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Modern aerodynamic analysis tools, such as free-vortex wake models and CFD-

based techniques, include fewer theoretical limitations and approximations than

classical simplified schemes, and represent the state-of-the-art in rotorcraft aerody-

namic modeling, including for coaxial and other advanced configurations. However,

they are impractical or impossible to apply to many flight dynamics problems be-

cause they are not formulated in ordinary differential equation (ODE) form, and

they are often computationally intensive. Inflow models, for any configuration type,

that couple the accuracy of high-fidelity aerodynamic models with the simplicity and

ODE form of dynamic inflow-type theories would be an important contribution to

the field of flight dynamics and control. This dissertation presents the methodology

for the extraction of linearized ODE models from computed inflow data acquired

from detailed aerodynamic free-vortex wake models, using frequency domain system

identification. These methods are very general and applicable to any aerodynamic



model, and are first demonstrated with a free wake model in hover and forward

flight, for a single main rotor, and subsequently for the prediction of induced flow

off the rotor as well, at locations such as the tail or fuselage.

The methods are then applied to the extraction of first order linearized ODE

inflow models for a coaxial rotor in hover. Subsequent analysis concluded that free-

vortex wake models show that the behavior of the inflow of a coaxial configuration

may be higher-order. Also, tip-path plane motion of a coaxial rotor causes wake dis-

tortion which has an impact on the inflow behavior. Therefore, the methodology is

expanded to the identification of a second order inflow representation which is shown

to better capture from all of the relevant dynamics from free-vortex wake models,

including wake distortion. With ODE models of inflow defined for an advanced coax-

ial configuration, this dissertation then presents a comparison of the fully-coupled

aircraft flight dynamics, and the design of an explicit modeling-following feedback

controller, with both a free-vortex wake identified model and a momentum theory

based approach, concluding that accurate inflow modeling of coaxial rotor inflow is

essential for investigation into the flight dynamics and control design of advanced

rotor configurations.
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Chapter 1: Introduction

The next generation of military and commercial rotorcraft is expected to reach

substantially higher speeds than platforms currently in production, through the use

of advanced configurations. One possible configuration is a coaxial helicopter with

thrust and/or lift compounding, obtained through the addition of pusher propellers

and/or wings.

1.1 Coaxial Rotorcraft

Coaxial helicopters have their rotors placed in a specific configuration in which

the two rotors lie on the same axis of rotation, yet spin in opposite directions. Be-

cause coaxial rotors spin in opposite directions, they can provide a rotor system

that has zero net torque on the aircraft, provided that each rotor is operated at the

same torque, or equivalently power (assuming equivalent rotor RPM). Conversely,

the coaxial rotor can induce a yaw moment on the aircraft by modifying the controls

to produce dissimilar rotor torques. This affords them one advantage over conven-

tional single main rotor helicopters by not requiring a tail rotor for anti-torque.

The second advantage is that two combined rotors tend to have high solidity which

results in rotors that have a smaller radii for a given weight and therefore aircraft
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may have a smaller footprints. These benefits historically come at the cost higher

complexity of the rotor and transmission system, and higher hub drag reducing the

efficiency of the rotorcraft. Traditional coaxial rotors have flap hinges and so the

rotors have to be sufficiently separated to avoid rotor on rotor blade strikes during

maneuvers. This leads to rather large and unwieldy rotor hubs with complicated

swashplate assemblies.

More recently, Lift-offset coaxial rotorcraft have been gaining interest. Lift-

offset coaxial rotorcraft typically forgo the flap hinge in favor of stiff hingeless blades.

This allows for the rotors to be much more closely spaced, as the amount of flapping

observed is much smaller, reducing their ability to strike a blade of the other rotor.

This also allows for the hub to be much more compact due to its overall height being

reduced, which leads to better aerodynamic qualities. The advantages of lift offset

in forward flight was first shown with the Sikorsky Advancing Blade Concept [1,2].

Lift offset refers to an offset in the location of the center of lift of each rotor. A rotor

that is moment balanced can be described as having its center of lift at the center

of rotation. A rotor that is carrying a lateral moment would have its center of lift

laterally offset to the left or right side, depending on the sign of the roll moment.

Lift offset for coaxial rotors almost always refers to lateral lift offset.

With a lateral lift offset, the advancing side of the rotors are allowed to carry

more lift than the retreating side. In forward flight, this allows the rotor to not

balance the natural dissymmetry of lift experienced by each rotor, and instead just

balance the total moment experienced by both rotors. Unlike single main rotors,

their maximum speed is not limited by retreating blade stall. Lift offset allows an
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increased stall margin on each rotor, which in turn increases efficiency in forward

flight. The difficulties with such a design tend to involve creating blades that are

strong and stiff enough. Not only do the blades not have flap hinges, and so must

carry the entire coning moment, but they also must be able to handle large one per

rev bending moments in forward flight to achieve lateral lift offset. Recent advances

in design have made it feasible and worthwhile to overcome the challenges of coax-

ial rotors, including the higher complexity, hub drag, flap bending moments and

vibratory loads. Very recently, Sikorsky has demonstrated various lift offset coaxial

rotorcraft, including the X-2 Technology demonstrator [3–5], the S-97 Raider [6],

and the SB>1 Defiant [7].

