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Hydrogen peroxide is being tested for in situ remediation of buried 

contaminants - either as a direct chemical oxidant in Fenton-type reactions or as a 

source of oxidizing equivalents in bioremediation. How it affects a common co­

contaminant, Cr, is explored here in four chemically diverse high-Cr soils. 

Soils contaminated with high levels of soluble Cr(VI) from ore processing and 

soils containing high levels ofrecently reduced Cr(III) from electroplating waste 

showed marked increases in chromate after single applications of J-25 mM peroxide. 

Cr(VI) in the leachates exceeded the drinking water standard (2µM) by 1-3 orders of 

magnitude. Soluble Cr(III), in the form of dissolved organic complexes, contributed to 

the likelihood of Cr(III) oxidation. Anaerobic soil conditions at a tannery site 



prevented oxidation of Cr(III). Naturally occurring Cr in serpentine soil also resisted 

oxidation. Ambient soluble Cr(VI) in a contaminated aquifer disappeared from 

peroxide leachates below pH 5, then reappeared as peroxide levels declined. 

In solutions prepared under environmentally relevant conditions, aged 280 

µM Cr(III) treated with I 00 µM H20 2 showed increases in Cr(VI) over weeks with 

maximum oxidation rates achieved in solutions prepared with 2: I and 4: t OH -:Cr. 

Although Cr(III) speciation differs in fresh and aged aqueous systems, a similar 

mechanism involving the pre-equilibrium step: Cr(OH)/ + OH- .,. Cr(OH)/ may 

account for Cr(III) oxidation in both systems. Under alkaline conditions, H20 2 

enhanced the oxidative dissolution of CrnCOH)3n°. The formation of peroxochrornium 

compounds in the presence of H20 2 and Cr(VI) may account for the disappearance and 

reappearance of Cr(VI) in H20 2 treated soils; as does the possible formation and 

subsequent reoxidation of Cr1\(0H)3n_2 
2

+ oligomers. 

Mobilization of hazardous Cr(VI) must be considered in plans to use H20 2 for 

remediation of chemically complex wastes. Once Cr(III) is oxidized to Cr(VI) by H20 2 

it may persist long after applied H20 2 treatments have disappeared. Further, hexavalent 

Cr will behave as a catalyst toward H20 2 in soils, enhancing its oxidative capacity while 

helping to dissipate high levels of applied H20 2• 
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Chapter 1 

Background on Soil Chemical Behavior of Chromium and Peroxide 



INTRODUCTION 

The oxidative treatment ofbiorefractory organic contaminants in soil and 

groundwater using hydrogen peroxide has recently attracted strong interest within 

EPA, but such treatment may oxidize the co-contaminant, Cr{III), if present. 

Hydrogen peroxide can be applied to remediation sites either as a direct oxidant of 

organic contaminants or as part of the well-known Fenton's reagent, in which it reacts 

with catalytic amounts ofFe(II) to produce the powerfully oxidizing hydroxyl radical 

(OH"). It has also been used to enhance aerobic bioremediation through production 

and delivery ofO2 (Carberry, 1994). The aim ofthis research is to investigate the 

possible chenucal interaction between peroxide and different forms of chronuum that 

may co-contaminate a site where this treatment is applied. Chronuum in soil and 

groundwater poses an environmental hazard only when the metal is found in its most 

highly oxidized state, as anionic Cr(VI), in which form it is toxic, mobile and classified 

as a class A human carcinogen (Calder, 1988; Katz and Salem, 1994). In contrast, 

chronuum(III) is nontoxic, an essential human nutrient involved with glucose 

metabolism, mostly insoluble in soils and not readily absorbed by plants. IfH2O2 were 

to oxidize Cr(III) to Cr(VI), a relatively innocuous waste material would be 

transformed into a hazardous one. 

This introduction will briefly review the chemistry of some of the possible 

biotic and abiotic reactions ofH2O2 in groundwater, and describe its use to remediate 

contaminated soil, both as an enhancement to bioremediation, and as a direct oxidant. 

It will also treat the chemistry of Cr speciation as it affects its behavior in soil and 
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groundwater, and the scope and nature of Cr contamination, typified by its presence at 

Superfund sites. Background will also be given on the known chemistry ofCr/H20 2 

interactions that could be relevant under conditions of soil remediation. Chapter 2 will 

discuss four soils high in Cr, but different in almost every other respect, and examine 

their varied response to H20 2• Chapter 3 will examine the chemistry of those results in 

light of experiments using defined aqueous systems. In conclusion, Chapter 4 will 

look at current H20 2 remediation trends and examine implications for Cr contamination 

from the use of H20 2 to remediate high levels of organic contaminants in soil. 

PEROXIDE IN SOILS 

Peroxide Soil Chemistry 

Hydrogen peroxide levels have been measured in groundwater at I 0·1 to I o·8 M 

(Holm et al., 1987) and at 104; Min groundwater exposed to sunlight (Cooper and 

Zika, 1983). It is thought to be a respiration byproduct of aerobic soil microorganisms, 

certain Aerococcus species of which have been isolated and characterized (Kontchou 

and Blondeau, 1990). Enzymes such as aerobic dehydrogenases, amine oxidases, lysine 

monooxygenase, and xanthine oxidase produce H20 2 during nonnal cellular metabolic 

processes (Pardieck et al., 1992). H20 2 is also produced by microbes as the product of 

the superoxide dismutase catalyzed disproportionation of the superoxide anion radical 

(Oi°") (Price et al, 1992): 

202•• + 2H+ .. H20 2 + 0 2 (I.I 

The superoxide radical is present in soils as a natural byproduct of microbial 
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respiration: it results from the reduction of molecular 0 2 to H20 via single electron 

transfers, along with H20 2 and Off: 

0 2 + e--+ 0 2·-

02 ·- + 2H+ + e- -+ H20 2 

H20 2 + H+ + e- -+ H20 + Off 

Off + H+ + e- -+ H20 

(1.2 

(1.3 

(1.4 

(1.5 

Soil microorganism defenses which protect against excess cellular quantities of these 

reactive intermediate species could be expected to play a role in the response of soil 

biota to remedial H20 2 treatments. 

Hydrogen peroxide is a powerful oxidant, used commonly as a disinfectant. In 

soil, with or without the aid of mineral or biological catalysts, it would be capable of 

oxidizing reduced species such as Fe2+, Mn2+, or H2S, as well as some forms of soil 

organic matter. It may, in turn, be expected to react as a reductant in soils toward 

oxidized species like MnOOH, or Mn02• The oxidation state of oxygen in H20 2 (-1) is 

between that of 0 2 and H20, and it can be oxidized to 0 2 or reduced to H20 2 by 2 

electron transfer reactions. The following half reactions summarize the redox 

chemistry of H20 2 under acidic and basic conditions (Greenwood and Earnshaw, 1994): 

H20 2 + 2H+ + 2e-.,. 2H20 E'N 1.776 (1.6 

0 2 + 2H+ + 2e- .,. H20 2 

Ho2- +H20 + 2e- .,. 30ff 

0 2 + H20 + 2e- .,. H02• + Off 

0.695 

0.878 

-0.076 

(1.7 

(1.8 

(1.9 

Its strength as an oxidant decreases with increasing pH, but its reductive strength 
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increases, allowing disproportionation to be energetically feasible across the entire pH 

range. 

The thermodynamic prediction for the disproportionation ofH2O2 at 298 Kand 

atmospheric Po, is that reaction 1.10 will go to the right at any H20 2 concentration over 

10-19M: 

(1.10 

The reaction, however, is kinetically slow in a pure system (Brown et al., 1970). For 

some time it was thought (Duke and Haas, 1961) that the thermal decomposition of 

H2O2 occurs without a catalyst as a second order process via attack by HO2• on H2O2 

with a rate maximwn at pH 11.8, the PKa ofH2O2 (Cotton and Wilkinson, 1988). 

Subsequently, work reviewed by Brown et al. (1970) showed that the H2O2 

decomposition was probably catalyzed by trace metals present in the experimental 

reagents, and that when reagents are carefully purified and trace metal contamination 

controlled, H2O2 solutions are essentially stable, even under alkaline conditions. 

The thermodynamics of equations 1.6 and 1. 7 imply that any redox couple at a 

potential (E') greater than 0.695 V (O/H2O) and less than 1. 77 V (H2O2 IH20) would 

be a catalyst for the H2O2 disproportionation reaction, and in soils, Mn(lll,IV) 

(hydr)oxides and Fe (II,111) (hydr)oxides are the most likely non-biological mediators. 

For example, Mn (II) is oxidized by H2O2 , while Mn (111,IV) oxides may be reduced 

(Pardieck et al., 1992): 

H2O2 (aq) + 2Mn2+(aq) + 2H2O .. 2MnOOH + 4H+ AG= -50.9 kJ/mol (1.11 

H2O2 (aq) + 2MnOOH(s) + 4H+ .. 2Mn2+(aq) + Oz(aq) + 4H2O (1.12 
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~G = -24.8 kJ/mol (values for both reactions at pH 7) 

Birnessite, (o-Mn02) a non stoichiometric Mn mineral common in terrestrial and 

aquatic environments, was found to decompose H20 2 following a first order kinetic rate 

law (Elprince and Mohamed, 1992) and was found to be the most probable inorganic 

catalyst ofH20 2 decomposition in a dry alluvial soil from an Egyptian floodplain (El-

Wakil, 1986). 

Hydrogen peroxide will also decompose in the presence of the Fe3+/Fe2+ redox 

couple (E°= 0. 771 V) via the well known Fenton mechanism (Fenton, 1894; Haber and 

Weiss, 1932), notable for its production of the highly reactive OH" and 0 2 ·­

intermediate species. In the Fenton mechanism, a reduced metal, e.g. Fe(II) or Cr(V), 

reacts with H20 2 in a rate limiting step to produce OH" ( equation 1.13 below). Trace 

amounts of a reduced metal will cycle between oxidized and reduced states in a series 

of one electron transfer reactions to catalyze the destruction of H20 2 ( equation 1.10) in 

a manner consistent with the reactions steps below (Evans and Upton, 1985; Wardman 

and Candeias, 1996): 

(1.13 

(1.14 

Fe2+ + OH" .., Fe3+ + Off (1.15 

(1.16 

(1.17 

2 HO • .., 2 0 ·- + 2H+ 2 2 (1.18 
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Superoxide, (HO2"/Ot PKi = 4.8 Bielski et al., 1985) produced by the oxidation of 

H2O2 by either Fe3
+ or OH" ( equations 1.14 and 1. I 7 above), serves as a reductant for 

the oxidized metal, completing the catalytic cycle. 

Hydroxyl radicals produced in the initial step may be subsequently scavenged by 

Fe2
+ ( equation 1.15), or by H2O2 ( equation I .17), and in a simple system, the reactions 

proceed to produce H2O and 0 2 as H2O2 is decomposed. In a natural system, the 

reactive intermediates would be expected to interact with organic compounds. 

Hydroxyl radicals are second only to F2 in oxidation potential, reacting non-specifically 

with organic compounds with bimolecular rate constants of l 07 to 1010 L/mole sec 

(Dorfam and Adams, 1973). Organic radicals may be produced by hydrogen extraction 

(Baxendale, 1955): 

(1.19 

which may subsequently undergo dimerization or hydroxylation. Although the Fenton 

pathway for the decomposition ofH2O2 in soil may not predominate under natural 

conditions, it is purposefully introduced in remediation strategies which apply Fe2+ 

along with H2O2 to augment the oxidative treatment capacity with OH" radicals. 

Even more significant for the disproportionation ofH2O2 under field conditions 

than the mineral composition of the soil, however, is the ubiquitous presence of 

catalase-positive microrganisms. Catalase is a heme-protein that protects the cell from 

the reactivity of H2O2 by catalyzing its disproportionation through a cycling ofFe(III) 

and Fe(V), producing 0 2 and water. The specific activity of catalase is extremely high, 

with a turnover number, or number of molecules of substrate decomposed per molecule 
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of enzyme per minute, of I 9 x I 06 (Herbert anq Pinsent, 1948). Spain et al. (1989) 

showed a rapid loss of H2O2 (I 00 mg/L) applied to the surface of a sand suspension 

(t112 = 4 hr), while no decomposition ofH2O2 was observed in sterile batch reactors. 

Pardieck et al. (1992) also observed less loss of H2O2 in autoclaved soil suspensions 

than occurred in field condition samples, and a greater loss in a silt loam with an 

organic matter content of3.25% than in a sandy loam with 0.95% organic matter. 

These results both point to the disappearance of H2O2 as a result of microbial activity. 

In addition to catalase, H2O2 may be biotically activated as an oxidant via 

peroxidase enzymes, which are also heme-proteins present in soil microbes, and reduce 

H2O2 without producing 0 2. A metal center in the enzyme is oxidized by H
2
O

2
, 

producing H2O, while an organic substrate donates electrons to reduce the metal 

center. Thus, a catalytically-active species might behave like catalase in the absence of 

an organic electron donor (producing H2O and 0 2 ), and like peroxidase when an 

organic substrate is present, producing H2O and an oxidized organic species. In sum, 

the biotic interactions ofH2O2 appear to be of three types: formation via superoxide 

dismutase, dismutation via catalase, and reduction coupled to oxidation of organic 

matter via peroxidase. 

Using H2O2 to Enhance Subsurface Bioremediation 

In the last decade, augmenting soils with hydrogen peroxide has been 

considered a means of facilitating the oxidation of organic contaminants by providing a 

source of 0 2 which would enhance bioremediatio~ a subject reviewed by Pardieck et 
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al. ( 1992). A vast array of subsurface organic contaminants are completely degraded 

by soil microbes under aerobic conditions; some examples include benzene, toluene, 

xylenes and alkyl benzenes from gasoline or solvent spills, components of diesel or 

heating oil such as naphthalene and other polynuclear aromatic compounds, and 

synthetic organic compounds, such as chlorobenzene and methylene chloride. The 

degradation of those compounds with aromatic structures especially requires the 

presence of 0 2 since ring cleavage occurs via oxygenases that add oxygen atoms to the 

aromatic ring. Oxidation of compounds which can be degraded under anaerobic 

conditions tends to be more complete under aerobic conditions because aerobic 

respiration is more energetically favorable to the microorganisms than the use of 

oxidants such as nitrate, Mn(IV) or Fe(III) as electron acceptors. Therefore, the rate 

of in situ microbial degradation is :frequently limited by oxygen availability in the 

subsurface. Factors which limit the availability ofO2 include its relatively low solubility 

in water (9.2 mg/Lat 20° C), its slow rate of diffusion through soil solution, and the 

high biological oxygen demand of the microorganisms. Peroxide is an effective 

supplier of dissolved oxygen as it is 107 times more soluble in water than 0 2 (Henry's 

Law constants are 7 .1 x 104 and 1.3 x 10·3 M atm·1 for H2O2 and 0 2 , respectively, 

Seinfeld, 1986) and it tends to disproportionate readily in soil. 

The rapid decomposition ofH2O2 in soil could represent an advantage for its 

use to enhance bioremediation in that it would not persist in the environment at its high 

application level. It is also inexpensive and available, can be added at high 

concentrations because of its high solubility in water. Too rapid a rate of dismutation, 
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however, could waste oxidant capacity and produce undissolved oxygen in an aquifer, 

thereby decreasing its permeability. Also, the cell membrane of a microorganism has 

little resistance to the transport ofH2O2 across it, and levels within a cell are toxic 

above 0.1 mM (Schumb et al., 1955), and would have a bactericidal effect. 

Bioremediation may have limited utility in treating organics that are 

biorefractory or toxic to microorganisms; resistance to biodegradation (along with high 

Kow and low volatility) will determine persistence among surface contaminants. Those 

with a high degree ofhalogenation, like pentachlorophenol (PCP), are slowly 

biodegraded even under aerobic conditions because of their existing high oxidation 

state. Biodegradation may also be inhibited at the high concentrations characteristic of 

spills (Pignatello and Baehr, 1994). If the initial oxidation steps for these compounds 

could be carried out chemically, the resulting partially oxidized products could become 

more easily degraded than the parent toxic compounds (Carberry, 1994). 

Initial, mainly empirical field studies reviewed by Pardieck et al. (1992) on the 

use of H2O2 to enhance bioremediation appeared promising. In one, an aquifer 

contaminated with over 270 organic compounds at the site of an old lumbennill 

showed increases in pollutant degradation after it was injected with 3 mM H2O2• 

Another showed marked increases in microbial concentrations at the site of an unleaded 

gasoline spill (although ambient dissolved oxygen levels did not rise), where 

recirculated groundwater was treated with inorganic nutrients and 15 mM H2O2• 

More current thinking, however, according to Pardieck (personal 

communication, 1997), is that the viability of using hydrogen peroxide to enhance 
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bioremediation is problematic due to bioinhibitory effects, and will probably depend 

ultimately on controlling the toxicity ofH2O2 to microorganisms. As a direct oxidant 

ofrecalcitrant organics via Fenton interactions, however, the use of H2O2 in 

contaminated soil, combined with applications of reduced iron, has generated a good 

deal of scientific interest. 

Using H2O2 in Fenton Remediation 

A number of recent studies have addressed factors influencing the effectiveness 

of applying H2O2 as Fenton' s ~agent to oxidize biorefractory organic contaminants in 

soils. These include biotic interactions such as the degree ofH2O2 decomposition by 

catalase, formation rates of Off, effects of concentrations and speciation of iron, soil 

organic matter content and pH range. Zepp et al. (1992) studied the kinetics of OH' 

production by photolytically-generated Fe(II) and H2O2 over a pH range expected to 

be found in natural waters, and Watts et al. (1990, 1993, 1999), Tyre et al. (1991), 

Ravikumar and Gurol (1994), and Pignatello and Baehr (1994) investigated in situ 

H2O2 treatment using a variety of contaminants and soils. Results of several of these 

studies are summarized below. 

Zepp's study addresses the need for an understanding of the formation rates of 

hydroxyl radicals in natural waters via Fenton interactions. As a source ofFe(II), he 

used photochemically reduced complexes ofFe(III), a form ofFe{II) which may be 

involved in a "photo-Fenton reaction" oxidizing agrochemicals in surface waters. The 

photochemical approach to generating Fe(II) from Fe(III) was selected mainly to avoid 
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the effects of concentration gradients that would occur in the initial stages of the 

mixing process ifFe2
+ were to be directly added to a reaction mixture containing 

hydrogen peroxide. Hexaaquo Fe2
+ would not be expected to be found uncomplexed in 

soil, therefore the photoreduced complexes also represent a more realistic system. To 

determine that Off is indeed the reaction intermediary and to determine its rate of 

formation, Zepp used a kinetic approach with anisole and nitrobenzene as Off probes. 

Oxalate and citrate were chosen as ligands for the Fe(l11) complexes because they 

would photoreact efficiently without directly producing other transients that would 

oxidize the probe compounds, their reactions with Off were slow compared to those 

of the probe compounds, and they minimized the formation of Fe precipitates at the pH 

ranges (3-8) used in the study. Hydrogen peroxide was added to the Fe(l11)-ligand 

solutions, which were then continuously irradiated at 436 nm. 

A steady state kinetic method was then applied to obtain the rate of generation 

of the Off radical. The kinetic approach involves using a dilute probe compound 

under conditions of continuous irradiation in which the reactive transient (Off) will 

rapidly reach a steady state. Rates of Off formation in both the Fe(Ill) citrate and 

Fe(Ill) oxalate systems, and across the pH range of3 to 8 gave a one to one 

correspondence with the measured rate ofFe(II) formation, indicating that the Fe(II) 

complexes reacted quantitatively with H2O2 across the pH range to produce hydroxyl 

.radicals. 

One of the first studies to look at the use ofFenton's reagent in contaminated 

soils was done by Watts et al. (1990). Their purpose was to follow the degradation of 
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pentachlorophenol (PCP), and determine the optimum pH for soil treatment. Two fine­

loamy soils and silica sand were spiked with PCP and mixed in batch systems with 

6.5% H2O2 and 480 mg/L FeSO4• H2O2 consumption corresponded to PCP 

degradation. The reaction was carried out in silica sand at pH 3; such a low pH was 

required to prevent precipitation of the iron via hydrolysis. Even at that pH, the soluble 

iron concentrations decreased over the first three hours, and the decomposition rates of 

PCP and H2O2 also decreased after the first three hours, indicating the importance of 

soluble iron to the Fenton reaction. Although the rate of PCP degradation in sand was 

minimal without the addition of iron, PCP decomposition in the natural soil samples 

proceeded without amendment by iron, probably because of the natural presence of 

iron oxides which may have dissolved or served as catalysts at the mineral surfaces. 

Degradation rates did increase upon addition of iron as well. The soil with lower 

organic content (0.05% vs. 0.58%) showed an overall efficiency of PCP degradation 

(kpaJk8202 ) about four times greater than that of the soil with higher organic content, 

probably due to competition by organic matter as an Off scavenger, or perhaps due to 

the greater activity of catalase and subsequently greater decomposition rate of 

hydrogen peroxide in the soil containing higher levels of organic matter. 

A subsequent study by Watts et al. (1993) showed that amending silica sand 

with goethite (FeOOH), was more effective than adding a soluble Fe (II) salt. The loss 

of PCP with the goethite system was well descn"bed by a z.ero order expression: -dC/dt 

= k, where results gave [PCP]= -l.53t + 245 (R2 = 0.97) where the PCP concentration 

is in mg/Land time is in hours. It is expected that a Fenton system is z.ero order, 
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because the production of Off approaches steady state, which appears to be the case 

when goethite is used. This is not observed on addition of an Fe(II) salt because of the 

changing concentration of soluble Fe in the system due to hydrolysis. The data suggest 

that iron minerals in the presence ofH2O2 are able to catalyze Fenton-like reactions on 

mineral surfaces. 

Tyre( 1991) investigated the conditions affecting the relative efficiency of the 

Fenton treatment of four contaminants: PCP, trifluralin, hexadecane and dieldrin. Soil 

samples with a range of organic matter content were used, and all four contaminants 

were added to each soil sample. PCP and trifluralin were degraded faster than 

hexadecane and dieldrin, probably because the rate constants for OH" attack on dieldrin 

and hexadecane are slower than for PCP and trifluralin. Also, a higher percentage of 

trifluralin and PCP were present in the aqueous phase than dieldrin and hexadecane, 

indicating that preferential partitioning to organic matter by dieldrin and hexadecane 

may also have affected their oxidation rates. Efficiencies were determined by 

comparing rate constant (~nlamillan/k8202 ) ratios. Since H2O2 will probably be the 

primary cost of remediation, the most efficient conditions favor contaminant 

degradation with minimal H2O2 consumption. As a result, the high iron concentrations 

that were found to favor contaminant degradation, but also favored H2O2 

decomposition, were not necessarily the most efficient. The efficiency ratios were 

highest in soils with low levels of organic matter, which also did not receive iron 

amendment. Existing levels of iron minerals in soil appear to contnbute to the 

efficiency, as well as effectiveness of the Fenton treatment. 
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A 1994 study by Pignatello and Baehr addresses the issue of remediation in a 

more neutral pH range. All the prior studies in soil were carried out at pH 3 or lower. 

In application, the need to acidify the soil would make the remediation technology 

impractical because of the high buffering capacity of soil, and the polluting effects of 

acidification. Pignatello proposes to circumvent the low pH requirement by using 

Fe(III) complexes to catalyze the hydrogen peroxide, producing reactive high valent 

ferryl species (L)Fe,v, instead of, or in addition to OH". · Metolachlor and 2,4-D were 

selected as contaminants to give contrasting sorption behavior since metolachlor will 

sorb much more readily to organic matter than 2,4-D. Of the ligands tested, the best 

results for contaminant oxidation were obtained using Fe-nitrilotriacetate (NTA) or Fe­

hydroxyethyleniminodiacetate (HEIDA) at 0.01 moVkg and H20 2 at greater than 0.5 

moVkg. Interestingly, these Fe(III) complexes were much more effective than Fe(II) in 

combination with hydrogen peroxide. Simple addition of hexaaquo Fe2
+ removed 61 % 

of2,4-D and only 7% of metolachlor, while Fe-NT A removed 99.3% of2,4-D and 

87% of metolachlor. 

