the values from topic assignments, words, and/or documents. Moreover,

changing the expressions of potential functions does not change the main struc-

ture of the topic model or require full re-derivation of the Gibbs sampling equation.

Hence this allows more flexible experimentation to find the best formulation.

If the posterior regularizer has some variables (e.g., the weight vector η in

sLDA) to be optimized, the posterior inference should be made by stochastic EM

which consists of an E-step and an M-step in each iteration (Celeux, 1985). If we

take sLDA as an example, the E-step updates the topic assignments using Gibbs
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sampling while keeping η fixed:

Pr
(
zd,n = k | z−d,n,w−d,n, wd,n = v, α, β

)

∝
(
N−d,nd,k + α

) N−d,nk,v + β

N−d,nk,· + V β
exp

−
(
yd −

∑K
k′=1 ηk′

N−d,n

d,k′

Nd,·
− ηk

Nd,·

)2

2ρ2

 , (2.33)

The M-step optimizes η to maximize the likelihood of generating external

knowledge. In the optimization, we usually add a Gaussian prior N (µ, σ2) on each

value of η to prevent overfitting:

L(η) ∝ log
D∏
d=1

exp

−
(
yd −

∑K
k=1 ηk

Nd,k

Nd,·

)2
2ρ2


︸ ︷︷ ︸

Likelihood of generating labels

K∏
k=1

exp

(
−(ηk − µ)2

2σ2

)
︸ ︷︷ ︸

Priors for η

(2.34)

∝−
D∑
d=1

(
yd −

∑K
k=1 ηk

Nd,k

Nd,·

)2
2ρ2

−
K∑
k=1

(ηk − µ)2

2σ2
. (2.35)

This objective function is maximized using L-BFGS and partial derivatives

with respect to every ηk (Liu and Nocedal, 1989):

∂L(η)

∂ηk
∝

D∑
d=1

yd −
∑K

k′=1 ηk′
Nd,k′

Nd,·

ρ2
Nd,k

Nd,·
− ηk − µ

σ2
. (2.36)
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Chapter 3: Topic Modeling with Document Networks

As described in Chapter 1, weighted links in the text contain rich information

about the objects they connect. With the topic model extension methods introduced

in Section 2.3, we are now able to incorporate weighted text links into topic modeling.

In this chapter, we focus on binary-valued document links that indicate the topic

similarities of the connected documents.

Documents often appear within a network structure with binary-weight edges:

social media users have mentions, retweets, and follower relationships; Web pages

have hyperlinks; scientific papers have citations. The phenomenon of homophily

indicates that network structure interacts with the topics in the text, in that docu-

ments linked in a network are more likely to have similar topic distributions (McPher-

son et al., 2001). For instance, a citation link between two papers suggests that they

are about a related field; a hyperlink between two professors’ academic homepages

indicates they may be colleagues or may have collaborated; and a mentioning link

between two social media users often indicates common interests. Conversely, if two

documents have similar topic distributions, they are likely to have a link between

them. For example, the topic model (Blei et al., 2003, LDA) and block detection

papers (Holland et al., 1983) are relevant to this dissertation, so we cite them; if
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two professors are in the same research area and/or work at the same institution,

there is a higher chance that they collaborate and link to each other’s homepage;

if a social media user A finds another user B with shared interests, then A is more

likely to mention, retweet, and/or follow B.

Since document links usually imply topical similarity, it is beneficial to incor-

porate the binary document links into topic models. Thus, we introduce a new joint

topic model, based on the relational topic model (Chang and Blei, 2010, RTM), that

makes fuller use of the rich link structure within a document network, in contrast to

the past methods which model text and links separately (Kim and Leskovec, 2012;

Liben-Nowell and Kleinberg, 2007; Chaturvedi et al., 2012). Specifically, our model

combines the weighted stochastic block model (Aicher et al., 2014, WSBM) with topic

modeling to identify blocks which consist of subsets of documents that are densely

connected. The WSBM categorizes each document in a network probabilistically as

belonging to one of L latent blocks, based on its connections with each block. Our

model can be viewed as a principled probabilistic extension of Yang et al. (2015a),

where we identify blocks in a document network deterministically as strongly con-

nected components (Sharir, 1981, SCC) before topic modeling. As in that work, we

assign a distinct Dirichlet prior to each block to capture its topical commonalities

and guide the topic generation of the documents in that block. A linear regression

model with a discriminative, max-margin objective function (Zhu et al., 2012, 2014)

is jointly trained to reconstruct the binary links, taking into account the features of

documents’ topic and word distributions (Nguyen et al., 2013), block assignments,

and inter-block link rates.
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We validate our approach on a scientific paper abstract dataset and a collection

of webpages, with citation links and hyperlinks respectively, to predict links among

previously unseen documents and from those new documents to training documents.

Combining the WSBM with a topic model leads to substantial improvements in

link prediction over previous models; it also improves block detection and topic

interpretability. The key advantage in combining WSBM compared to using SCC

is its flexibility and robustness in the face of noisy links. Our results also lend

additional support for using max-margin learning for a downstream supervised topic

model (McAuliffe and Blei, 2008), and show that predictions from lexical as well as

topic features improve performance (Nguyen et al., 2013).1

3.1 Dealing with Links

In this section, we introduce some basic methods to process links. In a general

network (i.e., not restricted to text links) where nodes are connected, the link density

is not always distributed evenly. A subset of nodes may be densely connected, while

sparsely connected with the rest of the nodes. Thus this subset of nodes forms a

block. The nodes in the same block usually have similar properties. In terms of

the documents in the same block, they are likely to have similar topic distributions.

Thus it is essential and useful to identify blocks in a network, either deterministically

(Section 3.1.1) or probabilistically (Section 3.1.2).

1The work done in this chapter has been published in “Birds of a Feather Linked Together: A

Discriminative Topic Model using Link-based Priors” (Yang et al., 2015a) and “A Discriminative

Topic Model using Document Network Structure” (Yang et al., 2016).
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Figure 3.1: An example of strongly connected components. Every pair of nodes
in the same component can reach each other via the nodes only in that compo-
nent. The figure is adapted from https://commons.wikimedia.org/w/index.php?

curid=647584

To incorporate the document links, the relational topic model (Chang and

Blei, 2010, RTM) is a basic downstream model (Section 3.1.3). It encodes every

document link in the posterior regularizer and jointly models topics and document

links by encouraging connected documents to have similar topic distributions.

3.1.1 Strongly Connected Components

Strongly connected components (Sharir, 1981, SCC) is a deterministic method

to identify small clusters or cliques in a network. In each block identified by SCC,

every node is reachable from any other nodes in the same component, via path(s)

along the nodes in this component only (Figure 3.1). Thus in the blocks which it

identifies, the nodes are very closely connected and likely to share similar patterns.

SCC identifies blocks using a depth-first search (DFS). It starts from a node

that has not been assigned to any blocks and creates a new block with that node.
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Then it uses DFS to search for other unassigned nodes that are reachable from

and to the new block and includes them into the current block. SCC repeats this

procedure until all nodes have block assignments.

The major advantage of the SCC algorithm is its efficiency and the fact that

it is non-parametric. It does not require a pre-selection of the number of clusters.

Instead, it decides on its own during the process of DFS which has an approximate

time complexity of O(|D|+ |E|) where |D| denotes the number nodes (documents)

and |E| denotes the number of edges. Its major disadvantage is also obvious. SCC

only cares whether two nodes are connected, without taking into account the link

density of neighboring nodes. Thus it has a high variance in the output: if we make

a slight change in the input by adding a link that connects two blocks, the output

of SCC will change significantly—it merges the two previously independent blocks

into a big one.2

3.1.2 Weighted Stochastic Block Model

Weighted stochastic block model (Aicher et al., 2014, WSBM), on the other

hand, is a probabilistic generative block detection method. It generalizes the stochas-

tic block model (Holland et al., 1983; Wang and Wong, 1987, SBM) and can model

nonnegative integer-weight links, instead of binary-weight links.

The graphical model of WSBM is given in Figure 3.2. WSBM assumes that

each of the D nodes (documents) belongs to exactly one of L latent blocks. The

block assignments are drawn from a multinomial distribution µ with a Dirichlet

2Look ahead to Figure 3.3.
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Figure 3.2: The graphical model of weighted stochastic block model (Aicher et al.,
2014, WSBM).

prior parameterized by γ. A nonnegative integer-weight link connecting two nodes

(documents) in blocks l and l′ has a weight generated from a Poisson distribution

with parameters Ωl,l′ which has a Gamma prior with parameters a and b. The full

generative process is:

1. For each pair of blocks (l, l′) ∈ {1, . . . , L}2

(a) Draw inter-block link rate Ωl,l′ ∼ Gamma(a, b)

2. Draw block distribution µ ∼ Dirichlet(γ)

3. For each node (document) d ∈ {1, . . . , D}

(a) Draw block assignment yd ∼ Multinomial(µ)

4. For each link (d, d′) ∈ {1, . . . , D}2

(a) Draw link weight Ad,d′ ∼ Poisson(Ωyd,yd′
)
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Figure 3.3: SCC (Sharir, 1981) can be distracted by spurious links connecting two
groups, while WSBM (Aicher et al., 2014) maintains the distinction.

Unlike SCC that is vulnerable to noisy links, WSBM detects the blocks prob-

abilistically and is more robust. As mentioned in the introduction of SCC (Sec-

tion 3.1.1), given a graph like Figure 3.3, the existence of the dashed link will sig-

nificantly change the output of SCC. If the dashed link does not exist, both WSBM

and SCC can identify two blocks as denoted by colors. However, if the dashed link

does exist, SCC will merge the two blocks and return only one big block that con-

tains all nodes, which contradicts our intuition. In this case, WSBM is robust and

still keeps the nodes in two reasonable blocks.

3.1.3 Relational Topic Model

Relational topic model (Chang and Blei, 2010, RTM) is a downstream model

(Section 2.3.2.2) that jointly models the topics and document links (Figure 3.4).

Although RTM can be described by the general generative process of topic mod-

els with posterior regularizers, we give its original generative process to reveal the

intuitions better as follows:

1. For each topic k ∈ {1, . . . , K}
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Figure 3.4: A two-document segment of relational topic model (Chang and Blei,
2010, RTM).

(a) Draw word distribution φk ∼ Dirichlet(β)

(b) Draw topic regression parameter ηk ∼ N (0, ν2)

2. For each document d ∈ {1, . . . , D}

(a) Draw topic distribution θd ∼ Dirichlet(α)

(b) For each token td,n in document d

i. Draw a topic zd,n ∼ Multinomial(θd)

ii. Draw a word wd,n ∼ Multinomial(φzd,n)

3. For each explicit link (d, d′)

(a) Draw link weight Bd,d′ ∼ f(zd, zd′ ,η)

where we use B to denote the document links because as we will introduce later (Sec-

tion 3.2.3), the links fed to WSBM and topic model are different. Each link (d, d′)
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that connects documents d and d′ is drawn from a link probability function f(zd, zd′ ,η)

that takes a weight vector and the two documents’ topic posteriors:

Bd,d′ ∼ f(zd, zd′ ,η) = σ

(
K∑
k=1

ηk
Nd,k

Nd,·

Nd′,k

Nd′,·

)
, (3.1)

where σ(·) is a sigmoid function.

As most downstream topic models, the posterior inference of RTM is based on

stochastic EM and consists of an E-step and an M-step (Celeux, 1985). The E-step

updates the topic assignments while holding the topic weight vectors:

Pr
(
zd,n = k | z−d,n,w−d,n, wd,n = v,B,η, α, β

)
∝
(
N−d,nd,k + α

) N−d,nk,v + β

N−d,nk,· + V β

∏
d′:(d,d′)∈B

σ

(
K∑
k′=1

ηk′
N−d,nd,k′

Nd,·

Nd′,k′

Nd′,·
+ ηk

1

Nd,·

Nd′,k

Nd′,·

)
.

(3.2)

The M-step optimizes the weight vector η to maximize the log-likelihood of

generating the links with the topic assignments and Gaussian priors:

L (η | z, ν) =
∑

(d,d′)∈B

log σ

(
K∑
k=1

ηk
Nd,k

Nd,·

Nd′,k

Nd′,·

)
−

K∑
k=1

η2k
2ν2

, (3.3)

with L-BFGS and the partial derivative with respect to every ηk (Liu and Nocedal,

1989):

∂L (η | z, ν)

∂ηk
=

∑
(d,d′)∈B

exp
(
−
∑K

k′=1 ηk′
Nd,k′

Nd,·

Nd′,k′

Nd′,·

)
1 + exp

(
−
∑K

k′=1 ηk′
Nd,k′

Nd,·

Nd′,k′

Nd′,·

)Nd,k

Nd,·

Nd′,k

Nd′,·
− ηk
ν2
. (3.4)

3.2 Discriminative Topic Model with Block Prior and Features

Our model identifies latent document blocks from the document network with

a WSBM, extracts topic patterns of each block as informative priors, and uses this
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Figure 3.5: Graphical Model of BP-LDA.

information to infer topics and reconstruct the links. For presentation, we decom-

pose it into several key components (Sections 3.2.1 and 3.2.2) and then aggregate

(Section 3.2.3).

3.2.1 LDA with Block Priors (BP-LDA)

As argued at the beginning of this chapter, linked documents are likely to have

similar topic distributions, which can be generalized to the documents in the same

block. Inspired by this intuition and the block assignments we obtain in the previous

sections, we want to extract some external knowledge from these blocks. Thus we

introduce an LDA with block priors, hence BP-LDA, as shown in Figure 3.5, which

has the following generative process:

1. For each topic k ∈ {1, . . . , K}

(a) Draw word distribution φk ∼ Dirichlet(β)
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2. For each block l ∈ {1, . . . , L}

(a) Draw topic distribution πl ∼ Dirichlet(α′)

3. For each document d ∈ {1, . . . , D}

(a) Draw topic distribution θd ∼ Dirichlet(απyd
)

(b) For each token td,n in document d

i. Draw a topic zd,n ∼ Multinomial(θd)

ii. Draw a word wd,n ∼ Multinomial(φzd,n)

Most of BP-LDA’s generative process is similar to vanilla LDA. However,

unlike vanilla LDA, which uses an uninformative topic prior (i.e., same α value

for all topics), BP-LDA puts a distinct Dirichlet prior π on each block to capture

that block’s topic distribution. Then BP-LDA uses the block’s topic patterns as an

informative prior (i.e., απyd
) which has emphases on some topics, when drawing

each document’s topic distribution in the block. In other words, a document’s topic

distribution—i.e., what the document is about—is not just informed by the words

present in the document but also by the broader context of its network neighborhood.

3.2.2 More Features for Link Generation in RTM

Building on the relational topic model, we want to generate the links between

documents based on more features we have (Chang and Blei, 2010). Specifically,

in addition to topic distributions, documents’ word distributions (Nguyen et al.,

2013) and the link rate of the two documents’ assigned blocks are also included
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Figure 3.6: A two-document segment of RTM with features denoted by grayscale.
The document link Bd,d′ is observed and should be in gray, but we keep it in white
background to avoid confusion.

in the feature set, with the intuition that similar word usage and high inter-block

link rate also indicate document similarity and the intent that these additional

features improve link generation. RTM involves the relationship between a pair of

documents, so it is difficult to show the whole model graphically; therefore Figure 3.6

illustrates with a two-document segment. The generative process is:

1. For each pair of blocks (l, l′) ∈ {1, . . . , L}2

(a) Draw block regression parameter ρl,l′ ∼ N (0, ν2)

2. For each topic k ∈ {1, . . . , K}

(a) Draw word distribution φk ∼ Dirichlet(β)

(b) Draw topic regression parameter ηk ∼ N (0, ν2)
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3. For each word v ∈ {1, . . . , V }

(a) Draw lexical regression parameter τv ∼ N (0, ν2)

4. For each document d ∈ {1, . . . , D}

(a) Draw topic distribution θd ∼ Dirichlet(α)

(b) For each token td,n in document d

i. Draw a topic zd,n ∼ Multinomial(θd)

ii. Draw a word wd,n ∼ Multinomial(φzd,n)

5. For each explicit link (d, d′)

(a) Draw link weight Bd,d′ ∼ f (yd, yd′ ,Ω, zd, zd′ ,wd,wd′ ,η, τ ,ρ)

Binary links are generated by a link probability function f which takes the

regression value Rd,d′ of documents d and d′ as an argument. Assuming documents d

and d′ belong to blocks l and l′ respectively, Rd,d′ is

Rd,d′ =
K∑
k=1

ηk
Nd,k

Nd,·

Nd′,k

Nd′,·
+

V∑
v=1

τv
Nd,v

Nd,·

Nd′,v

Nd′,·
+ ρl,l′Ωl,l′ , (3.5)

where as Chang and Blei (2010), the two documents’ topic and word distribution

similarities are captured by the weighted sum of element-wise (Hardamard) product;

η, τ , and ρ are the weight vectors and matrix for topic-based, lexical-based and

rate-based predictions, respectively.

A common choice of the link probability function f is a sigmoid (Chang and

Blei, 2010):

f(Rd,d′) = Pr (Bd,d′ = 1 |Rd,d′) = σ (Rd,d′) =
1

1 + exp (−Rd,d′)
. (3.6)
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Figure 3.7: The graphical model of LBH-RTM for two documents, in which a
weighted stochastic block model is integrated (γ, µ, y, a, b, Ω, and A) to iden-
tify latent document blocks. Each document’s topic distribution has an informative
prior π extracted from the block topic distributions. The model predicts links be-
tween documents (B) based on topics (z), words (w), and inter-block link rates (Ω),
using a max-margin objective.

However, we instead use hinge loss so that RTM can use the max-margin principle,

making more effective use of side information when inferring topic assignments (Zhu

et al., 2012). Using hinge loss, the probability that documents d and d′ are linked is

Pr (Bd,d′ |Rd,d′) = exp (−2 max(0, ζd,d′)) , (3.7)

where ζd,d′ = 1−Bd,d′Rd,d′ . Positive and negative link weights are denoted by 1 and

-1, respectively, in contrast to sigmoid loss which denotes negative link weights by

0 instead.