Significant gaps remain in the fundamental understanding of coaxial compound

rotorcraft configurations. Strong aerodynamic interactions exist between the two

rotors, and between the rotors, empennages, and pusher propeller. The role of

these interactions in steady flight and maneuvers has not been studied in depth

and is not fully understood. Additionally, compound configurations create control

redundancy and possibly novel strategies to trim and perform maneuvers. There

have been studies into the performance, structural load, and vibratory loads of

coaxial helicopter, but not so many studies into the flight dynamics and control

characteristics of coaxial rotor, due to difficulties in this field of analysis.

There are three broad categories of analysis that provide solutions of the equa-

tions of motion, and are applicable to all helicopters. These are:

1. Steady-state analysis
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2. Transient analysis

3. Linearized analysis

1.1.1 Steady-State Analysis

Steady state analysis refers to the calculation of a steady-state equilibrium

condition, or trim. The equations of motion are formulated as a system of nonlinear

algebraic equations. One or more solutions can be found that satisfy these equations.

Because the solution is steady, equations of motion that are expressed as ordinary

differential equations (ODE) can have their state derivatives set to zero. Equations

of motion that are in partial differential equation (PDE) can be used so long as they

can be time marched to a steady (or periodically steady) solution. This includes

higher order aerodynamic models that model the flow-field in time and space. If the

PDE can be time marched to a steady solution that is consistent with the steady

solution of the remaining equations of motion, then a trimmed state is achieved.

Therefore, many types of equations of motion may be used and it is not required

that the mathematical model be in ODE form.

Steady state analysis is useful for a wide array of calculations necessary for the

design and analysis of helicopters. A trimmed solution provides the performance of

an aircraft at each steady flight condition. It also can provide steady and vibra-

tory load predictions on the helicopter components (blades, pitch links, shaft, etc).

Likewise it will calculate the blade flap, lag and pitch bending (or rotation with a
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hinge) in the non-rotating frame. It can provide estimates of the vibration that the

pilot may experience.

1.1.2 Transient Analysis

Transient analysis describes the solution of the equations of motion in time.

The equations for the helicopter are formulated as a system of ordinary differential

equations. Various algorithms exist to march these equations forward in time, pri-

marily ODE solvers. Higher aerodynamic models in PDE form typically have their

own solvers allowing a time-marching solution in time and space. These can often

be time-marched in parallel, with information being passed between the different

algorithms at discrete time steps, allowing the two algorithms to simultaneously

solve all of the equations of motion, both the ODEs and PDEs.

These solutions are useful for a different set of explorations into helicopter ca-

pabilities. Transient analysis is useful for determining the time histories of aircraft

responses to pilot inputs or to gusts. It is useful for verification of control systems

by checking that the aircraft behaves as expected when trying to follow a given tra-

jectory. It is useful for simulating unsteady maneuvers that can not be characterized

by trim. It, in general, allows exploration of any operation a helicopter can perform

in the time domain.
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1.1.3 Linearized Analysis

Linearized Analysis allows for exploration of behavior in the frequency domain.

Linearized analysis is a procedure that calculates linear perturbation models through

finite difference calculations about a given equilibrium condition. This is essential

for describing how the helicopter behaves when it is disturbed a small amount from

the trim condition found through steady state analysis. The form of the state-space

linear perturbation model is given by Eq.(1.1):

ẏ = [A]y + [B]u (1.1)

The state-vector y for a helicopter contains the body velocities, body rates, Euler

angles, rotor states and inflow states (if the inflow system is in state-space form).

The control vector u contains the rotor controls and other optional controls such

as propeller, tail elevator, or tail rotor controls. The derivation for identifying the

state and control matrices ([A] and [B]) is shown in more detail in Appendix A.

This form is very useful for flight dynamics purposes. The eigenvalues of the

[A] matrix define the poles of the system, which provide the stability, damping, and

natural frequency of the various aircraft responses. The full equations can also be

utilized to define the transfer functions of the aircraft responses. These describe, in

the frequency domain, the linear relationship between the inputs and outputs of a

helicopter, while it is operating within small perturbations from a trim condition.

