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Quantum mechanics is applied to the study and simulation of two features

of group IV semiconductor devices: metal/n-type 4H-SiC interfaces for SiC-based

Schottky diodes and GeO2 gate dielectrics for Ge-based Metal-Oxide-Semiconductor

Field-Effect Transistors (MOSFETs).

SiC is well suited for power electronics due to its relatively wide bandgap

and high breakdown field. In Schottky power diodes, one consideration in device

performance is reverse saturation leakage. For metal/4H-SiC interfaces, reverse sat-

uration leakage current is modeled with quantum transmission calculated by the

Symmetrized Transfer Matrix Method (STMM). The classical thermionic emission

model and quantum model are compared for multiple donor concentrations. The

quantum model is then compared to experimental results for Ti/4H-SiC measure-

ments, and the effect of Fermi pinning is included to account for the correct barrier

height. Multiple donor concentrations are again modeled to best fit the bias de-

pendence of the measured curves to find an effective doping level to reflect possible



barrier thinning.

Ge is considered as a possible replacement for Si in MOSFET design as device

lengths continue to scale down to match Moore’s Law and Si MOSFETs become

increasingly difficult to fabricate. Ge is considered due to its relatively high electron

and hole mobilities, and its ability to grow a native oxide like Si. However, GeO2

and the Ge/GeO2 interface suffer from high defect densities, with one such defect

being the oxygen vacancy defect. For GeO2, the oxygen vacancy defect, and corre-

sponding fluorine passivation, are modeled using Density Functional Theory (DFT)

to calculate the atomic configurations and energies. Incorporation of fluorine atoms

in the vicinity of the defect is modeled, as well as the incorporation of fluorine atoms

within the oxide network. Hydrogen passivation is also modeled and found to not

be as energetically favorable. Finally, fluorine diffusion through the oxide network

is investigated by calculating the reaction pathway between fluorine incorporation

sites in the network.
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Chapter 1: Introduction

1.1 The Search for Alternatives to Silicon

For over half a century, the semiconductor industry has been dominated by

silicon. Silicon’s ability to grow a native stable, insulating oxide was a key com-

ponent towards developing modern integrated circuit technology, as it allows for

multiple devices to be fabricated in close proximity on chip, as well as allow for

self-aligned fabrication, and perhaps most importantly, it is a crucial ingredient

in metal-oxide-semiconductor field-effect transistors (MOSFETS). While silicon has

been the industry standard in almost all domains, from CMOS technology, to power

electronics, as device sizes continue to shrink, it is becoming more difficult for new

silicon technologies to keep up with the pace set by Moore’s Law. One possible

solution to this difficulty is to replace silicon with alternative semiconductors that

each perform better in different regimes where silicon has reached its limit.

1.1.1 Power Diodes: Silicon-Carbide (SiC)

In the realm of power electronics, SiC is one of the preferred replacements for

Si. SiC has excellent material properties that make it well-suited for applications in
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power electronics, such as a wide bandgap and high breakdown field. One application

in particular that this work focuses on is the use of SiC for power schottky diodes.

Schottky diodes are of interest in power electronics because of their relatively higher

switching speed than p-n junction diodes, a critical parameter in power conversion

technology.

In power applications, the electric fields generated across devices can become

quite large, especially in regions such as the metal/semiconductor interface found in

Schottky diodes when they are under reverse bias. Since SiC has a breakdown field

many times greater than Si, SiC Schottky diodes can hold off much larger voltages

under reverse bias. Another important feature in power diodes is the barrier height,

which determines how much current can flow through the device. Proper barrier

heights can then be engineered by selecting the appropriate metal. However, the

presence of defects have been found to lower the barrier height [48] [45], resulting

in larger than expected leakage currents. The concentration of defects is irregular

and results in barrier height inhomogeneities, with the most severe barrier lowering

occurring when high density defect clusters are present. As the area of the diodes

increases, so does the probability of a defect cluster appearing. This is especially

problematic for power applications, since large area devices are needed to handle

the high current output.

When modeling the leakage current, due to the shape of the barrier, the in-

clusion of quantum mechanical effects will have a non-negligible correction to the

current. During high reverse biases, or under high doping concentrations, the large

electric field at the interface results in a thin barrier that leads to quantum tunneling.
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At low doping concentrations, while tunneling can be negligible, another quantum

effect, quantum reflection, will actually reduce the current that would be expected

from classical models, an effect that cannot be captured with semi-classical tech-

niques such as the Wentzel-Kramers-Brillouin (WKB) approximation [43]. While

some models have used drift-diffusion based models [20] [21], such expensive models

were deemed unnecessary for this work as only diodes under reverse bias were con-

sidered. In this case, the total current is low enough that the potential barrier will

not be significantly altered from the depletion approximation.

1.1.2 High Mobility MOSFETs: Germanium (Ge)

Ge-based transistors are a viable candidate to replace current transistors for

a number of reasons: Ge has a higher carrier mobility than Si, so equivalently

sized Ge transistors will be able to operate at faster switching speeds than their Si

counterparts [1]. The ratio between electron and hole mobility is smaller in Ge than

it is in Si, which makes it very attractive for CMOS technology, where a smaller

ratio translates to a more efficient use of chip space.

While other materials also boast higher bulk mobilities than Si, Ge also has the

advantage of having a native oxide, which allows for an oxide interface to be grown

rather than deposited during fabrication. Deposited oxide interfaces have a higher

surface roughness than grown oxide interfaces, which degrades mobility. Therefore

grown oxide interfaces are more desirable for achieving high surface mobility.

However, the full potential of Ge-based transistors has yet to be realized, as

3



the oxide/semiconductor interfaces still suffer from high defect densities, trapped

charge and high surface roughness, among of other issues, all of which degrade the

channel surface mobility [1] [2] [3] [4]. Many of the challenges facing realizing high

quality oxide/semiconductor interfaces in Ge stems from having a more reactive

interface than in Si [5] [6]. More defects are produced at the interface, and due

to Ge in general forming weaker bonds than Si, the defects are able to migrate at

quicker rates, yielding unstable oxides and poorly defined interfaces [2] [4] [5] [6] [7].

Various fabrication techniques have been applied to lower the interface defect density

in Ge/GeO2 and Ge/high − κ dielectric interfaces, using techniques ranging from

high pressure oxidation [3] [9] to fluorine passivation [8] [10].

To understand these challenges, and to find possible solutions to them, I have

utilized Density Functional Theory (DFT) to model atomic configurations present

in the oxide.
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Chapter 2: Power Diodes: Silicon Carbide

2.1 Basic Properties of Silicon Carbide

Silicon carbide is a wide bandgap group IV semiconductor that shares a num-

ber of properties with silicon. Having a wider bandgap makes SiC better suited for

applications in power electronics. Since SiC is a compound semiconductor, describ-

ing its crystal structure is more complicated than it is for Si.

2.1.1 Crystal Structure

SiC is composed of Si and C atoms in a 1:1 stoichiometric ratio, with each

Si atom bonded to four C atoms and vice versa. The four bonds from each atom

form a regular tetrahedron, just like in Si and carbon diamond lattices. The bonds

occupy hybridized sp3 orbitals and have a bond length of 1.89 Å, with the overall

density of SiC being 3.2 g/cm−3.

Various polytypes exist for SiC, distinguished by the specific stacking config-

urations. The atomic layers of SiC can be grouped into bilayers composed of an

atomic Si layer and C layer. The stacking configurations then refer to how the

bilayers are stacked relative to each other. There are three distinct stacking sites,
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Figure 2.1: Stacking sites for SiC polytypes indicated with A,B and C, as viewed
from the (0001) plane. The first stacking plane is indicated by A, with sites arranged
hexagonally. The B and C sites then refer to two distinct stacking arrangements
relative to the A sites. [34]

denoted A,B and C, depicted in figure 2.1 [34]. The A layer is always the first layer,

with lattice sites arranged hexagonally. The individual stacking configurations are

then denoted as AB,ABC,ABAC, etc., where the pattern is assumed to repeat (So

AB refers to ABABABAB... and so on)

The polytype of interest in this work is 4H-SiC, due to its exceptional electrical

properties that will be described in the next section. The H refers to the hexagonal

unit cell of the crystal, depicted in figure 2.2 [39]. The (0001) face is referred to

as the Si-face (as it composed of Si atoms) and likewise the (000Ī) face is referred

to as the C face. The 4 refers to the specific stacking configuration, in that the

stacking sequence has a length of 4, denoted as ABAC. A side view of the stacking

configuration is depicted in figure 2.3 [35] where the bilayers have been sectioned

off. Note that simply removing an atomic Si layer from the Si-face, while revealing

an atomic C layer, does not produce a C-face, as the newly revealed C atoms are

directly above the next layer of Si atoms, whereas on a C-face, the C atoms are
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Figure 2.2: Hexagonal Bravais lattice with the four lattice vectors and (0001) and
(000Ī) faces depicted. For SiC, the (0001) face is denoted the Si-face and the (000Ī)
is denoted the C-face. [39]

Figure 2.3: Stacking arrangement of 4H-SiC. The grouping of the bilayer is depicted
such that each bilayer has an atomic Si layer and C layer. [35]
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Figure 2.4: The hexagonal unit cell of 4H-SiC. C atoms are depicted in red and Si
atoms are depicted in blue. [41]

askew relative to the next layer of Si atoms. The full hexagonal unit cell is depicted

in figure 2.4 [41]. Si-face wafers are the most commercially available wafers [37], and

so this orientation will be assumed throughout.

mMΓ mMK mML

0.58 0.31 0.33

Table 2.1: Effective masses in 4H-SiC, in units of m0 the free electron mass [36]

The Brillouin zone of 4H-Si also has a hexagonal unit cell, depicted in figure
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Figure 2.5: Brillouin zone of 4H-SiC. The high symmetry points and and irreducible
wedge are depicted. [38]

2.5 [38], where the high symmetry points and irreducible wedge have been indicated.