3.2.3 Aggregated Model

Finally, we put all the pieces together and introduce LBH-RTM: RTM with

lexical weights (L), block priors (B), and hinge loss (H). Its graphical model is given

in Figure 3.7.
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1. For each pair of blocks (l, l′) ∈ {1, . . . , L}2

(a) Draw inter-block link rate Ωl,l′ ∼ Gamma(a, b)

(b) Draw block regression parameter ρl,l′ ∼ N (0, ν2)

2. Draw block distribution µ ∼ Dirichlet(γ)

3. For each block l ∈ {1, . . . , L}

(a) Draw topic distribution πl ∼ Dirichlet(α′)

4. For each topic k ∈ {1, . . . , K}

(a) Draw word distribution φk ∼ Dirichlet(β)

(b) Draw topic regression parameter ηk ∼ N (0, ν2)

5. For each word v ∈ {1, . . . , V }

(a) Draw lexical regression parameter τv ∼ N (0, ν2)

6. For each document d ∈ {1, . . . , D}

(a) Draw a block yd ∼ Multinomial(µ)

(b) Draw topic distribution θd ∼ Dirichlet(απyd
)

(c) For each token td,n in document d

i. Draw a topic zd,n ∼ Multinomial(θd)

ii. Draw a word wd,n ∼ Multinomial(φzd,n)

7. For each link (d, d′) ∈ {1, . . . , D}2
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(a) Draw link weight Ad,d′ ∼ Poisson(Ωyd,yd′
)

8. For each explicit link (d, d′)

(a) Draw link weight Bd,d′ ∼ f(yd, yd′ ,Ω, zd, zd′ ,wd,wd′ ,η, τ ,ρ)

where the link sets A (for block detection) and B (for document link replication)

are assumed independent in the model, but they can be derived from the same set

of links in practice.

Link set A is primarily used to find blocks, so it treats all links deterministi-

cally. In other words, the links observed in the input are considered explicit positive

links, while the unobserved links are considered explicit negative links, in contrast

to the implicit links in B.

In terms of link set B, while it adopts all explicit positive links from the input,

it does not deny the existence of unobserved links, or implicit negative links, because

sometimes it makes sense for a link to exist between two unlinked documents, e.g.,

a good but missing citation for a paper.3 Thus B consists of only explicit positive

links. However, to avoid overfitting, we randomly sample some implicit links and

add them to B as explicit negative links (Gutmann and Hyvärinen, 2012; Mnih and

Teh, 2012; Collobert and Weston, 2008).

The general workflow of LBH-RTM is as follows. WSBM detects the latent

blocks and documents’ block assignments. Then topic priors are extracted from

blocks and guide documents’ topic generation. Finally, document links are drawn

from a max-margin probability function, with topical, lexical, and block features.

3This indicates a potential application of document link suggestion for our LBH-RTM.
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Algorithm 1 Sampling Process of LBH-RTM

1: Sample implicit negative links as explicit ones from a uniform distribution
2: Set every λd,d′ = 1 and initialize every topic assignment zd,n from a uniform

distribution
3: for m = 1 to M do
4: Optimize η, τ , and ρ using L-BFGS (Equation 3.18)
5: for each document d = 1 to D do
6: Draw block assignment yd from the multinomial distribution (Equa-

tion 3.8)
7: for each token n in document d do
8: Draw a topic assignment zd,n from the multinomial distribution

(Equation 3.12)
9: end for

10: for each document d′ which document d explicitly links do
11: Draw λ−1d,d′ (and then λd,d′) from the inverse Gaussian distribution

(Equation 3.26)
12: end for
13: end for
14: end for

3.3 Posterior Inference

Like other downstream topic models, the posterior inference of LBH-RTM

(Algorithm 1) is based on stochastic EM and consists of an E-step of updating

topic and block assignments and an M-step of optimizing the weight vectors and

matrix (Celeux, 1985).4 We add an auxiliary variable λ for hinge loss (see Sec-

tion 3.3.2), which is included as part of the E-step. The updating of λ is not

necessary when using sigmoid loss.

The sampling procedure is an iterative process after initialization (Lines 1

and 2). In each of the M iterations, we first optimize the weight vectors and matrix

(Line 4) before updating documents’ block assignments (Line 6) and topic assign-

4More details about sampling procedures and equations in this chapter, including the sampling

and optimization equations using sigmoid loss, are available in Appendix A.
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ments (Line 8). When using hinge loss, the auxiliary variable λ for every explicit

link needs to be updated (Line 11).

3.3.1 Sampling Block Assignments

Block assignment sampling is done by Gibbs sampling, using the block assign-

ments and link statistics based on the link set A, but excluding document d and its

related links.5 The probability that document d is assigned to block l is

Pr
(
yd = l |A−d,y−d, a, b, γ

)
∝
(
N−dl + γ

)
×

∏
l′

(
S−de (l, l′) + b

)S−d
w (l,l′)+a

(S−de (l, l′) + b+ Se(d, l′))
S−d
w (l,l′)+a+Sw(d,l′)

Sw(d,l′)−1∏
i=0

(
S−dw (l, l′) + a+ i

)
, (3.8)

where Nl is the number of documents assigned to block l; −d denotes that the

count excludes document d; Sw(d, l) and Sw(l, l′) are the sums of link weights from

document d to block l and from block l to block l′, respectively:

Sw(d, l) =
∑

d′:yd′=l

Ad,d′ (3.9)

Sw(l, l′) =
∑
d:yd=l

Sw(d, l′). (3.10)

Se(d, l) is the maximum number of possible links from document d to l, i.e., assuming

document d connects to every document in block l, which equals Nl. The maximum

number of possible links from block l to l′ is Se(l, l
′), i.e., assuming every document

in block l connects to every document in block l′:

Se(l, l
′) =


Nl ×Nl′ l 6= l′

1
2
Nl(Nl − 1) l = l′.

(3.11)

5These equations deal with undirected edges, but they can be adapted for directed edges. See

Appendix Section A.1.2.
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The time complexity of inferring document d’s block assignment is
∑

l Sw(d, l)

which is the total link weight from/to document d. In our case, we are dealing with

binary-valued links, so the total link weight from/to document d equals the degree

of document d. In the implementation, the values of the power and product terms

in Equation 3.8 may exceed the range of (double-precision) float numbers, so it is

suggested to compute the logarithmic scores for each block, apply normalization,

and finally sample a block.

If we rearrange the terms of Equation 3.8 and put the terms which have Sw(d, l′)

together, we will find that WSBM considers the document’s link density when up-

dating its block assignment: when the value of Sw(d, l′) increases, or document d is

more densely connected with the documents in block l′, the probability of assigning

document d to block l decreases exponentially. Thus if document d is more densely

connected with the documents in block l and sparsely connected with other blocks,

it is (exponentially) more likely to be assigned to block l.

3.3.2 Sampling Topic Assignments

Following Polson and Scott (2011), we introduce an auxiliary variable λd,d′

for updating topic assignments when using hinge loss. With λd,d′ , the conditional

probability of assigning td,n, the n-th token in document d, to topic k is

Pr
(
zd,n = k | z−d,n,w−d,n, wd,n = v, yd = l,π, α, α′, β

)
∝
(
N−d,nd,k + απ−d,nl,k

) N−d,nk,v + β

N−d,nk,· + V β

∏
d′:(d,d′)∈B

exp

(
−(ζd,d′ + λd,d′)

2

2λd,d′

)
, (3.12)
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where Nd,k is the number of tokens in document d that are assigned to topic k;

Nk,v denotes the count of word v assigned to topic k; Marginal counts are denoted

by ·; −d,n denotes that the count excludes td,n; d′ denotes all documents that have

explicit links with document d. The block topic prior π−d,nl,k is estimated based on

the maximal path assumption (Cowans, 2006; Wallach, 2008):

π−d,nl,k =

∑
d′:yd′=l

N−d,nd′,k + α′∑
d′:yd′=l

N−d,nd′,· +Kα′
. (3.13)

The link prediction argument ζd,d′ is

ζd,d′ = 1−Bd,d′

(
R−d,nd,d′ + ηk

1

Nd,·

Nd′,k

Nd′,·

)
, (3.14)

where

R−d,nd,d′ =
K∑
k′=1

ηk′
N−d,nd,k′

Nd,·

Nd′,k′

Nd′,·
+

V∑
v=1

τv
Nd,v

Nd,·

Nd′,v

Nd′,·
+ ρyd,yd′Ωyd,yd′

. (3.15)

Looking at the first term of Equation 3.12, the probability of assigning td,n to

topic k depends not only on its own document topic distribution, but also the topic

distribution of the block it belongs to, which reflects the theory of homophily. The

links also matter: Equation 3.14 gives us the intuition that a topic is more likely

to be selected if it could increase the likelihood of links, which forms an interaction

between topics and the link graph—the links are guiding the topic sampling while

updating topic assignments is maximizing the likelihood of the link graph.

The time complexity of inferring a token’s topic assignment in document d

isO(Deg(d)K(K+V )) where Deg(d) denotes the degree of document d; the term (K+

V ) comes from the calculation of R−d,nd,d′ . However, the documents’ word distributions
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are often sparse, so we can skip the words with zero term frequencies in documents d

or d′ and achieve a much better complexity than O(K + V ).

3.3.3 Parameter Optimization

While topic assignments are updated iteratively in the E-step, the weight

vectors and matrix η, τ , and ρ are optimized in the M-step of each global iteration

over the whole corpus using L-BFGS (Liu and Nocedal, 1989). It takes the likelihood

of generating the link set B using η, τ , ρ, and current topic and block assignments

as the objective function, and optimizes it using the partial derivatives with respect

to every weight vector/matrix element.

The log likelihood of generating link set B using η, τ , ρ, and hinge loss, i.e.,

the sum of the exponents in Equation 3.12, is

L (η, τ ,ρ |B, z,w,y) (3.16)

=−
∑
d,d′

(ζd,d′ + λd,d′)
2

2λd,d′
−

K∑
k=1

η2k
2ν2
−

V∑
v=1

τ 2v
2ν2
−

L∑
l=1

L∑
l′=1

ρ2l,l′

2ν2
(3.17)

∝−
∑
d,d′

R2
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−
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η2k
2ν2
−

V∑
v=1

τ 2v
2ν2
−

L∑
l=1

L∑
l′=1

ρ2l,l′

2ν2
. (3.18)

Thus the partial derivatives are

∂L (η, τ ,ρ)

∂ηk
∝−

∑
d,d′

Rd,d′ − (1 + λd,d′)Bd,d′

λd,d′

Nd,k

Nd,·

Nd′,k

Nd′,·
− ηk
ν2

(3.19)
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∑
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λd,d′
Ωl,l′ −

ρl,l′

ν2
. (3.21)
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We also need to update the auxiliary variable λd,d′ . Since the likelihood of λd,d′

follows a generalized inverse Gaussian distribution (Barndorff-Nielsen and Halgreen,

1977; Seshadri, 1997)

L (λd,d′ | z,w,y,η, τ ,ρ) =
1√

2πλd,d′
exp

(
−(ζd,d′ + λd,d′)

2

2λd,d′

)
(3.22)

∝ 1√
2πλd,d′

exp

(
−
ζ2d,d′

2λd,d′
− λd,d′

2

)
(3.23)

=GIG
(
λd,d′ ;

1

2
, 1, ζ2d,d′

)
, (3.24)

where

GIG (x; p, a, b) = C(p, a, b)xp−1 exp

(
−1

2

(
b

x
+ ax

))
, (3.25)

where C(p, a, b) is a normalization constant, so we sample its reciprocal λ−1d,d′ from

an inverse Gaussian distribution and then obtain λd,d′ (Chhikara, 1988):

Pr
(
λ−1d,d′ | z,w,y,η, τ ,ρ

)
= IG

(
λ−1d,d′ ;

1

|ζd,d′|
, 1

)
, (3.26)

where

IG (x; a, b) =

√
b

2πx3
exp

(
−b (x− a)2

2a2x

)
(3.27)

for a > 0 and b > 0.

3.4 Experimental Results

We evaluate our LBH-RTM using two datasets. The first is Cora (McCallum

et al., 2000). After removing stopwords and the words that appear in fewer than

ten documents, as well as the documents with no words or links, our vocabulary has

1,240 unique word types. The corpus has 2,362 computer science paper abstracts

with 4,231 citation links.
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The second dataset is WebKB. It is already preprocessed and has 1,703 unique

word types in vocabulary. The corpus has 877 web pages with 1,608 hyperlinks.

We treat all links as undirected. Both datasets are split into five folds, each

further split into development and test sets with approximately the same size when

used for evaluation.

We first introduce LBH-RTM’s link prediction performance (Section 3.4.1) and

show the model’s superiority over others with an illustrative example (Section 3.4.2).

Then we evaluate the model’s topic coherence both quantitatively and qualitatively

(Section 3.4.3). We finally illustrate the robustness of WSBM over SCC with an

example (Section 3.4.4).

3.4.1 Link Prediction Results

We evaluate LBH-RTM and its variations on link prediction tasks using pre-

dictive link rank (PLR) against baseline models. A document’s PLR is the average

rank of the documents to which it has explicit positive links, among all documents,

so lower PLR indicates better link prediction performance, as actually linked docu-

ments are ranked higher. For instance, given a query document, we rank and sort

all other documents by the link probabilities to the query document as shown in

Table 3.1. Among the six candidate documents, documents 2, 3, and 6 have actual

links with the query document and their ranks are 2, 3, and 5. Thus the average

rank is (2 + 3 + 5)/3 ≈ 3.33.

Following the experiment setup in Chang and Blei (2010), we train the models
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Rank Doc ID Link Probability Actual Link?

1 5 0.90
2 3 0.85 Yes
3 2 0.82 Yes
4 4 0.70
5 6 0.63 Yes
6 1 0.50

Table 3.1: The predictive link rank (PLR) of a document d is the average rank of
actually linked documents with d.

on the training set and predict citation links/hyperlinks within held-out documents

as well as from held-out documents to training documents. We tune two important

parameters—α and negative edge ratio. α controls the strength of the informative

prior, while negative edge ratio controls the size of the randomly sampled negative

links—it is the ratio of the number of randomly sampled negative links to the number

of explicit positive links. These parameters are tuned on the development set and

we then apply the trained model which performs the best on the development set

to the test set. We also tune the number of blocks for the WSBM and set it to 35

and 20 for Cora and WebKB respectively. The block topic priors π are not applied

on unseen documents, since we don’t have available links.

The cross-validation results are given in Table 3.2, where models are differently

equipped with lexical weights (L), WSBM prior (B) versus SCC prior (C), hinge loss

(H) versus sigmoid loss (S).6 Link prediction performance generally improves with

incremental application of external knowledge (WSBM prior (BS-RTM) and lexical

weights (LBS-RTM)) and more sophisticated learning techniques (hinge loss (LBH-

6The values of RTM are different from the result reported by Chang and Blei (2010), because

we re-preprocessed the Cora dataset and used different parameters.
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Model Cora WebKB

RTM (Chang and Blei, 2010) 419.33 141.65
LCH-RTM (Yang et al., 2015a) 459.55 150.32
BS-RTM 391.88 127.25
LBS-RTM 383.25 125.41
LBH-RTM 360.38 111.79

Table 3.2: Predictive link rank results. The performance improves over RTM when
we incrementally add WSBM prior (BS-RTM), lexical weights (LBS-RTM), and
hinge loss (LBH-RTM).

RTM)).

The WSBM brings around 6.5% and 10.2% improvement over RTM in PLR on

the Cora and WebKB datasets, respectively. This indicates that the latent blocks

identified by WSBM are reasonable and consistent with reality. The lexical weights

also help link prediction (LBS-RTM), though less for BS-RTM. This is understand-

able since word distributions are much sparser and do not make as significant a

contribution as topic distributions. Finally, hinge loss improves PLR substantially

(LBH-RTM), about 14.1% and 21.1% improvement over RTM on the Cora and We-

bKB datasets respectively, demonstrating the effectiveness of max-margin learning.

The only difference between LCH-RTM and LBH-RTM is the block detection

algorithm, i.e., SCC vs. WSBM. However, their link prediction performance is poles

apart—LCH-RTM even fails to outperform RTM. This implies that the quality of

blocks identified by SCC is not as good as WSBM, which we also illustrate in

Section 3.4.4.
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3.4.2 Illustrative Example

We illustrate our model’s behavior qualitatively by looking at two abstracts,

Koplon and Sontag (1997) and Albertini and Sontag (1992) from the Cora dataset,

designated K and A for short.

Paper A shows that two neural networks must have the same number of neu-

rons and the same weights (except sign reversals) if they use the same activation

function and have equal input/output behaviors as “black boxes” (Figure 3.8). Pa-

per K studies Fourier-type activation function in recurrent neural networks and its

solvability from input/output data. Thus we can easily find that both of them are

about the topic of Neural Network. Looking at the words, they both contain words

like “neural”, “networks”, “activation”, and “function”, which corresponds to the

inferred Neural Network topic with words “neural”, “network”, “train”, “learn”,

“function”, “recurrent”, etc.

As a ground-truth, there is a citation between K and A. The ranking of this

link improves as the model gets more sophisticated (Table 3.3), except LCH-RTM,

which is consistent with our PLR results.

In Figure 3.9, we also show the proportions of topics that dominate the two

documents according to the various models. Multiple topics are dominating K

and A according to RTM (Figure 3.9(a)). As the model gets more sophisticated, the

Neural Network topic proportion gets higher (Figures 3.9(c) and 3.9(d)). Finally,

only the Neural Network topic dominates the two documents when LBH-RTM is

applied (Figure 3.9(e)).
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Abstract

This paper suggests the use of Fourier-type activation functions in fully recurrent
neural networks. The main theoretical advantage is that, in principle, the problem of
recovering internal coefficients from input/output data is solvable in closed form.

Keywords: recurrent neural networks, identification, nonlinear dynamics

1 Introduction

Neural networks provide a useful approach to parallel computation. The subclass of recur-
rent architectures is characterized by the inclusion of feedback loops in the information flow
among processing units. With feedback, one may exploit context-sensitivity and memory,
characteristics essential in sequence processing as well as in the modeling and control of
processes involving dynamical elements. Recent theoretical results about neural networks
have established their universality as models for systems approximation as well as analog
computing devices (see e.g. [16, 13]).