Linearized perturbation analysis requires all of the equations of motion to be

in ODE state-space form. Higher fidelity aerodynamic methods that are in PDE
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form do not have states in the way written in Eq.(1.1). If a system does not have

states that can be included in the linearization, then the dynamic effect of that

system cannot be determined through perturbations. If states available are time-

varying, even in trim, and a specific transform is not known that removes the time

dependency then the procedure will not capture the correct effects. And if the

equations of motion contain partial differential equations, but somehow the states

are defined, then there is a question of how to actually perform perturbations. How

long and in what way should the simulation be run in order to accurately determine

the change and rate of change of the states?

A quasi-steady linearization can be performed on the aircraft coupled with a

PDE form wake model. In this case, there are not any actual wake states, however

the aircraft states and controls do effect the wake behavior which in turn couples

back into the aircraft dynamics through the aerodynamic loading. In this procedure,

perturbations are performed to the states, state derivatives and controls, and the

wake is time marched to a new steady condition to determine the effect of the wake

on the aircraft. This will modify the aerodynamic loading which will in turn change

parts of the [A] and [B] matrices. But it is important to note that this will not

add poles and zeros to the perturbation model of the full aircraft, as a state-space

model of inflow would. This can only change the gains of certain aircraft transfer

functions. The lack of poles and zeros caused by the wake is what makes this quasi-

steady linearization an approximation and is why it does not accurately capture the

dynamics that are present in the high fidelity aerodynamic models.
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1.2 Review of Coaxial Rotorcraft Modeling

1.2.1 Aerodynamic Modeling of Coaxial Rotors

Rotors impart velocity to a mass of air in order to generate thrust. The velocity

imparted in the vertical direction in the rotor frame of reference is referred to as the

induced velocity or induced inflow. The mutual interactions between the rotors of a

coaxial configuration create complexities that are not easily approximated through

simplified approaches such as momentum theory. Momentum theory makes several

assumptions about the flow field which are not easily extended to systems of two

rotors. Nevertheless, there are several momentum theory based models that try to

predict the inflow on each rotor.

Harington [8] was the first to model coaxial rotors as a single rotor with equiv-

alent solidity, using momentum theory analysis. This analysis was used to predict

the performance of a coaxial rotor, and compared to experimental data of a coaxial

rotor in a wind tunnel (which will be referred to as the Harrington Rotor experi-

ments). Inflow is not measured or computed directly, but it is implied by the form

of the analysis that there would be an equivalent uniform inflow. He concluded that

the equivalent solidity rotor theory was adequate to predict the performance of the

experimental coaxial data, and was just as accurate as the single main rotor predic-

tion. Dingeldein [9] tested the equivalent solidity rotor theory of coaxial rotors in

forward flight. He found that the theory tends to overpredict power requirements of

a coaxial rotor by up to 14%. Payne [10] repeats this analysis while coming to inflow

8



and performance solutions for tandem configuration rotors, and also compared with

the wind tunnel test data from Refs. 8,9. These models predict equal thrust on each

rotor and predict the rotors to each have an equivalent uniform inflow velocity of:

(vi)e =

√
W

2ρA
(1.2)

Though the equivalent solidity models may be close for overall performance predic-

tion, they do not accurately describe the true flow characteristics.

Sweet [11] performs a similar analysis for a coaxial rotorcraft on which a pilot

stands and leans in order to provide control moments. In this work the inflow is

described as uniform with a longitudinal variation in forward flight (due to this con-

figuration carrying a aerodynamic pitching moment). The coaxial rotor is analyzed

as a single main rotor with equivalent solidity. The rotor forces and moments are

compared with an experimental wind tunnel test. The theory under predicts thrust

across the flight envelope by as much as 15%, does not capture the proper hub drag

force. Even though the paper concludes that the longitudinal variation in inflow

is necessary to capture the pitching moment, and indeed it is an improvement, the

pitching moment from theory is still mismatches the wind tunnel data by up to 45%

at certain flight conditions.

The next extensions of the momentum theory model were to operate the lower

rotor in a climb based on the upper rotor inflow. These “climbing rotor” models

made varying assumptions about the contraction of the upper rotor’s wake. They

also assumed that the upper rotor was not affected by the lower rotor’s behavior.

Paglino [2] first described this theory for application to modeling the Sikorsky XH-
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59 “Advancing Blade Concept” (ABC) Helicopter. Two different dual rotor theories

were compared with measured wind tunnel test data. The first (undeveloped wake)

assumed the spacing was small compared to the contraction of the upper rotor’s wake

and therefore the whole lower rotor operated in a climb equal to the upper rotors

induced velocity. The second (developed wake) instead assumed the spacing was

large enough that the upper rotor’s wake would fully contract and only impact upon

half of the lower rotor’s area, but with twice the velocity. Therefore the lower rotor

operated in a climb equivalent to twice the upper rotor’s induced velocity. Paglino

noted that both models produces better results than single rotor (equivalent solidity)

theory, in terms of matching torque and thrust coefficients to experiment. The

developed wake was concluded to be slightly better at capturing the experimental

results.