Ho ( 1995) published a design for an injection system and a pilot scale test 

which suggested successful injection ofH20 2 into inaccessible contaminated sandy soil, 

and found that H20 2 decomposition increased with injection pressure and injection 

depth. 

Although the Fenton reagent approach represents a promising combination of 

biotic and abiotic techniques for contaminant remediation, the reaction mechanisms in 

heterogeneous soil systems are far from being well understood. Complexation of 
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contaminants and scavenging of hydroxyl radicals by soil organic matter, the effects of 

contaminant adsorption and of the adsorption of Fe complexes, the impact of the 

Fenton treatment on soil microorganisms and their ability to further degrade byproducts 

of the Fenton degradation process, and the effects of different types of soil are all parts 

of the complex picture of this remediation strategy that remain to be pieced together. 

Since the evidence is convincing that Fenton type reactions in soil solution are 

oxidizing organic pollutants, the effect that the strong oxidants might have on co­

contaminants, in particular on reduced chromiwn, becomes a compelling question. 

Given that both oxidized and reduced iron are common soil constituents, the presence 

of H20 2 in groundwater, whether natural or anthropogenic, might result in chromium's 

oxidation and mobilization. We will now turn to a discussion of chromium in the 

subsurface, its chemistry, and issues relating to its deposition, remediation, and possible 

oxidation in soils. 

CHROMIUM IN SOILS 

Extent of Chromium Contamination in Soils 

Millions of tons of industrial chromium are processed each year for use in 

ferrous and non ferrous alloys, pigments, electroplating, corrosion inhibitors, printing 

inks and refractories (Greenwood and Earnshaw, 1994). Widespread chromium 

disposal was practiced without discrimination near industrial sites up to the 1970s, 

resulting in significant pollution of soils and groundwater, and chromium is second only 
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to lead in its incidence of contamination at Superfund sites (U.S. EPA., 

www.epa.gov/superfund/sites). 

On December 11, 1980, Congress passed the Superfund Law (Comprehensive 

Environmental Response Compensation and Liability Act). Along with establishing 

federal authority to respond to releases of hazardous waste, it taxed the chemical and 

petroleum industries to set up a fund for the long term remedial treatment of the 

country's most polluted and hazardous sites. The National Priorities List (NPL) was 

created to designate those sites considered to be most dangerous to the environment 

and to public health. It is possible to access the EPA data on the current NPL sites 

through their website (www.epa.gov/superfund/sites) and search the database by 

geographical location and form of contamination found at a site. The following charts 

were compiled in this way to obtain a sense of the relative importance of chromium as a 

contaminant compared to other metals and organic contaminants, the prevalence of 

chromium contamination in our region, and the form of chromium contamination found 

in most sites. 

As of October 7, 1998, 1192 sites were on the final National Priorities List, 152 

federally owned, 1040 privately owned. Of these, 510 were contaminated with 

chromium. As Table 1-1 shows, many of the sites have multiple contaminants, for 

example, 799 of the 1192 sites are also contaminated with VOC's, implying that at the 

very least, 11 7 of these sites are contaminated with both Cr and organic waste. 

Different kinds of contamination (soil, air, sediment, etc.) are present at most sites. Soil 

and groundwater contamination account for more than half the contamination media, 
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Table 1-1. 
Data from the 1192 sites on EPA's National Priorities List 

Selected Number of Instances of Instances of 
Contaminants sites on contamination for contamination 

the final NPL all media for 
soil and 
groundwater 

All 1192 60,405 38,855 

metals 746 18,949 11,613 

VOC's 799 18,696 13,089 

PAH's 538 8,207 5,573 

PCB's 302 1,628 865 

pesticides 295 3,648 2,372 

radioactive 46 781 539 
waste 

nitroarornatics 43 232 179 

dioxins/dibenzof 152 541 327 
urans 

chromium 510 1,895 1,210 

lead 561 2,477 1,463 

arsenic 516 1,869 1,165 

mercury 297 857 490 

zmc 391 l,308 743 

nickel 367 1,010 679 

selenium 178 386 227 

cobalt 141 350 219 
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and are especially important for metals. Of 1,895 instances of all types of Cr 

contamination, 1,210 were in soil and groundwater. The different media considered by 

EPA are shown in the following counts for chromium: 

Table 1-2. Instances of Cr contamination in different 

media at the NPL sites 

Groundwater 576 Debris 79 

Soil 634 Surface Water 150 

Air 32 Leachate 25 

Sediment 145 Sludge 53 

Solid Waste 81 Liquid Waste 63 

Other 55 Residuals 2 

All Media 1895 

Geographic distribution of superfund chromium contamination reflects the industrial 

activity of the northeastern states and, again. the prevalence of soil and groundwater 

contamination, as seen in Table 1-3. 

Chromium Soil Chemistry 

The two prevailing oxidation states of chromium found in soil differ markedly in 

their chemical behavior: the Cr(VI) oxyanion is a soluble and toxic carcinogen which 

can cause both skin ulceration and lung cancer (Nriagu and Niebor, 1988), while 

Cr(III), in contrast, is mainly insoluble in soil, and a required trace element with a daily 

intake recommended by the NRC of 50-200 µg (National Research Council, 1990). 

Therefore, to accurately evaluate the environmental threat posed by the exposure of 

chromium to H2O2 in contaminated sites, it is important to first examine chromium 
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Table 1-3. Geographic distribution of chromiwn contamination at Superfund sites. 

Selected States Total nwnber of Instances of Cr Instances of Cr 
and Superfund Sites contamination in contamination in 

Territories all media soil and 
groundwater 

Maryland 16 23 17 

Delaware 17 15 11 

Virginia 25 33 19 

New J~rsey 107 232 140 

Pennsylvania 98 117 62 

West Virginia 6 2 1 

Connecticut 14 4 3 

Massachusetts 30 64 41 

New Hamp. 18 43 25 

California 90 93 83 

Florida 52 79 55 

Texas 30 24 19 

Puerto Rico 9 13 11 

20 

-. 



-

speciation and its effects on the metal 's geochemical behavior. The chromium 

deposition process and geochemistry of a particular site will in turn influence chromium 

speciation. The environmental behavior of chromium can be generally described by the 

processes of oxidation-reduction reactions, precipitation-dissolution reactions, and 

adsorption-desorption exchanges (Palmer and Wittbrodt, 1991 ). The speciation of 

chromium, however, is a prime factor in determining its precipitation or adsorption, 

because the two oxidation states behave differently in aqueous solution. 

Cr(VI) does not strongly adsorb to surfaces, and tends to form oxy­

compounds, the tetrahedral HCr04· I CrO4 2• (p~ = 6.4) being the most common in 

groundwater (Bartlett, 1991 ). At concentrations greater than 0.01 M, and at low pH 

{<6) it will dimerize to form dichromate (Cr2O/-), although this form is extremely rare 

in contaminated sites. Its tendency to adsorb to surfaces will increase with decreasing 

pH, especially in the presence of variably charged oxide minerals. At sites with high 

Cr(VI) concentrations, its solubility may be controlled by sparingly soluble salts such as 

CaCr04 (James, 1994). As an oxyanion, chromate is strongly oxidizing at low pH, but 

will persist in soils at neutral or high pH (J~es, 1996a). Transformation ofCr(VI) to 

Cr(III) within soils is caused by reduction with ferrous iron in solution, ferrous iron 

minerals (e.g. biotite and green rusts), reduced sulfur compounds, or soil organic 

matter (Eary and Rai, 1988). Chromium mobility is therefore significantly reduced in 

soils in the presence ofFe(II) or organic matter. 

Cr(III) has 3 d-electrons in a high spin state in readily formed octahedral 

complexes, although it demonstrates kinetic inertness toward ligand exchange. As a 
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result, the rate of substitution of waters of hydration is extremely slow (half times in the 

range of several hours) (Cotton and Wilkinson, 1988). In soil it will form complexes 

with organic ligands, which increases its solubility. James and Bartlett (1983a) 

observed that Cr(III) remained in solution in the presence of citric acid and 

diethylenetriaminepentaacetic acid (DTPA) at pH values greater than 5, where it 

becomes insoluble in water. Trivalent Cr may be expected to have some mobility and 

availability for redox interactions at very low pH, at very high pH, or in the presence of 

high levels of organic matter with which it may form complexes, especially in the 

process of its reduction from Cr(VI) (Wittbrodt and Palmer, 1996). 

The pe-pH stability diagram shown in Figure 1-1 depicts the various Cr species 

that may be present in groundwater and soils. At low pH in its reduced state, as 

hexaaquochromium (Ill}, chromium shows a strong tendency to adsorb to negatively 

charged clay surfaces (Cranston and Murray, 1978). As pH approaches 6, Cr(H2O}6 
3
+ 

becomes hydrolyzed, with CrOH2+ more stable than Cr(OH)2 + in an aqueous system 

(Rai et al., 1987) until it precipitates as Cr(OH)3• The positive species may polymerize 

through oxo- and hydroxo-bridging, forming dimers, trimers, tetramers and higher 

weight oligomers in solution in a process similar to the aging process at the surface of a 

chromium precipitate (Stunzi and Marty, 1983). These multimers remain stable in 

solution due to the relative inertness of the Cr(III} inner coordination sphere. 

In the aging process, changes in the chemical structure and composition of 

chromium(III) hydroxide reduction products take place, which involve hydrolytic 

polymerization and a concurrent loss of coordinated water or of protons from 
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Figure 1-1. Stability diagram for aqueous Cr(III) and Cr(VI) species. From Cr data 
compiled by Ball and Nordstrom, 1998. Activities of aqueous species = 10-4 M, 
activities of Cr(OH)JCs) and H2O(l) = 1. Po2 = 0.21 atm, PH2 = 10-4 atm 
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coordinated H2O or OH". Spiccia and Marty (1986) have described the fonnation ofan 

initially crystalline "active" Cr(OH)3·3H2O solid phase which forms on addition of base 

to aqueous solutions of Cr(H2O)/+. It does not contain any bridging hydroxide 

ligands; its octahedral units are linked through hydrogen bonds between the OH" and 

H2O ligands of adjacent Cr(III) centers. In a site where Cr(VI) is discharged and 

initially reduced under acidic conditions (e.g. discarded chromium plating baths), 

"active" chromium hydroxide might form. It is, however, thennally unstable, and with 

time "ages" and becomes an amorphous phase of unknown composition, with an 

accompanying loss ofreactivity (Spiccia and Marty, 1986). Bartlett (1991) has also 

noted that freshly precipitated Cr(III) will be oxidized by Mn(III, IV) (hydr)oxides in 

soil faster than aged materials or well-ordered minerals. Eventually, amorphous 

oxyhydroxides of Cr(III) in soil will slowly change to an even less reactive and more 

crystalline a.-Cr2O3 phase. The aged Cr(OH)3 solid form has an extremely low solubility 

product (~p = 6. 7 x 10"31
) (DeFilipp~ 1994). When it co-precipitates with iron, as 

CrxFe1_x{OH)3, the chromium will be even less soluble and less subject to oxidation 

(Sass and Rai, 1987). Above pH 9 or 10, Cr(III) regains some solubility in its anionic 

form, as Cr(OH)4•• 

Deposition of Chromium in Industrial Sites 

The mineral crocoite (PbCr04) from Siberia was identified by L.N. Vauquelin in 

I 797, and chromium was isolated a year later by reduction with carbon (Katz and 

Salem, 1994). Its name derives from the myriad colors of its compounds, trace 
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quantities provide the characteristic color of emeralds and rubies, and today it is mined 

mainly as chromite (FeO·Cr2O3) in Russia, South Africa and the Phillippines. Chromite 

is reduced with coke or ferrosilicone in an electric arc furnace for the iron/chromium 

alloys that are added to stainless steel. For other industrial purposes, chromite is 

processed via aerial oxidation in molten alkali (NaiCO3 and CaCO3) to give NaiCrO
4

• 

The chromate is then leached with water and may be reduced to Cr 20 3 by carbon, and 

further reduced with aluminum or silicon to obtain the pure chromium metal. Residues 

from ore processing sites contain high levels of insoluble Cr(III) which was resistant to 

processing, as well as high residual levels (50 mg/kg or more) of soluble Cr(VI) which 

was not completely removed in the leaching process. The pH of these sites is from 8-

12, reflecting the alkaline refining process. From 1900 to 1970 in Hudson County, New 

Jersey, over two million tons of the chromium ore processing residue (COPR) was 

disposed of and used as general or low land fill (Burke, et al., 1991 ). 

Chromium electroplating was in great demand during World War II, when 

dozens of small plating shops set up operations. The process uses chromic acid/sulfuric 

acid baths, and the washing, dripping and spent plating solutions were often discharged 

into adjacent wetlands and discharge ponds, creating levels of Cr in the soil that 

reached as high as 6% (see Table 2-1). The pH of these soils, in contrast to the COPR 

soils, tend to be low, from 4-5. Beginning in the 1830's, chromium was also used 

extensively at tannery sites. In the tanning process Cr(VI) was reduced to fonn stable 

Cr(III) complexes that protected the leather from deterioration. The soils at these sites 

tend to become depleted of oxygen and form highly reducing environments, due to the 
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quantities of animal organic matter added to them. Although chromium appears to be 

completely reduced in these sites, it has a surprising degree of mobility in the 

groundwater, probably due to the enhanced solubility of Cr(III) organic complexes 

(Davis et al., 1994). 

The three types of chromium waste sites described above differ, due to the site 

conditions and deposition process, in soil pH, soil oxidizing or reducing conditions, and 

chromium speciation as chromate or bichromate, organic or inorganic chromium(III). 

These conditions are important to consider both when evaluating possible remediation 

strategies, and when trying to predict the effect of adding remedial reagents like H
2
Q

2 
• 

Chromium Reduction and Oxidation in Soils 

Other than removal and sequestering, remediation strategies for chromium need 

to effect the reduction and immobilization ofCr(VI), and the resulting Cr(III) 

precipitates must not be subject to reoxidation, once the natural aquifer conditions are 

again obtained. Bioremediation may be a viable method for chromium (Palmer and 

Puls, 1994), and may proceed directly, as when chromium serves as the terminal 

electron acceptor for carbohydrate metabolism by a species such as Bacillus subti/is 

under reducing_ conditions (Melhorn et al., 1994). It may also be an indirect process, 

where Cr(VI) is reduced by sulfides produced by sulfate reducing bacteria (Suthersan, 

1997). 

Certain organic materials may also be effective reductants of chromium (James, 

1996a). One of the major factors affecting the rate and extent of this type of reduction 
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is the presence of mineral surfaces which catalyse the reaction. Deng and Stone ( 1996)_ 

used goethite and aluminum oxides to investigate the catalytic effect of those surfaces 

on the reduction ofCr(VI) by low molecular weight organic compounds e.g. glycolic 

acid, lactic acid, mandelic acid, tartaric acid and their esters. They found that none of 

the compounds investigated would reduce Cr(VI) (pH 4. 7, reductant/Cr(VI) ratio 

10/1) in the absence of catalytic surfaces. The formation of Cr-surface complexes on 

the minerals (Fendorf, et al., 1997) alters the reactivity of Cr(VI) toward organic 

compounds, facilitating the formation ofCr(VI) esters with organic materials 

containing R-OH functional groups. Formation of a chromate ester has been shown to 

be the preliminary step in the transfer of electrons from a phenolic compound in the 

reduction of Cr(VI) (Elovitz and Fish, 1995). 

Both Fe(II) and zero valent iron are capable ofreducing and immobilizing 

Cr(VI) (Eary and Rai, 1988; James, 1994; Buerge and Hug, 1998, Se~ et al., 

1999), and both may be applied in situ, for instance by injecting a reactive barrier with 

ferrous sulfate, or :filling one with iron filings. The two forms of iron will react with 

chromium to form different products, and have different effects on site geochemistry. 

Under alkaline conditions, Fe (II) will reduce chromate to Cr (III), which will 

hydrolyze and precipitate, or co-precipitate with Fe (Ill): 

3Fe2+ + CrO/- + 8W .. cr3+ + 3Fe3+ + 4H20 (1.20 

cr3+ + 3H20 ... Cr(OH)3 ! + 3H+ (1.21 

3Fe3+ + 9H20 ... Fe(OH)3 ! + 9W ( 1.22 

3Fe2++crO/- +8H20 ... 3Fe(OH)3+cr(OH}3 +4H+ (1.23 
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The overall reaction will produce acidity, and injection of ferrous sulfate will be 

likely to be done in acid media, further enhancing acidity. Large molar excesses of 

Fe(II) may be necessary to overcome competition for the reduced iron from oxygen. 

At pH above 6.5-7.0 dissolved oxygen could begin to compete with chromate: 

(1.24 

James (I 994) found Fe(II) treatment more effective than leaf litter, steel wool 

and lactic acid in removing soluble and exchangeable Cr(VI) from a contaminated 

alkaline soil with 460 mg/kg total Cr(VI) at a pH about I 0. The presence of organic 

matter may enhance Fe(II) reduction of chromate. Buerge and Hug (1998) found that 

chromate reduction was enhanced by the addition ofFe(III) stabilizing ligands such as 

carboxylates and phenolates, which made the Fe(II) a stronger reductant. 

A full scale field application of zero valent iron remediation of chromate has 

been constructed at a plating waste site in Elizabeth City, New Jersey (Power et al., 

I 995). Elemental iron reduces chromate, and unlike reduction with Fe(II), the process 

generates alkalinity: 

(1.25 

A much narrower range ofreactions is responsible for the natural oxidation of 

Cr(III) in soil; before Barlett and James (1979) demonstrated that fresh soils would 

oxidize up to 15% of added cr3+ by way of indigenous Mn (III,IV) (hdyr)oxides, the 

oxidation of Cr(III) was not thought to take place at all. More recent studies 

characterizing the process (Eary and Rai, 1987; Fendorf and l.asoski, 1991; Fendorf et 

al., 1993; Johnson and Xyla, 1991; Manceau and Charlet, 1992; Silvester et al., 1995) 
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have shown Cr(III) oxidation to be controlled by the oxidation state and morphology of 

the Mn, and by the transport of dissolved Cr to the oxide surface, either as the 

hexaaquo cation, Cr(H2O)/+, or as a soluble Cr(III) organic complex. These 

experiments tended to be run between pH 3-5, where Cr(III) solubility and oxidation 

rates were greatest. By contrast, a soluble oxidant such as H2O2 
may oxidatively 

dissolve Cr(III) compounds (Cr2O3, Cr(OH)3, Cr(III)-humates, FeCr
2
O

4
) under the 

higher pH conditions more commonly found in soils. 

In order to evaluate the potential threat of chromium at a contaminated site and 

design appropriate remediation strategies, the tendency for chromium to oxidize under 

prevailing site conditions needs to be understood. One approach has been to devise a 

numerical rating scheme to evaluate the need for remediation at a given site (James et 

al., 1997). The model rates the site based on the form of chromium: ( oxidized or 

reduced, soluble or insoluble), the soil pH, the presence of manganese oxides and the 

presence of soil organic matter or other soil components that could reduce Cr(VI). In 

this way, remediation strategies can be based on a more realistic appraisal of the 

chromium hazard than a simple measure of chromium concentrations would provide. 

CHEMISTRY OF CHROMIUM AND PEROXIDE INTERACTIONS 

H2O2 is thennodynamically capable of both oxidizing and reducing chromium 

across a broad pH range, as illustrated by the position of the H2O2 /H2O and O/l{
2
o

2 

reduction lines on a stability diagram for aqueous chromiwn species (Figure 1-2): 
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3H20i(aq) + 2CrOH2+ = 2HCr04· + 6H+ 

2HCr04· + 6H+ + 3H20i(aq) = 2CrOH2+ + 6H20 + 30i(g) 

(1.26 

(1.27 

Two H20 2 concentrations are shown, one at I 0-4 M and one at I o·8 M. At low 

concentrations, the lines for the oxidation and reduction ofH20 2 will tend to converge; 

as H20 2 activity increases, the lines on the diagram move apart ( 1 pe unit for each ten­

fold increase in [H202 ]), indicating that at higher concentrations being considered for 

remediation, H20 2 would potentially behave both as a stronger oxidant and as a 

stronger reductant of chromium. At high H20 2 concentrations, since H20 2 can be both 

an oxidant and a reductant, it will be out of equilibrium with dissolved Cr, regardless of 

the Cr oxidation state. Kinetics, not thermodynamics, will control the oxidation state 

of Cr. As H20 2 diminishes, Cr(VI) becomes stable in the presence of H20 2
, first at 

high pH, and with further H20 2diminution, at low pH. Figure 1-2 shows that above 

pH 8.5 Cr(VI) and 10-4 H20 2 could be stable, but below this pH Cr(VI) would oxidiz.e 

H20 2 to 0 2 • Throughout the pH range, Cr(III) would reduce H20 2 to water, and this 

behavior will persist to low H20 2 concentrations. 

Cr{Vl)/112O2 Interactions 

The chemistry ofCr(VI) and H20 2 has been studied for decades, and is 

particularly complex in the 4-7 pH range relevant to soils. Oscillating behavior, 

hysteresis, reduction to Cr(V) and Cr(IV) intermediate species, and mono-, di-, tri- and 

tetra- peroxochromium species have all been reported. Several reviews discuss 

progress in characterizing the system in studies conducted over the past century 
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(Spitalsky, 1907, 1908; Baxendale, 1952; Brown et al., 1970; Dickman and Pope, 

1994; House, 1997). Interest in unraveling its intricacies has historically stemmed from 

two applications: the synthesis of stable cationic organochromium(III) complexes 

(House, 1997), and the determination of intermediate species that could be responsible 

for the toxicity and mutagenicity of chromium (VI) in living cells (Aiyar et al., 199 I; 

Shi et al., 1999). 

The chemistry of many of these intermediate species has been approached from 

the addition of hydrogen peroxide to a solution of chromate (CrO/-) or bichromate 

(HCrO4-), and has been well reviewed by Brown et al., (1970), Dickman and Pope, 

(1994), and House (1997). A plethora of possibilities for these species have been 

reported, covering a range of chromium oxidations states (II-VI), degrees of 

substitution by the peroxo ligand, and protonated or deprotonated fonns. An 

understanding of the Cr(VI)/I-12O2 reaction and its intermediates is further complicated 

by the catalytic decomposition ofH2O2, which varies with pH and Cr/I-12O2 ratios. The 

system also varies with temperature and reactant concentrations, and intermediates are 

unstable and cannot be measured spectroscopically at moderate concentrations. A 

broad range of reaction conditions, including the use of various buffers and solvents, 

are reported in the literature and make data comparisons difficult. Regeneration of the 

Cr(VI) reactants has been reported by dissociation ofCr(VI) peroxo intermediates 

(Perez-Benito and Arias, 1997), as well as the disproportionation of Cr(V) or Cr(IV) 

peroxo intermediates (Buxton and Djouter, 1996), further complicating the reaction 

mechanisms. For example, in weakly acidic solution (pH 2.5-5.5) in an isothermal 
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stirred tank reactor, Beck et al. ( 1991) observed hysteresis and oscillation in the 

Cr(VI)/H2O2 interaction. As a result, characterization of the intermediate species has 

mainly been accomplished under more extreme reaction conditions (pH, reactant 

concentrations) than would be relevant in soil. Nevertheless, well characterized 

intermediate species of this fascinating system give us important clues as to its possible 

behavior under more environmentally relevant conditions. 

Under acidic conditions in the presence of alcohol, HCro
4
- is reduced in a 

reversible reaction first to a [CrvO(I-~2O)5]
2
+ complex, and then to [Cr"(H

2
O)

6
]2+, which 

in turn, in the presence of 0 2 produces a Cr(III) superoxocomplex, (CrDOi(H
2
O)

5
]2"• 

(House, 1997). The superoxochromium(III) complex will decompose to produce 

HCrO4- and the Cr(III) dimer, [(H2O)4Cr(OH)2Cr(OH2) 4]4+, as well as compete with 0
2 

to react reversibly with the Cr(II) complex from which it was formed. The reaction of 

the Cr(II) species with H2O2 is the reaction important for the synthesis of stable Cr(III) 

alkyl complexes. Cr(II) acts as a Fenton metal with peroxide to produce OH· radicals; 

these react rapidly with added organic substrates to form alkyl radicals, and they in 

turn, react with (Cr"(H2O)6]2+ to form the stable Cr(III) alkyl compounds. 