The use of recurrent networks has been proposed in areas as varied as the design of
control laws for robotic manipulators, in speech recognition, speaker identification, formal
language inference, and sequence extrapolation for time series prediction. In spite of their
attractive features, recurrent networks have not yet attained as much popularity as one
might expect, compared to the feedforward nets so ubiquitous in other applications. One
important reason for this is that training (“learning”) algorithms for recurrent nets suffer
from serious potential limitations. The learning problem is that of finding parameters
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following is true: Assume given two nets, whose neurons all have the same nonlinear activation

function �; if the two nets have equal behaviors as \black boxes" then necessarily they must
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same weights.
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Figure 3.8: Titles and abstracts of Neural Network Papers K (Koplon and Sontag,
1997, upper) and A (Albertini and Sontag, 1992, lower). Paper K cites Paper A.
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Model Link Rank

RTM 1,265
LCH-RTM 1,385
BS-RTM 635
LBS-RTM 132
LBH-RTM 106

Table 3.3: PLR of the citation link between example documents K (Koplon and
Sontag, 1997) and A (Albertini and Sontag, 1992) (described in Section 3.4.2)

LCH-RTM gives the highest proportions to the Neural Network topic (Fig-

ure 3.9(b)). However, the Neural Network topic is split into two topics, and the

proportions are not assigned to the same topic, which dramatically brings down the

link prediction performance as it is based on the weighted sum of element-wise prod-

uct. The splitting of the Neural Network topic also happens in RTM (Figures 3.9(a))

and LBS-RTM (Figure 3.9(d)), but they assign proportions to the same topic(s).

Further comparing with LBH-RTM, the blocks detected by SCC are not improving

the modeling of topics and links—some documents that should be in two different

blocks are assigned to the same one, which generates a confusing block prior, as we

will show in Section 3.4.4.

3.4.3 Topic Quality Results

We use the automatic coherence detection method to evaluate the topic qual-

ity (Lau et al., 2014, Section 2.2). Specifically, for each topic, we pick out the top N

words and compute the average association score of each pair of words, based on

the held-out documents in development and test sets.

We choose N = 25 and use Fisher’s exact test (Upton, 1992, FET) and log
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Model
FET LLR

Cora WebKB Cora WebKB

RTM 0.1330 0.1312 3.001 6.055
LCH-RTM 0.1418 0.1678 3.071 6.577
BS-RTM 0.1415 0.1950 3.033 6.418
LBS-RTM 0.1342 0.1963 2.984 6.212
LBH-RTM 0.1453 0.2628 3.105 6.669

Table 3.4: Topic coherence of models on Cora and WebKB, evaluated by Fisher’s
exact test (Upton, 1992, FET) and log-likelihood ratio (Moore, 2004; Dunning, 1993,
LLR). WSBM priors and hinge loss benefit the topic coherence, while lexical weights
hurt a little bit.

likelihood ratio (Moore, 2004; Dunning, 1993, LLR) as the association measures

(Table 3.4). The main advantage of these measures is that they are robust even

when the reference corpus is not large.

Coherence improves with WSBM and max-margin learning, but drops a lit-

tle when adding lexical weights except for the FET score on the WebKB dataset,

because lexical weights are intended to improve link prediction performance, not

topic quality. Topic quality of LBH-RTM is also better than that of LCH-RTM,

suggesting that WSBM benefits topic quality more than SCC.

Table 3.5 gives the top ten words in three topics across models. RTM yields

topics with more words with general meanings, such as “algorithm”, “method”,

“model”, “paper”, and “system”. Adding WSBM block priors (BS-RTM) mostly

lowers the weight of the general words and adds more weight on the words with

specific meanings to the topics, e.g., “markov” and “chain” for Markov Chain topic,

“visual”, “recognit”, “imag”, and “neural” for DL for CV topic, and “parallel”,

“execut”, “instruct”, and “schedul” for Parallel Execution topic. Lexical weights

(LBS-RTM) do not necessarily improve the topic coherence. It sometimes gives
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Topic Model Words

Markov Chain

algorithm, distribut, markov, state, converg,
RTM

chain, method, sampl, model, approxim

LCH-RTM
estim, distribut, model, method, sampl,
algorithm, chain, bayesian, markov, data
distribut, algorithm, converg, method, bayesian,

BS-RTM
estim, chain, markov, sampl, approxim

LBS-RTM
model, distribut, estim, markov, method,
bayesian, sampl, chain, function, prior
chain, markov, distribut, converg, algorithm,

LBH-RTM
sampl, method, state, sampler, estim

Deep Learning for
Computer Vision
(DL for CV)

RTM
model, object, visual, pattern, recognit,
imag, represent, system, network, connect
network, model, learn, neural, visual,

LCH-RTM
object, pattern, represent, input, structur

BS-RTM
model, object, pattern, visual, process,
represent, imag, neuron, dynam, system
model, network, pattern, visual, represent,

LBS-RTM
object, input, recognit, neural, neuron

LBH-RTM
model, object, visual, network, neural,
imag, face, recognit, neuron, human

Parallel Execution

parallel, perform, machin, execut, paper,
RTM

processor, approach, instruct, implement, result

LCH-RTM
network, learn, neural, model, system,
parallel, adapt, algorithm, paper, gener
parallel, execut, instruct, processor, perform,

BS-RTM
machin, architectur, program, paper, system

LBS-RTM
parallel, execut, processor, perform, instruct,
machin, schedul, implement, paper, present
parallel, perform, execut, processor, instruct

LBH-RTM
implement, control, schedul, branch, predict

Table 3.5: Three topics’ top ten words given by various models. Words with general
meanings are in red and italic. Words with specific meanings are in blue and bold.
Generally, LBH-RTM assigns higher weights to specific words and lower weights to
general words.

high weights to general words (Markov Chain topic) and low weights to specific

words (Parallel Execution topic). After adding hinge loss (LBH-RTM), the topic

quality is the best—it has more specific words with high weights and fewer or even

no general words. SCC prior (LCH-RTM), however, sometimes brings the topic to
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Block #Nodes #Links in the Block #Links across Blocks

1 42 55
2

2 84 142

Table 3.6: Statistics of Blocks 1 (Learning Theory) and 2 (Bayesian Nets) which
are of different topics but linked by two edges. SCC merges the two blocks, while
WSBM is robust and identifies two.

a wrong direction. For instance, in the topic of Parallel Execution, its top words are

“network”, “learn”, “neural”, and “model”, which obviously should not be in this

topic. This is probably due to its vulnerability to sparse links across blocks, as we

will discuss in the next section.

3.4.4 Block Analysis

We illustrate the effectiveness of the WSBM over SCC.7 As we have argued,

WSBM can separate two internally densely-connected blocks even if few links are

connecting them, while SCC tends to merge them in this case.

As an example, we focus on two blocks in the Cora dataset identified by

WSBM, designated Blocks 1 and 2. Some statistics are given in Table 3.6. The two

blocks are very sparsely connected, but comparatively quite densely connected inside

either block. The two blocks’ topic distributions also reveal their differences: ab-

stracts in Block 1 mainly focus on Learning Theory (“learn”, “algorithm”, “bound”,

“result”, etc.) and MCMC (“markov”, “chain”, “distribution”, “converge”, etc.).

Abstracts in Block 2, however, have higher weights on Bayesian Networks (“net-

7We omit the comparison of WSBM with other models, because this has been done by Aicher

et al. (2014). In addition, WSBM is a probabilistic method while SCC is deterministic. They are

not comparable quantitatively, so we compare them qualitatively.
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work”, “model”, “learn”, “bayesian”, etc.) and Bayesian Estimation (“estimate”,

“bayesian”, “parameter”, “analysis”, etc.), which differs from Block 1’s emphasis.

Because of the two inter-block links, SCC merges the two blocks into one, which

makes the block topic distribution unclear and misleads the sampler. WSBM, on

the other hand, keeps the two blocks separate, which generates a high-quality prior

for the sampler.

3.5 Summary

In this chapter, we focus on incorporating binary-valued document links into

topic modeling, as they indicate the topic similarities of the two connected docu-

ments. We introduce LBH-RTM, a discriminative topic model that jointly models

topics and binary document links. It detects latent blocks in the document net-

work probabilistically by a weighted stochastic block model, rather than treating

each link separately or via strongly connected-components as in previous models.

We assign a separate Dirichlet prior for each block to capture its topic preferences,

which serves as an informed prior when inferring documents’ topic distributions in

that block. We predict links using max-margin learning from documents’ topic and

word distributions and block assignments.

Our model better captures the connections and content of paper abstracts

and web pages, as measured by predictive link rank and/or topic coherence. LBH-

RTM yields topics with enhanced coherence, though not all techniques contribute

to the improvement. We support our quantitative results with qualitative analysis
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by examining a pair of example documents and a pair of blocks, highlighting the

robustness of WSBM over blocks defined as SCC.

While document links indicate the high-level (topic) similarity between docu-

ments, weighted word links provide the basic low-level semantic relatedness between

words. Such information is beneficial for topic models to refine the topic words.

Thus, in the next chapter, we will explore methods for incorporating weighted word

links into topic modeling.
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Figure 3.9: Topic proportions given by various models on our two illustrative doc-
uments (K and A, described in described in Section 3.4.2). As the model gets more
sophisticated, the Neural Network topic proportion gets higher and finally domi-
nates the two documents when LBH-RTM is applied. Though LCH-RTM gives the
highest proportion to the Neural Network topic, it splits the Neural Network topic
into two and does not assign the proportions to the same one.
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learn, algorithm, bound, result

markov, chain, distribution, converge

network. model, learn, bayesian

estimate, bayesian, parameter, analysis

  

Learning Theory and MCMC Bayesian Networks and Bayesian Estimation

Figure 3.10: SCC fails to identify two blocks which are different in topic distribu-
tions, because of the two inter-block links. WSBM is robust enough to identify the
two.
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Chapter 4: Topic Modeling with Word Associations

In this chapter, we shift our focus from high-level binary document links to

low-level weighted word links, or word association scores. Word association scores

represent the word relatedness of word pairs and are easy to obtain from a large cor-

pus, mostly based on statistical co-occurrences. Researchers have developed dozens

of methods to compute these scores with various emphases, e.g., pointwise mutual

information (Church and Hanks, 1990, PMI) when there are sufficient data, Fisher’s

exact test (Upton, 1992, FET), and log likelihood ratio (Moore, 2004; Dunning,

1993, LLR), as we used in Chapter 3, when data are limited. Recently, with the

emergence of word embeddings, words are represented by vectors in a continuous

semantic space (Mikolov et al., 2013; Pennington et al., 2014). Thus, the word as-

sociations can be evaluated with any methods applicable to vector similarities, e.g.,

cosine similarity and Euclidean distance.

In topic modeling, word association scores are especially important, because

topic models put semantically related words in the same topic. Word association

scores not only contain rich information about the vocabulary but also serve as an

evaluation metric of topic interpretability (Chang et al., 2009). Nevertheless, most

topic models are still trained using methods that optimize likelihood and not taking
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into account word association scores (McAuliffe and Blei, 2008; Nguyen et al., 2013).

Goodman (1996) introduces a key insight for machine learning models in nat-

ural language processing: if you know how performance on a problem is evaluated,

it makes more sense to optimize using that evaluation metric, rather than others.

Goodman applies this insight to parsing algorithms, but it has had an even more

substantial impact in machine translation, where the introduction of the fully auto-

matic BLEU metric makes it possible to tune systems using a score correlated with

human rankings of machine translation system performance (Papineni et al., 2002).

We take the logical next step suggested by bringing together the insights

of Goodman (1996) and Chang et al. (2009), namely incorporating an approxi-

mation of human topic interpretability into the topic model optimization process in

a way that is effective and more straightforward than previous methods that involve

heavy computation with the word association matrix in complex posterior regular-

izers (Newman et al., 2011). We take advantage of the human-centered evaluation

of Chang et al. (2009), which can be reasonably approximated using an automatic

metric based on real-valued word associations derived from a large, more general

corpus (Lau et al., 2014, Section 2.2). We exploit LDA and its Bayesian formulation

by bringing word associations into the picture using a prior—specifically, we dig into

the dense external lexical associations to create a tree structure which encodes the

most salient word association information and filters out redundancies. We then use

tree LDA (Boyd-Graber et al., 2007, tLDA), which derives topics using a given tree

prior.

We construct tree priors with combinations of two types of word association
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scores (skip-gram probability (Mikolov et al., 2013) and G2 likelihood ratio (Dun-

ning, 1993)) learned on a large reference corpus and three construction algorithms

(two-level method, hierarchical clustering with and without leaf duplication). Then

tLDA identifies topics with these tree priors in Amazon reviews and the 20News-

Groups datasets. tLDA topics are more coherent than those given by “vanilla”

LDA and the latent concept topic model (Hu and Tsujii, 2016, LCTM), which di-

rectly models on word embeddings instead of discrete word types while retaining

and often slightly improving topics’ extrinsic performance as features for supervised

classification. Our approach can be viewed as a form of adaptation, and the flexi-

bility of the tree prior approach—amenable to any association score—suggests that

there are many directions to pursue beyond the two flavors of associations explored

here. For instance, hierarchical word associations (e.g., hypernyms and hyponyms

in Figure 4.2) could be encoded in the tree prior (Boyd-Graber et al., 2007); word

translation dictionaries (Figure 4.3) are another source of word associations, in which

word link weights are binary values—1 if two words are translations of each other

and 0 if otherwise (Hu et al., 2014).1

4.1 Tree LDA: LDA with Tree Priors

Tree priors organize the vocabulary of a dataset in a tree structure (Figure 4.1),

contrasting with introducing topic correlations (Blei and Lafferty, 2007; He et al.,

2017). All words are located at the leaf nodes and share ancestor internal nodes

1The work done in this chapter has been published in “Adapting Topic Models using Lexical

Associations with Tree Priors” (Yang et al., 2017).
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satellite orbit communications launch pad launching

0.61 0.39

0.95

0.05
0.92 0.08

0.96
0.04

0.43 0.57

0.25 0.34 0.03 0.020.34 0.02

Figure 4.1: An example of a tree prior (the tree structure) and gold posterior edge
and word probabilities learned by tLDA. Numbers beside the edges denote the prob-
ability of moving from the parent node to the child node. A word’s probability (i.e.,
the number below the word) is the product of probabilities moving from the root to
the leaf, e.g., Pr(orbit) = 0.61× 0.96× 0.57 = 0.34.

(circles in Figure 4.1). In our use of tree priors, if two words have a lower association

score, their common ancestor node will be closer to the root node, e.g., contrast

(orbit, satellite) with (orbit, launch). This encodes the word association information

in the hierarchy. Highly semantically related words are organized in the same sub-

tree, while less related words are placed in other sub-trees. It also significantly

reduces the complexity of storing word associations. To encode V words, if we do

not add duplicate leaf nodes, the space complexity of extra nodes and edges in the

tree structure is O(V ), a contrast to the complexity of O(V 2) for all word association

scores which contain a lot of redundancy.

Tree LDA (Boyd-Graber et al., 2007, tLDA) is an LDA extension that creates

topics from tree priors. Each topic corresponds to a tree prior with the same hierar-

chy. In a tree prior (Figure 4.1), an internal node is a multinomial distribution over

its child nodes, and tLDA learns the probabilities of moving to them. For example, in

one of the learned topics, the root node in Figure 4.1 has probabilities of 0.61 to move
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to its left child along the left edge and 0.39 to its right child along the right edge. A

word can be reached from the root node via a unique path which consists of one or

more internal nodes and edges.2 The probability of a path is the product of probabil-

ities of picking the nodes in the path, e.g., Pr(satellite) = 0.61× 0.96× 0.43 ≈ 0.25.

Thus two paths with shared nodes, e,g., paths to “satellite” and “orbit”, have cor-

related weights in a topic. The more semantically related of the two words (i.e., the

farther of their lowest common ancestor to the root node), the more edges they have

in common and the more correlated of their weights are in a topic. A topic in tLDA

thus can be viewed as a multinomial distribution over the paths from the root to

leaves. The generative process of tLDA is:

1. For topics k ∈ {1, . . . , K} and internal nodes ni

(a) Draw child distribution πk,i ∼ Dirichlet(β)3

2. For each document d ∈ {1, . . . , D}

(a) Draw topic distribution θd ∼ Dirichlet(α)

(b) For each token td,n in document d

i. Draw a topic zd,n ∼ Multinomial(θd)

ii. Draw a path yd,n to word wd,n with probability
∏

(i,j)∈yd,n πzd,n,i,j

2If every word directly connects to the root node, tLDA degenerates to vanilla LDA.
3Unlike other tree-based topic models such as Andrzejewski et al. (2009), all Dirichlet hyper-

parameters are the same for all internal nodes. Regardless of cardinality, all Dirichlet parameters

are the same scalar β.
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entity

artifact

coltrevolver

six-gun

six-shooter

male

colt foal

object

animal

Figure 4.2: A part of a tree prior constructed from synonyms in WordNet. Adapted
from Boyd-Graber et al. (2007).

tLDA can perform different tasks using different tree priors. If we encode

synonyms from WordNet (Miller, 1995) in the tree prior, tLDA disambiguates word

senses (Boyd-Graber et al., 2007). With word translation priors (Figure 4.3), it is a

multilingual topic model (Hu et al., 2014).

4.1.1 Posterior Inference

The parameters in a tLDA model are inferred by Gibbs sampling (see Sec-

tion 2.1), by updating the path assignment and the topic assignment for each to-

ken. Namely, for td,n, the n-th token in document d, the probability of assigning a
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computer government 科学

scientific

市场 政府

天气

sciencemarket电脑

policy

Figure 4.3: A part of a tree prior constructed from word translations. Adapted
from Hu et al. (2014).

path yd,n and a topic zd,n is

Pr
(
zd,n = k, yd,n = s | z−d,n,y−d,n, wd,n = v,w−d,n, α, β

)
∝ 1 (Ω(s) = v)

(
N−d,nd,k + α

) ∏
(i→j)∈s

N−d,ni→j,k + β∑
j′

(
N−d,ni→j′,k + β

)
︸ ︷︷ ︸

Path probability.

, (4.1)

where Ω(s) represents the word on the leaf node of path s; 1 (·) is an indica-

tor function. If the path s does not leads to word v, it gets a weight of zero.

N−d,nd,k denotes the number of tokens assigned to topic k in document d; N−d,ni→j,k de-

notes the number of times that edge i → j is chosen in topic k. −d,n denotes the

count excludes td,n. The time complexity of inferring a token v’s topic assignment

is O(K|S(v)|
∑

s∈S(v) |E(s)|) where S(v) is the set of paths that lead to word v

and E(s) is the set of edges in path s.