Leishman et al. [12–14] further expanded on this developed wake approach

with analytical solutions. Figure 1.1 from Ref. 12 shows a schematic of this ro-

tor representation. Following this representation through to an inflow solution for

coaxial rotors operating at equal power (which covers almost all practical coaxial

configurations, as it also implies torque balance) shows that the inflow induced by

the lower rotor vl should be:

vl = 0.4375vu (1.3)

where vu is the upper rotor induced inflow. The total inflow over the center half of

the lower rotor is the combination of the vena contracta of the upper rotor and the

10



lower rotors induced velocity, leading to:

vlower center = 2vu + 0.4375vu = 2.4375vu (1.4)

Figure 1.1: Flow model of coaxial rotorcraft (from Ref. 12).

These models tend to overpredict the induced velocities and therefore the

power requirements. Also the assumption that the wake is fully contracted is usu-

ally not quite valid because rotors are not sufficiently separated [12]. Finally, it is
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concluded that these overpredictions may occur because “swirl recovery” allows the

lower rotor to recapture some of the upper rotor’s inflow momentum [2].

Johnson [15] tries to make a more realistic assumption for the contraction

of the upper rotor’s wake, allowing for the wake to contract by different amounts

depending on the spacing. The upper rotor’s induced velocity vu is assumed to be

uniform and unaffected by the lower rotor (momentum theory solution). The lower

rotor’s induced velocity vl is nonuniform. The theory introduces a term ᾱ which

describes the average of the disk loading on the lower rotor weighted by the induced

velocity on the lower rotor. This is given by:

ᾱ =

∫
∆plvldA

Tlv̄l
(1.5)

Where ∆pl and vl are the change in pressure and the induced velocity, both

on a given annular portion of the lower rotor. Tl is the thrust on the lower rotor. v̄l

is the lower rotor’s mean induced velocity calculated as an integral over the lower

rotor’s disk area (A):

v̄l =

∫
vldA/A (1.6)

This term also controls the area of the lower rotor that is subjected to the upper

rotors wake. Uniform loading on the lower rotor corresponds to a value ᾱ = 1.

In general the loading on the lower rotor is higher towards the outboard sections,

leading to ᾱ > 1. Ref. 15 lists a table with a few values of ᾱ, sorted in order of rotor

spacing, which can be used for analysis.
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Next the variable τ is defined as the ratio between the lower and upper thrust:

τ = Tl/Tu (1.7)

Given this parameter, Ref. 15 shows that, for the case of equal power on each

rotor, the ratio between the lower rotor’s mean induced velocity and the upper

rotor’s uniform velocity s is:

s = v̄l/vu =
(1 + τ)2

2
(1.8)

The actual nonuniform inflow distribution on the lower rotor would be deduced

from v̄l, ᾱ, and the other parameters of the model. While the lower rotor’s mean

velocity (for equal power case) would not depend on the contraction (and hence ᾱ),

the inflow distribution across the lower rotor would. The difficulty with this model

is that ᾱ is a tuning parameter. Instead of there being a defined correct value, it

is rather left to the user to tweak the value to match the desired contraction ratio,

presumably from flight test / wind tunnel data, assuming any such data exists.

Other models exist that try to expand upon this contracted flow “climbing

rotor” theory. Nagashima and Nakanishi [16] presents two theories, one using the

contracted rotor momentum theory, and the other using a simplified vortex analysis,

as shown in Fig. 1.2. The first theory is unique in that the outboard region of the

lower rotor experiences a small upwash from the upper rotor’s wake, and the upper

rotor experiences some interference from the lower rotor’s wake. In addition, swirl

velocities are also calculated across both rotor disks. The mutual interference terms

were computed from potential theory and from experimental results. The second

theory modeled the blades as lifting lines with nonuniform circulation and the wake

13



was model as a set of discrete circular vortices with strengths set by the bound

circulation. These theories were compared and match quite well with thrust sharing

ratios obtained from an experimental coaxial rotor in hover, at different control

settings.
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D 
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2N Circuar 
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Fig.l Wake Model of Co-Axial 
Rotor in Hover Fig.3 Discrete Circular Vortices 
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Performance and Comparision of Numerical 
Results with Experimental Ones. 