Without the reducing influence of the alcohol, the addition ofH2O2 to a 

strongly acidified solution of Cr(VI) results in the rapid formation of a blue 

''perchromic acid" (Brown, et al., 1970). It quickly decomposes on standing in 

aqueous solution, evolving oxygen, partially decomposing excess peroxide, and leaving 

chromium reduced to the trivalent state. The blue perchromic acid can be stabilized by 

extraction into a non aqueous solvent such as pyridine. Funahashi et al. ( 1978) 

33 



propose two-phase kinetics for the overall reaction ( 1.28): rapid formation of the 

peroxo complex (1.29), followed by its reduction ( 1.30): 

(1.28 

(1.29 

(1.30 

The equilibrium constant for the formation of the oxodiperoxochromium(VI) complex 

In a subsequent XAFS study of the blue complex, Inada and Funahashi ( 1997) confirm 

a pseudo pentagonal pyramidal geometry with an oxo group at the apex, and the two 

peroxo ligands and a coordinating water molecule making up a five pointed base 

(Figure 1-3). They found a shortening of the Cr-O (peroxo) bond length relative to 

that found when the complex was prepared with pyridine (which substitutes for the 

water ligand), helping to explain the instability or ease of reduction of the Cr(VI) center 

in aqueous solvent. 

Above pH 7, the Cr(VI)/H2O2 reaction results in the red-brown anion, 

tetraperoxochromate(V), [Cr(O2) 4]3-. This complex has a distorted dodecahedral 

arrangement around a central Cr atom (D2d symmetry), and slow catalytic 

decomposition of hydrogen peroxide proceeds in its presence in alkaline solutions. 

Studies done to understand chromium toxicology under near physiological pH 

conditions may give a better indication of what may be expected in the soil 

environment. Cr(VI), unlike Cr(III), is readily transported across cell membranes via 
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Figure 1-3. Structure of peroxochromium complexes as described in Dickman and 
Pope (1994). 
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non specific anion pathways, and it is thought that reduction by cellular constituents is 

necessary for Cr(VI)-induced DNA damage because Cr(VI) does not react directly 

with isolated DNA (Jennette, 1979; De Flora et al., 1990; Cohen et al., 1993). 

Compounds found in cells such as ascorbate (Stearns and Wetterhahn, 1994; 1997), 

and glutathione (Shi and Dalal, 1989; Kortenkamp, 1990) have been shown to reduce 

Cr(VI) to Cr(V) and Cr(IV), and these complexes of incompletely reduced chromium 

have come to be considered potentially powerful carcinogens (Zhang and Lay, 1996; 

Chiu et al., 1998). A Fenton type generation of hydroxyl radicals is thought to proceed 

from the reaction of the Cr(V, IV) intermediates with H2O2 that may also be present in 

the cell as a by-product of oxygen cellular metabolism (Shi and Dalal, 1990; Aiyar, et 

al., 1991; Itoh et al., 1996). If these or similar reduced complexes formed in chromate 

contaminated soils and were subsequently treated with peroxide, a Fenton type 

generation of the strongly oxidizing OH· radical could significantly affect the oxidizing 

capacity of the soil. 

Zhang and Lay (1998) have recently identified three Cr(V) peroxo complexes 

using EPR spectroscopy in the pH 4-7 range that form in the presence of Cr(VI) and 

peroxide alone. By analogy with V(V) chemistry, they identify three degrees of 

substitution by the peroxo ligand: [Cr0(O2)(OH2)nr in relatively low H2O2 

concentrations in low pH, [Cr0(O2)i(OH2)]" in weakly acidic (pH 4-7) and somewhat 

low H2O2 solutions, and [Cr(O2)lOH)]2
• at solutions slightly above neutral. The trend 

for higher levels of substitution with rising pH continues with the previously identified 

tetraperoxochromate(V), [Cr(O2)4]3- which was prevalent in alkaline solutions. These 
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species provide evidence for the potential of Fenton interactions in the Cr(VI)/H20 2 

system even without the presence of cellular ( or soil) reductants, and all of them 

decompose H20 2 catalytically. However, the unstable, soluble, violet chromium(VI) 

oxodiperoxo complex [Cr0(02MOH)l also fonns in the pH 4-7 range, and also 

decomposes peroxide catalytically (Perez-Benito and Arias, 1997). Its fonnation is 

favored by the use of phosphate buffers. This complex is the deprotonated form of the 

blue complex noted earlier, and may decompose peroxide under mildly acidic 

conditions via the auto reaction of its protonated and deprotonated fonns, as with the 

decomposition of peroxide at alkaline pH, near its PI<a (11.8), rather than by a redox 

cycling with Fenton products. 

Cr(IIl)/112O2 Interactions 

The Cr(III}/H20 2 system has been much less extensively investigated than the 

Cr(Vl}/H20 2 system. Shi et al. (1993) have reported the generation of hydroxyl 

radicals from the interaction of Cr(III) and H20 2 using an ESR spin trapping 

methodology. They found the production of OH· to increase with increasing pH, and 

used tartaric acid/phthalate (pH 3.0), phosphate (pH 7.2) and tetraborate/carbonate 

(pH 10.0) buffers and reactant levels of 1 mM CrCl3 and IO mM H20 2 • In a later work, 

using Cr(III) acetate with xanthine and xanthine oxidase as a source of superoxide 

(0
2
"-) and H20 2 , Shi (1998) suggested that the mechanism of hydroxyl production in 

the Cr(III)/H20 2 system involves a Fenton cycling between Cr(II) and Cr(III), rather 

than oxidation to Cr(V) or (VI). 
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Several reports in the literature point to the possible oxidation of chromium by 

peroxide in natural systems. Although two of these address the Cr-H2O2 interaction in 

seawater, their results may predict aspects of Cr-H2O2 behavior in soils. Pettine and 

Millero ( 1990) have asserted that H2O2 in seawater controls Cr speciation. They 

studied the rates of oxidation ofCr(III) (1.9 µM) with H2O2 (447 µM) at pH 8.5. The 

rate of oxidation of Cr(III) in artificial seawater was found to be first order with respect 

to [Off] and [H2O2]. Their pseudo first order rate constant increased with increasing 

pH, up to pH 8.75; a decrease above that pH was attributed to the formation ofCr(III) 

oligomers in solution. This effect may be analogous to the effect of chromium (III) 

"aging" in the soil after its initial formation via reduction of Cr(VI). 

Kieber and Helz (1992) recorded a diurnal cycle in the oxidation state of Cr in a 

shallow estuary. In this case, a decrease in Cr(VI) to Cr(III) ratios during the day was 

attributed to the reduction of Cr(VI) by photolytically generated ferrous iron. 

Hydrogen peroxide levels were shown to increase as the Cr(VI)/Cr(III) ratio decreased. 

The peroxide could be a byproduct of the photolytic reduction process, and may in tum 

behave as an oxidant toward Cr(III). No connections between the two trends were 

established, although it might be postulated that the higher daytime levels ofH2O2 

reoxidized Cr(III), returning Cr(VI)/Cr(III) to ambient levels. 

In work comparing soil flushing to pump-and-treat methods of chromium 

remediation. Davis and Olsen (1995) used groundwater augmented with 30 mg/L H2O2 

. (0.9 mM) in a shallow vadose zone soil column (141 mg/kg Cr(IIl)) in an attempt to 
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oxidize and mobili7...e the chromium. Total Cr(VI) in the effluent was double that of a 

control column, representing about 2.3% of the total soil Cr. 

CURRENT INQUIRY 

The possible oxidation of Cr in a soil or waste site by H
2
Q

2 
being used for 

remedial purposes has never before been evaluated. Hydrogen peroxide could oxidize 

Cr(III) present as a co-contaminant in soils or form harmful peroxochromium 

intermediates which have been studied in the context of their possible toxicity and 

carcinogenicity in biological systems. To better predict the response of chromium to 

H20 2 under different conditions, this project used soils from each of the three types of 

industrial depostion sites described above, plus one soil naturally high in chromium. 

The soils include samples from a chromite ore processing residue waste site in Hudson 

County, New Jersey; a site contaminated with electroplating waste in Putnam, 

Connecticut; a site in the Aberjona watershed contaminated with tannery waste in 

Woburn, Massachusetts; and a serpentine barrens naturally enriched in Cr northwest of 

Baltimore, Maryland. The soils represent four different chromium deposition processes, 

and vary in their geochemical attributes and in their ambient chromium species. 

The diverse conditions under which Cr is found in these soils may affect its 

response to treament with peroxide, and the aim of this research was to assess more 

completely the potential for oxidation of chromium by peroxide in soils under these 

diverse conditions. Batch studies were conducted with soils from each site, and Cr(VI) 

and H
2
0 2 were monitored using spectroscopic methods. The following chapters 
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present the results of experiments done with soils, as well as with simpler aqueous 

systems. 
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Chapter 2 

Hydrogen Peroxide Effect on Chromium Chemistry in 

Four Diverse Chromium-Enriched Soils 
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INTRODUCTION 

To date, H2O2 has not been extensively considered as a potential oxidant for 

chromium in soils. The lack of research on H2O2 -Cr interactions in soil may be 

attributed to the low levels of H2O2 (I 0-100 nM) (Hohn et al., 1987; Cooper and Zika, 

1983) that have been measured in the subsurface, especially in groundwater which is 

not exposed to sunlight. In the past year, however, EPA has been supporting field 

demonstrations of in situ chemical oxidation of recalcitrant organic contaminants using 

treatment with high levels ofH2O2 , often combined with Fe(II) to effect Fenton 

oxidation via strongly oxidizing hydroxyl radicals. One such process, in Anniston, 

Alabama, used 109,000 gallons of 50% hydrogen peroxide over a 120 day period to 

remediate an estimated 33,000 kg oftrichloroethylene (U.S. EPA, 1998). At lower 

levels (3-300 mM), H2O2 has been applied to contaminated soils as a means of 

delivering 0 2 to groundwater and enhance bioremediation (Pardieck, et al., 1992). The 

use ofH2O2 to remediate organic contaminants in soils gives rise to concern over its 

possible interaction with any chromium that may co-contaminate these waste sites, 

especially if the chromium were to be oxidized by H2O2• 

In its highest oxidation state, Cr(VI) is a Class A human carcinogen that exists 

in soils and natural waters predominantly as a soluble anion, almost always as a result 

of the disposal of industrial waste. In contrast, Cr(III) is nontoxic and relatively 

immobile in the same environments. Cr contamination in soils has arisen from a 

number of different processes ( e.g. electroplating, leather tanning, ore processing). As 

a result, the speciation and chemical behavior of Cr is different in different waste sites, 
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and for an accurate understanding of the response of Cr in the soil to H2O2, the effect 

of H2O2 on Cr at each type of site should be evaluated. 

Identifying those soil chemical conditions under which chromium may be 

oxidized or reoxidized by peroxide from its relatively immobile and benign form as 

Cr(III) to its toxic, carcinogenic and mobile hexavalent form, will be important when 

designing any remediation strategy which involves using peroxide to clean up 

biorefractory organic waste. The aim of this research was to assess more completely the 

potential for oxidation of chromium by peroxide in soils under the diverse conditions 

that might be found in contaminated sites. Chromium reactivity toward H2O2 may vary 

widely in different Cr-enriched soils. To this end, peroxide-chromium interactions have 

been examined in samples collected from profiles of four dissimilar Northeastern U.S. 

soils with either naturally or anthropogenically elevated levels of chromium. The sites 

differ, due to the site conditions and chromium deposition processes, in total Cr levels, 

soil pH, oxidizing or reducing conditions, Cr(VI) speciation as chromate or bichromate, 

and Cr(III) speciation as complexed with soil organic matter, or as inorganic Cr(III) 

oxides or hydroxides. Chromium speciation and site conditions were found to be 

crucial in determining the behavior of chromium when exposed to peroxide, behavior 

which was found to be highly variable, in some instances even within the same soil 

profile. 

The four soils chosen were: a) a chromite ore processing residue waste site on 

the Coastal Plain of New Jersey, b) a site contaminated with electroplating waste in 

soils derived from glacial materials in Connecticut, c) a site in the Aberjona watershed 
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contaminated with tannery waste in Massachusetts, and d) a serpentine barrens naturally 

enriched in Cr on the Piedmont in Maryland. Experimental H2O2 levels (3.0 _ 50 mM) 

were chosen based on the range being considered for enhanced bioremediation 

treatments. The mM range ofH2O2 levels in soil may also be sustained for some time 

after the addition of much higher H2O2 levels (1 M-17 M) being used in direct or Fenton 

oxidation treatment methods. 

MATERIALS AND METHODS 

Chromite Ore Processing Residue (COPR) 

COPR soil from New Jersey has a number of salient features which distinguish it 

from other Cr-elevated soils, including high pH (9-10), a relatively large Cr(VI):Cr(III) 

ratio (0.10), and high ambient levels of soluble Cr(VI)( ~ 1 mM in 10: 1 solution:soil) 

(Table 2-1). A powder X-ray diffiaction (XRD) spectra of a sample ofCOPR soil is 

shown in Figure 2-1 a ( data shown in Appendix A). Quartz and calcite were matched as 

likely phases in the sample using JADE (1999) software identification techniques. 

In the original ore processing, chromite ore was crushed to less than 100 mesh 

size, mixed with soda ash and lime (N3zCO3 and CaCO3), and roasted to produce 

soluble N3zCr04, as described by: 

4FeCr2O4 + 8N3zCO3 + 702 .... 8 N3zCr04 + 2Fe203 +2C02 (2.1 

The sodium chromate was then leached with water, the process repeated, and the 

remaining, highly alkaline residue discarded. CaCO3 was added before roasting to react 

with aluminum present in the ore material(~ 13%) and prevent it from dissolving and 
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Table 2-1. Soil properties. Soluble Cr(VI), Fe,(Il), Eh, pH and color were determined in field moist samples. 
Data is reported as ± 1 SD. 

Soil Horizon Total Cr Total Cr(VI) Soluble Soluble 
(cm) mg/kg mg/kg soil Cr(VI) µM Fe(II) µM 

I 
soil 10/1 solo/soil 5/1 solo/soil 

i 

COPR surface 8,600 914 ± 22 940 ± 40 < 0.3 
± 500 (53)tt 

Connecticut 0-14 61,000 71 ± 7 95 ± 6 1.5 ± o.5• 
± 5,000 (68)tt 

Connecticut 14-40 21,000 79 ± 5 <0.1 1.2 ± 0. I• 
± 1,300 

Connecticut > 100 400 ± 30 79 ± 0.3 48 ± I 2.0 ± 0.4* 
(32)tt 

Aberjona 0-20 1,300 <0.05 < 0.1 2.7 ± 0.8* 
± 100 

Aberjona 20-40 4,700 <0.05 < 0.1 6.7 ± 0.2• 
±200 

Serpentine 53-75 2,500 <0.05 <0.1 <0.3* 
± 150 

t James, 1994. 
• Typrin, 1998 (Eh values are corrected for an Ag/AgCI reference electrode; 

Fe(II) determined colorimetrically with 2,2'-dipyridyl). 
•• Rabenhorst, 1982. · 
tt Expressed as% of Total Cr(VI) 
NA - field measurement not available 

,, ..... , ....... , ................... -- ....... ~ - --- ----- - ... 

Eh (Pt pH OrgC Soil 
electrode) ±0.1 g/kg soil Moisture 

NA 8.8 66 ± 0.3t 404 ± 29t 

605 ± 2• 5.4 280* 1915* 

616 ± 3• 5.0 118* 1546* 

636 ± 2• 4.9 5.2• 261* 

568 ± 2• 6.7 154* 4424* 

458 ± I• 5.7 202• 2462* 

631 ± 2• 6.5 4.2* 212• 

Munsell 
Color 

7.5YR3/4 

I0YRJ/2* 

5Y2.5/I * £ 
2.5Y5/2* 

I0YR2/2* 

I0YR2/2* 

I0YR5/3** 
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Figure 2-la. X-ray diffraction spectra for COPR soil. For peak identification tables see Appendix A. 
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contaminating the leachate. The residue therefore retained high levels of Ca salts, 

insoluble Cr(III) which had been resistant to processing, and residual levels of sparingly 

soluble Cr(VI) salts. As pH increases, chromate requires more strongly reducing 

conditions in the soil for its reduction to Cr(III), (as reflected in the stability diagram, 

Figure 1-2), and at the high pH of COPR soil, it has persisted for decades (Burke et al., 

1991; Weng et al., 1994). Soluble chromate salts wick to the surface and will "bloom" 

as a bright yellow precipitate during periods of drying and evaporation. An organic, C­

rich "meadow mat" underlying the COPR soil may act as a natural, reducing barrier for 

Cr(VI), and may explain the lack of chromate contamination of the Hackensack River 

flowing adjacent to the residue sites (James, 1996b ). 

Soil samples were previously sampled at a historic COPR waste disposal site in 

Kearney, New Jersey on the flood plain about 600 m from the Hackensack River. Depth 

to groundwater was 2-3 m Since they have been significantly disturbed by the disposal 

of industrial waste, the soils have not been mapped, although they may be described as 

"disused and mixed industrial land." 

Electroplating Waste Site in Connecticut 

National Chromium, Inc., a small electroplating facility located near Putnam, 

Connecticut, discharged wastewater from Cr plating directly into an adjacent wetland 

from the beginning of the operation in 1939 up to 1975 (Nikolaidis et al., 1994), 

resulting in high levels of chromium contamination. The chromium electroplating process 

uses chromic acid/sulfuric acid baths, and the washing, dripping and spent plating 
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solutions were discharged into sewage (where the chromium killed treatment plant 

bacteria) or into wetlands and discharge ponds. 

Soil horizon samples were taken from the peat-like surface to the white cla 
' yey, 

glacial till in the wetland soil 50 m downslope from the facility. The uppermost horizon 

contained the highest total Cr levels of any soil in this study: green chromium(III) 

hydroxide coatings were evident on fallen branches and plant debris surrounding the site, 

and samples were measured with as much as 6% total chromium (Table 2-1). The soil is 

very poorly drained, and its pH, in contrast to the COPR soils, is low, from 4-5. 

Despite high levels of organic matter (200 g C/kg soil) there are ambient levels of Cr(VI) 

(60-90 µM) in the uppennost horizon. The XRD spectra of soil taken from this horizon 

(Figure 2-1 b) shows quartz, and a Cr(III) rich chlorite that was identifi~d as a possible 

major phase using JADE. Data identifying the peaks corresponding to these two phases 

is shown in Appendix A. Another likely fonn of Cr(III) present at the site is an aged, 

amorphous Cr(OH)3 (s) formed by reduction ofCr(VI) in the plating waste. An XRD 

spectra would not identify such a non-crystalline phase. 

The soil underlying the organic rich surface horizons is classified as a Saco silt 

loam (Soil Survey ofWmdham County, 1981). Chromium behavior in the soil profile is 

complex, Cr(Vl) disappears in the middle horizons (where soluble Cr(III) can be found, 

perhaps complexed to organic matter), and it reappears in the glacial till. Mattuck 

(1994) reported Cr(Vl) levels of up to 950 µMin groundwater sampled from the 

underlying aquifer from a well site about 10 m downslope from the electroplating facility. 

Since no chromate was found in the middle horizons of the soil profile, it is likely that the 

48 



~ 
\l:) 

Figure 2-1 b. X-ray diffraction spectra for Connecticut plating waste soil, 0-14 cm. For peak identification tables see Appendix A. 
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chromate in the glacial till was transported to the wetland site through fractured flow 

from the underlying aquifer. 

Aberjona Superfund Site 

The Aberjona watershed near Woburn, Massachusetts was the site of over 100 

chrome tanning operations which operated from 1838 to 1988 and also produced glue 

and grease from carcass residues. Inorganic arsenical and lead-based insecticides were 

manufactured in the same locale from the 1860s until the 1920s (Davis et al., 1994). In 

the tanning process, Cr(VI) was reduced with organic acids over the surface of animal 

hides, forming stable Cr(III) complexes that preserved the leather. Chromium was 

mainly discharged into lagoons that were used to dispose of the sludge remnants from 

leather production (U.S. EPA. 1981). Because of the high levels of animal organic 

waste, natural biodegradation processes depleted the soils at these sites of oxygen and 

formed highly reducing environments. Along with organic waste materials, the disposal 

site contains an array of metal co-contaminants, including As and Pb. 

Two horizons of a riverbank soil classified as Freetown muck soil series were 

sampled at the Superfund site downstream from the tannery disposal lagoons. 

Conditions in the subjacent groundwater are conducive to sulfate reduction; the sulfide 

species produced could be expected to reduce any ambient Cr(VI). Although chromium 

appears exclusively as Cr(III) in these sites, it has a surprising degree of mobility in the 

groundwater (Davis et al., 1994 ), probably due to the enhanced solubility of Cr(III) 
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organic complexes (James and Bartlett, I 983a) formed with dissolved organic carbon 

provided by the decomposing hides. 

Maryland Serpentine Barrens 

Unlike the three other soils sampled, the samples taken from the Maryland 

serpentine barrens contain only naturally elevated levels of Cr. In the Piedmont of the 

eastern United States, a belt of serpentinite bodies extends from New Jersey to Alabama. 

These bodies are characterized by hydrated magnesian phyllosilicate minerals that are 

often also rich in chromiwn. In the early nineteenth century, prospector Isaac Tyson, Jr. 

associated the low fertility of serpentine soils with the presence of chromite (FeCr20 4) 

ore. He purchased land across Maryland, including an area northwest of Baltimore 

known as Soldier's Delight, which became a major source of industrial chromiwn in the 

I 840s. These soils have been previously studied extensively in an effort to determine the 

cause of their low fertility (Rabenhorst et al., 1982). 

Soil was sampled at the Soldier's Delight site, I 00 m from an old chromite mine, 

by horizon to a depth of 107 cm. The soil is classified as a Typic Hapludalf (fine silty, 

serpentinitic, mesic) and a detailed description of its properties and morphology is given 

in Rabenhorst et al. (1982). Those workers reported chromiwn levels as high as 5,850 

mg/kg, principally as chromite (FeCr20 4), at a depth of 50-100 cm Samples used in this 

study were taken from the 53-75 cm horizon, and contained 2,500 mg/kg total 

chromium, with no detectable soluble chromiwn (Table 2-1 ). The XRD spectra of soil 

from this horizon (Figure 2-1 c) shows quartz and antigorite, a magnesian serpentine 
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Figure 2-lc. X-ray diffraction spectra for Serpentine soil, 53-75 cm. For peak identification tables see Appendix A. 
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mineral. The absence of chromite identified in the spectra does not rule out its presence 

in the soil under levels of 5%. Total chromite would amount to only 0.5% in a sample of 

this horizon if calculated on the basis of measured Cr. 

Soil Sampling 

Laboratory experiments were conducted using seven soil horizons sampled from 

the above four sites. A similar sampling protocol was followed at each site: an 

undisturbed area about 1 m2 was cleared of leaf and plant covering, a pit was dug, soil 

horizons marked and identified, and samples taken from each horizon. Horizons were 

kept intact as large blocks, sealed in plastic bags, transported to the laboratory in coolers 

and stored in a refrigerator at 4° C. 

It has been shown that drying a soil may cause the breaking up of soil organic 

polymers into more easily oxidized fragments (Bartlett and James, 1980). If soluble 

Cr(VI) is present when such a soil is dried, upon remoistening it may be reduced by the 

:fragmented soil organic matter, altering original levels of Cr(VI) (Bartlett, 1991 ). It is 

therefore important to use samples that have been maintained in field moist conditions 

when investigating the oxidation or reduction of chromium in soils. 

