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Unmanned system performance depends heavily on both how the system is planned to be 

operated and the design of the unmanned system, both of which can be heavily impacted 

by uncertainty. This dissertation presents methods for simultaneously optimizing both of 

these aspects of an unmanned system when subject to uncertainty. This simultaneous 

optimization under uncertainty of unmanned system design and planning is demonstrated 

in the context of optimizing the design and flight path of an unmanned aerial vehicle (UAV) 



 

 

subject to an unknown set of wind conditions. This dissertation explores optimizing the 

path of the UAV down to the level of determining flight trajectories accounting for the 

UAVs dynamics (motion planning) while simultaneously optimizing design. Uncertainty 

is considered from the robust (no probability distribution known) standpoint, with the 

capability to account for a general set of uncertain parameters that affects the UAVs 

performance.  

New methods are investigated for solving motion planning problems for UAVs, 

which are applied to the problem of mitigating the risk posed by UAVs flying over 

inhabited areas. A new approach to solving robust optimization problems is developed, 

which uses a combination of random sampling and worst case analysis. The new robust 

optimization approach is shown to efficiently solve robust optimization problems, even 

when existing robust optimization methods would fail. A new approach for robust optimal 

motion planning that considers a “black-box” uncertainty model is developed based off the 

new robust optimization approach. The new robust motion planning approach is shown to 

perform better under uncertainty than methods which do not use a “black-box” uncertainty 

model. A new method is developed for solving design and path planning optimization 

problems for unmanned systems with discrete (graph-based) path representations, which is 

then extended to work on motion planning problems. This design and motion planning 

approach is used within the new robust optimization approach to solve a robust design and 

motion planning optimization problem for a UAV. Results are presented comparing these 

methods against a design study using a DOE, which show that the proposed methods can 

be less computationally expensive than existing methods for design and motion planning 

problems.  
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Chapter 1: Introduction 

The design and operation of unmanned systems involves a large number of interacting 

factors that impact performance. This dissertation presents approaches for finding a 

“system optimal” solution in terms of simultaneously optimizing the design of an 

unmanned system and how that unmanned system will be operated, while also considering 

the effects of uncertainty. In particular, this dissertation focuses on the problem of 

simultaneously optimizing the design and motions taken by an unmanned aerial vehicle 

(UAV), in the context of mitigating third party risk posed by the UAV’s flight plan to 

populated areas being flown over. In order to solve this problem, several methods are first 

presented for solving motion planning problems for UAVs with boundary value problems 

(BVPs) that have non-trivial computational costs. A new method for solving robust design 

optimization problems via scenario generation and local robust optimization is then 

presented. The framework of this robust optimization approach is used to develop an 

approach for robust optimal motion planning for UAV systems. Several approaches for 

solving the problem of simultaneous UAV design and path planning optimization on a 

predefined graph are also developed. One of these approaches developed for dealing with 

a predefined graph is then extended to work on UAV design and motion planning 

optimization problems. The resulting UAV design and motion planning optimization 

approach is then used within the robust optimization approach developed in order to 

simultaneously optimize the design and motions taken by a UAV subject to uncertainty. 
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1.1 Research Questions 

This dissertation will endeavor to answer the following research questions: 

RQ1. How can optimal motion planning be done for UAV systems when the 

objective being optimized is not time? (Chapter 2) 

RQ2. How can robust optimization problems be efficiently solved when non-

convex constraints are present or when the optimization problem considered is 

typically not solved using mathematical optimization techniques? (Chapter 3, 

Chapter 4, Chapter 7) 

RQ3. How can current methods for optimal sampling based motion planning for 

unmanned systems be extended to account for robustness with respect to 

uncertainty? (Chapter 4) 

RQ4. How can the design and motion of an unmanned system be optimized 

simultaneously? (Chapter 5, Chapter 6) 

RQ5. How can the performance of an unmanned system be optimized with respect 

to both its design and operation (path planning), while also being able to account 

for uncertainty (robust optimization) and the dynamics of the unmanned system 

(motion planning)? (Chapter 6, Chapter 7) 

1.2 Literature Review 

To understand the relation between the problem’s considered in this dissertation related to 

optimizing the design and path of an unmanned system under uncertainty and existing 

research, a review is given here of topics related to the design and path planning of 

unmanned systems, robust optimization under uncertainty, robust path planning methods 
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and techniques for unmanned system motion planning involving risk related objectives. A 

listing of the related research questions to each of these topics is also given. 

1.2.1 Design and Path Planning (RQ4, RQ5) 

The problem of optimizing the design of a UAV with respect to a path is similar to that of 

designing any aircraft for a specific mission. Typically, aircraft design optimization 

problems contain a large number of subsystems [59] and may require complex 

aerodynamics simulations to model interactions between design variables [4]. This makes 

it infeasible to exhaustively search the design space of aircraft design optimization 

problems without some combination of gradient-based search techniques and decomposing 

the problem into multiple subproblems [59]. Numerous works have investigated instances 

of UAV design optimization by considering vehicle control [97], uncertainty [53], 

component selection [77] and using multidisciplinary design optimization (MDO) to 

optimize the overall UAV system [90]. Many issues important to UAV path planning, such 

as wind or flight altitude [45], can be mitigated through changes to the UAV’s physical 

design, flight parameter design or through use of reconfigurable systems technologies 

[114] such as morphing wings, thus there exist clear benefits to integrating the optimization 

of the UAV’s design with the optimization of the path it will take. 

The integration of design optimization with path optimization is similar to the 

problem of co-design, the problem of integrating vehicle’s design optimization with 

controller design optimization, particularly in co-design problems where optimal control is 

used for trajectory optimization, such as in [20]. Note that design and path optimization 

occur at the same time scale in these types of approaches, since only one specific motion 
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is being optimized. Rastegar et al. [99] considered a decomposition based approach for a 

robotic manipulator system, decomposing the problem into independent design and control 

subproblems managed by a third coordinating subproblem. Nigam and Kroo [87] 

developed a decomposition-based optimization approach that solves mission planning and 

design optimization subproblems for a UAV, which considered interactions between the 

two lower-level problems and used a response surface method to approximate the mission 

planning sub-problem. Ha et al. [49] tackles the problem of optimizing both the design and 

gait of a legged robot by using optimal control to determine what the robot’s motion would 

be for a given design. 

Several works have considered the integration of vehicle design into traditional 

operations research transportation problem formulations. Lee and Ahn [70] optimized the 

layout design of a planetary rover while simultaneously optimizing the rover’s exploration 

routes using a vehicle routing problem. They solved the problem by using a combination 

of exhaustive search over a single parameter parametrizing all design variations with 

integer programming techniques. Mufalli et al. [86] considers the combined problem of 

sensor selection and multi-UAV routing, by formulating the problem as a mixed integer 

programming problem in terms of a discrete set of available sensors and locations to visit. 

Taylor and Weck [120] considered the problem of optimizing the design of both aircraft 

and the air transport system they operate in. They solve the resulting formulation by using 

simulated annealing for the aircraft design with the transport system being treated as a sub-

problem solved via linear programming (LP) at each iteration. 

Several works have considered the integration of design into motion planning for 

unmanned systems. Denarie et al. [33] and Molloy et al. [84] consider a system design and 
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a path planning problem, which explores the feasibility of a fixed set of designs using 

sampling based motion planning techniques in order to find the best design in the set. 

Rudnick-Cohen et al. [108] considered the opposite problem, considering methods for 

using continuous design optimization formulations in conjunction with a discrete path 

planning graph. Baykal and Alterovitz [9] optimized the design and path of a robotic 

manipulator for reachability of predefined goal regions. They used simulated annealing to 

optimize the design of the manipulator by determining the cost of each design iteration by 

solving a motion planning problem with rapidly-exploring random trees (RRT) [68], via 

the RRT* algorithm [63]. Glorieux et al. [44] applied an MDO architecture to optimize the 

design and motions of a group of robots used to handle sheet metal parts. A similar strategy 

to [9] was used, with an inner trajectory optimizer being used to determine the trajectories 

and an outer loop global optimization approach being used to optimize designs for subject 

to those trajectories. All of these approaches can be classified as bilevel optimization [117] 

methods where either a motion planning problem is nested in a design optimization 

problem ([9], [44]) or a design optimization problem is nested within a path or motion 

planning problem. ([33], [84], [108]). 

1.2.2 Risk and Safety Based Motion Planning for UAVs (RQ1, RQ3) 

Operating large unmanned aerial vehicles (UAVs) over inhabited areas poses a risk 

to third parties on the ground. For example, the mass of a MQ-4C Triton is approximately 

14 metric tons, and its wingspan is nearly 40 meters [1]. If it lost power and crashed in an 

uncontrolled dive, it could easily injure or kill persons caught in its path. This risk is critical 

after the vehicle takes off; as it climbs towards its cruising altitude, the vehicle’s operator 
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or onboard crash mitigation systems may not have enough time to respond to a failure. 

Thus, it is important to plan takeoff trajectories that minimize the risk to third parties. 

Most works on safety based motion planning focus on avoiding collisions with 

obstacles due to momentum and accounting for moving obstacles. In order to model the 

feasible region of the configuration space in which a vehicle will not collide with an 

obstacle, [42] and [92] introduced the concept of an inevitable collision state. The problem 

of avoiding collisions with dynamically moving obstacles via replanning was discussed in 

[100], [54] and [10]. When managing third party risk for UAV flight planning, the problem 

being solved differs from these approaches in that safety is the objective of the problem 

instead of a constraint. Thus, optimal motion planning techniques are needed, rather than 

approaches that focus on preventing collisions.   

Several works have also explored different optimal motion planning techniques for 

UAV flight planning. Choudhury [31] developed an approach for planning emergency 

landings for an unmanned helicopter by extending RRT* to also compute alternate routes 

respecting a variety of additional planning objectives. The FMT* algorithm [58] has also 

been applied to the problem of fixed wing UAV motion planning in [110]. RRT* was 

extended in [30] to also take advantage of CHOMP [131], a gradient based trajectory 

optimization technique, in order to increase its rate of convergence, with the resulting 

algorithm being demonstrated in a flight planning problem for an unmanned helicopter. 

Although the author is unaware of any previous works on the problem of UAV third 

party risk management during take-off, prior studies have explored the problem of risk 

management during UAV emergency landings. Risk-based A* searches have been used for 
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two-dimensional representations of the underlying path planning problem in [121] for a 

multicopter and in [34] for UAV systems in general. Primatesta et al. [94] considered a 

two-dimensional (2D) motion planning problem for managing UAS risk posed to third 

parties. A three-dimensional Dubins curve based approach was developed in [35] to be used 

in conjunction with a path following controller to land a fixed wing UAV under loss of 

thrust conditions.  

Although RRT* has been used for UAV flight planning problems, Otte [88] noted 

that RRT* is extremely slow to propagate cost updates when a lower cost region is sampled 

for the first time, unlike methods that update the shortest paths to every node in such 

situations, such as RRT# [7]. 

The concept of using Dubins curves with sampling based motion planning 

techniques is not new, dating back to early works on RRT such as [69]. Dubins curves are 

a set of curves which define the shortest possible paths between two points for a vehicle in 

2D with a minimum turning radius, which makes them convenient for modeling aircraft 

trajectories. There are 6 possible Dubins curves, which are composed of 3 segments (a left 

or right turn, an opposite direction turn or a straight segment and finally another left or 

right turn). Most works that consider motion planning for a fixed wing UAV use a three-

dimensional extension to the Dubins car model as discussed in [29] and [89], which allows 

for time optimal motion primitives.  

1.2.3 Robust Optimization (RQ2, RQ3, RQ5) 

The goal of robust optimization is to find a solution to a problem that is feasible under all 

possible values that any uncertain parameters present in that problem can take and which 
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has the best cost of any solution under the worst possible uncertain parameters for that 

solution. Problem 1, as shown in in Eq. (1), provides a general formulation for a robust 

optimization problem based on the formulation given in [14], where f (x, u) (objective 

function), ( )
l

d x  (deterministic constraints), ( , )
i

g x u  (constraints containing uncertainty) 

and ( )jq u  (constraints defining domain of uncertain parameters U) are all assumed to be 

continuously differentiable with respect to both x (design variables) and u (uncertain 

parameters), which are assumed to be continuous:  

Problem 1: Robust Optimization  

,
min

  (or . .)

( , ),

( ) 0, {1,..., }

( , ) 0, {1,..., },

{ | ( ) 0, 1, , }

x z

l

i

j

z

subject to s t

z f x u u

d x l L

g x u i I u

u q u j J

≥ ∀ ∈

≤ ∀ ∈

≤ ∀ ∈ ∀ ∈

= ≤ ∀ = K

U

U

U

 

(1.1) 

Typical methods for solving robust optimization problems, Eq. (1), represent 

uncertainty using sets of scenarios (sets of possible values for the uncertain parameters) 

[14, 18, 11], randomly sampled scenarios [24] or worst-case analysis [128]. However, 

many of these methods can become impractical for engineering design problems because 

they might have to deal with highly non-convex constraints, scalability limitations due to 

the number of uncertain parameters or require too much computational effort to obtain a 

robust optimal solution.  

 Most existing methods [14] for solving non-convex robust optimization problems 

require finding a set of scenarios { }1, , ,KU u u U= ⊆K U  that can be used in place of U in 



9 

 

Problem 2. The resulting formulation can be referred to as being a scenario-based robust 

optimization problem (SRO), as given in Problem 2 in Eq. (2):  

Problem 2: Scenario-based Robust Optimization (SRO) (1.2) 

,
min

. .

( , ),

( ) 0, {1,..., }

( , ) 0, {1,..., },

x z

k k

l

i k k

s t

z f x u u U

d x l L

g x u i I u U

z

≥ ∀ ∈

≤ ∀ ∈

≤ ∀ ∈ ∀ ∈

 

 

An optimal solution to Problem 2 is a robust optimal solution (an optimal solution 

to Problem 1) if for each constraint ( , )
i

g x u  containing uncertainty, ( , ) 0
i k

g x u ≤  for all 

scenarios ku U∈  implies that ( , ) 0
i

g x u ≤  for any possible scenario u∈U. 

The most basic approach for constructing the set U  is to assume that U  consists of 

a single “worst-case” scenario 
w

u  and that ( , ) 0
i w

g x u ≤  implies that ( , ) 0
i

g x u ≤ for any 

possible scenario u∈U, commonly referred to as a “worst-case analysis” [37]. Bertsimas 

et al. [16] use a gradient ascent approach for a worst-case analysis while simultaneously 

solving an optimization problem. Bertsimas and Nohadani [15] develop a simulated 

annealing approach which extends the approach of Bertsimas et al. [16] to perform a global 

search for a robust optimal solution. Li et al. ([71], [72]) develop a measure of robustness 

around a nominal scenario and use a genetic algorithm for determining the worst-case 

scenario. Zhou et al. ([128], [129]) develop a sequential quadratic programming robust 

optimization (SQP-RO) algorithm, where the worst-case scenario for each constraint and 

the objective function is found via maximization at each SQP iteration. Cheng and Li [28] 
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extend the approach of Zhou et al. [128] to solve problems for global optimality, by using 

a differential evolution method as an outer optimizer. Similar forms of worst-case analysis 

are used in the context of reliability based design optimization (RBDO, also called 

probabilistic or stochastic optimization) by Du and Chen [38], where the most probable 

point (MPP) is found via an inner optimization problem and used to ensure that constraints 

are satisfied at a predetermined reliability level. Liang et al. [74] develop a single loop 

algorithm for RBDO which avoids using the MPP by converting the RBDO problem into 

a deterministic problem via the first-order Karush-Kuhn-Tucker optimality conditions of 

the inner optimization problem. In practice, methods which rely on a worst-case or 

reliability analysis require assumptions that may not hold for non-convex robust 

optimization, where there can exist multiple “local” worst-case scenarios for a single 

constraint (see Example 1 in Section 3.3.1 of this dissertation) and where no probability 

distribution exists for the uncertain parameters. 

An alternative to approaches that search for worst-cases is to instead construct the 

set U  by using randomly sampled scenarios, an idea first applied by Calafiore and Campi 

[24] to the problem of robust control design. Chamanbaz et al. [27] and Calafiore ([23], 

[25]) developed sequential optimization approaches which alternate between checking the 

feasibility of a candidate solution by sampling further scenarios and finding a new 

candidate solution when scenarios are found under which the candidate solution is 

infeasible. Rudnick-Cohen et al. [104] proposed an approach that generates additional 

scenarios from randomly sampled scenarios through a best and worst-case analysis. 

Rudnick-Cohen et al. [104] also proposed a method for performing scenario reduction, 

which can limit the number of scenarios used in a scenario robust optimization problem. 
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Margellos et al. [79] discuss the tractability and expected number of samples needed for 

this class of methods. Ramponi [98] introduces the property of “essential robustness” to 

refer to the conditions under which such methods will asymptotically converge to a robust 

optimal solution. Because sampling-based approaches converge asymptotically, it is 

difficult for them to maintain a pre-specified constraint tolerance for feasibility under 

uncertainty. Note that randomly sampling scenarios help in an inherently global search 

(every scenario is equally likely to be sampled). Thus the robust optimal solution found by 

these methods can be considered to be feasible under uncertainty in a global sense, without 

needing to make any assumption about worst-case scenarios. Sampling based approaches 

(excluding [104]) make no attempt to minimize the size of U , this can lead to a much larger 

optimization problem than would be considered in worst-case analysis based approaches.  

1.2.4 Robust Path Planning and Motion Planning Under Uncertainty 

(RQ2, RQ3, RQ5) 

A well-studied class of robust optimization problems of interest for unmanned systems path 

planning is that of robust path planning. The goal of a robust path planning problem is to 

determine the shortest path between two locations while subject to uncertainty about travel 

times and whether certain routes can be taken or not. 

Robust path planning has been primarily studied through the robust formulation of 

the shortest path problem [17]. Linear programming (LP) models [17] [19] [55], dynamic 

programming based approaches [12] and mixed integer programming [127] [26] [111] have 

all been used for solving Robust shortest path planning problems, depending on the model 

used for uncertainty. The simplest form of robust shortest path planning problems is to 



12 

 

assume that each edge in the graph being considered has its own worst case scenario that 

it does not share with any other edge in the graph.  Thus, the robust shortest path problem 

simply becomes a conventional shortest path problem with each edge’s cost being the cost 

under the worst case scenario for that edge [26].  However, this ignores any relations 

between the costs of edges, which is overly pessimistic. Chaerani et al. [26] shows that 

under an ellipsoidal uncertainty model for edge costs, the robust shortest path problem 

becomes a mixed integer conic quadratic programming problem (MICQP). Shahabi et al. 

[111] develops a more general MICQP formulation to model a robust shortest path 

planning problem that accounts for a set of uncertain parameters independent of the edges, 

and develops an outer approximation based approach for solving such problems. 

Outside of [26] and [111], there are few works on robust shortest path planning 

problems that account for correlations between edge costs, and none of them account for 

non-linear effects caused by uncertain parameters. However, there are several papers on 

the stochastic (expected value) shortest path planning problem [13] that do aim to model 

more complex correlations between edge costs. Fan et al. [40] and Huang and Gao [57] 

consider models that can account for congestion like effects in traffic network type 

problems, with edge costs constraining other nearby related edge costs depending on their 

values. Ji et al. [60] considers the problem of determining the means and covariance of a 

multivariate normal distribution for use in a simulation based multiobjective genetic 

algorithm approach for solving multiobjective stochastic shortest path planning problem. 

Prakash and Srinivasan [93] develop an algorithm that does not need a predefined 

probability distribution based off sampling and performing network transformations in 
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order to optimize robustness in a stochastic shortest path problem through a mean variance 

tradeoff objective. 

Most works on robot motion planning under uncertainty cannot be classified as 

robust optimization, as they rely on knowing the probability distribution for any uncertain 

parameters that affect the environment or the robot (e.g [5]) and using that distribution to 

optimize a statistic such as expected cost. Alterovitz et al. [5] created a stochastic variation 

on PRM [64] using a Markov decision process model to consider probabilistic transitions 

between configurations in the motion planning graph. Du Toit and Burdick [39] considered 

the problem of dynamically changing uncertain environments via a stochastic dynamic 

programming approach. 

Singh et al. [116] and Majumdar and Tedrake [78] used the concept of funnels to 

solve motion planning problems under uncertainty without needing a probability 

distribution, via methods from robust control. Garimella et al. [43] used sequential 

nonlinear model predictive control to ensure a robot stays within a “tube” of ellipsoids, in 

order to guarantee feasibility of motions under uncertainty. These methods consider robust 

optimal motion planning in terms of ensuring feasibility under uncertainty, but they cannot 

consider uncertainty in the cost of motions like methods developed for robust path planning 

can.  

1.3 Research Gaps 

So far in the literature, no work has considered the system level optimization of an 

unmanned system while incorporating design optimization, path planning and uncertainty 

in the same formulation.  
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Existing works on simultaneously optimizing the design and path of a system are 

subject to several limitations. Methods relying on co-design formulations ([20], [87], [49], 

[99]) are subject to both local optima present in the design optimization problem considered 

and also local optima present in the path planning component of the problem. The 

combined problem can thus contain combinations of these local optima. This can result in 

an extremely large number local optima being present, which worsens the quality of 

solutions found using local search methods. Methods relying on operations research 

formulations ([70], [86], [120]) can encounter scalability issues with computational cost 

when dealing with large graphs, such as those used in path planning or motion planning 

problems. Works which rely on using search based methods (e.g. RRT*) in conjunction 

with global optimization or discrete design searches (e.g. [9], [68]) can avoid these issues. 

While a number of works ([33] [84] [9] [68][44]) have integrated design with 

trajectory or motion planning, only the RRT* variants used in [9] [33] [84] construct 

motion planning graphs to find the optimal motion sequence. All of these methods rely on 

either discrete design domains [33] [84], or global optimization techniques [9], both of 

which are poorly suited to handling robust optimization, which usually requires repeatedly 

solving optimization problems under different sets of uncertain scenarios. Additionally, 

while control based methods such as [44] could theoretically be extended into robust 

control based methods via the scenario based robust control design methods from [24], 

these methods would still suffer from issues with local optima. 

A gap in the current literature on robust path planning is that the current state of the 

art cannot handle non-linear effects caused by uncertainty if there are also correlated edge 

costs. This prevents the consideration of uncertainty from a “black box” standpoint, 
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something that is critical for complex system level design optimization problems, where 

designers cannot understand in advance how uncertainty will affect the problem. 

Additionally, it presents an issue for robust motion planning, where nodes in the path 

planning graph being constructed will become arbitrarily close with sufficient iterations. It 

is unrealistic to assume that the uncertainty affecting such nodes is uncorrelated, which 

prevents existing techniques for robust path planning from being used to enable robust 

motion planning. 

The current literature on motion planning also has yet to consider the concept of 

robustness in the manner considered in the robust path planning literature, with most works 

considering uncertainty either using some form of risk metric or only attempting to 

guarantee the feasibility of motions under uncertainty. This relates to the gap in considering 

“black box” robustness in the robust path planning literature discussed earlier, as sampling 

based motion planning techniques work by building a graph for path planning, which 

largely ensures that correlations will be present between the edges in that graph. Thus, 

robust motion planning requires first solving the currently unsolved problem of “black 

box” robustness for discrete robust path planning. 

There are also a number of minor gaps in current literature on UAV motion 

planning that are important for considering the integration of design and motion planning 

for system level objectives. Previous work on motion planning for fixed-wing UAVs used 

three-dimensional extensions to the Dubins car model, which allows for planning using a 

set of time optimal motion primitives ([29], [89]). However, risk-based motion planning 

requires considering a larger configuration space. Additionally, the approaches in [29] and 

[89] are only optimal for a time objective under very specific assumptions, as they assume 
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that the optimal Dubins curve in two dimensions is still the optimal curve in three 

dimensions, which will be shown to be false in Chapter 4. Methods for using Dubins curves 

for UAV motion planning are typically sampling based methods, with the Dubins curves 

being used as the method for solving the BVPs between different configurations. These 

methods typically construct highly connected graphs, with each node being connected to a 

large of neighbors, resulting in large numbers of edges. This poses an issue for integrating 

robust optimization into motion planning, as all of these edges would have costs affected 

by uncertainty that would need to be repeatedly computed in different scenarios. This 

would result in a significant increase in computational cost over deterministic motion 

planning, unless measures are taken to control the number of edges in the graph and to 

avoid needing to compute the costs of all edges in every scenario considered. 

1.4 Organization 

This dissertation is organized into the following chapters which are summarized in this 

section. Figure 1.1 provides a visual representation as to how each of the chapters in this 

dissertation build off each other. 
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Figure 1.1: Visual depiction of how material from each chapter in this dissertation is used 

in other chapters 

1.4.1 Chapter 2 – Risk-based Motion Planning for UAVs 

The first problem considered in this dissertation is a UAV motion planning problem 

that optimizes a UAV’s motions in order to minimize a risk objective. In the process of 

solving this problem, a method for solving motion planning problems for UAVs is 

developed that reduces the number of boundary value problems (BVPs) that need to be 

solved to converge to the optimal motion sequence. This method also extends current 

motion planning techniques by developing a method for utilizing initial conditions in 

optimal sampling based motion planning and by developing a new method for determining 

the connection radius when connecting states in the configuration space. Results are 

demonstrated in the context of managing third party risk for UAVs via motion planning.  
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1.4.2 Chapter 3 – Feasibility Robust Optimization via Scenario 

Generation and Scenario Reduction 

This chapter presents a new feasibility robust optimization approach involving 

uncertain parameters defined on continuous domains. The proposed approach is based on 

an integration of two techniques: (i) a sampling-based scenario generation scheme and (ii) 

a local robust optimization approach. An analysis of the computational cost of this 

integrated approach is performed to provide worst-case bounds on its computational cost. 

The proposed approach is applied to several non-convex engineering test problems and 

compared against two existing robust optimization approaches. The results show that the 

proposed approach can efficiently find a robust optimal solution across the test problems, 

even when existing methods for non-convex robust optimization are unable to find a robust 

optimal solution. A scalable test problem is solved by the approach, demonstrating that its 

computational cost scales with problem size as predicted by an analysis of the worst-case 

computational cost bounds. 

1.4.3 Chapter 4 – Cost Robust Motion Planning 

The methods developed in Chapter 3 are utilized to develop a method for solving 

of robust path planning problems on motion planning graphs, where uncertainty affects the 

costs of edges. Unlike prior literature on robust path planning, the robust path planning 

problem considered allows for a black-box model of correlations between the uncertain 

edge costs in the graph. Results are presented comparing the improvements in worst case 

performance of the new method relative to existing robust and non-robust motion planning 

methods. 
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1.4.4 Chapter 5 – UAV Design and Path Planning Optimization 

This chapter considers the problem of design and path planning optimization on a 

graph. An admissible cost-to-go heuristic is developed for the problem of UAV design and 

path planning on a fixed graph, which is able to heavily reduce computational effort needed 

for large scale graphs. The proposed cost-to-go heuristic operates by solving the UAV 

design and path planning problem under the assumption that each edge takes the cost 

associated with its best possible design, which may not be the same design for each edge. 

It is shown that the problem of UAV design and path planning on a graph can be solved to 

local optimality using branch and bound methods if this heuristic is used, however these 

methods are shown to be computationally inefficient compared to a new algorithm 

(VDPPA) which is significantly faster and capable of usually finding the same solution 

that branch and bound would. Results are demonstrated in the context of managing third 

party risk for UAVs through design and path planning optimization.  

1.4.5 Chapter 6 – UAV Design and Motion Planning Optimization 

This chapter considers the problem of UAV design and motion planning, using the 

following approach: The cost-to-go heuristic earlier will be computed by solving the 

problem using a sampling based motion planner, leveraging the techniques developed for 

reducing the number of BVPs solved to avoid the computational issues that would occur if 

current motion planning algorithms were used instead. That solution and the graph created 

by the motion planner will then be used by VDPPA (see Chapter 5) in order to solve the 

design and path planning problem in terms of actual motions. Results are demonstrated in 



20 

 

the context of managing third party risk for UAVs, using the same example considered in 

Chapter 2 and Chapter 4. 

1.4.6 Chapter 7 – Robust UAV Design and Motion Planning 

Optimization 

This chapter adds uncertainty to the design and motion planning problem considered 

in Chapter 6, using the same model for uncertainty considered in Chapter 4. Only objective 

robustness is considered, meaning that uncertainty will not affect the feasibility of solutions 

to the problem being considered. Results are demonstrated in the context of managing third 

party risk for UAVs and compared against the results computed in Chapter 6 when not 

accounting for uncertainty. 
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Chapter 2: Risk-based Motion Planning for UAVs 

This chapter has appeared at the 2019 International Conference on Unmanned Aerial 

Systems as [102]. 

This chapter presents a risk-based motion planning approach. Although it is 

motivated by the problem of fixed-wing UAV takeoff planning, it can be applied to other 

risk-based motion planning settings for UAVs (e.g. multi-copter UAVs, or planning 

trajectories for phases other flight than takeoff). This approach extends the risk-based path 

optimization approach introduced by [103], which planned a path over a discrete graph and 

used only one crash probability distribution (CPD), which is needed to compute the risk. 

Because the altitude, orientation, and speed of the UAV affect both the feasibility of a 

UAV’s motions and the location it would hit the ground if it crashed, risk-based motion 

planning should consider these variables. The risk-based motion planning approach 

considers two objectives: the third-party risk and the time to reach the goal. 

This chapter is organized as follows. Section 2.1 formulates a risk-based UAV 

motion planning problem. Section 2.2 presents the proposed approach for solving risk-

based UAV motion planning problems. Section 2.3 details the example problem used to 

test the proposed approach in Section 2.2. Section 2.4 presents the results for the example 

problem. Section 2.5 discusses the results from the example. Section 2.6 summarizes the 

results of this Chapter and presents some concluding remarks. 
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2.1 Problem Statement 

This section formulates a motion planning problem that requires planning a sequence of 

motions (a trajectory) in configuration space that minimizes flight time and the risk posed 

by a UAV flying over inhabited areas. Unlike past work [94], this chapter considers the 3D 

problem that includes the dynamics constraints for a fixed-wing UAV. Including these 

constraints requires planning motions in a five-dimensional (5D) configuration space (3D 

plus yaw and pitch). This expanded configuration space allows for consideration of how 

different UAV flight states affect the risk it poses, which allows the UAV to mitigate risk 

through both flight maneuvers and avoiding populated areas. 

2.1.1 Notation 

Let x , y , and z  be the coordinates of the vehicle’s location. Let ψ  be the vehicle’s yaw 

(heading). Let θ  be the vehicle’s pitch. Let C  be the set of all feasible configurations, 

where a configuration c C∈  consists of ( , , , ,x y z ψ θ ) (the vehicle’s roll was treated as a 

motion dependent variable, see Section 2.2.3). Let sc  be the vehicle’s initial configuration; 

let 
fc  be the desired final configuration. For 1c  and 2c C∈ , let ( )1 2,B c c  be the set of all 

possible solutions to the BVP between configurations 1c  and 2c , where ( )1 2,s B c c∈  is a 

continuous sequence of configurations from 1c  to 2c  that satisfies all of the dynamics 

constraints. 
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Let v  be the vehicle’s speed (which is fixed). Let ( )tf s  be the time needed to move along 

s . Let ( )rf s  be the third-party risk [103] created by moving along s . Let tw  and rw  be 

non-negative weights ( 1t rw w+ = ) on ( )tf s  and ( )rf s  . 

2.1.2 Formulation 

The formulation for the risk based UAV motion planning problem proposed is as follows: 

Given the set C , the initial and final configurations sc  and 
fc , and the weights tw  

and rw , find the trajectory ( ),
s f

s B c c∈  that minimizes the total cost ( ) ( )t t r rw f s w f s+ . 

 By varying the weights tw  and rw , different trajectories can be generated, which 

can be used to construct the best non-dominated set of trajectories that minimize the risk 

posed by the UAV and its flight time. 

2.1.3 Cost Functions 

2.1.3.1 Flight Time 

To calculate the flight time ( )tf s  the UAV needs to travel trajectory s, the length of 

trajectory s is divided by the UAV's speed v. 

2.1.3.2 Third-Party Risk 

The risk ( )rf s  was determined using a UAS third party risk measure [103]. This risk 

measure required a probability distribution, called a crash probability distribution (CPD), 

over the possible locations where the UAS would crash into the ground, which is a function 

of the UAS's height above ground level, speed, and attitude at the time that it loses power 
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and begins gliding to the ground uncontrollably. Appendix A describes the approach for 

estimating the crash probability distribution (CPD). Several examples of these CPDs are 

shown in Figure 2.1. 

Figure 2.1: (a) Example Crash Distribution for a UAV at a high height while pitched. (b) 
Example Crash Distribution for a UAV at a high height in level flight. (c) Example Crash 
Distribution for a UAV at a high height while banking. (d) Example Crash Distribution for 
a UAV at a low height in level flight. 
 

The risk measure of [103] discretizes a trajectory into a set of legs. In this chapter, 

a leg is treated as a curve between two configurations (i.e. one edge in the motion planning 

graph used by RRT#, unlike the straight line paths considered in [103]. Each leg was then 

discretized into a series of points and evaluated in the same manner as in [103]. For each 
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point along a leg, the CPD is discretized into a set of points and the population is evaluated 

at each of the CPD's points. These population values are multiplied by the probability of 

crashing at each of the CPD's points and the sum of these values is combined with an 

estimate of the UAS's failure rate. The resulting quantity is an estimate of the expected 

number of fatalities that would be caused by the trajectory in question. Figure 2.2 visually 

illustrates this process for evaluating 3 points along a leg. 

Figure 2.2: Illustration of risk metric from [103]. The crash distribution is evaluated at the 

red points, which spaced along each leg (yellow lines) of the trajectory. Areas with 

population that UAS could crash in are highlighted blue, areas with population the UAS 

avoids are highlighted red, green denotes uninhabited areas. 