4.2 Tree Prior Construction from Word Association Scores

We introduce three methods to extract information and build tree priors for

tLDA from word association scores. The first method creates tree priors flatly

by querying each word to word association scores and obtaining the closest words

(Section 4.2.1). The other two methods, on the contrary, build tree priors with
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sport hockey sports match matches tournament

matchsport

Figure 4.4: A two-level tree example with N = 2. The words in the internal nodes
(i.e., “sport” and “match” without boxes) denote concepts and have no effect in
tLDA. They are here only for exposition.

hierarchies that encode word association score magnitudes (Sections 4.2.2 and 4.2.3).

4.2.1 Two-Level (2LV)

Word association scores tell us the semantic relatedness of word pairs, so we

can use the scores to find the most related words for a query word. For instance, if

we query word embeddings with the word “sport”, the closest words are “hockey”

and “sports” according to cosine similarity.

A two-level tree (Figure 4.4) is constructed based on this intuition straight-

forwardly.4 Each non-root internal node, ni, is a concept associated with a word vi

in the vocabulary (e.g., “sport” and “match” without boxes in Figure 4.4), but this

fact is not taken into account in posterior inference. Then we query the word as-

sociation scores with word vi and sort all other words in descending order of their

association scores with vi. The top N most associated words with vi are selected as

the internal node ni’s child leaf nodes, e.g., “hockey” and “sports” for “sport” if we

set N = 2. However, a word in the vocabulary may not be selected as a leaf node if

it is not among the top N most associated words with any other words. In this case,

4The root node is not considered a level.
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satellite orbit communications launch pad launching Initial State

 

 

 

 

 

Figure 4.5: An example of building tree priors based on hierarchical agglomerative
clustering (Lukasová, 1979, HAC). The construction starts from leaf nodes only, i.e.,
initial state. Then it repeatedly merges the clusters with the highest association
score, as marked by the numbers, until there is only one left.

tLDA is unable to generate this word. Thus, ni has an additional child node, which

represents the word vi itself, to ensure that vi appears at the leaf level at least once

so that it can be generated by tLDA.5 Therefore, if the vocabulary size is V , there

will be a total of (N + 1)V leaf nodes.

4.2.2 Hierarchical Agglomerative Clustering (HAC)

While a two-level tree is bushy (high branching factor) and flat, hierarchical

agglomerative clustering (Lukasová, 1979, HAC) reduces the number of leaf nodes

and encodes levels of word association information in its hierarchy (Figure 4.5). It

conforms better to the intuition of tree priors that highly associated words should

have the lowest common ancestor far from the root node.

The HAC process starts from V clusters representing the V words in the

vocabulary (i.e., “Initial State” in Figure 4.5) and then builds the hierarchy. In

each iteration, HAC selects the two clusters with the highest association score and

creates a new internal node that connects to them. It repeats this process until

5All tree prior examples are real sub-trees of the priors built on Gigaword 5. See Section 4.3.
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spring lake lake spring summer summerriver winter

Initial State

 

    

   

  

 

Figure 4.6: An example of constructing HAC with leaf duplication (HAC-LD) tree
prior for the words “lake”, “river”, “spring”, and “summer” (“Initial State”), whose
paired words are shaded in gray and marked with 1©. HAC-LD alleviates the prob-
lem in HAC that a word with multiple senses can only be assigned to a single cluster
close to one of its senses, e.g., the word “spring” which can be either a season or a
body of water.

there is only one cluster left, as marked by the numbers beside the internal nodes

in Figure 4.5.

In the clustering process, if two clusters both only have one word, their as-

sociation score is just the two words’ association score. If at least one of the two

clusters, denoted by Ci and Cj, has multiple words, their association score is the

average association score of the pairwise words from the two clusters:

S (Ci, Cj) =
1

|Ci||Cj|
∑
w1∈Ci

∑
w2∈Cj

S (w1, w2) . (4.2)

4.2.3 HAC with Leaf Duplication (HAC-LD)

In a tree prior constructed by HAC, a word appears in the leaf exactly once.

This is fine for the words with a single sense, but may be problematic if a word has

multiple senses. For example, the word “spring” could mean either a season (similar

to “summer”) or a place with water (similar to “lake”). HAC can only assign it to a

sub-tree close to one of its senses and will cause information loss on the other side.
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To alleviate this problem, we create duplicate leaf nodes before running HAC.

The leaf duplication pairs every word with its most semantically similar word ac-

cording to word association scores and create a cluster with the pair. For instance, in

Figure 4.6, “lake”, “river”, “spring”, and “summer” in white boxes (“Initial State”)

are paired with “spring”, “lake”, “summer”, and “winter” in gray boxes respec-

tively, as indicated by “ 1©”. In this procedure, although “spring” is paired with

“summer”, “lake”’s most similar word is “spring”, so that “spring” appears in both

senses simultaneously, which reduces the information loss. Then we apply HAC as

described in Section 4.2.2.

4.3 Experimental Results

We compute two versions of word association scores from Gigaword 5, using

word2vec skip-gram model (Mikolov et al., 2013) and G2 likelihood ratio (Dunning,

1993).6 Word2vec gives the vector representation of words rather than association

scores, so for two words wi and wj, represented by vectors vi and vj, their word2vec

association score is their skip-gram probability:

S(wi, wj) =
exp (vi · vj)∑
k exp (vi · vk)

, (4.3)

where · denotes dot product. Then we apply the three tree construction algorithms

to construct a total of six tree priors. In the two-level trees, the value of N (i.e., the

number of child nodes per internal node) is ten.

We evaluate the models on the corpora of Amazon reviews (Jindal and Liu,

6https://catalog.ldc.upenn.edu/ldc2011t07.
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Corpus #Vocabulary #Docs #Tokens #Classes

20NewsGroups 9,194 18,769 1.75M 20
Amazon 9,410 39,392 1.51M 2

Table 4.1: Corpora Statistics.

2008) and 20NewsGroups (Lang, 1995). We apply the same tokenization and stop-

word removal methods. We then sort the words in the vocabularies by their docu-

ment frequencies and return the top words, while also removing words that appear in

more than 30% of the documents. The statistics of the corpora after preprocessing

are given in Table 4.1.

Both corpora are split into five folds. For classification tasks, each fold is fur-

ther equally divided into a development set and a test set when it is used for eval-

uation. All the results reported below are averages across five-fold cross-validation

using twenty topics with hyper-parameters α = β = 0.01. In 20NewsGroups, each

post is assigned to one of twenty news groups, so we perform a twenty-class classi-

fication. For Amazon reviews, 4–5 star reviews are given positive labels, 1–2 stars

are given negative, and reviews with 3 stars are discarded, which creates a binary

classification task.

4.3.1 Perplexity

Before evaluating topic quality, we conduct a sanity check of the models’ av-

erage perplexity (see Section 2.2) on the test sets (Table 4.2).

LDA achieves the lowest perplexity among all models on both corpora while

tLDA models yield suboptimal perplexity results owing to the constraints given by
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Model Tree 20NewsGroups Amazon

LDA – 2158.74 999.98
tLDA G2-2LV 2214.99 1018.72

G2-HAC 2234.34 1017.17
G2-HAC-LD 2251.65 1015.06

tLDA W2V-2LV 2204.94 1016.31
W2V-HAC 2222.53 1013.07
W2V-HAC-LD 2234.08 1017.77

Table 4.2: The average perplexity results on the test sets by various models. Tree
names indicate the word association score and tree prior construction algorithm.
LDA gives the lowest perplexity, because tLDA models have constraint from the
tree priors and sacrifice the perplexity.

tree priors.7 As shown in the following sections, the sacrifice in perplexity brings

improvement in topic coherence, while not hurting or slightly improving extrinsic

performance using topics as features in supervised classification.

Tree priors built from word2vec skip-gram model generally outperform the ones

created using the G2 likelihood ratio when using the same tree prior construction

algorithm. Among the three tree prior construction algorithms, the two-level method

is the best on the 20NewsGroups corpus. However, there is no such consistent

pattern on Amazon reviews.

4.3.2 Topic Coherence

Instead of manually evaluating topic quality using word intrusion (Chang et al.,

2009), we use an automatic alternative to calculate topic coherence (Lau et al., 2014,

Section 2.2). For every topic, we extract its top ten words and compute average

pairwise PMI (Church and Hanks, 1990) scores on a reference corpus of Wikipedia

7The constraints could be treated as additional implicit training data, as they are extracted or

learned from an external dataset.
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dump as of October 8, 2014.8

We include vanilla LDA and the latent concept topic model (Hu and Tsujii,

2016, LCTM) as baselines. LCTM also incorporates external knowledge from word

embeddings. It assumes that latent concepts c’s exist in the embedding space and

generate nearby word w’s embeddings via multivariate Gaussian distributions with

means of their coordinates, i.e., Pr (w | c) = N (µc, σ
2I). And a topic k in LCTM

is a multinomial distribution over these concepts c’s, i.e., c is conditioned on k

or Pr (c | k). To compare LCTM topics with LDA and tLDA, we marginalize over

concepts and obtain the probability mass of every word in every topic as

Pr (w | k) =
C∑
c=1

Pr (w | c) Pr (c | k) , (4.4)

where w and k denote the word and the topic respectively; C is the pre-defined

number of latent concepts.

Most tLDA models yield more coherent topics than vanilla LDA (Figure 4.7).

Among all tLDA models, the two-level tree built on word2vec skip-gram model

improves the most. LCTM performs poorly: all its topics consist of words like “don”,

“dodgers”, “au”, “alot”, “people”, “alicea”, “uw”, “arabia”, “sps”, and “entry” with

slight differences in order.

To show how subjective topic quality improves over LDA, we extract the top-

ics from 20NewsGroups given by vanilla LDA and the tLDA with two-level tree

priors built on word2vec skip-gram model, pair them, and sort the pairs based on

Kullback–Leibler divergence (Kullback and Leibler, 1951, KLD). In Table 4.3, we

8https://wiki.umiacs.umd.edu/clip/clipwiki/index.php?title=Data#Wikipedia
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Figure 4.7: Average PMI scores of the top 10 words in topics given by LDA and
tLDA on 20NewsGroups (left) and Amazon reviews (right). Most tLDA topics are
more coherent than LDA topics, while the two-level tree priors created on word2vec
improve the most. The PMI scores of LCTM are too low to be included: 8.86±0.66
on 20NewsGroups and 6.34± 1.21 on Amazon reviews.

select and present three topics from each of the top, middle, and bottom third of

the sorted topics.

The topics with low KLD, Christian, Security, and Middle East, are generally

coherent and do not have significant differences. Although the topics of Sports have

medium KLD and quite different words, both of them are still coherent. As KLD in-

creases, tLDA topics gradually become more coherent than LDA and have more rele-

vant words. In the University Research topics, tLDA includes more research-related

words, e.g., “center”, “science”, and “institute”. In the Health topics, the tLDA

topic has more coherent words like “patients”, “insurance”, “drugs”, “aids”, and

“treatment”, while LDA includes less relevant words, e.g., “food”, “sex”, “cramer”,

and “men”.

In the topics with high KLD, tLDA topics are also more coherent. For instance,
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Topic KLD Model Words

Christian 0.709

god, jesus, church, christ, christian,
LDA

bible, man, christians, lord, sin

tLDA
god, jesus, bible, christian, christ,
church, christians, faith, people, lord

Security 0.720

key, encryption, chip, clipper, keys,
LDA

government, public, security, system, law

tLDA
key, encryption, chip, clipper, government,
keys, privacy, security, system, public

Middle
East

0.765

israel, jews, war, israeli, jewish,
LDA

arab, people, world, peace, muslims

tLDA
israel, jews, israeli, war, jewish,
arab, muslims, people, peace, world

Sports 1.212

hockey, team, game, play, la,
LDA

nhl, ca, period, pit, cup

tLDA
game, team, year, games, play,
players, hockey, season, win, baseball

University
Research

1.647

university, information, national, april, states,
LDA

year, research, number, united, american

tLDA
university, research, information, april, national,
center, science, year, number, institute

Health 1.914

medical, people, disease, health, cancer,
LDA

food, sex, cramer, men, drug

tLDA
health, medical, disease, drug, cancer,
patients, insurance, drugs, aids, treatment

Images 1.995

image, ftp, software, graphics, mail,
LDA

data, version, file, pub, images

tLDA
file, image, jpeg, graphics, images,
files, format, bit, color, program

Hardware 2.127

drive, card, mb, scsi, disk,
LDA

mac, system, pc, apple, bit

tLDA
drive, scsi, disk, mb, hard,
drives, dos, controller, ide, system

People 2.512

armenian, people, turkish, armenians,
LDA

armenia, turkey, turks, didn, soviet, time

tLDA
armenian, turkish, armenians, armenia, turkey,
turks, soviet, people, russian, genocide

Table 4.3: We sort topics into thirds by Kullback-Leibler divergence (Kullback and
Leibler, 1951, KLD): low, medium, and high divergence between vanilla LDA and
tLDA. Unique coherent words are in blue and bold. Unique incoherent words are
in red and italic. tLDA brings in more topic-relevant words.
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in the Images topics, the LDA topic contains less relevant words like “mail” and

“data”, while the tLDA topic mostly consists of words related to images, and even

includes words like “jpeg”, “color”, and “bit” that are not among the top words

in the LDA topic.9 In the topics for Hardware, there are more words closer to

the hardware level of computers for tLDA, such as “drives”, “dos”, “controller”,

and “ide”, in contrast to LDA, e.g., “mac”, “pc”, and “apple”. tLDA also ranks

hardware-related words higher. For instance, “scsi” and “disk” come before “mb”.

The words in the topics for People are generally coherent, although the tLDA topic

has one more specific word of “russian” and the LDA topic includes “didn” and

“time” that are less relevant to the topic.

4.3.3 Extrinsic Classification

To extrinsically evaluate topic quality, we use binary and multi-class classifi-

cation on Amazon reviews and 20NewsGroups corpora using SVM-light (Joachims,

1998) and SVM-multiclass (Tsochantaridis et al., 2004) respectively.10 We tune the

parameter C, the trade-off between training error and margin, on the development

set and apply the trained model with the best performance on the development set

to the test set. The classification accuracies are given in Table 4.4.

We compare the accuracies with the features of bag-of-words (BoW) and topic

9The topic names are summarized manually, so some topics can be interpreted in another way,

e.g., Image Transfer instead of Images. See Section 6.2.1.
10SVM-light: http://svmlight.joachims.org/. SVM-multiclass: https://www.cs.cornell.

edu/people/tj/svm_light/svm_multiclass.html.
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Model Tree Path 20NewsGroups Amazon

MFC – – 5.80 78.76
BoW – – 86.64 86.73
BoW+Vec – – 86.59 87.30
LDA – – 86.67 86.99
LCTM – – 86.52 86.83

tLDA
N 86.75 87.07

W2V-2LV
Y 86.73 87.13

W2V-HAC – 86.79 87.19
N 86.73 87.02

W2V-HAC-LD
Y 86.94 86.88

tLDA
N 86.82 87.15

G2-2LV
Y 86.96 87.05

G2-HAC – 86.63 87.11
N 86.73 87.07

G2-HAC-LD
Y 86.91 86.94

Table 4.4: Accuracies of topical classification on 20NewsGroups and sentiment anal-
ysis on Amazon reviews. Although not significantly improving the performance,
tLDA topics at least do not hurt.

posteriors inferred by vanilla LDA, LCTM, and tLDA. For the tLDA models with

two-level and HAC-LD tree priors, the path assignment is an additional feature, and

we run experiments both with and without it. The tLDA models with HAC prior

do not have this feature, because every word appears in the tree prior precisely once

and the paths have a one-to-one mapping with the vocabulary. We also include the

features of BoW and the average word vector for the document (BoW+Vec) a näıve

baseline of most frequent class (MFC).

Features based on most tLDA topic posteriors perform at least as well as

LDA-based topic features and often slightly better, although with no statistical sig-

nificance. This proves that our tree priors do not sacrifice extrinsic performance

for improving topic coherence. Also, the path assignment feature improves topical

classification on 20NewsGroups but not sentiment classification on Amazon reviews.
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tonworth million

pounds pounds pounds

pounds

1.32E-3 2.06E-7 1.89E-5 1.87E-7 1.87E-8 1.87E-8 1.87E-8

dollar pounds revenue lbs

tonworth million

pounds pounds pounds

pounds

2.00E-8 2.00E-8 2.19E-7 2.19E-7 2.20E-5 1.74E-4 2.00E-8

Figure 4.8: Sub-trees for the word “pounds” in two topics, from the 20NewsGroups
corpus using a two-level tree prior built on word2vec. “Pounds” is more associated
with the sense of British currency in the Politics topic (upper), while closer to the
sense of weight unit in the Health topic (lower). High probability paths are shaded
in blue and high probability edges have thicker lines.

LCTM-based features work worse than all topic model- and word2vec-based features

and only beats the BoW baseline on Amazon reviews. Although the word2vec fea-

ture (BoW+Vec) performs the best on Amazon reviews, it lacks the interpretability

of topic models.11

4.3.4 Learned Trees

In a tree prior, polysemous words may appear in several sub-trees. Its sense

at a sub-tree could be identified by the words in the same or nearby sub-trees. For

11According to further analysis, the classification accuracies among the models do not have

statistical significance.
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instance, in Figure 4.6, the word “spring” appears in two sub-trees. Given the nearby

words “lake” and “river”, we can tell that the “spring” in the left sub-tree denotes

water. Similarly, the “spring” in the right sub-tree means a season, according to the

sibling words “summer” and “winter”.

Tree-based topics distinguish polysemous words by assigning weights to their

senses. Take the word “pounds” as an example. It can be either a British currency

or a weight unit. In the topic of Politics with words “president”, “people”, “clinton”,

“myers”, and “money”, the word “pounds” is more likely to be the unit of budgets.

As we can see from the upper sub-tree in Figure 4.8, “pounds” is more likely to be

reached in the sense of British currency via the paths of root → worth → pounds

and root → million → pounds, with nearby words “worth”, “million”, “dollar”,

and “revenue”. In the Health topic (“health”, “medical”, “disease”, “drug”, and

“cancer”), “pounds” is likely to be the unit of people’s weights. Thus it is more likely

to be reached from the weight unit sense via the path root → pounds → pounds,

which is reflected from the lower sub-tree in Figure 4.8.