A view from the (0001) direction of the cell is depicted in figure 2.6 [40], where the

three equivalent valleys are indicated, with each valley centered on the M high

symmetry point. The corresponding effective masses for each direction is given in

table 2.1 [36]. For the remainder of this paper, the direction into the Si-face will be

the x-direction and the orthogonal plane will be the y-z plane. The effective masses

that will be used in the derivations in the section are mx, my and mz, which are

given by:

mx = mML (2.1)

my = mz =
2

1
mMΓ

+ 1
mMK

(2.2)
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Figure 2.6: Brillouin zone of 4H-SiC viewed from the (0001) direction. The three
equivalent valleys are depicted with ovals, each valley is centered on the M high
symmetry point. [40]

2.1.2 Electrical Properties

4H-SiC is a wide bandgap semiconductor with a bandgap of 3.2 eV, which

make it very attractive for high power electronics. With a wide bandgap, 4H-SiC

sports a higher critical field over Si, with a value of about Ec = 3 MV/cm, over an

order of magnitude higher than the value for Si (about 300 kV/cm) [49] [50]. This

allows for device lengths to be scaled down significantly, as high voltages can be

dropped across shorter distances without causing excessive impact ionization. 4H-

SiC is also preferred over the other polytypes because of its higher electron mobility,

with a value as high as 900 cm2/Vs [50].

The electrical application of 4H-SiC that this work focuses on is towards power

diodes. Power diodes are typically Schottky diodes due to Schottky diodes higher
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switching speed than p-n junction diodes. High switching speeds are very important

in power electronics, such as in power conversion applications. For example, in a

boost converter, a Schottky diode will be placed in parallel with a MOSFET that has

a high frequency AC signal coming into the gate, rapidly switching the MOSFET

on and off. As the MOSFET switches between states, the charge in the channel

and drift region must be charged and discharged within the duty cycle of the gate

signal. Without the diode present, the MOSFET would charge and discharge via

diffusion into the substrate body, which is typically quite slow. The presence of the

diode offers another avenue for current to flow, and allows for rapid charging and

discharging. In the off state, the drain voltage will be quite high and the diode will

be heavily reverse biased. Here the diode must be able to sustain the large electrical

field that is formed at the metal/semiconductor interface without breaking down,

which is one of the reasons SiC is an attractive choice. Also during the off state, the

amount of current leaking through the diode must be kept at a minimum. Since the

voltage is so high, any current that leaks through will result in a significant power

loss.

2.2 4H-SiC Schottky Power Diode

4H-SiC has promising applications for Schottky power diodes due to its ability

to hold off large voltages over short device lengths. However, there are numerous

considerations that still need to be addressed, such as high reverse current leakage

caused by Fermi pinning due to surface defects.
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2.2.1 Modeling Reverse Current Leakage

The dominant component in SiC schottky diode reverse current leakage is due

to quantum tunneling when the doping is high enough, as even though the barrier

height is large enough to hold off thermionic emission, at large reverse bias voltages

the barrier becomes thin enough that tunneling becomes substantial. When the

doping is low enough, tunneling will not be too large, and in fact other quantum

effects, notably quantum reflection, will reduce the leakage current that would be

expected under classical models. Therefore, to accurately calculate leakage current,

a quantum model is considered.

2.2.1.1 The Potential Energy Barrier

To model the tunneling current in n-type 4H-SiC Schottky diode, a number

of assumptions were taken:

First the potential energy of the barrier was modeled using the depletion ap-

proximation, with the inclusion of a term to account for image force barrier lowering

(IFBL). The total potential takes the following form at a given reverse bias of VR,

in terms of ’x’, the distance from the metal/SiC interface :

qφ(x) =


qVbi + qVR

x2
n

(x− xn)2 + qφn − qVR + EF −
q2

16πεSiCx
, 0 < x ≤ xn

qφn − qVR + EF , xn ≤ x

(2.3)
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where the first term is the depletion approximation term and the last term is

the IFBL term [22], with xn equal to the depletion width given by:

xn =

√
2εSiC(Vbi + VR)

qNd

(2.4)

where q is the charge of the electron, εSiC is the dielectric constant of 4H-SiC,

Nd is the donor doping concentration and Vbi is the built-in potential equal to

Vbi = φB0 − φn (2.5)

where φB0 is the potential barrier height without IFBL, equal to the difference

between the conduction band at the interface without IFBL and the Fermi level of

the metal, denoted as EF , and whose value is calculated in a manner described in

a later section. φn is the potential difference between the conduction band in the

substrate and the Fermi level of the semiconductor, such that the following equation

is satisfied [51]:

Nd =

∫ +∞

0

4π(2m∗)3/2

h3

u1/2

1 + eu + φn/kBT
du (2.6)

with kB being the Boltzmann constant, T the temperature, h is Planck’s con-

stant and m∗ is the effective density of states mass for 4H-SiC. The integration

variable, u, represents the difference in energy from the conduction band. This

equation applies to degenerate and non-degenerate doping cases.

All variables described here are indicated in figure 2.7, which depicts an ex-
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Figure 2.7: Potential energy qφ(x) of a Schottky contact under reverse bias VR with
IFBL (blue) and without (black dashed). On the right is the semiconductor and on
the left is the metal. EF denotes the Fermi level of the metal, and EFn denotes the
electron quasi-Fermi level in the semiconductor. φB0 indicates the barrier height
without IFBL and φB indicates the barrier height with IFBL, which is a function
of the applied bias. xn indicates the depletion width and is also a function of the
applied bias. qφn is the potential difference between the conduction band and the
quasi-Fermi level in the semiconductor. Vbi is the built-in potential.

14



ample of a Schottky contact barrier under an applied bias, which is what will be

considered in this section. The potential energy with and without the inclusion of

the IFBL term are depicted, as well as the resulting lowered barrier, equal to [52]:

φB(VR) = φB0 −∆φ(VR) (2.7)

where

∆φ(VR) =
q

εSiC

√
xnNd

4π
(2.8)

The dependence of the change in the barrier height on bias comes from the

depletion width dependence, and will increase with increasing applied reverse bias.

In some calculations, the effect of IFBL is entirely included by explicitly using this

effective barrier height. However, since some of the calculations described in this

chapter will involve the actual shape of the potential and not just the barrier height,

the full Coulombic IFBL term is included in the calculations, and the effective barrier

height φB will be considered implicitly.

Another assumption was that, since reverse bias leakage is being modeled, the

current flowing through the barrier would be relatively low and the deviation from

the depletion approximation would be minimal. Thus a full drift-diffusion solver

was not necessary to calculate the potential energy barrier and accurately model

the leakage current.

15



2.2.1.2 Derivation of Leakage Current Formula

Classically, the current flowing through the Schottky barrier is modeled using

thermionic emission i.e. thermalized majority carriers from the metal or semicon-

ductor substrate with sufficient energy will flow across the barrier. To calculate the

total current density due to thermionic emission, first the following integral is com-

puted for the current due to electrons (since n-type semiconductors are assumed)

flowing from the metal to the semiconductor (where the x-coordinate direction is

assumed to be parallel with the current flow):

JMS = −q
∫ ∫ ∫ +∞

−∞

2

(2π)3

h̄kx
mx

1

1 + e(E − EF )/kBT
Θ(Ex−(qφB+EF ))dkxdkydkz (2.9)

Where the first term is simply the density of states in k-space (with the factor

of 2 included for spin), the second term being the velocity into the barrier, the third

term is the Fermi-Dirac statistic, where E is the energy equal to:

E =
h̄2

2
(
k2
x

mx

+
k2
y

my

+
k2
z

mz

) (2.10)

and the final term is the Heaviside step function, meant to indicate the classical

transmission function, where only electrons with energies higher than the barrier will

contribute to the current, with Ex meaning:

Ex =
h̄2k2

x

2mx

(2.11)
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To evaluate the integral, the orthogonal coordinates (the y-z coordinates) to

the current are integrated out first. A simple rescaling is implemented at the begin-

ning of the integration to simplify the problem:

k′y =
m

1/2
yz

m
1/2
y

ky (2.12)

k′z =
m

1/2
yz

m
1/2
z

kz (2.13)

where

myz = (mymz)
1/2 (2.14)

The corresponding Jacobian is then unity:

dkydkz = dk′ydk
′
z (2.15)

With the new rescaled variables, the y-z integral is recast into polar coordinates

with

k2
r = k′2y + k′2z (2.16)

so that E is now

E =
h̄2

2
(
k2
x

mx

+
k2
r

myz

) (2.17)
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The integral is now equal to:

JMS = q

∫ +∞

−∞

∫ +∞

0

∫ 2π

0

2

(2π)3

h̄kx
mx

kr
1 + eE − EF/kBT

Θ(Ex − (qφB + EF ))dkθdkrdkx

(2.18)

Since there is no angular dependence, the θ-integral evaluates to 2π. After

rearranging terms, the integral becomes:

JMS = 2πq

∫ +∞

−∞

2

(2π)3

h̄kx
mx

[ ∫ +∞

0

kr

1 + e
h̄2k2

r
2myzkBT eEx − EF/kBT

dkr
]
Θ(Ex−(qφB+EF ))dkx

(2.19)

The integral inside the bracket can be evaluated exactly as follows (variable

substitutions are used for compactness):

[integral] =

∫ +∞

0

t

1 + Aeat2
dt =

∫ +∞

0

te−at
2

e−at2 + A
dt (2.20)

where

t = kr (2.21)

a =
h̄2

2myzkBT
(2.22)

A = e
Ex − EF/kBT (2.23)

A change of variables then leads to the evaluation:
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∫ +∞

0

te−at
2

e−at2 + A
dt =

∫ 1+A

A

1

2au
du =

1

2a
ln(1 + A−1) (2.24)

u = e−at
2

+ A (2.25)

− 1

2a
du = te−at

2

dt (2.26)

The final integral is now (with Ex replacing kx):

JMS =
4πqmyzkBT

h3

∫ +∞

0

ln(1 + e
EF − Ex/kBT )Θ(Ex − (qφB + EF ))dEx (2.27)

Often the barrier height φB exceeds kBT ⁄q, and the logarithm in the integral

can be Taylor expanded to first order, reducing the integral to [53]:

JMS =
4πqmyzkBT

h3

∫ +∞

EF+qφB

e
EF − Ex/kBTdEx = A∗T 2e−

qφB/kBT (2.28)

where

A∗ =
4πqmyzk

2
B

h3
= 145.6A/cm2K2 (2.29)

is the Richardson’s constant. To get the current flowing from the semicon-

ductor to the metal, JSM , the above process is repeated, only the Fermi level in

the Fermi-Dirac statistic is replaced with EF + qVa, where qVa is the applied bias
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(positive for forward, negative for reverse). The semiconductor to metal current is

then:

JSM =
4πqmyzkBT

h3

∫ +∞

EF+qφB

e
EF − qVR − Ex/kBTdEx = A∗T 2e−

q(φB + VR)/kBT (2.30)

The total current is then:

JTOT (Classical) = JSM − JMS = A∗T 2e−
qφB/kBT (e

− qVR/kBT − 1) (2.31)

To upgrade this expression from a classical one to a quantum mechanical one,

all that needs to be done is the classical transmission function Θ(E) is replaced with

a quantum mechanical transmission function T(E) (boldfaced to distinguish it from

temperature T ). Quantum mechanics predicts that there is a non-zero probability

of finding particles in regions of potential energy greater than the particle energy,

which is classically forbidden. If a potential energy barrier is thin enough, there is

a relatively significant probability of finding the particle on the other side of the

barrier, and the particle is said to have tunneled through the barrier. Thus even

if φB >> kBT there could be a significant number of particles contributing to the

current near the Fermi level, and so the above Taylor expansion of the logarithm is

no longer valid. The full expression for the current now reads:

JQM =
4πqmyzkBT

h3

∫ +∞

0

ln(
1 + eEF − qVR − Ex/kBT

1 + eEF − Ex/kBT
)T(Ex)dEx (2.32)
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Figure 2.8: Incident wave A with wavenumber kI scattering of a barrier, with re-
flected component B and transmitted component C

2.2.1.3 Transmission Coefficient Calculation

To calculate the transmission coefficient T(E), first the wavefunction for the

particle at a given energy must be calculated using the Schrodinger equation. For

a given energy E, the Schrodinger equation in 1-D reads:

EΨ = HΨ = − h̄2

2m∗
∂2

∂x2
Ψ− qφΨ (2.33)

where Ψ is the wavefunction of the particle, andH is the Hamiltonian operator,

equal to the sum of the kinetic energy and potential energy operators, h̄ is the

reduced planck’s constant, and m∗ is the effective mass of the particle.

When the potential is at a constant value V , if the energy E is greater than

V , the solution to eq. (3.6) reveals the state of the particle is that of a free traveling
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wave and Ψ takes the form:

Ψ(x) = Aeikx + Be−ikx (2.34)

where the wavenumber k is equal to

k =

√
2m∗(E − V )

h̄
(2.35)

and A and B are the amplitudes of the right- and left-traveling waves, respec-

tively.

When calculating tunneling probabilities across a potential barrier, the poten-

tial on either side of the barrier is assumed constant, as depicted in figure 2.8, and

VI − VII is equal to the bias applied across the barrier. In region I, Ψ is equal to:

Ψ(x) = AeikIx + Be−ikIx (2.36)

and in region II Ψ is equal to:

Ψ(x) = CeikIIx + De−ikIIx (2.37)

In the case of a wave incident on the barrier coming from the left, A represents

the amplitude of the incident wave, B the amplitude of the reflected wave, and C

the amplitude of the transmitted wave. Since no wave is assumed to be traveling

from the right, D is set equal to 0.

The transmission coefficient T i.e. the tunneling probability, is defined as the
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relative flux between the transmitted wave and the incident wave, where the flux J

of a traveling wave Ψ with wavenumber k is given by:

J =
h̄k

m∗
|Ψ|2 (2.38)

so that T is equal to:

T =
kII
kI

|C|2

|A|2
=
kII
kI
|C|2 (2.39)

where A has been set equal to 1 since only the relative values of the amplitudes

are physically meaningful.

In order to calculate C, the wavefunction inside the barrier must be computed,

which involves solving eq. (3.6). One such method that is both computationally

efficient and accurate is the Symmetrized Transfer Matrix Method (STMM) [44].

STMM is implemented as follows:

A mesh grid is placed over the barrier region with N mesh points xj where

j = 1, ..., N , and N − 1 mesh spacings ∆j, with

∆j = xj+1 − xj (2.40)

An approximate discretely-valued barrier potential Φ is utilized in eq. (3.6)

instead of φ, depicted in figure 2.9, defined as

Φ(x) = φ(xj),when xj −
∆j−1

2
< x ≤ xj +

∆j

2
(2.41)
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Figure 2.9: Cartoon depiction of the discretized potential (in red) to the true po-
tential (in blue). Mesh points and half-mesh points are indicated.

so that the discontinuities in Φ occur at the half meshpoints.

Since at almost every position Φ is constant, the solution, Ψ, to eq.(3.6) for a

given energy E is

Ψ(x) = Aje
ikj(x−xj) +Bje

−ikj(x−xj),when xj −
∆j−1

2
< x ≤ xj +

∆j

2
(2.42)

where

kj =

√
2m∗(E − φ(xj))

h̄
(2.43)

In order to compute complex coefficients Aj and Bj, an observation of eq.(3.6)

should be made: Since the laplacian of Ψ is defined wherever the potential is defined,

Ψ must be differentiable, and therefore also continuous, at every position. This leads
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to a system of equations that must be solved at every half meshpoint xj+1/2:

Ψj(xj+1/2) = Ψj+1(xj+1/2) (2.44)

dΨj

dx

∣∣∣∣
xj+1/2

=
dΨj+1

dx

∣∣∣∣
xj+1/2

(2.45)

Aje
ikj(xj+1/2−xj) +Bje

−ikj(xj+1/2−xj) = Aj+1e
ikj+1(xj+1/2−xj+1)

+Bj+1e
−ikj1 (xj+1/2−xj+1) (2.46)

kjAje
ikj(xj+1/2−xj) − kjBje

−ikj(xj+1/2−xj) = kj+1Aj+1e
ikj+1(xj+1/2−xj+1)

−kj+1Bj+1e
−ikj1 (xj+1/2−xj+1)

(2.47)

where the former equation is due to continuity of Ψ and the latter is due to

differentiability of Ψ. Rewritten as a matrix equation, the equations take the form:

 eikj∆j/2 e−ikj∆j/2

kje
ikj∆j/2 −kje−ikj∆j/2


Aj
Bj

 =

 e−ikj+1∆j/2 eikj+1∆j/2

kj+1e
−ikj+1∆j/2 −kj+1e

ikj+1∆j/2


Aj+1

Bj+1


(2.48)

Inverting the matrix on the l.h.s., eq. (3.19) can be expressed compactly as:
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Aj
Bj

 = Sj

Aj+1

Bj+1

 (2.49)

where the transfer matrix Sj is

Sj =
1

2


k+
j

kj
e−ik

+
j

∆j/2 k−j
kj
e−ik

−
j

∆j/2

k−j
kj
eik

−
j

∆j/2 k+
j

kj
eik

+
j

∆j/2

 (2.50)

with

k+
j = kj + kj+1 (2.51)

k−j = kj − kj+1 (2.52)

The first and last set of coefficients can then be related via a total transfer

matrix STOT :

A1

B1

 = STOT

AN
BN

 (2.53)

where

STOT = S1S2...SN−1 =
N−1∏
j=1

Sj (2.54)

However, according to the boundary conditions, A1 = 1 and BN = 0, so that

AN (denoted as C previously) is equal to:
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AN =
1

S11

(2.55)

given that

STOT =

S11 S12

S21 S22

 (2.56)

Thus the transmission coefficient T(E) for a given energy E is:

T(E) =
kN
k1

1

|S11|2
=

√
E − φ(xN)√
E − φ(x1)

1

|S11|2
(2.57)

The transmission coefficients for a Schottky barrier with different doping lev-

els is plotted in figure 2.10 alongside the classical transmission coefficient for two

different applied biases. There are two features that distinguish quantum mechani-

cal transmission from classical transmission: The first, as mentioned above, is that

even below the barrier height, there is a nonzero probability of transmission, referred

to as quantum tunneling. For higher doping levels, the barrier is thinner and the

probability of tunneling increases dramatically. At these doping levels, the leakage

current will be substantially larger than what the classical model predicts.