41-15 

Figure 1.2: Flow model of coaxial rotorcraft (from Ref. 16).; left shows
theoretical wake boundaries and the impingement of the upper rotor
wake on the lower rotor; right shows simplified circular vortex wake
analysis

Valkov [17] presented a wake superposition theory for coaxial rotors, in which

the rotors are plunged in each other’s wake. The slipstream of each wake is cal-

culated using helical tip vortices and Biot-Savart law. This gives the velocity and

contraction ratio of each wake at the other rotor plane. In this way interference

velocities are calculated. This theory is compared with hover and forward flight

data from a Canadair CL-227 remotely piloted vehicle, and showed good agreement

with performance metrics.
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Bourtsev et al. [18] presented a model used for Kamov Helicopters that pro-

posed that the coaxial rotor could be modeled as a single rotor with a larger effective

“active” area. As shown in Fig. 1.3, The upper rotor and the portion of the lower

rotor residing within the upper rotors slipstream can be considered one active area of

area F = πD2/4. The annulus lying outside of the upper rotors wake is considered

an extra active area. COAXIAL ROTORS SINGLE ROTOR 

R R R R 

0,85R 0,85R 

0,91R __ ··+-··--o_. ,91R 0,78R ___ .. ~ .. 0,78R 

~~D=2R~ 
F=7TD

2
/4 

C, : : .... , .. 
Fc=F+oF= 1,28F=7TD2

BFF/ 4 Fs=F 

Ideal rotor: 

Fig.!. Relations between ideal single and coaxial rotors active 
disc areas, effective diameters and thrusts at hover. 

Figure 1.3: Flow model of coaxial rotorcraft (from Ref. 18).; The active
area footprints of the rotors (portrayed beneath the rotors) consists of
the area of one rotor plus the additional area of the lower rotor outside
of the upper rotor wake.
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Wake contraction ratios were determined from experimental tip vortex visual-

ization of a coaxial Kamov Ka-32 helicopter operating in hover. It was found that the

upper rotor’s wake had contracted to 85% of the rotor radius (as shown in Fig. 1.3).

Therefore the area lying outside the upper rotor’s wake was 28% of lower rotor’s

area, giving the combined coaxial system a total effective area of A = 1.28πR2. This

method relies on experimental or other data to determine the contraction ratio at

each operating condition and for each helicopter configuration.

More recently, Rand et al. [19,20] presented a momentum theory based method

that modeled both rotors in a climb based on the other rotor’s inflow, as shown in

Fig. 1.4. The outboard section of the lower rotor however would not experience

climb. The “equivalent climb” on each rotor is modulated by several interference

coefficients calculated from experiments and free wake analysis. This analysis was

unique in that it allowed for dissimilar rotors in terms of rotational speed and radius.

This model was compared against vortex methods, CFD methods, and experimental

results and was found to capture global behavior such as power very accurately, even

though its inflow predictions, particularly at the blade tips, were inaccurate.

1.2.2 Inflow modeling in unsteady conditions

The theories presented so far have been “static” or “quasi-static” inflow theo-

ries, depending on their implementation. Changes in the aerodynamics and dy-

namics of the rotor provide either instantaneous changes (quasi-static) or pro-

vide no change (static) to the inflow velocity. As first shown by Carpenter and

16



JESSICA YANA & OMRI RAND

wakes, both wakes are determined by a time
marching numerical scheme. Such modeling of-
fers a higher level of fidelity for the aerodynamic
analysis, although at considerably high compu-
tational cost. The model is capable of capturing
the mutual interference of the wakes which leads
to their geometry and strength characteristics and
subsequently to the unique coaxial rotor system
performance.

2 Analytical point of view

Fig. 1 shows a coaxial system of two concen-
tric rotors with a clearance, h, that rotate in op-
posite directions. The rotors are not necessarily
identical in all parameters including their radius,
rotational speed, number of blades, chord and air-
foil distribution, etc. (i.e. RU 6= RL and ΩU 6=ΩL,
NU

b 6= NL
b , c̃U(r̃) 6= c̃L(r̃) in the general case).

Fig. 1 Coaxial rotor system in hover

In this model, the upper rotor model takes
into account the lower rotor induced velocity as
an "equivalent climb speed" and similarly, the
lower rotor model takes into account the upper
rotor induced velocity as an "equivalent climb
speed" as well. The present model is developed
and presented in two parallel courses where the
above described mutual influences are founded
on uniform downwash distributions for the sim-
plified course and on nonuniform downwash dis-
tributions for the second course.

2.1 The Mutual Interaction Between the Ro-
tors

As indicated above, the upper rotor is sub-
merged in the downwash that is induced by
the lower rotor. This downwash is written as
kLU λ̄L

i
ζR
ζΩ

where kLU is an influence coefficient

and λ̄L
i is the averaged nondimensional induced

velocity over the lower rotor. In general, kLU

is a function of r̃U (radial station). Similarly,
the inner part of the lower rotor is submerged in
the downwash that is induced by the upper rotor
and is written as kULλ̄U

i
ζΩ
ζR

where kUL is an in-

fluence coefficient and λ̄U
i is the averaged nondi-

mensional induced velocity over the upper rotor.
Clearly, kUL is a function of r̃L. Hence in the gen-
eral case, the equivalent climb velocities over the
upper and the lower rotors are:

λU
C (r̃) = kLU(r̃)λ̄L

i
ζR

ζΩ
, (1a)

λL
C(r̃) = kUL(r̃)λ̄U

i
ζΩ
ζR

(1b)

where

ζR =
RL

RU ; ζΩ =
ΩU

ΩL

Note that λ̄L
i and λ̄U

i are the averaged induced ve-
locity over the disc areas and are therefore ex-
pressed as:

λ̄U
i = 2

∫ 1

0
r̃λU

i (r̃)dr̃; λ̄L
i = 2

∫ 1

0
r̃λL

i (r̃)dr̃.