Intact blocks of soil from individual horizons were prepared by passing them 

through a polyethylene sieve using gentle hand pressure to obtain a relatively 

homogenous :fraction. COPR soil samples were prepared using a 0.40 cm sieve; a 0.25 

cm sieve was used on all other soils. 
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Chemicals 

Analytical grade K2Cr04 aqueous concentrate was obtained from J.T. Balcer and 

diluted to 19.23 rnM. This was used to prepare Cr(VI) standards and stock solutions. 

Cr(VI) solutions were titrated in 0.0lM NaNO3 using NaOH or HNO3 to obtain a 

desired pH. The laboratory preparation of aged, hydrolyzed solutions of Cr(III) is 

discussed in detail in Chapter 3. Reagent grade 30% H2O2 from Balcer was used without 

stabilizers to make standards, which were freshly prepared for each series of 

experiments. Concentrations ofH2O2 stock solutions were verified by titration with 

KMnO4 using sodium oxalate (NaC2O4 detennined gravimetrically) as a primary standard 

(Skoog et al., 1994). Catalase prepared from bovine liver was obtained from Sigma 

(1540 units/mg where one unit will decompose 1.0 µmol of H2O2 per min). Unless 

otherwise noted, all other chemicals were reagent grade, obtained from Baker, and used 

without further purification. 

Experiments 

Batch experiments were conducted in triplicate in 50 mL polycarbonate centrifuge tubes. 

Suspensions containing solution/soil ratios of 10/1 by mass were prepared by placing 

3.00 g of soil in each tube and equilibrating for 24 ± 1 hat 25 °Con an orbital shaker 

(100 cycles/min, 30 minutes on, 30 minutes off) with 30.0 mL of0.0lM NaNO3• 

Reactants (H2O2 , Fe(II)) were added to the soil suspensions in small volumes (50 µL­

aliquots) to obtain the desired initial concentration in the soil suspension so as not to 
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significantly dilute the original concentrations of chromium. Destructive sampling was 

used to monitor [Cr(VI)], [H2O2] and pH of the soil suspensions over time. Samples 

remained on the orbital shaker until analysis took place, at which time they were 

centrifuged (12,000 rpm, RCF 14,862, 15 min, 25 °C), and aliquots withdrawn from the 

supernatant liquid for determination ofCr(Vi) and H2O2• 

Analytical Methods 

Soil solution pH (solution/soil ratio 10/1) was measured with an Orion flat 

surface combination pH electrode (calibrated using pHydrion buffers at pH 4, 7 and 10) 

inserted directly into supernatant solution in each centrifuge tube to a depth just above 

the soil plug. All spectral readings were done with a Shimadzu UV-1601 PC scanning 

spectrophotometer. Powder X-ray diffraction analysis was performed on air dried, 

crushed soil samples (see XRD data in Appendix for source specifications). 

Soluble Cr(VI) in the soil suspensions was measured by the diphenylcarbazide 

(DPC) colorimetric method (Bartlett and James, 1979) using 0.5 mL of the DPC reagent 

(add 0.38 g DPC to 100 mL 95% ethanol and add to 120 mL 85% H3PO4 in 280 mL 

distilled H2O) with a 4.5 mL-aliquot of the reaction supernatant. In cases where Cr(VI) 

concentrations fell above the linear standard curve (0.1-40.0 µM) , 1: 10 or 1 :20 dilutions 

were made before withdrawing an aliquot to add to the DPC reagent. 

Diphenylcarbazide reacts with Cr(VI) in acidic solution to form a Cr(IIl)­

diphenylcarbazone complex which absorbs as 540 nm (detection limit 0.1 µM). At 

concentrations higher than 1 o-s M, H2O2 causes a negative interference with the DPC 
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detennination of Cr(VI), because it will competitively reduce Cr(VI) under the low pH 

conditions of the test. Pettine et al. (1988) found that negative interference ofH2O2 can 

be avoided at concentrations less than 1 o~ M by increasing reagent concentrations. In 

these experiments, however, much higher concentrations ofH2O2 were used (up to 

0.1 M), and the removal of peroxide by adding catalytic ( 1 o-s M) amounts of catalase to a 

sample and allowing it to stand 30 minutes prior to analysis was shown to be effective. 

In those determinations where catalase was used, Cr(VI) standards (0, 1, 5, 10, 20, 30, 

40 µM) were also prepared with 1 o-s M catalase. The catalase raised absorbance 

readings slightly at 540 nm for all standards, but did not appear to affect Cr(VI). Results 

for standards using DPC and catalase corresponded well with results obtained using a 

direct optical method (@350 nm for HCr04• at pH 4). 

Total Cr(VI) in the soil samples was determined using a heated carbonate­

hydroxide extraction method found to be the most effective of several tested by James et 

al. (1995). The measurement included soluble, adsorbed or occluded Cr(VI), and Cr(VI) 

bound in a solid phase within the soil matrix. DPC measurements of extracted Cr(VI) 

were compared to samples prepared with DPC reagent blanks (without DPC). This 

accounted for slight discoloration of the sample solutions, probably due to the 

dissolution of fulvic acid under the initially alkaline, and subsequently acidic conditions 

of the test. 

Total soluble Cr in the soil was determined by atomic absorption, and total Cr in 

the soil was determined by atomic absorption following a digestion procedure using 
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H2S04 -H2O2 -HF dissolution of oven dried (105 °C) crushed (35-mesh) soil samples 

(Bowman, 1988). 

A slight modification of the 4-amino antipyrene horseradish peroxidase method 
' 

reviewed by Frew et al. (1983), was used to determine H2O2 concentrations. H
2
Q

2 
will 

oxidatively couple with 4-amino antipyrene (AAP) and phenol, in the presence of 

horseradish peroxidase to produce a quinoneimine dye with a maximwn absorption at 

505 nm. The linear range was 1-300 µM H2O2 (Frew et al., 1983). The modified 

aqueous reagent was mixed in a 500 mL volwnetric flask as follows: 0.001 0 g 

horseradish peroxidase (type VI) from Sigma (about 2x10-s M), 0.50 g 4-

aminoantipyrene, 1.17 g phenoi 5.0 mL 0. lM triphosphate buffer (pH 6.9), 100 µL of 

0.01M H2O2 (or 2 µM) to give more stable readings. Reagent (2.0 mL) and aqueous 

sample (3.0 mL) were vortexed; absorbance readings at 505 nm reached a maximum in 

30-120 seconds, after which they were no longer stable. Sample color faded at a rate 

that varied with H2O2 concentrations. 

Analytic uncertainties are graphically indicated by the presence of error bars 

associated with each data point. These are based on reproducibility and are calculated as 

± 1 SD. In many cases they are too small to be visible. Correlation coefficients {r2) for 

standard curves were greater than 0.998 for Cr(VI) methods and greater than 0.995 for 

~02 methods. A summary of analytical methods with their associated experimental 

uncertainties follows in Table 2-2. 
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Table 2-2. Summary of Analytical Methods 

Determination Method Analytical Error Linear Range 

Total Cr 1. HN03, H20 2, HF 3% 1 µM- 120 µM 

digestion, flame 
AA detennination 

Total Cr(VI) 2
· base, carbonate 2% 0.1 µM-40 µM 

extraction, DPC 
detemination 

Soluble Cr(VI) in Diphenyl carbazide 2% 0.1 µM-40 µM 

soil supernatant 
solutions 3· 

Soluble Cr(VI) in Direct absorbance 1% 1 µM- 150 µM 

aqueous systems, @350nm 

pH4-5 

H2O2 in soils and 4-antiaminopyrene 2% 1 µM-300 µM 

aqueous systems 4· 

1. Bowman, 1988. 
2. James et al., 1995. 
3. Bartlett and James, 1979. 
4. Frew et al., 1983. 
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RES UL TS AND DISCUSSION 

Chromite Ore Processing Residue (COPR) 

A significant increase in soluble Cr(VI) was shown to take place in samples of the 

COPR soil treated with single applications of24 mM H20 2 (Figure 2-2), raising 900 µM 

ambient chromate levels about 30%. The higher levels of chromate were sustained in the 

alkaline soil for over a week, while 25% of the peroxide disappeared in the first hour 

after treatment, and was undetectable (under 0.1 µM) in the soil within 24 hours after 

treatment. Lower concentrations of peroxide treatment produced smaller increases in 

Cr(VI) concentrations (about 10%, from 900 µM to 1000 µM) over control samples 

with no added peroxide, but not systematically, i.e., higher H20 2 levels didn't necessarily 

produce higher Cr(VI) concentrations. 

Variability in the data exceeds analytical error (2%, due mainly to the l O or 20-

fold dilution necessary to measure mM levels of Cr(VI)). Each data point was obtained 

from three separate subsamples taken from a larger, surface horizon field sample that 

Was sieved ( 4.0 mm) and thoroughly mixed. Even after sieving, however, COPR soil 

contains unevenly distributed, small pellets extremely high in chromate. As a result, a 

wide range of soluble Cr(VI) (856-1020 µM) was measured in untreated control samples 

(see Table 2-3). It is probably due to this heterogeneity of the soil mixture that any 

effects ofH
2
0

2 
treatments below 24.0 mM were not discernible. 

Although the chromite ore processing residue was subject to efficient leaching 

methods to remove soluble N3:iCr04, it has continued to release Cr(VI) for decades after 

its disposal (Burke et al., 1991 ). Sparingly soluble chromate compounds have been 
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Figure _2-2. Changes in Cr(VI) concentrations in COPR soil (10/1 solution/soil by mass) 
upon smgle applications ofH

2
0

2
• For data see Table 2-3. Error bars are shown for 

each data point as± I SD. Variability in data exceeded expected analytical error of2% 
due to the heterogeneity of the COPR soil, which contained unevenly distributed, high­

chromate pellets. H
2
0

2 
disappears within 1 day (see Table 2-3). 
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Table 2-3. Data for Figure 2-2. Cr(VI) concentrations in COPR soil upon single 
applications ofH

2
O

2 
(at day zero). H2O2 disappearance in soil shown for highest 

application level. Samples measured at 10/1 solution/soil by mass, pH for all samples 

8.8 ± 0.1. 
Cr (VI) (µ,M) 

Day 0.1 1 2 9 

H20 2 added 
(mM) 

None 896 911 937 960 

926 925 978 989 

953 856 975 1020 

0.75 989 1040 1040 

959 1010 1000 

980 1070 1060 

1.50 932 978 1020 

920 1010 1030 

938 983 1040 

3.00 941 1010 1050 

959 1030 1050 

929 1020 

6.00 921 1020 1020 1050 

947 1020 1060 1090 

926 998 1010 1030 

12.00 914 960 954 975 

971 998 990 1030 

905 923 966 1010 

24.00 971 1130 1350 1180 

962 1130 1220 1160 

962 11 IO 1130 1150 

H
2
0, (mM) 

H
2
0 2 added 1.5 hour 24 hour 

(mM) 

24.00 9.89 Not detectable 

10.70 
9.61 
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shown to be present in the residue at concentrations of between O. 7 to 5%. Among 

these, CaCrO4 may predominate, and other Cr(VI) compounds found in the ore residue 

include calcium alwninochromate (3CaO·A12O3• CaCrO4), tribasic calcium chromate 

[CaJCCrO4) 2], and basic ferric chromate (FeOHCr04)(Gancy and Wamser, 1976). 

Soluble chromate in COPR soil may be controlled by these solid phase Cr(VI) salts. 

The relatively high ~P of calcium chromate (7.1 x 10-4) and high levels of calcium (up to 

20% as calcium carbonate or.calcium oxides) in the soil from the original lime treatment 

of the chromite ore suggest CaCr04 as the most likely candidate for controlling Cr(VI) 

solubility in COPR soils (James, 1994). 

The 30% increase in soluble Cr(VI) observed by the addition of24.0 mM Ho 
2 2 

could be explained in two ways. Hydrogen peroxide either oxidized Cr(III), or dissolved 

Cr(VI) salts. Cr(VI) dissolution by H2O2 would suggest a complexation reaction 

between Cr(VI) and H2O2
• The fonnation of the red-brown anion, 

tetraperoxochrornate(V) ([Cr(O2)4J3") has been observed in the reaction between H2Q2 

and Cr0
4

• under alkaline conditions (Dickman and Pope, 1994), although its formation 

from a sparingly soluble Cr(VI) salt has not been shown. Its 4:1 H2O2:Cr ratio would 

make its formation highly dependent on H2O2 levels. (Due to the use of catalase in the 

DPC determination of Cr(VI) under conditions of ambient H202 (> I o-s M), we would 

not expect to see any decrease in [Cr04 
2·J due to its complexation with H20 2, because 

cataJase d str b' t H O The catalase would either shift equilibrium conditions e oys am 1e1;1 2 2· 

hack toward CrO/", or attack the peroxo ligands on the Cr-H20 2 complex directly.) If 
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Cr(VI) salts dissolved through complexation with H2O2, the complex would then release 

CrO/ into the soil solutions as H2O2 levels dropped. 

The swift disappearance of the H2O2 in the COPR soil within one day, while 

enhanced Cr(VI) levels persisted for over a week, also supports the explanation that 

H202 oxidized Cr(III) components of the COPR soil. Cr(III) in COPR soil has been 

shown to be resistant to other oxidants: James found that neither the Cr(III) present in 

COPR soils, nor soluble Cr(III) added to COPR will oxidize when exposed to Mn 

(III,IV) (hydr)oxides, despite the high pH and low organic matter conditions favorable to 

sustaining Cr(VI). This implies that peroxide may be uniquely capable of oxidizing 

chromium in COPR soil. 

Electroplating Waste Site in Connecticut 

Within a single soil profile at the Connecticut plating waste site, H2O2 treatments 

Produced markedly different results. Results from three horizons are reported: the peat­

like uppermost (0-14 cm) horizon, with ambient levels of soluble Cr(VI) ranging 

between 60-90 µM; the more reducing underlying (14-40 cm) horizon which contained 

5-6 µM soluble Cr(IlI) (Typrin, 1998) probably in the form of soluble organic 

complexes; and the white and clayey glacial till layer (> 100 cm), with ambient soluble 

Cr(VI) in the 40-60 µM range (see Table 2-1). 

I • 1 bl Cr(VI) were observed in the uppermost horizon after single ncreases m so u e 

applications of peroxide at various concentrations (Figure 2-3). Unlike results in the 
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Figure 2-3. Changes in Cr (VI) concentrations (I 0/1 soln/soil by mass) in Connecticut 
wetland plating waste soil (0-14 cm horizon) upon single applications of H20 2 ( at day 
zero). For data see Table 2-4. Error bars are shown for each data point as ± 1 SD. 
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Table 2-4. Data for Figure 2-3. Changes in Cr(VI) concentrations in Connecticut 
wetland plating waste soil (0-14 cm horizon) upon single applications ofH

2
O

2 
(at day 

zero). Analytical error associated with Cr(VI) determination is ± 2 µM. Initial 
[Cr(VI)] for all samples taken as 95 ± 6 µM (10/1 soln/soil by mass). Solution pH 5.4 
± 0.1 for all samples after day 1. H20 2 not detected day 1-22. 

Cr (VI) (µM) 

Day 0.2 1 2 10 22 

Peroxide 
added (mM) 

None 90.0 92.6 94.4 104 88.7 
90.0 94.1 99.1 105 88.9 
91.2 94.6 96.8 102 87.5 

0.75 100 100 101 101 91.0 
101 108 102 101 88.4 
104 102 105 105 92.5 

1.50 104 105 105 98.6 82.9 
101 105 106 99.5 85.5 
105 107 103 103 90.7 

3.00 108 111 116 104 90.1 
110 111 113 104 88.4 
111 114 113 107 92.2 

6.00 137 130 127 111 91.6 
142 130 129 111 92.8 
134 126 127 113 93.9 

12.00 198 174 159 122 91.6 

195 174 165 123 92.5 

195 169 159 119 91.3 

24.00 270 227 198 120 83.4 
271 229 195 116 77.6 

272 230 198 119 77.3 
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COPR soil, soluble Cr(VI) increases over ambient chromate levels varied with the 

concentration ofH20 2 applied, from an increase in Cr(VI) of 30% from a 750 µM 

application ofH20 2, to an increase of250% in soluble Cr(VI) after a single application 

of24 mM H20 2• Increases in chromate levels reached a maximum 4 hours after peroxide 

applications. As with the COPR soil, two explanations for the increases in Cr(VI) in this 

horizon are possible: either H20 2 oxidized Cr(III) present in the soil, or it released 

existing Cr(VI) from the soil matrix. 

Cr(III) oxidation is suggested by pH changes observed after applying H
2
Q

2
• 

Increases in Cr(VI) were accompanied by decreases in soil pH (solution/soil ration J 0/J) 

from original values of 5.5 to as low as 4.6 for the highest peroxide application levels 

(Figure 2-4). The lowering of pH in these samples may correspond to chromium 

Oxidation ( equation 1.26). Although the one unit pH change does not account for total 

Increases in Cr(VI), this is an expected result of the buffer capacity of the soil, further 

evidenced by the observation that soil pH returned to original levels after a day, while 

chromate levels still remained high. Within two hours after application, about half of the 

Peroxide in samples spiked with 24 mM levels had disappeared, and peroxide was not 

detectable in any sample after one day. Enhanced chromate levels, on the other hand, 

Persisted Jong after the peroxide disappeared, declining over a two week period at rates 

that Varied with chromate concentrations, until they reached initial ambient levels of 

soJubJe Cr(VI). At the highest treatment levels, enhanced soluble Cr(VI) levels (270 

µM) swpassed Cr(VI) levels that would have been present if all forms ofCr(VI) in the 

horiz.on sample had been released into solution (Table 2-1). This provides further 
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Figure 2-4. Short tenn changes in pH and Cr(VI) concentrations (10/1 soln/soil by 
mass) in Connecticut wetland plating waste soil (0-14 cm horizon) upon single 
applications of H

2
O

2
• Solution pH given above Cr(VI) data points. Error bars are 

shown for each data point as ± 1 SD. Analytical uncertainty± 2 µM for Cr(VI). 
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Table 2-5. Data for Figure 2-4. Short term changes in Cr(VI) concentrations in 
Connecticut plating waste site (0-14 cm) after single applications ofH20 2 • Analytical 

uncertainty for Cr(VI) is ± 2 µM. 

Hours 1.3 2.5 4.6 11.3 

H2O2 added Cr(VI) (µM) Cr(VI) (µM) Cr(VI) (µM) Cr(VI) (µM) 

(mM) 

6.00 100 135 142 128 

95.6 129 134 123 

98.0 132 137 127 

12.00 119 187 198 176 

116 182 195 175 

116 182 195 174 

24.00 144 249 270 240 

139 247 271 237 

141 249 272 238 
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evidence that oxidation of Cr(III) by peroxide contributed to the increase in soluble 

Cr(VI). 

Cr(III) present in this soil (60 g/kg, Table 2-1) was the result of the reduction, 

over many years, of large quantities of Cr(VI) in an overland flow of the plating plant 

discharge to the wetland site. Cr(III) in the soil is therefore relatively newly-reduced as 

amorphous Cr(III) (hydr)oxides or Cr(IIl)-humates, as opposed to "older" Cr(III) fonns 

fo d. il un m so e.g. Cr20 3 or FeCr20 4• 

A reducing :fraction of the high levels of organic matter in this horizon could 

account for the return of soluble chromate to levels observed prior to H20 2 treatment. 

Wittbrodt and Palmer (1996) observed the reduction ofCr(VI) by soil humic and fulvic 

acids across a pH range of2-7. Nakayasu, et al. (1999) found that gallic and tannic 

acids (polyphenols that originate in decaying leaves, likely precursors to humic 

substances) reduced Cr(VI) at pH 5 at even faster rates than humic and fulvic acids. In 

the first step of the reduction process, Cr(VI) fonns an organic chromate ester, bonding 

to an alcohol or an aldehyde functional group on a particulate organic substrate (.Klaning, 

1977): 

(2.2 

Although small equilibrium constants for this reaction (Klaning, I 958) caused Kieber and 

Helz (I 992) to discount its importance in natural waters, equilibrium between soil 

solution Cr(VI) and Cr(VI) organic esters forming in this peat-like horizon may be a 

factor in the return of chromate levels in all samples to the 60-90 µM range. 
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If ambient soluble chromate levels in this horizon were being controlled by a 

solid phase source of Cr(VI), one would expect to see an equilibrium concentration of 

chromate approached as solution to soil ratios were raised above the somewhat arbitrary 

10: 1 ratio chosen for lab experiments done in centrifuge tubes. Figure 2-5 shows 

chromate concentrations leveling at about 20 µM as solution-to-soil ratios were raised 

from 10: 1 to 80: 1. A solid phase possibility for the control of soluble chromate in this 

horizon is the iron-chromate precipitate (KFelCr04)iOH\) identified by Baron et al. 

( 1996) in an Oregon soil contaminated by chrome plating solutions. Formation of this 

chromate analog of the sulfate mineraljarosite is consistent with the common occurrence 

ofjarosite in acid sulfate soils (Wagner et al., 1982). In the case of the chromate 

mineral, Cr(VI), K, Fe(III) and low pH conditions could all be derived from the 

discarded plating solutions, although K+ could also be available as a soil exchangeable · 

cation, and Fe(III) from native oxyhydroxides. Baron and Palmer (1996) determined a 

solubility constant for the chromate mineral, where log Ksp = -18.4 ± 0.6 at 25 °C for 

the dissolution reaction: 

Ifit is assumed that [Fe(III)] is controlled by ferrihydrite (log ~P = 4.89, Woods and 

Garrels, 1987): 

(2.4 

and if the protonation of CrO/- to form HCr04• (log Kt,= 6.4) is also taken into account, 

the overall reaction becomes: 
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Solution-to-soil ratio 

Soln/soil ratio 10 20 40 80 

Cr(VI) (µM) 93.4 40.0 29.4 20.1 
95.7 42.0 28.2 20.4 

Figure 2-5. Effect of varied solution to soil ratios on Cr(VI) measurements in the 
0-14 cm horizon of the Connecticut plating waste soil. Analytical uncertainty for 

Cr(VI) is ± 2 µM. 
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with a calculated K == 5.0 x 10·21
• If [Cr(VI)] == 20 µM (solution/soil ratio 80/1 ), and K+ 

is assumed to be controlled by the chromate jarosite and is therefore 0.5[Cr(VI)], and pH 

is 5, then an empirical K == 4.0 x 10·20 is obtained, within an order of magnitude of the 

calculated K. A similar calculation using the less soluble goethite (FeOOH, log ~P = 

-1.0) would predict 1 M Cr(VI) in solution, clearly far from measured levels. 

We may therefore consider the chromate jarosite to be a viable possibility as a 

solid phase controlling ambient Cr(VI) in this horizon, if a relatively unstable Fe phase is 

also present. High sulfate conditions in plating waste (from H2S04 used in plating 

solutions) also suggest that solid solutions could form between the ferric chromate salt 

and a sulfate lattice, and could cause some variation in expected Cr(VI) solubilities. 

The hypothesis of a solid phase controlling the solubility of Cr(VI) in this horizon 

also provides an alternate interpretation of the return of soluble Cr(VI) to ambient levels. 

Instead of being reduced by an active fraction of soil organic matter, the extra HCr0
4

• 

generated by oxidation ofCr(III) may be gradually precipitated by reaction with an 

excess Fe phase. 

Since the abundant quantities ofCr(III) oxyhydroxides in this soil have been 

fonned as the result of the reduction of Cr(VI) in plating waste, it is possible that ·cr(VI) 

became sequestered within the Cr(III) precipitation matrix during the reduction process. 

Such "matrix chromate" could be released in any process affecting dissolution of the 

solid, such as oxidation of surrounding Cr(III). Attempts to reproduce such a 

phenomenon in the laboratory yielded some evidence for its occurrence: adsorbed 

chromate that was exchangeable from the surface of a chromium hydroxide precipitate 
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by equilibration in phosphate solution (method of James et al., 1995) was three to four 

times higher in a system that was prepared with chromate added after the hydroxide 

precipitation of a Cr(III) salt than in a similar system where precipitation took place in 

the presence of the chromate. Attempts to measure any Cr(VI) that may have been 

sequestered in the solid phase of the latter system were unsuccessful due to the oxidation 

of Cr(III) during the base extraction process (James et al., 1995) designed to release 

solid phase Cr(VI). 