 
The number of points at which the CPD was evaluated at was set based on the 

length of each leg (the distance between the start and end configurations), at a ratio of 50 

points per kilometer and with a minimum number of 2 points (the starting point and ending 
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point of the leg). However, when determining the optimal trajectory between two 

configurations (see Section 2.2.3), a minimum of 10 points were used when assessing 

different possible trajectories. This ensured that the minimum cost trajectory was always 

chosen. However, the cost of that trajectory was still assessed normally (minimum of 2 

points instead of 10), which ensured that the risk for each trajectory considered during 

motion planning was computed to the same accuracy. 

2.2 Solution Approach 

Several modifications were made to the RRT# algorithm described by Arslan and Tsiotras 

[8], in order to make it more efficient at solving the risk-based motion planning problem 

considered. 

2.2.1 Notation 

Let init sx c=  be the start configuration. Let 
goal fx c=  be the goal configuration. Let C=X  

be the configuration space. Let np  and bp  be probabilities used in the sampling routine. 

Let N  be the number of iterations. Let ( ),V E=G  be the graph that the RRT# algorithm 

builds. Let x  be a configuration in X . Let r  be the connection radius. Let 0γ  and minγ  be 

the bounds on the connection radius. 

2.2.2 Algorithm 

Table 2.1 lists the modified RRT# algorithm. For the “Modified Extend” algorithm, Table 

2.2 lists the modified lines and provides references to the lines unchanged from the original 
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“Extend procedure (Algorithm 4 in [8]). Table 2.3 lists the “GET LOCAL RADIUS” 

procedure. Table 2.4 lists the “RANDOM CONFIG” procedure. 

Table: 2.1: Modified RRT# Algorithm 

 

 

Table: 2.2: Modified Extend Algorithm 

 

 

The “RANDOM VALUE BETWEEN(a, b)” procedure randomly selects a value 

from a uniform distribution between a  and b . The “SAMPLE” procedure randomly 

selects a configuration in X . The “RANDOM CONFIG IN BALL(x, r)” procedure 

randomly selects a configuration in X  within r  units of x . Subsection 2.2.3 describes the 
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“SOLVE BVP” procedure. Other procedures not included here are equivalent to those 

described by Arslan and Tsiotras [8]. The algorithm used the third cost based vertex 

inclusion criteria ( #
3RRT ) proposed in [8], by only updating the costs of configurations 

with lower costs than the current cost of the goal configuration. 

In each iteration, the modified RRT# algorithm randomly selects a procedure for 

sampling a new configuration. The probability that it uses “SAMPLE” equals np ; the 

probability that it uses “RANDOM CONFIG IN BALL” equals bp ; and the probability 

that it uses “RANDOM CONFIG” equals 1 n bp p− − . 

2.2.3 Modeling of 3-D Dubins curves for multiple objectives 

The RANDOM CONFIG procedure requires solving a BVP between two configurations 

(“SOLVE BVP”). Because the cost function includes both time and risk, the BVP was 

solved using the following method for generating three-dimensional Dubins curves. 

1. The two-dimensional Dubins curves (LSR, LRL, etc.) are computed for going 

between the ,x y  coordinates and headings of the start and goal configurations. 

2. For each curve (LSR, LRL, etc.), let maxθ  be the maximum allowable pitch angle, let 

minθ  be the minimum pitch angle for climbing in a helix, let the length of the curve 

be LL  and let the change in height required to go between the start and goal 

configurations be h , then the 3-D equivalent of that curve will be: 
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a. If ( )1sin / L maxh L θ− ≤  then the 3-D equivalent curve is just the 2-D curve 

with a constant increase of /LL h  in height along the curve. Thus the pitch 

angle for these curves is ( )1sin / Lh L
− . 

b. If ( )1sin / L maxh L θ− > , then several different equivalent 3-D curves can exist. 

These curves consist of changing either the first or second turn in the 2-D 

curve into a helix and then making the curve increase in height at a constant 

slope of ( )2 /LL rn hπ+ , where r  is the radius of the Dubins curves and n  in 

the number of helix loops. In order to consider different pitch angles for 

motions, the maximum and minimum number of helix loops are determined 

from maxθ  and minθ , and several different numbers of turns between those are 

used to generate additional possible 3-D curves. Thus the pitch angle for 

these curves is ( )( )1sin / 2
L

h L rnπ− + . 

3. The lowest cost curve is chosen as the optimal curve. 

This process is repeated for several different radii, with each radius corresponds to a 

different roll angle needed to achieve a banked turn at that radius. For each curve, five 

different radii and five different numbers of turns were considered in order to determine 

the minimum cost path between two configurations. 

Figure 2.3 show several examples of Dubins curves generated between the same start 

and end point for different objectives through the proposed methodology. Note that the 

time optimal case in Figure 2.3a manages to avoid needing to perform a helix turn when 
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going to a higher height by changing the underlying Dubins curve being used, this is an 

improvement over the approach from [29] as while the LRL motion used in Figure 2.3a  is 

the shortest path between the two points depicted in 2-D, in 3-D at the height considered 

in Figure 2.4 an RSR motion is actually the true time optimal curve. The approach proposed 

in [29] assumes that the optimal 2-D motion is still the optimal motion in 3-D, which is not 

actually the case here. 

(a) (b) (c) 
Figure 2.3: Example 3-D Dubins curves for (a) time optimal, (b) risk optimal and (c) half 

weight on both time and risk objectives. Note that all 3 curves share the same start and end 

points, but have different underlying 2-D Dubins curves ((a): RSL, (b): LRL, (c): LSL). 

 

 
Figure 2.4: Time optimal Dubins curve for 

end point with same x,y locations as from 

Figure 2.3a, but with higher destination 

height. Note that the time optimal 3-D Dubins 

curve has changed from LRL to RSR due to 

the height increase. 
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2.2.4 Determining the Local Connection Radius 

Because the total cost includes the risk metric, solving the BVP requires evaluating the risk 

for a minimum 10 points (see Section 2.1.3.2) on each trajectory considered and the CPDs 

at those points need to be combined with the population density data in order to compute 

the risk metric. Additionally, the risk metric has to be recomputed for the solution to the 

BVP at the specified point density of 50 points for every kilometer of curve length. 

Consequently, significantly more computational time is needed to evaluate the risk metric 

than to compute the time needed to traverse a trajectory. 

A BVP must be solved every time that the modified RRT# algorithm attempts to 

connect an existing configuration to a new configuration, this will be done an excessive 

number of times if the connection radius is too large.  However, the connection radius must 

still be large enough to ensure that any new configuration can be connected. To avoid this 

problem and limit the number of times that it must do this, the modified RRT# algorithm 

dynamically determines the local connection radius using a new procedure: “GET LOCAL 

RADIUS”) (Table 2.3). 
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Table 2.3: Get Local Radius Algorithm 

 

 

“GET LOCAL RADIUS” sets the connection radius based on the new 

configuration's location relative to the existing configurations.  When the new 

configuration is in an unexplored region, the connection radius will be larger, which makes 

it easier to connect it to the search tree.  When the new configuration is close to existing 

configurations, the connection radius will be smaller to limit the number of existing 

configurations that must be considered (and the number of BVPs that must be solved). 

Conceptually, this can be viewed as using the same equation that RRT* and RRT# use to 

determine connection radius, but using the number of neighboring nodes (nodes with edges 

going to a configuration) instead of the total number of nodes in the motion planning graph. 

The number of neighboring nodes of the new configuration is approximated using the 

number of neighbors of the configuration closest to the new configuration. Because number 

of neighbors of a node remains lower than the total number of nodes in the motion planning 

graph, it is practical to choose a value for d lower than that of the dimension of the 
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configuration space. For the risk based motion planning problem in the 5D configuration 

space considered, d = 4 produced better results than using d = 5. 

2.2.5 Sampling Configurations from a Given Path 

Because there are no obstacles to avoid in the risk-based motion planning problem (only 

high-risk areas), a minimal time solution can be found by solving the BVP between xinit 

and xgoal. When wt > 0, adding configurations from this minimal-time solution to the search 

graph G should help the modified RRT# algorithm find better solutions. To do this, it 

occasionally uses the “SAMPLE ON TRAJECTORY” procedure (Table 2.4) to get such a 

configuration. When a configuration is sampled from the current solution, it is used to split 

an edge in G into two edges, which necessitates the removal of the original edge from G. 

“SAMPLE ON TRAJECTORY” always splits the longest part of the current solution, 

which prevents any bias in which configurations on the current solution are sampled. 

Table 2.4: Random Config Algorithm 
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2.2.6 Locally Biased Sampling 

The modified RRT# algorithm also occasionally gets a new configuration by sampling the 

region near the nearest configuration (the one that is closest to the sampled configuration). 

This increases the likelihood that the newly sampled configuration will be able to be 

connected to the search tree. The radius of the ball around the nearest configuration equals 

the connection radius localr  determined by “GET LOCAL RADIUS”. See lines 10-11 in 

Table 2.1. 

2.3 Example Problem 

This section details an example used to evaluate the risk-based motion planning approach. 

This example problem will also be used later in Chapters 4, 6 and 7. 

2.3.1 Problem Instance  

This problem instance included the population data for the state of Maryland from the 2010 

U.S. Census (United States Census Bureau 2010), which is depicted in Figure 2.5. Table 

2.5 lists the start and goal configurations and the bounds on the configuration space. The 

vehicle’s flight speed was fixed at 50 m/s. Eleven combinations of weights were used: 

( ) ( ) ( ) ( ), 0,1 , 0.1,0.9 , , 1,0t rw w = … . The modified RRT# algorithm was run with 3000N =  

iterations for each combination of weights. For selecting a method for randomly sampling 

a configuration (random configuration, local bias and sampling on the current optimal 

trajectory), the selection probabilities 0.45n bp p= = . The initial connection radius 
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0 2000γ = , and the minimum connection radius min 200γ = . A Cessna 182 was used as the 

UAV model because its flight coefficients are publicly available and documented ([101]). 

Table 2.5: The start and goal configurations and the 
bounds on the configuration variables for the 
experimental case 

 x (m) y (m) z (m) ψ (deg.) θ (deg.) 

Start 74,570 65,770 274 0 0 

Goal 56,000 58,000 2,024 0 0 

Min 52,500 52,500 274 - π -15 

Max 80,000 70,000 2,024 π 15 
 

 
Figure 2.5: Plot of subsection of Maryland region in which experimental case is located in. 

Note that the region is upside down (south is up, north is down) relative to a normal map. 

The colorbar denotes the natural logarithm of the population density in the region, 

computed from 2010 US census block data [122]. 

2.3.2 Crash Distributions for a UAV Under Varying Orientations 

To model how a UAV’s configuration affects the CPD, a series of Monte Carlo simulations 

were conducted to construct CPDs for 125 different design configurations from the 

combinations of five heights, five roll angles, and five pitch angles. The range for the height 



36 

 

was 274 meters to 2024 meters. The range for roll was -45 o  to 45 o . The range for pitch 

was -15 o  to 15 o . The roll angle range was set to a reasonable amount of roll for safely 

performing banked turns. The pitch angle range corresponds to the maximum angle of 

attack for a Cessna 182. Each CPD was represented as a grid of 2,500 bins. (The values of 

x , y , and ψ  affect only the position and orientation of the CPD, not the likelihood of its 

bins.) 

Figures 2.1a, 2.1b, 2.1c and 2.1d show some examples of these CPDs. As shown in 

Figure 2.1b, at high altitudes, the vehicle’s pitch has a strong effect on the shape of the 

CPD. 

As shown in Figures 2.1b and 2.1d, the vehicle’s height above ground level affects the 

spread of the CPD. As shown in Figure 2.1c, the vehicle’s roll angle affects the shape of 

the CPD. 

A k-nearest neighbors (KNN) algorithm was then used to determining the CPD for 

any other configuration (and the corresponding derived roll angle). This algorithm found, 

from the set of 125 design configurations, the six nearest design configurations and 

combined the corresponding CPDs by averaging the likelihoods for each bin. Full details 

on the KNN approach used can be found in Appendix A, Section A.4.3. Equal weight was 

given to all input parameters and an inverse distance weighting exponent of 1.5 was used. 

2.4 Results 

Solving the problem with 11 combinations of the weights yielded 11 solutions. Six of these 

were dominated on the risk and time metrics. Figure 2.6 shows the risk and time 
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performance of the five non-dominated solutions. The extreme solutions perform very well 

on one metric and very poorly on the other. The remaining solutions also show a tradeoff 

between risk and time. Figure 9a and 9b shows two dimensional projections of the search 

trees created by the modified RRT# algorithm. Note that the tree in Figure 2.7a covers the 

areas which have low population density, which correspond to lower risk, while the tree 

2.7b simply covers the space of configurations reachable in less time than the goal. These 

differences illustrate the conflict between the risk and time objectives seen in Figure 2.6, 

as these two search trees cover very different regions.  

 

 

Figure 2.6: Pareto frontier of non-dominated solutions to the example 
problem for risk and time objectives, note that risk objective is on a log 
scale 
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(a) (b) 
Figure 2.7: Projection of search tree for all weighting on the (a) risk (b) time objective of 

RRT# into XY plane, the while circles denote the start and goal configurations, brighter 

colors indicate higher risk regions 

 

Figure 2.8 shows the trajectory found which posed the least risk; this trajectory reduces 

risk by flying over uninhabited areas such as bodies of water. It also performs spiraling 

motions to control the size of the UAS’s CPD through changes in height, a more compact 

distribution can easily avoid populated areas when population is low, whereas a spread out 

distribution better distributes the risk posed when flying directly over heavily populated 

areas. A large number of maneuvers are also performed over a lower risk area near the 

starting point, in order to manipulate the height of the UAS. However, many of these height 

change maneuvers require a great deal of time to execute (due to the length they add to the 

flight trajectory), despite the reduction in risk they provide. This occurs because the lowest 

risk solution comes from when (wt, wr) = (0; 1), meaning no weight is being put on 

minimizing flight time.  
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Figure 2.8: Trajectory of the Pareto Optimal solution with the best 

performance on the risk objective, brighter colors indicate higher risk regions. 

Note that the distance scale in this figure is 10,000 meters. 

 

Figure 2.9 shows the trajectory found with (wt, wr)= (0:8; 0:2); this trajectory avoids 

high risk areas, while avoiding the time consuming manuevers performed by the risk 

optimal solution. The trajectory in Figure 11 initially follows a path similar to the time 

optimal solution (which is the initial solution used at (wt, wr) = (0:8; 0:2)), however the 

trajectory performs several maneuvers the uninhabited area near the start in order to avoid 

populated areas. However, unlike the time optimal trajectory, the trajectory in Figure 2.9 

dives down (see Figure 2.10) in order to lower its height (and reduce the size of its CPD) 

when flying near several inhabited areas. The trajectory also loops over itself around this 

point, which shifts the CPD towards the center of the trajectory’s turns, keeping the CPD 
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away from an area of high population. The trajectory then moves out over the Patuxent 

River (which is uninhabited) and climbs to its final altitude at the specified goal 

configuration. These maneuvers allow the trajectory in Figure 2.9 to perform significantly 

better on the risk objective than the time optimal solution, while also using significantly 

less flight time than the risk optimal solution.  

 

 

Figure 2.9: Trajectory of the Pareto Optimal solution with the third best 

performance on the time objective, brighter colors indicate higher risk regions 
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Figure 2.10: 3-Dimensional view of the trajectory from Figure 2.9. 

 

To assess the effect of the proposed alternate connection radius for RRT#, the example 

problem was also solved using the same sampling scheme proposed in Table 2.1 with all 

weight put on the risk objective, but using the normal equation used for the connection 

radius for RRT* and RRT# from [63]. Two different values for the initial connection radius 

0γ  (2000 and 3000) were used to illustrate the issues with the normal equation for 

connection radius. Figure 2.11 shows the search trees computed for these two initial 

connection radii and the optimal trajectory for each of these trees. 
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(a) (b) 
Figure 2.11: Search trees (top) and optimal trajectories (bottom) for normal RRT#

connection radius for (a) 0γ  = 2000 and (b) 0γ  = 3000 

 
When run with 0γ  = 2000, RRT# required a total of 18,634,780 leg evaluations (see 

Section 2.1.3.2) when computing the costs of edges in the motion planning graph. With 0γ  

= 3000, RRT# required 27,750,792 leg evaluations. In comparison, the proposed approach 

requires 45,675,191 million leg evaluations for this particular instance and objective 

weights. Figure 2.11 shows that the solutions found by RRT# without the modified 

connection radius are noticeably worse than those found using the proposed approach. 

While the search trees in Figure 2.11 may appear more dense than the one in Figure 2.7a, 
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this is because the search tree in Figure 2.7a has more configurations pruned from it that 

have higher costs than the goal node. The search trees in Figure 2.11 have gaps where no 

configurations are present, whereas Figure 2.7a’s search tree has a more uniformly spaced 

distribution of configurations. The effect of this can be seen in the optimal trajectories in 

Figure 2.11, which spend less time over the uninhabited Patuxent river than the solution 

depicted in Figure 2.8. Note that the solution and search tree for 0γ  = 2000 is significantly 

worse than the solution and search tree for 0γ  = 3000, demonstrating that the proposed 

variable connection radius allows for using a lower initial connection radius than would 

normally be viable. In order to obtain comparable results to the proposed approach, RRT# 

would need to be run with an even larger initial connection radius than 0γ  = 3000, which 

would require significantly more leg evaluations than the proposed approach. 

2.5 Discussion 

Figure 8 shows that the risk of the solution found with (wt, wr) = (1; 0) can be reduced by 

over two orders of magnitude by increasing wr, but this increases the time needed to get to 

the goal by a factor of over eight. However, compared with the extremely long solution 

that minimized risk, increasing wt yields much shorter solutions with slightly higher risk. 

The trajectories found demonstrated how searching the larger configuration space (instead 

of merely the two dimensional path along the ground) can yield new maneuvers for 

mitigating risk, such as the turns and height changes in Figures 2.8, 2.9 and 10. 

However, the larger configuration space does still lead to some imperfections in the 

trajectories found. An example of this can be seen in the section of Figure 2.9 passing over 
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the Patuxent River, the river is uninhabited, but the trajectory taken through it is not time 

optimal. This is caused by a lack of sampled configurations at appropriate altitudes and 

headings, causing the trajectory use the nearest configuration possible, which typically 

requires a change in either altitude or heading. This issue could be addressed by using a 

larger number of sampled configurations, employing some form of biased sampling, or 

smoothing the final trajectory using a gradient-based trajectory optimizer.  

The search trees in Figures 2.7a and 2.7b, which are appropriately dense near lower 

cost configurations and sparse around higher-cost configurations, show that the variable 

connection radius did not reduce solution quality despite the reduction in computational 

effort it provided. In comparison, the search trees in Figure 2.11 are poorly spaced out, 

demonstrating the pitfalls of using the normal connection radius for RRT# in the problem 

considered. The variable connection radius also reduced the computational cost of RRT# 

and allowed for using a lower initial connection radius to further reduce computational 

cost. Note that using the variable connection radius does not change the computational 

scalability of RRT# (see [88] for analysis ), since a minimum connection radius is still used. 

Sampling configurations from the current optimal solution helped the modified 

RRT# algorithm find high-quality solutions when wt was near 1, such as the trajectory in 

Figure 2.9. However, floating point error was able to cause the trajectory to deviate from 

the time optimal trajectory by small amounts. This occurred when using Dubins curves 

with the minimal turning radius (such as time optimal Dubins curves), as a small shift in a 

point on these curves could make that point unreachable by the same Dubins curve. 

Consequently, even when initialized with the minimal time solution as the initial solution, 
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the modified RRT# was still able to deviate 5-10% from the minimal time solution when 

(wt, wr) = (1; 0). This can be seen in the high densities of configurations present around the 

start and goal configurations in Figure 2.7b. However, previous experiments which did not 

sample on the current optimal trajectory typically found solutions over twice this length, 

so this was still a significant improvement in solution quality relative to the number of 

iterations which RRT# was run for. This issue could have been prevented if “SAMPLE ON 

TRAJECTORY” directly used segments of the original trajectory being split, instead of re-

solving the BVPs for the two split segments.  

2.6 Concluding Remarks 

This chapter presented a risk-based motion planning approach that can be used to minimize 

the third-party risk associated with fixed-wing UASs that takeoff near inhabited areas. The 

new risk-based motion planning approach improves over past risk-based motion planning 

approaches (e.g. [103], [94]), which were limited to planning 2D paths. Additionally, a 

new approach for computing 3D Dubins curves was presented, which was able to minimize 

objectives other than time. Several modifications to the RRT# algorithm were also 

presented, which made it computationally efficient to use for the risk-based motion 

planning problem considered. The resulting approach was shown to be capable of planning 

trajectories which trade-off between the risk they pose to third parties on the ground and 

the time needed to fly them. Unlike previous works on UAS risk management through path 

and motion planning, the proposed approach planned trajectories in 3D, which enabled new 

strategies for mitigating the risk posed by a UAS. 
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The results indicate that the proposed approach can compute feasible motion plans 

and optimize a combination of the time and risk metrics. Risk-based motion planning can 

consider dynamics constraints and factors such the altitude and orientation of the UAS that 

a two-dimensional graphbased path optimization approach (e.g [2]) cannot. The study 

described in this chapter did not, however, consider speed or other state variables that could 

affect the CPD. However, such variables could easily be incorporated in the proposed 

approach, provided that appropriate dynamics constraints could be defined for them. While 

this study did not consider obstacles or no fly zones that a UAS would need to avoid, 

sampling based motion planners such as RRT# are typically effective at accounting for such 

obstacles. The proposed approach could thus be easily extended to account for no fly zones 

and obstacles, however it would likely be difficult to provide it an initial solution in a 

problem where they were present. However, the proposed approach still works when not 

provided an initial solution, though it will require more iterations to find solutions of 

comparable quality to those found by starting with an initial solution. 

Using RRT# with a locally determined connection radius was largely successful, 

but additional work is needed to improve the approach for sampling configurations on the 

current best solution. It may be possible to use local optimization to remove loops from 

low-risk solutions, which would generate new solutions that require less time and have 

slightly more risk, which would generate a larger set of alternatives to the UAS operators 

who are planning takeoff trajectories near or in inhabited areas. 

The results have also shown that it is possible for UAS to mitigate the risk they 

pose to third parties by performing maneuvers during a flight. Developing methods for 
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identifying these maneuvers could provide new tools which UAS operators could use in 

order to mitigate the risk posed by UAS operations in inhabited areas. 

This chapter discussed methods for solving risk-based motion planning problems 

for UAVs without any consideration of uncertainty. The next chapter discusses methods 

for solving robust optimization problems, a type of optimization problem which considers 

uncertainty.  
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Chapter 3: Feasibility Robust Optimization via Scenario 

Generation and Local Refinement 

The work in this chapter is under review at the ASME Journal of Mechanical Design as 

[107]. Parts of this chapter originally appeared at the 2018 ASME International Design 

Engineering Technical Conferences as [104]. 

This chapter presents a new feasibility robust optimization approach that can 

efficiently solve non-convex robust optimization problems via local search in the design 

variables space, while maintaining a global search over the uncertain parameters space. 

This method has two key components. The first component is a new scenario generation 

method that can both generate scenarios via sampling and refine them with a local 

optimization method in order to quickly reach a feasibility robust optimal solution. The 

second component is a new scenario based local robust optimization method, which refines 

the final solution to ensure that it satisfies the desired constraint tolerance. Computational 

experiments demonstrate that using the proposed techniques together requires less overall 

computational effort in some cases than existing robust optimization approaches and that 

the proposed new method can solve robust optimization problems that cannot be solved 

with locally robust optimal techniques. While the techniques developed in this chapter are 

for robust design optimization and not immediately applicable to UAVs, later chapters will 

make use of these methods to develop approaches for accounting for how uncertainty 

affects optimal UAV performance. 

 The new feasibility robust optimization approach presented is based off the 

framework for sampling based robust optimization presented in [104], with five key 
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differences: (i) the new approach uses a single improved method for scenario generation 

over the two methods proposed in [104], (ii) the new approach contains a new local robust 

optimization step for ensuring the feasibility of the final solution found, (iii) the new 

approach uses a more efficient formulation than Problem 2 that can contain fewer 

constraints than it, (iv) the new approach avoids solving scenario robust optimization 

problems twice per iteration as done in [104] and (v) the new approach does not use 

scenario reduction.  

The rest of this chapter is organized as follows. Section 3.1 discusses the 

formulation for scenario robust optimization used by the proposed new approach. Section 

3.2 details the proposed new approach. Section 3.3 demonstrates the new approach on five 

different examples and compares its performance against existing robust optimization 

approaches. Section 3.4 summarizes the conclusions of this paper. Appendix C discusses 

the theoretical computational performance of the proposed new approach relative to 

existing robust optimization approaches. 

3.1 Problem Formulation 

Many sampling based approaches, such as [24], [27], [23] and [25], use a reduced form of 

Eq. (1.2), where scenarios only impose the constraints which they found a design to violate, 

rather than imposing all constraints containing uncertainty. This reduced scenario robust 

optimization formulation is given in Problem 3, Eq. (3.1), where U  is a finite set of 

scenarios under which the constraints need to be imposed and where R(
k

u ) is the set of the 

indices of the constraints ( , ) 0
i k

g x u ≤  that should be imposed under scenario ku U∈ .  
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Problem 3: Reduced Scenario Robust Optimization (RSRO) (3.1) 

min ( )

. .

( ) 0, {1,..., }

( , ) 0, ( ),

x

l

i k k k

f x

s t

d x l L

g x u u U i R u

≤ ∀ ∈

≤ ∀ ∈ ∀ ∈

 

 

Problem 3 can consist of fewer constraints than Eq. (1.2) would for the same set of 

scenarios U . Thus, the approaches using Problem 3 ([24], [27], [23], [25] and this chapter) 

should perform better for problems with larger numbers of constraints than those using Eq. 

(1.2) (such as [104]), since Problem 3 does not need to impose every constraint ( , )ig x u  

under every scenario ku U∈ . By using Eq. (3.1) within the robust optimization framework 

presented in [104] and incorporating several other improvements, an efficient and scalable 

robust optimization approach can be developed. 

Note that Eq. (1.1) contains an infinite number of constraints, unlike Problems 2 

and 3, making it impossible to solve as a non-convex optimization problem. All robust 

optimization approaches that use either Eq. (1.2) or Eq. (3.1) in place of Eq. (1.1) assume 

that there exists a finite set of scenarios U  such that the feasible region of Eq. (1.2) or Eq. 

(3.1) under the scenarios in U  is the same as the feasible region of Eq. (1.1). When this 

assumption does not hold, an “infinite” number of scenarios may be necessary to solve a 

robust optimization problem. This chapter considers problems where this assumption 

holds. 
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3.2 Scenario generation with local robust optimization (SGLRO) 

The proposed approach, called SGLRO, solves Eq. (1.1) and consists of two components: 

a scenario generation method (Section 4.1) and a local robust optimization method (Section 

4.2). SGLRO starts off by using a sampling based robust optimization approach (see Figure 

3.1), using scenario generation in a similar manner to the approach in [104] (subsequently 

referred to as SGR2O). Each time a scenario is generated, it is added to U  and R, which 

are then used to re-solve Eq. (3.1). This process continues for a finite number of iterations, 

after which SGLRO uses a local robust optimization method to obtain its final solution. 

Normally, a sampling based robust optimization approach can return a non-robust 

optimal solution with very low worst-case constraint violations after being run for a finite 

number of iterations. However, a solution with very low worst-case constraint violations 

should be near the boundaries of the feasible region of Eq. (1.1). Thus, locally searching 

for worst-case scenarios for that solution should yield additional scenarios that could be 

added to the set U  in Problems 2 and 3 so that their feasible regions become the same as 

Eq. (1.1)’s. These additional scenarios will enable Eq. (1.2) or 3 to find the robust optimal 

solution. From a practical standpoint, this local worst-case search is largely the same as 

running a robust optimization approach that searches for worst-case scenarios (e.g., [128]).  

A simple strategy for mitigating the asymptotic convergence of sampling based 

methods is thus to use their final solution as the initial conditions for a local “worst-case” 

based robust optimization approach. SGLRO implements this strategy once it finishes 

randomly sampling scenarios, by transitioning to a local “worst-case” based robust 

optimization approach that makes use of both the design and the scenarios generated during 
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random sampling (the “Solve Local Worst Case Robust Optimization using U ” step in 

Figure 3.1). Thus, SGLRO is able to maintain the same global search over the uncertain 

parameters as a random sampling based approach to robust optimization, while mitigating 

the effects of the limitations of asymptotic convergence. 

Figure 3.1: Flowchart Of SGLRO, with Key steps underlined. SGLRO starts by using 

scenario generation for a fixed number of iterations and then applies a local robust 

optimization method to obtain its final solution. 
 

An implementation of SGLRO algorithm is shown in Table 3.1. In Table 3.1, the 

set U  is a set of scenarios, which is initially empty (cf. line 1). “Solve RSRO” corresponds 

to solving Problem 3, which should return 
new

x . The function “Sample Possible Scenario” 

samples a random scenario from U  and returns it. As shown in Table 3.1, SGLRO first 

solves Problem 3 with no scenarios to generate a candidate design B
x  (cf. lines 1-2). Then, 

it randomly samples scenarios until a scenario is found where the candidate design is 

infeasible (cf. line 7). It then generates additional scenarios using scenario generation and 

adds all these scenarios (including the original randomly sampled one) to U , the current 

set of scenarios (cf. lines 14-17). SGLRO repeats these steps for a fixed number of 



53 

 

iterations (cf. lines 4-5) and then switches to a local robust optimization method (cf. line 

19). The number of iterations should be chosen to be sufficiently large such that SGLRO 

will sample enough scenarios to find the robust optimal solution. When B
x is near (or at) 

the robust optimal solution after these iterations, the local robust optimization method (cf. 

line 19) takes care of refining B
x to ensure it is the robust optimal solution. The local robust 

optimization method is initialized with the set of scenarios U , it attempts to find new worst-

case scenarios which are not in U  and updates B
x  to ensure feasibility in these new worst-

case scenarios. When the local robust optimization is done, SGLRO returns its current 

solution as the robust optimal solution. 
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Table 3.1: Algorithm 3.1, SGLRO 
1:  {}U ←  

2:  Solve RSRO  
B

x ←  

3:  Reducible True←  
4:  While( 0)

I
N >  

5:      1
I I

N N← −  

6:        Feasible True←  

7:      Sample Possible Scenario()qu ←  

8:      {}V ←  

9:      For  {1,..., }i I∈  

10:         If( ( , ) )i B qg x u ε>  

11:             {}V V i← ∪  
12:             Feasible False←  
13:     If ( )Feasible False=  

14: 
        ( , ) Scenario

Generation( , , , , )B q

U R

x V u U R

←
 

15:         { }qU U u← ∪  

16:         ( )qR u V←  

17:          Solve RSRO
B

x ←  

18: x Local Robust Optimization( , , )B Bx U R←  

19: Return 
B

x  

 

3.2.1 Sampling-Based Scenario Generation  

Maximizing constraint violations for a candidate design can be used to find a worst-case 

scenario, which is more likely to be one of the scenarios in U  than a randomly sampled 

scenario. Let V be the set of constraints violated by design Bx  by a randomly sampled 

scenario s ( i V∈  if and only if ( , )
i B

g x s ε≥ , cf. lines 9-12 in Table 3.). Problem 4 gives 

the formulation from [104] for finding a new scenario u that maximizes the sum of the 

violated constraints in V, where ε is a small positive constraint violation: 
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Problem 4: Worst-Case Search  (3.2) 

  

argmax ( , )

. .

( , ) ,  

( ) 0,  {1,..., }

i B
u i V

i B

j

g x u

s t

g x u i V

q u j J

ε

∈

≥ ∀ ∈

≤ ∀ ∈



 

 After solving Problem 4, additional constraints may now be violated for Bx , which 

Problem 4 did not attempt to maximize. Additional scenarios can be generated by solving 

Problem 4 again for these new violated constraints until solving Problem 4 does not violate 

any constraint for Bx  that has not already been used in the current iteration of scenario 

generation. Algorithm 2 (Table 3.2) describes this scenario generation process, where 

“Solve Worst Case Search” refers to solving Problem 4 from initial point u. Algorithm 2 

works by repeatedly solving Problem 4 for a set of violated constraints (
new

V ) from a given 

scenario (
genu ), and then adding Problem 4’s solution as a new scenario (cf. lines 7-10, 

Table 3.2). The first scenario and set of constraints considered is V and 
qu (cf. lines 1-3, 

Table 3.2) which are the randomly sampled scenario from Algorithm 1 (cf. line 14, Table 

3.). The next scenario to be considered is the newly generated scenario found by solving 

Problem 4 (cf. line 7, Table 3.2), with 
new

V being determined from the set of constraints that 

have yet to be violated by a scenario being generated (cf. lines 11-15, Table 3.2). Algorithm 

2 stops when there are no constraints left that are violated (cf. line 5, Table 3.2). 
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Table 3.2: Algorithm 3.2, 

ScenarioGeneration( , , , , )B qx V u U R  

1: {}
check

V ←  

2: gen qu u←  

3: new
V V←  

4: 0c ←  
5: While( {})

new
V ≠  

6:     1c c← +  

7:     
Solve Worst Case Search 

      from , with

gen

gen new

u

u u V V

←

= =
 

8:     { }genU U u← ∪  

9:     ( )gen newR u V←  

10:     check check new
V V V← ∪  

11:     {}
new

V ←  

12:     For {1... },
check

i I i V∀ ∈ ∉  

13:         If( ( , ) )i B geng x u ε≥  

14:             { }
new new

V V i← ∪  

 

3.2.2 Scenario-Based Local Robust Optimization 

SGLRO uses a simple scenario based local robust optimization method that iteratively 

performs a local search to find the worst-case scenario for each constraint present. The 

implementation of the local robust optimization method is given in Table 3.3. In each 

iteration, the local robust optimization method solves Problem 4 to find the worst-case 

scenario (cf. line 5, Table 3.3) for each constraint. Any worst-case scenarios that do violate 

constraints are added to U  (cf. lines 6-9, Table 3.3). If new scenarios have been added to 

U , the scenario robust optimization problem is solved to obtain a new candidate robust 

optimal solution (c.f. lines 10-11, Table 3.3). This process repeats until no new scenarios 
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are added to U  (cf. lines 2 and 10, Table 3.3), after which the local robust optimization 

method stops and returns its current solution as the robust optimal solution. 