The second feature is quantum reflection, which is that even for energies above

the barrier height, there is a non-zero probability of reflection i.e. there is a prob-

ability less than 1 for transmission, whereas the classical model predicts perfect

transmission for these energies. When the doping is low enough, there is little tun-

neling current, and the quantum model predicts a leakage current that is lower than
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Figure 2.10: Transmission coefficient through 0.62 eV Schottky barrier with different
donor doping levels for an applied reverse bias of (top) 0.6 V and (bottom) 10 V. The
classical step function is also graphed in dashed line alongside to indicate barrier
value
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Figure 2.11: Differential current density through a 0.62 eV barrier for a doping
concentration of 1016 cm−3 at an applied reverse bias of 0.6 V is calculated using
the classical and quantum models. The reduction in current in the quantum model
is due to quantum reflection.
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Figure 2.12: Differential current density through a 0.62 eV barrier calculated for
different doping concentrations at an applied reverse bias of 10 V.

what the classical model predicts, due to quantum reflection. The differential cur-

rent density through a 0.62 eV barrier for a doping concentration of 1016 cm−3 is

plotted in figure 2.11, calculated using the classical model and the more accurate

quantum model, highlighting the reduction of predicted current due to quantum

reflection. This is an effect that cannot be captured with approximation schemes

such as the Wentzel-Kramers-Brillouin (WKB) approximation, which predicts per-

fect transmission for energies above the barrier and will always overestimate the

leakage current.

In figure 2.12 the differential current densities at different doping levels with

30



respect to energy is plotted on a log scale, for a given barrier height and applied

bias. It is this curve that is integrated to give the current density. Note that

for high energies, all curves fall off the same way, due to a drop in the electron

population at those energies. For low energies, the curves fall off due to a drop

in the transmission coefficients, which displays a large dependence on doping level.

As shown, increasing doping levels lead to massive order of magnitude increases in

current density. The total current densities for the different doping levels are then

plotted in figure 2.13 with respect to applied bias for a given barrier height, alongside

the respective classical prediction for each doping level. As mentioned earlier, the

classical prediction overestimates the current for low doping levels and significantly

underestimates the current for high doping levels. The variation among the classical

models is due to IFBL.

2.2.2 Fermi Level Pinning

To correctly model the I-V characteristics of Schottky diodes, an accurate

value of φB0 must be used. The Schottky-Mott Rule states that [54]:

φB0 = φM − χS (2.58)

where φM is the work function of the metal and χS is the electron affinity of the

semiconductor, which measure the energy required to excite electrons (conduction

electrons in the semiconductor case) to vacuum. Both parameters depend only on

the material and should be independent of any geometries involved.
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Figure 2.13: Current density through a 0.62 eV Barrier for different doping con-
centrations, with the quantum models (solid) plotted against the classical models
(dashed) for comparison. The variation in the classical models is due to IFBL
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However, in practice this ideal relationship is rarely seen, and in early devices,

φB0 was found to be largely independent of the metal involved. This effect was

called ’Fermi Level Pinning’ and is largely believed to be due to defects at the metal-

semiconductor interface on the semiconductor side. A high enough concentration

of defects will ’pin’ the Fermi level to the energy level of the defects, independent

of the metal. As fabrication techniques improved, the density of defects at the

interface was reduced so that some dependence of φB0 on φM occurred, modeled by

the relationship:

φB0 = S(φM − χS) + C (2.59)

Where S < 1 describes the strength of the dependence on the metals involved

and C is a fitted constant. Previous studies have found values of S ranging between

0.2 and 0.7 [46] [47]. In order to correctly measure a value of S, each study must

perform the same fabrication techniques on a variety of metals as to isolate the

role of the defects (A study using one metal cannot determine a value for S, as at

minimum two work functions are required to generate a slope). A study by Ewing

et al. [48], found a value of S=0.45 when working with metals Ti, Ni, and Pt, and

was able to attribute the pinning to local defect states at 0.62, 0.82, and 1.07 eV

below the conduction band in 4H-SiC, and suggested these defect states were due

to point defects and stacking faults intrinsic to 4H-SiC.

Additionally, the effect of the pinning was modeled as two diodes in parallel,

one with a low barrier and one with a high barrier. The low barriers manifested
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at low voltages and were found to be entirely independent of the metal involved,

correlating directly to the defect states. The high barriers manifested at high volt-

ages and it was these barriers that were found to have the S=0.45 relationship. The

interpretation is that defect clusters locally pinned areas of the diode, so in these

regions the barrier was equal to the defect energy, and at low voltages, all the cur-

rent passed through the low barrier regions, whereas at higher voltages, not all the

current could pass through these regions, and some electrons would conduct through

the unpinned areas. Whereas some electrons ’saw’ the ideal barrier height, others

only experienced the pinned height, and so an effective barrier height was measured

with an S=0.45 relationship. The I-V sweeps were only performed for forward bias,

but from the results, one can infer that in reverse bias, the pinned low barrier will be

significant, and so defects at the interface will greatly affect the reverse bias leakage

current. Especially in the case for n-type 4H-SiC, these defects located near the

conduction band will create difficulty in fabricating a large enough barrier to hold

off the reverse bias leakage.

2.2.3 Theory vs. Experiment

Measurements on n-type 4H-SiC Schottky diodes with a doping concentration

of 1016 cm−3 were carried out by Mitchell Gross, Aysanew Abate, Dr. Akin Akturk

and Dr. Zeynep Dilli [55], and the results were compared to the theoretical models

generated by the tunneling current calculation. The results are graphed in figure

2.14 on a log scale alongside the theoretical curves calculated at the same doping
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Figure 2.14: Measured leakage current through Ti on n-type 4H-SiC Schottky barrier
is graphed for different diodes in the unbolded curves. Bolded curves are from
theoretical calculations using a doping concentration of 1016 cm−3, using Fermi
pinned barriers equal to the respective defect energy and for two ideal metal barriers,
Ti and Ni.
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concentration for various barrier heights: the three defect barriers found by Ewing

et al. [48] i.e 0.62,0.82 and 1.07 eV, and the ideal barrier for Ti (1.13 eV) and Ni

(1.95 eV). From the comparison, it is clear that Fermi pinning is likely the reason

for the large leakage currents seen, as the measured values fall within the order of

magnitude range of the Fermi pinned calculations.

According to Ewing et al., it is suggested that the Fermi pinning occurred

from defect clusters, as only a portion of the diodes measured displayed the nonideal

behavior, i.e. it was these diodes where the clusters were present. Among diodes

with a diameter of 500 µm, 15% displayed non-ideal behavior, and among diodes

with a diameter of 300 µm, 7% displayed non-ideal behavior. This is consistent with

the theory that the clusters are uniformly distributed: if there is a probability p1 of

finding a cluster in an area A1, and the clusters follow a uniform distribution, then

the probability p2 of finding a cluster in an area A2 is:

p2 = 1− (1− p1)
A2
A1 (2.60)

Plugging in the above values yields:

1− (1− 0.07)
2502πµm2

1502πµm2 = 0.183 (2.61)

which is quite close to the reported 15%. The measured diodes reported here

had an area of 5.76 mm2. Plugging into the above formula yields:

1− (1− 0.07)
5.76mm2

1502πµm2 = 0.997 (2.62)
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Essentially, a diode with such an area will almost always experience Fermi

pinning due to defect clusters, which is consistent with the results graphed above.

2.2.3.1 Effective Doping Level

While the order of magnitude of the measured currents is consistent with the

calculated Fermi pinned currents, the overall bias dependence of the measured values

is stronger than the theoretical prediction for a doping of 1016 cm−3. However, when

compared with other doping level current calculations, the measured values appear

to have a bias dependence between that of 1016 cm−3 and 1017 cm−3, suggesting

the actual barrier is effectively thinner than would be due to the reported doping

concentration alone. This could likely be due to defects present in the depletion

region, which could be causing barrier thinning as well as trap-assisted tunneling.

The measured values, as seen in figure 2.14, are broken into two groups ac-

cording to order of magnitude, and are likely due to two different defects being the

dominant set of clusters. When compared to higher doping concentrations to match

bias dependence, different doping levels were found to match for the two different

groups.