4.4 Summary

This chapter focuses on incorporating weighted word links, or word associa-

tion scores, into topic modeling. We introduce three methods that find latent tree

structures from dense and flat word associations, with the intent of extracting key

information and reducing redundancy. We combine topic models and word asso-

ciation scores, based on either traditional statistical methods or more recent word
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embeddings, more simply and flexibly than in previous work (Hu and Tsujii, 2016).

Moreover, they are not restricted to the ones we use above and can handle any word

association scores.

With the tree priors built by our methods, tLDA yields more coherent topics

than vanilla LDA and LCTM, both quantitatively and qualitatively, although it

sacrifices some (less important) perplexity performance due to the constraint from

tree priors. Meanwhile, it maintains extrinsic performance comparable to, if not

better than, LDA and LCTM in binary and multi-class classification tasks with

BoW and inferred topic posteriors. Also, it is less computationally costly than

LCTM: tLDA Java implementation converges in twelve hours, while LCTM needs

sixty hours on the same machine with 2.8GHz Intel Xeon CPUs and 110G of memory.

So far, we have incorporated the observable document links and easy-to-get

word links into topic models and obtained more coherent topics and good extrinsic

performance. In the next chapter, we will study weighted topic links which are

unobservable due to the latent nature of topics. We will learn, instead of incorporate,

weighted topic links to connect the topics across languages and develop a novel

multilingual topic model.
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Chapter 5: Topic Model for Learning Weighted Topic Links

In a topic model, topics are different from documents and words, because they

are latent rather than observed. This makes it hard to obtain the ground-truth topic

links, not to mention to incorporate them into topic models as external knowledge.

However, we can instead learn the weighted topic links, and they can be useful in

a multilingual case to connect similar topics across languages, hence a multilingual

topic model (MTM).

Multilingual topic models uncover latent topics across languages. Latent

topics—represented as distributions over words—summarize documents and help

analysts discover trends (Lau et al., 2012), analyze emotions (Bao et al., 2009), or

recommend content (Marlin, 2003). MTMs, in contrast to monolingual topic models,

reveal commonalities and differences between documents in different languages and

the cultures they represent (Ni et al., 2009; Shi et al., 2016; Gutiérrez et al., 2016).

Like most multilingual algorithms, including multilingual word embeddings, there

must be some source of knowledge to bridge the languages. For instance, document

parallelism indicates the equivalence of documents in multiple languages (Søgaard

et al., 2015; Hermann and Blunsom, 2014; Vulić and Moens, 2015; Mimno et al.,

2009; Hao and Paul, 2018). Another source of cross-lingual knowledge is the word
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translations which map words in one language to those that have similar meanings

in another language (Faruqui and Dyer, 2014; Lu et al., 2015; Ammar et al., 2016;

Boyd-Graber and Blei, 2009; Jagarlamudi and Daumé III, 2010; Boyd-Graber and

Resnik, 2010; Hu et al., 2014).

Existing MTMs extend latent Dirichlet allocation (Blei et al., 2003, LDA)

and learn same numbers of topics or even aligned topics across languages. The

polylingual topic model learns topics on parallel corpora and assumes the same topics

across eleven European languages (Mimno et al., 2009). Hu et al. (2014) encode the

word translations in a tree prior and pair each English topic with a Chinese topic.

Code-Switched LDA learns language-specific topic distributions from multilingual

documents, i.e., some documents contain words in multiple languages (Peng et al.,

2014). It does not learn aligned topics, and can identify topics present in only one

language, but this is done by a heuristic in postprocessing instead of jointly modeling

it with topics. In addition, it requires the same numbers of topics across languages,

which reduces its flexibility.

Most prior models have tended to work well because, even if it is not techni-

cally built into the model, their implicit assumption is that the data are comparable

or even parallel and have been applied to datasets where this is true. However, this

assumption does not always comport with reality, because documents from the same

geographic region during the same period can discuss very different things across

languages. Consider a day’s worth of tweets, blogs, and newspapers in multicultural

London: Hindi tweets might focus on a Bollywood actor’s appearance on BBC,

Chinese newspapers might discuss Lunar New Year, French blogs might fret about
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English Topics Chinese Topics

sports, match, referee, tournament, champion

economics, dollars, million, invest, income

politics, president, government, bill, vote

technology, information, computers, smart, system

universities, schools, students, research, science

运动，比赛，裁判，锦标赛，冠军

经济，美元，百万，投资，收入

政治，总统，政府，法案，投票

技术，科学，计算机，智能，系统

音乐，专辑，歌手，作品，演唱会

EN-1

EN-2

EN-3

EN-4

EN-5

ZH-1

ZH-2

ZH-3

ZH-4

ZH-5

Figure 5.1: Past multilingual topic models (MTMs) learn aligned topics across lan-
guages, which is problematic on the corpora with low comparability. Our MTM
overcomes it by learning weighted topic links without forcing topic alignment: topic
pairs with many word translation pairs have high link weights, e.g., (EN-1, ZH-
3), (EN-2, ZH-4), and (EN-3, ZH-5); topic pairs with partial overlap receive lower
weights, e.g., (EN-5, ZH-1); a topic is unlinked if there is no corresponding topic in
the other language (ZH-2).

Brexit, and English articles might dwell on changes in Tottenham’s lineup. Even in

a “comparable” setting, consideration of multiple languages brings to the forefront

the fact that, while some topics are shared, the emphasis may differ across lan-

guages, and some topics may not have clear analogs across languages. For instance,

in the news articles about Earthquake in the Chinese language pack released by the

LORELEI program, English articles talk about earthquakes worldwide, while Chi-

nese articles focus on the Wenchuan Earthquake, which occurred in 2008 in Sichuan

Province.1

We, therefore, introduce a new multilingual topic model that assumes each

language has its own topic sets which consist of the words in that language only.

Our MTM jointly learns all topics but does not force the topics to be aligned across

languages. Instead, it learns real-valued weighted links across languages and only

1LORELEI is short for LOw REsource Languages for Emergent Incidents: https://www.

darpa.mil/program/low-resource-languages-for-emergent-incidents.
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assigns high topic link weight to a pair of topics when the two topics’ top words have

many direct translation pairs, e.g., (EN-1, ZH-3), (EN-2, ZH-4), and (EN-3, ZH-5)

in Figure 5.1. If two topics have limited overlap, the link weight will be lower. For

instance, topics EN-5 and ZH-1 have an overlap on “science” and “科学 (kē xué)”, so

they are weakly linked, while ZH-1 is strongly linked with EN-4. More importantly,

the model allows a topic to remain unlinked if there is no corresponding topic in

the other language (e.g., ZH-2 about Music), which makes the model robust in the

(more common) case of partially comparable and even incomparable data with topic

misalignment.

Via these weighted topic links, topic patterns can be conveyed from one lan-

guage to the other as external knowledge for the latter. This helps improve topic

quality for both languages and is particularly useful in scenarios that involve mod-

eling topics on low-resource languages with very limited data, e.g., humanitarian

assistance, peacekeeping, and/or infectious disease response. By learning the MTM

on documents in a high-resource language, e.g., English, along with the documents

in a low-resource language, e.g., Sinhalese, topic links will transfer relevant topic

patterns from English to Singhalese, producing a better topic model on the low-

resource language, while limiting the additional cost to other steps that will also

need to be taken, such as finding or creating a word translation dictionary.

We describe our MTM in the bilingual case with languages S and T , and

it is relatively easy to generalize it to multilingual situations. The MTM has two

matrices—ρT→S and ρS→T . They store topic link weight matrices and convert the

topics from language T to S and S to T , respectively. Take ρS→T for example,
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its values are learned by converting a word’s topic distribution in language S to

the topic space of language T and making it as close as possible to its translation

word’s topic distribution, as shown in Figure 5.2 and as will be discussed in more

detail in Section 5.1. In this process, the shared topic pairs across languages will get

higher weights, while a unique topic in a language will have a high-entropy weight

distribution over the topics in the other language.

We validate the MTM in two classification tasks, one using inferred topic

posteriors to predict Wikipedia document categories and the other looking for the

need for rescue resources in disaster-related documents. Our MTM substantially

outperforms other models as measured using F1 in both intra- and cross-lingual

evaluations, while yielding coherent topics and meaningful topic links. We also

demonstrate robust topic coherence even on low-comparability and small-size data.

5.1 Multilingual Topic Model for Connecting Cross-Lingual Topics

We introduce a formulation of posterior regularization (Section 2.3.2.2) that

links languages in a topic model. For simplicity of exposition, we focus on the

bilingual case, which has a language S with KS topics and another language T with

KT topics and each topic is a distribution over the words in its language.

The MTM has two matrices, ρT→S (size KS×KT ) and ρS→T (size KT ×KS),

that store topic link weights and convert the topics from language T to S and S

to T respectively. Both matrices are critical for the MTM and neither can be derived

from the other. Although we do not add constraints or regularizations on ρ’s value
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Figure 5.2: Our model uses topic link weight matrices ρ’s to transform topics from
one language to another. Unlike other models, it allows a topic to linked to another
topic or multiple topics.

ranges, the values are between zero and one because the sum of each input/output

training example vector is one. Each cell, ρT→S,kS ,kT , denotes the link weight of

topics kS and kT while transforming from language T to S. The values of ρ’s are

learned from the translation pair’s topic distributions—for a translation pair wS

and wT , ρ’s try to connect the topics (i.e., assign higher link weights) that have

high probability mass in the two words’ topic distributions. So to learn ρ’s, we first

define the topic distribution of a word w as the proportion of assignments to topic k

to the assignments to all topics,

Ωw,k =
Nk,w

Nw

, (5.1)

where Nw is w’s total term frequency. The intuition is that if the two words in a
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translation pair are often assigned to the two topics in two languages, the two topics

are likely to be corresponding topics in the two languages. Thus the values of ρ’s are

then optimized by converting the words’ topic distributions in one language into the

topic space of the other language using ρ’s, and making them as close as possible to

their translation words’ topic distributions in the other language. For instance, given

the translation pair of “sports” and “运动 (yùn dòng)”, we want ρEN→ZHΩsports to

be as close as possible to Ω运动 and vice versa (Figure 5.2). The objective function

for optimizing ρ’s is the distance between a word’s topic distribution, e.g., Ω运动, and

its translation’s after transformation using ρ’s, e.g., ρEN→ZHΩsports, formulated as

Dis(Ω运动,ρEN→ZHΩsports) where Dis(·, ·) denotes the Euclidean (or other) distance

function of two topic distributions.

In addition, a translation pair is less reliable if one or both words have low

term frequencies or high document frequencies. Thus, we add weights for translation

pairs to reflect their importance and obtain the weighted distance product over all C

translation pairs as

C∏
c=1

Dis (ΩS,c,ρT→SΩT,c)
ηc Dis (ρS→TΩS,c,ΩT,c)

ηc , (5.2)

where ηc is the weight of the c-th translation pair. We then compose the knowledge

potential function f(z,w) (Section 2.3.2.2) by taking the reciprocal and a logarithm

of Equation 5.2 so that we can maximize it:

f(z,w) =−
C∑
c=1

ηc log [Dis (ΩS,c,ρT→SΩT,c)]

−
C∑
c=1

ηc log [Dis (ρS→TΩS,c,ΩT,c)] , (5.3)
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Figure 5.3: The graphical model of our multilingual topic model. The topic links ρ’s,
as instantiated by the function Ψ, encourage topics to encourage word translations
to have consistent topic distributions.

This defines the posterior regularizer Ψ:

Ψ = exp(f(z,w)) =

(
C∏
c=1

[Dis (ΩS,c,ρT→SΩT,c)]
ηc

)−1
×(

C∏
c=1

[Dis (ρS→TΩS,c,ΩT,c)]
ηc

)−1
, (5.4)
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where cross-lingual knowledge is encoded. We then use Ψ to connect the monolingual

topic models to obtain a multilingual model (Figure 5.3):

1. For each topic k ∈ {1, . . . , KT} in language T

(a) Draw word distribution φT,k ∼ Dirichlet(βT )

2. For each document d ∈ {1, . . . , DT} in language T

(a) Draw topic distribution θT,d ∼ Dirichlet(αT )

(b) For each token tT,d,n in document d

i. Draw a topic zT,d,n ∼ Multinomial(θT,d)

ii. Draw a word wT,d,n ∼ Multinomial(φT,zT,d,n
)

3. For each topic k ∈ {1, . . . , KS} in language S

(a) Draw word distribution φS,k ∼ Dirichlet(βS)

4. For each document d ∈ {1, . . . , DS} in language S

(a) Draw topic distribution θS,d ∼ Dirichlet(αS)

(b) For each token tS,d,n in document d

i. Draw a topic zS,d,n ∼ Multinomial(θS,d)

ii. Draw a word wS,d,n ∼ Multinomial(φS,zS,d,n
)

5. Draw the weighted topic distribution distance Ψ with Equation 5.4

As most downstream topic models, our MTM first generates the documents

and tokens with two independent LDA components for languages S and T . Then
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it generates the posterior regularizer Ψ with weighted topic distribution distances.

Although the two LDA components are separate in the generative process, they

are correlated to incorporate the knowledge from the other language in posterior

inference, as we will see in the next section.

5.2 Posterior Inference

The posterior inference is based on stochastic EM like other downstream topic

models (Celeux, 1985). In each iteration, the E-step (Section 5.2.1) updates ev-

ery token’s topic assignment using Gibbs sampling, while fixing the values in the

topic link weight matrices ρ’s. The M-step (Section 5.2.2), on the other hand,

optimizes ρ’s while holding the topic assignments fixed.

5.2.1 E-step: Topic Assignment Sampling

Although topic generation looks independent from the posterior regularizer Ψ

in the generative process, the topic assignment inference depends on Ψ (Equa-

tion 2.32). For our MTM, in addition to the usual word and topic dependencies,

it encourages topic assignments that maximize the posterior regularizer Ψ, thus

making the related translation pairs’ (transformed) topic distributions close. This

intuition is reflected in the Gibbs sampling equation to update zT,d,n, the topic
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assignment of the n-th token of document d in language T :

Pr
(
zT,d,n = k | z−T,d,n, wT,d,n = v,w−T,d,n,ρS→T ,ρT→S, αT , βT

)
∝
(
N−T,d,nT,d,k + αT

) N−T,d,nT,k,v + βT

N−T,d,nT,k,· + VTβT︸ ︷︷ ︸
LDA Sampling ∏

v′∈Dic(v)

[Dis (ΩS,v′ ,ρT→SΩT,v)]ηv′,v

−1 ∏
v′∈Dic(v)

[Dis (ρS→TΩS,v′ ,ΩT,v)]ηv′,v

−1
︸ ︷︷ ︸

Minimizing the Topic Distribution Distances

,

(5.5)

where the first two terms are the same as LDA: NT,d,k denotes the number of tokens

in document d assigned to topic k; NT,k,v denotes the number of times word v is

assigned to topic k; · denotes marginal counts; −T,d,n means the count excludes the

token. The final term corresponds to the posterior regularizer: Dic(v) is word v’s

translation word set in language S; The values of ΩT,v, the topic distribution of

word v, assume topic k is chosen as follows:

ΩT,v,k′ =
N−T,d,nT,k′,v + 1 (k′ = k)

NT,v

, (5.6)

where 1 (·) is an indicator function. The Gibbs sampling Equation 5.5 prefers a topic,

in addition to the usual constraints on co-occurrences, that can contribute more in

minimizing the translation pairs’ topic distribution distances after transformation

by topic link weight matrices ρ’s.

Similarly, the Gibbs sampling equation to update zS,d,n, the topic assignment
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of the n-th token of document d in language S, is:

Pr
(
zS,d,n = k | z−S,d,n, wS,d,n = v,w−S,d,n,ρS→T ,ρT→S, αS, βS

)
∝
(
N−S,d,nS,d,k + αS

) N−S,d,nS,k,v + βS

N−S,d,nS,k,· + VSβS ∏
v′∈Dic(v)

[Dis (ΩS,v,ρT→SΩT,v′)]ηv,v′

−1 ∏
v′∈Dic(v)

[Dis (ρS→TΩS,v,ΩT,v′)]ηv,v′

−1 .
(5.7)

The values of ΩS,v, assuming topic k is chosen, are

ΩS,v,k′ =
N−S,d,nS,k′,v + 1 (k′ = k)

NS,v

. (5.8)

The time complexity of inferring the topic assignment of a token v in lan-

guage S is O(KS|Dic(v)|KSKT ). In the implementation, caching helps to reduce

some repetitive computation: the values in ρT→S and ΩT,v′ (Equation 5.7) do not

change when updating the tokens in language S, so we can pre-compute ρT→SΩT,v′

and cache the values.

5.2.2 M-step: Parameter Optimization

In the M-step, we optimize the topic link weight matrices ρ’s while fixing the

topic assignments. As the posterior regularizer Ψ is the product over all translation

pairs, we modify Ψ to obtain the objective functions J(ρT→S) and J(ρS→T ) as the

weighted logarithmic sums

J(ρT→S) =
C∑
c=1

ηc log

KS∑
iS=1

(ΩS,c,iS − ρT→S,iSΩT,c)
2 (5.9)

J(ρS→T ) =
C∑
c=1

ηc log

KT∑
iT=1

(ΩT,c,iT − ρS→T,iT ΩS,c)
2 , (5.10)
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where the square root on the Euclidean distances is equivalent as a coefficient of 0.5

for the whole equation and thus dropped.2

The objective function is then minimized by using L-BFGS and the partial

derivatives about ρT→S,kS ,kT and ρS→T,kT ,kS (Liu and Nocedal, 1989):

∂J(ρT→S)

ρT→S,kS ,kT
= −

C∑
c=1

2ηcΩT,c,kT (ΩS,c,kS − ρT→S,kS
ΩT,c)∑KS

iS=1 (ΩS,c,iS − ρT→S,iSΩT,c)
2

(5.11)

∂J(ρS→T )

ρS→T,kT ,kS
= −

C∑
c=1

2ηcΩS,c,kS (ΩT,c,kT − ρS→T,kT
ΩS,c)∑KT

iT=1 (ΩT,c,iT − ρS→T,iT ΩS,c)
2
. (5.12)

5.3 Experimental Results

We first evaluate our model extrinsically by intra- and cross-lingual classifica-

tion tasks with topic posteriors as features. Then we look into the model’s intrinsic

performance of topic coherence on five bilingual corpora when the corpora get less

comparable and even incomparable. We also study how the topic coherence changes

when the sizes of target language (non-English languages) corpora vary.