Whatever may be controlling ambient levels of soluble Cr(VI) in the uppermost 

Connecticut horizon, it is clear that chromium in this soil does oxidize in response to 

treatment with peroxide. Chromium (III) in the adjacent underlying horizon, which has 

no ambient soluble chromate, was also oxidized by peroxide, but to a lesser extent. 

Chromate levels reached 5-6 µM (Figure 2-6), which corresponded to initial levels of 

soluble Cr(III) in this horizon. If Cr(VI) were being released from a solid phase by 

H2O2, higher Cr(VI) levels should have been seen in this horizon after H2O2 treatment, 

since it contained total Cr(VI) levels comparable to the surface horizon (Table 2-1 ). 

Figure 2-7 shows no significant enhancement of Cr(III) oxidation in this system by the 

addition of catalytic amounts of Fe(II), and also shows the effect of spiking this soil with 

I 00 µM aged, hydrolyzed, Cr(III). An increase in resulting chromate is observed, but it 

only accounts for about 4-5% of the added Cr(III), indicating that chromium reduction is 

favored by soil processes in this horizon, which is also observed in the rapid 

disappearance of chromate after it forms. 
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Cr(VI) (µM) 

days a 
YI ¥2 ¥3 

0.0 0.0 0.0 0.0 
1.0 5.2 5.8 5.2 
2.0 0.5 0.5 0.2 
5.0 0.0 0.0 0.0 

Fi~e 2-6. Cr(IIl) oxidation by a single application of 12.0 mM H20 2 in the 14-40 cm 
ho?Zon of Connecticut wetland plating waste soil. Error bars are shown for each data 
P0 mt as± 1 SD. Analytical uncertainty for Cr(VI) is± 0.2 µM. 
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days 

day a b 
Yl Y2 Y3 YI Y2 Y3 

0 0.0 0.0 0.0 0.0 0.0 
I 12.6 12.6 9.7 9.9 6.2 
2 19.6 19.0 0.5 1.0 0.5 
4 26.0 26.6 
5 1.0 0.7 0.5 

day C d 
YI Y2 Y3 YJ Y2 Y3 

0 0.0 0.0 0.0 0.0 0.0 0.0 
1 5.9 6.0 5.8 5.2 5.8 5.2 
2 0.9 0.6 0.5 0.5 0.5 0.2 
5 0.0 0.1 0.1 0.0 0.0 0.0 

Figure 2-7. Cr(III) oxidation by H20 2 in 14-40 cm horizon of Connecticut wetJand 
P~ting waste soil (10/1 solution/soil by mass for all soil samples). a) aqueous control 
us~g 100 µMaged, hydrolyzed Cr(II1)(2 OH/I Cr(III)) and 1.00 mM H20 2 b) soil 
spiked with 100 µMaged, hydrolyud Cr(III) (2 Off/1 Cr(Ill)) and 12.0 mM H20 2 
c) soi] spiked with I.00 µM Fe(Il) and 12.0 mM H202 d) soil only with 12.0 mM 
H202. Error bars are shown for each data point as ± 1 SD. Analytical uncertainty for 
Cr(VJ) is ± 0.2 µM. 
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Not surprisingly, peroxide took twice as long to disappear in the 14-40 horizon 

than in the 0-14 horizon, which contained much higher levels of organic matter (Table 2-

6). Reduced chromium may be ''tanning" the organic matter in this horizon, stabilizing 

it, and rendering it less bioavailable. In their study of the products of Cr(VI) reduction 

by gallic and tannic acids, Nakayasu et al. (1999) observe the polymerization of the 

polyphenols during Cr(VI) reduction, and complexation ofCr(III) with the polymerized 

compounds. This effect may prevent the high organic matter soil from becoming 

completely anaero hie, perhaps explaining why chromium oxidation occurs to any extent 

in this poorly drained horizon. 

Application of 3 mM peroxide to the glacial till horizon produced an entirely 

different effect (Figure 2-8): an initial rise in pH and a loss of ambient chromate levels, 

followed by a return of chromate to its initial concentration. A sample spiked with 50 

µM HCr04- showed a similar pattern. Figure 2-9 is taken from data presented in 

Chapter 3 (Figures 3-5a, 3~5b) from experiments in an aqueous Cr(VI)IH20 2 system 

with an original pH of 4.5, and shows similar behavior, albeit over a longer time period. 

The Cr(VI) disappearance and reappearance in this horizon could be explained by Cr(VI) 

reduction and Cr(III) reoxidation, or by the fonnation of a soluble peroxochromium (VI) 

complex, which reverts to HCr0
4

• as H20 2 levels in the aqueous system drop. 

The low levels of soil organic matter in this horizon allowed for a direct 

determination of Cr(VI) by absorbance at 350 nm, rather than via the determination of 

the DPC derivative. The behavior of a Cr(VI) peroxo complex which could not be 

observed in the other soils due to the addition of catalase to avoid H20 2 interference in 
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Table 2•6. Disappearance of24.0 mM H202 after a single application in three soils. 

Soil 1.5 hr 24 hr 48 hr 

COPR 9.9± 0.3 <0.005 for <0.005 for 
10.7 all samples all samples 
9.6 

Connecticut o. 14 cm 11.5 ± 0.3 2.5 ± 0.3 <0.005 for 
11.8 2.8 all samples 
11. 7 2.5 

Connecticut 1440 cm 18.2±0.3 <0.005 for <0.005 for 
18.6 all samples all samples 
18.6 

Table 2. 7. Cr(VI) (µM) was not detected over the course of one week in two soils 
treated with single applications of 0.1, 0.05 and 0.025 M H202. Data was the same for 
all three treatment levels. 

Cr(VI) µM 

lday 2day 4day 7day 

Aberjona < 0.1 <0.1 <0.1 <0.1 

~ Serpentine <0.1 <0.1 <0.1 <0.1 
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5.25 

--a 

5.00 
::: 
g. hrs pH 

0.0 4.90 4.92 4.93 

0.3 5.03 5.03 5.02 

0.7 5.16 5.10 5.08 

4.75 1.7 5.02 5.01 4.99 

3.5 5.02 5.01 5.02 
100 

0 2 J 4 5 ' 
90 hours 

- 80 
~ 
::t 70 ._, 

s: 
a.. u 50 -0-b 

40 ~c 
30 

20 
0 2 4 6 8 10 

boors 

' 
hours b 

YI Y2 Y3 

0.0 83 86 84 

hours C 

YI Y2 Y3 

0.0 47 47 49 

0.5 40 41 42 

0.3 74 79 75 1.1 39 40 41 

0.7 72 74 74 2.8 42 44 47 

1.7 81 83 79 7.3 53 54 65 

3.5 76 74 79 

22.5 81 82 82 
24.5 58 59 61 

50.0 51 52 53 
-

~igure 2~8. Short term changes in Cr(VI) eo~rations in g_lacial till underlying a 
onnechcut wetland plating waste soil after a smgle application of3.00 mM H2

0 
a) pH in soil amended with 50 µM HCrO. b) Cr(VI) changes in amended soil 

2 

c) Cr(VI) changes in unamended soil. Analytical uncertainty for Cr(VI) is ± 2 µM. 
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a) 
3000 100 

80 

~ 2250 ----- Cr VI ("') 

c 
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0 1500 

= 
~ 

_; 
750 ......-H2O2 

0 
0 1 2 3 4 5 6 

b) 
days 

5.5 

= Q. 

4.5 

4.0 
0 1 2 3 4 5 6 

days 

Figure 2-9. Reaction of 3000 µM H
2
0 2 and 100 µM HCr04- in aqueous solution of 

0.0l M NaN0
3 

at initial pH 4.5. a) Changes in H20 2 and HCr04· concentrations 

b) changes in pH. Data in Figures 3-4a, 3-4b, 3-4c. 
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the DPC test, may possibly be evident here. A violet, diperoxochrornium(VI) complex 

has been shown to form at pH 4-7 (Funashi, 1978; Perez-Benito and Arias, 1997): 

(2.6 

Determination of its I(,. continues to be problematic due to the complicated behavior of 

H2O2 in its presence (Zhang and Lay, 1998). 

Initial concentrations of peroxide (3 mM) in the glacial till took about two days 

to d~appear in the soil (Figure 2-10). Any peroxochrornium complex formed in the soil 

would presumably undergo degradation via surface reactions more quickly than in an 

aqueous system. 

Aberjona Superfund Site 

Oxidation of chromium was not observed in the highly reducing environment of 

the Massachusetts tannery waste site soil, at peroxide application levels of up to O. l M 

(Table 2-7). Bartlett and James (1979) did observe the oxidation of soluble Cr(III) 

added to a high Mn sewage sludge and tannery waste, and observed its subsequent 

reduction over a period of two months. 

Maryland Serpentine Barrens 

Samples high in chromium (2,500 ± 150 mg/kg soil) did not produce soluble 

chromate on treatment with up to 0. l M H2O2 (Table 2-7). Cr(III) has been shown to 

appear in serpentine soils as chromite (FeCr20 4) (Rabenhorst et al., 1982), and it has 

been observed that co-precipitation with iron will reduce chromium reactivity and 
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3000 

- 2250 
~ 
::t -~ 1500 0 
~ 

750 

0 
0 JO 20 

hours a 

YI Y2 
0.0 3000 3000 
0.3 2822 2846 
0.7 2745 2546 

1.7 2400 2424 
3.5 2214 2177 

22.5 796 727 
48.0 85 107 

72.0 25 27 

---itr- soil amended with 50 µM HCro
4

-

-o- unamended soil 

30 

hours 

Y3 
3000 

2642 
2374 
2217 
756 
95 
23 

' 

40 50 

hours 

YI 
0.0 3000 
0.5 2742 
I.J 2647 
2.8 2485 
7.3 1947 

24.5 727 
50.0 122 

121.0 0 

60 

b 
Y2 Y3 

3000 3000 
2779 2925 
2660 2774 
2469 2475 
1942 1770 
727 626 
108 75 

0 0 

Figure 2-1 0. Changes in H O concentrations (µM) in glacial till underlying a 
Connecticut wetland platin~ ~aste soil after a single application of3.00 mM H20 2• 

Analytical uncertainty in H O detemrination is 2%. Error bars are shown for each data 
, 2 2 

Pomt as± l SD. 
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solubility (Sass and Rai, 1987). Samples spiked with I 00 µM soluble Cr(III) showed 

only a I% oxidation of chromium when treated with 3 mM peroxide, but the Cr(VI) 

persisted at I µM for days showing no decreasing trend (Appendix Figure A-3, A-4). 

CONCLUSIONS 

Soils with elevated chromium from four different sites, and even soils from 

horizons within the sam~ profile responded differently to treatment with H20 2
• Soils 

with high ambient levels of soluble Cr(VI), such as ore processing residues, and high 

levels of recently reduced Cr (III), such as electroplating waste sites, showed marked 

mcreases in chromate after single applications of mM peroxide over a 4- IO pH range. 

Soluble Cr(III), in the form of dissolved organic complexes, as found in the 14-40 cm 

horizon of the plating waste site aJso contributes to the likelihood of Cr(III) oxidation by 

peroxide. Anaerobic soil conditions found in the Aberjona tannery site, however, may 

prevent the oxidation of soluble Cr(III). Chromium (III) present in soil as chromite, as 

in the Serpentine Barrens site, a1so appeared to be resistant to peroxide oxidation. 

The disappearance of soluble Cr(VI) after treatment with peroxide in soils above 

PH 4 could be due to the formation of soluble Cr(VI) peroxo complexes and should not 

be assumed to be caused by chromate reduction. Once H20 2 levels dissipate in a soil, 

soluble Cr(VI) which disappeared upon initial H20 2 treatment could reappear. 

It should be kept in mind that these experiments were conducted with one application of 

Peroxide, and most remedial peroxide treatments call for continuous delivery of peroxide 

over many days, and at much higher concentrations than those used in these experiments. 
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The extent and persistence of chromiwn oxidation under such conditions would be much 

greater, as would be the possibility of forming reactive peroxochromiurn intermediate 

species. 
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Chapter 3 

Chromium Oxidation, Reduction and Complexation by 

Hydrogen Peroxide in Defined Aqueous Systems 
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INTRODUCTION 

Understanding the interaction of chromium and hydrogen peroxide has become 

relevant to environmental science due to clean-up strategies currently being tested by 

EPA which use high levels ofH2O2 (U.S. EPA, 1998) to oxidatively remediate 

hiorefractory organic contaminants in soils. In the context of soil remediation, not only 

are we compelled to look at the possibility of the oxidation of chromium in soils by 

hydrogen peroxide to its soluble and toxic hexavalent fonn, we should also consider the 

fonnation of intermediate species which may be generated in the soil in the presence of 

peroxide and chromium, and which may be the very species responsible for the toxicity 

and mutagenicity ofCr(VI) (Kawanishi, et al., 1986; Aiyar et al., 1991; Shi et al., 

1999). 

The kinetics of Cr(III) oxidation by H2O2 under highly alkaline conditions (pH 

12) has been reported by Baloga and Earley (1961), and under very low [Cr(III)J (1.9 

µM) conditions in artificial seawater (Pettine and Millero, l 990; Pettine et al., l 99 l ). 

Shi et al. (1993, 1998) used buffered solutions (pH 3.0, 7.2, and 10.0) to study free 

radical production in the Cr(III)/H2O2 system, but did not monitor Cr(VI). In this 

study, Cr(IIl)/H
2
O

2 
interactions were examined using aged, aqueous Cr(III) systems in 

order to observe whether Cr(III) would be oxidized by relatively low concentrations of 

"202 under conditions relevant to soils. 

Chromium(Vl)/H
2
o

2 
interactions were examined to determine conditions under 

Which Cr(VI) could be reduced by H
2
O2 and for evidence of the possible formation of 

peroxochromium complexes under pH conditions and reactant concentrations that 
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could be present in the context of soil remediation. If high levels ofH2O2 were added 

to a contaminated soil containing Cr(III) and Cr(VI) in an alkaline environment ( e.g. 

COPR soil), the tetraperoxochromate(V), [Cr(O2) 4]3" species could form (Dickman and 

Pope, 1994). Under more neutral conditions, peroxide has been shown to oxidize 

Cr(III) to Cr(VI) in a contaminated plating waste site (Chapter 2), and high H
2
O

2 
levels 

could produce peroxochromium intermediates, In particular, an intermediate such as 

the soluble violet chromium(VI) oxodiperoxo complex [CrO(O2)i{OH)]", which forms 

in the pH 4-7 range (Perez-Benito and Arias, 1997), may be capable of forming under 

high H2O2 and Cr(VI) conditions in this type of contaminated waste site. Fonnation of 

chromiumperoxo intermediates in the presence of high levels ofH2O2 could exacerbate 

the threat already posed by Cr(VI) in contaminated soils. 

In keeping with our inquiry into the possible oxidation of chromium by peroxide 

in soils, our aim has been to investigate chromium/peroxide behavior under 

environmentally relevant conditions, and to any extent possible, find clues that could 

help establish intermediate species forming under those conditions. Experiments were 

conducted without buffers, using moderate reactant levels, and were followed over 

days to observe long-term outcomes. 

MATERIALS AND METHODS 

Chemicals 

Reagent grade Cr(NO1k9H2O ' NaNO3, NaOH, HN01, FeS04, KMn04, 

lI2C204 and 30% H2O2 were obtained from J. T. Baker and used without further 
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Purification. Analytical grade aqueous K2CrO4 concentrate was also obtained from 

Baker, diluted to 19.23 mM and used to prepare Cr(VI) standards and stock. solutions. 

Preparation of Reactant Solutions 

Hexaaquochromium(III) will dimerize and undergo further polymeriz.ation via 

oxo and hydroxo bridging as solution pH is raised to levels commonly found in soils 

(pH 4-5). Since our inquiry relates to the response ofCr(III) in the environment to 

peroxide, these experiments were conducted with operationally defined "aged" and 

"hydrolyzed" solutions of Cr(III). This allowed us to assume consistency in our 

reactant solutions at a mid range pH (3.8-5.5). Cr(III) stock solutions (500 mL) were 

prepared in 0.01 M NaNO3 using Off/Cr ratios of 0, 0.5, 1.0, 1.5, 2.0, 2.5, 2.75, 3.0 

and 4.0. Hydroxide was added as 0.005 M NaOH dropwise at a rate of2 mL/minjust 

below the liquid surface, while stirring, in order to avoid high local OH· concentrations. 

Formation of a solid phase was observed only in the 3: 1 and 4: I Off:Cr solutions. 

Blue-green, floe-like particles appeared suspended in these solutions, and settling 

occurred slowly in the absence of stirring. The solutions were then equilibrated with 

gentle swirling on an orbital shaker (50 cycles/min) for at least one week, after which 

time, pH values remained stable for several months (see Day O pH data, Figure 3-1 ). 

Cr(VI) solutions were titrated in 0.01M NaNO3 using NaOH or HNO3 to obtain 

a desired pH. Reagent grade 30% H2O2 was used without stabiliz.ers to make 

standards, which were freshly prepared for each series of experiments. Concentrations 

ofH202 stock solutions were verified by titration with KMn04 using sodium oxalate 

87 

I ,. 
/1 
It 
H 

" 1, 

" ,, 
" ,, ,, 
" " i, 

" ,, 
II 
1, 



so,-------------

40 

~ 
:::t 30 --> -... 

0 20 

10 

0 
0 1 2 3 4 

9 
after equilibration 
and before oxidation' 

= 6 
0.i 

3 

0 
0 1 2 3 4 

Olf/Cr(III) ratio 
pH 

~- OH../Cr 2days 4days 6days 17 days 115 days 

0.0 5.6 9.9 14.1 25.1 

0.5 6.3 11.0 15.4 25.3 28.7 

1.0 9.4 15.1 19.9 29.4 33.1 

1.5 13.4 20.4 24.7 32.5 35.1 

2.0 14.4 21.9 27.l 33.I 312 

2.5 9.7 15.0 17.6 22.5 24.8 

2.8 5.0 7.2 6.6 6.3 

3.0 1.8 3.0 3.3 4.0 7.1 

4.0 25.0 39.5 42.3 41.0 46.8 

-

Cr(VI) µM Day0 Day 17 
· 3.8 3.1 

4.1 3.2 
42 3.3 
4.3 3.4 
4.4 3.4 
4.7 3.8 

52 4.1 
5.5 4.5 

IO.O 6.9 

~ 

Figure 3-1. Oxidation ofoine 280 µMC~) solutions. using 100 µM H,O,. Solutions 
~e prepared and equilibrated with off /Cr(III) ratios from 0/1 to 4/ I. Extent of 

:XIdation is shown after 2 days, 6 days, and 17 daY:- AJi:'1Ylical uncertain!Y f~r Cr(VI) is 
O. t µM Solution pH values are shown after equiblnallOD but befure oXKlatlOD and 

after 17 days of oxidation . 
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(N"2C204, detennined gravimetricaily) in 0.1 M H2SO4 as a primary standard (Skoog 

and West, 1994). 

In order to avoid possible effects that have been noted from the interaction of 

buffers with Cr/H2O2 intermediate species (Perez-Benito and Arias, 1997; Beck et al., 

l991), and in order to observe pH changes in the systems we investigated, solutions 

Were prepared without the addition of buffers. 

Experiments 

Batch experiments were conducted in duplicate in 50 mL polycarbonate 

centrifuge tubes. Reactants (H2O2 , Fe(II)) were added to the chromiwn stock 

solutions in small volumes to obtain the desired initial concentration in solution without 

diluting the original concentrations of chromiwn. Samples were immediately vortexed 

and remained on a bench-top orbital shaker ( 100 cycles/min, 30 minutes on, 30 minutes 

0 ft) at 25 °C until anaJysis took place. Destructive sampling was used to monitor 

[Cr(VI)], (H2O2
] and pH of the reaction mixtures over time. 

Analytical Methods 

Solution pH was measured with an Orion flat surface combination pH electrode 

inserted just below the solution surface in each centrifuge tube. All spectral readings 

Were done using a Shimadzu UV-160 J PC spectrophotometer. 

Where peroxide concentrations were low ( < 10·
5 

M) the diphenylcarbazide 

(DPC) colorimetric method (Bartlett and James, 1979) was used to determine soluble 
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Cr(VI) using 0.5 mL of the DPC reagent (add 0.38 g DPC to 100 ~ 95% ethanol and 

add to 120 mL 85% H3PO4 in 280 mL distilled H2O) with a 4.5 mL-aliquot of the 

re · action supernatant. In cases where Cr(VI) concentrations fell above the linear 

standard curve (0.1-40.0 µM), l: IO or l :20 dilutions were made before withdrawing an 

aliquot to add to the DPC reagent. Diphenylcarbazide reacts with Cr(VI) in acidic 

solution to form a Cr(III)-diphenylcarbazone complex which absorbs at 540 run 

(detection limit 0.1 µM). The test is specific for Cr(VI): addition of the DPC reagent 

to hexaaquo Cr3+ produces no absorbance at 540 nm. Under conditions of [H
2
O

2 
J 

greater than 10·5 M, soluble concentrations ofHCrO4• or CrO/- were determined by 

direct absorbance measurements of the reaction mixtures at 350 run ( E = l 600 cm·1 

M·
1
) and at 372 nm (e = 4800 cm·' M~1) respectively. Although this method is not as 

sensitive (detection limit 1 µM for HCr04• for al cm pathlength) as the 

diphenylcarbazide (DPC) colorimetric method, it avoids the negative interference of 

peroxide with the DPC determination of Cr(VI), which is significant above I 0·5 M 

concentrations of H
2
o

2 
(Pettine et al, 1988). In regions of overlap, where [H2O2 ] was 

less than I o-5 M, the DPC and direct optical methods agreed within 0.5%, and 

correlation coefficients (r2) of standard curves for both methods were greater than 

0.9998. Error bars are shown graphically for each measured data point, and represent 

the range between duplicate sample values. 

A slight modification of the 4-amino antipyrene horseradish peroxidase method 

reviewed by Frew et al, 0983) was used to determine hydrogen peroxide. Hydrogen 

J)eroxide will oxidatively couple with 4-aminoantipyrene (AAP) and phenol. in the 
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presence of horseradish peroxidase to produce a quinoneimine dye with a maximum 

absorbance at 505 nm. The linear range was 5-300 µM peroxide (Frew et al., 1983). 

The modified reagent was mixed as follows: 0.0010 g horseradish peroxidase (type.VI) 

from Sigma (about 2xl o-s M), 0.50 g 4-aminoantipyrene, 1.17 g phenol, 5.0 mL 0. lM 

triphosphate buffer(pH 6.9), and 100 µL of0.0lM hydrogen peroxide (or 2 µM) 

added to give more stable readings. Reagent (2.0 rnL) and aqueous sample (3.0 mL) 

Were vortexed; absorbance readings at 505 nm were taken when they reached a 

maximum (30-120 seconds after mixing), after which time they began to decrease at a 

rate that depended on the concentration of H20 2 in the sample. 

RESULTS 

Cr(IIl)/112O2 Interactions 

Figure 3-1 shows the response of aged 280 µM Cr(III) solutions (prepared 

with OH·Jcr ratios from zero to four) to treatment with 100 µM H2O2 • Oxidation of 

Cr(III) to HCr0
4

• (CrO/- at the 4:1 Off/Cr ratio) occurred across the range ofOH·Jcr 

~tios. Cr(VI) continued to appear slowly over days. Overall pH values decreased, as 

shown in Figure 3-1. 