The calculated current was compared to the measured values for different

doping levels and the average error between the theoretical and measured values

was calculated and graphed in figure 2.15 for the higher and lower current groups.

Since it is the bias dependence that is being matched here and not the absolute value

of current, each calculated curve was scaled down so that the current at the highest

37



Figure 2.15: Average error between theoretical currents for different doping levels
and measured current in the (top) higher current group and (bottom) lower current
group
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Figure 2.16: Best fit theoretical current curves graphed alongside a measured curve
from the (top) higher and (bottom) lower current groups. For each comparison, the
three best fit doping levels were used.
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bias was set equal. The physical justification for this is that the presence of the

clusters create an effective area that the pinned current actually flows through [45],

with the effective fraction equal to the ratio between the measured currents and

the best fit calculation. From the graph, for the higher current group, the minimum

error was achieved for a doping concentration between 3x1016 and 5x1017 cm−3, with

a minimum average error of about 5.5%. For the lower current group, the minimum

error was achieved for a doping concentration between 1.2x1017 and 1.4x1017 cm−3,

with a minimum average error of about 7.7%. The average effective fraction of the

areas are 4.6% and 5.0%, for the higher and lower groups respectively, compared to

a fractional area value of 1.1% found by Li et al., [45] on Ni/4H-SiC diodes at 363

K with a donor concentration of 5x1015 cm−3. However, that fractional area value

was found by matching experimental measurements to a classical formula. From

the above theoretical analysis, at that given doping level of 5x1015 cm−3, quantum

reflection would cause the classical formula to overestimate the current by a factor of

approximately 3. Accounting for this, the fractional area would then be about 3.3%.

That there is such strong agreement between studies is a good indication that the

effective doping concentration and barrier width, and subsequent area fraction, is

accurate. The theoretical curves for the best fit doping levels are graphed alongside

one of measured curves from the corresponding group in figure 2.16. While the

theoretical curves have similar slopes for the larger bias values, for low biases, the

measured values drop off much quicker. This could be due to a consequence of the

trap-assisted tunneling: According to Dolny et al., [42] the emission rate for trap

assisted current will have a linear field dependence that dominates the other field
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dependent terms at low biases.

2.3 Future Research

For the future, trap-assisted tunneling and barrier thinning must be more ac-

curately modeled. The relevant traps and their effective energies and concentrations

will need to be determined, and the correct form of trap assisted tunneling will need

to be included.

Methods to possibly passivate the traps or reduce the surface states to alleviate

Fermi pinning will need to be considered in order to reduce the leakage current
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Chapter 3: High Mobility MOSFETs: Germanium

3.1 Background Overview

3.1.1 Basic Properties of Germanium

3.1.1.1 Crystal Structure

Ge, like Si, is a group IV semiconductor, and the two share many properties.

Both form diamond FCC crystal lattices with similar lattice constants, 5.43 A for Si

and 5.66 A for Ge. Due to the similar lattice constants, Ge can be integrated unto Si

surfaces. It is still no trivial matter to do so, as the small difference in bond lengths

can still generate a high density of lattice mismatches. Sometimes SiGe hybrids are

employed to work through this or thin layers of Ge are deposited, which will strain

the lattices but won’t generate as many mismatches. Straining Ge and Si has several

advantages, such as reducing effective carrier masses to increase mobility.

3.1.1.2 Electrical Properties

Ge and Si both have indirect bandgaps, with 0.66 eV for Ge and 1.1 eV for Si,

with both energies corresponding to the infrared regime. Descending the group IV
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column, the materials become more metallic with weaker bonds, going from the very

brittle extreme of carbon to the very soft extreme of lead. As expected, Ge forms

weaker bonds than Si, which causes it to be more reactive and more temperature

sensitive, with a melting point of 1210 K as opposed to 1685 K for Si. Being more

reactive and temperature sensitive makes Ge more problematic during fabrication,

requiring low temperature procedures and more robust passivation techniques.

The advantage of Ge over Si lies in its lower effective carrier mass. Band struc-

ture analysis reveals that for most semiconductors, a lower bandgap corresponds to

a lower effective mass [56]. As expected, the conductivity effective electron mass

in Ge is 0.117 m0 vs. 0.260 m0 in Si, and the effective hole masses in Ge are 0.33

m0 and 0.043 m0 (heavy and light, respectively) vs. 0.49 m0 and 0.16 m0 in Si,

where m0 is the rest mass of a free electron. The result is that Ge offers a higher

carrier mobility, with potentially over two-fold improvement to electron mobility

and four-fold improvement to hole mobility. This makes Ge ideal for low voltage

high speed circuitry e.g. CMOS devices. Additionally, since the ratio of mobilities

between electrons and holes is smaller for Ge than it is for Si, Ge CMOS devices

will use available chip space more efficiently than Si CMOS devices.

3.1.2 Oxide/Semiconductor Interfaces

Another similarity between Si and Ge is both have a native thermal oxide,

SiO2 and GeO2 respectively. This makes Ge a very attractive candidate for CMOS

technology, since thermal oxides can typically be fabricated with a significantly
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lower interface defect density than other oxides, such as deposited oxides. The

operating current for MOSFETs exists in a channel right at the oxide/semiconductor

interface, and the conductivity of the channel is heavily dependent on the quality

of the interface. Thus major improvements to the performance of MOSFETs is

possible by improving the quality of the interface. Just as Si and Ge share many

properties, so do SiO2 and GeO2. Both exhibit amorphous and crystalline phases,

with the crystalline phase forming an α-quartz structure. Both oxides have the

same stoichiometry, with each semimetal atom bonded to 4 oxygens, which are each

bonded to 2 semimetals. Both oxides can be fabricated via thermal oxidation of the

corresponding substrate. As mentioned above, Ge is more temperature sensitive,

and so thermal oxidation is conducted at a lower temperature than it is for Si.

Additionally, the oxidation mechanism for GeO2 growth differs from SiO2 growth.

3.1.2.1 Si/SiO2 Interface Structure

Si oxidation occurs via interstitial oxygen molecules diffusing through the oxide

network and reacting with Si at the interface. The seminal Deal-Grove model [14]

models this growth quite accurately. The interface that forms is very abrupt, ideal

for channel conductivity, due to the energetics of Si-O bonding. As Si atoms tran-

sition from being completely bonded to other Si atoms in the substrate to being

completely bonded to O atoms in the oxide, the Si atoms exist in intermediate

oxidation states i.e. being bonded to one to three O atoms. These intermediate

oxidation states require additional energy to form, by as much as 0.5 eV per O
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atom [2], making them unfavorable compared to the fully oxidized states. Thus the

total volume of partially oxidized Si atoms is minimized i.e. made flat and narrow,

making an abrupt interface the most favorable configuration.

3.1.2.2 Ge/GeO2 Interface Structure

Ge oxidation is a more complicated process and cannot be simply modeled

with a Deal-Grove like model. Ge oxidation occurs via oxygen atoms bond hoping

through the network. An oxygen atom incorporates itself into the oxide network

via the formation of a peroxyl configuration, where two oxygen atoms are bonded

to each other between two Ge atoms, depicted in Fig.3.1. Then one of the two

oxygen atoms will break away to form a new peroxyl configuration in a neighboring

region of the network. In this way oxygen atoms are transported through the oxide

network to the interface [15]. Unlike in the case for Si, the resulting interface is not

abrupt and instead a substoichiometric region of GeOx forms, where x is less than

2. This reflects the energetics of Ge-O bonding, where unlike with Si, there is not

much additional energy required to form intermediate oxidation states, requiring

only around 0.1 eV additional energy per O atom [2]. Thus there is little energy

incentive to minimize the volume of the intermediate region. One of the main

reasons for these differences between Si oxidation and Ge oxidation is that Ge forms

weaker and more flexible bonds with O than Si does (include bond energy and angle

variations). This makes forming intermediate oxidation states and peroxyl states

more energetically favorable, as there is less cost in breaking and forming bonds
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as well as rearranging the network to accommodate strain. Additionally, the extra

flexibility of Ge-O bonds allows for tighter angles to form in the network, which

results in differences in the ring statistics between the two oxides [15]. In particular,

there is a higher density of low order rings in GeO2 (3- or 4-rings) than in SiO2,

which increases the energy barrier for O2 interstitial diffusion (as the rings are the

regions O2 must pass through to migrate between interstitials). This additional

factor contributes to Ge oxidation favoring peroxyl diffusion over O2 interstitial

diffusion.

3.1.2.3 Volatility of Ge/GeO2 interface

To further complicate the fabrication process, the Ge substrate reacts with the

oxide layer in ways that do not occur for Si. GeO2 has been observed to be volatile

at temperatures exceeding 400 C, by desorbing as GeO gas [5] [6]. Previous isotope

tracing experiments revealed that the production of GeO is due to the formation

of oxygen vacancy defects at the Ge/GeO2 interface [7]. The experiments suggests

that oxygen atoms by the interface will hop over into the substrate, leaving behind

an oxygen vacancy i.e. Ge-Ge bond inside GeO2. It is this reaction that leads to the

formation of the substoichiometric intermediate region discussed previously, with

oxygen atoms diffusing into the substrate via bond hopping. The vacancy inside the

oxide will then diffuse, also via a bond hopping process, where neighboring oxygen

atoms will hop to fill the vacancy, leaving behind another one. If a vacancy migrates

to the top of the oxide, it will alter the surface configuration and make it favorable for
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Figure 3.1: Section of 73 atom supercell of amorphous GeO2 with a peroxyl defect.
Peroxyl O atoms are highlighted in green, Ge atoms in purple, regular O atoms
labeled in red.
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a GeO molecule to break off and desorb [6]. At high enough temperatures, enough

vacancies form at the interface and are able to migrate quickly enough to the surface

to make the GeO desorption substantial. Thus low temperature operation is critical

for Ge wafer fabrication.