For the translation pair weighting, we explore equal weights and TF-IDF

weights. A translation pair’s TF-IDF weight is decided by the lower TF-IDF weight

of the two words, based on the intuition that if a word is less important or reliable

(i.e., of low TF-IDF weight), its information is less likely to be accurate and makes

the whole pair less reliable.

2It makes sense to add regularization on ρ’s to prevent overfitting, but the data already adds

a strong constraint on ρ’s—each word’s Ω values should add up to one.
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Dataset Lang. Pair Lang. #Docs #Tokens #Vocab. #Trans.

Wikipedia EN-ZH
EN 11,043 1,906,142 13,200

6,812
ZH 10,135 1,169,056 13,972

LORELEI EN-SI
EN 1,100 32,714 6,920

6,330
SI 4,790 168,082 31,629

Table 5.1: Statistics of the bilingual corpora used in classification experiments with
inferred topic posteriors. For Wikipedia, the task is to classify each document into
one of six categories. For LORELEI, the goal is to distinguish the need of evacuation
from other need types.

5.3.1 Classification with Topic Posteriors

We take two datasets for the classification experiments (Table 5.1). The first

dataset contains Wikipedia documents in English (EN) and Chinese (ZH) (Yuan

et al., 2018). Each document is labeled with one of six categories of film, music, an-

imals, politics, religion, and food. The English-Chinese word translation dictionary

is collected from MDBG, a website for learning Chinese.3

The second dataset is the Sinhalese (SI) language pack from the Low Resource

Languages for Emergent Incidents (LORELEI) Program (Strassel and Tracey, 2016).

The program aims to develop human language technology to identify emergent sit-

uations (e.g., earthquake, flood, war, etc.) and needs (e.g., shelters, medicine, food,

etc.) at the regions where low-resource languages are frequently used in formal

and/or informal media. It will support the government and other organizations in

emergent missions such as humanitarian assistance, disaster relief, peacekeeping,

or infectious disease response. The Sinhalese language pack contains documents

related to disasters in both English and Sinhalese and a small subset of them are

3https://www.mdbg.net/chinese/dictionary?page=cc-cedict
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annotated with one of the eight need types: evacuation, food supply, search/rescue,

utilities, infrastructure, medical assistance, shelter, and water supply (Strassel et al.,

2017). The dictionary comes along with the language pack.

We follow the same preprocessing mechanism with Yuan et al. (2018) and use

SVM with a linear kernel for classification. For the Wikipedia dataset, we classify

and report micro-F1 scores. For the LORELEI dataset, our goal is to distinguish

the need for evacuation from other types.

We compare our model against several multilingual baselines, including tree

LDA (Hu et al., 2014, tLDA) which encodes the dictionary as a tree prior (Boyd-

Graber et al., 2007), Multilingual Topic Anchoring (Yuan et al., 2018, MTAnchor),

and Multilingual Cultural-common Topic Analysis (Shi et al., 2016, MCTA). We

also include LDA which runs monolingually on each language and a näıve baseline

of most frequent class (MFC). For all the models, we set the number of topics at

twenty and hyper-parameters α = 0.1 and β = 0.01 (if applicable).

Our evaluations are both intra- and cross-lingual. The intra-lingual (IN) eval-

uation trains and tests the classifiers on the same language, while the cross-lingual

(CR) evaluation trains the classifiers on English (Sinhalese/Chinese) and tests on

Sinhalese/Chinese (English). In cross-lingual evaluations, MTAnchor, MCTA, and

tLDA assume aligned topic spaces, so there is no need to convert the topic posteriors

in different languages. LDA cannot transform topic spaces, so we do not apply any

transformation and directly feed English topic posteriors to a Singhalese/Chinese

classifier and vice versa.

For our MTM, we explore two methods to use the topic link weight matrices ρ’s
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Dataset Method EN-IN SI/ZH-IN EN-CR SI/ZH-CR

LORELEI

MFC 14.46 15.09 14.46 15.09
MCTA 12.99 26.53 4.08 15.58
MTAnchor 20.78 32.65 24.49 24.68
LDA 27.78 24.01 22.86 21.05
tLDA 12.77 18.18 16.01 15.09
MTM 42.86 23.08 22.22 26.67
MTM + TOP 42.86 23.08 35.29 33.33
MTM + TF-IDF 26.67 38.10 14.46 15.09
MTM + TF-IDF + TOP 26.67 38.10 14.46 11.43

Wikipedia

MFC 16.52 20.82 16.93 17.32
MCTA 51.56 33.35 23.24 39.79
MTAnchor 80.71 75.33 57.62 54.54
LDA 92.08 83.37 16.52 10.46
tLDA 91.58 83.33 2.85 21.02
MTM 92.98 86.48 74.69 64.48
MTM + TOP 92.98 86.48 78.13 83.08
MTM + TF-IDF 94.07 85.59 57.27 55.06
MTM + TF-IDF + TOP 94.07 85.59 63.20 59.64

Table 5.2: Our MTM outperforms all the baseline models in both intra-lingual (IN)
and cross-lingual (CR) evaluations in F1 scores. Connecting the top linked topics
is a better way for topic transformation.

for topic space transformation. The first is to directly multiply ρ with a language’s

document topic distributions, i.e., ρZH→ENθZH and vice versa. The other one, which

we call top-linked topics (TOP), to take Chinese as an example, is to transfer each

Chinese document’s topic k’s probability mass to the English topic which has the

highest topic link weight with the Chinese topic:

θEN,d,k0 ← θEN,d,k0 + θZH,d,k,where k0 = arg max
k′

ρZH→EN,k′,k. (5.13)
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5.3.1.1 Classification Results

Our MTM performs better than baseline models both intra- and cross-lingually

(Table 5.2).4 TF-IDF weighting on translation pairs sometimes improves the intra-

lingual performance, although it hurts the cross-lingual performance. In topic space

transformation, connecting the top linked topics (TOP) is better than directly using

the topic link weight matrices. This indicates that the values in ρ’s have some noise

and is worth further exploration.

5.3.2 Learned Topics

To show how the learned topics differ across models, we pick the English

(EN) and Chinese (ZH) Movies topics from the Wikipedia dataset (Table 5.3). The

English translations of Chinese words are given in brackets following the Chinese

words. For each Chinese topic given by MTM, we attach the top three English

topics with the highest topic link weights.5

The topics are about Movies, but the MCTA and MTAnchor topics do not

rank “movie” or “电影 (diàn y̌ıng)” at the top. The tLDA topics, although aligned

well, have some problems with the Chinese words. The word “胶片 (jiāo piàn)”,

although its English translation is “film”, its actual meaning is not “movie” but

“photographic film”. Another word, “释放 (sh̀ı fàng)”, corresponds to the sense of

“let something go” for “release”, not “movie distribution”. tLDA links the words

4The performance of MTAnchor and MCTA are from Yuan et al. (2018).
5For each Chinese/English topic, its link weights to all English/Chinese topics sum up to one.
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Model Language Words

MCTA
ZH

主演 (starring), 改编 (adapt), 本 (this), 小说 (novel),
拍摄 (shoot), 角色 (role), 战士 (fighter)

EN dog, san, movie, mexican, fighter, novel, california

MTAnchor
ZH

主演 (starring), 改编 (adapt), 饰演 (act), 本片 (this movie),
演员 (actor), 编剧 (playwright), 讲述 (narrate)

EN kong, hong, movie, official, martial, box, reception

LDA
ZH

电影 (movie), 部 (movie quantifier), 美国 (USA),
上映 (release), 英语 (English), 剧情 (plot), 片 (movie)

EN film, star, direct, release, action, plot, character

tLDA
ZH

电影 (movie), 胶片 (film), 星 (star), 动作 (action),
释放 (release), 影片 (movie), 剧情 (plot)

EN film, star, direct, action, release, plot, write

MTM

ZH
电影 (movie), 部 (movie quantifier), 上映 (release),
动画 (animation), 故事 (story), 作品 (works), 英语 (English)

EN-1 (0.20) film, direct, star, release, action, plot, production
EN-2 (0.12) kill, find, death, attack, escape, return, back
EN-3 (0.11) shrine, japanese, temple, japan, shinto, kami, god

MTM +
TF-IDF

ZH
电影 (movie), 部 (movie quantifier), 上映 (release),
美国 (USA), 英语 (English), 导演 (director), 片 (movie)

EN-1 (0.32) film, direct, star, action, release, plot, movie
EN-2 (0.24) film, kill, find, escape, attack, return, back
EN-3 (0.09) character, series, star, game, trek, create, episode

Table 5.3: The topics of Movies given by models. For each Chinese topic given by
our MTM, the top three English topics and their link weights are also given, while
the link weights to all English topics sum up to one.

based on translations without looking at the context, which causes problems with

multiple-sense words.

The LDA and MTM topics are generally coherent, despite slight differences in

words and ordering. A unique output of our MTM is the weighted topic links. For

the Chinese Movies topics given by our MTMs, the most relevant English topics are

also about Movies, e.g., “film”, “direct”, “star”, and “release”. The second relevant

topics have the words “kill”, “death”, “attack”, and “escape” which often appear

in action movies. For the third relevant topics, the MTM model gives the words
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Language Weight Words

ZH-0 –
学名 (scientific name), 它们 (they), 呈 (show),
白色 (white), 长 (long), 黑色 (black), 厘米 (centimeter)

EN-12 0.57 specie, bird, eagle, genus, white, owl, black
EN-19 0.13 breed, chicken, white, goose, bird, black, list

ZH-14 –
主义 (-ism)6, 组织 (organization), 美国 (USA), 革命 (evolution),
运动 (campaign), 政府 (government), 人民 (people)

EN-16 0.32 sex, law, act, sexual, marriage, court, legal
EN-11 0.17 traffic, victim, government, trafficking, child, force, country
EN-1 – abortion, government, report, muslim, death, arrest, iran

伊斯兰 (Islam), 穆斯林 (muslim), 伊斯兰教 (Islam),
ZH-15 0.16

阿拉伯语 (Arabic), 阿拉伯 (Arab), 世纪 (century), 帝国 (empire)

ZH-4 0.13
主义 (-ism), 社会 (society), 历史 (history), 文化 (culture),
发展 (develop), 研究 (research), 哲学 (philosophy)

EN-10 – album, release, record, music, song, single, feature
专辑 (album), 张 (album quantifier), 发行 (release),

ZH-9 0.30
音乐 (music), 首 (song quantifier), 唱片 (record), 歌手 (singer)

ZH-17 0.20
音乐 (music), 乐团 (musical group), 艺术 (art),
创作 (create), 奖 (prize), 演出 (perform), 担任 (serve)

Table 5.4: Topics are linked because they have overlap in topical words. Although
explicit word translations can help identify related topics, our MTM can also infer
the topic relations beyond word translations, e.g., ZH-14 and EN-16 which have no
overlap in words.

about Japanese cartoons, while the MTM with TF-IDF gives a Games topic which

has some overlap with Movies, like “character”, “series”, and “episode”. Generally,

the top three English topics all have overlap with the Chinese topic. One is a good

match, while the other ones overlap with the Chinese topic in some perspective, as

can be seen from the top words and reflected in the topic link weights. This shows

that our MTM can link topics as long as they have some mutual perspective and

represent it in the link weights.

5.3.3 Learned Topic Links

6-ism is a word suffix that denotes a system, principle, or ideological movement, e.g., terrorism,
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We give more examples of cross-lingually linked topics and their weights in

Table 5.4. The MTM assigns high weights to the topics which have more cross-

lingual common words (as indicated by the dictionary). For instance, the words

“white” and “black” in the Biology topics of ZH-0, EN-12, and EN-19. This is also

the case for the Music topics of EN-10, ZH-9, and ZH-17.

Our MTM can also infer topic links beyond words. When the topical words

have few direct translations but are related in senses, the MTM is still able to link

them. ZH-14 is about the “campaigns” of “organizations” for “people” and against

“government”, e.g., the Weather Underground Organization which ran campaigns

against the US Government.7 It has only one overlap word “government” with EN-

16 and EN-11. However, MTM identifies the two English topics as the top linked

topics for ZH-14: EN-16 is about the “campaign” in Sexual Rights, e.g., Campaign

for Homosexual Law Reform in Ireland;8 EN-11 talks about Crime with an emphasis

on human trafficking, e.g., human trafficking in various countries.9 This indicates

that our MTM can incorporate the word translations and infer more cross-lingual

word and topic relationships.

It also happens to the topics of EN-1 and ZH-4. EN-1 is about “abortion”

capitalism, and socialism.
7Chinese source page: https://zh.wikipedia.org/wiki/%E5%9C%B0%E4%B8%8B%E6%B0%

A3%E8%B1%A1%E5%93%A1; English source page: https://en.wikipedia.org/wiki/Weather_

Underground.
8https://en.wikipedia.org/wiki/Campaign_for_Homosexual_Law_Reform

9Human trafficking in Luxembourg: https://en.wikipedia.org/wiki/Human_trafficking_

in_Luxembourg; Human trafficking in Slovenia: https://en.wikipedia.org/wiki/Human_

trafficking_in_Slovenia.
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in “muslim”, e.g., abortion in Iran.10 It is part of the “society”, “history”, and

“culture” in ZH-4, e.g., Islamic Golden Age.11 The two topics’ top words do not

have overlap either but are linked, although their overlap is limited, which is also

reflected from the topic link weight.

5.3.4 Topic Coherence on Less Comparable Corpora

We intrinsically evaluate the models’ intra-lingual topic coherence on two

Wikipedia corpora with low comparability (Hao and Paul, 2018, Table 5.5). Each

contains five bilingual corpora where one of the languages is always English, while

the other ones are Arabic (AR), Chinese (ZH), Spanish (ES), Farsi (FA), and Rus-

sian (RU). Each bilingual corpus contains around 2,000 documents for both lan-

guages. The first Wikipedia corpora are partially comparable (PACO), where 30%

of the documents have direct translations in the other language. The second corpora

are incomparable (INCO)—no documents have direct translations. Dictionaries are

extracted from Wiktionary.12

As the corpora are not highly comparable, their topic distributions differ sub-

stantially. Thus evaluation metrics for cross-lingual topic alignment are not good

choices (Hao et al., 2018). We instead take an intra-lingual topic coherence met-

ric (Lau et al., 2014, Section 2.2): for every topic, we extract the top N words and

10https://en.wikipedia.org/wiki/Abortion_in_Iran

11Chinese source page: https://zh.wikipedia.org/wiki/%E4%BC%8A%E6%96%AF%E8%98%AD%

E9%BB%83%E9%87%91%E6%99%82%E4%BB%A3; English source page: https://en.wikipedia.org/

wiki/Islamic_Golden_Age.
12https://dumps.wikimedia.org/enwiktionary/
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Dataset Lang. Pair Lang. #Docs #Tokens #Vocab. #Trans.

PACO

EN-AR
EN 1,999 622,955 47,790

4,384
AR 1,999 107,434 19,900

EN-ZH
EN 2,000 405,976 39,847

8,691
ZH 1,997 86,585 30,481

EN-ES
EN 2,000 238,092 30,278

18,221
ES 2,000 188,469 27,465

EN-FA
EN 2,000 513,855 41,685

4,419
FA 1,814 37,158 9,987

EN-RU
EN 1,999 296,148 34,618

2,981
RU 1,999 101,922 24,341

INCO

EN-AR
EN 2,000 581,473 45,444

4,380
AR 1,999 107,434 19,900

EN-ZH
EN 2,000 432,442 38,369

8,766
ZH 1,997 86,585 30,481

EN-ES
EN 1,999 557,602 46,161

20,954
ES 2,000 188,469 27,465

EN-FA
EN 2,000 324,858 34,278

4,280
FA 1,814 37,158 9,987

EN-RU
EN 2,000 547,748 47,167

3,345
RU 1,999 101,922 24,341

Table 5.5: Statistics of the corpora for topic coherence evaluation. 30% of the
documents in the partially comparable (PACO) corpora have direct translations in
the other language, while no documents in the incomparable (INCO) corpora have
direct translations.

compute the average pairwise PMI score on a reference corpus of a disjoint subset

of Wikipedia documents (Hao and Paul, 2018).

We report the average coherence scores on five-fold cross-validation with values

of N from 10 to 100 with a step size of 10. For the weighting on translation pairs,

we take the same options as we do in classification tasks. For the baseline models,

we choose monolingual LDA and tree LDA which encodes word translations in its

tree prior (Boyd-Graber et al., 2007; Hu et al., 2014).

Our MTM mostly matches LDA in topic coherence and sometimes slightly

better (Figures 5.4 and 5.5). TF-IDF weighting on translation pairs sometimes
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further improves the topic coherence a little bit (Arabic, Farsi, Russian, and Spanish

on INCO) but occasionally hurts (Chinese).

The scores on the PACO dataset are generally close to the ones on the INCO

dataset according to the figures, but PACO scores are slightly higher numerically.

In the PACO dataset, 30% of the documents have direct translations in the other

language. It makes the topic space more aligned than the INCO dataset and provides

more accurate topic information for each translation pair. Thus it is easier to achieve

higher topic coherence scores on the PACO dataset.

Another baseline, tLDA, mostly works poorly, except on Farsi with a high

number of top words. tLDA always tries to infer an aligned topic space for both

languages, which is hard when the corpora are not comparable. To exchange for

topic alignment, tLDA has to sacrifice the topic coherence on individual languages.

Our MTM only connects topics when necessary, so it is more robust when the

corpora get less comparable.

The results prove our MTM’s robustness on low comparability data, on which

it is likely to fail when forcing topic spaces to be aligned across languages. Our

MTM only connects topics when necessary, thus can still give coherent topics like

monolingual LDA.

5.3.5 Topic Coherence with Various Target Language Corpora Sizes

We study how the topic coherence changes when we vary the sizes of target lan-

guage (non-English languages in PACO and INCO) corpora, to find out how much
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our MTM can help when the data is limited in the case of low-resource languages.

Specifically, we start from 10% of the randomly-selected documents in target lan-

guages and incrementally add more target language documents at a step size of 10%

until it reaches 100%. So take Arabic as an example, the data composition settings

are (100% English, 10% Arabic), (100% English, 20% Arabic), until (100% English,

100% Arabic). We train monolingual LDA, tLDA, and MTMs with and without

TF-IDF weighting on translation pairs on each setting, evaluate the topic coherence

on the same reference corpora using the top thirty words of each topic and present

them in Figures 5.6 and 5.7.