Table 3.3: Algorithm 3.3, 

Local Robust Optimization( , , )
B

x U R  

1:  Feasible False=   
2: While( )Feasible False=   
3:  Feasible True=  
4:     For( {1... })i I∈  

5: 
        Solve Worst Case Search 

with

gen
u

V i

←

=
 

6:         If ( ( , ) )
i B gen

g x u ε≥  

7:             { }genU U u← ∪  

8:             ( )genR u i←  

9:             Feasible False=  
10:     If ( )Feasible False=  

11:          Solve RSRO
B

x ←  

12: Return 
B

x  

 

3.3 Examples 

SGLRO’s performance was compared against a deterministic double loop robust 

optimization method (see Appendix C) and SGR2O [104] across five different examples of 

non-convex robust optimization problems. The fifth example problem was a scalable test 

problem, which was run for increasing numbers of design variables, uncertain parameters 

and constraints. All examples considered only interval uncertainty. 

Because sampling-based robust optimization methods (e.g. SGR2O, SGLRO) are 

inherently similar to the sampling done in Monte Carlo simulation, Monte Carlo simulation 

could not be used to verify the robust feasibility of the solutions found. However, in three 

of the five examples (1, 3, and 4) the set of worst-case scenarios for constraints at the robust 
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optimal solution are known to consist of having uncertain parameters at combinations of 

their maximum and minimum values. The set of all such scenarios was used to determine 

the worst-case constraint violations of the approaches compared in these examples. In the 

remaining two examples, the worst-case constraint violations were determined through 

alternate analyses (graphically in Example 2, analytically in Example 5). 

All examples used the lower bounds for the design variables as the initial conditions 

for the approaches compared, except where noted otherwise. In all examples, the objective 

function was treated as being unaffected by uncertainty. In all five examples, SGR2O used 

S
N  = 12 scenarios, 

R
N  = 10, 

F
N  = 1 (number of scenarios sampled per iteration) and ε = 

610 − , which is the same as the constraint feasibility tolerance used by the optimization 

solver. The nominal scenario 
nom

u  used by SGLRO was the midpoint of the range for each 

uncertain parameter. All methods randomly sampled scenarios from a uniform distribution 

between the lower and upper bounds for each uncertain parameter. 

The number of iterations used for each problem was set based on the specific 

features of the problem. As SGR2O and SGLRO are non-deterministic, they were run 100 

times for Examples 1, 2, 3, and 4. Because Example 5 has a single worst-case scenario, 

SGLRO’s performance was deterministic, thus it was run once for each problem size. 

However, SGR2O was non-deterministic for Example 5, so it was run 10 times for each 

problem size considered. SGR2O was not run 100 times in Example 5 due to the high 

computational cost associated with very large problem sizes. 

All optimization problems used by SGR2O and SGLRO were solved using 

MATLAB’s fmincon solver with the sequential quadratic programming option [80]. 
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However, the deterministic double loop approach used the interior-point option instead, as 

it could not find the robust optimal solution in Example 3 when using sequential quadratic 

programming. When SGR2O solved the scenario reduction refinement problem detailed in 

[104], fmincon’s “OptimalityTolerance” and “StepTolerance” settings were set to 310 − , 

additionally the “M” parameter from [104] was set to 610 . When any method compared 

solved Problem 3, fmincon’s “MaxIterations” setting ( Nα ) was set to 1000 and its 

“MaxFunctionEvaluations” setting was set to 610 . All other formulations were solved 

using fmincon’s default parameters. Gradient information was not supplied to fmincon for 

any of the examples.  

3.3.1 Example 1: Basic Circle Problem 

Example 1 is an extremely simple non-convex robust optimization problem with a concave 

objective function and a single convex constraint. The problem is to find the feasible point 

that is the greatest distance from the origin; a point is feasible if it is inside a circle with a 

known radius but unknown center. Eq. 3.3 provides the formulation for Example 1.  

2 2

,
min

x y
x y− −   (3.3) 

s.t.   
2 2

1 2 1 2( ) ( ) 5 0, , [ 1,1]x u y u u u− + − − ≤ ∀ ∈ −  

5 5, 5 5x y− ≤ ≤ − ≤ ≤   
 

While Eq. 3.3 is an extremely simple optimization problem, its feasible region 

requires the constraint 2 2
1 2( ) ( ) 5 0x u y u+ + + − ≤ to be imposed for four different 

combinations of values for 1u  and 2u  (see Figure 3.2). There are four locally optimal 
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solutions to Eq. 3.3, ( 1,0)±  and (0, 1)± , which all share the same globally optimal cost of 

-1.  

Figure 3.2. Feasible region of example 1, yellow 

denotes regions which are infeasible. RED denotes the 

constraint being imposed under different scenarios. The 

four locally optimal solutions to the problem are 

Marked with Pluses 
 

All methods compared in Example 1 used 0.5x = , 0y =  as their initial conditions. 

SGR2O and SGLRO were run with 100
I

N =  iterations. Figure 3.3 shows a graphical 

example of how SGLRO solves Example 1. Note that because SGLRO uses local 

optimization, it does not need to find all four scenarios which define the feasible region 

depicted in Figure 3.2. 
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Figure 3.3: Example Execution of SGLRO on Example 1, Yellow denotes infeasible 

region, red X denotes infeasible solutions, black X denotes current robust optimal 

solution. Lines corresponding to Table 3.1 are given for each step in parentheses. 
Iteration Behavior of SGLRO Feasible Region 

0 Eq. (3.1) is solved with {}U = , giving Bx  = [5, 5] (lines 1-2) 

1a Scenario u = [-0.53, -0.91] is sampled. (line 7) 

1b Design Bx  is infeasible under u, (5+0.53)2 + 

(5+0.91)2 - 5 =  60.5 (lines 8-12) 

1c 
Scenario generation occurs, generating the 

scenario u = [-1, -1] (lines 14-16) 

1d Eq. (3.1) is re-solved with U , giving Bx  = 

[-1.64, -2.85]. (line 17) 

2a Scenario u = [0.26, -0.12] is sampled (line 7) 

 

2b Design Bx  is infeasible under u, (-1.64-0.26)2 + 

(-2.85+0.12)2 - 5 =  6.0351 (lines 8-12) 

2c 
Scenario generation occurs, generating the 

scenario u = [1, 1] (lines 14-16) 

2d Eq. (3.1) is re-solved with U , giving Bx  = 

[1.23, -1.23]. (line 17) 

3 to15 A scenario u is sampled, but no constraints are violated. (lines 6-12) 

16a Scenario u = [-0.58, 0.21] is sampled (line 7) 

 

16b Design Bx  is infeasible under u, (1.23+0.58)2 + 

(-1.23-0.21)2 - 5 =  0.34 (lines 8-12) 

16c 
Scenario generation occurs, generating the 

scenario u = [-1, 1] (lines 14-17) 

16d Eq. (3.1) is re-solved with U , giving Bx  = 

[1, 0]. (line 18) 
17 to 

100a 
A scenario u is sampled, but no constraints are violated. (lines 6-12) 

100b 
Local Robust Optimization is run using U . No new scenarios are generated on 

its first iteration, thus Bx  = [1, 0] is returned as the robust optimal solution. 

(lines 18-19) 
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Table 3.1 lists the results (mean and standard deviation) of the three methods used 

to solve Example 1. SGLRO reliably converged to the robust optimal solution of Example 

1. SGR2O found the robust optimal solution in 99 of its 100 runs. The one run where 

SGR2O did not converge was caused by it sampling a scenario (u = [-0.94, 0.86]) that was 

extremely close to one of the four scenarios defining the feasible region in Figure 3.2. This 

scenario reduced the probability of sampling a scenario which showed SGR2O’s current 

solution to be infeasible, causing it to run out iterations before finding such a scenario. The 

deterministic double loop approach did not converge in Example 1, becoming trapped in 

an infinite loop going between the scenarios shown in Figure 3.2. 

Table 3.1: Results for example 1 

Approach 

Sum of all 
objective 
function 

calls 

Sum of all 
constraint 
function 

calls 

Largest 
worst-case 
constraint 
violation 

Final 
objective 
function 

value 

Final 
number 

of 
scenarios 

SGR2O (Mean) 137.3 655.4 0.0056 -1.0015 5.97 

SGR2O (Standard deviation) 6.338 39.65 0.0557 0.0151 0.30 

SGLRO (Mean) 56.9 314.6 0 -1 4.68 

SGLRO (Standard deviation) 22.2 115.8 0 151.6521 10−× 1.21 

Deterministic Double Loop ∞   ∞  N/A N/A N/A 

3.3.2 Example 2: Local Maxima Example 

Example 2 (Eq. 3.4) is a very simple problem which contains local maxima with respect to 

its single uncertain parameter. Unlike Example 1, it does not contain multiple worst-case 

scenarios, thus it can be used to compare the performance of SGR2O and SGLRO’s global 

searches relative to a local method like the deterministic double loop approach. 
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,
min

x y
x−   (3.4) 

s.t.   
23 7 (1 )

Cos( ) 0, [ 1,1]
4 2 10

u x x
ux u

π −
− ≤ ∀ ∈ −  

8
0

10
x≤ ≤   

 
There is only one robust feasible solution to Example 2, which is 0x = , all other 

values of x are infeasible for at least one value of u. SGR2O and SGLRO were run with 

100
I

N =  iterations for Example 2. All approaches in Example 2 used the initial point 

0.1
IC

x = . Figure 3.4 shows a plot of the constraint in Example 2 as a function of x and u, 

along with the solutions found by the approaches run on Example 2. 

 
Figure 3.4: Plot of constraint in Example 2. The yellow line highlights the value of the 
constraint for the robust optimal solution at different uncertain parameter values 
(which is 0 for all values). The red and green lines denote where the deterministic 
double loop approach’s solution is either feasible (green) or infeasible (red). 
 

Table 3.2 lists the results (mean and standard deviation) of the three approaches 

compared in Example 2. SGLRO and SGR2O reliably found the robust optimal solution, 

however the deterministic double loop approach found an infeasible solution (see Figure 

3.4). This occurred because the deterministic double loop approach uses a local search to 
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find worst-case scenarios, which caused it to find a scenario that locally maximizes the 

value of the constraint ( 0.215u = ) instead of the global maximum ( 1u = ). SGLRO was 

significantly faster than the other two approaches compared in Example 2. The 

deterministic double loop approach would be fastest if it used sequential quadratic 

programming as its solver, but it would still find the same infeasible solution shown in 

Figure 3.4. SGR2O used scenario reduction in 15 of its 100 runs. These 15 runs required 

many more constraint function calls than the other 85 runs, which caused the large standard 

deviation in SGR2O’s number of constraint function calls. 

Table 3.2: Results for example 2 

Approach 

Sum of all 
objective 
function 

calls 

Sum of all 
constraint 
function 

calls 

Largest 
worst-case 
constraint 
violation 

Final objective 
function value 

Final 
number 

of 
scenarios 

SGR2O (Mean) 178 1,865 121.2824 10−×  122.3544 10−− × 6.34 

SGR2O (Standard 
deviation) 

214 3,144 128.98711 10−× 111.8123 10−×  2.78 

SGLRO (Mean) 14.4 143.5 142.4689 10−×  144.5330 10−− × 2.18 

SGLRO (Standard 
deviation) 

4.79 17.24 132.2012 10−×  134.0414 10−×  0.58 

Deterministic Double 
Loop 

118  188 0.4659 0.719−  1 

 

3.3.3 Example 3: Robust Welded Beam 

Example 3 is a robust optimization variant of the well-known welded beam problem 

considered by [96], taken from [104] and [85]. The eight uncertain parameters considered 

were deviations in the values of the problem’s four design variables (dimensions of the 

weld and of the beam) and the length, load and failure stresses of the beam. The objective 

function is to minimize the cost of the beam without considering uncertainty, accounting 
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for the material cost of the beam and the cost of the weld. Example 1 has six constraints: 

two require that the beam does not fail under shear and bending stress; the other four limit 

the deflection of the beam, ensure that the beam does not buckle, require that the weld’s 

thickness is not larger than the beam’s width, and limit the weld’s thickness. SGR2O and 

SGLRO were run with 100
I

N =  iterations. 

 Table 3.3 lists the results (mean and standard deviation) for all three approaches in 

Example 3. SGLRO and the deterministic double loop approach reliably converged to the 

robust optimal solution, but SGR2O found the robust optimal solution in only 99 of its 100 

runs. Both SGR2O and SGLRO reached the robust optimal solution after performing 

scenario generation twice. Note that the number of scenarios sampled by SGR2O was 

approximately a tenth of those used for this problem in [104], with more iterations all 100 

runs of SGR2O would have converged as it did in [104]. The deterministic double loop 

approach was the fastest approach in Example 3.  

Table 3.3: Results for example 3 

Approach 

Sum of all 
objective 
function 

calls 

Sum of all 
constraint 
function 

calls 

Largest 
worst-case 
constraint 
violation 

Final 
objective 
function 

value 

Final 
number 

of 
scenarios 

SGR2O (Mean) 536.9 14,509 0.001 2.7859 4.17 

SGR2O (Standard 
deviation) 

34.75 1,245.5 0.001 43.9414 10−×  0.40 

SGLRO (Mean) 278.2 5,349.4 98.0312 10−×  2.7859 4.2 

SGLRO (Standard 
deviation) 

19.35 452.02 83.1742 10−×  81.97 10−×  0.402 

Deterministic Double Loop 320 4,679 66.6404 10−×  2.7859 6 
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3.3.4 Example 4: Enhanced Robust Speed Reducer 

Example 4 is a more challenging version of the robust speed reducer design optimization 

problem first considered in [47], which is detailed in Eq. (3.5). Unlike the formulation 

considered in other works ([47], [128], [71]), which only considered uncertainty for two 

design variables, this problem included uncertain deviations for all seven design variables. 

The new constraint 13g  constrains the allowable variation of the distance between the two 

shafts in the speed reducer. This new constraint relaxes constraints 5g  and 6g , which allows 

a wider range of designs than the original problem did in [47]. The upper and lower bounds 

for the design variables in the problem have been changed to allow a larger feasible region. 

The objective function is to minimize the sum of the normal stresses present in the two 

gears ( 2m  and 3m ). The volume of the speed reducer ( 1m ) is constrained by constraint 10g

. Objective robustness (considered in [128]) is not considered. The initial conditions used 

are the same as the ones used in [128] ( 1 2 3 4 5 6 7[ , , , , , , ]x x x x x x x  = [3.58, 0.71, 18, 8, 8, 3.5, 

5.3]). The uncertain deviations of the design variables used in this example were [ 1u , 2u ,

3u , 4u , 5u , 6u , 7u ] = [ 1x∆ , 2x∆ , 3x∆ , 4x∆ , 5x∆ , 6x∆ , 7x∆ ].Unlike the original problem, in 

Example 4 some constraints have multiple worst-case scenarios, which makes solving the 

robust optimization problem more challenging. SGR2O and SGLRO were run for 100
I

N =  

iterations. Table 3.4 provides the results (mean and standard deviation) for the approaches 

tested. 
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2 3( ) ( )
min ,

1000
s.t. ( ) 0,

x

m x m x

g x u u

+

+ ≤ ∀ ∈ U

 

Where: 

2 2 1 1
1 1 2 3( ) ( ) 397.5g x x x x

− −= −  (3.5)

2 1 1
2 1 2 3( ) ( ) 27g x x x x

− −= −  
3 4 1 1

3 4 2 3 6( ) ( ) 1.93g x x x x x
− −= −  

2
2 3

1 1 2

3

2 2
1 6 7

3 3
6 7

2 2
4 6 5 7

10
( ) 0.7854 (

3
14.933 43.0934)

1.508 ( )

7.477( )

0.7854( )

x
m x x x

x

x x x

x x

x x x x

=

+ −

− +

+ +

+ +

  

3 4 1 1
4 5 2 3 7( ) ( ) 1.93g x x x x x

− −= −

5 4 6( ) 0.3g x x x= − + −  

6 5 7( ) 0.3g x x x= − + −  

1
7 1 2( ) 5g x x x

−= −  

1
8 1 2( ) 12g x x x

−= −  

 

2

74

2 3
2 3

6

754
1.69 10

( )
0.1

x

x x
m x

x

 
+ × 

 
=  

9 2 3( ) 40g x x x= −  

10 1( ) ( ) 1400g x m x= −  

11 2( ) ( ) 1800g x m x= −  

2

75

2 3
3 3

7

754
1.575 10

( )
0.1

x

x x
m x

x

 
+ × 

 
=  

12 3( ) ( ) 1100g x m x= −  
2

13 4 6

2 2
5 7

( ) ( )

( ) 0.3

g x x x

x x

= −

+ − −
 

11 15x≤ ≤  20.1 1.5x≤ ≤  38 28x≤ ≤  

4 50.3 , 12.3x x≤ ≤  61 8x≤ ≤  71 8x≤ ≤  

10.01 0.01u− ≤ ≤  20.01 0.01u− ≤ ≤  31 1u− ≤ ≤  

4 50.1 , 0.1u u− ≤ ≤  60.1 0.1u− ≤ ≤  70.05 0.05u− ≤ ≤  

 
Only SGLRO found the robust optimal solution every time. SGR2O reliably found 

an infeasible solution that is extremely close to the robust optimal solution but is not robust 

because small worst-case constraint violations are present in constraints 11g , 12g , and 13g

. Note that SGR2O did not perform scenario reduction in Example 4. Like Example 1, 

Example 4 required multiple worst-case scenarios for one of its constraints ( 13g ), which 

caused the deterministic double loop approach to enter an infinite loop. 
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Table 3.4: Results for example 4 

Approach 

Sum of all 
objective 
function 

calls 

Sum of all 
constraint 
function 

calls 

Largest 
worst-case 
constraint 
violation 

Final 
objective 
function 

value 

Final 
number 

of 
scenarios 

SGR2O (Mean) 914.3 57,350 0.1668 1.885 9.3 

SGR2O (Standard deviation) 95.72 12,500 44.4807 10−×  45.0658 10−×  1.51 

SGLRO (Mean) 731.1 11,310 95.3529 10−×  1.886 9.11 

SGLRO (Standard deviation) 85.99 1,564 82.822 10−×  63.9391 10−×  1.39 

Deterministic Double Loop ∞   ∞  N/A N/A N/A 
 

3.3.5 Example 5: Robust DTLZ9 

Example 5 is a single objective, robust version of the scalable multi-objective DTLZ9 test 

problem [32], which is given in Eq. (3.6). The objective function is to minimize the sum of 

the objective functions from the original DTLZ9 problem. Uncertainty is added to the 

problem by adding an uncertain deviation of 0.09±  for every design variable and by 

changing the bounds for each design variable to lie within [0.1, 0.9]. The initial conditions 

used were the midpoint between the bounds. 

{1,..., }

min
j

x
j M

f
∈

   (3.6) 

0.1

( 1)
where, ( )

n
j
M

j in
i j

M

f x x

 
  
 

= −  

=  

s.t.   
2 2( , ) ( ) ( ) 1 0,

{1,..., 1},
k M kg x u f x u f x u

k M u

= + + + − ≥

∀ ∈ − ∀ ∈ U
 

0.1 0.9, 0.09 0.09,
i i

x u≤ ≤ − ≤ ≤   

 
SGR2O [104], SGLRO, and the deterministic double loop approach were run for 

varying sizes of Example 5, ranging from n = 10 design variables to n = 250 design 

variables. The parameter M in the DTLZ9 test problem was chosen to be half the number 
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of design variables ( / 2M n= ). Example 5 has a single worst-case scenario, in which every 

deviation equals 0.09− , so the robust optimal solution assigns a value of 0.1 to all but the 

last two design variables, which instead equal 0.5527. All three approaches found the 

robust optimal solution to Example 5 for all problem sizes considered. From the 

computational complexity analysis described in Appendix B, it should be noted that the 

number of constraints and uncertain parameters in the DTLZ9 problem [32] increases 

linearly with the number of design variables, so SGR2O [104], SGLRO, and the 

deterministic double loop approach should all have 2( )O n  constraint calls relative to the 

number of design variables (n). Because SGR2O’s behavior was not deterministic in 

Example 5, it was run 10 times for each problem size and the medians of the number of 

function calls were used for comparison. This non-deterministic behavior was caused by 

the scenario generation method used by SGR2O, which generates some scenarios by 

minimizing constraint violations. 

 As shown in Figure 3.5, the number of objective function calls made by SGR2O, 

SGLRO, and the deterministic double loop approach increased linearly with problem size, 

which is expected as the same number of solver iterations is required for most problem 

sizes, but computing the gradient of the objective function increased linearly in function 

calls as more design variables were added. SGLRO always found the worst-case on the 

first iteration, so it needed fewer objective function calls than the deterministic double loop 

approach. 
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Figure 3.5: Number of objective function calls 
relative to problem size for Example 5 

 
As shown in Figure 3.6, the number of constraint function calls that SGR2O, 

SGLRO, and the deterministic double loop approach made increased quadratically as the 

size of the problem increased ( 2
R value for fitting a quadratic curve is 0.96 for SGR2O, 1 

for SGLRO, and 0.99 for the deterministic double loop approach). This result numerically 

demonstrates that all three approaches have comparable scalability. This relationship also 

confirms the predicted 2( )O n computation cost and demonstrates the correctness of the 

computational complexity results presented in Appendix B. SGLRO used fewer constraint 

function calls than the deterministic double loop approach only when the deterministic 

double loop approach used MATLAB’s interior point solver. When it used sequential 

quadratic programming as the solver, the deterministic double loop approach required 

fewer constraint function calls in Example 5 than the other approaches. 
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Figure 3.6: Number of constraint function calls 
relative to problem size for Example 5 

 

3.3.6 Discussion of Results 

For the five examples considered, SGLRO was the only approach that reliably found a 

robust optimal solution. The deterministic double loop approach found robust optimal 

solutions for Examples 3 and 5, but it could not do so for Examples 1, 2, and 4. In Example 

2, the local maxima present in the constraints prevented the deterministic double loop 

approach from finding the true worst-case scenarios for the constraints. In Examples 1 and 

4, however, the deterministic double loop approach failed because both problems have 

some constraints with multiple worst-case scenarios. This violates the assumption that each 

constraint has a single worst-case scenario, which the deterministic double loop approach 

and other worst-case based approaches to robust optimization (e.g. [128]) require. SGRLO 

does not require this assumption, which allows it to find all of the scenarios that are needed 

in order to find the robust optimal solutions to Examples 1 and 4. Additionally, SGRLO 
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uses random sampling when initially searching for worst-case scenarios, which allows it to 

avoid issues with local maxima such as those present in Example 2. 

Although SGR2O almost always found the robust optimal solution in Examples 1 

and 3, it reliably failed to find the robust optimal solution in Example 4. The occasional 

failures in Examples 1 and 3 occurred because SGR2O’s number of iterations was set too 

low. In Example 4, however, increasing the number of iterations would not improve 

SGR2O’s performance. SGR2O failed to find a robust optimal solution in Example 4 

because it found an infeasible solution for which the probability of sampling a scenario in 

which that solution was infeasible was extremely low. Robust optimization methods that 

rely solely on random sampling, such as SGR2O, are unable to distinguish between this 

type of solution and a robust optimal solution. SGLRO avoided this problem because its 

local robust optimization step can easily find a scenario where this solution is infeasible, 

allowing it to find the robust optimal solution to Example 4. This step also ensured that 

SGLRO reliably found the robust optimal solution to Examples 1 and 3 using fewer 

iterations than SGR2O needed. 

 Curiously, although Example 2 is a very small problem, using scenario reduction 

actually increased SGR2O’s computational cost in Example 2. This occurred because the 

scenario reduction method proposed in [104] attempts to remove as many scenarios as 

possible. This causes SGR2O to remove some scenarios that it needs to find the robust 

optimal solution, so additional function calls are needed to find these scenarios a second 

time. Thus, SGLRO was faster than SGR2O when finding the robust optimal solution to 

Example 2. 
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3.4 Concluding Remarks 

This chapter presented SGLRO, a new approach for solving non-convex robust 

optimization problems. SGLRO extends past work [104] in using sampling based 

approaches to solve robust optimization problems via a new approach for scenario 

generation and a new local robust optimization method for refining SGLRO’s final 

solution. The introduction of the local robust optimization method was shown make 

SGLRO more reliable at finding the robust optimal solution than sampling based 

approaches and worst-case approaches. It was also demonstrated experimentally that 

SGLRO was capable of finding the robust optimal solution to several different example 

problems, even when existing robust optimization methods could not reliably find the 

robust optimal solution. 

 The results presented demonstrate that SGLRO can efficiently solve complex 

nonconvex robust optimization problems with large amounts of uncertainty. However, the 

results also indicate several areas of potential improvement for SGLRO. SGLRO’s 

performance could potentially be improved by fully integrating the local robust 

optimization method into the process of sampling scenarios, rather than running it after all 

scenarios are sampled. A non-uniform scenario sampling approach could make use of 

existing infeasible scenarios to find new infeasible scenarios more quickly when near the 

robust optimal solution, speeding up the rate of convergence. Alternate strategies for 

scenario generation could more quickly obtain useful scenarios, providing a similar benefit. 

Developing an approach for scenario reduction which avoids the issues observed with the 

method presented in [104] could also potentially provide an improvement in performance. 
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 All of the approaches discussed require that there exists a finite set U  that can be 

used to find the robust optimal solution. It is possible to have a robust optimization problem 

where Problem 2 requires an infinite number of scenarios (such as a line or other 

continuous curve of scenarios) in order to reach the robust optimal solution. It may be 

possible to extend the framework of SGLRO to use robust feasibility cuts, such as in [115], 

or surrogate modeling based techniques, such as in [130], to handle such problems. 

This chapter presented a new approach for robust optimization based off scenario 

generation and local refinement. The next chapter utilizes the framework for robust 

optimization developed in this chapter to develop an approach for finding robust optimal 

solutions to motion planning problems where uncertainty affects motion costs. 
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Chapter 4: Cost Robust Path and Motion Planning 

In this chapter a new approach is presented for robust shortest path planning that is 

based off the use of a set of scenarios found through random sampling. The new approach 

is able to handle arbitrary non-linear correlations between edge costs present in a motion 

planning graph and uncertain parameters. The new approach is thus able to be used for 

solving the robust shortest path planning problem on motion planning graphs, which 

enables robust motion planning. A new method for obtaining lower bounds on the worst 

case costs of paths in the robust shortest path planning problem is also developed. The new 

method uses a modified variant of the linear programming dual to the proposed scenario 

based robust shortest path planning problem in order obtain lower bounds on the costs of 

paths. These lower bounds can be used to minimize the number of edges which need to 

have their costs computed, which makes it computationally feasible to solve robust motion 

planning problems. A new method for solving motion planning problems under uncertainty 

which affects the cost of motions is proposed, making use of the methods developed for 

robust shortest path planning. The new method uses an existing motion planning graph, 

generated through methods such as Probabilistic Roadmaps (PRM) [64] or other motion 

planning techniques which construct a graph (e.g. RRT# [7]). The new method is 

demonstrated on a robust version of the risk-based UAV motion-planning problem 

formulated in [102]. 

This chapter is organized as follows. Section 4.1 introduces and motivates the 

problem of cost robust motion planning. Section 4.2 formulates the cost robust motion 

planning problem using the formulation for the robust shortest path planning problem. 
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Section 4.3 presents several methods for bounding the costs of paths in robust shortest path 

planning problems. Section 4.4 presents the proposed algorithm for solving cost robust 

motion planning problems. Section 4.5 presents an experimental example based off the 

risk-based motion planning problem from Chapter 2, which has uncertainty added to it. 

Section 4.6 presents the results from testing the proposed approach on the experimental 

example. Section 4.7 summarizes the results from this chapter and presents some 

concluding remarks. 

4.1 Introduction to Cost Robust Motion Planning 

The performance of unmanned systems in the real world is subject to uncertainty, as it is 

generally impossible to obtain perfect knowledge of the environment a system will operate 

in. However, when planning how a system moves, most methods either rely on planning 

within deterministic environments or across a probability distribution of possible 

environments [5]. While using a probability distribution of possible environments can be 

used to account for uncertainty, it also requires a probability distribution to be known in 

advance. A significant amount of data is needed about an environment in order to determine 

a probability distribution for uncertainty present in it. Thus, it is often impractical to use 

probability-based methods for planning under uncertainty in new environments, where an 

unmanned system is being used in for the first time. 

 These issues are particularly relevant for UAV systems, as UAVs are subject to 

various weather conditions such as wind, which impact the performance of a UAV while 

it is in flight. Weather simulation models (e.g. [52]) can predict possible wind speeds, 

which can be used when planning routes for a UAV to fly [125]. However, weather 
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forecasts from these models are still imperfect, thus there exists a range of uncertain 

weather conditions that can occur around their forecasts. Consequently, an approach that 

does not rely on probability distributions is needed for planning UAV trajectories subject 

to these uncertain weather conditions. 

An alternative to accounting for uncertainty using probability distributions is to use 

robust optimization [14], where an optimal solution is found for the worst case scenario of 

uncertain parameters affecting a problem. Such methods have been previously used in the 

context of motion planning via the concept of funnels [78], for capturing uncertainty in 

where a robot may end up during motions. These methods only address the problem of 

feasibility, ensuring that a robot does not collide with obstacles in the environment where 

uncertainty is present. However, uncertainty also affects the costs of robot motions, 

particularly in problems where the robot is minimizing an objective other than travel time, 

such as risk [102]. Considering this type of uncertainty in motion planning creates a “Cost 

Robust Optimal Motion Planning Problem”, the problem of finding a robust optimal 

solution to a motion planning problem subject to uncertainty affecting the cost of motions. 

As this problem does not depend on knowledge of a probability distribution, it should be 

capable of taking into account weather related uncertainty during UAV motion planning. 

4.2 Formulation of Robust Motion Planning 

Unlike formulations that model cost uncertainty in motion planning using probability 

distributions, the cost robust motion planning problem formulated here requires a model 

that provides the cost of moving between two configurations (or vehicle states) under 
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specific uncertain parameter values. This model, denoted as 1 2( , , )f c c u , is the cost of 

moving from configuration 1c  to configuration 2c  under scenario u. 

There are two possible definitions for the robust cost of a trajectory when 

considering a model of the form 1 2( , , )f c c u . The first definition (Eq. (4.1)) to treat the 

robust cost as being the cost under the worst-case scenario for each segment composing 

trajectory s. The second definition (Eq. (4.2)) treats the robust cost as being the cost under 

the worst-case scenario for the entire trajectory s.  

1
1

{1,...,| | 1}

( ) max ( , , )i i
u U

i s

z s f c c u+
∈

∈ −

=    (4.1) 

2
1

{1,...,| | 1}

( ) max ( , , )i i
u U

i p

z p f c c u+
∈

∈ −

=    (4.2) 

While Eq. (4.1) and Eq. (4.2) may seem similar, Eq. (4.1) is actually significantly 

more conservative than Eq. (4.2). Consider the scenario involving an unmanned aerial 

vehicle trying to fly around an obstacle shown in Figure 4.1. 

Figure 4.1: Example in which wind blows in an uncertain direction, forcing a trajectory 

towards a high risk area. The cost is the how well the trajectory avoids the high risk 

areas.(a) Robust cost model for Eq. (4.1). The worst case direction for the wind changes 

between each configuration. (b) Robust cost model for Eq. (4.2). The worst case direction 

for the wind is shared between all configurations. 
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In the situation depicted in Figure 4.1, Eq. (4.1) would report a higher robust cost 

than Eq. (4.2) would, as Eq. (4.1) will consider the worst case for each possible segment 

of the trajectory, which yields a higher cost than considering the worst case for the entire 

trajectory. While the conservatism built into Eq. (4.1) can be useful in some situations, it 

is also unrealistic. For example the direction of the wind changes by 180° in Figure 4.1a, 

whereas an actual wind vector field would vary continuously, as depicted in Figure 4.2. 

 
Figure 4.2: Example of a realistic wind vector field, with high risk areas denoted by 

colors closer to orange and low risk areas denoted by colors closer to blue. The white 

arrows show the direction of the vector field, while the black lines show streamlines of 

it. Observe that the vector field varies smoothly, without discontinuous changes in 

direction. 
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In Figure 4.2, the high risk regions are small relative to the rate at which the 

direction and magnitude of the wind vector field can vary spatially. Thus, it would be 

unrealistic to assume that the wind always blows in the worst possible direction, as such a 

wind vector field is physically impossible. Because Eq. (4.1) assumes the worst possible 

case for every trajectory segment, it can end up determining its costs using scenarios 

(realizations of uncertainty) which are impossible. This will cause Eq. (4.1) to compute 

higher worst case costs than are actually possible. Eq. (4.2) does not suffer from this issue, 

since it can use arbitrary model for how uncertainty affects the cost of the entire trajectory. 

Thus, Eq. (4.2) is more desirable to use for cost robust motion planning, since it can find 

better performing solutions than Eq. (4.1). 

However, Eq. (4.2) is challenging to use as a cost function when solving motion 

planning problems. Eq. (4.1) (z1) satisfies the additive relation detailed in Eq. (4.3), 

meaning that it satisfies the principle of dynamic programing, which is necessary for all 

existing optimal motion planning techniques (e.g. A* [91], RRT* [63], RRT# [7] or PRM 

[64]). However, Eq. (4.2) (z2) does not, since it is possible that 

2 2 2
1 2 2 3 1 2 3([ , ]) ([ , ]) ([ , , ])z c c z c c z c c c+ > . Thus Eq. (4.2) is incompatible with existing 

methods for both optimal path planning and optimal motion planning. 

1 2 2 3 1 2 3([ , ]) ([ , ]) ([ , , ])z c c z c c z c c c+ =   (4.3) 

 

To use Eq. (4.2) as a cost function for motion planning, one must first consider how to 

use it as a cost function for the shortest path planning problem on a graph. While Eq. (4.2) 

is incompatible with dynamic programming approaches such as Dijkstra’s algorithm [36] 
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and A* [91], it can still be minimized by formulating a transshipment problem [3]. A robust 

transshipment problem that minimizes Eq. (4.2) is given below in Eq. (4.4).  