3.1.2.4 Interface Defects

Understanding oxygen vacancies in the Ge/GeO2 system is critical to under-

standing ways to improve the interface and oxide quality. Oxygen vacancies are

responsible for GeO desorption and for the formation of an intermediate oxide re-

gion [4] [7], as well as charge trapping and the formation of another type of defect

called Valence Alternating Pairs (VAPs) [2]. VAPs form by the splitting of the Ge-

Ge bond, where one Ge atom picks up a negative charge while the other bonds to

an O atom, making it triply coordinated and positively charged. A high density of

VAPs leads to a high amount of trapped charge by the interface, which will alter the

threshold voltage, as well as reduce the band offset between the substrate and oxide,

leading to higher oxide leakage. Understanding how to passivate oxygen vacancies

and VAPs is therefore crucial to forming high quality Ge/GeO2 interfaces.

3.1.3 Density Functional Theory

3.1.3.1 Motivation

Understanding the atomic structures of the defects is crucial towards under-

standing how to passivate them and reduce their effects in order to fabricate high
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quality devices. In order to understand and characterize the various atomic config-

urations relevant to this research, the effects of quantum mechanics must be incor-

porated, which ultimately requires solving the Many-Body Schrodinger Equation,

shown below:

EΨ(r1, ..., rN , R1, ..., RM) = HΨ (3.1)

where

H = −
∑
ri
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ZiZjq
2

4πε0|Ri −Rj|
(3.2)

E is the energy of the atomic configuration, H is the Hamiltonian and Ψ is the

wavefunction of N electrons with mass m and M atomic nuclei with mass Mj and

charge Zj. The first two r.h.s terms are the kinetic energy terms of the electrons and

atomic nuclei, respectively, and the last three terms are the electrostatic potential

energy terms of the electron-nuclei attraction, the electron-electron repulsion, and

the nuclei-nuclei repulsion.

Solving the Many-Body Schrodinger Equation becomes increasingly more and

more difficult as the number of particles increases, and is virtually impossible for

the atomic configurations usually under consideration. Rather than consider the
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all-electron wavefunction, the electron density is calculated and Density Functional

Theory (DFT) is applied. DFT reframes the problem by focusing on the electron

density, defined as:

ρ(r) = N

∫
...

∫
|Ψ(r1, .., rN−1, r)|2d3r1...d

3rN−1 (3.3)

The electron density is a function of a single position, unlike the wavefunction,

and thus turns the problem into a tractable one

3.1.3.2 Kohn-Sham Equations

In order to minimize the (approximate) energy functional, Kohn and Sham

[17] expressed the electron density in terms of a wavefunction composed of non-

interacting electrons, so that the density can be rewritten as a sum over the proba-

bility density functions of the non-interacting electron orbitals

ρ =
N∑
i=1

|φi|2 (3.4)

Using the fact that the integral of the density over all space must equal N (the

number of electrons) as a constraint, the energy functional minimization is reframed

into a Lagrange multiplier problem, yielding N decoupled equations called the Kohn-

Sham Equations:

εiφi =
−h̄2

2m
∇2φi + VKSφi (3.5)

εi is the lagrange multiplier and approximately equals the ionization energy
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for the ith (although this usually only holds for the highest energy orbital). VKS is

the Kohn-Sham potential and represents the potential one electron sees when the

rest of the electrons have been ”smeared” out.

The equations can be solved self-consistently by using the density to generate

the Kohn-Sham potential, which in turn is used to solve for the electron orbitals,

which are then used to calculate the density, and these steps iterate through until

the change in the density is small.

3.1.3.3 Application of DFT

To apply DFT numerically, the open-source Quantum ESPRESSO suite [57]

was utilized. In order to apply DFT numerically on the computer, a number of ad-

ditional approximations and considerations need to be included. Due to the nature

of most of the solid state systems under consideration, the DFT calculations are car-

ried out over periodic unit cells with periodic boundary conditions. Appropriately,

all relevant functions e.g. the electron density, the potential energy, are expressed

in a plane wave basis, where each basis vector comes from a different Brillouin zone

i.e. from a different G-vector. For practical purposes, only a finite basis set can be

implemented, and so a cut off for the basis is specified in terms of the maximum

energy of the plane wave given by:

Emax =
h̄2

2m
(

2π

λmin
)2 (3.6)

The cut off is usually chosen so that the minimum wavelength, λmin, is on
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the order of, if not smaller than, the typical chemical bond lengths in the atomic

configuration in question. Typical cut off values of 400 to 900 eV are chosen, cor-

responding to lengths close to half an angstrom. Including a larger cut off for the

basis places a larger burden on the required RAM usage, and for computationally

practical reasons, simulations are initially executed using a reduced energy cutoff.

Once the simulation has finished running, additional simulations are executed with

progressively increasing energy cut off until the final calculated result converges with

all subsequent simulations.

All other details involved in the mathematics of the DFT calculation are de-

scribed in Appendix A. A flowchart of the algorithm is depicted in Fig.3.2.

3.2 Current Research

My current research focuses on applying DFT to various atomic configurations

to investigate how different fabrication techniques will affect device performance.

Specifically, the Ge/GeO2 interface is investigated, along with related crystal struc-

tures and defects. In addition, various defect passivation techniques as well as other

related configurations were investigated. The goal of the research is to not only pro-

vide a qualitative understanding of the Ge/GeO2 interface and related defects, but

also to provide a quantitative understanding of the various fabrication parameters

that need to be tuned in order to generate high quality semiconductor devices.
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Figure 3.2: Flowchart depicting the three main steps in the DFT calculation: The
atomic coordinates are used to generate the electron density via a nested self-
consistent loop that utilizes the Kohn-Sham equations and effective Kohn-Sham
potential vKS. The density is used to calculate the atomic forces via the Hellman-
Feynman theorem [57]. The atomic forces are then applied to each atom to find
the change in the coordinates. The algorithm loop follows the logic of the Born-
Oppenheimer approximation, where the change in the electron density and change
in atomic coordinates can happen separately, as the electrons respond to changes in
the atomic coordinates over a much smaller time scale.
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3.2.1 DFT Simulations of Bulk Supercells: Ge, GeO2, and Ge/GeO2

interface

In order to use DFT to investigate defect structures and chemical reactions in

Ge and GeO2, baseline supercell structures need to be constructed first in order to

calibrate results and ensure accuracy. Many-atom supercells of bulk materials and

surface structures were constructed and relaxed using DFT, before being modified

to include defect structures and/or relevant chemical reactions. This allows for

the formation energy of the defect structures to be calculated using the following

formula:

Ef [X] = Etot[X]− Etot[bulk]− Σniµi + qEF (3.7)

Where X represents the supercell with the defect, Ef is the formation energy, Etot is

the total calculated energy of the supercell, ni is the change in the number of atoms

of type i when transforming from the bulk structure to X, and µi is the chemical

potential of atoms of type i. If the defect or impurity in X in charged, then the last

term has to be included, where q is the charge of defect, and EF is the Fermi level,

defined with respect to the valence band maximum of the bulk supercell.

The initial bulk supercell DFT calculations are therefore used to compute the

second and third terms in the formation energy formula, as the chemical potentials

can often times be calculated using the bulk structures. A critical detail when car-

rying out these calculations is to only compare energy calculations from simulations

with congruent input parameters i.e. Basis energy cutoff, k-space gridpoints, energy
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Figure 3.3: 8 atom FCC unit cell of bulk Ge.

convergence threshold, and force convergence threshold.

3.2.1.1 Bulk Ge

Bulk Ge was constructed using an 8 atom FCC unit cell. The unit cell is shown

in Fig.3.3. An energy cut off of 400 eV was set and a 2x2x2 kpoint grid was used.

Convergence was achieved when all force components were below 0.05 eV/Å. An scf

simulation was then run using a hybrid functional using a 2x2x2 qpoint grid and

increasing Brillouin zone sampling to reproduce the correct band gap. The resulting

density of states is plotted in Fig.3.4. A final value for the bandgap of 0.615 eV was

found, with all values plotted in Fig.3.5.

For surface reaction considerations, a Ge substrate surface was constructed

using an 18 atom unit cell shown in Fig.3.6. Due to the periodic nature of the

boundary conditions, the unit cell must be extended in the direction normal to
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Figure 3.4: Density of States (DOS) plot of Ge using a hybrid functional to reproduce
the correct band gap.