An increase in Off/Cr ratios resulted in increased Cr(III) oxidation up to a 

lllaximum at the 2:1 ratio, then decreased Cr(lll) oxidation up to the 3:1 region where 

floccuJation became visible and oxidation ceased. The greatest oxidation occurred at 

OIJ-/iC - 4 h h d f 1 15 days 71 % of stoichiometric yield of chromate r - , w ere, at t e en o , 

CXJ>ected from 100 µM H20 2 was obtained. 
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Initial solution pH strongly affected the production of Cr(VI) and the 

destruction of H20 2 in the Cr(III)/H20 2 system (Figures 3-2 a-c). Excess peroxide 

(JOOO µM) was applied to three different 100 µM preparations of aged Cr(III): a) 

Cr(III) titrated with HN03 to pH 3; b) Cr(III) prepared with a 2:1 OH·/Cr ratio at pH 

4-75; and c) Cr(III) slowly titrated to pH IO with NaOH. Oxidation ofCr(III) at pH 3 

Was not observed, nor was a change in pH measured (Figure 3-2a). H20 2 
decreased 

slightly after several days. The 2:1 OH·:Cr(III) solution showed a steady increase in 

Cr(VI) over 15 days (Figure 3-2b) along with catalytic decreases in H20 2, with 46 

times as much peroxide used as chromate produced. At an initial pH of 10 (Figure 3. 

2c ), initial rates of chromium oxidation were higher than at pH 4. 7, and rates of H
2
0

2 

destruction were lower, but still catalytic in nature with about 20 times as much H20 2 

destroyed as chromate produced in two weeks. At the end of four weeks, about 92 % 

of the chromium was oxidiz.ed. 

When 100 µM 2: 1 Off/Cr(III) solutions were treated with peroxide levels 

from 500 µM to 4500 µM (Figure 3-3 a-c) a linear relationship (r2 = 0.999) between 

the amount of Cr(VI) produced in 7 days and the initial H20 2 concentration was seen 

for the lower (500, 750, 1000 and 1500 µM) H20 2 levels. Above 1500 µM initial 

H202, the pattern became erratic, with less Cr(VI) produced in seven days when using 

3000 µM H
2
o

2 
initially, and about the same amount ofCr(VI) produced when using 

4500 µM H
2
o

2 
as when using 1500 µM H20 2 • Peroxide disappeared catalytically 

When initial levels were above 1000 µM (Figure 3-3b), and at seven days, measurable 

.Peroxide levels in the 3000 and 4500 µM initial H20 2 solutions have reached 
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:c ~Jr---------------

2 
0 J 6 9 12 15 

3000 days 
100 

2250 .....,_H202 80 

f r., 
~ ., 
0 1500 ~ 

£ -1= a 
750 

----cr(VI) 20 

0 
0 3 6 9 12 15 

days 

· days Cr(Vl) peroxide pH 
YI Y2 YI Y2 YJ Y2 

0.0 0.0 0.0 3000 3000 3.07 3.07 
J.O 1.2 0.6 2770 2820 3.06 3.05 
2.0 0.0 0.0 2770 2800 3.05 3.06 
4.0 0.0 0.0 2830 2800 3.09 3.08 
7.0 0.0 0.0 2700 2680 3.06 3.05 

28.0 0.0 0.0 2350 2260 3.05 3.06 

!igUre 3-2a Effect of initial pH on the reaction of 100 µM Cr ill) and 3000 µM Ho 
queo~ Cr(III) prepared with initial pH 3 by titrating with HN03 in 0.01 M NaNQ

2
• 

2 
• 

~lyticaJ uncertainty for H
2
0 2 detennination is 2%, and experimental error for Cr(VI) is 

0.5 µM. 

93 

, 
I , , , 

J 



- - - ---.---.,._... 

5.0 

4.5 

4.0 

3.5 
0 J 6 9 12 15 

days 

100 
_,._H20 2 

2250 0 

f ~Cr(VI) 
Q 

~ 

~ 6 ISOO 
£ -? 

:e 
7SO 

20 

0 
0 3 6 9 . 12 15 

days 

days Cr(VI) peroxide pH 
YI Y2 YI Y2 YI Y2 

0.0 0.0 0.0 3000 3000 4.73 4.73 
1.0 14.9 14.9 2590 2560 4.44 4.44 

2.0 21.8 21.8 21 JO 2090 4.39 4.39 
4.0 30.J 28.9 1410 1420 4.35 4.36 
7.0 40.0 40.7 826 829 4.18 4.17 

15.0 58.8 59.4 243 246 4.05 4.05 

Figure 3-2b. Effect of initial pH on the ion of 100 µM Cr (III) and 3000 µM H o 
Aqueous, hydro1yz.ed Cr(III) prepared in 0.0 I M_N~ O~ using 2 Off 11 ~r(1II). Initial 

2
• 

~ll 4· 7s. Analytical uncertainty for H202 determmat10n JS 2%, and expenmental error 
or Cr(VI) is ± 0.5 µM. 
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IO 

9 

:c 
C. 8 

7 

6 
0 J 6 9 12 15 

days 

100 

-cr(VI) 

2250 0 

i' 0 
~ .. 
0 1500 -H20z s -~ i:: 

i: -
750 

20 

0 
0 3 6 9 12 15 

days 

days Cr(VI) peroxide pH 
YJ ¥2 YI ¥2 YJ ¥2 

0.0 0.0 0.0 3000 3000 9.67 9.67 
1.0 24.0 26.0 2860 2750 7.00 7.0J 
2.0 49.0 51.0 2650 2460 6.59 6.62 

4.0 69.0 68.2 2490 2680 6.44 6.46 

7.0 75.9 74.0 2060 2080 6.43 6.47 

28.0 93.4 91.7 467 461 6.23 6.21 

Figure 3-2c. Effect of initial pH on the reaction of 100 µM Cr(III) and 3000 µM H o 
Aqueo~ Cr(III) prepared with initial pH 10 by titrating with NaOH in 0.01 M NaNO ~. 
Analyt1cal Wlcertainty for H2O2 determination is 2%, and experimental error for Cr(VI) is 
::t:O.SµM. 
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- ----------

70 

-0-4500 µM H20 2 
60 

-D-3000 µM H20i 

-A- 1500 µM H20 2 

-<>- 500 µM H20i 

20 

10 

O~----,---,---r----.----r---,--------. 
0 1 2 3 4 s 6 7 

days 

Cr(VI) (µM) with different initial H2O2 (µM) levels 

days 500 750 1000 
YI Y2 YI Y2 YI Y2 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1.0 8.2 8.2 10.7 IO.I 12.6 12.6 
2.0 12.6 13.3 16.4 16.4 19.6 19.0 
4.0 20.2 20.2 24.I 23.4 26.0 26.6 
7.0 26.6 27.9 32.3 31.7 36.J 35.5 

14.0 44.2 45.3 47.4 47.4 50.6 52.5 

days 1500 3000 4500 

¥1 Y2 YI ¥2 YI ¥2 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.0 17.6 16.3 14.9 14.9 163 16.3 

2.0 28.9 29.6 21.8 21.8 23.9 233 

4.0 383 383 JO.I 28.9 383 37.0 

7.0 45.7 45.7 40.0 40.7 48,8 48.2 

15.0 58.8 59.4 

28.0 64.2 64.8 69.9 69.2 

~igure 3-3a Oxidation of I 00 µM Cr(III) solutions, using varying concentrations of 

2 
20 2 • Aqueous, hydrolyzed Cr(III) solutions were prepared in 0.01 M NaNO3 with 
OI-r- /1 Cr(ID). Experimental error for Cr(VI) is ± 0.5 µM. 
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----------

0
;0--~1--~2----.:3--:4---.-s---,

6
- -~,--­

s 
days 

days 500 750 1000 
Y1 Y2 YI Y2 Y1 Y2 

0 500 500 750 750 1000 1000 
I 473 476 680 688 868 873 
2 441 443 626 615 773 781 
4 430 433 568 575 690 700 
7 369 353 457 459 526 534 

I 14 I 194 195 236 239 263 247 I 

days 1500 3000 4500 
YI Y2 Y1 Y2 YI Y2 

0 1500 1500 3000 3000 4500 4500 

1 1350 1290 2590 2560 3520 3640 
2 1080 1080 21 IO 2090 2390 2480 
4 807 796 1410 1420 1350 1390 
7 509 526 826 829 732 746 

15 243 246 

28 56 56 52 52 
-

i~gtire 3-3b. Disappearance ofH20 2 when different initial concentrations are added to 
~µ~ aqueous, hydro1yud Cr(III) solutions (2 Off/I Cr(III)) in 0.01 M NaN03• 

Yhcal uncertainty for H20 2 determination is 2%. 
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s.o 

= Q, 4.S 

4.0~-r--..--,-----..--.---.---. 
0 2 3 4 S 6 7 

days 

days a) 

YI Y2 

0 4.72 4.72 

1 4.61 4.64 

2 4.46 4.48 

4 4.34 4.38 

7 4.25 4.26 

14 4.13 4.14 

days d) 

YI Y2 

0 4.69 4.69 

1 4.33 4.38 

2 4.25 4.24 

4 4.19 4.20 

7 4.12 4.13 

15 
28 3.97 3.98 

pH data 

b) 

YI Y2 
4.72 4.72 

4.53 4.53 

4.38 4.39 
4.30 4.30 
4.21 4.20 
4.07 4.09 

e) 
Yl Y2 

4.73 4.73 

4.44 4.44 

4.39 4.39 

4.35 4.36 

4.18 4.17 

4.05 4.05 

2 3 4 5 

days 

c) 
YI Y2 

4.72 4.72 
4.43 4.45 
4.33 4.34 
4.29 4.27 
4.17 4.16 
4.04 4.02 

f) 

YI Y2 
4.69 4.69 
4.48 4.51 
4.40 4.41 
4.31 4.33 
4.17 4.18 

3.97 3.98 

6 

Figure 3-3c. Changes in pH when varying concentrations of H2O2 react with 100 µM 
~ueous, hydrolyzed Cr(III) ( 2 Off/1 Cr(III)) in 0.01 M NaNO3 a) 500 µM H2O2 . J 7so M H20 2 c) 1000 µM H20 2 d) 1500 µM H 20 2 e) 3000 µM H 20 2 f) 4500 µM 

20 2. 
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comparable levels (700-800 µM). Figure 3-3c shows similar behavior in pH changes in 

these solutions. The lower initial H20 2 levels (up to 1500 µM) show pH decreasing as 

the amount ofCr(VI) produced increases. However, at the higher H20 2 levels, pH did 

not increase as much, nor was there an appreciable difference in its behavior between 

)OOO µMand 4500 µM initial H20 2 • 

Cr(Vl)IH202 Interactions 

Figures 3-4 a-c show the effect of adding 3000 µM peroxide to 100 µM Cr(VI) 

at different pH's. When the initial pH was 3, Cr(VI) was completely reduced and Ho 
2 2 

was catalytically destroyed while reduction occurred, after which time it maintained a 

stable level in solution (Figures 3-4a, 3-4b). The pH of the solution increased (Figure 

3-4c ), accounting for a change of 400 ± 20 µM H+, corresponding stoichiometrically to 

the reduction ofHCrO/ to Cr(H20)/+ (e~uation 1.28). 

A different pattern emerged between initial pH's 4 and 5. At pH 4, Cr(VI) 

initially disappeared, reached a minimum value in 2 hours, and began to gradually 

increase over days, and approached its original concentration. The same pattern was 

0 bserved at pH 4.5 and 5, only with less of an initial reduction in Cr(VI). Above pH 5, 

Cr(VI) levels did not change when H
2
0

2 
was applied. The pH of these solutions 

increased as Cr(VI) decreased, and decreased as Cr(VI) recovered (Figure 3--4c). 

Interestingly, the behavior of H
2
o

2 
was also comparable in all three solutions (Figure 3-

4b), disappearing at a similar rate in the pH 5 solution, where very little of the 

intern..~Ai"'t . c. • as it did in the pH 4 solution, where over half the 
A••.ft;;U ... e species was 1onmng, 
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75 

i 
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S' 50 .._ 
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25 

1 

days 

0.0 

0.2 

1.0 

2.0 

3.0 
4.0 

6.0 

7.0 
15.0 
27.0 

----~,~~-- - ~---

2 

pH3.0 

YI Y2 
97.0 100.0 

3.1 3.1 

2.1 1.5 
0.0 0.0 

0.0 0.0 

0.0 0.0 

3 

days 

Cr(VI) (µM) 

pH4.0 

YJ Y2 
100.0 100.0 

55.6 56.2 
61.7 62.9 

71.6 71.6 

75.8 75.8 

79.4 79.4 

87.2 87.2 

4 5 

pH4.5 
YI Y2 
98.5 97.9 

83.J 82.5 
86.9 86.9 
90.2 90.2 

93J 93J 

99.0 97.J 

-lr-pH3.0 

-0-pH4.0 

-9-pH4.5 

-0--pHS.O 

6 7 

pH5.0 
YI Y2 

IO0.0 IO0.0 

93.2 94.5 
97.0 96.4 

99.6 99.6 

100.0 IO0.0 
99.3 100.6 

Fi&ure 3-4a Effect of initial pH on Cr(VI) behavior in the reaction of 100 µM Cr (VI) 
; 3000 µM H

2
0

2
• Cr(VI) solutions prepared in 0.01 M NaN03 and titrated with 

OJ or NaOH to set initial pH values. Experimental error for Cr(VI) is± 0.5 µM. 
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2500 

i 2000 

~ 
0 1500 

:£ 
1000 

500 

_...., __ ___ _ 

-A-pH3.0 

--O-pH4.0 

--9--- pH 4 .5 

-0-pHS.O 

0-::---.---.----r----.---~--.-----. 
0 2 3 4 5 6 7 

days 

H202 (µM) 
-

days pH 3.0 pH4.0 . pH 4.5 pH 5.0 
Yl Y2 Yl Y2 YI Y2 YI Y2 

0.0 3000 3000 3000 3000 3000 3000 3000 3000 
0.2 2560 2520 
1.0 1300 1240 1720 1700 1400 l4l0 1650 1590 
2.0 1220 JJ80 JJ60 1180 1050 1010 1070 1090 
3.0 JJ50 Jl90 796 810 
4.0 724 729 752 731 
6.0 J145 1235 507 496 
7.0 456 456 465 472 

15.0 166 164 192 197 

27.0 1023 1069 86 77 

figure 3-4b. Effect of initial pH on H202 behavior in the reaction of 100 µM Cr(VI) and 
Nooo µM H20 2 • Cr(VI) solutions prepared in 0.~1 M NaN03 and titr~t~ ~h HNO3 or 

aOH to set initial pH values. Analytical uncertamty for H 20 2 detenrunat1on is 2%. 
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5.5 

H5.0 

pH4.5 

= pH4.0 
C. 

4.0 

J.5 
pH3.0 

J.O 
0 2 3 4 5 6 7 

days 

pH 

days pH3.0 pH4.0 pH4.5 pH5.0 I 

YJ ¥2 YI ¥2 ¥1 ¥2 YJ ¥2 
0.0 3.02 3.02 4.06 4.06 4.47 4.47 4.90 4.90 
0.2 4.58 4.57 
1.0 3.24 3.24 4.68 4.69 5.05 5.14 5.31 5.34 
2.0 3.24 3.26 4.58 4.58 4.89 4.94 5.25 5.27 
3.0 3.27 3.27 4.84 4.87 

4.0 4.43 4.49 5.14 5.16 
6.0 3.25 3.24 4.74 4.78 

7.0 4.35 4.34 5.10 5.08 
15.0 4.27 4.28 5.04 4.99 
27.0 3.24 3.24 4.55 4.59 

-

Fi~ 3-4c. pH changes in the reaction of 100 µM Cr(VI) and 3000 µM H2O2 • Cr(VI) 
SOiutions prepared in 0.0 J M NaN03 and titrated with HN03 or NaOH to set initial pH 
Values. Analytical uncertainty for H2Q2 determination is 2%, and experimental error for 
Cr(VI) is± 0.5 µM. 
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Cr(VI) disappeared after one day. The quantity of intermediate species being formed 

does not appear to affect the catalytic dismutation of peroxide. 

Different initial levels of peroxide applied to 100 µM Cr(VI) at pH 4 produced 

the same pattern of initially disappearing, and then recovering Cr(VI) over days, with 

higher initial H20 2 levels resulting in a greater initial decrease in Cr(VI) (Figure 3-Sa). 

Long tenn pH changes (Figure 3-Sb) inversely reflected Cr(VI) changes, rising as 

Cr(VI) decreased and falling as Cr(VI) recovered. Peroxide exhibited complicated, 

oscillatory behavior over the first minutes of these experiments (Figure 3-6a). Initial 

H202 oscillations dampened as Cr(VI) concentrations reached their minimum values, 

and pH reached maximum values, after about 2 hours (Figure 3-6b). 

Effects of Adding Methanol or Fe(II) 

Adding 9.0 mM methanol to a Cr(III)/H20 2 system (100 µM 2:1 OH·:Cr{III) 

and 3000 µM H
2
Q

2
) did not affect the initial rate ofCr(III) oxidation, but did inhibit 

Cr(III) oxidation over time (Figure 3-7a). The extent and rate of H20 2 destruction 

over days was not altered by the addition of methanol. When added to the 

Cr(VI)fH
2
0

2 
system (100 µM Cr(VI), pH 4, 3000 µM H20 2 ) (Figure 3-7b), 9.0 mM 

methanol prevented the recovery ofCr(VI) after its initial disappearance. Control 

experiments using 9_0 mM methanol with either H20 2 or HCrO/ showed no effect on 

lI202 or HCrO/ concentrations (data shown on Figure 3-7b). Replacing 9.o mM 

methanol with 3_0 mM methanol produced the same results as using the higher 

coilCentration of methanol (data shown on ~igureS 3-7 a-b). 
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6 

days 

6 9 

ctays 

--<>- 750 µM H2O2 

_,.... I 500 µM H2O2 

--o-- 3000 µM H20 2 

-v-- 4500 µM H2O2 

9 12 

12 

15 

15 

Figure 3-Sa Effect of initial H
2
O

2 
concentration on its reaction with 100 µM Cr(VI). 

Cr(VI) solutions prepared at pH 4 in 0.01 M NaNOJ• 
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5.0 

4.5 

= C. 

-:<>- 750 mM H20 2 

4.0 -A- 1500 mM H20 2 

-0- 3000 mM H20 2 

J/1- 4500 mM H20 2 

3.5 
0 1 2 3 4 5 6 7 

days 

Figure 3-Sb. pH changes in the reaction of different initial H,O, concentrations with 
I 00 µM Cr(VI). Cr(Vl) ,olutions prepared at pH 4 in 0.01 M NaNO,. 
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!~~le 3- 1. Data for Figures 3-Sa and 3-Sb. The reaction of 100 µM Cr(VI) with varying 
lnthal concentrations of H

2
0

2
• Analytical uncertainty for H20 2 determination is 2%, and 

experimental error for Cr(Vl) is ± 0.5 µM. All concentrations are given as µM. 

a) 

days Cr(VI) peroxide pH 

YI Y2 YI Y2 YI Y2 

0.0 100.0 100.0 750 750 3.97 3.97 

0.2 95.l 95.4 
4.02 4.02 

1.0 89.4 90.0 533 520 4.13 4.14 

2.0 90.0 88.8 422 416 4.09 4.07 

4.0 88.I 88.8 355 347 4.18 4.15 

7.0 91.9 91.3 ]68 182 4.14 4.14 

14.0 92.4 93 .6 67 77 4.14 4.15 

b) 

days Cr(Vl) peroxide pH 

YI Y2 YI Y2 YI Y2 

0.0 100.0 100.0 1500 ]500 3.97 3.97 

0.2 83.0 82.7 
4.14 4.15 

1.0 78.0 78.0 947 893 4.32 4.29 

2.0 80.5 80.5 683 694 4.26 4.25 

4.0 83.I 82.4 511 518 4.29 4.28 

7.0 85.6 85.0 314 319 4.21 4.23 

14.0 91.l 90.5 120 123 4.19 4.16 

c) 

days Cr(VI) 
peroxide pH 

YI Y2 YI Y2 Yl Y2 

0.0 100.0 100.0 3000 3000 4.06 4.06 

0.1 
2560 2520 

4.58 4.59 

0.2 55.6 56.2 

1.0 61.7 62.9 1720 1700 4.68 4.69 

71.6 71.6 1160 1180 4.58 4.58 

2.0 
75.8 ' 75.8 724 729 4.43 4.49 

4,0 
79.4 79.4 456 456 4.35 4.34 

7.0 
87.2 166 164 4.27 4.28 

15.0 87.2 

d) 