1. Let G = (N, E) be a directed graph in which N is the set of configurations (nodes) 

and E is the set of edges that represent feasible trajectories between these 

configurations 

2. Let A and B be configurations in N, where A is the start configuration, and B is the 

goal configuration.  

3. Let U  be the set of all possible scenarios that affect the cost of all edges in G. U is 

a continuous domain when uncertain parameters are defined in a continuous 

domain. 

4. By abuse of notation, let the cost of the edge between configurations ,i j N∈  under 

scenario u  also be ( , , )f i j u  

5. For any configuration i N∈ , node j is a member of ( )
out

Z i , the set of configurations 

which are incoming neighbors of configuration i in graph G = (N, E), if and only if 

there exists an edge
ije E∈ , such that 

ije  starts at configuration i and ends at 

configuration j. 

6. For any node i N∈ , node j is a member of ( )
inc

Z i , the set of configurations which 

are outgoing neighbors of configuration i, if and only if there exists an edge
jie E∈

, such that 
jie  starts at configuration j and ends at configuration i. 

7. For all 
ije E∈ , let 

ijx  be a binary integer variable takes a value of 1 when edge 
ije  

is used and 0 otherwise. 
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 (4.4) 

 

Eq. (4.4) is largely identical to a deterministic transshipment problem, outside of 

the first constraint in Eq (4.4). The first constraint in Eq (4.4) constrains the optimal cost 

of Eq. (4.4) to be the maximum possible cost for the current path under a scenario in U . 

The remaining constraints in Eq. (4.4) are the transport constraints that appear in a typical 

transshipment problem, which define what a feasible solution is (a connected path from the 

start to the goal). Thus the remaining constraints in Eq. (4.4) do not contain uncertain 

parameters in them. 

Eq. (4.4) can be used for motion planning as long as a motion planning graph is 

available, such as the ones constructed by PRM [64] or RRT# [7]. However, to actually 

solve Eq. (4.4), a finite set of scenarios needs to be used in place of U ( U  is an infinite set 

if an uncertain parameter is defined on a continuous domain), so that Eq. (4.4) has a finite 

number of constraints. In practice this set of scenarios can be generated through randomly 

sampling scenarios from U , a method which has been successfully applied to a number of 
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robust optimization problems ([24] ,[27] , [23], [25], [105]). Figure 4.3 provides an 

example of this type of approach, where Eq. (4.4) is re-solved any time a new scenario is 

sampled in which the cost of Eq. (4.4)’s solution increases. 

Figure 4.3: Simple example of a sampling based approach being used to solve Eq. (4.4). 
 

While Eq. (4.4) could be directly used on the graph built by a graph based motion 

planner (e.g. PRM [64], RRT# [7]) by using a large number of randomly sampled scenarios, 

there would be a major issue with computationally efficiency. For any scenario u ∈U , the 

function ( , , )f i j u  needs to be evaluated for every single edge 
ije E∈ . Motion planning 

problems typically involve high dimensional configuration spaces, meaning the graphs 

built by PRM and RRT# typically contain extremely large numbers of edges. This presents 

an issue when randomly sampling scenarios from U , as each scenario would require 

computing the cost of the entire motion planning graph. This issue can be partially 

mitigated by only computing edge costs when a scenario is randomly sampled that yields 
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a new worst case (increases the cost) for the current optimal path. This strategy is 

demonstrated by the approach in Figure 4.3, which only adds scenarios when this occurs. 

It can be seen from Figure 4.3 that this strategy only requires computing the cost of the 

current optimal path under each randomly sampled scenario, which is significantly cheaper 

than computing the costs of the entire motion planning graph. 

4.3 Bounding the Cost of the Solution to the Robust Shortest Path 

Planning Problem on Large Graphs 

A sampling based strategy (e.g. Figure 4.3) can reduce the number of scenarios that need 

to be considered while solving Eq. (4.4). However, the costs of all edges 
ije E∈ will still 

need to be computed for each of those scenarios. Because motion planning graphs can 

contain a large number of edges, this computational cost will still be very large. However, 

several methods can be employed to bound the costs of potential solution to the robust 

shortest path planning problem, which can be used to avoid computing the costs of some 

of the edges in a motion planning graph. 

4.3.1 Duality-based bounds 

While Eq. (4.4) cannot determine lower bounds of the cost of including a 

configuration in the robust optimal path, a lower bound on this cost can be obtained by 

considering the dual [3] to the LP relaxation of Eq. (4.4). The LP relaxation of Eq. (4.4) 

drops the constraint that 
ijx  be either 0 or 1, making it a lower bound on the computational 

cost of Eq. (4.4). The dual to a LP problem shares the same optimal cost as the original LP 

problem, thus the dual to the LP relaxation of a MILP problem (e.g. Eq. (4.4)) provides a 
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lower bound on the optimal cost of original MILP problem. However, the dual to a LP 

problem has a different set of design variables than the original LP problem, as the dual 

will have one design variable (called a dual variable) for each constraint in the original LP 

problem. The dual to the LP relaxation of Eq. (4.4) is given in Eq. (4.5), where ( )
t

y i  is the 

dual variable for the transport constraint around node i in Eq. (4.4) and ( )
s

y u is the dual 

variable to the cost constraint on z under scenario u. 

,
max ( ) ( )

( ) 1

( ) ( ) ( ( , , ) ( )) , ( )

0

0

s t

t t
y y

s

u U

t t s out

u U

s

t

y B y A

y u

y j y i f i j u y u i N j Z i

y

y

∈

∈

−

≤

− ≤ ∀ ∈ ∀ ∈

≥

≥



  (4.5) 

 Note that by choosing ( ) 1
s

y u =  for one u and setting all other u U∈ to zero, Eq. 

(4.5) becomes the dual of the classical (deterministic) unit transshipment problem. In the 

dual to the deterministic unit transshipment problem, ( )
t

y i is the cost for the shortest path 

from the start (supply node) to node i. This property will still apply to Eq. (4.5), except that 

now ( )
t

y i will be a lower bound on the cost of including node i in the robust optimal 

trajectory. Thus, Eq. (4.5) provides a lower bound on the cost of a path going through node 

i, so if ( ) ( )
t t

y i y B≥ , then node i cannot be part of the robust optimal trajectory and any 

edges leaving from node i can be ignored. 

However, Eq. (4.5) only operates in a forwards direction (all costs are computed 

relative to the start node), much like a forwards search such as Dijkstra’s algorithm or A*. 

Thus, most nodes will still have costs lower than that of the goal node, meaning they cannot 
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be ruled out. Much like how this issue can be mitigated by using bidirectional search with 

Dijkstra’s algorithm or A*, it is also possible to construct a bidirectional (all costs 

computed both relative to start node and also relative to goal node) version of Eq. (4.5). 

Eq. (4.6) formulates a bidirectional form of the dual, where ( )tfy i  is the forwards direction 

dual variable for the transport constraint around node i and ( )
tb

y i  is the backwards 

direction dual variable for the transport constraint around node i. 

, , ,
max
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( ( ) ( )) ( ( ) ( )),

( ) ( ) ( , , ) ( ) , ( )
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tf tf s out
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 (4.6) 

 

Eq. (4.6) simultaneously computes both the cost going from the start node to each 

node ( ( )tfy i ) and the cost of going from each node to the goal node ( ( )
tb

y i ) using its 3rd 

and 4th constraints. The second constraint bounds the optimal cost of Eq. (4.6) using the 

sum of these two costs for each node. Eq, which ensures that ( )tfy i  and ( )
tb

y i  are 

computed correctly. (4.6) is actually an equivalent formulation to Eq. (4.5), as the constraint 

on the cost z for the start and the goal configurations constrains 
d

z  to take the same optimal 

value as in Eq. (4.5). With Eq. (4.6), ( ) ( )tf tby i y i+  is the lower bound on the cost of 

including node i in the optimal path, which provides a much tighter bound than Eq. (4.5) 

would. 
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Because Eq. (4.5) and Eq. (4.6) are linear programing (LP) problems, they can be 

solved much more quickly than Eq. (4.4), which is a MILP problem. However, both Eq. 

(4.5) and Eq. (4.6) are based off the relaxation of Eq. (4.4), not Eq. (4.4) itself. As additional 

scenarios are sampled and added to U the cost of the solution to Eq. (4.4) will increase. 

However, the lower bounds from Eq. (4.5) and Eq. (4.6) do not always increase 

accordingly. Thus, more nodes will need to be considered as more scenarios are added to 

U, making Eq. (4.5) and Eq. (4.6) less effective at reducing computational cost as more 

scenarios are sampled. 

4.3.2 Scaling-based bounds 

Because Eq. (4.4) is a MILP problem, care must be taken to ensure it is well scaled 

(no excessively large coefficients present in the A matrix defining the constraints of the 

MILP problem in the form Ax b≤ ), which must also be done for LP problems such as Eq. 

(4.6). If this is not done, Eq. (4.4) could fail to produce a feasible solution when solved 

numerically. When using Eq. (4.4) in a sampling based robust optimization approach, a 

logical choice for scaling Eq. (4.4) is the new worst case cost found for the current optimal 

path when a new worst case scenario is sampled. Because this worst-case cost is a feasible 

solution to Eq. (4.4) when the new scenario is added to U, it is also an upper bound on 

optimal cost of Eq. (4.4). Thus Eq. (4.4) can be scaled by dividing all edge costs by this 

worst case cost. 

Additionally, because this worst case cost is an upper bound, any edges which can 

have higher cost than the worst case cost can be ignored. While this may seem obvious, 

this means that the cost of any such edge can be replaced with the randomly sampled 
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scenario’s worst case cost. This allows us to avoid computing the costs of edges which are 

obviously not part of the robust optimal solution. Additionally, it ensures that Eq. (4.4) 

does not contain any excessively large edge costs, which could cause issues for MILP 

solvers if they were present. 

4.4 An Algorithm for Solving the Cost Robust Motion Planning Problem 

Using Sampling Based Robust Optimization 

This section presents an algorithm for solving the robust shortest path planning 

problem using randomly sampled scenarios, which makes use of an already computed 

motion planning graph G. The proposed algorithm starts with no costs computed under any 

scenarios for the edges in the motion planning graph G. In addition to the two  methods 

(see Sections 4.3.1 and 4.3.2) for determining which edges can be ignored when solving 

Eq. (4.4), the proposed algorithms incorporates two additional heuristic strategies, which 

are described below. 

4.4.1 Dual Cost Update Checking Strategy 

A heuristic strategy for identifying whether a node’s edges need to have their costs 

computed is to consider whether that node’s cost was updated recently in Eq. (4.6) or if 

that node is part of the current optimal path. This strategy accounts for the fact that Eq. 

(4.6)’s lower bounds will become less effective (since the duality gap increases) as 

additional scenarios are sampled. This strategy heavily reduces the number of nodes which 

need to be considered when computing edge costs. However, it is not guaranteed to identify 
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all the nodes which need to have their edge costs computed in a scenario, which could 

cause Eq. (4.4) to not yield the robust optimal solution. 

4.4.2 Lazy Cost Update Strategy 

A second heuristic strategy for reducing the number nodes with edges that need to be 

recomputed in a scenario is to only update the nodes that are part of the current optimal 

path. Once this has been done, Eq. (4.4) can be solved under the new randomly sampled 

scenario. If the current optimal solution does not change, then the new randomly sampled 

scenario has not changed the optimal solution to Eq. (4.4). If the current optimal solution 

changes, then this process can be repeated (by updating the costs of the edges going 

between nodes in the new current optimal path and solving Eq. (4.4) again) until the current 

optimal solution no longer changes. When the next worst case scenario is sampled, it is 

practical to update the costs of all nodes that were updated in this manner under the 

previous worst case scenario. This reduces the number of times that Eq. (4.4) will need to 

be resolved for a new worst case scenario. 

 Note that this strategy counteracts the limitation of only using changes in the dual 

to update costs, since it ensures that the solution to Eq. (4.4) is the robust optimal solution 

for the current set of scenarios in use.  

4.4.3 Proposed Sampling Based Robust Path Planning Algorithm 

Algorithm 4.1 (see below in Table 4.1) provides an implementation of the approach 

proposed, where ( , , )fm i j u is a mapping between an edge ( , ) Ei j ∈  and a scenario u to the 

cost of that edge under scenario u. Figure 4.4 provides a simplified flowchart for this 
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approach, where the lower corner of each step corresponds to the associated step in 

Algorithm 4.1. 

 It can be seen from Figure 4.4 that steps 1, 2, 5, 6, 7, 9, 12 and 15 in Algorithm 4.1 

form the same loop as seen in Figure 4.3, which implements a sampling based approach to 

scenario robust optimization. However, several extra steps are taken to minimize 

computational cost, by only computing the costs of edges going to and from nodes in the 

set H. The proposed approach will thus compute the costs of significantly less edges than 

the approach in Figure 4.3, as it only will compute the costs of edges going to or from 

nodes in the set H (see Step 12). Thus, the proposed approach is better suited to dealing 

with very large graphs, where the approach in Figure 4.3 will not be computationally 

feasible to run. Steps 12 and 18 implement the approach proposed in Section 4.3.1, which 

uses the dual to Eq. (4.4) to determine which edges can be ignored. Steps 12, 13 and 14 

implement the approach proposed in Section 4.3.2, which ignores edges which are too 

expensive to be part of the robust optimal solution and re-scales their costs accordingly. 

Note that Step 13 defines ms so that the values used for scaling are kept separate from the 

edge costs that have actually been computed (which are tracked in mf). Steps 12 and 19 

implement the heuristic strategy detailed in Section 4.4.1 that updates any nodes with 

increased cost in the dual. Steps 15, 16 and 17 implement the heuristic strategy detailed in 

Section 4.4.2 that lazily updates the costs of edges going to and from nodes in the current 

solution.  
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Table 4.1: Algorithm 4.1: Proposed Robust Shortest Path Planning Approach 
1. Initialize U with a nominal scenario un 
2. For all edges ( , ) Ei j ∈ , ( , , ) ( , , )f n nm i j u f i j u=  

3. Initialize mapping ( )D n  to be ( ) 0,D n n N= ∀ ∈ .  

4. Set {}
curent

H = , {}
new

H = . 

5. Solve Eq. (4.4) using the set of scenarios U in place of U  and ( , , )fm i j u  in 

place of ( , , )f i j u . 
6. If iterations remain, go to step 7 and reduce the number of remaining iterations 

by 1. Otherwise, stop and return the current solution 
7. Sample a random scenario uw. If 

( )

( , , )
out

w ij

i N j Z i

z f i j u x
∈ ∈

<  , go to step 8. 

Otherwise, return to step 6.  
8. Set 

( )

( , , )
out

w ij

i N j Z i

q f i j u x
∈ ∈

=  . 

9. Add uw to the set U. 
10. For all edges ( , ) Ei j ∈ , ( , , ) 0f wm i j u = . 

11. Set 
curent new

H H= , {}
new

H = . 

12. For all nodes i N∈ , if ( )D i q<  and current
i H∈ : 

a. For each scenario 
s

u U∈ : 

i. For all nodes ( )
inc

j Z i∈ , If max  m ( , , )
WC

f WC
u U

j i u q
∈

< : 

1. If ( , , ) 0f sm j i u = then set ( , , ) ( , , )f s sm j i u f j i u= . 

ii. For all nodes ( )
out

j Z i∈ , If max  m ( , , )
WC

f WC
u U

i j u q
∈

< : 

1. If ( , , ) 0f sm i j u = then set ( , , ) ( , , )f s sm i j u f i j u= . 

13. Set 
s fm m= .  

14. For all edges ( , ) Ei j ∈ , if max ( , , )
WC

f WC
u U

i N

q m i j u
∈

∈

<  , then set 

( , , ) ,
s s s

m i j u q u U= ∀ ∈ . 

15. Set 
old

x x= , then re-solve Eq. (4.4) using the set of scenarios U in place of U  

and ( , , )
s

m i j u  in place of ( , , )f i j u . 

16. For all edges ( , ) Ei j ∈ , if 1ijx =  then add node i to both 
curent

H  and 
new

H . 

17. If 
old

x x≠ , return to step 12. Otherwise, go to step 18. 

18. Solve Eq. (4.6) to obtain the current bidirectional dual solution using the set of 
scenarios U in place of U  and ( , , )

s
m i j u  in place of ( , , )f i j u . 

19. For all nodes i N∈ :  
a. If ( ) ( ) ( )tf tbD i y i y i< + , add node i to 

new
H . 

b. Set ( ) ( ) ( )tf tbD i y i y i= + . 

20. Return to step 6. 
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Figure 4.4: Flowchart of proposed robust path planning algorithm. Numbers in the lower 

right corner correspond to steps in Algorithm 1. 

4.4.4 Cost Robust Motion Planning 

While the approach presented above solves a robust path planning problem (on a graph), it 

can also be applied to motion planning problems by generating a graph using a method 

such as PRM [64]. It is important to note that Eq. (4.6) is only valid as a lower bound for 

the graph Eq. (4.6) is solved for, making the proposed approach incompatible with motion 

planning methods that construct graphs while solving the motion planning problem (e.g. 

RRT* [63] or RRT# [7]). Such methods could use a “forward” directional dual, such as Eq. 

(4.5), however the bounds provided by Eq. (4.5) are much weaker than those provided by 

Eq. (4.6). Thus, it is more computationally efficient to compute the motion planning graph 

in advance (using methods such as PRM), so that Eq. (4.6) can be used. 

4.5 Experiments 

Algorithm 4.1 was tested on a robust version of the risk based motion planning problem 

proposed in [102], using motion planning graphs generated by the approach used in [102]. 



93 

 

The motion planning problem from [102] was solved without an objective function, which 

generated a motion planning graph which could be used. The motion planning graph used 

was generated using same motion primitives as in [102], but the time optimal solution was 

always used as the solution to the BVP problem when finding trajectories between 

configurations. Additionally, the alternate sampling methods in [102] (sample in ball, 

sample on optimal trajectory) were not used. However, the variable connection radius 

proposed in [102] was used with a larger initial connection radius (γ0 = 3000) and with d = 

5. For computational efficiency, a maximum 10 legs were used when computing the costs 

of any edge in the motion planning graph. Additionally, when each node was first added 

into the motion planning graph, it was allowed to connect to a maximum of 20 neighbors. 

However, this limit was not enforced for any nodes already present in the motion planning 

graph. 

4.5.1 Wind Uncertainty Model 

The uncertainty considered consisted of an uncertain wind such as the one depicted 

in Figure 4.3, which was linearly interpolated (using matlab’s interp2 function [81]) from 

the (X,Y) windspeeds (red vectors) at the four nearest points on grid (red circles). The 

(X,Y) windspeeds were taken from a 20x20 grid of equally spaced points between the 

bounds of the planning problem used in [102].  
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Figure 4.3: Example of randomly sampled wind vectors used in experiments. The wind 

field is parameterized by the wind vectors (red) at fixed grid points (red), with the wind 

vectors at points not on the grid (blue) interpolated from the vectors at the nearby grid 

points 
 

To model the effects of how the wind conditions along a trajectory could affect the 

risk posed by the trajectory, a model was developed for how different wind conditions can 

change the crash probability distribution of the UAV. The model uses a proportional linear 

model (see [109]) to translate the crash distribution of the UAV in the presence of no wind 

based off how much wind is present based off a slope coefficient for each wind direction. 

The parameters for the proportional linear model were determined by generating crash 

distributions for multiple possible wind conditions through the use of monte-carlo 

simulation approach detailed in [103], using the same procedure as [109].  The slopes used 

in the linear model were a slope of 0.0728 m per m/s windspeed in the X direction and 

0.1207 m per m/s windspeed in the Y direction, the maximum windspeed considered in 

both the X and Y directions was +-15.1994 m/s (corresponding to 34 mph), which are the 
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same as used in [109]. This model was used in combination with the model for the crash 

probability distribution from [102], using the current wind vector at each point the crash 

probability distribution model was evaluated at. 

4.5.2 Methods Compared Against 

Algorithm 4.1 was compared against the performance of an approach ignoring edge 

correlations. This approached solved Eq. (4.1) with Djikstra’s algorithm, with Matlab’s 

[81] “ga” solver being used to find the worst case scenarios for each edge. Matlab’s “ga” 

solver was run with default settings apart from population size (25) and number of stall 

iterations (5). It also used only a maximum of 5 legs per edge when assessing risk, in order 

to further reduce computational cost. Results were also compared against a deterministic 

approach, which did not consider wind (assumed a windspeed of zero everywhere). 

4.5.3 Experiments Conducted 

The motion planner from [102] was run 5 times to produce 5 different motion 

planning graphs, which were used to account for its non-deterministic nature. Because 

Algorithm 1 is also non-deterministic, it was run under 5 different rng seeds for each of the 

5 different motion planning graphs, for a total of 25 different runs. All sampling based 

approaches were run for 3000 iterations. All MILP problems were solved using Gurobi 

[48] and all other algorithms considered were implemented in Matlab [81].  

When comparing the results from the different approaches, a set of 5000 scenarios 

was generated using a latin hypercube DOE (DOE), which was used to determine worst 

case costs. A different DOE was used for each of the 5 motion planning graphs. 
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4.6 Results 

Tables 4.2-4.6 shows all results for each of the 5 different motion planning graphs 

generated. The optimal cost listed in Tables 4.2-4.6 is the final cost that each approach 

computes as being its optimal cost, which is the scaled combination of the risk and time 

objectives. Figures 4.4-4.8 show the cost history of the solutions found by the robust 

motion planning approach for each motion planning graph. 

Table 4.2: Results for motion planning graph #1 
Number of Nodes: 2,769 Number of Edges: 33,429 
Run Worst case cost 

(actual) 
Optimal cost 
(perceived) 

Total number of leg 
evaluations ( 610 ) 

Number of 
scenarios used 

#1 1.11 1.10 3.94 10 
#2 1.11 1.10 4.43 12 
#3 1.11 1.11 5.03 15 
#4 1.11 1.11 2.83 8 
#5 1.11 1.11 3.39 10 
Worst Case 1.14 1.10 23.9 N/A 
Deterministic 1.11 1.04 0.0788 1 

 

Table 4.3: Results for motion planning graph #2 
Number of Nodes: 2,755 Number of Edges: 33,237 
Run Worst case cost 

(actual) 
Optimal cost 
(perceived) 

Total number of leg 
evaluations ( 610 ) 

Number of 
scenarios used 

#1 1.19 1.18 4.73 14 
#2 1.19 1.17 5.36 14 
#3 1.19 1.18 4.80 15 
#4 1.19 1.18 3.91 11 
#5 1.19 1.19 5.57 15 
Ignoring Edge 
Correlations 

1.51 1.11 25.0 N/A 

Deterministic 1.26 1.06 0.0839 1 
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Table 4.4: Results for motion planning graph #3 
Number of Nodes: 2,775 Number of Edges: 33,485 
Run Worst case cost 

(actual) 
Optimal cost 
(perceived) 

Total number of leg 
evaluations ( 610 ) 

Number of 
scenarios used 

#1 1.19 1.19 4.35 12 
#2 1.18 1.18 3.43 8 
#3 1.18 1.18 3.73 9 
#4 1.19 1.19 5.04 15 
#5 1.19 1.19 2.72 6 
Ignoring Edge 
Correlations 

1.18 1.18 24.7 N/A 

Deterministic 1.18 1.09 0.0839 1 
 

Table 4.5: Results for motion planning graph #4 
Number of Nodes: 2,752 Number of Edges: 32,875 
Run Worst case cost 

(actual) 
Optimal cost 
(perceived) 

Total number of leg 
evaluations ( 610 ) 

Number of 
scenarios used 

#1 1.12 1.12 5.51 15 
#2 1.12 1.12 4.64 14 
#3 1.12 1.13 4.42 14 
#4 1.12 1.12 3.31 9 
#5 1.12 1.12 4.76 13 
Ignoring Edge 
Correlations 

1.12 1.04 23.6 N/A 

Deterministic 1.12 0.942 0.0779 1 
 

Table 4.6: Results for motion planning graph #5 
Number of Nodes: 2,823 Number of Edges: 34,213 
Run Worst case cost 

(actual) 
Optimal cost 
(perceived) 

Total number of leg 
evaluations ( 610 ) 

Number of 
scenarios used 

#1 1.20 1.19 2.84 9 
#2 1.20 1.19 4.22 12 
#3 1.20 1.20 2.31 9 
#4 1.20 1.19 4.02 13 
#5 1.20 1.20 2.73 8 
Ignoring Edge 
Correlations 

1.45 1.09 25.7 N/A 

Deterministic 1.45 1.05 0.0855 1 
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Figure 4.4: Solution history for motion planning graph #1. Red denotes sampled 

scenarios with new worst case costs, blue denotes the current optimal cost found by the 

robust motion planning approach. Black lines denote the worst case cost for the final 

solution found in each run. 
 

 
Figure 4.5: Solution history for motion planning graph #2. Red denotes sampled 

scenarios with new worst case costs, blue denotes the current optimal cost found by the 

robust motion planning approach. Black lines denote the worst case cost for the final 

solution found in each run. 
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Figure 4.6: Solution history for motion planning graph #3. Red denotes sampled 

scenarios with new worst case costs, blue denotes the current optimal cost found by the 

robust motion planning approach. Black lines denote the worst case cost for the final 

solution found in each run. 
 

 
Figure 4.7: Solution history for motion planning graph #4. Red denotes sampled 

scenarios with new worst case costs, blue denotes the current optimal cost found by the 

robust motion planning approach. Black lines denote the worst case cost for the final 

solution found in each run. 
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Figure 4.8: Solution history for motion planning graph #5. Red denotes sampled 

scenarios with new worst case costs, blue denotes the current optimal cost found by the 

robust motion planning approach. Black lines denote the worst case cost for the final 

solution found in each run. 
 

As can be seen in Figure 4.4-8, the robust motion planning approach consistently 

converged to solutions where no new worst case scenarios were likely to be sampled. The 

gap between the cost in the randomly sampled worst case scenarios (red) and the current 

robust optimal cost found (blue) converges towards zero as additional scenarios are 

sampled. Note that in all of the experiments conducted, the largest deviation between the 

worst case cost found by the robust motion planning approach and the worst case cost 

assessed using the latin hypercube DOE was 0.02. However, the costs of robust motion 

planning approach’s solutions for the same motion planning graph do vary between runs. 

This is caused by the robust motion finding different trajectories which have similar costs. 
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In three of the five motion planning graphs (#1, #3 and #4), the deterministic 

solution is the robust optimal solution, indicating that there may exists one optimal solution 

under most scenarios for these three motion planning graphs. However, in the other two 

motion planning graphs (#2 and #5) there is a significant difference between the worst case 

costs of the deterministic and robust solutions. Figures 4.9 and 4.10 show the solutions 

found for these two motion planning graphs. 

In both Figure 4.9 and Figure 4.10, the deterministic solution passes near enough 

to populated areas that the wind can blow the UAV’s CPD over those areas. This leads to 

the deterministic solution having a worse cost than the robust motion planning approaches 

solutions, which take into account wind. Curiously, the approach that ignored edge 

correlations also found solutions with poor worst case performance in motion planning 

graphs #2 and #5. In motion planning graph #2 , the approach that ignored edge correlations 

chooses to spiral up at the start of its trajectory, which causes it to perform worse than even 

the determinist solution. This behavior may be partially caused by the smaller number legs 

used by the approach that ignored edge correlations when assessing risk. However, the 

deterministic solution shows the same behavior in motion planning graph #5, despite the 

fact that it used the same number of legs to assess risk as the robust motion planning 

approach. 

In terms of computational cost (number of leg evaluations), the deterministic 

approach was two orders of magnitude cheaper than the robust motion planning approach. 

The approach that ignored edge correlations typically required between 5 to 10 times more 

leg evaluations than the robust motion planning approach. The cost of the robust motion 

planning approach was roughly proportion to the number of scenarios it used. The number 
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of scenarios used by the robust motion planning approach ranged from as low as 6 to as 

high as 15. 

 

 
(a) 

 
(b) 

Figure 4.9: Plot of all optimal trajectories found for motion planning graph #2. (a) 2D 

view (b) 3-D oblique view (note axes have different scales). 
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(a) 

 
(b) 

Figure 4.10: Plot of all optimal trajectories found for motion planning graph #5. (a) 2D 

view (b) 3-D oblique view (note axes have different scales). 
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4.6.1 Discussion 

Of the approaches compared, the robust motion planning approach was the only approach 

that consistently found solutions with costs close to the robust optimal cost. Both the 

deterministic approach and the approach that ignored edge correlations found solutions 

with significant deviations in cost when used on motion planning graphs 2 and 5. While 

this behavior is expected from the deterministic approach (since it ignores uncertainty), it 

is surprising to also see this behavior from the approach that ignored edge correlations. The 

large gap in the perceived cost by the approach that ignored edge correlations and its actual 

worst case cost indicates that it failed to find the true worst case scenarios for several edges 

in the motion planning graph. Note that the GA was only stopped once it had converged, 

so this indicates that GA was ineffective at finding worst case scenarios for individual 

edges. A likely cause for this is that GA’s final solution is partly dependent on the quality 

of its initial population, which by necessity needed to be small so that GA was 

computationally feasible to run for each edge considered. While GA’s initial population is 

randomly sampled, it is significantly smaller than the total number of scenarios that the 

robust motion planning approach samples (25 vs. 3000). Thus the purely random search 

employed by the robust motion planning approach is able to outperform GA at finding 

worst case scenarios. Notably, the robust motion planning approach also required less leg 

evaluations than the approach that ignored edge correlations, indicating that a purely 

random search was also more computationally efficient than using GA. 

 However, the robust motion planning approaches computational cost was still much 

higher than that of the deterministic approach, which only accounted for one scenario. 

Interestingly, the robust motion planning approach was able to use as few as 6 scenarios 
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when finding the robust optimal solution. However, even when using only 6 scenarios 

(motion planning graph #3, run #5), the number of legs evaluated by the robust motion 

planning approach is still 32 times higher than that of the deterministic approach. Notably, 

the deterministic approach did find the robust optimal solution for three of the motion 

planning graphs generated. This indicates that it would be beneficial to start the robust 

motion planning approach with a nominal scenario in place of the empty initial scenario 

set used in the experiments. 

4.7 Concluding Remarks 

In this chapter, an approach was presented for solving robust motion planning problems. 

The approach presented was able to consider arbitrary models for how uncertainty affected 

the costs of edges in a motion planning graph. While such models cannot be used with 

conventional dynamic programing based motion planning techniques (e.g. PRM, RRT#), 

the proposed approach bypassed this issue by instead formulating a robust path planning 

problem using a transshipment formulation. The proposed approach also made use of 

several methods for bounding solutions costs, which allowed it to reduce the number of 

times which it needed to compute the costs of edges under different scenarios. The 

proposed robust motion planning approach was shown experimentally to be able to find 

solutions with costs near the robust optimal cost. 

 The proposed robust motion planning approach (which solves Eq (4.2)) was both 

faster and  more effective at finding robust trajectories than the approach that ignored edge 

correlations (which solves Eq. (4.1)). This indicates that it is possible to develop an 

efficient random sampling based approach for solving Eq. (4.1) in less computational time 
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than the proposed robust motion planning approach needs to solve Eq. (4.2). Such an 

approach could be practical for solving robust motion planning problems in real time. The 

proposed approach could also potentially be used to solve robust motion planning problems 

in real time, however this would be dependent on using a MILP solver that could be used 

in real time. State of the art MILP solvers such as Gurobi are typically not designed for use 

in real time, thus a specialized solver for Eq (4.4) would need to be developed. 

 The proposed approach’s scalability to larger motion planning graphs may also be 

limited, partially by the computational cost of solving a MILP (exponential worst case 

computational complexity), but primarily due to the much larger number of nodes (and 

thus edges) that will be present in the graph. In general, the proposed approach spent 

significantly more time computing edge costs than it did solving Eq (4.4) or Eq (4.6), 

indicating that the primary scalability concern for the proposed approach should be the 

number of edges in the motion planning graph it uses. However, the proposed approach 

has excellent scalability relative to the number of uncertain parameters present (like any 

sampling based robust optimization approach), as randomly sampling scenarios is 

technically unaffected by the number of uncertain parameters being sampled. 

 While the proposed robust motion planning approach was the faster of the two 

“robust” approaches compared, its computational cost is still much higher than that of a 

deterministic motion planning approach that ignores uncertainty. Given that the robust 

motion planning approach was able to use low number of scenarios on certain motion 

planning graphs, this indicates that there may be stronger cost bounds possible than the 

ones discussed in Section 4.3. Additionally, it indicates that it may be beneficial to use 

some form of scenario generation (as done in Chapter 3), in order to reduce the number of 
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scenarios in which edge costs need to be computed. However, the gradient search based 

methods used in Chapter 3 performed poorly with the uncertainty model considered in this 

chapter, being unable to further worsen the cost from the cost in the randomly sampled 

scenarios used. However, it may be possible to use a heuristic method such as the GA 

search used in order to do scenario generation, by including the randomly sampled scenario 

in GA’s initial population. 

This chapter formulated the cost robust motion planning problem and presented an 

approach for efficiently solving it. The next chapter formulates an optimization problem 

for simultaneously optimizing a UAV’s design and its path through a graph, and discusses 

several techniques for solving such problems.  
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Chapter 5: UAV Design and Path Planning Optimization 

This chapter considers a design and path planning optimization problem for 

unmanned aerial vehicles (UAVs), where the UAV’s path planning problem is represented 

as a shortest path problem on a graph, while its design problem is formulated as a design 

optimization problem. Such problems are important when optimizing the performance of 

UAVs, since the shortest path planning problem can be used to represent the UAV’s 

mission planning, while the design optimization problem determines the best possible 

UAV design configuration for the mission. For example, if a UAV is being operated over 

inhabited areas, the UAV operator needs to both determine a flight path which minimizes 

the risk posed to third parties and determine what the most appropriate physical design 

configuration is for a UAV flying over the inhabited areas in question. 