Figure 3.5: Calculated band gap of Ge with increasing Brillouin zone sampling size.
Sampling size was increased by incrementally increasing the dimensions of the mesh
grid.
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Figure 3.6: 18 atom unit cell used to simulate Ge substrate surface. Hydrogen atoms
are included to satisfy the dangling bonds on the final layer. Positions of H atoms
are held fixed during relaxation to simulate bulk.

the surface to create a layer of vacuum between the surface and the next periodic

construction. This reduces the magnitude of the interactions between copies of the

supercell along the surface normal. The structure was relaxed using an energy cut

off of 400 eV and using the Gamma point to sample k-space. Convergence was

achieved when all force components were below 0.05 eV/Å.

The Ge surface reconstruction produces an alternating pattern of asymmet-

ric dimer pairs, detailed in Fig.3.7. To reduce strain, the dimer pairs buckle and

charge is transfered from one member to the other. The positively charged Ge atom

rehybridizes and forms 3 sp2 σ bonds, which lowers the Ge atom and flattens the

bonds into a planar structure. The negatively charged Ge atom fills its dangling sp3

orbital, and is raised as the remaining 3 sp3 σ bonds pucker. The charge localization

for the dimer structure is depicted in Fig.3.8 where the transfer of charge is clearly
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Figure 3.7: Supercell of multiple copies of surface unit cell. The dimer structures are
clearly visible, forming rows with channels in between. The buckling of the dimers
is seen to alternate parity progressing down the row.

indicated.

3.2.1.2 Bulk GeO2

Crystalline GeO2: Bulk crystalline GeO2 was constructed using a 9 atom unit

cell, shown in Fig.3.9. The structure was relaxed using an energy cut off of 400 eV

and using the Gamma point to sample k-space. Convergence was achieved when all

force components were below 0.05 eV/Å. The calculated results were compared to

values from the literature, shown in table 3.1. As is evident, the calculated structure

accurately predicts physical parameters.

Amorphous GeO2: The next step was to use the crystalline form of GeO2 to

construct the amorphous form. Because GeO2 is being investigated for its role in
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Figure 3.8: Isosurface Electron Localization Function (ELF) plotted on supercell of
surface dimers. Isosurface is of an ELF of 0.8. The ELF indicates the localization
of charge. Ge atoms are labeled with purple. Isosurface is labeled with yellow. The
isosurface between atoms represents localization due to bonds. The large protrusion
at the surface represents the completed sp3 orbitals.

Figure 3.9: 9 atom unit cell of GeO2 in the α-quartz polytype. Ge atoms are labeled
with purple and O atoms are labeled with red.
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Value Calc. Exp.
Formation Energy (eV) 4.813 4.84

Bond Length (Å) 1.77 1.74
Dielectric constant 2.97 3.01

Table 3.1: Comparison of calculated values to experimental values for GeO2 α-quartz

MOSFET performance, the amorphous form of GeO2 is of interest since that is the

form of GeO2 present in MOSFETs. The amorphous structure was formed using

the Sequential Back Bond (SBB) method introduced by Ettisserry [26]. First the

initial 9 atom unit cell of the crystalline GeO2 was replicated to form a 72 atom

supercell of crystalline GeO2. Since the supercell represents a periodic structure,

the supercell must be large enough in order to replicate the properties of a truly

amorphous structure.

The SBB method was applied by first selecting a Ge atom, and flipping it across

the plane defined by three of the O atoms it was bonded to, ”puckering” the Ge

atom. The ”puckered” Ge atom is then bonded to another O atom, making it triply

coordinated. One of the two Ge atoms initially bonded to the triply coordinated O

atom is then ”puckered” so that it breaks away from the respective O atom, and

the process repeats until all the bonds are satisfied again.

Once all the bonds are satisfied, the new altered structure is relaxed and the

process iterates a few more times through until the structure is appropriately amor-

phous. One of the resulting 72 atom amorphous supercells is shown in Fig.3.10. The

SBB method reproduces an amorphous structure since the ”puckered” configuration

is related to a defect that naturally forms in the oxide, and thus the SBB iterations

mimic the processes that occur at high temperature when a lot of defects form and
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Figure 3.10: 72 atom supercell of amorphous GeO2 formed by applying SBB method
with 3 passes to a 72 atom supercell of α-quartz GeO2. Ge atoms are labeled with
purple and O atoms are labeled with red.
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migrate through the oxide, altering the final configuration. The SBB method has

the benefit of being less time consuming and less computationally draining than

implementing melt and quench using molecular dynamics.

3.2.2 DFT Simulations of Defects and Passivation

3.2.2.1 Oxygen Vacancy

One of the primary defects of interest in GeO2 in this research is the oxygen

vacancy. Oxygen vacancies were studied by removing an oxygen atom from one of

the 72 atom amorphous GeO2 supercells and relaxing the structure. The structures

were relaxed using an energy cut off of 900 eV and using the Gamma point to sample

k-space. Convergence was achieved when all force components were below 0.05

eV/Å. One of the relaxed supercells with an oxygen vacancy is shown in Fig.3.11.

One of the main issues with oxygen vacancies is their ability to migrate and

diffuse through the oxide during fabrication. Oxygen vacancies migrate by oxygen

atoms ”hopping” from neighboring sites. The reaction pathway for this migration

reaction was calculated using an NEB [57]. To set up the NEB, some preliminary

structures were relaxed first.

The initial and final configurations for the reaction pathway were derived from

two different oxygen vacancy-containing supercells that were constructed from the

same 72 atom amorphous GeO2 supercell. In order to reduce computational demand,

as well as reduce the effect of self-interaction between supercells, many of the atoms

in the supercells were held fixed during the calculation. Only the hopping O atom,
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Figure 3.11: 71 atom supercell of amorphous GeO2 with an oxygen vacancy (indi-
cated with black arrow). Ge atoms are labeled with purple and O atoms are labeled
with red.

63



the 3 Ge atoms it bonds to, and the 9 other O atoms bonded to those Ge atoms

(3 O atoms each) were allowed to move during the calculation. To determine which

atoms would be allowed to move, the atomic coordinates of the two original vacancy

supercells were compared, and the overall distance between each corresponding pair

of atoms was calculated. The atoms were sorted according to largest displacement

and a cut off was set when the displacement fell down by a factor of 5, with only

the atoms with a larger overall displacement being allowed to move. Since the

other atoms were not allowed to move during the calculation, the coordinates of

those atoms in the initial and final configurations has to be equal. To accomplish

this, the average positions for the fixed atoms between the original two vacancy

supercells were calculated and used as input for the initial and final configurations.

The configurations were then relaxed while holding the necessary atoms fixed. These

relaxed configurations were then used as input for the NEB.

The NEB for the oxygen vacancy migration reaction pathway was set up using

5 total images. An intermediate configuration was provided, which took the average

of the initial and final configuration coordinates, except for the hopping O atom

which was placed such that with the initial and final positions, an arc was swept out

with the middle Ge atom as the pivot. The calculated reaction pathway is depicted

in Fig.3.12. A barrier height of 2.5 eV was found for the reaction, which agrees well

with previous calculations [15].
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Figure 3.12: Reaction pathway of oxygen vacancy migration. Steps in the reaction
pathway are plotted according to energy difference relative to the final configuration.
Energy barrier is given at maximum. Ge atoms are labeled with purple and O atoms
are labeled with red.

3.2.2.2 Fluorine Passivation of Oxygen Vacancy

To passivate oxygen vacancies, fluorine passivation was considered. While hy-

drogen is the primary element used for passivation of silicon-based defects, previous

studies [12] [8] [13] have indicated that hydrogen is ineffective at passivating defects

in germanium. In the case of fluorine, previous experiments have confirmed that

use of fluorine in germanium interface fabrication has lead a reduction in interface

defects and other undesirable qualities [8] [10] [11]. However, the use of theoretical

techniques, such as DFT, in passed studies have lead to conflicting results and have

so far failed to fully explain how fluorine is incorporated to reduce defects [4] [11].

More DFT studies were carried out to understand the behavior of fluorine in the
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oxide network and by the interface.

Initially, both hydrogen and fluorine were used to simulate vacancy passivation

to compare effectiveness. The previously simulated 71 atom supercells of amorphous

GeO2 containing a single oxygen vacancy were used. Either an H2 or an F2 molecule

was then added to the cell and placed in various configurations in close proximity

to the vacancy, a sample of initial configurations is shown in Fig.3.13. The various

configurations were used to probe the possible ways that fluorine and hydrogen

incorporate into the defected oxide network. The structures were relaxed using an

energy cutoff of 400 eV, with k-space calculations approximated with the Gamma

point, and converged once all force components were below 0.5 eV/Å. The final

configurations are depicted in Fig.3.14.

As shown, in both cases there were two distinct final configurations, catego-

rized as a proper vacancy passivation and an improper passivation. In the case of

proper passivation, the additional atoms formed bonds with the target Ge atoms,

and the Ge-Ge bond of the vacancy broken. In the case of the improper passivation,

one of the added atoms formed a bond with a target Ge atom, but the other bonded

with one of the neighboring oxygen atoms, causing the oxygen atom to break away

from the other target Ge atom, leaving it in a doubly coordinated stated. This is

an undesirable configuration, as there are still dangling bonds remaining, and thus

still acts as a charge trap.