The simplified model: In the simplified
model we assume that kLU is constant, and
kUL is constant for r̃L < r̃L

w and vanishes for
r̃L

w < r̃L < 1. In such a case, λU
i (r̃) of the optimal

design turns to be also constant. Similarly,
λL

i (r̃) becomes constant for r̃L < r̃L
w (and will

be denoted λLI
i there), while it takes a value of

different constant for r̃L
w < r̃L < 1 (and will be

denoted λLO
i there). Hence, in such a case, the

equivalent climb velocities are given by:

λU
C = (2)

kLU
{(

r̃L
w
)2λLI

i +
[
1−
(
r̃L

w
)2
]

λLO
i

} ζR

ζΩ
,

2

Figure 1.4: Flow model of coaxial rotorcraft (from Ref. 19). Each rotor
is subjected to a climb based on the other rotor’s inflow

Friedovich [21], this is not the case, for it takes time for inflow changes to build up

in response to control inputs. These models are therefore not accurate for modeling

unsteady conditions of the rotor.

Mathematical models of inflow dynamics typically are either in Ordinary Dif-

ferential Equation (ODE) or Partial Differential Equation (PDE) form.

1.2.2.1 Inflow Models in ODE Form

State-space models of inflow are quite useful in predicting the inflow behavior.

Although a small number of free wake state-space models have been proposed [22–

24], most state-space inflow models are based on the closed-form acceleration-potential

solution of the fluid dynamics equations over a disk. For a single main rotor, the

most popular state-space model is the Pitt-Peters “dynamic inflow” [25, 26] which
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gives the uniform inflow across the rotor disk as the solution of a system of ODEs:

ṽi(r̃, ψ) = λ0 + λ1sr̃ sinψ + λ1cr̃ cosψ (1.9)

[M ] {}





∗
λ0

∗
λ1s

∗
λ1c





+ [L]−1





λ0

λ1s

λ1c





=





CT

−CL

−CM





(1.10)

where the [M ] and [L] are defined as a function of the three components of

velocity in the rotor coordinates and the momentum-theory nondimensional induced

velocity.

This model has a few important assumptions. First it is an acceleration poten-

tial solution over an actuator disk, therefore implying an infinite number of blades.

The shed vorticity effects are therefore assumed to be spread out over the disk.

for flight dynamics purposes, a finite number of blades must be used, therefore the

procedure of discretizing the disk inflow is required.

The theory has two model forms, a non-linear form and a linearized form. The

non-linear model is completely non-linear in its thrust to average inflow relationship,

however the moment to harmonic inflow relationships are linearized. Therefore the

model is only valid for small perturbations in aerodynamic moment (pitch or roll),

and it will not give the correct nonlinear responses to roll-moment perturbations

that occur at zero thrust [27]. The linearized model is a perturbation model which

assumes small perturbations about a given steady solution for all three states and

inputs.
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The Peters-He “finite-state wake” [28,29], and their numerous subsequent de-

velopments, further developed the potential flow theory by expanding the inflow

at the disk in terms of modal functions, adding higher harmonic as well as radial

variations to the inflow distribution. The modal function is truncated to a finite

number of states. It has been shown that with enough states the solution exhibit

the shed wake effects seen in Theodorsen’s theory and Loewy’s theory, as well as

the tip-loss effects predicted by Prandtl-Goldstein tip loss approximation.

The Pitt-Peters model and Peters-He finite-state wake models both do not

account for inflow dynamics due to dynamic motions of the disk, either from blade

dynamics or from hub rotational velocities (though it does account for hub trans-

lational velocities). Also neither theory is capable of properly predicting inflow

dynamics for a rotor disk operating in vortex ring state, though they are able to

predict the autorotational boundary for the vortex ring state. The theory recognizes

the vortex ring state operating condition as having no physically realizable steady

solution due to a negative eigenvalue in the inflow system [27].

Despite these theoretical limitations, the Pitt-Peters model and the Peters-

He finite state wake are computationally very efficient and produce good results for

many flight conditions for single rotor aircraft, or aircraft with multiple rotors which

are configured in such a way to not cause excessive interference. These models are

not suitable, however, for coaxial rotorcraft, as the solution to potential flow theory

is more complicated when two rotors are taken into account.