The general form of this problem is the combined optimization problem of the 

design of a vehicle and determining its path, henceforth referred to as the vehicle design 

and path planning (VDPP) problem. The path planning part of VDPP problems has a wide 

range of applications for UAV systems, ranging from finding paths between locations to 

more abstract planning problems such as mission planning.  The goal in all forms of the 

shortest path problem is to find a path through a graph from a starting node (or start node) 

to a destination node (or goal node) that yields the lowest total value of a cost function, 

which is the sum of the costs of the edges in the path.  The fastest known approaches for 

solving shortest path problems using graphs are based on Dijkstra's algorithm [36] and A* 

search [91].  As shown in this chapter, these methods can be extended and applied to VDPP 

problems if path costs are determined by solving the vehicle design optimization problem 
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for a fixed path. A* search can quickly solve shortest path problems by using a “cost-to-

go” heuristic, which estimates a lower bound cost-to-go from any node in the graph to the 

goal node in order to bound costs of the nodes that need to be searched.  If such a cost-to-

go heuristic satisfies the property of admissibility [91], which means the heuristic always 

provides a lower bound on the true cost to the goal from any node, then A* search will 

always find an optimal solution to a conventional shortest path problem. This chapter 

presents an admissible cost-to-go heuristic for the VDPP problem, but it also shows that 

A* search is not guaranteed to find an optimal solution for VDPP problems, as the edge 

costs are determined by the vehicle design which must be shared amongst all the edges.   

This chapter presents and compares four approaches for solving VDPP problems 

by constructing the solution using: (1) a proposed cost-to-go heuristic, (2) A*, (3) a new 

search algorithm, and (4) a branch-and-bound technique.  The new search algorithm, called 

the vehicle design and path planning algorithm (VDPPA), extends the algorithm first 

developed in [108] to be able to use the proposed cost-to-go heuristic.  These approaches 

were tested on VDPP problem instances in the domain of risk based path planning for 

UAVs, as discussed in [108] and [103]. 

This chapter is organized as follows: Section 5.1 formulates the VDPP problem. 

Section .2 introduces the cost-to-go heuristic for the VDPP problem. Section 5.3 shows via 

a demonstration example that A* is not guaranteed to find an optimal solution to VDPP 

problems. Section 5.4 develops a new branch-and-bound algorithm for optimally solving 

VDPP problems. Section 5.5 presents VDPPA, a new search algorithm which can find 

more optimal solutions than A*, but without the high cost of an exhaustive search like 

branch-and-bound.  Section 5.6 presents the results of computational experiments used to 
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evaluate the performance of these algorithms. Section 5.7 summarizes the chapter and 

presents concluding remarks.   

5.1 VDPP Problem Formulation 

The VDPP problem can be viewed as being a combined formulation of a design 

optimization problem and a shortest path planning problem.  This primarily takes the form 

of augmenting the formulation of a shortest path problem so that the design optimization 

problem’s formulation is used to determine the cost of each edge in the graph.  The goal of 

the VDPP is to find the lowest cost path between the start and goal nodes, where the cost 

of a path is a function of design variables (for vehicle design) and path itself, both of which 

can be altered in order to minimize the total cost function.  

5.1.1 Assumptions and Defintions 

1. Let G = (N, E) be a directed graph in which N is the set of nodes and E is the set of 

edges that connects these nodes, such that for any pair of nodes 1 2 1 2, ,n n N n n∈ ≠ , 

there is only one edge in E between the nodes 1n  and 2n .  

2. Let nstart and ngoal be two nodes in N, where nstart is the start node, and ngoal is the 

goal node.  

3. Let path p be an ordered set of m connected edges ei, i=1,…, m: [e1,..., ei,…, em]∈ 

E. 

4. Let P be the set of all feasible paths from nstart to ngoal.   
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5. Let dX R⊆   be the feasible domain for the d design variables, such that any design 

x is only feasible if x X∈  .  For and edge E
i

e ∈ , let ( , )
i

c e x  be the function that 

describes the cost of the edge ei with design variables  x .   

6. Let ( , )f p x  be the cost function associated with path p  and for design variables 

x , where ( , ) ( , )
i

i

e p

f p x c e x
∈

= . 

7. For any edge ei ∈ E and for any x ∈ X, ( , ) 0
i

c e x ≥  

5.1.2 Formulation 

The general formulation for the VDPP problem is given in Eq. (5.1). 

  

( )
,

min ,  

Subject to:

 

 

x p
f p x

p P

x X

∈

∈

 (5.1) 

 

The A* search can be used to solve Eq. (5.1) to determine the path, while the costs of each 

path A* considers are found by minimizing ( ),  f p x with respect to  x for each path 

considered. 

5.2 Cost-to-go heuristic for VDPP problems 

This section presents the cost-to-go heuristic (a lower bound on the cost to get to the goal 

node from a given node) and an approximation algorithm that uses the cost-to-go heuristic 

to construct a path that can be used to find a heuristic solution to a VDPP problem. 
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5.2.1 Cost-to-go Heuristic 

The proposed cost-to-go heuristic is based on the idea that associated with each edge e in 

E is an optimal design x*(e) in X that minimizes c(e, x), so that c(e, x*(e)) is a lower bound 

for the cost of edge e in a path containing other edges.  The cost of an optimal path from a 

node to the goal node using these lower bounds as the edge costs is a lower bound on the 

cost to reach the goal node from that node while using the same design for every edge.  

Thus, this cost-to-go heuristic satisfies the property of admissibility [91], so it can be used 

to speed up an A* search without changing the solution that will be found.  Note that it is 

not possible to define a cost-to-go heuristic as a function of a design, while it is possible to 

evaluate ( ),  f p x  for path that does not reach the goal, ( ),  f p x cannot be evaluated 

without specifying values for all of the design variables. 

Let P(n) be the set of all possible paths from node n to the goal node, and let h(n) 

be the cost-to-go for node n, expressed in Eq. (5.2.2), as follows: 

( )
( )

( ) min min ,
i

i
p P n x X

e p

h n c e x
∈ ∈

∈

=   (5.2) 

 

Determining h(n), the cost-to-go, requires finding a shortest path from node n to the goal 

node, which can be done using A* (each edge’s cost is independent from the other edges).  

Furthermore, A* can be implemented to determine h(n) using a backwards search [68] from 

the goal, which can be extended as needed, so that only one A* search is needed to compute 

h(n) for all the nodes in the graph. 
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5.2.2 Heuristic Algorithm for Solving VDPP Problems 

The cost-to-go heuristic can be used to find a feasible solution to the VDPP using the 

following two-step heuristic algorithm:  

Step 1:  Use A* to compute h(nstart), and let pH be the corresponding path from nstart to the 

goal node. 

Step 2:  Find xH = argmin ( , )H
x X

f x p
∈

.  

The solution (xH, pH) obtained from the algorithm is a feasible solution to the VDPP 

problem. Using the cost-to-go heuristic in this manner avoids any additional computational 

cost that would be incurred if an A* search were to be run using the cost-go-heuristic. 

However, this heuristic algorithm which only uses the cost-to-go heuristic may find a 

different solution than an A* search would.  

5.3 Suboptimality of A* in VDPP Problems 

The fact that the proposed cost-to-go heuristic can also be used to compute a heuristic 

solution to VDPP problems is important as A* search is not guaranteed to find an optimal 

solution when used on VDPP problems. To demonstrate this, consider the VDPP example 

in Figure 5.1(a), where 1x  and 2x  are design variables with the cost for each edge being as 

given in the graph (Figure 5.1(a)), and the objective function is to minimize the sum of 

edge costs. The start node is A and the goal node is F. Here, A* will correctly find that the 

shortest possible path for reaching node B through the edge AB, which leads it to the path 

in Figure 5.1(b). However, the edge AB is not part of the optimal solution to the VDPP 

problem, see Figure 5.1(c), even though node B is part of the optimal solution. It can thus 
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be seen that the principle of optimality of dynamic programming [91] does not hold in the 

context of VDPP, which means that A* and other dynamic programming algorithms are 

not guaranteed to find an optimal solution to VDPP problems.  

 

Minimize 
total cost of 
path from A 
to F, where:

1

2

1 2

1

2

6

x

x

x x

≥

≥

+ ≥

 
 

1x  = 4, 2x  = 2, total 

cost is 14 

 
1x  = 1, 2x  = 5, total 

cost is 12 

(a) (b) (c) 
Figure 5.1: (a) an example of a VDPP with edge costs that are all linear functions of the 
design variables, (b) the “optimal” solution found via A* search (dashed path), (c) true 
optimal solution to the problem (dashed path) 

 

It can also be observed that the issue depicted in Figure 5.1 is not something that 

would be resolved by the proposed cost-to-go heuristic. The heuristic solution that the cost-

to-go heuristic would find in Figure 5.1 is the same one that A* search would find with or 

without using the cost-to-go heuristic. The inherent issue present is that because the 

principle of dynamic programming [91] does not apply to VDPP problems, the guarantee 

of finding an optimal solution that it would normally provide to A* no longer holds. Thus, 

there currently are no known easily usable optimality conditions for identifying optimal 

solutions to VDPP problems, unlike normal path planning problems, meaning exhaustive 

search techniques are necessary to guarantee the optimality of the solution found. 
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5.4 A Branch-and-bound algorithm for Optimally Solving VDPP 

Problems 

Branch-and-bound is an implicit enumeration approach that identifies an optimal solution 

to an optimization problem. It can be applied to graph search problems, but, for graphs 

with many nodes, the computational effort required can become enormous due to the huge 

number of paths that need to be considered to find an optimal path and verify that no better 

path exists.  Better lower bounds can reduce the computational effort.  For this study the 

cost-to-go heuristic was used to generate a feasible initial solution, using the method 

presented in Section 4. Additionally, the cost-to-go heuristic was used as a lower bound on 

the cost of the solutions being considered, using the bound detailed in Eq. (5.3):  

( ) ( )

( )

, If  is not the goal node

, If  is the goal
( , )

 node
i

i

i

e p

i

e p

h n c e x n

c e x
g p x

n

∈

∈

 
 

= 

+


 
 




 

where n is the last node visited by path p. 

(5.3) 

 

The most practical way to use branch-and-bound for path planning problems is to 

directly branch on the paths themselves. This can be achieved by splitting the design 

optimization problem out of Eq. (5.1) and writing it in terms of an externally determined 

path with the cost-to-go heuristic being used as the objective function, giving the 

formulation in Eq. (5.4). 

( ) ( )* min ,
x X

F p g x p
∈

=  (5.4) 

 

Branch-and-bound can use Eq. (5.4) by branching directly on the paths being considered 

and then evaluating Eq. (5.4) to determine the optimal design for each of the paths. Then 
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Eq. (5.3) can be used to determine a bound on the optimal cost of a given path. The branch-

and-bound algorithm that was used for the VDPP problem consists of the following steps: 

Algorithm 5.1: Branch-and-bound for VDPP problems 

Step 1: Compute initial solution.  Compute h(nstart), the cost-to-go for the starting node, 

and find (xH, pH) using the heuristic algorithm; let this solution be the current best solution, 

and let g* = g(xH, pH) be the cost of this solution.  Create a list of expanded paths T that 

initially contains only one path (the path that contains only nstart); Go to Step 2. 

Step 2: Search.  If T is empty, then return the current best solution.  If T is not empty, select 

the path p in T with the smallest lower bound F*(p), as determined by Eq. 4, and remove it 

from T.  If F*(p) ≥ g*, then stop and return the current best solution.  If the last node in p 

is the goal node (ngoal) and F*(p) < g*, then make p the selected path the new current best 

solution, set g* = F*(p), and begin Step 2 again. Otherwise, go to Step 3. 

Step 3: Branch.  Let n be the last node in p.  For every node r in N such that there exists an 

edge in E from n to r and r is not in p, add a new path p+ to T by adding r to the end of p.  

Return to Step 2. 

5.5 Vehicle Design and Path Planning Algorithm (VDPPA) 

VDPPA is a forward search extension of the bi-directional search algorithm introduced by 

Rudnick-Cohen et al. [108] for solving the VDPP problem. As VDPPA is a forward search, 

it can make use of cost-to-go heuristics to improve its performance. VDPPA is an 

intermediary approach between using A* search and branch-and-bound for VDPP 

problems; VDPPA searches through more potentially optimal solutions than A* does, but 
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it avoids the massive set of alternatives that branch-and-bound exhaustively searches. 

Table 5.1 defines some key terms in explaining the operation of VDPPA. 

Table 5.1: Definitions 
Start node: Node representing the point at which the vehicle search starts  
Goal node: Node representing the destination that the vehicle needs to reach  
Path: A sequence of nodes, where each node is connected to the next 

node in the sequence by an edge  
Solution: A path p and the design variable values x*(p) that are optimal for 

that path, with g(x*(p), p) being the cost of the solution.   
Complete Candidate 
Solution (CCS): 

A solution that contains both the start and goal node in its path 

Partial Candidate  
Solution (PCS): 

A solution with a path that does not contain the goal node 

Subpath: A sequence of nodes connected by edges within a path 
Forward subpath: The subpath of a path from the start node to a specified node 
Backward subpath: The subpath of a path from a specified node to the goal node 
Priority queue [62]: A queue in which its first element has the lowest cost 

 

5.5.1 Overview 

VDPPA extends A* by enabling the search to continue after the goal node has been reached 

so that multiple candidate solutions can be considered.  To do this, VDPPA classifies 

solutions into two types: a Partial Candidate Solution (PCS) has a path that does not contain 

the goal node, and a Complete Candidate Solution (CCS) has a path that does contain the 

goal node. The cost of a PCS should be determined using Eq. (5.3) as it does not contain 

the goal node, while the cost of a CCS should be determined using Eq. (5.4) as it always 

ends at the goal node. To accomplish this, VDPPA employs two different algorithms for 

generating new solutions from existing solutions, one method for PCSs which is largely 

identical to A* search (see Algorithm 5.2) and one method for building CCSs from existing 

CCSs (see Algorithm 5.3). These two methods are then integrated with methods for 

tracking the current best solution for each node to create VDPPA (see Algorithm 5.4). 



118 

 

The following remarks are used to explain how VDPPA works and how it is an 

extension of A* search. 

Remark 1: Best solution for a node - Like A*, in VDPPA, each node stores its current 

“best” solution (see Remark 1a).  In A* search this “best” solution is always a PCS. 

However, VDPPA searches for the best CCS for each node, thus it attempts to replace the 

PCSs that A* finds for each node with CCSs which have a path containing that node.   

Remark 1a: Until VDPPA finds a CCS that has a path containing a specific node, the best 

solution for that node is the lowest cost PCS that ends at that node.  After a CCS is found, 

the best solution for any node in that CCS’s path is the lowest cost CCS that has a path 

passing through that node. 

Remark 1b: If a node switches its best solution from a PCS to a CCS, any other nodes that 

have a PCS as their best solution that contain that node in their path should drop their 

current best solution. This is because the CCS shares part of those PCSs’ paths, thus 

VDPPA needs to find alternate PCS solutions for those nodes with paths that are not a 

subset of an existing CCS’s path.  

Remark 1c: A node can have multiple best CCSs with the same cost, so the node must 

store all such CCSs that are generated.  

Remark 1d: VDPPA always assigns only one solution as the best solution for one node at 

a time. The only exception to this is when a CCS’s path contains several nodes, which have 

yet to receive CCSs, in which case those nodes have their best solution set as the CCS. 

Like in A*, solutions are assigned in order of their cost, with lower cost solutions (PCS or 

CCS) being considered first. 
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Remark 1e: Both PCSs and CCSs must designate a “target” node, which is the node 

VDPPA should check if the solution is the best for that node. Thus both PCS and CCS can 

be processed in a best first manner almost identical to A*, by checking if the current lowest 

cost solution can be assigned as the best solution and moving on to the next lowest cost 

solution if it cannot.  

Remark 2: Generating new CCS - VDPPA also adds a set of procedures for generating 

new CCSs and PCSs from the solutions stored in neighboring nodes, which allows it to 

search for more optimal solutions to VDPP problems than A*. Figure 5.2 graphically 

depicts these procedures, which are described as follows: 

Remark 2a: If a neighboring node has a PCS, one new CCS can be created by using the 

PCS’s path to the starting node in place of the original CCSs path to the starting node to 

create a new CCS. An example of this can be seen in Figure 5.2(a), where the CCS solution 

(path ABEF) at node B is combined with the PCS (path AC) stored in the neighboring node 

C, to create a new CCS with the path ACBEF. The procedure for generating new solutions 

from an existing PCS is as follows: 

• Let s be the existing PCS solution from which new PCS solutions should be 

generated 

• Let 1 2( , )e n n  be the edge going from node n1 to node n2. 

• Let ( )Z n  be the set of neighboring nodes of node n,

( ) ( ){ | N and , E}Z n w w e n w= ∈ ∈  
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• Let ( )t s  be the node that solution s “targets”, which is the node the solution s may 

be optimal for; ( ( ))S t s  is the current best known solution for node ( )t s  that 

solution s aims to replace. 

• Let ( )path s  be the path for solution s. 

Algorithm 5.2: Generate solutions from PCS  

For each ( ( ))n Z t s∈  where ( )S n  is empty, generate a new solution sn  as follows:  

• If goal
n n≠ , make a new PCS sn with ( ) , ( ) [ ( ), ( ( ), )]

n n
t s n path s path s e t s n= =   

• If goal
n n= , make a new CCS sn with ( ) , ( ) [ ( ), ( ( ), )]n goal n goalt s n path s path ns e t s= =  

Remark 2b: If a neighboring node has a CCS, two new CCSs can be created as both nodes 

have a solution with differing paths to the start node and goal node. One CCS can be created 

by treating the neighboring CCS as a PCS going up to the neighboring node. This can be 

seen in Figure 5.2(b), where the CCS (path ABEF) at node B is combined with the path up 

to node C of the CCS (path ACDF) at the neighboring node C, creating a new CCS with 

the path ACBEF. The second new CCS can be created by flipping this process, treating the 

initial CCS as the PCS and the neighboring node’s CCS as the initial CCS.  This can be 

seen in Figure 5.2(b), where the path of the CCS (path ABEF) at node B up to node B is 

combined with the CCS (path ACDF) at the neighboring node C, creating a new CCS with 

the path ABCDF. 
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(a) (b) 

Figure 5.2: Examples of generating new CCSs (lower figures) from neighboring 
solutions (upper figures) to a CCS (dashed) at node B: (a) generating a new CCS 
from a neighboring PCS (dash-dot) at node C, (b) generating two new CCSs from 
a neighboring CCS (dotted) at node C 

 

The procedure for generating new solutions from an existing CCS is as follows: 

• In addition to the definitions used for Algorithm 5.2 in Remark 2b: 

• Let s be the existing CCS solution from which new CCS solutions should be 

generated 

• Let ( )S n be the current best known solution for node n. 

• Let ( , )fpath s n  be the subpath of ( )path s   from the start node up to node n. 

• Let ( , )
b

path s n  be the subpath of ( )path s  from node n to the goal node. 

Algorithm 5.3: Generate new solutions from CCS  

For each ( ( ))n Z t s∈ , proceed as follows depending on what ( )S n  is: 

• If ( )S n  is a PCS, create a CCS sbn with 

( ) , ( ) [ ( ( )), ( , )]
bn bn b

t s n path s path S n path s n= = and add sbn to Q.   
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• If S(n) is a CCS, For each { ( ), ( )}
n

s S n ties n∈ , create the two new CCSs as 

follows: 

1. Create a new CCS sfn, with 

( )  , ( , ), ( , ) ( ) [ ]fn fn nf bpath s n pat s n pa tt s shh n= =  if 

( ) ( ( ( )))fn fnpath s path S t s≠ . 

2. Create a new CCS sbn, with 

( , ), (( )  ,  ) ,[ )](bn bn nf bpath n patht s n path s s s n= =  if 

( ) ( ( ( )))
bn bn

path s path S t s≠ . 

Remark 3: Removing dependent PCSs 

When VDPPA finds a CCS and assigns it to a node that has a PCS, there may be other 

nodes which have PCS that build off the PCS getting replaced by the CCS. Some of these 

PCSs can be said to be PCSs that are “dependent” on the PCS being replaced, they cannot 

lead to lower cost solutions than the CCS that is being assigned to a node. Thus these 

“dependent” PCS are unable to be part of the optimal solutions for their “target” nodes. 

Consequently, whenever a CCS replaces a PCS as the “best” solution for a node, VDPPA 

removes all PCSs that build off the PCS being replaced from being their target nodes’ 

“best” solution. This strategy will remove all “dependent” PCS, however it will also 

remove some PCS that could still be part of the optimal solution. VDPPA handles this by 

first removing all dependent PCS whenever it adds a CCS and then creating new PCSs by 

branching off the CCS’s path to the neighboring nodes to the CCS’s path that had their 

“best” solution removed. This allows VDPPA to get rid of the “dependent” PCSs, while 
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still being able to reconstruct any of the removed PCSs that may still lead to the optimal 

solution if they are needed. 

Additionally, when VDPPA finds a CCS and assigns it to a node that has a PCS, 

VDPPA replaces all the nodes in the path of that PCS that currently have a PCS as their 

“best” solution, as the CCS will usually end up becoming the solution for these nodes 

anyway after further iterations. Thus, the VDPPA gets rid of “dependent” PCSs for all 

these nodes. For this reason, the start node is treated as being a node that has a CCS for the 

purposes of keeping PCSs, so that all PCSs are not deleted when this first occurs. Note that 

this does not change the CCSs that would be generated from the PCSs being deleted, as the 

PCSs are already the forwards subpaths of the new CCS. This procedure also achieves the 

goal of Remark 1b, after the “dependent” PCS’s are removed, VDPPA will search for 

alternative PCSs that could have lower costs than the removed PCSs. 

Remark 4: Stopping condition - As VDPPA continues to generate CCS solutions, it will 

reach a point at which the best solution for every reachable node will be a CCS. Once this 

occurs VDPPA will be unable to find a new best solution for any node. Thus, VDPPA’s 

stopping condition is when it no longer can generate new solutions (PCS or CCS), at which 

point it must stop and report the lowest cost CCS found. 

Remark 5: Speeding up reaching the stopping condition - To accelerate the process of 

reaching VDPPA’s stopping condition without compromising solution quality, it is 

preferable to identify PCS solutions that cannot lead to the creation of optimal CCS 

solutions. Like the proposed branch-and-bound approach, VDPPA does this by ignoring 

PCS solutions for which Eq. (5.3) yields a cost higher than the current best solution. Thus 

any PCS solution which has a cost determined via Eq. (5.3) to be higher than the cost of 
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the best CCS solution seen so far can be ignored, allowing VDPPA to avoid searching any 

further paths built off that PCS solution. 

5.5.2 VDPPA steps 

In this section, a step-by-step description of VDPPA is provided. The following notation 

is used to describe the VDPPA steps: 

• Recall that nstart is the start node from which the path starts and that ngoal is the goal 

node where the path should end. 

• In addition to the definitions from Algorithms B and C in Remarks 2a and 2b: 

• Let ( )ties n  be the set of CCSs found with the same cost as the current best known 

solution ( )S n  for node n. 

• Let *( ) ( ( ))F s F path s=  be the cost of solution s, defined by either Eq. (5.2) for 

PCS and CCS or Eq. (5.3) for OPCS, note that computing ( )F s  means solving the 

optimization problems in Eq. (5.2) and Eq. (5.3) to find an optimal design for 

solution s 

• Let R be the best CCS obtained so far during the search. 

• Let CR be the cost of R, the best CCS seen so far 

Algorithm 5.4: VDPPA 

Step 1: Compute initial heuristic solution. Compute the cost-to-go heuristic for the start 

node nstart. Let the path found by the cost-to-go heuristic for reaching the start node be 
start

p

.  Create a new CCS 
init

s with  ( )
init start

path s p= .  Set R = 
init

s  and ( )
R init

C F s= . Go to step 

2. 
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Step 2: Generate initial PCSs. Create an empty priority queue Q. For ( )
start

Z nn∈ , create a 

PCS s with ( ) , ( ) [ ( , )]
start

t s n path s e n n= =  and add it to Q. Go to step 3. 

Step 3: Check type of best solution in queue. If Q is empty, return R and finish. Otherwise, 

let s be the first solution in Q. Remove s from Q. Depending of what type of solution s is, 

proceed as follows: 

• If s is a PCS go to Step 4.  

• If s is a CCS and ( )
R

F s C< , set R = s and ( )
R

C F s=  and go to Step 5.  

• If s is a CCS and ( )
R

F s C≥ , go to Step 5. 

Step 4: Process PCS. If ( ( ))S t s  is empty and ( )
R

F s C≤ , set ( ( ))S t s s=  and then generate 

new solutions by applying Algorithm 5.2 to s. Add the newly generated solutions to Q and 

then return to step 2. If ( ( ))S t s  is not empty or ( )
R

F s C> , return to Step 2. 

Step 5: Process CCS. Proceed as follows: 

• If ( ( ))S t s  is a PCS, go to Step 6.  

• If ( ) ( ( ( )))F s F S t s< ), set ( ( ))S t s s=  and ( ) {}ties s = , then generate new solutions 

using using Algorithm 5.3 with s. Add the newly generated solutions to Q. Return 

to Step 2.   

• If ( ( ))S t s  is a CCS and ( ) ( ( ( )))F s F S t s= , add s as a tie solution to ( ( ))ties t s and 

then generate new solutions using Algorithm 5.3 with s. Add the newly generated 

solutions to Q. Return to Step 2.    

• If ( ) ( ( ( )))F s F S t s> , return to step 2.  
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Step 6: Remove Dependent Partials.  For each ( )
n

v path s∈ , where ( )S v is a PCS, perform 

the following steps in sequence for v, then return to step 2 after all ( )
n

v path s∈ have been 

processed. 

a. For any ( )N, m q S m∈ = , where q is a PCS and ( ( ))path S v  is a subpath of q, 

do the following: 

• Set ( ) {}S m =  

• For any ( )j Z m∈ , if ( )S j  is a PCS or if
start

j n= , generate new 

solutions using Algorithm 5.2 with ( )s S j=  and then add the newly 

generated solutions to Q. 

b. For each u Q∈  where u is a PCS that contains ( ( ))path S v  as a subpath, remove 

u from Q. 

c. Set ( )
v

S v s= , where sv is CCS identical to s except that ( )
v

t s v=  . Generate 

new solutions from sv using Algorithm 5.3 and add them to Q. 

5.6  Experimental Results 

To evaluate the performance of the four solution algorithms (the heuristic algorithm, 

VDPPA, A*, and branch-and-bound), 504 instances of the VDPP problem were generated.  

The VDPP problem involved optimizing the design of a UAV and the path it follows from 

a given start location to a given goal location.  The problem instances were set in a region 

located in Maryland, Virginia, West Virginia, and Washington, D.C.  The relevant 

objectives were reducing the risk to third parties and reducing the time required [103].  The 

UAV design variables were the flight speed, x(1), the wing reference area, x(2), and the 
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flight height, x(3) (above ground level).  All three design variables were continuous 

variables. Table 5.2 lists their ranges and initial conditions. 

Table 5.2: UAV design variables 
 Flight Speed x(1) 

(m/s)  
Flight Height 

x(2) (m) 
Wing Reference Area x(3)  

(m2) 
Lower Bound 30 1,024 12.17 
Initial Conditions 50 1,600 16.17 
Upper Bound 70 2,024 20.17 

 

Two experiments were performed using these instances.  In the first experiment 

(described in Section 5.6.1), all four algorithms were used to find solutions to one instance 

with multiple cost functions (combinations of third-party risk and time). In the second 

experiment (described in Section 5.6.3), the heuristic algorithm, VDPPA, and A* were 

used to find solutions to all 504 instances with the same objective function (third-party 

risk). The results for Experiment 1 and 2 are discussed in Section 5.6.2 and 5.6.4, 

respectively. 

5.6.1 Experiment 1 

In Experiment 1, the cost function was a combination of the risk to third parties and the 

time required. A surrogate model was developed to determine how the design variables 

affect the crash location probability distribution. Monte Carlo simulations were conducted 

of UAV crashes (using the approach described by Rudnick-Cohen et al. [103]) for all 18 

combinations of the following design variable values: the lower bound, initial conditions, 

and upper bound of the flight speed; the lower bound and upper bound of the flight speed; 

and the lower bound, initial conditions, and upper bound of the wing reference area.  When 

initializing each simulation run, the flight height and wing reference area were set to the 
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given values, and the flight speed was determined by adding a random perturbation to the 

given value.  This perturbation and the perturbations of the other initial conditions were 

the same as those of Rudnick-Cohen et al. [103].  

Each simulation run required solving the system of ODEs in Table A.2 [119], in 

which the control surfaces were modeled as unactuated surfaces that could move freely 

between the upper and lower bounds on the control surfaces’ angles. Each simulation run 

ended when the vehicle hit the ground, at which point ( ,
N E

p p ) was taken as the crash 

location of the vehicle.  Except for the three design variables, the vehicle parameters were 

those of a Cessna 182 [101]. For each configuration of design variables considered, 10,000 

simulation runs were conducted in order to construct a crash probability distribution (CPD), 

representing the probability of the UAV crashing at different locations. Each CPD was 

represented using a 200 by 200 bin 2-D histogram of the crash locations from the 10,000 

runs. For more details on the Monte-Carlo simulation approach used, see Appendix A. 

A reference CPD was generated by simulating crashes for the design point with a 

flight speed, x(1) of 50 m/s, a wing reference area, x(2) of 16.17 m2, and a flight height x(3) 

of 1524 m.  The other CPDs were modeled as transformations of the reference CPD.  A 

Gaussian Process Regression model using a Matern 5/2 kernel was fit to this reference 

CPD using MATLAB’s Regression Learner tool [82], so that the reference CPD could be 

treated as a continuously valued 2D probability density function. The final CPD used for 

design optimization was a transformation of the reference CPD via Eq. (5.6), where x  and 

y are the displacement at which the UAV could crash relative to the UAV’s position, 
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( , )refCPD x y is the reference CPD and a , x
b , x

r ,
yb ,

yr  and v  are the parameters 

transforming the reference CPD, which are dependent on the design being considered. 

( , , , , , , , ) ( , )x y x y ref x x y yCPD x y a b b r r v aCPD b x r b y r v= + + +  (5.6) 
 

Each CPD generated for the conditions in Table 5.2 was split into 64 equally sized 

pieces with a 25% overlap, least squares was then used to fit a , x
b , x

r ,
yb ,

yr  and v  values 

to each piece, using Eq. (5.6) to fit the probabilities of the bins inside that piece. In order 

to evaluate Eq. (5.6) for designs for which a , x
b , x

r ,
yb ,

yr  and v were not computed, a K 

nearest neighbor (KNN) approach was used. The inputs for the KNN were x, y and the 

current design variables. The distance for the KNN was an L2 norm between both the 

difference between the centroid of a piece and x and y and the difference between the design 

being evaluated and the design which a piece was generated from.  The KNN chose the 

parameters for the 6 nearest pieces (k = 6) with a constraint that none of the pieces chosen 

could come from the same design variables. The KNN then approximated the value of Eq. 

(5.6) for a design by evaluating Eq. (5.6) with the parameters of the chosen pieces and then 

combining the resulting probabilities via a weighted sum with weights inversely 

proportional to the KNN’s distance measure. The risk objective considered used the KNN 

to determine a binned CPD for the current design variables, with the centroid of each bin 

being used as the x, y inputs to the KNN for that bin. For computational efficiency, the 

binned CPD constructed for the risk objective had a 21 by 21 bin resolution. Note that the 

KNN model used in this chapter is not the same as the one detailed in Appendix A. 
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The risk value for each edge was evaluated using the risk metric from [103], using 

discrete grid of population data computed from US census block data [122] in place of 

census tracts. The time to traverse an edge was calculated by the dividing the length of that 

edge (along the ground) by the flight speed v. Both the risk and time values were scaled as 

follows: the risk value was divided by the maximum risk value in the graph under the initial 

design configuration in Table 5.2, the time value was divided by the time needed to travel 

a straight line path between the start and end locations. The scaled values were then 

combined using a weighted sum. Six combinations of weights were considered: [1, 0], [0.8, 

0.2], [0.6, 0.4], [0.4, 0.6], [0.2, 0.8], and [0, 1]. 

For solving the design optimization problem, MATLAB’s [80] fmincon solver was 

used with the active set method and objective function and design variable tolerances of 

10-3.  The design variables were scaled into the range [0, 1]. The initial conditions and 

upper and lower bound constraints for each design variable in the design optimization 

problem were those detailed in Table 5.2. Both the VDPPA and A* generated solutions by 

setting these initial conditions for the first set of solutions generated and then using the 

design variables from parent solutions as the initial conditions for their child solutions. 