days Cr(Vl) 
peroxide 

pH 

Y2 YI Y2 

YI Y2 YI 

97.9 4500 4500 4.03 4.03 

0.0 97.2 

0.1 42.9 4.92 4.90 

0.2 49.2 49.0 4.78 4.80 
59.8 1960 1950 

1.0 59.8 4.66 
68.6 1300 1260 4.65 

2.0 68.6 959 4.53 4.53 

3.0 75.0 74.4 953 
528 4.44 4.41 

6.0 80.0 80.0 539 4.24 
93.3 63 55 4.23 

27.0 91.4 
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--------~ 

4500,t,_..-----'~ 

4000 

0 £ 3500 

~ 
:t 

3000 

2500 

_,._ H202 control 
treated 
as sample 

2000.------r----..------..-- - --.-----
50 75 100 125 

0 25 
minutes 

~~~ 3-6a. Behavior of 4500 µM and 3000 µM ll,O, when added to I 00 µM Cr(VI) at 
nutiaI pH 4.0 in 0.0 I M NaNO,. Expernnental uncertainty fur ll,O, is ± 40 µM. 
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Figure 3--lib. Changes in Cr(VI) and pH after addition of difrerelll eoncentrations of 

H20 2 in 0.01 M NaNO3• 
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Table 3-2a. Data for Figures 3-6a and 3-6b. The reaction of l 00 µM Cr(VI) with 4500 
µM H20

2 
in 0.0IM NaN0

3
• Control data is for peroxide alone. All concentrations 

(µM). Analytical uncertainty for H
2
O

2 
detennination is 2%, and experimental error for 

Cr(VI) is ± 0.5 µM. 

minutes Cr VI pH 

0.0 ]00.0 4.00 

0.5 89.3 4.06 

2.0 81.7 4.07 

2.8 79.8 

3.5 4.09 

4.0 4.12 

4.6 74.7 

5.5 4.15 

7.0 4.19 

8.0 69.0 

9.5 4.24 

10.0 65.8 

12.5 4.29 

13.5 62.0 

20.5 4.40 

22.0 54.3 

26.5 4.55 

29.0 51.1 

30.8 4.54 

35.0 4.59 

minutes Peroxide Control 

0.0 4500 4509 

1.5 4290 

3.8 4280 

7.0 4160 

9.8 4210 

12.0 4120 

]4.4 4310 

16.8 4400 

19.4 4280 

22.0 4090 

24.0 . 4000 4570 

27.0 4080 

32.0 4220 

35.0 4360 

39.4 3980 4490 

45.0 4070 

47.8 3930 

50.5 4060 

55.5 4020 

59.5 3980 4520 

62.5 4090 

36.0 49.2 

37.0 4.60 

40.0 48.6 

41.5 4.64 

44.5 4.65 

65.8 4120 

71.5 4000 

75.0 4070 

81.0 3880 

84.0 3920 4480 

45.3 47.3 87.0 3830 

48.0 46.0 

51.0 
4.71 

60.0 44.l 4.75 

68.0 42.9 4.80 

80.0 42.9 4.85 

94.0 42.2 4.87 

120.0 42.9 4.91 

111.0 43.5 4.88 

135.0 42.9 4.91 

154.0 42.9 4.95 

177.0 42.9 4.91 

195.0 43.5 4.90 

256.0 45.4 4.92 

330.0 49.2 4.93 

92.5 3880 

99.0 3840 4520 

101.5 3850 

103.8 3850 

123.0 3830 
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Table 3-2b. Data for Figures 3-6a and 3-6b. The reaction of 100 µM Cr(VI) with 3000 
µM H

2
0

2 
in 0.0 IM NaN0

3
• Analytical uncertainty for H20 2 determination is 2%, and 

experimental error for Cr(VI) is± 0.5 µM. All concentrations (µM) . 

Minutes Cr VI pH 

0.0 100.0 4.00 

1.5 91.2 4.oo · 

2.8 90.0 4.01 

4.1 88.7 

4.5 4.02 

6.0 86.l 4.03 

8.0 84.9 

8.5 4.05 

10.5 83.6 

1 I.0 4.07 

13.0 4.08 

14.0 80.4 

20.6 76.0 

21.0 4.15 

minutes Peroxide 

0.0 3000 
1.8 2920 
3.4 3020 
5.5 2850 
7.5 2890 
9.0 3070 

I 0.5 2970 
l 1.8 2910 
16.4 2810 
20.5 2970 
22.2 3080 
27.5 2900 
33.5 2790 
38.5 2790 

26.8 74.0 48.0 2720 

27.0 4.18 

30.0 72.l 4.20 
50.5 2800 
53.0 2740 

47.0 66.4 

49.0 4.26 
55.5 2790 
72.0 2640 

50.0 65.8 

65.0 4.32 
74.0 2720 

91.0 2630 
66.0 63.9 

85.0 4.36 

88.0 59.4 4.37 

103.0 59.4 4.39 

121.0 59.4 4.42 

122.0 58.8 4.42 

150.0 57.5 4.45 

203.0 53.8 4.52 

290.0 56.2 4.58 

93.0 2680 

120.0 2570 

122.0 2570 

157.0 2490 

160.0 2560 

182.0 2520 

185.0 2560 

llO 
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Table 3-2c. Data for Figure 3-6b. The reaction of I 00 µM Cr(VI) with 1500 µM H20 
in 0.0IM NaNO

3
• Cr(VI) concentrations given in µM (± 0.5). 

2 

Minutes Cr VI pH 

0.0 100.0 4.00 

0.8 96.9 4.00 

2.0 96.3 4.00 

3.5 95.7 

8.0 95.7 4.00 

9.0 4.01 

10.0 96.3 4.01 

17.5 95.1 4.01 

37.5 91.9 4.05 

46.0 90.6 4.05 

47.0 90.0 

76.0 88.l 4.06 

78.0 86.8 4.06 

97.0 87.4 4.07 

99.0 87.4 4.08 

138.0 85.5 4.12 

190.0 83.6 4.13 

260.0 83.6 4.14 
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100 

--.a-- YAth 9 0 mM meth · anol 

75 

= 
0 

..:!. 
s 

0 -,:: 

1000 

500 

O~--~----.----r-----.._L 
0 1 2 3 4 

days 

µMCr(VI) 

Day Cr (HI )/perox Cr(III)/pero/meth L Cr(lll)/pero/meth H 
YI Y2 YI Y2 YI Y2 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1.0 19.2 18.6 15.4 14.8 14.8 14.8 
2.0 26.7 26.7 18.5 19.1 19.1 19.1 

I 4.3 1 42.8 43.5 I 21.4 22.0 j 21.4 21.4 j 

I Day Cr (III)/perox Cr (IIl/pero/meth L Cr (IIJ/pero/meth H 

YI Y2 YI Y2 YI Y2 
0.0 3000 3000 3000 3000 3000 3000 
1.0 2620 2600 2380 2420 2480 2426 
2.0 1870 1910 1920 1940 1910 

4.3 961 1000 1090 1060 1030 1044 

pH 

Day 1 Cr (III)/perox 
1 Cr (IJI/pero/meth L Cr (lllpero~meth H ' 

YJ ¥2 YI ¥2 YI Y2 

0.0 4.46 4.46 4.46 4.46 4.46 4.46 

1.0 4.33 4.32 437 4.37 439 439 

2.0 4.27 4.28 4.27 4.27 431 430 

4.3 4.09 4.09 4.05 4.07 I 4.09 4.09 

~igur~ 3-7a Reaction of l 00 µM aged, hydrolyzed (~: 1 OH"/Cr) Cr(Ill) and 3000 µM 

9 
202 m 0.01 M NaNO . Data shown for reactions wrth 2 levels of methanol: meth H = 

d.O ~ methanoi meth L = 3.0 mM methanol Analyti~ uncertainty for H20 2 

etermination is 2%, and experimental error for Cr(VI) 18 ± 0.5 µM. 
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-
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~ 2000 
;:j_ 
N 

0 1500 
N = 

1000 

500 

.ll:H~Jl+ueYNIVU OF MD COUFA~ D.&t:u, 

-4'- ·with 9.0 mM methanol 

.... .... .... .... ·-~---7 .. --..... H20z ---..... 

100 

75 

25 ---.. __ ---
O~-----.-----,-----r----,_J.ii 

0 

Cr(VT)/peroxide 

2 

days 

µMCr(VI) 

Cr(VJ)/perox/meth L 

3 4 

Cr(VI)/perox/meth H Cr (Vl)/meth H -
YI Y2 Yl Y2 YI 

o.o 
Y2 Yl Y2-

100.0 100.0 l00.0 100.0 100.0 
LO 

100.0 100.0 100--:0 
69.3 68.7 59.8 60.4 60.4 

2.0 
60.4 100.4 100.4 

75.4 75.4 59.6 60.2 61.5 61.5 
4.3 

99.4 100.0 ..__ 83.2 83.2 55.9 55.9 56.5 56.5 100.8 l01.4 -
Day Cr (VI)/perox Cr(VI)/perox/meth L Cr(Vl)/peroxlmeth H 

Yl Y2 Yl Y2 Yl Y2 
0.0 3000 3000 3000 3000 3000 3000 
1.0 1570 1570 1510 1490 1550 1540 
2.0 1040 1040 917 925 945 960 
4.3 623 563 333 341 346 357 

Day Perox control Perox/meth H 
Yl Y2 YI Y2 

0.0 3000 3000 3000 3000 

1.0 2970 3000 2930 2960 

2.0 2930 3060 2980 3000 

4.3 3050 2990 2920 3040 

pH 
~ Day Cr (Vl)IH202 I Cr (VI)/H202/meth _L Cr (V0/H202 metb H Cr (Vl)/meth H 

YI Y2 YI Y2 YI Y2 YI Y2 
0.0 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 
LO 4.52 4.55 4.42 4.42 4.46 4.47 4.07 4.07 
2.0 4.40 4.40 4.26 4.24 4.27 4.28 4.07 4.07 

- 4.3 4.29 4.28 4.09 4.11 4.06 4.06 4.01 4.01 
-

Figure 3-7b. Reaction of J 00 µM Cr(VI) and 3000 µM H2O2 in 0.01 M NaNO3• Data 
shoWn for reactions with 2 levels of methanol: meth H = 9.0 mM methanoi meth L ~ 3.0 
~ methanol. Data also shown for controls with peroxide alone, 9.0 mM methanol 
Witb Cr(VI) and 9.0 mM methanol with H202 • Analytical uncertainty for H2O2 
determination is 2%, and experimental error for Cr(VI) is± 0.5 µM. 
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The addition of small (1 µM) amounts ofFe(II) to the same Cr(IIl)fH2o2 and 

Cr(VI)IH202 systems resulted in significantly enhanced Cr(III) oxidation, and Jess 

Cr(VI) reduction/complex fonnation coupled with quicker Cr(VI) recovery (Figures 3_ 

8 a-b ). Not surprisingly, H2O2 dismutation rates increase in both systems. 

DISCUSSION 

Cr(III)IH202 Interactions 

The oxidation of aged solutions of Cr(III) shown across a range of OH"/Cr 

ratios (Figure 3-1) can be attributed to the addition ofH2O2. Evidence that eliminates 

0 2 as a potential oxidant in the system is provided by experiments that showed sparging 

Cr(Ill) (2: I OH·/cr ratio) reactant solutions for 30 min with N2 before adding H2O2 

had no significant effect on oxidation rates (see Appendix Figure A-5). Sparging 

Cr(III) solutions with 0 2 showed a similarly slight effect when compared to the same 

experiments done without sparging (Figure 3-2b). 

One problem inherent in studying the Cr(III)/H2O2 system is in characterizing 

the initial reactant solutions ofCr(III). Ligand displacement reactions of 

hexacoordinate Cr(III) complexes are slow, with half times in the range of several 

hours (Cotton and Wilkinson, l988). In aqueous systems, the resulting kinetic 

inertness of oxygen in the first Cr(III) coordination shell gives rise to two Cr(III) 

chenus· t · fast d 1 e The fast chemistry involves protonation, nes, a one an a s ow on . 

deprot • bo d" m· response to the system pH. whereas the slow 
onat10n and hydrogen n mg 

chemi~ ... , . . f covalent OH bridges between Cr(III) atoms, giving 
---"J mvolves the fonnat1on o 
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11• .... '.!!'V• OF MD COLI f:AS: DA Dt,, 

100 
·--<>-- with 1 µM Fe (II) 

80 
i 2000 
::t -- 0 .... 

0 
$ 

1000 

20 

0 
0 2 4 6 8 

days 

Cr(VI) (µM), H2O2 (µM) and pH for samples without Fe(II) 

days Cr(VI) peroxide pH 
Yl Y2 YJ Y2 YI Y2 

0.0 0.0 0.0 3000 3000 4.73 4.73 
1.0 14.9 14.9 2594 2560 4.44 4.44 
2.0 21.8 21.8 2109 2091 4.39 4.39 
4.0 30.1 28.9 1411 1416 4.35 4.36 
7.0 40.0 40.7 826 829 4.18 4.17 

15.0 58.8 59.4 243 246 4.05 4.05 

Cr(Vl) (µM), H2O2 (µM) and pH for samples with 1 µM Fe(II) 

days CrVI peroxide . pH 

YJ Y2 YI ¥2 Yl Y2 

0.0 0.0 0.0 3000 3000 4.57 4.57 

1.0 27.5 28.1 1997 2102 4.22 4.23 

2.0 34.7 35.3 1462 1405 4.21 4.19 

5.0 46.9 46.9 793 739 4.14 4.1 3 

Figure 3-8a Reaction of 1 oo µM aged, hydrolyzed (2: 1 Off/Cr) Cr(III) and 3000 µM 
8 202 in 0.01 M NaNO with and without the addition of 1.0 µM FeSO4, Analytical 
uncertainty for H202 d:termination is 2%, and experimental error for Cr(VI) is ± 0.5 µM. 
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100 
3000 .. 

I •• --0 \ ·•... _..()-______________________ _ 

i ·o------- ........._ 80 

i 2000 

\.\, /Cr(VI) 

--o-- with 1 µM Fe (II) 0 
:::1.. -0 = 

\ 
', 0 

1000 
\ 
b. \ 

···• •.• - H202 
20 

···o------­------·------o 
O;-----r-----.--~---.----.L 

4 6 8 
2 0 

days 

Cr(VI) (µM), H
2
O

2 
(µM) and pH for samples without Fe(II) 

days 
I CrVI 

peroxide pH 

YI Y2 YI Y2 YI Y2 

0.0 100.0 100.0 3000 3000 4.06 4.06 

1.0 61.7 62.9 1715 1702 4.68 4.69 

2.0 71.6 71.6 1157 1180 4.58 4.58 

4.0 75.8 75.8 724 729 4.43 4.49 

7.0 79.4 79.4 456 456 4.35 4.34 

15.0 87.2 872 166 164 4.27 4.28 

Cr(VI) (µM), H
2
0, (µM) and pH for samples with I µM Fe(Il) 

days CrVI 
. ~xide 

pH 

YI Y2 YI Y2 YI Y2 

0.0 100.0 100.0 3000 3000 4.06 4.06 

1.0 86.7 85.4 753 817 4.24 4.24 

2.0 89.5 91.4 436 363 4.18 4.18 

5.0 96.5 94.0 45 112 4.11 4.13 

n ., 
~ --i: 

~ -

Figure 3-Sb. Reaction of JOO µM Cr(VI) and 3000 µM H,0 2 in 0.01 M NaNO, with ~ without the addition of I µM FeSO,. ,\nlllytical uncertain!Y fur H,O, determination 

18 2%, and experimental error for cr(VI) is± 0.5 µM. 
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rise to oligomers and polymers. Coordinative inertness of ligands surrounding Cr(III) 

allow a variety of oligomers to persist for weeks to months in solution (Stunzi and 

Marty, 1983). The "fast" and "slow" Cr(III) chemistries are interdependent: lability of 

Cr(H20)/+ has been shown to increase upon deprotonation. Xu et al. (1985) measured 

Water exchange rates for Cr0H(H20)5 
2+ that were 75 times faster than those for 

Cr(H20)/+ (kex = 2.4 x 10-6 s·1 at 298.15 K). Rate increases of 50-200 fold in the 

dimeru.ation of Cr(H2O)/+ were observed for each additional deprotonation step 

CRotzinger et al., 1986). Deprotonation ( or increasing Off/Cr ratios in solution 

species) therefore corresponds to increased rates of condensation or oligomer 

formation. 

Cr(III) oligomers from dimer to hexamer begin to form within minutes in 

aqueous solutions (Stunzi and Marty, 1983). The particular mixture of oligomers 

Present in a Cr(III) solution will depend on temperature, time, pH, Cr(III) 

concentrations, concentrations of added Off, extent of stirring, and whether solutions 

Were formed from the deprotonation ofCr(H2O)/+ or the protonation ofCr(OH)4• 

(Spiccia and Marty, 1986; Spiccia et al., 1987; Spiccia et al., 1988). Stunzi and Marty 

developed a technique using acidification and ion exchange separation ofCr(III) 

solutions (as well as amorphous Cr(IIl) solids) to identify the fully protonated forms of 

Cr(III) oligomers: the blue"purple monomer cr3+( aq), the greenish"blue dimer 

Cr(OH)
2
Cr4+(aq), the green trimer Cr/OH)/+(aq), and the olive tetramer 

Cr (OH) 6+(aq) I h H o molecules complete the presumed octahedral, six" 
4 6 • neac case, 2 

coordinate first coordination sphere of each Cr center. Stirring, time, local OH" 
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concentrations and Cr(III) concentrations all increase the extent of higher oligomer 

formation (Spiccia and Marty, 1986). The tendency of oligomers to coagulate 

mcreases with increasing pH, and they flocculate as OH"/Cr approaches 3:1, forming an 

amorphous solid. Above pH 13, a deep green solution forms, preswnably an 

extensively polymerized "Cr(OH)4 - ", considering the increased Jability of its highly 

deprotonated form (Spiccia et al., 1988). 

Characterizing Cr(III) solutions involves distinguishing between "fresh" and 

"aged" systems, where fast or slow Cr(III) chemistry respectively prevails. In fresh 

solutions of aqueous Cr(III) the monomer cr3+( aq) successively deprotonates as 

OH-/Cr ratios increase to form monomers CrOH2+, Cr(OH)2 +, and Cr(OH)/. An 

' 'active" Cr(OH)ls) precipitates in fresh systems, and, unlike the amorphous 

Cr(OH)ls), it does not contain bridging hydroxide ligands. Its units are linked through 

hydrogen bonds between Off and H20 ligands of adjacent Cr(III) centers, and it 

Produces only the monomer cr3+( aq) upon acidification (Spiccia and Marty, 1986). Its 

solubility is significantly higher than that of amorphous Cr(OH)ls). Values of Jog K 

determined for its dissolution: 

(3.1 

are 8.0 for the "active" precipitate (von Meyenburg et al., 1973) vs. 5. 78 for the 

amorphous solid (Rai et al., 1987). The active precipitate will revert in time and at 

ambient temperatures to a more amorphous phase (Spiccia and Marty, 1986), 

F. 
3 9 

h . t 'on diagrams constructed from equilibrium data 1gure - s ows spec.la 1 

representing: a) a "fresh" monomeric system (acid dissociation constants taken from 
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Q 0.8 --"-' 0.6 ... u 
t$ 0.4 
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.- 10-s 
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a) 

Cr3+ 

3 4 

4 5 

CrOH2+ 

5 

pH 

6 

pH 

6. 

Cr(OH)2 + 

7 

7 8 

Figure 3-9. Speciation diagrams for Cr(ITI) in aqueous systems a) representing a "fresh" 
:r Inonomer ~stem. At ~Cr(ITI) = 10-6 M, ~!111:1tion with respect to active Cr(OH)J(s) 

not reached m this pH range (based on equilibnu.m data for soluble Cr(III) species 
!om Stunzi and Marty (1983) and solubility data fo; active Cr(O~J(s) fro~ von 
}; eyenburg et al., 1973) b) representing an "aged' system or oligomer IIUXture. At 

Cr(UI) = 10-4 M saturation with respect to amorphous polymeric Cr(OH)J O is reached 
at PH 4.8 (based on equilibrium data from Rai et al., 1987) • 
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Rt · 0 zmger et al., 1986, and based on Stunzi and Marty (1983) data); and b) an "aged" 

system containing a mixture of aqueous Cr(III) oligomers in equilibrium with 

amorphous Cr(III) solids. The "aged" system is based on data provided by Rai et al. 

(l 987) that has become the basis for much of the Cr thermodynamic data reported in 

the literature ( e.g. Ball and Nordstrom, l 998). The equilibrium model of Rai and co­

workers identified CrOH2+, Cr(OH)/, and Cr(OH)4• as the Cr(III) species which 

account for Cr(III) solubilities across the pH range from 4-14. Their data indicated that 

the only significant Cr(III) species found in solution between pH 3-6 was CrOH2+, 

based on a 2: l slope that resulted from plotting log [Cr(III)J vs. pH in that pH range. 

They therefore concluded that multimers ( e.g. Cr(OH)2Cr4+, CrlOH)/+) were not 

Present in the aqueous phase. Spiccia (I 988) predicted that experimental conditions 

used by Rai would produce oligorners, and applied his separation technique for 

0 ligomers on Cr(III) systems as prepared in Rai et al. ( l 987). He found the aqueous 

Phase to consist ahnost completely (>98%) of rnultinuclear species, and made the point 

that Rai's conclusions were based on the charge, not the nuclearity of the Cr(III) 

species being measured. 

Since Spiccia's technique for determining oligorners used an acidification step 

before separation, all the oligorners became protonated. They might have been present 

in a dep t · d /:'. C (OH) 2+ in Rai's solutions. A structure for ro onate 10ITl1 as rn 3n-2 

Cr (OH) 2+ h h lin onfiguration depicted in Figure 3-IO could account for 
n Jn-2 SUC as t e ear C 

the 2+ har ailin" • Rai"' system, as well as charges assigned to the multinuclear 
c ge prev: g m s 

COmnn els 4+ C (OH) ,-+- Cr (OH)6 6+) by Spiccia and co-workers, 
-o/Vun ( e.g. Cri(OH)2 , r3 4 , 4 
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-
OH" 

Figure 3-10. Proposed pre-equilibrium step to the oxidation of Cr(l11) by H2O2 : 

a) in a ''fresh" system: Cr(OH)/ + OH- .. Cr(OH)/ 
b) in an "aged system": Crn(OH)3n_/+ + OH- .. Crn(OH)30_, + 

Each octahedron represents the inner coordination sphere surrounding a single Cr(ill) 
atom Matrix points not occupied by an OH ligand are occupied by H2O. 
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Where n b ·d · on n gmg OH groups would be protonated under the acidic conditions in 

Whi h c they are separated. The 2+ charge on a poJynuclear Cr.(OH)3n_/+ could be 

expected to be distributed on opposite ends of the molecule, as indicated in Figure 

3- JO. 

The aged Cr(III) solutions used in trus study, prepared while stirring with 

dropwise addition of dilute NaOH, and equilibrated for at least a week, undoubtably 

contained a mixture of oligomers, and are best described using the speciation data for 

an" aged" system (Figure 3-9). The pH of solutions with Off/Cr ratios up to 2. 75 

remained below pH 5.2. Assuming a 2+ charge for the solution species, the low pH at 

these OH-/Cr ratios also supports the presence of oligomers, because solution pH 

Would have been much higher if the Cr0H2+ monomer were the predominant species. 

Some deprotonation appears to be necessary for the oxidation of Cr(III) by 

fI202, as none occurred at pH 3 (Figure 3-2a) where the cr3+(aq) monomer is the 

Prevalent species. The rate of oxidation by I 00 µM H2O2 (Figure 3-1) reached a 

lllaximum at the 2: 1 Off/Cr ratio, above that ratio Crn(OH)Jn ° (aq) oligomers possibly 

began to form and flocculate up to the 3: I Off/Cr ratio, impeding oxidation by limiting 

access to deprotonated OH groups as they l,ecame buried in floe. At OH-/Cr ratios 

over 3, further deprotonation may have caused increasing rates ofCr(III) oxidation by 

fI20 2 · Oxidation of octahedral Cr(III) to tetrahedral Cr(VI) requires a change in 

coordination number :from 6 to 4, a change that may be facilitated by the increased 

~bili · ty that accompanies deprotonat1on. 

Pettine and Millero (1990) determined the rate constant for the oxidation of 
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Cr(III) by H20 2 to be: log k = 8.13-2.17 rr for the rate law: 

-d[Cr(ITI)]/dt = k [Cr(III)][H20 2 ][Off] (3.2 

Where the rate is in M/min and Tis in °C. They used dilute (1.9 µM) Cr(III) solutions 

buffered to 7.4-8.5. In this pH range they found a linear relationship between k·213 and 

aging time of Cr(III) reactant solutions. Their rate constant was determined by 

extrapolating the line back to zero time, thus correcting for aging effects that slowed 

the oxidation reaction. We can therefore conclude theirs approximates a "fresh" 

system as described in Figure 3-9. Using the speciation diagram for the ''fresh" system 

and the solubility constant for the "active" Cr(OH)ls) (equation 3.1), it is predicted 

that saturation would not be reached in the fresh system at pH 7.5 at Cr concentrations 

Used in Pettine and Millero 's experiments. It follows that the predominant species in 

their system is the monomer Cr(OH)2 +, and their rate law becomes: 

(3.3 

The case may then be made that Cr(OH)3 ° is the active species in Pettine and Millero's 

experiments. · Their rate law can be interpreted as involving a pre-equilibrium step: 

Cr(OH)2 + (aq) +OH"~ Cr(OH)3 ° (aq) (3.4 

Where [Cr(OH)
2 
+][OH·] = [Cr(OH)

3 
°]/K. K is calculated from equilibrium constants 

from Rotzinger et al. ( 1986) and Rai et al., (1987) to be 10
8
·
2
, and substitution into 

Pettine and Millero 's rate law produces: 

(3.5 

Where klK = 10o.39 within reason for a bimolecular mechanism. 
' 

I 
! __ ,,, that a similar mechanism applies to the oxidation 

t may be further hypothesu.cu 
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of Cr(lIT) by H2O2 in the aged systems used in the present study. Figure 3-2b shows 

the oxidation of 100 µM Cr(III) (at 2:1 Off/Cr) by 3000 µM H20 2
• If average 

concentrations from day Oto day 1 of the oxidation are applied to Pettine and MiHero 's 

rate law ( equation 3 .2), a rate is calculated (1.03 x 1 o-s M/min) that corresponds 

exactly to the measured initial rate of oxidation. As we are taking Crn(OH)
30

_/+ to be 

the predominant species in our 2: 1 Off/Cr system, one interpretation of the 

correspondence of our ~easured rate to Pettine and Millero's rate law is that oligomers 

in our system become activated toward oxidation by deprotonation by an OH" at one 

eod of the molecule, behaving near an active site like CrOH2 +. A diagrammatic 

comparison of the deprotonation of aged and fresh species is made in Figure 3-10. I 

P<>stuiate that once a terminal Cr(III) center is deprotonated, it becomes more labile 

and subject to oxidatio.n by H
2
0

2
• Pettine and Millero 's rate Jaw for our aged system 

then becomes: 

-d[Cr(III)]/dt = k (1/n) [CrnCOH)3n-2 
2+]fH202 ][OH"] (3.6 

-Measured and calculated rates diverge somewhat due to the factor 1/n where 1 <n<6, 

and to corrections to thennodynamic data from different sources obtained at various 

ionic strengths, but still fall within an order of magnitude of one another. 

In this k d 
• 'd t' measured pH values decreased across the range wor , unng oXI a 100, 

of OH·/cr ratios (Figure 3-1 ), consistent with the oxidation of Cr(III) by H202 : 

3H2O2 + 2CrOH2+ .. 2HCr0/ + m+ 

3H2O2 
+ Cri(OH)

2 
4+ .. 2HCr04- + 6W 
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3H2O2 + Crz(OH)/+ .,. 2HCrO/ + 4H+ + 2H2O 

3H2O2 + 2Cr(OH)2 + .,. 2HCr04- + 4H+ + 2H2O 

3H2O2 + 2Cr(OH)4- .,. 2Cr0/" + 2H+ + 6H2O 

(3.10 

(3. I 1 

(3.12 

Production ofH+ relative to production ofCr(VI) at 17 days exceeds 

stoichiom t · · ' O • • e nc ratios. For example at OH",Cr = , 25 tunes as much H+ IS produced as 

Cr(VI), compared to the 4:1 ratio expected from equation (3.7), at OH"/Cr == 2, 11 

times as much H+ is produced as Cr(VI), compared to the 2: 1 ratios expected from 

equations (3.10) or (3.11 ). 