In recent years, Prasad and Peters et al. have presented numerous papers

attempting to extend the well-behaved Peters-He model to the much more compli-
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cated coaxial rotor. Prasad et al. [30] extends two methods for single main rotor

prediction to the coaxial rotor in hover. The first is the Peters-He dynamic inflow

model. This paper uses two pressure fields superimposed to create a dual actuator

disk representation. The second method used a Galerkin weighted residuals ap-

proach based on that shown in Morillo and Peters [31], extended to a coaxial rotor.

The upper rotor’s wake interaction with the lower rotor’s inflow did not allow for

the assumption of a rigid wake, therefore a wake contraction method was developed

through incompressible flow equations and used for model correlations. These mod-

els were only tested against steady inflow experiments from Ref. 32, and so it is

unclear how well this model captures dynamic interferences between rotors.

Nowak et al. [33] further extends this model to forward flight. This paper

establishes the active-receiving rotor concept, which allows for the solution of off-

disk inflows by relating the pressure from an active rotor to the induced inflow at a

receiving rotor. The active-receiving rotor model has the Peters-He model form, but

with different coefficient matrices. The equations for the active-receiving [L] and

[M ] matrices are not available in closed form, but must be computed numerically

from time integration. Lookup tables of [L] and [M ] matrices can be generated for

each inflow skew angle. These models are compared with experimental data from

the Harrington rotor wind tunnel tests and numerical results from a Free Vortex

Method (FVM), but only in steady conditions.

Xin et al. [34] presented a theory which was based on the theory of active-

receiving rotors. In this study, empirical expressions for induced velocity caused by

a rotor at the location of the other rotor were produced. This off-rotor model used
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Pitt-Peters form as given by Eq.(1.10), but the inputs would be the aerodynamic

loading on one rotor, and the outputs would be the downwash at the other rotor. The

induced velocity on a rotor would then be the summation of the self induced velocity

calculated by a Pitt-Peters model (unmodified from single main rotor theory), and

this additional velocity coming from the off-rotor expressions. The [L] matrix was

fit to steady results from a High fidelity free vortex wake model, and the [M ] matrix

was calculated from the downwash gradient. The model is validated only against

steady hub loads from flight test data for a coaxial rotor helicopter with a pusher

propeller.

Yong-Boon et al. [35] expanded further on the finite state Active-Receiving

Rotor Inflow Model (now called ARRIM). This paper pointed out that this theory

cannot capture the complex aerodynamic interactions between upper and lower ro-

tors in forward flight. This is because the theory assumes that each rotor has a

prescribed cylindrical wake geometry, when in fact higher fidelity simulations (in

this case, VVPM) show that the wake geometries are quite distorted. The rotors

mutual interference effects therefore had to be quantified using frequency domain

system identification of a high-fidelity free wake model. This method produced cor-

rections to ARRIM influence coefficient matrix to align the wake skew better, by

better capturing wake distortions due to rotor-to-rotor flow interactions.

The following year, Yong-Boon et al. [36,37] compared two new models which

involve velocity potential superposition and pressure potential superposition, re-

spectively. With the velocity potential superposition approach, upper rotor pressure

perturbations at the lower rotor are assumed to be better captured than with the
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pressure potential superposition approach. This is due to the existence of a time

delay in the response for the velocity potential superposition approach, which the

pressure potential superposition method is lacking. But the velocity potential su-

perposition approach comes at the cost of requiring the calculation of the adjoint

velocity states, which must be computed by backward integration in time, because

the adjoint inflow equation is unstable. The pressure potential superposition is

more readily usable because its form allows for forward in time integration, but it is

considered less accurate because of the missing time delays. Therefore this work sug-

gests using frequency domain identification on the velocity potential superposition

method and applying corrections to the pressure potential superposition method. In

this way, the pressure potential superposition model is able to capture the correct

inflow phase response at the lower rotor for different values of upper rotor thrust

coefficient. This pressure potential solution still requires integration in time for the

off-rotor influence coefficient matrices, or lookup tables.

Juhasz et al. [20] presents a comparison between three different methods for

aerodynamic prediction of coaxial rotorcraft, a blade element momentum theory

approach, a free vortex wake approach, and a computational fluid dynamic approach.

In particular, the BEMT method was very similar to the “equivalent climb” of

Ref. 19. Each rotor was allowed to exist in a climb state due to a partial amount

of the other rotor’s inflow. These three models were validated against wind tunnel

model test data from Ref. 32, though only for steady conditions. It was found

that for particular details like inflow distributions the free-vortex wake methods

and CFD methods tended to match the experimental data within about 10%. For
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overall global quantities, such as power, BEMT often more accurately predicted the

experimental result than the higher fidelity methods did.