When computing the cost-to-go heuristic, the initial conditions from Table 5.2 were used 

for every edge’s design optimization problem, to avoid any inconsistencies.  
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Table 5.3: Relevant parameters for Experiment 1 
Start 

Longitude 
(deg) 

End 
Longitude 

(deg) 

Start 
Latitude 

(deg) 

End 
Latitude 

(deg) 

Number of 
nodes in 

graph 

Number of 
edges in 

graph 
-81.283 -76.952 37.945 38.670 560 3,964 

5.6.2 Results for Time-risk VDPP in Experiment 1 

Table 5.4 lists the results for all four algorithms on the six multi-objective cases 

considered. The units for the risk objective are expected fatalities. In case 1, when the 

objective function considers only the risk to third parties, the branch-and-bound algorithm 

was halted after calling the objective function 1,000,000 times.  The heuristic algorithm 

and A* found solutions with the same path (but different values of the design variables), 

and the VDPPA and branch-and-bound found solutions with the same path (but different 

values of the design variables). Figure 5.3 shows the paths for these solutions.  The heuristic 

algorithm required the least number of objective function calls.  The VDPPA required 

slightly more objective function calls than A* did. 
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Table 5.4: Results from demonstration problem, f(x) is the weighted cost function 
between the 2 objectives, x(1) is Velocity (m/s), x(2) is Wing Reference Area (m2) and 

x(3) is Flight Height (m) 

Case 
# 

Weight 
(Risk) 

Weight 
(Time) 

Approach f(x) 
Time 
(hrs) 

Risk 
(10-5) 

Func. 
Calls 

x(1) x(2) x(3) 
# of PCS 
and CCS 
checked 

1 1 0 

Heuristic 0.0786 0.886 3.609 9363 70 16.04 1517 N/A 
A* 0.0685 0.886 3.146 16524 70 15.62 1407 58 

VDPPA 0.0683 0.876 3.135 16708 70 15.62 1407 280 
B & B 0.0683 0.876 3.138 >106 70 15.75 1439 164,133 

2 0.8 0.2 

Heuristic 2.7434 0.374 9.205 6966 70 16.19 1524 N/A 
A* 2.7426 0.374 9.160 8420 70 16.18 1524 15 

VDPPA 2.7426 0.374 9.160 8420 70 16.18 1524 49 
B & B 2.7426 0.374 9.160 8420 70 16.18 1524 104 

3 0.6 0.4 

Heuristic 5.2871 0.374 9.261 7383 70 16.18 1524 N/A 
A* 5.2858 0.374 9.159 8776 70 16.18 1524 16 

VDPPA 5.2858 0.374 9.159 8776 70 16.18 1524 50 
B & B 5.2858 0.374 9.159 9304 70 16.18 1524 235 

4 0.4 0.6 

Heuristic 7.8300 0.374 9.280 6985 70 16.18 1524 N/A 
A* 7.8302 0.374 9.297 8098 70 16.17 1524 16 

VDPPA 7.8300 0.374 9.280 8098 70 16.18 1524 50 
B & B 7.8300 0.374 9.280 8098 70 16.18 1524 104 

5 0.2 0.8 

Heuristic 10.373 0.374 9.244 6950 70 16.17 1524 N/A 
A* 10.372 0.374 9.104 8030 70 15.46 1524 15 

VDPPA 10.372 0.374 9.104 8030 70 15.46 1524 49 
B & B 10.372 0.374 9.104 8030 70 15.46 1524 104 

6 0 1 

Heuristic 12.905 0.373 14.68 6932 70 16.17 1524 N/A 
A* 12.905 0.373 14.68 7976 70 16.17 1524 15 

VDPPA 12.905 0.373 14.68 7976 70 16.17 1524 49 
B & B 12.905 0.373 14.68 7976 70 16.17 1524 104 

 

In the other five cases, the four algorithms found solutions with the same path.  In 

cases 3 and 6, these solutions also had the same values of the design variables.  In case 4, 

the solution found by A* had a slightly different value for the wing reference area (variable 

x(2)), which increased the risk to third parties.  In case 5, the solution found by the heuristic 

algorithm had a greater value for the wing reference area (variable x(2)), which increased 

the risk to third parties.  In these cases, the VDPPA and A* required the same number of 
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objective function calls.  The computational effort (the number of objective function calls 

and the number of PCS and CCS considered) in these cases was less than the computational 

effort in case 1. These results indicate that, as the weight on the risk to third parties 

decreases, it is easier for the algorithms to find high-quality solutions quickly. 

 
Figure 5.3: Comparison of the path of the solution 
found by A* and the path of the solution found by 
branch-and-bound and VDPPA for case 1. 

 

5.6.3 Experiment 2 

A set of 504 different instances with randomly determined grid spacing, start points and 

end points (as detailed in Table 5.5) were generated and used to compare the solutions 

found by the heuristic algorithm, A* and VDPPA. The demonstration problem instance 

detailed above was one of the randomly generated cases. All the randomly generated cases 

were required to have a minimum distance of three degrees between the start and end 

points. All nodes and edges in the randomly generated cases were constrained to be within 

one of the three U.S. states of, Maryland, Virginia or West Virginia, or within Washington 

D.C, any nodes and edges outside this region were removed from the graphs being 
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generated. Each method was only run for the risk objective in each case, due to the risk 

objective being more heavily affected by the design variables than the time objective. In 

these instances, the objective function included only the risk to third parties.  

Table 5.5: Parameters used to generate cases for Monte Carlo study 
 Latitude 

(deg) 
Longitude 

(deg) 
Max number of nodes 
along  x axis in graph 

Max number of nodes 
along  y axis in graph 

Min -83 36.5 15 15 
Max -75 39.75 35 35 

5.6.4 Results for Experiment 2 

For 504 instances generate for Experiment 2, the number of times that each algorithm found 

the best solution, how often their solutions’ paths differed, and the number of objective 

function calls were tallied.  Table 5.6 summarizes these results. 

For these instances, compared with the VDPPA, the heuristic algorithm required 

less computational effort (about 65% of the number of objective function calls), but A* 

required nearly the same computational effort (99% of the number of objective function 

calls). The VDPPA found the best solution for every instance.  The heuristic algorithm 

found the best solution in about 40% of the instances, and A* found the best solution in 

over 50% of the instances.  In several instances, A* and the heuristic algorithm found the 

same optimal path as VDPPA but had worse designs for that path. In 5 of the 33 instances 

where A* did not find same path as VDPPA neither A* nor the heuristic algorithm were 

able to find VDPPA’s path. In the remaining 28 instances, the heuristic algorithm found 

the same path as VDPPA, indicating the heuristic algorithm alone would have been 

sufficient to find the optimal solution. However, it should be noted that A* did better 

overall at finding the same paths as VDPPA than the heuristic algorithm did.   
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Table 5.6: Results summary from the 504 randomly generated problems that only 
considered the risk objective 

Method 

Frequency 
of finding 

best 
solution 

Frequency 
that best 
solution 
involved 
different 
path than 

A* 

Frequency 
that best 
solution 
involved 
different 
path than 
Heuristic 

Obj. Fun. 
calls as a 

percentage 
of calls 

made by 
VDPPA 
(mean) 

Obj. Fun. 
calls as a 

percentage 
of calls 

made by 
VDPPA 
(standard 
deviation) 

Obj. Fun. 
calls as a 

percentage 
of calls 

made by 
VDPPA 
when not 

best 
solution 
(mean) 

Heuristic 219 28 N/A 64.83% 1.702% 65.64% 
A* 277 N/A 74 99.28% 17.95% 99.10% 

VDPPA 504 33 79 N/A N/A N/A 

5.7 Concluding Remarks 

This chapter introduced the VDPP problem, which requires simultaneously optimizing the 

design of a UAV and determining the path that it should follow to complete a mission.  

Unlike problems considered in other research, this VDPP problem has continuous design 

variables and a path that is a connected sequence of nodes and edges in a graph. 

This chapter presented VDPPA, a new search algorithm for solving this problem, a 

new cost-to-go heuristic and a new heuristic algorithm that constructs a feasible solution 

while computing the cost-to-go at the start node. Results were presented from 

computational experiments performed to evaluate the performance of these two algorithms 

and compare them with a version of A*.  When used to find solutions for 504 randomly 

generated instances, the VDPPA always found the lowest cost solution, while the heuristic 

algorithm and A* did not.  The computational effort of the heuristic algorithm was much 

lower than the computational effort of A* and VDPPA, which required approximately the 

same computational effort.   
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Since it can find better solutions with about the same computational effort as A*, 

VDPPA is a significant improvement in finding solutions to design and planning problems 

for more general domains.  However, VDPPA is limited to problems in which there is at 

most one edge between any two nodes in the graph, so the algorithm cannot be used to find 

solutions to problems where there are multiple ways to transition between nodes. 

However, the gap between VDPPA and A*’s computational cost may increase 

when VDPPA is run on graphs containing larger numbers of nodes and edges, since this 

would increase the number of CCS that VDPPA would need to search. However, VDPPA’s 

computational cost is likely still much better than that of branch and bound, which was 

observed to be significantly more expensive than VDPPA during Experiment 1 (Section 

5.6.1).  

Although the VDPP has applications in many domains, the formulation in Eq. (5.1) 

presumes that the X, set of feasible designs, is independent of the path selected.  That is, 

the constraints on the design variables do not depend upon the path.  This may not hold in 

some applications, such as when a path requires UAV maneuvers that make some UAV 

designs infeasible. Although discretizing the design space is one approach for handling 

such situations [84], the design space and state space of many systems are both high-

dimensional, such as the numerous components and complex dynamics present in a UAV. 

Thus, additional research is needed to develop methods that can handle a continuous 

variable design space and a continuous variable state space in order to fully solve optimal 

design and path planning problems for UAVs and other unmanned systems. 
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This chapter discussed methods for solving design and path planning optimization 

problems where path planning occurs on a graph. The next chapter extends these methods 

to work on motion planning problems, by running them on a motion planning graph. 
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Chapter 6: UAV Design and Motion Planning Optimization 

In this chapter, the problem of design and motion planning optimization is formulated and 

solved. Unlike the design and path planning problem considered earlier, in a design and 

motion planning problem both the design variables and the trajectory an unmanned vehicle 

will travel are defined using continuous spaces. This allows for more sophisticated models 

of vehicle motion than the simple 2D graphs considered in Chapter 5, which can account 

for vehicle dynamics and which can involve more than two dimensions. These more 

sophisticated models of vehicle motion are particularly important when simultaneously 

optimizing the design and motion of UAVs, since UAVs can have up to 6 degrees of 

freedom in which they are capable of motion. 

 This chapter is organized as follows. Section 6.1 presents the problem of design 

and motion planning optimization. Section 6.2 provides a formulation for the problem of 

design and motion planning optimization. Section 6.4 presents an approach for solving 

design and motion planning problems. Section 6.5 tests the proposed approach on the risk-

based motion planning problem previously considered in Chapter 2 and compares its 

results against those of a design study. Section 6.6 summarizes the results of this chapter 

and presents some concluding remarks. 

6.1 Design and Motion Planning Optimization 

The problem of design and motion planning optimization can be viewed as being similar 

to the VDPP problem formulated in Chapter 5, except that the path is now no longer 

constrained to exist on a graph. In practice a graph structure is still needed to represent the 

connectivity between different configurations, as done in [9], [33] and [84], though 
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trajectory optimization [44] and optimal control [44] have also been used. The graph based 

approaches use sampling based motion planners to construct the graphs they use to 

determine the optimal paths, using either global search [9] or a discrete design set ([33], 

[84]) to handle the designs.  

In this chapter, a new approach to solving design and motion planning problems 

using sampling based motion planning is proposed. Rather than relying on putting the 

motion planning problem inside a design optimization formulation, a motion planner is 

instead used to determine a graph of reachable configurations, which can then be used to 

formulate a VDPP problem in order to simultaneously optimize the route through the 

motion planning graph and the optimal design. This differs from all previous approaches 

to solving design and motion planning problems, which have relied on completely 

decoupling the problems of design optimization and motion planning into separate 

optimization problems. 

6.2 Formulation of Design and Motion Planning Problems 

Below, a formulation for the problem of optimal design and motion planning is given: 

1. Let C  be the configuration space, the set of all feasible configurations for our 

vehicle. 

2. Let sc  be the vehicle’s initial configuration of the vehicle; let 
fc  be the desired 

final configuration.  



140 

 

3. For any 1c  and 2c C∈ , let ( )1 2,B c c  be the set of all possible solutions to the BVP 

between configurations 1c  and 2c , where ( )1 2,s B c c∈  is a continuous sequence of 

configurations from 1c  to 2c  that satisfies all of the dynamics constraints present. 

4. Let dX R⊆   be the feasible domain for the d design variables, such that any design 

x is only feasible if x X∈ .   

5. Let ( ),f x s  be the cost of design x moving along s . For any configurations 1c ,

2c C∈  and for any design x X∈ , ( ), 0f x s ≥  for all 1 2( , )s B c c∈  . 

Then the problem of optimal design and motion planning has the formulation given in Eq. 

6.1. 

( )

,
min ( , )

Subject To:

,

x s

s f

f x s

x

s B c c

X

∈

∈
 (6.1) 

6.3 Proposed Approach for Design and Motion Planning 

When a motion planning graph is available, Eq. 6.1 becomes an instance of a VDPP 

problem (see Chapter 5). For computational efficiency, it is preferable to attempt to 

construct the graph for a design and motion planning problem in advance using a method 

such as PRM, rather online using a method such as RRT#. Because the VDPP problem does 

not satisfy the principle of dynamic programming (see Chapter 5), the entire VDPP 

problem will need to be resolved whenever a configuration is added into the graph during 

RRT#, since the new configuration could be part of the optimal solution. Thus, it is more 
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efficient to first construct the motion planning graph and then solve the VDPP problem on 

it, as this only requires solving the VDPP problem once.  

VDPPA can thus be easily extended to motion planning problems by taking advantage 

of the fact that it must first compute the optimistic cost-to-go heuristic. The optimistic cost-

to-go heuristic (see Chapter 5) satisfies the principle of dynamic programming, thus it can 

be used as the objective function for RRT#. The graph which RRT# computes can then be 

used by VDPPA as it solves the VDPP problem on that graph. A step-by-step description 

of this process is given below: 

1. Use RRT# to solve a motion planning problem between the goal node 

(configuration 
fc ) to the start node (configuration 

s
c ), where the objective is the 

cost-to-go heuristic proposed in Chapter 5. Note that RRT# will also compute a 

search tree connecting each node in the motion planning graph to the start node 

during this step, which computes the optimistic cost-to-go heuristic for all nodes in 

the graph. 

2. The path RRT# finds for the cost-to-go heuristic is turned into an actual solution to 

the design and motion planning problem using the heuristic algorithm from Chapter 

5, Section 5.2.2.  

3. The initial solution is used with VDPPA (See Chapter 5) to solve for the optimal 

design and path for the current motion planning graph 

6.4 Design and Motion Planning Experiments  

The proposed approach was tested for solving design and motion planning problems on the 

risk based motion planning problem from Chapter 2, with the following design variables 
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added into the problem, wingspan, mass, rudder range and flight speed. The surrogate 

model for a Cessna 182 crash distribution developed in Appendix A is used to approximate 

the crash distribution for different configurations, however its resolution was reduced to 

being a 11 by 11 grid of bins. Note that in the motion planning model, flight speed affects 

the turning radius of the UAV, with higher flight speeds requiring larger radii for banked 

turns. Thus, the flight speed design variable is capable of affecting both crash distribution 

shape and also the shape of the trajectory of the UAV. The risk objective was scaled by a 

factor of 10-4, while the time objective was unscaled. The objective weights (wt, wr) = (0.05; 

0.95) were used. This weighting puts a majority of weight on the risk objective, while still 

prioritizing the use of time optimal trajectories when flying over uninhabited or nearly 

uninhabited areas. 

The motion planning graph used was constructed by using the approach detailed in 

Chapter 2, however configurations were only sampled from a uniform distribution over the 

configuration space. Only the time optimal Dubins curve was used when solving a BVP 

between two configurations. An initial connection radius of 3000 (γ0 = 3000) was used 

with d = 5. RRT# was run for 3000 iterations in order to generate the motion planning 

graph. 

For comparison, a Latin hypercube sampling Design of Experiments (DOE) was 

used to generate 100 different design configurations. The motion planning problem 

considered in this chapter was solved for each of these 100 design configurations, by 

running RRT#. This design study provided comparable results to a non-deterministic 

optimization approach like that of Baykal and Alterovitz [9] or an approach searching a 

fixed set of design configurations like that of Denarie et al. [84]. Note that a separate motion 
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planning problem was solved for each design configuration, thus each design configuration 

had a different motion planning graph.  

For additional comparison, the A* and heuristic methods proposed in Chapter 5 are 

also run on the same motion planning graph as VDPPA using the proposed approach. 

However, the number of legs evaluated by these approaches was not tracked, as they must 

be less than that of VDPPA’s. 

6.5 Experiment Results  

Table 6.1 provides results from the proposed design and motion planning approach and the 

best solution from the DOE of 100 different design configurations. Only one solution from 

the 100 design DOE had a lower cost than the solution found by the proposed approach 

using VDPPA. In total, almost 400 million leg evaluations were required for the 100 

designs in the DOE, whereas the proposed approach only required around 50 million leg 

evaluations. The solution found using VDPPA with the proposed approach is similar to the 

best solution from the DOE, with a slightly lower flight speed and a slightly higher 

wingspan. 

Table 6.1: Solutions to design and motion planning example problem 
Solution Speed 

(m/s) 
Wingspan 
(m) 

Rudder 
Range 
(deg) 

Mass 
(kg) 

Best 
Cost 

Cost for 
VDPPA’s 
best path 

Cost for 
DOE’s 
best 
path 

Leg 
evaluations 

Heuristic 46.45 13.85 32.21 1,144 2,501 2,496 30,700 Not counted 
A* 45.98 16.21 32.58 1,144 2,444 2,455 2,671 Not counted 
VDPPA 42.5 10.35 34.52 1,143 2,312 2,312 2,873 54,609,632 
DOE 45.19 9.0244 38.14 1,169 2,168 2,373 2,168 395,238,250 
 

Figures 6.1 and 6.2 show the trajectories for these two solutions, which are similar. 

However, it can be seen that Figure 6.1 (VDPPA’s trajectory) comes closer to the edge of 
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the Patuxent river than Figure 6.2’s trajectory does. This is caused by the DOE’s solution 

having a motion planning graph containing edges which provide an efficient route for 

avoiding the edge of the river, which gives it a lower cost. Additionally, the DOE’s motion 

planning graph also contains edges allowing for a solution that more quickly moves away 

from the starting configuration, which reduces the risk psoed. Curiously, while VDPPA’s 

design is the lowest cost design observed for VDPPA’s trajectory, it’s cost becomes 

significantly higher if its cost is computed for the optimal trajectory of the DOE’s best 

solution. However, the DOE’s best design still performs well on VDPPA’s trajectory. 

Similar behavior can also be obvserved in the solutions found using the heuristic approach 

and A* search. Both A* search and the heuristic approach find different optimal designs 

and trajectories than VDPPA in the example problem. 
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(a) 

 
(b) 

Figure 6.1: Optimal trajectory for solution found by using VDPPA with proposed design 

and motion planning approach. (a) 2D view (b) oblique view of trajectory in 3D. 
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(a) 

 
(b) 

Figure 6.2: Optimal trajectory for best design from latin hypercube DOE. (a) 2D view 

(b) oblique view of trajectory in 3D. 
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6.6 Concluding Remarks 

The proposed approach using VDPPA found the best solution for the motion planning 

graph used by the proposed approach. However, the solution with the best cost found was 

one of the solutions computed in the DOE, though the remaining 99 solutions in the DOE 

all had worse costs than VDPPA’s solution. The best solution from the DOE has a similar 

design to the design found by VDPPA. However, the DOE uses a different motion planning 

graph for each design, which allows it to find a better trajectory than is possible with the 

motion planning graph VDPPA used.  

 However, the DOE was approximately 8 times more computationally expensive 

than the proposed approach using VDPPA, meaning that the proposed approach was more 

efficient at solving design and motion planning optimization problems. If more RRT# 

iterations were used for motion planning it is possible that this trend might change, as 

VDPPA would need to search more solutions, while the DOE’s computational cost would 

only scale up in the same manner as RRT#. However, VDPPA’s computational cost would 

only increase linearly if additional design variables were considered (due to extra gradient 

computations). In comparison, the DOE would require more samples to obtain the same 

average distance between the samples in its latin hypercube sampling of the design space, 

which would result in a worse than linear increase in computational cost. 

Since the DOE was computed using latin hypercube sampling, each design in the DOE 

located so that the DOE evenly covers the entire design space. Given that only one solution 

from the DOE with a lower cost than VDPPA’s solution and VDPPA’s solution has a 

similar design to the best design from the DOE, it is reasonable to conclude that the optimal 

design for the example considered lies in the same region as these two designs. However, 
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one does not see similar solution costs if one swaps the trajectories computed for each of 

the designs. The DOE’s best design still performs well on the trajectory computed by 

VDPPA, but VDPPA performs significantly worse if it is evaluated on the DOE’s best 

trajectory (see Table 6.1). This indicates that either (1) the solution computed by VDPPA 

is not robust to changes in the UAV’s trajectory or (2) the best solution from the DOE’s 

path is not robust to small changes in the UAV’s crash distribution. Given that the designs 

found by using the proposed approach with the heuristic approach and A* search also do 

poorly on the DOE’s best trajectory, it appears that (2) is more likely to be the case. 

However, this can only be assessed by solving the example considered as an actual robust 

optimization problem. 

This chapter formulated and presented an approach for solving deterministic design 

and motion planning problems. The next chapter leverages the robust optimization 

techniques developed in Chapters 3 and 4 to introduce uncertainty into design and motion 

planning problems. 
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Chapter 7: Robust UAV Design and Motion Planning 

Optimization 

This chapter formulates a robust optimization variant on the design and motion planning 

optimization problem. This robust design and motion planning optimization problem is 

solved by using a variation on the SGLRO approach presented in Chapter 3, where the 

inner optimization problem is a scenario based variant on the design and motion planning 

optimization problem from Chapter 6. 

7.1 Motivation 

A major limitation of design and motion planning optimization problems is that the optimal 

design found may only perform well for the exact sequence of motions it was computed 

for. In the real world, unmanned systems cannot perfectly execute a precomputed trajectory 

due to environmental factors that cannot be modeled and due to uncertainty affecting the 

systems performance. Thus, a solution to a design and motion planning problem risks being 

overspecialized for the optimal trajectory it is associated with. As seen in Chapter 4, 

uncertain wind conditions can have a significant impact of UAV performance. As UAVs 

are typically flown outdoors, they cannot avoid this uncertainty. Thus it is critical to 

account for uncertainty when simultaneously optimizing the design and motion of a UAV, 

so that a design and trajectory can be found which actually performs well in the real world. 

 If a design and motion planning optimization problem is formulated as a robust 

optimization problem, then this issue of overspecialization can be mitigated. By modeling 



150 

 

uncertainty and unknown environmental factors as uncertain parameters, a design can be 

found which performs well under a range of possible conditions.  

7.2 Strategy for Solving Robust Design and Motion Planning 

The scenario robust optimization problem formulations discussed in Chapter 3 that use 

discrete scenario sets (e.g. Eq. (1.2), Eq (2.1)) are conventional optimization problems, 

thus they can easily be used as the “design optimization problem” in a design and motion 

planning optimization problem. Thus, the concept of scenario robust optimization can be 

used to formulate and solve robust design and motion planning optimization problems. 

Notably, the cost-to-go heuristic only needs to be computed once under a nominal 

scenario. Since this scenario could be a worst case scenario, any costs computed under it 

must be a lower bound on actual worst case cost. Thus, the lower bound computed by the 

cost-to-go heuristic is a lower bound for robust design and motion planning problem’s cost, 

meaning that it is still an admissible heuristic. 

7.3 Formulation of Robust Design and Motion Planning Problems 

Below a robust formulation of the formulation previously detailed in section 7.1 is given, 

which extends the definitions given in section 7.1 as follows: 

1. Let J be the number of constraints ( )jq u needed to define the set of possible 

scenarios. 

2. Let { | ( ) 0, 1, , }ju q u j J= ≤ ∀ = KU  be the complete set of possible scenarios. 
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3. Let ( ), ,f x s u  be the cost of design x moving along s . For any configurations 1c ,

2c C∈ , for any design x X∈  and for any scenario u ∈U , ( ), , 0f x s u ≥  for all 

1 2( , )s B c c∈ . 

Then the robust optimal design and motion planning problem has the formulation given 

in Eq. 6.2. 

( )

,
min max ( , , )

Subject

,

To:

s f

x s u
f x s u

x

s B c c

X

u

∈

∈

∈ U

 (7.1) 

 

The formulation of Eq. 7.1 can then be reformulated as a scenario robust 

optimization problem with a set of scenarios, which is given in Eq. 7.2. Let { }1, , KU u u= K  

be a finite set of K scenarios. 

( )

,
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∈

 (7.2) 

 

The scenario robust optimization problem in Eq. 7.2 is a deterministic optimization 

problem. Thus, it can be used as the inner optimization problem in a VDPP problem, 

meaning that VDPPA can be used to solve Eq. 7.2. Unlike the robust motion planning 

approach detailed in Chapter 4, there is no need to solve an integer programming problem. 
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7.4 Proposed Approach for Robust Design and Motion Planning 

Thus, the following approach can be used to solve robust design and motion planning 

problems: 

1. Use RRT# [7] to solve a motion planning problem between the goal node 

(configuration 
fc ) to the start node (configuration 

s
c ), where the objective is the 

cost-to-go heuristic proposed in Chapter 5. Note that RRT# will also compute a 

search tree connecting each node in the motion planning graph to the start node 

during this step, which computes the optimistic cost-to-go heuristic for all nodes in 

the graph. 

2. The path RRT# finds for the cost-to-go heuristic is turned into an actual solution to 

the design and motion planning problem using the heuristic algorithm from Chapter 

5, Section 5.2.2.  

3. The initial solution is used with VDPPA (See Chapter 5) to solve for the optimal 

design and path for the current motion planning graph under a nominal scenario 

4. The SGLRO algorithm (See Chapter 3) is run to solve Eq. 7.2, by using VDPPA to 

solve for the optimal design and path for the current motion planning graph under 

the current set of scenarios. SGLRO’s set of scenarios is initialized with the 

nominal scenario. The following alterations are made to SGRLO and VDPPA: 

a. SGLRO uses it’s current solution as the initial solution for VDPPA, in place 

of a static initial solution. The first initial solution used is the solution 

computed in Step 3. 
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b. VDPPA keeps track of the current robust optimal design and worst case cost 

for each path that it computes a robust optimal design for. VDPPA uses this 

to avoid solving unnecessary optimization problems, by using the following 

procedure when solving for the robust optimal design for a path s: 

i. The cost of path s’s previous optimal design is checked under the 

most recently added scenario. 

ii. If the worst case cost of the previous robust optimal design is less 

than its cost in the most recently added scenario, then go to step 

4.b.ii.1. Otherwise, go to step 4.b.ii.2. 

1. Return the previous robust optimal design as the current 

robust optimal design. Otherwise,  

2. Solve the robust design optimization problem for path s to 

get the new robust optimal design for s. Update the current 

optimal design and worst case cost stored for s. 

Note that steps 1-3 are the same as running the deterministic motion planning 

approach presented in Section 6.3. The two alterations made to SGLRO and VDPPA help 

reduce the computational cost of repeatedly solving a VDPP problem within SGLRO’s 

framework. Using the current solution as the initial conditions for VDPPA helps minimize 

the number of function calls which VDPPA makes when solving its design optimization 

problem, since the current solution is likely to be closer to the next solution VDPPA will 

find. Additionally, VDDPA can minimize the number of function calls it makes Using the 

last computed solution for a path helps avoid repeatedly solving the same scenario robust 

optimization problems on different iterations of SGLRO. 
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7.5 Proposed Robust Design and Motion Planning Experiments  

The robust design and motion planning approach was also used to solve the risk 

based motion planning problem presented in Chapter 6, with the uncertain wind vector 

field from Chapter 4 present. For comparison, a Latin hypercube sampling DOE was used 

to generate 20 different design configurations. The robust motion planning approach from 

Chapter 4 was solved for each of these 20 different design configurations. Like in the DOE 

considered in Chapter 6 a separate motion planning problem was solved for each design 

configuration, thus each design configuration had a different motion planning graph. The 

worst case performance of the deterministic design and path planning approaches from 

Chapter 6 are also compared against the proposed approach and the best solution from the 

DOE. Worst case scenarios and costs are found for all approaches, using a set of 5000 

scenarios generated using latin hypercube sampling. 

 The proposed robust design and motion planning approach was run for 100 

randomly sampled scenarios (100 iterations of SGLRO). The proposed robust design and 

motion planning approach used the motion planning graph generated by the design and 

motion planning approach in the example problem considered in Chapter 6. 

7.6 Results 

Table 7.1 shows the solutions found by all approaches compared in this chapter. The 

proposed robust design and motion planning approach converged to its final solution after 

generating one scenario. After generating that scenario, all remaining scenarios did not 

produce higher worst case costs. The solution found by the proposed robust design and 

motion planning approach had the same optimal trajectory as the solution found by VDPPA 
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in Chapter 6. Figure 7.1 shows the best trajectory found by the DOE using the robust 

motion planning approach. 

Table 7.1: Solutions to robust design and motion planning example problem 
Solution 

Speed 
(m/s) 

Wingspan 
(m) 

Rudder 
Range 
(deg) 

Mass 
(kg) 

Best Cost 
(computed by 

approach) 

Worst 
Case 
Cost 

Leg 
evaluations 

VDPPA 
(deterministic)  

42.5 10.35 34.52 1,143 2,312 3,331 54,609,632 

DOE 
(deterministic) 

45.19 9.0244 38.14 1,169 2,168 3,229 395,238,250 

VDPPA 
(robust) 

42.78 10.27 34.51 1,143 3,241 3,321 571,834,652 

DOE (robust) 30.67 10.84 36.90 1,148 2,645 2,637 823,606,666 
 

The solution with the best worst case performance was the best solution from the 

DOE using the robust motion planning approach, which found a solution with a 

significantly lower worst case cost than the other approaches. Notably, the worst case cost 

computed by the robust motion planning approach is higher than the one computed using 

the 5000 scenarios used to compare results, indicating that the trajectory of the best solution 

from this chapters DOE is robust optimal for the design it was generated for. 

The solution with the next smallest gap between its worst case cost and its 

computed cost was the proposed motion planning approach, which had a much smaller gap 

than deterministic case solutions found in Chapter 6. This smaller gap demonstrates that 

proposed robust design and motion planning approach is able to find a robust optimal 

solution, which can be different than the deterministic case optimal solution (see Section 

4.7 for examples). Despite finding the same optimal trajectory as the deterministic design 

and motion planning approach, the proposed robust design and motion planning approach 

required a much higher number of leg evaluations (over half a billion) than the 

deterministic design and motion planning approach using VDPPA did. 
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Figure 7.1: Plot of robust optimal trajectory for the best design from the DOE conducted 

in chapter 7. (a) 2D plot (b) oblique view of trajectory in 3D 
 

While the DOE using the robust motion planning approach required more leg 

evaluations than the proposed design and motion planning approach, it also found lower 
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cost solutions than the solution found by the proposed design and motion planning 

approach for three of the 20 designs in the DOE. In comparison the only one out of the 100 

designs in the DOE from Chapter 6 had a lower cost trajectory than the one found by the 

deterministic design and motion planning approach from Chapter 6. This indicates that a 

smaller DOE (e.g. 10 designs instead of 20) is also capable of finding a better solution than 

the proposed robust design and motion planning approach. The computational cost running 

the robust motion planning approach for each design in the DOE is proportional to the 

number of designs in it, thus a smaller DOE would likely be faster than the proposed robust 

design and motion planning approach.  

7.7 Concluding Remarks 

Surprisingly, the results obtained indicate that the most effective method for solving robust 

design and motion planning optimization problems is actually conducting a DOE using a 

robust motion planning approach. The proposed robust design and motion planning 

approach had the second smallest gap between its actual worst case cost and the cost it 

computed as its worst case cost, demonstrating that it was capable of finding a robust 

optimal solution to a design and motion planning problem. The best solution from the DOE 

conducted in Chapter 6 had a worst case cost significantly closer to that of the solutions 

computed using VDPPA. This indicates that the best solution from Chapter 6’s DOE was 

not robust to small changes in its crash distribution (such as the wind field considered in 

this chapter or the alternate designs it was evaluated for in Chapter 6). However, the 

optimal trajectory from Chapter 6’s DOE is still slightly better than any trajectories 
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possible in the motion planning graph used by the approaches using VDPPA, even when 

uncertainty is considered. 

 Curiously, the robust design and motion planning approach found a similar solution 

to the deterministic design and motion planning approach, using the same optimal 

trajectory with a very slightly different design. Similar behavior was observed in several 

of the motion planning graphs in Chapter 4, when the deterministic solution was also the 

robust optimal solution. Given that the deterministic solution was also not the robust 

optimal solution for several of the motion planning graphs in Chapter 4, this behavior 

should not always be expected. When the deterministic optimal solution has a different 

optimal trajectory than the robust optimal solution, it is likely that the proposed robust 

design and motion planning approach may need to generate more than the single scenario 

needed in this chapter’s example. Each additional scenario would effectively multiply the 

number of leg evaluations present in Table 7.1, which would rapidly increase the 

computational cost of the proposed robust design and motion planning approach 

 In comparison, the DOE using the robust motion planning approach was able to 

compute a different motion planning graph for each design it considered and found several 

solutions with lower costs than the other approaches compared. The poor performance of 

the best solution from Chapter 6’s DOE indicates that a motion planning graph containing 

trajectories with low worst case costs may not be one which also contains trajectories with 

low deterministic case costs. Thus, it is necessary to use a robust motion planning approach 

to determine which motion planning graphs contain solutions with low worst case costs.  

 It is interesting to note that the computational cost of the robust design and motion 

planning approach is significantly higher than that of the deterministic design and motion 
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planning approach. In theory, the computational cost of the robust design and motion 

planning approach should be around 2-3 times that of the deterministic design and motion 

planning approach, since there are now two scenarios present instead of 1. However, the 

actual computational cost is over 10 times that of the deterministic design and motion 

planning approach. This can be attributed to two causes. (1) The scenario based robust 

optimization problem given in Eq (7.2) is more expensive to solve than Eq. (6.1), due to it 

being a constrained optimization problem, which requires additional function evaluations 

to be solved. (2) Because the optimal cost of the robust design and motion planning 

problem is higher, VDPPA needs to search through a much larger number of PCS than in 

the deterministic problem, which increases computational cost. It can thus be seen that the 

robust design and motion planning problem is in general a significantly more 

computationally expensive optimization problem than a design and motion planning 

optimization problem that does not consider uncertainty. Consequently, using a DOE with 

a robust motion planning approach becomes a more practical approach for solving the 

robust design and motion planning optimization problem. However, If more design 

variables are present then the robust DOE would likely require a much larger number of 

sampled designs (and thus a much larger computational cost). Thus neither of the two 

robust design and motion planning approaches presented will perform well on larger robust 

design and motion planning optimization problems. 

A major limitation of using a DOE for design optimization is that it is effectively 

just a random search over the design space, thus the solutions it finds are not necessarily 

the optimal solution, though they may have low costs. In comparison, proposed robust 

design and motion planning approach is a local optimization based approach, thus while it 
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does not have this issue, it is vulnerable to local optima. The best solution from the DOE 

using the robust motion planning approach had a noticeably different design, with a much 

lower flight speed, than the one found by Chapter 6’s DOE and the VDPPA using 

approaches. This indicates the local optima that the proposed robust design and motion 

planning approach finds is far from the global optimum for the problem considered. Given 

that the flight speed of the UAV affects which type of Dubins curve is used when going 

between two configurations, it is likely that the proposed robust and design motion 

planning approach might find a lower cost solution if it were to use a different initial design 

and motion planning graph. However, the only way to find such a design is to use the robust 

motion planning approach with some form of a DOE. While such a combined approach 

may be extremely computationally expensive, it also shows the most promise for finding 

robust optimal solutions to robust design and motion planning optimization problems. 