Another process in this system that could generate extra H+ is the further 

P<>l)'Jneriz.ation of Cr(III) species during oxidation. For example, if, as a result of the 

Oxidation of the terminal Cr(III) center in an oligomer, a Crn_i(OH)Jn-4 + species was 

Produced, it could bond with another multimer (e.g.): 

(3.13 

to Produce H+. An additional W for each Cr(VI) produced still does not account for 

total H+ generated during oxidation. It should be kept in mind that other reactions may 

complicate these systems as the oxidation ofCr(III) proceeds, including reduction of 

Cr(VI) by H2o 2 
, or the fonnation of peroxochromium complexes and their subsequent 

lllteraction with H2O2 . 

As OH· levels increase beyond the develop~nt of solid floe at OH·/Cr ratio 

3: l, Cr(Ill) becomes soluble once again as ''Cr(OH)4 ·". 

log K == -18.3 for: 

Cr(OH)ls) + H
2
O .,. Cr(OH)/ (aq) + W 
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This would suggest that the concentration of soluble Cr(III) in the initial 4: 1 solution 

(pH -10) was in the region of 1 o-s M, and that the oxidation of Cr(III) by peroxide 

( equation 3 .12) enhanced chromium solubility under alkaline conditions. 

Figures 3-2 a-c show how H2O2 behavior varied markedly with pH in the 

presence ofCr(III). Peroxide standards prepared at pH 3, 4.5, and 10 in 0.01 M 

NaN 0 3 retained consistent absorbance readings in the course of experiments and 

showed no catalytic disappearance ofH2O2 in the absence of Cr. 

Beck et al. (1991) noted no catalytic destruction ofhigh levels ofH2O2 (3M) 

added to Cr(III) nitrate in "weakly acidic solution," and those results correspond to 

results in Figure 3-2a, at pH 3, where no catalytic destruction of H2O2 is observed. 

This suggests that the presence of Cr(VI) plays a critical role in the catalytic 

destruction ofH2O2 • 

The observation that the rate of chromium oxidation in the OH"/Cr 4: 1 system 

(Figure 3-2c) appears to level off at about one week, while peroxide levels are still 

high, could be an indication that an intennediate species, such as the 

tetraperoxochromium(V) complex could be forming initially, contnbuting to the 

dismutation of the peroxide, and slowly decomposing back to chromate over time. At 

the end of four weeks, about 92% of the Cr was present in the system as Cr(VI). 

Similarly, intermediate species such as the violet diperoxochromium(VI) or the 

chromium(V) peroxo species detected by Zhang and Lay (1998) (see Chapter 1) could 

be forming in the midrange pH solution, once chromium begins to be oxidized. The 

fonnation of persistent peroxochromiwn complexes may also explain the changing 
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pattern in the behavior of [Cr(VI)] and pH when levels of H2O2 above 1500 µMare 

applied to Cr(III) (Figure 3-3a). 

Cr(Vl)/H2O2 Interactions 

As with the Cr(III)/H2O2 system, the Cr(Vl)/H2O2 interaction depended 

strongly on pH, and its behavior changed significantly across a relatively narrow pH 

range. In three systems from pH 4-5 (Figure 3-4 a-c), application ofH2O2 to Cr(VI) 

initially caused Cr(VI) to disappear, reach a minimum level within hours, then reappear 

over days. Cr(VI) is either being reduced and reoxidized, or forming a 

peroxochromium(VI) complex that reverts to HCr04• as H2O2 levels decline. 

At minimum Cr(VI) levels, the ratio of H+ used to Cr(VI) consumed is 1.5-1.6 

for all three solutions, in contrast to the 4: I ratio observed at pH 3 which corresponded 

to complete reduction of chromium to hexaaquochromium{III): 

2HCr04• + 3H20 2 + 8H+.,. 2Cr3+ + 302 + 8H20 (3.15 

A closer fit is the reduction to Cro(OH)3n}+: 

nHCr04• + (3n/2)H20 2 + (n+2)W .,. Crn(OH)3n-2 i+ + (n+2)H2O + (3n/2)O2 (3.16 

Formation of polymers as Cr(VI) is reduced consumes W per atom of Cr in the ratio 

(n+2)/n which has a maximum value of3 for a ·monomer and a minimum value at of 1 

for a large polymer. Measured pH changes correspond to n z 4 in this scheme. Cr(III) 

oligomers could be subsequently reoxidized to Cr(VI), as in equation (3.10). The pe­

pH diagram in Chapter I (Figure 1-2) further illustrates how, as H2O2 diminishes and 

pH increases to arowid pH 5 during reduction of Cr(VI) to Cr(III), Cr(VI) will become 
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stable with respect to H2O2 , while Cr(III) could continue to be oxidized by H2O2 even 

at low H2O2 concentrations. 

Using pH changes to consider the formation ofperoxochromium complexes, we 

observe that the violet peroxochromium complex that has been shown to form in this 

pH range (Witt and Hayes, 1982; Dickman and Pope, 1994), does not require protons 

to form: 

(3.16 

Subsequent reduction to the Cr(V) species postulated by Zhang and Lay (1998) would 

also not require protons: 

(3.17 

However, if this complex lost_one of its peroxo ligands to form the 

monoperoxochromium(V) species Zhang and Lay suggested would form at low 

H 20/Cr levels, it would account for two protons: 

[CrvO{02) 2OH2l + H2O + 2W-= [CrvO(O2)OH2r + H2O2 (3.18 

If about half of the hydroperoxyl radical formed in (3.17) were deprotonated: 

(3.19 

(pI<a = 4.8) (Wardman and Candeias, 1996) the 1.5 ratio of Ir used to Cr(VI) . 

consumed could fit the sequence (3.16)-(3.19). The slow reoxidation ofa monoperoxo 

chromium(V) species could account for the reappearance ofHCrO/, and the eventual 

lowering of pH back to starting levels: 

[CrvO(02)OH2r + H2O2 -= HCr04• +OH·+ H2O + 2H+ (3.20 

completing a Haber Weiss type of cycle between Cr(VI) and Cr(V). 
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Attempts to determine initial rate constants for the disappearance of Cr(VI) in 

solutions with different initial [H20 2 ] (Figure 3-5 a-b) were thwarted by the 

complicated behavior ofH20 2 , which oscillated as it decreased over the first hours of 

the reaction (Figure 3-6a). The observed H20 2 oscillation, unless it was the unlikely 

result of the oxidation ofH20, also provides evidence for the formation of a 

peroxochrornium species that releases H20 2 , as in equation (3.18). 

After the initial two days, solutions at initial 3000 and 4500 µM H20 2 showed 

congruent behavior, and data points taken between day three and day seven for these 

two solutions, when H20 2 decomposition rates have slowed, give consistent values for 

a postulated equilibrium constant (Figure 3-11 ): 

K = [Cr*] [Cr(VI)]"' fH202 r1 [H+]"I = 12.3 ± 0.3 X I 06 M"2 (3.21 

This would describe an equilibrium condition between HCr04• and Cr*, a chromium 

monoperoxo complex requiring one proton to form. The data points do not give 

consistent values for an equilibrium constant : 

(3.22 

where Cr• would describe a diperoxo Cr(VI) complex (Perez-Benito and Arias, 1997). 

Unlike the systems at given initial Cr(VJ) and H20 2 , where pH was varied, the 

proton requirement during the initial consumption of Cr(VI) in the experiments which 

vary initial [H20 2 ] is not consistent, ranging from a 1.4 to 2.4 ratio of H+ used to 

Cr(VI) consumed, indicating a change in reaction mechanism as absolute levels of 

peroxide change. 
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Figure 3-11. K vs. sampling time for the reaction of 100 µM Cr(VI) with different 
concentrations of H2O2 • K calculated as K = [Cr*] [Cr(VI)]"1 [H2O2 ]"

1 [H·T 1
, where 

Cr*= 100 µM - [Cr(VI)], and represents a chromium monoperoxo complex. Data from 
Table 3-1. 
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Effects of Adding Methanol or Fe(II) 

The inhibition of Cr(III) oxidation over time where methanol is added to a 

Cr(III) system (Figure 3-7a) suggests that methanol is donating electrons to species 

which form as a result of Cr(III) oxidation and which additionally contribute to the 

further oxidation ofCr(III) in the system. The inhibition of Cr(VI) recovery observed 

by adding methanol to the Cr(VI) system likewise suggests that methanol is interacting 

with intermediate species that would otherwise either reox.idize to or dissociate as 

HCr04-. Interestingly, a similar decrease in Cr(VI) concentration (22-26 µM) is 

produced by the addition of methanol in both the Cr(III) and Cr(VI) systems. Direct 

interaction of Cr(VI) and methanol (e.g. the formation of a methanol-Cr(VI) ester) is 

precluded, however, by unchanging [Cr(VI)] in the presence of methanol and the 

absence ofH2O2 (Figure 3-7b). Further, an ester formation with an intermediate 

diperoxo complex (e.g. CrVIQ(O2) 2Off) would be expected to produce different 

equilibrium concentrations ofHCr04- with 9.0 mM methanol and with 3.0 mM 

methanol, which is not the case. 

Conversely, addition of a relatively small amount ofFe(II) (I µM) enhanced 

Cr(III) oxidation, increased rates of H20 2 dismutation, and inhibited the initial 

disappearance ofCr(VI) (Figures 3-8a and 3-8b). Hydroxyl radicals, which would be 

produced via a Fe(II)/H2O2 Fenton interaction, have been previously shown to oxidize 

Cr(III) (Buxton et al, 1997) and most likely account for the enhanced levels of Cr(VI) 

in both systems. 
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SUMMARY 

Despite the complexity of the chromium/peroxide system, a number of 

observations may be made about its characteristic behavior under environmentally 

relevant conditions. Peroxide will oxidize soluble, hydrolyzed Cr(III) at pH 4.5 and 

above and is capable of enhancing the oxidative dissolution of Crn(OH)3n° under 

alkaline conditions. There is evidence that peroxochromium compounds form and 

persist in the presence of Cr(VI) under mid range pH conditions and at mM H2O2 

levels. The evidence includes [H2O2 ] oscillations in the presence of Cr(VI) at mid­

range pH, and erratic [Cr(VI)] and pH behavior at H2O2 levels over 1500 µM. These 

H 2O2 levels are much higher than peroxide levels that would naturally occur, but much 

lower than proposed remediation levels (see Chapter 4). Changes in pH in aqueous 

Cr(VI)/H2O2 systems point toward a chromium(V) monoperoxo species as a likely 

candidate for a persistent, slowly decomposing peroxochromium intermediate species. 

However, these same pH changes also support an interpretation of Cr(VI) reduction to 

a CrnCOH)3n./+ oligomer, and its subsequent reoxidation as conditions become 

thermodynamically favorable at diminished H2O2 concentrations. Hexavalent chromium 

can be expected to behave as a catalyst toward H2O2 in soils, and enhance their 

oxidative capacity while helping to dissipate high levels of applied H2O2 • 
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Chapter 4 

Chromium-Peroxide Interactions and Implications for the Use of Hydrogen Peroxide to 

Remediate Biorefractory Organic Waste 

133 



In 1998, EPA undertook field scale demonstrations of several innovative 

technologies to clean up biorefractory organic contamination in groundwater, sediment 

and soil (U.S. EPA, 1998). One of these was in situ chemical oxidation, and included 

the subsurface application of high concentrations of hydrogen peroxide combined with 

an iron catalyst (Fenton's reagent) to produce oxidation of an extensive variety of 

organic wastes via hydroxyl radicals. Given the prevalence of chromium as a soil 

contaminant in industrial waste sites, and the possibility of its presence in sites where 

Fenton remediation is being considered, the impact of high levels ofH20 2 on its 

mobility and toxicity needs to be assessed. The current study of Cr/H20 2 interactions 

undertaken with soils and aqueous systems lends some insight into the possible 

ramifications of using H20 2 in the presence of chromium. 

In the current study, experiments were done using single applications ofH20 2 

made to soils or aqueous systems in concentrations that varied from I 00 µM to I 00 

mM. These levels of H20 2 are low compared to those being tested for Fenton 

remediation. and could correspond to lingering effects of H20 2 treatment after much of 

it has been dissipated in the soil, or to H20 2 levels commonly considered for supplying 

dissolved oxygen to enhance bioremediation (Pardieck et al., 1992). Although the 

level of H20 2 application will vary at a site depending on contaminant levels, subsurface 

characteristics and pre-application laboratory testing, H20 2 application levels as high as 

50% (17 M) have been reported by EPA. Many of the Fenton treatment preparations 

have been patented (e.g. Geo-Cleanse®, consisting ofH20 2 and ferrous sulfate; 

ISOTECSM, consisting of H20 2 and a proprietary iron complex added as a catalyst; and 
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Clean-OX®, consisting ofH20 2 , and an iron catalyst in acid), so that exact knowledge 

of the nature of the treatment is unavailable. Higher H20 2 application levels sustained 

over days or weeks may magnify effects on chromium that have been observed in the 

current work. At the outset, however, a consideration of the possible impact ofH20 2 

on Cr in soils should be accompanied by a consideration of the possibly significant 

effects that Cr could have on H20 2 applied in the field. 

Chromiwn catalyzes H20 2 decay. Figure 4-1 shows that at 1 M application 

levels, H20 2 will both oxidize Cr(III) and reduce Cr(VI) across the entire pH range. In 

particular wherever there is ambient Cr(VI) in a waste site, or the possibility of Cr(VI) 

resulting from the H20 2 oxidation of Cr(III), Cr will affect the longevity of H20 2 in the 

subsurface, and the distance that it can be pumped from injection wells. Because the 

action of Cr(VI) on H20 2 is catalytic, small amounts ofCr(VI) can destroy large 

amounts of H20 2 • 

When H20 2 is applied as Fenton's reagent, the purpose ofFe(II) is to similarly 

work as a catalyst, providing the powerful oxidizing capacity of OH radicals, and 

producing innocuous H20 2 decomposition products (H20 and 0 2). Since Cr(VI) has 

been shown to oxidize Fe(II) (Eary and Rai, 1988; James, 1994; Buerge and Hug, 

1998, Seaman et al., 1999), it is possible that Cr(VI) might interfere with the Fenton 

remediation chemistry by destroying Fe(II) and becoming the dominant pathway for 

H 20 2 decomposition. The Fe00H/Fe2
+ reduction line shown in Figure 4-1 shows that 

below pH 3, I 04 M Fe(II) will not act as a reductant toward Cr(VI). The Fe reduction 

line will rise as Fe(II) concentrations decrease, incrt~~ing the pH at which it would not 
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Figure 4-1. Stability diagram for aged aqueous Cr(III) and Cr(VI) species. Solid lines 
depicting H2O2 /H2O and O2/H2O2 redox couples predict H2O2 could behave as an 
oxidant toward Cr(III) as well as a reductant toward Cr(VI) at all pHs. The dashed 
line represents the FeOOH(s)/Fe2

+ couple, and predicts Fe2
+ will not reduce Cr(VI) 

below pH 3, at these concentrations. From Cr data compiled by Ball and Nordstrom, 
1998; H2O2 and Fe data from Woods and Garrells, 1987. Activity ofH2O2 1.0 M, 
activities of other aqueous species= 10-4 M, activities of Cr(OHMs), FeOOH(s) and 
H20(l) = 1. Po2 = 0.21 atm 
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reduce Cr(VI). Applied in catalytic amounts, and in acidic treatment solutions (as 

generally indicated in some of the patent descriptions) Fe(II) could be stable with 

respect to Cr(VI) during the treatment process. Experiments in this work done at pH 

4-5 showed increases in Cr(VI) levels in the presence ofµM Fe(II) and mM H2O2 , 

demonstrat ing that Fe(II) in those circumstances was not oxidized by Cr(VI) and, in 

fact, enhanced Cr(III) oxidation. 

Due to its catalytic effect on H2O2 , Cr(VI) would probably also enhance H2O2 

oxidation of organic co-contaminants. Experiments with methanol show that Cr(VI) 

levels in the Cr/H2O2 system are depressed in the presence of methano~ under 

conditions in which Cr(VI) and methanol do not react alone. In this case, methanol, 

rather than Cr(III) ( or another Cr(V, IV) intermediate), could be acting as a reductant 

in the catalytic cycle, as in a peroxidase mechanism. 

Possible effects ofH2O2 on Cr, depending on reaction conditions, include 

oxidation of Cr(III) to Cr(VI), reduction ofCr(VI) to Cr(III), and the formation of 

peroxochromium complexes that may be more hazardous than Cr(VI) alone (Aiyar et 

al., 1991; Shi et al., 1999). Ahhough the reduction ofCr(VI) by H2O2 appears to 

proceed more rapidly than its oxidation at the mid range pH (4-5) found in some Cr­

contaminated sites (e.g. plating waste sites), as H2O2 diminishes below mM levels, 

Cr(VI) becomes thermodynamically stable with respect to H2O2 , first at high pH and 

then at lower pH. An initial quenching ofCr(VI) concentrations by applications of 

H20 2 above pH 4 could result in a reappearance of Cr(VI), either due to its reduction 

and reoxidation, or to the decomposition of peroxochromiwn complexes that form at 
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high H2O2 Ievels (over 1-2 mM) and revert to soluble Cr(VI) as H2O2 concentrations 

drop. 

The response of different Cr-elevated soils to peroxide was shown to vary 

widely, depending on the Cr deposition process, pH, and the reducing or oxidizing 

environment of the site. The nature of Cr(III) at a site will affect its ability to be 

oxidized by H2O2 • For example, peroxide was shown to oxidize Cr(III) to Cr(VI) in 

the surface horizon of a plating waste site that contained high levels (6%) of total Cr, 

but did not oxidize Cr(III) in a serpentine soil with naturally elevated Cr(III). 

Chromiwn at the plating waste site was discharged as Cr(VI), and Cr(III) present in the 

site was reduced relatively recently and was present mainly in the form of amorphous 

Cr (hydr)oxides. In contrast, Cr(III) at the serpentine site, was present in a more 

crystalline form as chromite, or incorporated into a serpentine mineral such as 

antigorite. Chromium(IIl) was also oxidized in the high pH, low organic matter 

environment of an ore processing residue soil, where enhanced Cr(VI) levels from a 

single H2O2 application were sustained for several days. In contrast, Cr(ffi) in a 

tannery waste site soil was not oxidized by applications up to 0.1 M H2O2 , probably due 

to the highly reducing environment at that site caused by high levels of animal organic 

waste and wetland conditions. High levels of organic matter, however, were not 

necessarily an indication that Cr(III) would not be oxidized by peroxide: the plating 

waste site had more soil organic matter than the tannery site, yet Cr(III) was readily 

oxidized in its surface horizon. Soil organic matter was probably the cause of a rapid 

return of Cr(VI) to ambient levels after a single application of H2O2 , ahhough a 
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sustained li . 
app cation of H2O2 would probably counter the reducing effect of organic 

Illatter. 

High levels of H20 2 could have a negative impact on the nature of Cr 

contamination at certain lcinds of waste sites, rendering greater quantities ofit mobile 

in its toxic, hexavalent form. The effect is minimiz,ed if Cr(III) is principally in an 

insoluble fonn. High pH (9-11) or low pH ( 4-5) environments could render Cr(III) 

reac · 
five to H20 2 and initiate the generation of Cr(VI). 

From the point of view of the haz.ard caused by Cr(VI), H202 remediation 

should · · · C not be used near Cr electroplating waste sites or srtes contauung r ore 

Processing residues. Sites containing high levels of newly reduced Cr(III) or with soil 

cond·r ially · k s 1 bl 1 tons that support ambient soluble Cr(III) would be espec at ns · 0 u e 

Cr(VJ) should be carefully monitored in any other site containing Cr to which high 

levels fH . 0 
202 are being continuously applied. 

139 

-



Appendix 

140 



Table A-1. XRD data from COPR soil. Peak ID R•po~ 

[ssCOPR.RAW] COPR soil from melanl• 

SCAN: 10.0/70,0/0.02/1,2(sec), Cu(40kV,30mA), l(max):::937, 07/22/9
9 18

:
21 

PEAK: 
17

•Pts/Parabolic Filter, Threshold==3.0, Cutoff=0.1%, eG==3/1.0, Peak-Top==Summit 

NOTE: Intensity= Counts, 2T(0)==0.0(•), Wavelength to eompute d-Spacing::: 1.54056A(Cu/K-alpha1 ) 

# 2-Theta d(A) Intensity 1% Phase ID d(A) 1% h k I 2-Theta Delta 
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Table A-2. XRD data from Connecticut plating waste soil. 

[ssCONN(0-14).RAW] Connecticut aoil, 0-14 cm I Peak ID Report 

SCAN: 10.0/70.0/0.02/1.2(sec), Cu(40kV,30mA), l(max)=967, 07/22/99 19:30 

PEAK: 13-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/1.0, Peak-Top=Summit 

NOTE: Intensity= Counts, 2T(0)=0.0("), Wavelength to Computed-Spacing = 1.54056A(Cu/K-alpha1) 

# 2-Theta d(A) Intensity 1% Phase ID d(A) 1% h k I 2-Theta Delta 
1 10.453 8.4557 54 5. 7 
2 12.295 1.1921 75 8.0 ·ch1orite ia 7.1659 100.0 0 6 2 12.342 0.045 
3 12.550 7.0475 -··· 94 10.0· ... 

.......... .. ____ _ 
4 --18.167 4.8792 - . 43 4.6 .. ··-

5 18.295 4.8452- 70 7.4 -- . . - .. - - .. ·-·· . -- . ------1 
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17 30.891 2.892j •··so 5.3 · --- ·· -

18 31.043 2.8785 ------46 4.9 Ciilorite la . - 2.8664 10.1 
119 34.893 2.5692 .. ··· 49 5.2 Chlorite la 2.5901 11.9 
'20 . 35.087 2:5555 .. 5·7 6.0 Chlorite la . - 2.5572 1.9 
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Table A-3. XRD data from Serpentine soil. 
[ssSoldler's Dellght.RAW] Soldiers Delight 53.75 cm I Peak ID Report 
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Figure A-1. Oxidation of Cr(III) in Connecticut plating waste soil (14-40 cm) after 
single applications of different concentrations of H2O2 • Soil amended with 100 µM 
Cr(III) prepared with 2: l OR/Cr ratio. 
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Figure A-2. Oxidation of Cr(III) in Connecticut plating waste soil (14-40 cm) after a 
single application of 3.00 mM H20 2• Soil amended with 100 µM Cr(III) prepared with 
different Off/Cr ratios. 
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Figure A-3. Oxidation of Cr(III) in two soils after a single application of3.00 mM 
H2O2• Soils amended with 100 µM Cr(III) prepared with 2: 1 Off /Cr ratio. 
Applications ofH2O2 were made with and without 1.0 µM FeSO4• 
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Figure A-4. Oxidation of Cr(III) in Serpentine soil (53-75 cm) after a single 
application of 3.00 mM H20 2• Soil amended with 100 µM Cr(lll) prepared with 
different oH-/Cr ratios. 
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Figure A-5. Interaction of 100 µM Cr(III) (prepared with 2:1 Off/Cr ratio) and 3.00 
mM H2O2 after a) sparging 30 min with 0 2 and b) sparging 30 min with N2• 
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Figure A-6. Interaction of 100 µM Cr(VI) and 3.00 mM H20 2 at pH 4.0 after 
a) sparging 30 with 0 2 and b) sparging 30 min with N2• 
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