In most cases, the topic coherence gets better when the sizes of target language

corpora enlarge, except a few cases like Arabic and Russian on PACO. This meets

our intuition that with more available data, it is easier to train a better topic model.

MTM is helpful in some cases when the target language corpora sizes are small, e.g.,

Chinese and Russian with 10% or 20% sizes of the corpora. In terms of TF-IDF

weighting, there is no consistent result whether it is better than equal weights.

The tLDA with tree priors of dictionaries performs poorly in topic coherence,

except Farsi in INCO. In most cases, its performance is way below other ones’ and

improves little when the target corpora sizes grow.

5.4 Summary

In this chapter, we focus on learning, instead of incorporating, topic links

across languages, given the latent nature of topics. Thus, we introduce a novel mul-
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tilingual topic model (MTM) which learns weighted topic links across languages.

The MTM allows the topics in different languages to be connected only when neces-

sary, based on the observations that topics often differ across languages and cultures,

and even the same topic can have different emphases among languages. The topic

link weights are learned by minimizing the Euclidean distances of translation pairs’

(transformed) topic distributions, where each translation pair can be weighted, e.g.,

by TF-IDF.

Our MTM significantly outperforms baseline models in classification tasks

both intra- and cross-lingually, while providing coherent topics and meaning topic

links that can go beyond word translations. When the data get small and less com-

parable or even incomparable, our MTM still performs well or slightly better than

monolingual LDA in topic coherence. This shows its robustness over past MTMs

that force topic spaces to be aligned across languages.
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Chapter 6: Conclusion and Future Work

Weighted links exist almost everywhere and connect objects with similar pat-

terns. They contain rich information and could assist in various tasks. In the

hierarchy of documents, topics, and words in topic modeling, weighted document

links and word links are often observed and could provide external knowledge for

topic modeling, while topic links are usually unobservable. This dissertation follows

the induction and deduction insights to summarize the patterns from the weighted

links and apply them in topic inference. Specifically, we explore the methods to

uncover the latent structures in the observed weighted document and word links

and suggests ways to incorporate them into topic modeling. For latent weighted

topic links, we introduce a multilingual topic model to learn them across languages

from word translations.

This dissertation develops methods based on topic models, contrast to the

popular deep learning methods in the fields of natural language processing and

machine learning. Although deep learning methods can also incorporate the ex-

ternal knowledge into its objective function and neural network structure pretty

straightforwardly, topic models have their unique advantage of interpretability. Due

to the non-linearity in neural networks, it is hard to pinpoint the bottleneck of
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deep learning algorithms. People can only try different network structures, tune the

hyperparameters, and wish a better model (so some people call deep learning “a

modern alchemy”). In topic models, on the contrary, every parameter is clearly in-

terpretable, which is easy to diagnose and provides useful insight of the documents,

so people like to use topic models to analyze documents, although it is more difficult

to add a new distribution and derive the posterior inference than to add another

layer in a neural network.

6.1 Summary of Contributions

In Chapter 3, we explore binary document links which indicate connected

documents’ topic similarities. Past methods either treat text and links separately or

treat them jointly but focus exclusively on single links without delving into the latent

structure of links. They have ignored interesting patterns in the document network,

such as latent blocks, in which documents are densely connected and tend to be

about similar topics. We use WSBM, a probabilistic block discovery algorithm, to

find the latent blocks and extract informative topic priors from the blocks to guide

documents’ topic sampling. To make full use of the features we have, in addition to

topical features in past methods, we also include lexical and block features for link

prediction. Further, we employ hinge loss for classification, which better captures

the side information than sigmoid loss. The model LBH-RTM, a relational topic

model with lexical weights, block priors, and hinge loss, achieves better performance

than RTM in both link prediction and topic coherence.
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In Chapter 4, we incorporate real-valued word links, or lexical associations,

that indicate word semantic relatedness to guide topic modeling. Because the lexical

association table is too large and redundant to be incorporated, we introduce three

straightforward but effective tree prior construction algorithms to remove the redun-

dancy and build the word hierarchies. The hierarchies contain the most salient word

association information and/or encode the magnitude. The tree priors are then fed

to tree LDA and help improve topic coherence and enhance extrinsic classification

performance. Although the tree priors in the experiments are constructed on two

particular types of word associations, the flexibility of our construction algorithms

accommodates any word associations.

In Chapter 5, we introduce weighted topic links that connect topics across

languages. We also introduce a novel multilingual topic model (MTM). Given that

topics often differ among languages and background cultures, unlike past MTMs

that learn an aligned topic space across languages, our MTM only links topics (i.e.,

assigns a topic link value) when the two topics contain many word translation pairs.

This substantially improves the performance of our MTM. Not only does it achieve

higher F1 scores in intra- and cross-lingual classification tasks than monolingual

LDA and past MTMs, but it also stays robust and gives coherent topics when the

data get smaller and less comparable or even incomparable (when past MTMs have

mostly failed altogether). In addition, our MTM uses a posterior regularizer to

encode external knowledge and learn topic links. This flexibility allows us to try

out any other formulations without changing the main model structure.
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6.2 Directions for Future Work

In this subsection, we analyze some limitations of the work in this dissertation

and propose corresponding solutions. In addition, we give some smaller-scope future

directions which may improve the current work.

6.2.1 Primary Limitations and Solutions

We evaluate the topics both quantitatively and qualitatively. While quantita-

tive evaluation is quite objective, qualitative evaluation relies a lot on the human

evaluators who can give very different results. For instance, the Images topic in

Table 4.3 may be identified as an Image Transfer topic and the current less relevant

words fit well. To minimize the variance in human evaluation, we can have multiple

human evaluators evaluate the topics and take the majority topic name. We can

also refer to the documents with high posteriors in this topic and see what the topic

should be according the documents’ content.

When we identify documents’ block assignments in Chapter 3, we assume that

each document can be assigned to exactly one block. However, this sometimes does

not conform to reality. To take scientific paper as an example, today there is more

interdisciplinary work than ever before. For instance, for a paper that applies a

topic model on images, it makes sense to assign it to either the topic model block

or the computer vision block (Fei-Fei and Perona, 2005), but either option discards

some useful information in the other one and may cause our model to perform

less well. To overcome this problem, we should break the assumption of one-block
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assignment and instead assume mixed membership for each document (Kim and

Leskovec, 2012). In this case, we can obtain more accurate priors for a document

by taking a weighted sum or average of the block topic priors it belongs to.

Another limitation is to deal with multiple types of networks. On Twit-

ter, users interact with each other by mentioning, retweeting, and following. In

the real world, people have different facets to others, e.g., colleagues, family, and

strangers (Goffman, 1978). Different types of links imply different relationships. For

instance, mentioning often indicates a closer relationship than following; people talk

with family members more than strangers in both depth and breadth. A straightfor-

ward solution for this situation would be to identify latent blocks separately for each

network, and then take a weighted sum or average of the priors from all networks.

In Chapter 4, we build static tree priors that never change the structures

during topic model training. The topic modeling thus may suffer or even fail from

domain differences between the task corpus and the external corpus on which the

lexical associations are learned. For instance, in the experiments, we build the tree

priors on Gigaword 5, which consists of news articles, but we apply the tree priors to

Amazon reviews, which have significantly different word distributions. Therefore, it

is worthwhile to develop dynamic tree priors for tLDA, e.g., based on probabilistic

hierarchical clustering with coalescent (Teh et al., 2007; Görür and Teh, 2009; Hu

et al., 2013). In this case, the tree prior construction and topic modeling could be

in a joint framework, each adjusting according to the patterns of the other, and

thereby improving each other.

For our MTM in Chapter 5, we learn weighted topic links by converting words’
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topic distribution to their translations’. This is fine for the words with single sense,

but the words with multiple senses may mislead the learning of topic links. For

example, the word “spring” has high probabilities in the topics of Season and Water

and its translations in Chinese are “春天 (chūn tiān)” and “泉水 (quán shǔı)” (which

correspond to Season and Water senses for “spring” respectively). Our topic link

learning method then tries to connect the English Season and Water topics with the

corresponding topics in Chinese. In this case, the English Season topic is connected

to Chinese Season and Water topics, and so is the English Water topic, which

produces wrong connections and will mislead the MTM. This problem also exists in

other cross-lingual methods, e.g., in cross-lingual word embeddings, “spring” may

not align well with either “春天 (chūn tiān)” or “泉水 (quán shǔı)” (Fujinuma

et al., 2019). To avoid this problem, we can add some heuristics when learning

weighted topic links. A straightforward heuristic for a pair of topics is the number

of translation pairs in their top words. The topic link weight learning algorithm is

then penalized more if it does not connect the topics with more translation pairs

but penalized less otherwise. In the example of “spring”, the heuristics can tell the

learning algorithm that the English Season topic should be connected to the Chinese

Season topic because they have more translation pairs in their top words, and so for

the Water topics, but not connect English Season topic with Chinese Water topic

or vice versa.

In addition, the datasets used in our experiments are relatively small, but

their sizes are enough to validate our models. However, when applying our models

on large datasets, it will probably take a long time for convergence. To improve
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the runtime performance, we can apply some approximation to the Gibbs sam-

pling equation using the distribution sparsity, alias table, and Metropolis-Hastings

sampling algorithm (Yao et al., 2009; Li et al., 2014; Yuan et al., 2015). Another

approach is to use variational inference (Wainwright and Jordan, 2008) instead of

Gibbs sampling for posterior inference and parallelize it (Zhai et al., 2012).

6.2.2 Other Future Directions

More Fine-grained Evaluation of Document Link Prediction In the exper-

iments of document link prediction, we evaluate our model’s performance on paper

abstracts with citations and web pages with hyperlinks. The ground-truth links

contain only the links that should and do exist, but there is a chance that some

“good” links are missing, e.g., a missing citation.

In the information retrieval literature, retrieved documents are categorized into

three classes: 1) documents relevant to the query, 2) irrelevant to the query, and

3) partially relevant to the query (Voorhees, 2001). Following this classification, we

can categorize the links into three classes as well. The first two classes correspond

to the notion of explicit positive and negative links in Chapter 3. These entail more

effort in data annotation but allow us to conduct a more fine-grained evaluation on

document link prediction, e.g., treating link prediction as a multi-class classification

problem and evaluating the F1 scores on each class.

Document Link Suggestion The missing document links suggest a potential

application for our LBH-RTM for document link suggestion. Because our model
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gives link probabilities instead of binary values for a link, we can use it to suggest

links that do not exist but should exist. This can be useful to bootstrap the data—

the model learns the topics with a few links and can then add the links with high

probabilities (self-training) or selected by a human (human-in-the-loop).

Other Document Link Weights We deal with binary-valued document links

which are quite pervasive. However, it is possible that the document links have

integer or even real-valued weights. This requires us to generalize the combined

weighted stochastic block model by replacing the probability distributions for gen-

erating links, e.g., using the distributions from the exponential family. This can

make our model more widely applicable.

Weighting Methods for Topic Translation Pairs In Chapter 5, we use TF-

IDF to weight the words, taking the smaller one of a translation pair as the pair’s

weight. This leaves many possibilities for evaluating the importance and reliability

of translation pairs, including but not limited to the variations of TF-IDF (e.g., just

term frequencies or inverse document frequencies), Okapi BM25 (Robertson et al.,

1995, 1999), and other methods to combine the two words’ scores into one for the

pair. Hopefully, we can find a better metric to more accurately weight translation

pairs and then improve the MTM’s performance.

Topic Space Transformation with Topic Link Weight Matrices In topic

space transformation, we explore two methods: directly multiply the topic link

weight matrices with topic distributions and transfer the topic probability mass to
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the top-linked topic in the other language. This corresponds to two extremes—

the first method takes all information including noise, while the second one throws

away most information except the most confident part. It makes sense to find a

balance point so that we can reduce the noise while keeping useful information. The

new method could be entropy-based. For the topics which have high entropies in

the weight distributions over the topics in the other language, they are likely to be

unique topics, so their weights could be adjusted lower. By contrast, a topic’s weight

could be increased if it has a precise corresponding topic in the other language and

its weight distribution has low entropy.

129



Appendix A: Derivation of the Posterior Inference for LBH-RTM

This appendix gives more details of deriving the Gibbs sampling equations

and parameter optimization for LBH-RTM in Section 3.3.

A.1 Sampling Block Assignments

In a weighted stochastic block model (WSBM, Section 3.1.2), the joint prob-

ability of all link weights A and document block assignments y is

Pr (A,y | a, b, γ) = Pr (A |y, a, b) Pr (y | γ) . (A.1)

A.1.1 Undirected Links

We further expand Pr (A,y | a, b, γ) for undirected graph as

Pr (A,y | a, b, γ) (A.2)

=

∫∫
Pr (A |y,Ω) Pr (Ω | a, b) Pr (y |µ) Pr (µ | γ) dΩdµ (A.3)

=

∫∫ (∏
l≤l′

∏
d∈l,d′∈l′

Ω
Ad,d′

l,l′

Ad,d′ !
exp (−Ωl,l′)

)(∏
l≤l′

ba

Γ(a)
Ωa−1
l,l′ exp (−bΩl,l′)

)
(

L∏
l=1

µNl
l

)(
1

∆(γ)

L∏
l=1

µγ−1l

)
dΩdµ (A.4)

∝
∫∫ (∏

l≤l′
Ω
Sw(l,l′)+a−1
l,l′ exp (−(Se(l, l

′) + b)Ωl,l′)

)(
L∏
l=1

µNl+γ−1
l

)
dΩdµ (A.5)
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∝∆(Nl + γ)
∏
l≤l′

Γ (Sw(l, l′) + a)

(Se(l, l′) + b)Sw(l,l′)+a
, (A.6)

where Sw(l, l′) is the weight sum of observed links between blocks l and l′; Se(l, l
′)

is the number of all possible links (i.e. assuming all links are observed) between

blocks l and l′. Specifically, Se(l, l
′) is defined as

Se(l, l
′) =


NlNl′ l 6= l′

1
2
Nl(Nl − 1) l = l′

(A.7)

where Nl denotes the number of documents assigned the block l.

∆ (Nl + γ) is defined as

∆ (Nl + γ) =

L∏
l′=1

Γ (Nl′ + γ)

Γ

(
L∑
l′=1

Nl′ + Lγ

) , (A.8)

where Γ(·) is a Gamma function:

Γ(x) =

∫ ∞
0

tx−1e−tdt, (A.9)

whose most important property, as introduced in Section 2.1.1, is Γ(x+ 1) = xΓ(x).

We then derive the Gibbs sampling equation for document d, given the block

assignments of other documents and link weights excluding d, as

Pr
(
yd = l |A−d,y−d, a, b, γ

)
(A.10)

=
Pr (A,y | a, b, γ)

Pr (A−d,y−d | a, b, γ)
(A.11)

∝Γ(D − 1 + Lγ)

Γ(D + Lγ)

Γ(Nl + γ)

Γ(N−dl + γ)

L∏
l′=1

Γ (Sw(l, l′) + a)

(Se(l, l′) + b)Sw(l,l′)+a

(
S−de (l, l′) + b

)S−d
w (l,l′)+a

Γ (S−dw (l, l′) + a)
(A.12)
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∝ N−dl + γ

D − 1 + Lγ

L∏
l′=1

(
S−de (l, l′) + b

)S−d
w (l,l′)+a

(Se(l, l′) + b)Sw(l,l′)+a

Sw(d,l′)−1∏
i=0

(
S−dw (l, l′) + a+ i

)
(A.13)

∝
(
N−dl + γ

) L∏
l′=1

(
S−de (l, l′) + b

)S−d
w (l,l′)+a

(S−de (l, l′) + b+ Se(d, l′))
S−d
w (l,l′)+a+Sw(d,l′)

Sw(d,l′)−1∏
i=0

(
S−dw (l, l′) + a+ i

)
, (A.14)

where Sw(d, l′) denotes the weight sum of observed links between document d and

block l′; Se(d, l
′) denotes the number of all possible links between document d and

block l′. Namely, Se(d, l
′) = Nl′ .