This chapter presented an approach for solving robust design and motion planning 

optimization problems and compared it against alternative approaches for solving robust 

design and motion planning optimization problems. the next chapter summarizes the results 

found in this dissertation and presents the conclusions reached during it. 
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Chapter 8: Conclusions 

In this dissertation, techniques were presented for simultaneously optimizing the design 

and motion of unmanned aerial systems using robust optimization techniques. Chapter 2 

presented methods for planning optimal trajectories for unmanned aerial systems while 

minimizing the risk posed by trajectory and its flight time. Chapter 3 presented a new 

method for solving robust design optimization problems, which was shown to be capable 

of solving robust optimization problems containing large number of uncertain parameters. 

Chapter 4 used the robust optimization framework developed in Chapter 3 to create an 

approach for solving robust optimal motion planning problems for unmanned systems 

subject to uncertainty. Chapter 4 also demonstrated the proposed robust motion planning 

approach by adding 200 uncertain parameters to the risk based motion planning problem 

considered in Chapter 2. Chapter 5 presented an approach for simultaneously optimizing 

the design and 2D path of an unmanned aerial vehicle. Chapter 6 extended the approach 

presented in Chapter 5 to use a motion planning graph, allowing for simultaneous 

optimization of an unmanned aerial vehicle’s design and flight trajectory. Chapter 7 

incorporates uncertainty into the problem considered in Chapter 6, by using the robust 

optimization approach presented in Chapter 3 and also by using the robust motion planning 

approach from Chapter 4. This chapter provides answers to the research questions asked in 

Chapter 1 (8.1), summarizes the key contributions of this dissertation (8.2) and details 

several avenues for future work (8.3). 
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8.1 Answers to Research Questions 

8.1.1 How can optimal motion planning be done for UAV systems when 

the objective being optimized is not time? 

As seen in Chapter 2, sampling based motion planning techniques can be used to optimize 

more complex objectives, such as the risk objective considered in Chapter 2. It was also 

observed that it is important to still account for time when optimizing these objectives, as 

solely optimizing an objective such as risk can lead to impractical solutions (see Figure 

2.8). By varying the radius and pitch of the 3-D Dubins curves presented in Chapter 2, it 

was possible to optimize objectives other than time when connecting two configurations in 

a motion planning graph. 

 It was also observed that objective functions other than time can be significantly 

more expensive to evaluate. Chapter 2 mitigated this issue by presenting a new method for 

determining the connection radius used by sampling based motion planning techniques. 

The new method was able to reduce the number of configurations a new configuration 

would be connected to, rendering the risk-based motion planning problem in Chapter 2 

computationally feasible. Additionally, a new method for branching off an initial solution 

was presented which reduced the number of sampled configurations needed to get a 

solution with good performance. 

 However, the higher computational cost of the risk objective considered in Chapter 

2 also made it unviable to use an extremely large number of sampled configurations (e.g. 

25,000) during motion planning. Lower numbers of sampled configurations lead to small 

imperfections in the final trajectory found by sampling based motion planning techniques 
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(see Figures 2.9 and 2.10). Additionally, using Dubins curves to optimize objectives other 

than time does not guarantee and optimal solution to a BVP, as the true optimal solution 

may not be a constant radius turn. 

8.1.2 How can robust optimization problems be efficiently solved when 

non-convex constraints are present or when the optimization problem 

considered is typically not solved using mathematical optimization 

techniques? (Chapter 3, Chapter 4, Chapter 7) 

Chapter 3 showed that scenario based methods, particularly those based off random 

sampling and scenario generation, are effective at solving non-convex robust optimization 

problems. Methods which only attempt to account for a single worst case scenario are 

incapable of solving robust optimization problems where multiple worst cases are present 

(see Sections 3.3.1 and 3.3.4 for examples). However, methods which rely solely on 

random sampling were also shown to end up with small worst case constraint violations. 

The SGLRO algorithm proposed in Chapter 3 resolved this problem, by using sampling 

and worst case based scenario generation in conjunction with a local robust optimization 

step run after SGLRO finished sampling scenarios. 

 While SGLRO was shown to efficiently solve a range of non-convex robust 

optimization problems, including ones with large number of uncertain parameters, it still 

has several limitations. As discussed in Section 3.1, SGLRO assumes that it is possible to 

solve a robust optimization problem using a finite number of scenarios. SGLRO has no 

guarantees of finding a robust optimal solution when this assumption does not hold. 

Additionally, SGLRO made use of gradient based optimization when performing scenario 
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generation and worst case analysis. While this was practical for the design optimization 

problems considered in Chapter 3, it is less practical for problems where gradients do not 

exist or are near zero for small deviations in the uncertain parameters, as is the case in the 

problem considered in Chapter 4. 

In Chapter 4, an approach for robust motion planning was presented and in Chapter 

7 an approach for simultaneous robust optimization of both UAV design and motion 

planning was presented. Both methods use the same structure as the SGLRO algorithm 

presented in Chapter 3, by sampling scenarios and then updating their current solution 

whenever a new worst case is found. However, neither method is able to use a local robust 

optimization step like SGLRO uses.  

By formulating a scenario based variant of a problem, a robust optimization 

approach for that problem can easily be developed using the using randomly sampled 

scenarios and scenario generation. However, it is more difficult to incorporate a local 

robust optimization step into such an approach, since problems which are not gradient 

based optimization problems (such as motion planning) may be more expensive to solve 

or may lack features allowing for optimization based scenario generation. 

8.1.4 How can current methods for optimal sampling based motion 

planning for unmanned systems be extended to account for 

robustness with respect to uncertainty? 

Chapter 4 showed that it is possible to solve robust motion planning problems by solving 

the robust transshipment problem on the motion planning graph generated by sampling 

based motion planning techniques. It was also shown that this approach to robust motion 
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planning allowed for a more general model for how uncertainty affects the cost of a 

trajectory than assuming the worst case for every single edge present in a motion planning 

graph. Chapter 4 also showed that it is still possible to control computational cost by using 

variants on the dual of the robust transshipment problem, which assigns costs to nodes in 

a similar manner to sampling based motion planning techniques. Several heuristics were 

also proposed in Chapter 4 to help manage the cost of robust motion planning problems.  

However, it was also shown that the computational cost of the robust motion 

planning problem was still significantly higher than that of a deterministic (ignoring 

uncertainty) motion planning problem. Curiously, it was also observed that using global 

optimization techniques (a genetic algorithm) to find the worst case for each edge was both 

more expensive than the proposed sampling based approach and less effective at finding 

worst case scenarios. This indicates that a variation on the proposed robust motion planning 

approach could be the most efficient algorithm for considering the worst case for every 

edge present in a motion planning problem. 

8.1.5 How can the design and motion of an unmanned system be 

optimized simultaneously? 

Chapters 5 and 6 presented approaches for simultaneously optimizing the design, path 

planning and motion planning of unmanned aerial vehicles. Chapter 5 formulated the 

vehicle design and path planning (VDPP) problem and showed that unlike classical shortest 

path planning problems, the VDPP problem does not satisfy the principle of dynamic 

programming. Thus, exhaustive search methods are required to find optimal solution to 

VDPP problems. In light of this, Chapter 5 presented several heuristics for solving VDPP 
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problems in addition to an exhaustive branch and bound search method that took advantage 

of cost-to-go heuristics. Results in Chapter 5 showed that using the proposed exhaustive 

branch and bound based search was impractical for solving VDPP problems in a 

computationally feasible manner. However, Chapter 5 also developed a new heuristic 

algorithm for solving VDPP problems, the vehicle design and path planning algorithm 

(VDPPA). VDPPA was shown experimentally to find the same solutions as the exhaustive 

branch and bound based search, while incurring a significantly lower computational cost. 

 Chapter 6 extended the VDPP problem of Chapter 5 to account for motion planning. 

This consisted of using sampling based motion planning techniques to construct a motion 

planning graph, on which a VDPP problem could be solved. It was observed that while this 

approach was capable of simultaneously optimizing both the design and motion of a UAV, 

its performance was limited by what trajectories were possible in the motion planning 

graph generated. A latin hypercube based design of experiments (DOE) was capable of 

finding a better solution than VDPPA due to the fact that it used a different motion planning 

graph for every design considered. However, the computational cost of the DOE was also 

significantly higher than the VDPPA based approach, due to the large number of motion 

planning problems that the DOE needed to solve. 

8.1.6 How can the performance of an unmanned system be optimized 

with respect to both its design and operation (path planning), while 



167 

 

also being able to account for uncertainty (robust optimization) and 

the dynamics of the unmanned system (motion planning)? 

Chapter 7 formulated a robust optimization variant of the simultaneous design and motion 

planning optimization problem considered in Chapter 6. The SGLRO algorithm from 

Chapter 3 was used as the robust optimization algorithm, with a scenario based variation 

on VDPPA (Chapter 5, Chapter 6) used as the internal scenario robust optimization 

problem. This approach was capable of finding robust optimal solutions to design and 

motion planning optimization problems. However, in the example considered in Chapter 7 

the deterministic optimal solution was extremely close to the robust optimal solution. It 

was also observed that the motion planning graph in use still had a significant impact on 

performance, as the solution using a different motion planning graph found by performing 

a DOE with Chapter 4’s robust motion planning approach was found to have the best worst 

case computational cost. 

 The approach used in Chapter 7 for robust design and motion planning optimization 

was significantly more computationally expensive than the deterministic approach 

presented in Chapter 6, despite both approaches finding similar solutions. This 

demonstrates that robust design and motion planning optimization problems are 

significantly more difficult than design and motion planning problems that ignore 

uncertainty. The primary causes for this increased computational cost were the scenario 

robust design optimization problem being more expensive to solve and the additional 

trajectories searched by VDPPA due to its final solution having a higher cost. 

It should be noted that the example problem in Chapter 7 could be considered an 

easy robust design and motion planning optimization problem, since it only required 
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generating one worst case scenario. More challenging problems would require additional 

scenarios to be generated, which would increase computational cost significantly.  

The DOE using the robust motion planning approach from Chapter 4 was able to 

find solutions with substantially lower worst case costs than the proposed robust design 

and motion planning approach. Based off the results obtained, this approach should be 

considered the most effective method for solving robust design and motion planning 

optimization problems. Future work should be able to improve on this approach by using 

the DOE to determine the motion planning graph and initial conditions for a locally optimal 

robust design and motion planning approach, such as the combination of SGLRO and 

VDPPA used in Chapter 7. 

8.2 Summary of Key Contributions 

This section summarizes and lists the key contributions of this dissertation by chapter. 

8.2.1 Chapter 2 

1. An approach for minimizing the risk posed by UAV trajectories traveling over 

inhabited areas was presented and demonstrated on an example problem. The new 

approach is the first risk-based motion planning approach to plan UAV trajectories 

in a 5D configuration space, which allows the UAV to mitigate risk through 

maneuvers performed during a flight. 

2. A new method was presented for determining 3-D Dubins curves for a fixed wing 

UAV, which unlike previous approaches, is able to find time optimal 3-D curves 

and also optimize non-time objectives such as third-party risk. 
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3. New techniques for reducing the number of BVP problems that need to be solved 

by the RRT# algorithm during motion planning were presented. Experimental 

results showed that the new techniques both reduced the computational cost of 

RRT# and improved the quality of solutions which it was able to find. The new 

techniques made it computationally feasible to optimize objectives such third-party 

risk, which are more computationally expensive to evaluate than flight time. 

8.2.2 Chapter 3 

1. A new approach for solving non-convex robust optimization problems (SGLRO) 

was presented, which combined a sampling based robust optimization approach 

using scenario generation with a local robust optimization step for refining the 

sampling based approach’s final solution. The resulting approach can globally 

search for worst case scenarios like a sampling based robust optimization approach, 

while avoiding the small constraint violations that are typically present in the 

solutions found by such approaches. 

2. The new approach was shown experimentally to be capable of solving robust 

optimization problems where existing local robust optimization techniques fail to 

find solutions feasible under uncertainty. The new approach was also shown to be 

more efficient than a sampling based approach that lacks a local robust optimization 

step. 

8.2.3 Chapter 4 

1. A new approach for solving robust motion planning problems was presented, which 

considered uncertainty affecting the costs of motions and which allowed for an 
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arbitrary “black-box” model for how uncertainty affected the costs of motions. The 

new approach is theoretically capable of finding lower cost solutions relative to 

assuming that every edges cost is determined by its worst case, through the use of 

more accurate models for how uncertainty affects motion costs. Experimental 

results were presented demonstrating that the proposed new approach was able to 

find more robust solutions than other approaches for robust and determinist motion 

planning. Additionally, the proposed new approach was found to be both more 

computationally efficient than this approach and more effective at finding worst 

case scenarios than an approach that considered the worst-case scenario for each 

edge in a motion planning graph. 

2. A new algorithm for solving robust shortest path planning problems was presented, 

which uses a sampling based robust optimization approach with several strategies 

for minimizing the number of edge costs which need to be computed under different 

uncertain parameter values. The new approach uses a robust transshipment problem 

in conjunction with a new “bidirectional” dual to the robust transshipment problem, 

which allows it to consider a “black-box” model for uncertain edge costs in a 

computationally efficient manner. 

8.2.4 Chapter 5 

1. A new cost-to-go heuristic was developed which can be used to provide lower 

bounds on the costs of incomplete paths in design and path planning optimization 

problems. 
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2. Several new algorithms were presented for solving design and path planning 

optimization problems where the path planning problem considered is on a graph. 

No previous works in the literature have considered the problem from this 

standpoint, which avoids the need for using global optimization techniques or a 

discrete design domain. A new algorithm, VDPPA, was shown to be capable of 

finding similar solutions to exhaustive search approaches, at significantly reduced 

computational cost. 

8.2.4 Chapter 6 

1 A new approach for solving design and motion planning optimization problems was 

presented, which leverages the VDPPA algorithm developed in Chapter 5, by 

applying it to the motion planning graph generated using sampling based motion 

planning methods. The new approach treats its design optimization problem as a 

gradient based optimization problem, which makes it more computationally efficient 

than the current global search based methods for design and motion planning 

optimization. However, results show that the larger number of motion planning 

graphs searched by methods which globally search the design space can lead to a 

solution with a lower cost trajectory than is possible in the single motion planning 

graph used by the proposed approach. 

8.2.6 Chapter 7 

1. Several methods for solving robust design and motion planning optimization were 

presented. The problem of robust design and motion planning optimization has not 

been previously considered in the literature. Experimental results showed that one 
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of the most effective methods for solving robust design and motion planning 

optimization problems was to conduct a DOE using a robust motion planning 

approach. 

8.3 Future Work 

This section identifies several promising areas for future work related to motion planning, 

design and motion planning optimization and robust optimization variants of these 

problems. 

8.3.1 Trajectory refinement methods for UAV motion planning with 

non-time objectives 

The performance of a number of the results in this dissertation were limited by the fact that 

trajectories were planned using a single motion planning graph. This is particularly 

noticeable in Chapter 6’s example problem, where one of the designs from the 100 element 

DOE outperforms the solution found by VDPPA due it’s motion planning graph having a 

lower cost trajectory present. A common solution to this issue in motion planning problems 

is to significantly increase the number of sampled configurations used to construct the 

motion planning graph. However, this would massively increase the number of edges in a 

motion planning graph, which is not practical for problems with expensive to evaluate 

objective functions (e.g. the risk objective in Chapter 2), or which involve more 

computationally expensive operations such as design optimization.  

 Typically, trajectories computed using sampling based motion planning methods 

are smoothed using trajectory optimization methods before a vehicle actually executes 
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them. This can remove small imperfections in the asymptotically optimal trajectories found 

by sampling based motion planning techniques. Such methods have been used previously 

in grid based 2D risk based path planning problems (e.g. the greedy and local methods in 

[103]) and could be extended to work in higher dimensional configuration spaces. Because 

trajectory optimization methods are also a type of optimization problem, they could easily 

be integrated within equations such as Eq. (5.1) and used directly within a design and path 

planning optimization problem. 

8.3.2 Multi-Objective robust optimization using scenario generation 

 While Section 3 only discussed feasibility robust optimization (uncertainty only 

appearing in the constraints), uncertainty in an objective function ( ( , )f x u  instead of ( )f x

) can be dealt with by moving the objective function into the constraints (see Section 3.1 

of [14] or Chapter 4 for examples). This concept has also been extended to multi-objective 

robust optimization (MORO) [46]. As presented, the SGLRO algorithm in Chapter 3 

cannot be used for solving MORO problems, as MORO requires accounting for a set of 

designs (which trade-off between objectives) rather than just one design. Future work will 

explore methods for using scenario based approaches to solve MORO problems. 

8.3.2 Enabling real time cost robust motion planning 

While the robust motion planning approach presented in Chapter 4 was the fastest of the 

two robust motion planning approaches considered, its performance was still significantly 

higher than that of deterministic motion planning. Developing stronger bounds on the costs 

of both nodes and edges could help further reduce this cost. 
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However, part of the reason that so many edge costs need to be evaluated is because 

the robust transshipment problem requires all costs to be computed before it can be solved. 

A search based method (e.g. VDPPA or Chapter 5’s branch and bound approach) could 

bypass this issue, as such methods only need to compute costs for the paths that they 

actually search. However, many search based methods (e.g. A*, VDPPA) are only 

heuristics for the robust path planning problem in Chapter 4, since it does not satisfy the 

principle of dynamic programming. However, the robust transshipment problem is already 

solved using a branch and bound method (Gurobi), however that branch and bound method 

uses LP relaxations, unlike the approach in Chapter 5 which directly branches on paths. It 

is likely that a specialized branch and bound (or branch and cut) algorithm can be 

developed that computes edge costs as it encounters them. This could eliminate the need 

to initially compute the costs of edges that aren’t part of the current solution in a sampling 

based robust motion planning approach. 

 From a practical standpoint, performing cost robust motion planning in real time 

will always require the development of a specialized solver for the robust transshipment 

problem. Commercial mixed integer programming solvers (e.g. Gurobi [48]) typically have 

a number of overhead operations meant to assist them in solving many different types of 

MILP problems. Developing a specialized solver for robust transshipment problems would 

facilitate running the proposed robust motion planning approach at speeds practical for real 

time operations. 

 An alternate strategy for performing cost robust motion planning in real time is to 

consider the worst cost for each and accept the loss in performance associated with doing 

so. From a theoretical standpoint, this strategy still satisfies the principle of dynamic 
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programming, meaning that search based methods for real time replanning (e.g. D* [118], 

RRTX [88]) should be able to efficiently solve the resulting motion planning problem. 

Thus, it should be possible to solve a robust motion planning problem which ignores 

correlations between edge costs while computing significantly less edge costs than a robust 

motion planning approach that considers correlations between edge costs. Chapter 4 

showed that sampling based robust optimization methods are relatively efficient at finding 

worst case scenarios in robust motion planning problems when considering correlations 

between edge costs. This indicates that it may be possible to develop an extremely efficient 

sampling based robust motion planning approach that ignores correlations between edges 

by leveraging the framework and strategies developed in Chapter 4 with a motion planning 

designed for real time replanning (e.g. RRTX [88]). 

8.3.3 Efficient methods for solving robust design and motion planning 

optimization problems 

The results from Chapter 7 indicate that while it is possible to solve robust design and 

motion planning optimization problems, they are also significantly more expensive than 

their deterministic (no uncertainty) equivalents. The primary causes of this additional cost 

are the fact that a robust design optimization problem is more expensive than its 

deterministic variant and the fact that search based approaches (e.g. VDPPA) need to 

search additional solutions due to the higher costs caused by considering worst case 

performance. Using a discrete set of designs can bypass these issues (e.g. the latin 

hypercube DOE in Chapter 7), however it still incurs a similarly large computational cost. 

If more efficient methods were developed for solving robust motion planning problems, it 
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could become more efficient to search through a discrete set of designs when solving robust 

design and motion planning optimization problems than using SGLRO to solve a scenario 

robust design and motion planning problem. 

 Alternately, a less computationally expensive search algorithm than VDPPA could 

be developed. VDPPA spends a significant amount of its computational time computing 

the costs of partial candidate solutions (PCS) when solving robust design and motion 

planning problems. This occurs because VDPPA needs to search more PCS (due to its final 

solution being more expensive), which incurs a large computational cost. A potential 

heuristic strategy for resolving this issue could be to either compute PCS costs using a fixed 

set of designs or to use the solutions from the cost-to-go heuristic in place of PCSs. 

However, further computational experiments are needed to determine how these heuristic 

strategies would impact the costs of the final solutions found by VDPPA. 

8.3.4 Alternate forms of uncertainty which are incompatible with the 

approaches presented 

This dissertation focused on robust optimization that accounts for uncertainty affecting the 

costs of solutions. Two other important forms of uncertainty affecting the motions of 

unmanned systems are uncertainty which affects the feasibility of motions and uncertainty 

about which motions an unmanned system will need to perform. 

8.3.4.1 Uncertainty affecting the feasibility of motions 

Uncertain conditions can render an unmanned system’s trajectory infeasible, thus it is 

important to plan trajectories for unmanned systems that will not suffer failures. From a 

robust optimization perspective, if a trajectory segment is infeasible under uncertainty, then 
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that trajectory segment should not be used. For robust motion planning this can be easily 

implemented, as this consists of removing any edges from the motion planning graph which 

are found be infeasible under a scenario. However, in a robust design and motion planning 

optimization problem, it is possible that the feasibility of some edges may depend on the 

design of the system. This issue could be resolved by converting this robust feasibility 

problem into an unconstrained problem, by adding any constraints subject to uncertainty 

to the objective function using a penalty method. Alternately, the constraints in question 

could be added into the design optimization problem within VDPPA (Eq. (5.1)) whenever 

the path in Eq. (5.1) contains the edges in question. 

8.3.4.2 Uncertainty about which motions an unmanned system will need to perform 

The uncertainty model in this dissertation assumed that the start and end configurations of 

any path and motion planning problem considered are known and are unaffected by 

uncertain parameters. However, it is possible that the start and end configurations may be 

uncertain or belonging to a range (which can be modeled as an uncertain parameter). The 

effect of this is that a range of possible trajectories now need to be planned, instead of just 

one. This type of problem is particularly important when optimizing the design of an 

unmanned system, as it can be used to optimize the performance of an unmanned system 

across the range of motions that it needs to be able to execute. For example, the design of 

a robotic manipulator might be optimized alongside how it moves between points in its 

workspace, or an unmanned aerial vehicle’s design might be optimized for the range of 

flight maneuvers that it needs to be capable of. 

 This uncertainty model is incompatible with search based approaches such as 

VDPPA, which only operate between a single start and end point. A possible strategy for 
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solving problems with this type uncertainty present could be to formulate a scenario robust 

optimization problem, where the cost is constrained by a constraint function ( , )f x u  

representing a motion planner, where x is the system’s design and u contains the start and 

end configurations the motion planner will use. However, ( , )f x u  would not be an 

analytical function, making it difficult to use with an algorithm like SGLRO. The resulting 

problem could technically be solved by only relying on random sampling. However, it 

would also be computationally expensive since relying solely on random sampling will 

increase the number of scenarios generated and thus the number of motion planning 

problems which need to be solved during each iteration of design optimization. 

 This issue could be bypassed by employing a surrogate model based optimization 

approach, such as efficient global optimization [61], which could approximate the cost of 

moving between two configurations using a specific design. For a deterministic design and 

motion planning problem, this is similar in structure to the approach of Baykal and 

Alterovitz [9], except that the surrogate replaces the inner motion planning problem, which 

should significantly improve computational performance. While (to the author’s best 

knowledge) no methods have been developed for directly solving robust optimization 

problems using efficient global optimization, similar approaches have seen success in 

solving robust optimization problems involving multiple disciplines (e.g. [56], [73]). This 

strategy may also show promise in dealing with the cost uncertainty model considered in 

this dissertation. However, it is limited by the scalability of surrogate modeling techniques, 

which may encounter scalability issues when dealing with large numbers of uncertain 

parameters (e.g. the 200 uncertain parameters considered in Chapter 4 and Chapter 7). 
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Appendix A: Modeling Unmanned Aerial System (UAS) Risks 

via Monte Carlo Simulation 

This appendix has also appeared as [106] at the 2019 International Conference on 

Unmanned Aerial Systems. 

A.1 Overview 

Unmanned Aerial Systems (UAS) pose a variety of risks to third parties when operating 

over populated areas, due to the danger posed if the UAS crashes. Two commonly used 

metrics for assessing the risk of such crashes are the kinetic energy of the UAS at the time 

of impact and the probability distribution of locations where the UAS could crash. In this 

appendix, a Monte Carlo based approach is presented for simulating UAS crashes in order 

to calculate these metrics. A surrogate modeling approach for UAS safety metrics is also 

presented, which is built using the results of the Monte Carlo simulations. The surrogate 

modeling approach is capable of rapidly evaluating UAS safety metrics for arbitrary UAS 

design and operating parameters. The proposed approach is demonstrated by modeling the 

kinetic energies at time of impact and crash probability distributions for UAS with 

dynamics models similar to that of a Cessna 182. 

A.2 Introduction 

As Unmanned Aerial Systems (UASs) are increasingly adopted across numerous 

domains, assessing the safety of operating UASs over people is becoming crucial for 

increasing public acceptance of such operations. This includes assessing and mitigating the 

risk posed by the UAS if it were to crash in a populated area. Performing this assessment 
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requires understanding where the UAS is likely to crash after a failure and its kinetic energy 

when it crashes into the ground. Determining these quantities empirically is impractical, as 

it would require repeatedly crashing a UAS. Predicting these quantities is also challenging 

because the dynamics model of a UAS is a non-linear model (like that of any aircraft) and 

is sensitive to its initial conditions. This makes it difficult to estimate the risks posed by a 

UAS crash analytically without simplifying the dynamics model or ignoring the dynamics 

in an overly conservative risk assessment.  

This appendix presents a simulation-based approach that can generate results and 

surrogate models to support assessing the safety of UAS operations over populated areas 

in practical settings. The approach is based on a Monte Carlo simulation of a flight 

dynamics model that simulates the trajectories of a UAS crashing from different initial 

flight states. These trajectories produce a probability distribution of the crash location, 

where the UAS reaches the ground, and can also be used to estimate the UAS’s kinetic 

energy when it impacts the ground. The approach performs simulation experiments to 

generate the distributions for different values of UAS design and operating parameters. 

These distributions provide insights into how these parameters affect the Crash location 

Probability Distribution (CPD) and kinetic energy. Finally, the approach generates 

surrogate models from these results that can be used to quickly estimate the CPD and 

kinetic energy for a given set of parameter values. This appendix also discusses the results 

and surrogate models generated by using the proposed approach to model UAS with 

dynamics similar to a Cessna 182 [101] 

The remainder of this appendix is organized as follows. Section A.3 reviews previous 

work on assessing UAS safety and positions this appendix with respect to related work. 
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Section A.4 presents the proposed Monte Carlo simulation-based approach and the 

approach for generating surrogate models. Section A.5 applies the proposed Monte Carlo 

simulation approach to perform a parametric study involving design and operating 

parameters for UAS with similar dynamics to a Cessna 182. Section A.6 presents a 

statistical analysis of the results from Section A.5 to determine which parameters cause 

statistically significant effects on the safety of the example UAS model. Section A.7 tests 

the performance of the surrogate models built using the proposed approach. Section A.8 

summarizes the results presented. 

 
Figure A.11. Example of how a Crash Probability 
Distribution (CPD) is used to assess the expected number of 
fatalities of a UAS operation 

A.3 Related work 

Multiple methods [2] and frameworks [3] have been proposed for assessing UAS 

safety. One commonly used quantity in UAS risk assessment is the expected number of 

fatalities associated with a UAS operation, which requires assessing the probability of 

failure during an operation and estimating the number of persons struck by a UAS if it were 

to crash. This estimate requires a CPD (see Figure A.1) to determine how many people 
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could be affected by a UAS crash. The expected fatalities caused by a UAS flight is 

especially relevant for analyzing the safety of a large UAS, which is likely to cause a 

fatality if it strikes someone due its high mass and velocity [22]. Approaches for planning 

a UAS’s path to mitigate this risk [103, 65, 95] assess the expected number of fatalities by 

moving the CPD along a flight path, as depicted in Figure A.1.  

There are several ways in which CPDs are constructed.  Some approaches [95, 41, 126, 

21, 2, 76]] use analytical models to determine the area of all possible locations which a 

UAS could reach before crashing and then assume that it is equally likely that UAS crashes 

in any of these locations. La Cour Harbo [66], La Cour Harbo and Schioler [67], and 

Primatesta et al. [95] used the distance traveled to develop a non-uniform CPD model and 

also consider the effects of wind. Lum et al. [75] used Monte Carlo simulation to determine 

the distance traveled by a UAS before crashing, which is used to fit an analytical CPD 

model. Rudnick-Cohen et al. [103] used Monte Carlo simulation of a UAS crashing to 

construct the CPD out of the binned frequency distribution of the locations of the simulated 

crashes. 

Prior work has explored how UAS CPDs are affected by either different operating 

parameters or different design configurations. Wu and Clothier [126] analytically 

determined the shapes of the regions of all possible crash locations for failures occurring 

at different altitudes. Rudnick-Cohen et al. [108] constructed a Delaunay triangulation from 

the results of Monte Carlo simulations to model the effects of design parameters on a CPD 

to perform design optimization. Haartsen et al. [50] conducted a parameter study on how 

the operating parameters such as flight speed, altitude, and the vehicle’s roll angle affect 

the CPD of fixed wing and rotorcraft UAS.  
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Another quantity used to assess UAS safety is the impact kinetic energy of the UAS 

when it crashes into the ground, which determines whether a UAS crash can cause 

fatalities. The U.S. Federal Aviation Administration (FAA) has proposed preliminary 

requirements for small UAS operating over people that require the kinetic energy at time 

of UAS impact be below either 11 or 25 ft-lbs, depending  on where the UAS is being 

flown [123]. These limits on kinetic energy originated from a U.S. Army Range 

Commander Council specification [22, 124]. The kinetic energy depends upon the mass 

and the velocity of the UAS. Estimating the UAS’s velocity as it crashes requires a model 

of the UAS’s flight dynamics, which are affected by the UAS’s physical design and its 

flight state at time of failure. This makes it difficult to directly compute the kinetic energy 

of a UAS at the time it crashes into the ground. 

The approach presented in this chapter expands upon the Monte Carlo approach 

introduced in [103] with the following extensions: (1) an integrated simulation-based 

approach for estimating the CPD and kinetic energy of a crashing UAS; (2) insights into 

how changes to design and operating parameters affect the CPD and kinetic energy; and 

(3) surrogate models that can be used to quickly estimate these safety metrics for UAS. 

A.4 Monte Carlo Simulation Of UAS crashes and Surrogate Modeling of 

UAS safety metrics 

A.4.1 Simulation Model 

Table A.1 defines the variables in our model of the dynamics of an air vehicle in steady 

state flight, which can be described using the ordinary differential equations (ODEs) in 



184 

 

Table A.2 [101]. By solving these ODEs for different initial conditions, different crash 

trajectories will be obtained. By changing these initial conditions and performing Monte 

Carlo simulation, a range of potential crash trajectories will be generated. Note that the 

forces and moments present in Table A.1 will have different values and equations 

depending on the type of UAS being modeled. This can require modeling additional state 

variables to those in Table A.1, such as control surfaces (fixed wing UAS) or rotors 

(multicopter UAS). 

In order to keep the Monte Carlo simulations computationally tractable, we ignored 

any effects on drag coefficients caused by angular velocities ( ) and the time 

derivatives of the UAS’s angle of attack and sideslip angle. We found that this does not 

significantly affect the location where the UAS crashes, but it provides a large reduction in 

the time needed to simulate the UAS crashing.  

 
TABLE A.1: Variables used in Table A.2 

 Velocities (Body Frame) (m/s) 
 Orientation (Euler angles) (rad) 
 Angular velocities (Body Frame) (rad/s) 

 Position of vehicle (NED Frame) (m) 
 Drag forces on vehicle (Body Frame) (N) 

 Drag moments on vehicle (Body Frame) (N) 
 Moment of inertia constants (kg/m2) 

 Gravitational constant (m/s2) 
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TABLE A.2: Flight dynamics equations for Monte Carlo 
crash simulations, overdots denote time derivatives 

1 2 3 4

2 2
5 6 7

8 2

sin( )

sin( )cos( )

cos( ) cos( )

tan( )( sin( ) cos( ))

cos( ) sin( )

cos( ) sin( )

cos( )

( )

( )

( )

x

y

z

F
U RV QW g

m

F
V RU PW g

m

F
W QU PV g

m

P Q R

Q R

Q R

P c R c P Q c L c N

Q c PR c P R c M

R c P c R Q c

θ

φ θ

φ θ

φ θ θ φ

θ φ φ

φ φ
ψ

θ

= − − +

= − + + +

= − + +

= + +

= −

+
=

= + + +

= − − +

= − +

&

&

&

&

&

&

&

&

&

4 9

cos( ) cos( ) ( cos( ) sin( ) sin( )sin( )

cos( )) (sin( )sin( ) cos( ) sin( ) cos( ))

cos( )sin( ) (cos( ) cos( ) sin( ) sin( )

cos( )) ( sin( )cos( ) cos( )sin( )sin( ))

sin( ) sin( )

N

E

L c N

p U V

W

p U V

W

h U V

θ ψ φ ψ φ θ

ψ φ ψ φ θ ψ

θ ψ φ ψ φ θ

ψ φ ψ φ θ ψ

θ φ

+

= + − +

+ +

= + +

+ − +

= −

&

&

& cos( ) cos( )cos( )Wθ φ θ−  

 

A.4.2 Monte Carlo Approach 

Let x(t) be the state of the UAS as a function of time t, and let  be the initial state. 