In the case of H, the improper passivation was more energetically favorable

than the proper passivation by 0.2 eV and supports the previous observations that

charge traps and defects still existed after H passivation.
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Figure 3.13: Sample of initial configurations of F2 by an oxygen vacancy in a 71
atom amorphous GeO2 supercell with varying distance to the defect. Ge atoms are
labeled in purple, O atoms in red, F atoms in silver. Analogous initial configurations
were used in the H2 case.
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Figure 3.14: Close up of target region of final relaxed structures of 2 H (top) or F
(bottom) atoms incorporated into a defected 71 atom amorphous GeO2 supercell.
Ge atoms are labeled in purple, O atoms in red, F atoms in silver, H atoms in blue.
On the left are the improper passivations, where one of the H (or F) atoms are
bonded to an O atom, leaving a doubly-coordinated Ge atom. On the right are the
proper passivations, with the Ge-Ge bond eliminated and replaced with Ge-H (or
F) bonds.
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In the case of F, the proper passivation was more energetically favorable than

the improper passivation by 4 eV. With such a large energy difference, the improper

passivation will essentially not occur, and may be one of the reasons why fluorine is

effective at reducing defect and trap densities for GeO2.

The DFT simulations support the previous observations that H is an ineffective

passivant while F is an effective passivant for defects in GeO2. For this reason, more

DFT simulations were carried out to understand the behavior of fluorine in GeO2.

To further understand if fluorine would be effective at passivating oxygen va-

cancies, DFT simulations were run to compare fully passivated and half passivated

vacancies using fluorine. One or two fluorine atoms were added to the 71 atom

amorphous GeO2 supercell with an oxygen vacancy, for the half and fully passivated

cases, respectively. DFT calculations were performed using a 400 eV plane wave

energy cut off, and Brillouin zone calculations were approximated using 2 k-space

points. To account for unpaired electrons, magnetization and the electron spin den-

sity was calculated using a spin polarized PBE functional, and the structure was

relaxed once the force components on each atom were below 0.5 eV/Å. The final

relaxed structures are shown in Fig.3.15

The results of the energy calculations of the final structures shows that fully

passivated vacancies are more energetically favorable than half passivated vacancies.

The energy of 2 half passivated supercells is 1.2 eV greater than the energy of 1 fully

passivated supercell plus a bulk GeO2 supercell, indicating that half passivated

vacancies are not thermodynamically favorable, and their formation will then be

limited by the diffusion of fluorine through the oxide network.
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Figure 3.15: Final relaxed structure of 72 (73) atom amorphous GeO2 supercell with
a half (fully) passivated oxygen vacancy by 1 (2) F atom(s). Ge atoms are labeled in
purple, O atoms in red, F atoms in silver. On the left is the half passivated vacancy,
on the right is the fully passivated vacancy.
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3.2.2.3 Diffusion of Fluorine in GeO2

While fluorine has been found to be an effective passivant during GeO2 fab-

rication, the degree of effectiveness varies across experiments. To determine what

some optimal parameters and conditions for fabrication are, DFT simulations of

fluorine incorporated into various GeO2 supercells were carried out.

One of the crucial components for understanding the behavior of fluorine inside

the GeO2 network during fabrication is how fluorine diffuses through the oxide

network. The majority of the fluorine atoms inside the network will not be near

any defects and will just be interacting with the oxide network. While there are

numerous experiments that have made use of fluorine during Ge device fabrication,

no study as of yet has explored how fluorine interacts with the oxide network, or how

it diffuses. To determine how fluorine diffuses, DFT simulations were first carried

out to determine how fluorine atoms relax inside amorphous GeO2.

Fluorine atoms were added to 72 atom and 144 atom amorphous GeO2 su-

percells, with either 1 or 2 atoms fluorine atoms included. The fluorine atoms were

set in various initial configurations within the cell, either close to Ge atoms, close

to O atoms, or placed in the middle of the interstitials. The structures were then

relaxed using an energy cut off of 400 eV, and the Brillouin zone calculations were

approximated using two k-space points. To account for the effects of unpaired elec-

trons, magnetization was included and the electron spin density was calculated. The

structure was converged once all force components were below 0.5 eV/Å.

The results of the simulations indicate that there are two configurations for
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Figure 3.16: Final relaxed structure of an F atom placed into a 72 atom amorphous
GeO2 supercell. Ge atoms are labeled in purple, O atoms in red, F atoms in silver.
The F atom has incorporated into the oxide network via bonding with Ge atoms.
The Ge atoms are 5-coordinated.
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how fluorine resides in amorphous GeO2: Either in the interstitials of the network,

or incorporated into the network via bonding with a Ge atom. The results of the

energetics of these configurations show that the interstitials are unstable equilibrium

for F atoms, whereas the incorporated configurations are stable equilibrium. In the

incorporated configurations, the magnetization calculation revealed that an unpaired

electron remained, with a net calculated magnetization of 0.5 Bohr magnetons. This

indicates that the F atom is still electrically reactive in the bonded state and will

likely act as a charge trap or react with other elements added during fabrication.

However, since previous experiments using fluorine in Ge device fabrication have

not observed an increase in overall charge traps, the stability of the charged fluorine

states will need to be investigated. The final configurations are depicted for the case

of 2 F atoms in Fig.3.17. In the case of 1 F atom, none of the relaxed structures

converged to the interstitial configuration, indicating the unstable nature of the

equilibrium.

Another result of the simulations is that the F atoms will tend to separate

through the network instead of forming clusters. This was established by comparing

the energetics of the relaxed supercells with 1 or 2 F atoms, respectively, with all

F atoms in the incorporated configurations. The final energy of the supercells with

two F atoms incorporated was 1.1 eV higher than two supercells each with one F

atom incorporated, indicating it would take about 1.1 eV to bring incorporated F

atoms in proximity. Such a large energy difference is a clear sign of a large repulsive

force between incorporated F atoms.

In conclusion, a number of atomic configurations related to fluorine passivation
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Figure 3.17: Close up of final relaxed structure of 2 F atoms placed into a 72 atom
amorphous GeO2 supercell. Ge atoms are labeled in purple, O atoms in red, F atoms
in silver. On the left image the F atoms are relaxed in interstitial configurations,
which were found to be unstable for the 1 F atom case. On the right, the F atoms
have incorporated into the oxide network via bonding with Ge atoms. The Ge atoms
are 5-coordinated.

of oxygen vacancy defects, and fluorine diffusion through GeO2, were simulated using

DFT with the energy of each configuration calculated as well.

3.3 Future Research

For the future, the above DFT results could be used as input into a Monte

Carlo simulation. The diffusion of fluorine atoms through the oxide network could

be simulated and optimal fabrication parameters, such as temperature, duration of

steps, partial pressures for oxygen, fluorine, and other gases used, and others, could

be determined in order to reduce defect density and/or surface roughness.
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Chapter A: Density Functional Theory

A.1 Born-Oppenheimer Approximation

The first step in solving for the electron density is separating the electron

motion from the motion of the atomic nuclei in the Schrodinger equation. This is

accomplished by invoking the Born-Oppenheimer Approximation [57], which posits

that the electron cloud evolves much quicker than the atomic nuclei, so that the

nuclei essentially freeze out and the electrons see a static potential background.

This assumption is perfectly valid for most quantum chemistry applications.

The approximation is expressed mathematically by applying separation of vari-

ables to the Schrodinger Equation as follows:

Express the wavefunction as:

Ψ(r1, .., rN , R1, ..., RM) = Φ(r1, ..., rN)χ(R1, ..., RM) (A.1)

where Φ is the electronic wavefunction and χ is the nuclear wavefunction.

Then re-write the Hamiltonian

H(r, R) = HN(R) +He(r, R) (A.2)
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where HN is the nuclear kinetic energy term and He contains the remaining terms.

This decouples the Schrodinger Equation into:

Ee(R)Φ(r) = He(r, R)Φ(r) (A.3)

Eχ(R) = (HN(R) + Ee(R))χ(R) (A.4)

The first equation describes the electronic wavefunction and treats the nuclear co-

ordinates as parameters, expressing the electronic energy (chemical energy) as a

function of the nuclear coordinates. Once the energy function has been determined,

the second equation can be solved, which describes the nuclear wavefunction by

treating the chemical energy as the potential energy. The first equation is the equa-

tion that will be considered for the remainder of the paper, where the quantity of

interest is the electron density and energy of an atomic configuration in terms of

the atomic coordinates.

A.2 Hohenberg-Kohn Theorems

The next step is replacing the electronic Hamiltonian and electronic wavefunc-

tion from the previous section with an energy functional and the electron density.

The Hohenberg-Kohn Theorems [16], assert that no information is lost here, and

that there is a one-to-one correspondence between wavefunction and electron den-

sity, so that every Hamiltonian has a unique solution in terms of the density. Thus

the energy of the system can be expressed as a functional of the density, and can be

broken up into two components:
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E[ρ] = F [ρ] + Vext[ρ] (A.5)

where Vext is the external potential created by the static atomic nuclei, and F is the

universal functional, which is the same for all systems and accounts for the kinetic

energy and electron-electron interactions. Each atomic configuration produces an

energy functional, and the solution is the electron density that minimizes the func-

tional. Unfortunately, the exact form of the universal functional is not known and

approximate functionals have to be constructed, resulting in a variety of functionals

best suited for different applications depending on the situation.
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