A.1.2 Directed Links

The expansion of Pr (A,y | a, b, γ) for directed graph is

Pr (A,y | a, b, γ) (A.15)

∝
∫∫ (∏

l,l′

∏
d∈l,d′∈l′

Ω
Ad,d′

l,l′

Ad,d′ !
exp (−Ωl,l′)

)(∏
l,l′

ba

Γ(a)
Ωa−1
l,l′ exp (−bΩl,l′)

)
(

L∏
l=1

µNl
l

)(
1

∆(γ)

L∏
l=1

µγ−1l

)
dΩdµ (A.16)

∝∆ (Nl + γ)
∏
l,l′

Γ (Sw(l, l′) + a)

(Se(l, l′) + b)Sw(l,l′)+a
, (A.17)

where Se(l, l
′) is defined as

Se(l, l
′) =


2NlNl′ l 6= l′

Nl(Nl − 1) l = l′
(A.18)

The Gibbs sampling equation is derived as

Pr
(
yd = l |A−d,y−d, a, b, γ

)
(A.19)

=
Pr (A,y | a, b, γ)

Pr (A−d,y−d | a, b, γ)
(A.20)
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∝Γ (D − 1 + Lγ)

Γ (D + Lγ)

Γ (Nl + γ)

Γ
(
N−dl + γ

)
L∏

l′=1,l′ 6=l

Γ (Sw(l, l′) + a)

(Se(l, l′) + b)Sw(l,l′)+a

(
S−de (l, l′) + b

)S−d
w (l,l′)+a

Γ (S−dw (l, l′) + a)

L∏
l′=1,l′ 6=l

Γ (Sw(l′, l) + a)

(Se(l′, l) + b)Sw(l′,l)+a

(
S−de (l′, l) + b

)S−d
w (l′,l)+a

Γ (S−dw (l′, l) + a)

Γ (Sw(l, l) + a)

(Se(l, l) + b)Sw(l,l)+a

(
S−de (l, l) + b

)S−d
w (l,l)+a

Γ (S−dw (l, l) + a)
(A.21)

∝ N−dl + γ

D − 1 + Lγ

L∏
l′=1,l′ 6=l

(
S−de (l, l′) + b

)S−d
w (l,l′)+a

(Se(l, l′) + b)Sw(l,l′)+a

Sw(d,l′)−1∏
i=0

(
S−dw (l, l′) + a+ i

)
L∏

l′=1,l′ 6=l

(
S−de (l′, l) + b

)S−d
w (l′,l)+a

(Se(l′, l) + b)Sw(l′,l)+a

Sw(l′,d)−1∏
i=0

(
S−dw (l′, l) + a+ i

)
(
S−de (l, l) + b

)S−d
w (l,l)+a

(Se(l, l) + b)Sw(l,l)+a

Sw(d,l)+Sw(l,d)−1∏
i=0

(
S−dw (l, l) + a+ i

)
(A.22)

∝
(
N−dl + γ

)
L∏

l′=1,l′ 6=l

(
S−de (l, l′) + b

)S−d
w (l,l′)+a

(S−de (l, l′) + b+ Se(d, l′))
S−d
w (l,l′)+a+Sw(d,l′)

Sw(d,l′)−1∏
i=0

(
S−dw (l, l′) + a+ i

)
L∏

l′=1,l′ 6=l

(
S−de (l′, l) + b

)S−d
w (l′,l)+a

(S−de (l′, l) + b+ Se(l′, d))S
−d
w (l′,l)+a+Sw(l′,d)

Sw(l′,d)−1∏
i=0

(
S−dw (l′, l) + a+ i

)
(
S−de (l, l) + b

)S−d
w (l,l)+a

(S−de (l, l) + b+ Se(l, d) + Se(d, l))
S−d
w (l,l)+a+Sw(d,l)+Sw(l,d)

Sw(d,l)+Sw(l,d)−1∏
i=0

(
S−dw (l, l) + a+ i

)
. (A.23)
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A.2 Sampling Topic Assignments

The joint probability of topic assignments Pr (z,w |α, β,π,y) for LBH-RTM

(Section 3.2.3) is

Pr (z,w,B |α, β,π,y,Ω,η, τ ,ρ) (A.24)

=

∫∫
Pr (z |θ) Pr (θ |α,π,y) Pr (w | z,φ) Pr (φ | β) dθdφ

Pr (B | z,w,y,Ω,η, τ ,ρ) (A.25)

=

∫∫ ( D∏
d=1

K∏
k=1

θ
Nd,k

d,k

)(
D∏
d=1

1

∆ (απyd
)

K∏
k=1

θ
απyd,k−1
d,k

)
(

K∏
k=1

V∏
v=1

φ
Nk,v

k,v

)(
K∏
k=1

1

∆(β)

V∏
v=1

φβ−1k,v

)
dθdφ

∏
d,d′

f (Bd,d′ | zd, zd′ ,wd,wd′ , yd, yd′ ,Ω,η, τ ,ρ) (A.26)

=

∫∫ ( D∏
d=1

1

∆ (απyd
)

K∏
k=1

θ
Nd,k+απyd,k−1
d,k

)(
K∏
k=1

1

∆(β)

V∏
v=1

φ
Nk,v+β−1
k,v

)
dθdφ

∏
d,d′

f (Bd,d′ | zd, zd′ ,wd,wd′ , yd, yd′ ,Ω,η, τ ,ρ) (A.27)

=

(
D∏
d=1

∆ (Nd + απyd
)

∆ (απyd
)

)(
K∏
k=1

∆ (Nk + β)

∆(β)

)
∏
d,d′

f (Bd,d′ | zd, zd′ ,wd,wd′ , yd, yd′ ,Ω,η, τ ,ρ) . (A.28)

The Gibbs sampling equation is then derived as

Pr
(
zd,n = k | z−d,n, wd,n = v,w−d,n,B, α, β,π,y−d, yd = l,Ω,η, τ ,ρ

)
(A.29)

=
Pr
(
zd,n = k, z−d,n, wd,n = v,w−d,n,B |α, β,π,y−d, yd = l,Ω,η, τ ,ρ

)
Pr (z−d,n,w−d,n,B−d,n |α, β,π,y−d, yd = l,Ω,η, τ ,ρ)

(A.30)

=
∆ (Nd + απl)

∆
(
N−d,nd + απl

) ∆ (Nk + β)

∆
(
N−d,nk + β

)
134



∏
d′

f
(
Bd,d′ | zd,n = k, z−d,n, zd′ ,wd,wd′ , yd, yd′ ,Ω,η, τ ,ρ

)
f (Bd,d′ | z−d,n, zd′ ,w−d,n,wd′ , yd, yd′ ,Ω,η, τ ,ρ)

(A.31)

∝
(
N−d,nd,k + απ−d,nl,k

) N−d,nk,v + β

N−d,nk,· + V β∏
d′

f
(
Bd,d′ | zd,n = k, z−d,n, zd′ ,wd,wd′ , yd, yd′ ,Ω,η, τ ,ρ

)
, (A.32)

where π−d,nl,k is estimated based on maximal path assumption (Cowans, 2006; Wal-

lach, 2008):

π−d,nl,k =

∑
d′:yd′=l

N−d,nd′,k + α′∑
d′:yd′=l

N−d,nd′,· +Kα′
. (A.33)

A.2.1 Sigmoid Loss

We split d′ into two subsets: d+ and d−. d+ denotes the documents that have

positive links (observed links, with weight 1) with d. d− denotes the documents that

have negative links (sampled from unobserved links, with weight 0). When using

sigmoid loss, the probability of a positive link between documents d and d+ is

Pr (Bd,d+ = 1 | zd, zd+ ,wd,wd+ , yd, yd+ ,Ω,η, τ ,ρ) (A.34)

=σ
(
η> (zd ◦ zd+) + τ> (wd ◦wd+) + ρyd,yd+Ωyd,yd+

)
(A.35)

=σ

(
K∑
k=1

ηk
Nd,k

Nd,·

Nd+,k

Nd+,·
+

V∑
v=1

τv
Nd,v

Nd,·

Nd+,v

Nd+,·
+ ρyd,yd+Ωyd,yd+

)
, (A.36)

where σ(x) = 1/(1 + exp(−x)).

Contrarily, the probability of a negative link between documents d and d− is

Pr (Bd,d− = 0 | zd, zd− ,wd,wd− , yd, yd− ,Ω,η, τ ,ρ) (A.37)

=1− σ

(
K∑
k=1

ηk
Nd,k

Nd,·

Nd−,k

Nd−,·
+

V∑
v=1

τv
Nd,v

Nd,·

Nd−,v

Nd−,·
+ ρyd,yd−Ωyd,yd−

)
. (A.38)
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Therefore, the Gibbs sampling equation is

Pr (zd,n = k | rest) (A.39)

∝
(
N−d,nd,k + απ−d,nl,k

) N−d,nk,v + β

N−d,nk,· + V β∏
d+

σ

(
ηk
Nd,·

Nd+,k

Nd+,·
+

K∑
k′=1

ηk′
N−d,nd,k′

Nd,·

Nd+,k′

Nd+,·
+

V∑
v=1

τv
Nd,v

Nd,·

Nd+,v

Nd+,·
+ ρyd,yd+Ωyd,yd+

)
∏
d−

(
1− σ

(
ηk
Nd,·

Nd−,k

Nd−,·
+

K∑
k′=1

ηk′
N−d,nd,k′

Nd,·

Nd−,k′

Nd−,·
+

V∑
v=1

τv
Nd,v

Nd,·

Nd−,v

Nd−,·
+ ρyd,yd−Ωyd,yd−

))
.

(A.40)

A.2.2 Hinge Loss

When using hinge loss, the probability of a link (either positive or negative,

but the weight of a negative link is −1) between documents d and d′ is

Pr (Bd,d′ | zd, zd′ ,wd,wd′ , yd, yd′ ,Ω,η, τ ,ρ) = exp (−2cmax (0, ζd,d′)) , (A.41)

where c is the regularization parameter (it’s set to 1 in our experiments, so it does

not appear in Chapter 3); ζd,d′ is defined as

ζd,d′ = 1−Bd,d′Rd,d′ , (A.42)

Rd,d′ is defined in Equation A.53.

Equation A.41 can be rewritten by introducing a latent variable λd,d′ (Polson

and Scott, 2011):

Pr(Bd,d′ | zd, zd′ ,wd,wd′ , yd, yd′ ,Ω,η, τ ,ρ)

=

∫ ∞
0

1√
2πλd,d′

exp

(
−(cζd,d′ + λd,d′)

2

2λd,d′

)
dλd,d′ . (A.43)

136



Thus the Gibbs sampling equation is

Pr (zd,n = k | rest) ∝
(
N−d,nd,k + απl,k

) N−d,nk,v + β

N−d,nk,· + V β∏
d′

exp

(
−(cζd,d′ + λd,d′)

2

2λd,d′

)
. (A.44)

The exponent of final term of the equation above can be expanded as

− (cζd,d′ + λd,d′)
2

2λd,d′
(A.45)

∝−
c2ζ2d,d′ + 2cλd,d′ζd,d′

2λd,d′
(A.46)

∝− c2 (1−Bd,d′Rd,d′)
2 + 2cλd,d′ (1−Bd,d′Rd,d′)

2λd,d′
(A.47)

∝−
c2
(
−2Bd,d′Rd,d′ +R2

d,d′

)
− 2cλd,d′Bd,d′Rd,d′

2λd,d′
(A.48)

∝−
c2R2

d,d′

2λd,d′
+
cBd,d′ (c+ λd,d′)Rd,d′

λd,d′
(A.49)

∝−
c2
(

ηk
Nd,·

Nd′,k
Nd′,·

+
K∑
k′=1

ηk′
N−d,n
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Nd′,k′

Nd′,·
+

V∑
v=1

τv
Nd,v

Nd′,·
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Nd′,·

+ ρyd,yd′Ωyd,yd′

)2
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+

cBd,d′ (c+ λd,d′)

(
ηk
Nd,·

Nd′,k
Nd′,·

+
K∑
k′=1

ηk′
N−d,n

d,k′

Nd,·

Nd′,k′

Nd′,·
+

V∑
v=1

τv
Nd,v

Nd′,·

Nd′,v
Nd′,·

+ ρyd,yd′Ωyd,yd′

)
λd,d′

(A.50)

∝−
c2
(

η2k
N2

d,·

N2
d′,k

N2
d′,·

+ 2 ηk
Nd,·

Nd′,k
Nd′,·

(
K∑
k′=1

ηk′
N−d,n

d,k′

Nd,·

Nd′,k′

Nd′,·
+

V∑
v=1

τv
Nd,v

Nd′,·

Nd′,v
Nd′,·

+ ρyd,yd′Ωyd,yd′
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2λd,d′

+
cBd,d′ (c+ λd,d′)

ηk
Nd,·

Nd′,k
Nd′,·

λd,d′
(A.51)

∝−
c2
(
η2kN

2
d′,k + 2ηkNd′,k

(
K∑
k′=1

ηk′N
−d,n
d,k′ Nd′,k′ +

V∑
v=1

τvNd,vNd′,v + ρyd,yd′Ωyd,yd′
Nd,·Nd′,·

))
2λd,d′N2

d,·N
2
d′,·

+
cBd,d′ (c+ λd,d′) ηkNd′,k

λd,d′Nd,·Nd′,·
. (A.52)
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A.3 Optimizing Parameters

Let the regression value of documents d and d′ be

Rd,d′ = η> (zd ◦ zd′) + τ> (wd ◦wd′) + ρyd,yd′Ωyd,yd′
. (A.53)

Its partial derivatives are

∂Rd,d′

∂ηk
=
Nd,k

Nd,·

Nd′,k

Nd′,·
(A.54)

∂Rd,d′

∂τv
=
Nd,v

Nd,·

Nd′,v

Nd′,·
(A.55)

∂Rd,d′

∂ρyd,yd′
=Ωyd,yd′

. (A.56)

A.3.1 Sigmoid Loss

To optimize regression parameters, we first compute the log likelihood of B as

L(B) = log Pr (B | z,w,y,Ω,η, τ ,ρ) + log Pr (η | ν)

+ log Pr (τ | ν) + log Pr (ρ | ν) (A.57)

∝−
∑
d,d+

log (1 + exp (−Rd,d+)) +
∑
d,d−

(log (exp (−Rd,d−))− log (1 + exp (−Rd,d−)))

−
K∑
k=1

η2k
2ν2
−

V∑
v=1

τ 2v
2ν2
−

L∑
l=1

L∑
l′=1

ρ2l,l′

2ν2
(A.58)

∝−
∑
d,d′

log (1 + exp (−Rd,d′))−
∑
d,d−

Rd,d−

−
K∑
k=1

η2k
2ν2
−

V∑
v=1

τ 2v
2ν2
−

L∑
l=1

L∑
l′=1

ρ2l,l′

2ν2
. (A.59)
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Its derivatives are

∂L(B)

∂ηk
∝− ηk

ν2
+
∑
d,d′

exp (−Rd,d′)

1 + exp (−Rd,d′)

Nd,k

Nd,·

Nd′,k

Nd′,·
−
∑
d,d−

Nd,k

Nd,·

Nd−,k

Nd−,·
(A.60)

∂L(B)

∂τv
∝− τv

ν2
+
∑
d,d′

exp (−Rd,d′)

1 + exp (−Rd,d′)

Nd,v

Nd,·

Nd′,v

Nd′,·
−
∑
d,d−

Nd,v

Nd,·

Nd−,v

Nd−,·
(A.61)

∂L(B)

∂ρl,l′
∝− ρl,l′

ν2
+

∑
d∈l,d′∈l′

exp (−Rd,d′)

1 + exp (−Rd,d′)
Ωl,l′ −

∑
d∈l,d−∈l′

Ωl,l′ . (A.62)

A.3.2 Hinge Loss

The log likelihood of B is

L(B) = log Pr (B | z,w,y,Ω,η, τ ,ρ) + log Pr (η | ν)

+ log Pr (τ | ν) + log Pr (ρ | ν) (A.63)

∝−
∑
d,d′

(cζd,d′ + λd,d′)
2

2λd,d′
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η2k
2ν2
−
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τ 2v
2ν2
−

L∑
l=1

L∑
l′=1

ρ2l,l′

2ν2
(A.64)
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ρ2l,l′

2ν2
(A.66)
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The partial derivatives of R2
d,d′ are

∂R2
d,d′

∂ηk
=2Rd,d′

∂Rd,d′

∂ηk
= 2Rd,d′

Nd,k

Nd,·

Nd′,k

Nd′,·
(A.68)
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=2Rd,d′
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∂τv
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Nd′,v

Nd′,·
(A.69)
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. (A.70)

So the partial derivatives of L(B) are

∂L(B)

∂ηk
∝−

∑
d,d′

c (cRd,d′ − (c+ λd,d′)Bd,d′)

λd,d′

Nd,k

Nd,·

Nd′,k

Nd′,·
− ηk
ν2

(A.71)
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The likelihood of latent variable λd,d′ is

Pr (λd,d′ | z,w,y,Ω,B,η, τ ,ρ)

∝ 1√
2πλd,d′

exp

(
−(λd,d′ + cζd,d′)

2

2λd,d′

)
(A.74)
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−
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− λd,d′

2

)
(A.75)

∝GIG
(
λd,d′ ;

1

2
, 1, c2ζ2d,d′

)
, (A.76)

where GIG denotes generalized inverse Gaussian distribution which is defined as

GIG (x ; p, a, b) = C (p, a, b)xp−1 exp

(
−1

2

(
b

x
+ ax

))
, (A.77)

where C(p, a, b) is a normalizer.

We can sample λ−1d,d′ (then λd,d′) from an inverse Gaussian distribution

Pr
(
λ−1d,d′ | z,w,y,Ω,B,η, τ ,ρ

)
∝ IG

(
λ−1d,d′ ;

1

c|ζd,d′|
, 1

)
, (A.78)

where

IG (x ; a, b) =

√
b

2πx3
exp

(
−b (x− a)2

2a2x

)
, (A.79)

for a > 0 and b > 0.
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A.4 Sampling Process

The following is the sampling process of LBS-RTM. It is less complex than

that of LBH-RTM (Algorithm 1).

Algorithm 2 Sampling Process of LBS-RTM

1: Sample implicit negative links as explicit ones from a uniform distribution
2: Initialize every topic assignment zd,n from a uniform distribution
3: for m = 1 to M do
4: Optimize η, τ , and ρ using L-BFGS (Equations A.59, A.60, A.61, and A.62)
5: for each document d = 1 to D do
6: Draw block assignment yd from the multinomial distribution (Equa-

tion A.14)
7: for each token n in document d do
8: Draw a topic assignment zd,n from the multinomial distribution

(Equations A.40)
9: end for

10: end for
11: end for
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Appendix B: Derivation of the Posterior Inference for the Multilin-

gual Topic Model

This appendix includes the detailed derivation of the Gibbs sampling equations

for the multilingual topic model in Section 5.

The joint likelihood of generating the corpora in languages S and T is

Pr (zS,wS, zT,wT |αS, βS, αT , βT ,ρ,η) (B.1)

=Ψ (ρ,η, zS,wS, zT,wT) Pr (zS,wS |αS, βS) Pr (zT,wT |αT , βT ) (B.2)

= exp (f (ρ, zS, zT,wS,wT))∫∫∫∫
Pr (wS | zS,φS) Pr (φS | βS) Pr (zS |θS) Pr (θS |αS)

Pr (wT | zT,φT ) Pr (φT | βT ) Pr (zT |θT ) Pr (θT |αT ) dφSdθSdφT dθT (B.3)

= exp (f (ρ,η, zS, zT,wS,wT))
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dφSdθSdφT dθT (B.4)

∝ exp (f (ρ,η, zS, zT,wS,wT))

∫∫∫∫ ( KS∏
kS=1

VS∏
vS=1

φ
NS,kS,vS

+βS−1
S,kS ,vS

)

142



(
DS∏
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= exp (f (ρ,η, zS, zT,wS,wT))
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where

∆ (NS,kS
+ βS) =

VS∏
vS=1

Γ (NS,kS ,vS + βS)

Γ

(
VS∑
vS=1

NS,kS ,vS + VSβS

) , (B.7)

where Γ(·) is a Gamma function and Γ(x+ 1) = xΓ(x).

Thus, for a token in language S, the Gibbs sampling equation for updating its

topic assignment is

Pr
(
zS,d,n = k | z−S,d,n,w−S,d,n, wS,d,n = v, zT,wT, αS, βS,ρ,η

)
∝ ∆(NS,dS
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∆(N−S,d,nS,dS
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exp
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−1
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The derivation for sampling a token’s topic assignment in language T is similar—

just swap subscriptions S and T :

Pr
(
zT,d,n = k | z−T,d,n,w−T,d,n, wT,d,n = v, zS,wS, αT , βT ,ρ

)
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