Let  be the equation of the flight dynamics such that .  Let  be the range 

of the random perturbations. Let  be the initial amount of integration time the ODE is 

solved for. Let  be a function that returns the total mechanical energy (kinetic energy 

plus potential energy) of state x. Let N be the number of iterations. Table A.3 details the 

algorithm used to perform the Monte Carlo simulation. Although the flight dynamics model 

 is deterministic, each iteration of the simulation uses randomly perturbed initial 

conditions (see Table A.1II, steps 1.a and 1.b). The equations in Table A.1 can be solved 

for specific initial conditions using an ODE solver (see Table A.1II, step 1.d.ii). However, 

r
x
r

( )f x ( ( ))x f x t=&
d

X
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ME( )x
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most efficient ODE solvers (e.g., MATLAB’s ode45 [112]) make use of adaptive step 

sizes, which complicates identifying the exact time and location at which a vehicle crashes. 

Additionally, the amount of time which the UAS remains in the air before crashing could 

vary significantly. To account for this, we ran the ODE solver for a fixed amount of 

integration time before checking for a crash (see Table A.1II, step 1.d). If the vehicle’s 

altitude is still above the ground, then the final solution from the previous ODE solution is 

used as the new initial conditions and the ODE solver’s integration time is set to be the 

total amount of integration time used (see Table A.1II, step 1.d.i). Repeating this process 

allows for using an appropriate amount of integration time as needed during the crash 

simulation. When the UAS’s altitude is below the ground, we extract the first time in the 

ODE solution where the UAS is under the ground and use the state at that time as the state 

when the UAS crashed (see Table A.1II, step 1.e). 

The ODE solver also needs to be stopped if an event that changes the system’s 

dynamics occurs. For example, if a UAS with unpowered (free to move while crashing) 

control surfaces is simulated, the ODE solver needs to be stopped any time the control 

surfaces hit a hard stop, as the dynamics of the UAS will have changed. In this case the 

ODE solver is restarted with the state at the time which the event occurs and the integration 

time for the next iteration is set as it normally would be. This ensures that the crash 

simulation avoids any instability that could be caused by the UAS’s dynamics changing. 

From a practical standpoint, an event should be generated once the UAS’s altitude reaches 

a fixed height beneath the ground. This allows the ODE solver to be stopped early, reducing 

computational time. However, the event should not be generated when the UAS’s altitude 
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is zero, as this would interfere with ODE solvers that move forwards and backwards in 

time (e.g., MATLAB’s ode45 [112]). 

 
TABLE A.3: Monte Carlo Crash simulation 

approach 
1. While   

a. Let  be a random perturbation drawn 
from   

b.  
c.  

d. While  corresponds to a state that 
hasn’t crashed 

i. Set  

ii.  Solve the ODE system 
on time interval 

 , with initial conditions 

, let be the final 
state in the solution and let 
be the time the solver stopped 
at. The solver should stop 
before reaching  if an event 

occurs 
iii. Set  

e. Let   the first time in the solution 
for  where the vehicles height is 
less than zero.   

f. If   
i. Store in the list of valid 

Monte Carlo simulation results 
g. Set   

2. Return the list of valid Monte Carlo simulation 
results and finish 

 
Because the Monte Carlo simulation randomly perturbs the initial conditions of the 

UAS, many different trajectories are generated for a single initial state. The CPD generated 

from this initial state is the 2-D binned histogram of the locations where the UAS reached 
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the ground. The maximum kinetic energy at time of impact is determined from the greatest 

impact velocity observed over the N iterations. 

However, care needs to be taken to account for degenerate results, which are caused by 

initial conditions for which the ODE solver is unstable. Fortunately, such cases are easy to 

identify, as the final kinetic energy of the UAS will often increase to a quantity larger than 

the initial mechanical energy in the system. Although the initial velocities of the UAS are 

typically variables perturbed in the Monte Carlo simulation, this check (Table A.1II, step 

1.f) can be done against the unperturbed velocity, since drag forces should cause a 

significant loss in the UAS’s mechanical energy. 

A.4.3 Using parameter studies to construct surrogate models  

In order to investigate the effects of various UAS design or operation parameters, the 

Monte Carlo approach from Section III.B can be run for multiple parameter configurations. 

A large-scale parameter study with an appropriate DOE (DOE), such as a Full Factorial or 

Latin Hypercube design, will generate enough CPDs such that CPDs for other parameter 

configurations can be interpolated from them.  

A k-Nearest Neighbors (KNN) model can be used to interpolate the results of multiple 

Monte Carlo simulations to obtain the kinetic energy at time of crashing and the CPD of a 

UAS for a queried set of UAS parameters. The KNN model performs an inverse distance 

weighted average of the Monte Carlo simulation results for the k design points (parameter 

configurations in the DOE) nearest to the queried parameters, where the distance d(x, y) is 

determined by the weighted distance measure given in Eq. (1).  In this distance measure, 
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w denotes the weight for each parameter, x denotes the input queried parameters, and y 

denotes the parameters of one of the design points.  

 

 

 

(A.1)

Eq. (A.1) is used with an inverse distance weighting [113] in order to combine together 

the results from the k-nearest neighbors to the queried parameters. The inverse distance 

weighting exponent u, the weights w and the number of neighbors k should be separately 

determined for each UAS safety metric being modeled. The performance of the KNN 

model is tuned by adjusting the weights w, the number of neighbors k and the inverse 

distance exponent u. 

A.5 Example: UAS based off Cessna 182 

To demonstrate the Monte Carlo crash simulation approach, we tested it on a UAS with 

the dynamics of a Cessna 182 suffering from a total loss of power, meaning that no systems 

on the UAS would be actuated during the crash. The Cessna 182’s dynamics model was 

chosen because its aerodynamic coefficients are publicly available [101]. A 250 element 

Latin Hypercube DOE (DOE) was created using MATLAB [81] and Monte Carlo 

simulations were run for each of the 250 experiments in the DOE. 7 parameters were used 

for the DOE, the UAS’s height or elevation from the ground level, roll, pitch and forwards 

velocity at time of failure and its wingspan, allowable rudder movement range and mass. 

The ranges of these parameters are listed in Table A.4.  
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A.5.1 Cessna 182 based UAS dynamics model including unactuated 

control surfaces 

The UAS dynamics considered were those of a Cessna 182 with unactuated control 

surfaces, which were modeled as simple masses with a mass of 1 kg subject to the drag 

forces caused by the control surfaces. The Cessna 182 model has three types of control 

surfaces, ailerons, elevators, and a rudder. We assume that the elevator control surfaces 

move together and that the aileron control surfaces always move in opposite directions to 

each other. Each control surface has a maximum movement range; a constraint in the ODE 

dynamics model prevents it moving outside this range. If a control surface reaches this 

limit, the ODE solver is stopped and restarted to account for the change in the dynamics. 

 
TABLE A.4: Parameter ranges used for Latin Hypercube DOE 

 Height (m) Roll Pitch Speed (m/s) Wingspan (m) Rudder Range Mass (kg) 
Min 512 -45° -15° 30 7.45  887 
Max 2024 45° 15° 70 19.47  1400 

A.5.2 Parameter settings for example 

The random perturbations used in the Monte Carlo simulations are detailed in Table 

A.5. The values for U (speed), (height), Φ (roll) and Θ (pitch) were perturbed from the 

values specified for each Monte Carlo simulation by the DOE. All other parameters 

detailed in Table A.5 were perturbed from a value of zero. Perturbations were applied in 

both positive and negative directions.  

The Monte Carlo simulations used 0.25 seconds, additionally a minimum time step 

of  seconds was imposed on the ODE solver used. Any time the ODE solver’s timestep 

went below  seconds, an event was generated to stop the ODE solver, to avoid wasting 

24± °

40± °

h

fit =
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computational time in degenerate cases. At each design point, we ran crash 

simulations, so a total of 2.5 million crash simulations were performed for the entire DOE 

considered. The ODE solver used was MATLAB’s ode45 [112] with absolute and relative 

tolerances set at . An event to stop the ODE solver was generated whenever the UAS 

fell more than 100 meters beneath the ground (altitude of 0 meter). Additionally, to avoid 

wasting computational time in cases where the ODE solver became unstable, a time limit 

of 30 seconds was imposed for each iteration (Step 1, Table A.3) of the Monte Carlo 

simulations. 

TABLE A.5: INITIAL CONDITIONS FOR 
MONTE CARLO SIMULATIONS 

Velocity (m/s) Perturba
tion 

U 10 
V 10 
W 10 
Position (m) 

 

 0 
 0 

 0 
Orientation, Euler angles 

(degrees) 

 

Φ (Roll) 11.25 
Θ (Pitch) 11.25 
Ψ (Yaw) 11.25 
Angular Velocity (degrees/s) 

 

P 11.25 
Q 11.25 
R 11.25 
Control surface deflection 

(degrees) 

 

Elevator Deflection (��) 11.25 
Rudder Deflection (��) 11.25 
Aileron Deflection (��) 11.25 
Control surface deflection rates 

(degrees/s) 

 

Elevator deflection rate (�	
�) 0 

10,000N =

310−

N
p

E
p

h
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Rudder deflection rate (�	
�) 0 

Aileron deflection rate (�	
�) 0 

  

A.5.3 Results from example 

Based on the kinetic energy at the time of crashing, the crash trajectories produced by 

the Monte Carlo simulations can be grouped into two different types. Figure A.2 shows the 

history of the UAS’s velocities for examples of these two types of trajectories. Note that 

the high frequency of oscillations in Figure A.2 occurs because the model ignores rate 

terms for angular rate; moreover, Figure A.2 depicts body frame velocity. The speed of the 

vehicle does not oscillate at the magnitudes or frequencies of its components depicted in 

Figure A.2. Trajectory (a) corresponds to the UAS crashing by flying along a stable 

trajectory to the ground, as evidenced by the lack of oscillations in U, the body frame 

velocity component moving directly against the UAS’s drag. Trajectory (b) corresponds to 

the UAS crashing by falling, as indicated by lack of oscillations in W, the velocity 

component moving directly against the UAS’s lift. Because fixed wing aircraft (such as the 

Cessna 182) are designed to have high L/D (lift over drag) ratios, Trajectory (a) incurs 

significantly less loss in speed that Trajectory (b), causing Trajectory (a) to have a much 

higher kinetic energy when it crashes into the ground. This implies that design changes that 

increase drag (such as increasing wingspan) should also provide reductions in the kinetic 

energy of a fixed wing UAS when it crashes. 

Figure A.3 and Table A.6 describe several of the CPDs that we generated and their 

associated max kinetic energy at time of crash for different sets of design and operating 

parameters. Figure A.3 shows several expected trends: failures that occur at higher altitudes 

lead to a larger and more spread out CPD and higher speeds moved the centroid of the CPD 
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forwards (a, b) and caused a more spread out CPD (a, b, d, f). The roll of the UAS produced 

a bias towards the direction of the banked turn that the roll would cause (see d). Negative 

pitch angles (b, c) shifted the CPD’s centroid away from the point where the UAS starts 

crashing, while positive and near horizontal pitch angles (a, e) moved the centroid the other 

way.  Low masses increased the size of the CPD (e, f), which blurred some of the trends 

present in CPDs with higher mass (a, b, c, d). The CPDs with the lowest kinetic energy at 

the time of crashing (c, e) correlated to either a low height before crashing (c) or a low 

mass (e). Apart from mass’s already known effect on kinetic energy, the height, speed, and 

wingspan appear to affect the UAS’s kinetic energy when it crashes.  
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(b) 
Figure A.2. Velocity history from two trajectories 
from the same Monte Carlo simulation with similar 
initial speeds and the same design parameters and 
initial height. 

(a) Initial Speed: 73.7 m/s, Final Kinetic Energy 
at time of crash: 5.65 Megajoules 

(b) Initial Speed: 74.1 m/s, Final Kinetic Energy 
at time of crash: 2.37 Megajoules 

 
However, the results presented in Figures 2 and 3 and Table A.6 are only a snapshot of 

the 250 Monte Carlo simulations run for different configurations of design and operating 

parameters. In order to draw more accurate conclusions about how these parameters affect 

the safety of a UAS, a statistical analysis is needed that can be used for analyzing the Monte 

Carlo simulation results. 

A.6 Statistical analysis of Monte Carlo results 

Statistical tests were performed on the Monte Carlo results to verify that the parameters 

varied affected the CPD and the kinetic energy at time of crash of the example UAS. 
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A.6.1 Kinetic energy at time of crash 

Because a UAS’s kinetic energy at the time of crashing is a single value it was possible 

to test which parameters caused statistically significant effects on it by binning the data 

based on parameter values. For all possible pairs of input variables, analysis of variance 

(ANOVA) tests were conducted, to test for first and second order correlation effects 

between the parameters. Three equally spaced bins for each parameter were used to bin the 

maximum kinetic energy from each of the 250 Monte Carlo simulations. Table A.7 

provides the p-values from these tests, entries between the same variable denote first order 

correlation effects being present. The p-values in Table A.7 are the probability that the null 

hypothesis that there are no differences between the bins being compared is true. From the 

analysis in Table A.7, we see that Height, Speed, Wingspan and Vehicle Mass can reject 

this null hypothesis (at a significance level of 0.05) and have statistically significant effects 

on the kinetic energy of the example UAS. Analytically this makes sense, height, speed 

and mass affect the initial potential and kinetic energy of the UAS before it begins crashing 

and wingspan affects the lift and drag on the UAS while it crashes. 

 

(a) (b) 
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(c) (d) 

(e) (f) 
Figure A.3: Selected CPDs generated from Monte Carlo simulations in the example, see 
Table A.6 for parameters. The red X shows the point where the UAS begins crashing, the 

vehicle’s velocity prior to crashing is in the same direction as the x-axis. 
 
 

TABLE A.6: Kinetic Energy at time of crash and parameters of selected example 
Monte Carlo simulations 

Label 

Kinetic 
Energy at 

time of 
crash 
(MJ) 

Height 
(m) 

Roll 
(deg.) 

Pitch 
(deg.) 

Speed 
(m/s) 

Wingspan 
(m) 

Rudder 
Range 
(deg.) 

UAS 
Mass 
(kg) 

(a) 15.6 1,898 26.8 0.89 37.5 15.1 36.0 1,356 
(b) 27.0 1,969 -18.8 -8.84 60.6 12.9 33.5 1,378 
(c) 8.54 658.7 -23.5 -9.25 41.7 16.8 31.6 1,166 
(d) 14.5 871.2 -37.9 2.69 66.7 14.88 34.6 1,350 
(e) 6.89 1,987 3.77 13.6 66.1 15.5 32.5 897.8 
(f) 12.2 1,578 6.74 -1.82 42.3 7.52 37.5 995.0 
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A.6.2 Crash Probability Distribution 

Because a CPD is a probability distribution, we analyzed the CPDs that we generated 

by calculating the sample means, covariances, coskewness [83] and cokurtosis [83]. The 

sample mean provides a statistic of where the centroid of the distribution is. The sample 

covariance provides a statistic describing the width and shape of the distribution. The 

sample coskewness provides a statistic describing the directional bias of the crash 

distribution. The sample cokurtosis provides a statistic capturing how spread out the 

distribution is. These four multivariate statistics were computed for each of the 250 CPDs 

generated. Note that the sample cokurtosis and coskewness varied noticeably between the 

250 crash distributions, meaning that it would be inaccurate to use multivariate normal 

distributions to approximate the CPDs.  

For all possible pairs of input variables, multiple analysis of variance (MANOVA) tests 

were conducted, in order to test for first and second order correlation effects between the 

input variables. The tests were conducted with a p-value of 5%, three equally spaced bins 

for each input variable were used and the output variables were the statistics computed for 

each of the 250 crash distributions. The results from these tests showed that there were 

statistically significantly differences between all possible pairs of input variables, 

indicating that there were statistically significant differences in the CPDs caused by the 

parameters considered. However, this analysis provides no information about how these 

parameters affect the CPDs. 

A correlation analysis was performed to gain a basic understanding of how the input 

parameters affect the shape of the crash distribution. Correlation coefficients [51] were 

computed for the input variables relative to the computed statistics, using MATLAB’s [81] 
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corrcoeff function. The computed correlation coefficients were tested against the null 

hypothesis of the coefficients occurring due to random chance, using the corrcoeff function 

[81]. The probabilities of a correlation being present were identified between the input 

variables and the statistics computed for crash distributions, which are displayed in Table 

A.8. 

Table A.7: Statistical significance (p- values) of combinations of parameters affecting 
the UAS’s kinetic energy at time of crashing, computed using ANOVA. Correlations 

between a parameter and itself indicate the parameter has a statistically significant effect 
when considered on its own. Bolded p-values have statistically significant effects on 

kinetic energy. 

 Height Roll Pitch Speed Wingspan 
Rudder 
Range 

Vehicle Mass 

Height 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Roll 0.00 0.57 0.24 0.08 0.02 0.58 0.00 

Pitch 0.00 0.24 0.08 0.01 0.00 0.29 0.00 

Speed 0.00 0.08 0.01 0.00 0.00 0.01 0.00 

Wingspan 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

Rudder Range 0.00 0.58 0.29 0.01 0.00 0.15 0.00 

Mass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
From the parameters affecting the mean we see that the centroid of the CPD in the 

direction the UAS travels in is affected by pitch, speed, wingspan and mass. The shift in 

the CPD’s centroid perpendicular to this direction is affected by roll and wingspan.  

From the parameters affecting the variance statistics, we see that the size of the CPD is 

affected by height, pitch and speed, though pitch only affects the width of the CPD. 

Additionally roll affects the orientation of the CPD.  

From the parameters affecting skewness, we see that the overall bias of the CPD in the 

direction the UAS travels in is affected by height, wingspan and mass. However, the bias 

perpendicular to this direction is unaffected by the parameters considered in this study. 

Speed, wingspan and mass affect the directionality of the bias of the CPD.  
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From the parameters affecting kurtosis we see that similar parameters affect the spread 

of the CPD as those that affect the size of the CPD. However, rudder range affects the 

spread of the CPD, but not its size. 

Table A.8: p-values for null hypothesis that no correlation exists between input variables 
and distribution statistics. Bolded p-values are statistically significant (rejecting the null 
hypothesis), indicating that the input variable affects the distribution statistic in question. 
Statistic Mean Covariance Coskewness Cokurtosis 
Variable X Y X Y XY X Y XXY XYY X Y XXXY XXYY XYYY 
Height 0.33 0.70 0.00 0.00 0.79 0.00 0.74 0.27 0.20 0.00 0.00 0.97 0.00 0.89 

Roll 0.06 0.00 0.62 0.53 0.00 0.21 0.31 0.34 0.67 0.03 0.75 0.01 0.40 0.02 

Pitch 0.00 0.83 1.00 0.02 0.67 0.66 0.45 0.98 0.44 0.08 0.00 0.20 0.00 0.31 

Speed 0.00 0.34 0.00 0.00 0.31 0.72 0.41 0.35 0.00 0.00 0.13 0.24 0.01 0.15 
Wing-
span 

0.00 0.03 0.00 0.09 0.23 0.00 0.08 0.02 0.00 0.01 0.00 0.62 0.61 0.72 

Rudder 
Range 

0.09 0.46 0.32 0.70 1.00 0.32 0.57 0.21 0.46 0.00 0.00 0.38 0.00 0.82 

Mass 0.00 0.72 0.00 0.27 0.15 0.04 0.11 0.09 0.05 0.07 0.11 0.71 0.20 0.61 
               

 

Although the statistics in Tables VII and VIII are useful for understanding which 

aspects of a UAS’s CPD and kinetic energy at time of crashing are affected by parameters, 

they do not allow for actually predicting the CPD of the UAS for a given set of parameters. 

Additionally, they are computed using a large number of computationally expensive Monte 

Carlo simulations. Having a CPD model that can be evaluated quickly is important when 

assessing safety during UAS operations or when UAS safety is being maximized using a 

numerical optimization method. To enable this type of analysis, we used the proposed 

approach to construct surrogate models for the CPD and kinetic energy of a UAS that could 

be evaluated quickly. 
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A.7 Surrogate modeling UAS safety using a k-nearest neighbors (KNN) 

model 

A.7.1 Testing UAS surrogate models 

In order to test the surrogate models developed, a test set of 50 random sets of 

parameters were drawn from a uniform distribution and the Monte Carlo simulations were 

run for these parameters. The weights, number of neighbors and inverse weighting 

exponent for the KNN were determined empirically without considering the test data set. 

The test set was not used as input data to the KNN, thus it could be used to assess the 

accuracy of the KNN model by comparing the results from the KNN model against those 

in the test set.  

A.7.2 Modeling kinetic energy at time of crashing 

The statistical analysis of Section V showed that the kinetic energy at time of crashing 

for the example UAS model was only affected by height, speed, wingspan and mass. Thus 

. Additionally, we know part of the relation between mass and the 

kinetic energy at time of crashing ( ), thus we use the KNN model to approximate 

the speed ( ) of the UAS at the time of crashing and then compute the kinetic energy as 

. 

Empirically, it was found that  0.71,  0.24, 0.99, 0.86, u = 

1.7, k = 13 yielded an acceptable KNN model. With these parameters, the KNN had a root 

mean squared error (RMSE) of 2.0 Megajoules on the test dataset, with a maximum error 

0roll pitch rudderw w w= = =

21 / 2 mv

2
v

21 / 2 mv

heightw = speedw = wingspanw =
mass

w =
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magnitude of 4.15 Megajoules. The highest maximum kinetic energy at time of crashing 

in the test data set was 26 Megajoules, the lowest maximum was 5.6 Megajoules. 

A.7.3 Modeling the UAS’s CPD 

Because all parameters showed evidence earlier of affecting the CPD of the example 

UAS, they were all considered in the KNN model for the CPD. When modeling the CPD, 

we separate the CPD into a 2-D binned frequency distribution of a fixed size and the 

centroid of the distribution. This made it easier for the KNN to model effects that changed 

the shape of the CPD. 

Table A.9: Quality of fit of KNN CPD model in terms of scaled root mean square error 
(RMSE) and scale maximum magnitude of error (Max Err.). Values scaled based off 

range of statistics present in the Monte Carlo simulations from Section V 
Statistic Mean Covariance Coskewness Cokurtosis 

 X Y X Y XY X Y XXY XYY X Y XXXY XXYY XYYY 
RMSE 0.11 0.10 0.18 0.19 0.10 0.12 0.15 0.12 0.15 0.13 0.19 0.08 0.15 0.1 
Max 
Err. 

0.27 0.3 0.42 1.1 0.45 0.40 0.45 0.38 0.34 0.56 0.76 0.21 0.67 0.42 

Empirically, it was found that  0.2, 0.76, 0.34,  0.97, 

0.77, 0.19, 0.17, u = 1.50, k = 2 yielded an acceptable KNN model. 

Table A.1X details the RMSE and maximum error observed in each of the statistics 

discussed earlier between the CPDs produced by the KNN and those computed from the 

results of the test set. 

A.7.4 Computational Time 

The KNN models for both kinetic energy and the CPD required no more than 2 

milliseconds to generate a result. In comparison the times needed to run one of the Monte 

Carlo simulations to generate a CPD in the test data set ranged from 1.8 to 32 hours.  

heightw =
roll

w = pitchw = speedw =

wingspanw =
rudder

w =
mass

w =
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A.7.5 Discussion 

Figure A.4 shows a comparison of several CPDs in the test set against the CPDs 

produced by the KNN model for the same parameters (Table A.10). The CPD KNN 

model’s performance is more difficult to quantify, while its RMSE is low for the statistics 

considered, the maximum errors for several statistics are significantly higher. Part of this 

can be attributed to the KNN model’s tendency to approximate larger CPDs than the CPD 

produced via Monte Carlo simulation, as seen in Figure A.4b. Additionally, the KNN 

model sometimes misses behavior that may not have been present in the CPDs from the 

parameter study, which the KNN uses, such as the behavior in Figure A.4c. However, the 

KNN also obtains slightly smoother CPDs that the Monte Carlo simulations, as seen in 

Figure A.4b. This can lead to behavior where the KNN model misses a part of the CPD, 

like in Figure A.4a.  

However, the KNN model still produces CPDs that are visually close to the more 

accurate CPDs produced using Monte Carlo simulation, while using six orders of 

magnitude less computational time than a Monte Carlo simulation. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure A.4: Left (a, c, e): CPDs produced by the KNN model. Right (b, d, f): CPDs 

produced via Monte Carlo simulation 
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Table X: parameters of selected examples from test set used for comparison 

Label 
Height 

(m) 
Roll 

(deg.) 
Pitch 
(deg.) 

Speed 
(m/s) 

Wingspan 
(m) 

Rudder 
Range 
(deg.) 

UAS 
Mass 
(kg) 

(a) 1,806 -19.3 1.83 69.8 12.2 36.0 898.2 
(b) 1,307 -0.48 4.97 63.7 8.7 37.6 928.4 
(c) 872.5 -40.5 -13.4 52.6 7.56 38.5 891.3 

A.8 Conclusions 

This appendix presented an approach for assessing UAS safety metrics by using Monte 

Carlo simulation to simulate the UAS crashing. A surrogate modeling approach was also 

presented, which can use the results of the Monte Carlo simulations to rapidly estimate 

UAS safety metrics for different UAS parameters. These approaches were demonstrated 

on an example UAS model based off a Cessna 182 in order to estimate two safety metrics 

for different design and operating parameters, the kinetic energy when impacting the 

ground and the UAS’s CPD. A statistical analysis was conducted to assess the effects of 

these parameters on the two safety metrics. Results were presented comparing the results 

from the surrogate modeling approach against the Monte Carlo simulation approach for the 

two safety metrics considered. 

The results indicate that the proposed approach was more accurate at modeling kinetic 

energy than it was at modeling CPDs. This can be partially attributed to the fact that the 

CPD KNN model used a k value of 2, which generates CPDs using only two reference 

CPDs. However, the performance of the CPD KNN could not be improved by increasing 

the k value. This indicates that there may more effective surrogate approaches for 

estimating CPDs than a KNN model, or that increasing the number of experiments in the 

DOE would have been beneficial. The k value could have been set higher had a Full 

Factorial DOE been used instead of a Latin Hypercube DOE. However, a Full Factorial 
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DOE requires an exponential number of experiments relative to the number of parameters 

being varied, which is only computationally feasible when considering a small number of 

parameters.  

The KNN models were several orders of magnitude faster than the Monte Carlo 

simulations, which is an acceptable tradeoff for the loss in accuracy relative to them. 

Critically, the KNN models are fast enough that they could be potentially evaluated in real 

time. Such models can facilitate UAS performing online risk management and make it 

computationally feasible to optimize UAS safety. Thus, the proposed modeling approach 

shows promise for enabling new approaches to managing UAS safety. 
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Appendix B: Computational Complexity of SGLRO and Other 

Robust Optimization Approaches 

Table B.1 details the computational complexity of each of the steps within SGLRO in terms 

of the total number of constraint function calls (total number of times that any of the 

constraints ( )
l

d x , ( , )
i

g x u  and ( )jq u  are evaluated). It is assumed that all optimization 

solvers use a central difference method to estimate derivatives and that the BFGS algorithm 

[6] is used to estimate the Hessian of ( )f x  for both the local robust optimization method 

and any optimization solvers which make use of Hessians (e.g. MATLAB’s fmincon [80]), 

as it is more efficient than numerically computing the Hessian at every iteration via finite 

differences. Each entry in Table B.1 is computed assuming that the step in question occurs 

on every iteration of SGLRO, which is why all steps except “Local Robust Optimization” 

are multiplied by 
I

N . “Reduced Scenario Robust Optimization” requires at most 

( )
I

N D I N Lα × × × +  function calls, as Eq. (3.1) has at most 
I

I N L× + constraints (if a 

scenario is generated on every single iteration), which require D function calls to evaluate 

the gradient of, to a maximum of Nα  times. A similar expression exists for “Worst Case 

Search” , except using P instead of D and J instead of L, however the maximum number 

of constraints used during “Worst Case Search” will never increase. The cost of “Local 

Robust Optimization” is the sum of the costs of “Worst Case Search” and “Reduced 

Scenario Robust Optimization”, except that 
QN  (the number of iterations “Local Robust 

Optimization” needs to converge) replaces 
I

N .  
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Table B.1: Breakdown of Computational costs in SGLRO 
Step Upper bound on number of function calls  

Reduced Scenario Robust 
Optimization 

2( ))I IO N N D I N N D Lα α× × × + × × ×  

Worst Case Search ( )
I S

O N N P I J Nα× × × × ×  

Feasibility checking 
(lines 8-13 of Algorithm 
1) 

( )
I

O N I×  

Local Robust 
Optimization 

2( )Q Q QO N N P I J N N D I N N D Lα α α× × × × + × × × + × × ×  

 

The term 
I QN N NΩ = +  can be used to represent the total number of iterations used 

by SGLRO, which simplifies its worst case computational cost to the expression given in 

Table B.2, which is the sum of the terms in Table B.1. Table B.2 also provides a comparison 

of SGLRO’s computational cost against a basic deterministic double loop approach (see 

Appendix C for implementation) and SGR2O [104]. 
S

N  is the maximum limit on the 

number of scenarios used by SGR2O.  

Table B.2: Computational Costs of Methods Compared 
Approach Theoretical worst case computational cost 

SGR2O ( ( ) ( ) )
S S

O N N N I L D N N N I J Pα αΩ Ω× × × + × + × × × + ×  

Deterministic Double Loop ( ))O N N P I J N N D I N N D Lα α αΩ Ω Ω× × × × + × × × + × × ×  

SGLRO 2 2( )O N N P I J N N D I N N D Lα α αΩ Ω Ω× × × × + × × × + × × ×  

 

From a theoretical standpoint, both SGR2O [104] and a deterministic double loop 

approach should be faster than SGLRO, as SGLRO has 2
NΩ

 terms present. SGR2O appears 

faster because SGR2O uses scenario reduction to limit the maximum number of scenarios 

in use, which changes the cost of solving Eq. (3.2) or Eq. (3.3) to be 

( )
I S I

O N N N D I N N D Lα α× × × × + × × × . The deterministic double loop optimization 

approach only considers one scenario per constraint, which provides a similar benefit. 
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However, there exist robust optimization problems where the robust optimal solution 

cannot be found by only considering one scenario per constraint. Additionally, the use of 

scenario reduction may require additional scenarios to be generated, which can result in 

SGR2O requiring more constraint function calls than SGLRO. 
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Appendix C: Deterministic Double Loop Robust Optimization 

Method 

Table C.1: Deterministic Double Loop Robust 
Optimization Algorithm 

1:  Feasible False=   

2: { }nomU u←  

3: ( ) {1,..., }
nom

R u I←   

4: While( )Feasible False=   

5:      Solve RSRO
B

x ←  

6:     Feasible True=  

7:     {}U ←  

8:     For( {1... })i I∈  

9: 
        Solve Worst Case Search 

with

gen
u

V i

←

=
 

10:         { }genU U u← ∪  

11:         ( )genR u i←  

12:         If ( ( , ) )
i B gen

g x u ε≥  

13:             Feasible False=  
14: Return 

B
x  
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Appendix D: Nomenclature and Glossary 

ABREVIATIONS AND DEFINITIONS 

Backward 

subpath: 

The subpath of a path from a specified node to the goal node 

BVP Boundary Value Problem 

CCS Complete Candidate Solution: A solution that contains both the start 

and goal node in its path 

Configuration A set of values which belong the configuration space, a space which 

describes all feasible states a system can be in 

CPD Crash Probability Distribution 

DOE Design of experiments 

Forward 

subpath: 

The subpath of a path from the start node to a specified node 

LP Linear Programming 

PCS Partial Candidate Solution: A solution with a path that does not 

contain the goal node 

Priority queue 

[62]: 

A queue in which its first element has the lowest cost 

Scenario A scenario assigns a value to all uncertain parameters present in a 

problem 

SGLRO Scenario Generation with Local Robust Optimization  
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SGR2O Scenario Generation and Reduction Robust Optimization, robust 

optimization approach of Rudnick-Cohen et al. [104] 

Subpath: A sequence of nodes connected by edges within a path 

NOTATION 

( )1 2,B c c  The set of all possible solutions to the BVP between configurations 

1c  and 2c . 

sc  The vehicle’s initial configuration  

fc   The vehicle’s desired final configuration 

D Number of design variables 

( )
l

d x  lth constraint without uncertainty 

ije  An edge going from node i to node j 

1 2( , , )f c c u  Objective function of Chapter 4. Outputs the cost of moving from 

configuration 1c  to configuration 2c  under scenario u 

( )tf s   The time needed to move along trajectory s  

( )rf s   The risk caused by moving along trajectory s  

( )f x   Objective function 

( , )
i

g x u  ith constraint subject to uncertainty 
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I, J, L Number of constraints on design containing uncertainty, on the 

domain of uncertain parameters and on design not containing 

uncertainty, respectively 

LL  Length of a curve 

Nα  Maximum number of optimization solver iterations 

I
N  Number of iterations to run SGLRO algorithm 

QN  Number of iterations used by a local robust optimization method 

P Number of uncertain parameters 

np  Probability that modified RRT# algorithm uses “SAMPLE” procedure 

bp  Probability that modified RRT# algorithm uses “RANDOM CONFIG 

IN BALL” procedure 

( )jq u  jth constraint defining the domain of uncertain parameters 

R(u) The set of the indices of the constraints which u should impose in a 

reduced scenario robust optimization problem 

s A trajectory or path, defined by a continuous sequence of 

configurations 

u Vector of all uncertain parameters present in optimization problem 

U  Set of scenarios used to solve scenario robust optimization problem 

U  Set of all possible combinations of uncertain parameters (domain of 

uncertain parameters) 
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V Set of violated constraints 

rw  Weighting coefficient for risk objective 

tw  Weighting coefficient for time objective 

x Vector of all design variables present in optimization problem 

B
x   Current best solution for design variables 

ijx  Design variable in a transshipment problem which takes a value of 1 

if edge 
ije  is a part of the current optimal path and 0 otherwise 

( )Z n  Set of nodes neighboring node n 

( )
inc

Z i  Set of nodes neighboring node i with edges going into node i  

( )
out

Z i  Set of nodes neighboring node i with edges leaving from node i  

ε User specified constraint tolerance 

0γ   Initial connection radius of RRT# 

minγ   Minimum connection radius of RRT# 
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