The BEMT model from Ref. 20 was not explicitly valid in unsteady conditions

but also was only exercised in steady conditions. In Ref. 38, this model was extended

to allow for inflow dynamics. Instead of the inflow being modeled on each rotor by

momentum theory, the inflow is instead modeled on each rotor separately by Peters-

He inflow models. The interference climb velocities, as identified in Ref. 20, remain

the same in form. They are allowed to change dynamically however when the inflow

changes on the other rotor. This applies a sort of dynamic interference between

the two rotors, at least for average inflow and thrust excitations. There is no delay

added in the response between the rotors which will be shown to be an impactful

part of the coaxial dynamics. Also this model does not have interference in the

lateral or longitudinal inflow direction which will also be shown through free wake

simulation responses. Nevertheless, this model represents the state of the art in

coaxial rotor dynamic inflow modeling before this current dissertation’s work.

1.2.2.2 Coaxial Inflow Models in PDE Form

Free-vortex theories have been used for coaxial rotorcraft modeling are are

valid for unsteady conditions. Saito and Azuma [39] presented one such theory which

used local momentum theory with modified prescribed wake, and also extended the

model to work in forward flight. Andrew [40] presented a vortex/momentum/blade-

element approach which modeled the tip vortex as a prescribed or relaxed vortex
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as shown in Fig. 1.5. Both were compared and were found to agree well with

experimental performance data in steady conditions.

Figure 1.5: Flow model of coaxial rotorcraft (from Ref. 40).

Time accurate free-vortex wakes have also been used to model coaxial inflow

systems. These include Refs. 41–47. These operate by modeling the wake as a set

of discretized vortex filaments that are allowed to convect freely under the influence

of the other vortex. The vortices start and trail from the blades and their strengths

are generally set by the circulation generated on the blades. These models can

model interactions between the two sets of wakes, coming from each rotor. Vortex-

vortex and blade vortex intersections are typically very difficult to model and depend

greatly on the model of the vortex core, which is typically calibrated carefully with

wind tunnel data.
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Coaxial inflow were modeled with Vorticity Transport Model (VTM) by Kim

and Brown [48]. VTM is based on a time-dependent computational solution of

the vorticity-velocity form of the Navier-Stokes equations on a Cartesian adaptive-

grid system that encloses the rotorcraft. A convection algorithm used in the VTM

helps preserve the vortical structures in the flow from being lost due to numerical

dissipation. The adaptive-grid system evolves the wake by generating computational

cells only where the vorticity is present. Extension of this model to coaxial is

straightforward because each additional blade simply acts as an additional source of

trailed and shed vorticity. This model was validated against steady measurements

for Refs.8, 9.

Viscous Vortex Particle Method (VVPM) is used for coaxial modeling by Raj-

monhan, Zhao and He [49] and by Singh and Friedmann [50]. VVPM directly solves

the vorticity–velocity form of the incompressible Navier–Stokes equations in the La-

grangian formulation without the requirement of grid generation. A hybrid CFD

method calculates the viscous flow near the blades and a nondissipating rotor wake

over large distances. This method was validated against steady experimental data

from McAlister and Tung [32] and from Cameron et al. [51].

Lastly, coaxial rotor flows have been calculated with varying degrees of com-

plexity with Computation Fluid Dynamics (CFD) in Refs. 52–57. These method

are all validated, only in steady conditions, with experimental data from either

Ref. 8, 51,or 32, and only present results for steady conditions.
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1.2.3 Experimental Validation of Inflow Dynamic Models

The above methods for coaxial rotors contain inflow dynamics because of their

mathematical formulation, however have not been validated as such. The lack of

validation for unsteady behavior is primarily due to the lack of available experi-

mental data for coaxial dynamic maneuvers. There has, however, been validation

of inflow dynamic models for single main rotor helicopters. These fall into two cat-

egories: indirect (e.g. through flap or aircraft response measurements) and direct

(e.g. through unsteady flow visualization and measurement).

Indirect Approaches:

Inflow models have been extracted from flight and wind tunnel test data

through their effects on flapping and damping stability derivatives rather than from

wake flow measurements. These studies can be considered as indirect methods to

extract and validate wake dynamic models.

Feik and Perrin [58] and Blackwell et al. [59] identified a portion of the Pitt-

Peters dynamic inflow model [29] as part of a more detailed time-domain identifica-

tion of a coupled rotor-fuselage linearized model of the Sikorsky Sea King helicopter

in hover. A similar exercise was carried out by Houston [60] using a frequency do-

main system identification technique on hover flight test data of a Puma helicopter.

The set of identified variables included an axial inflow derivative term, which was

found to be about 60% larger than its predicted value. The discrepancy was at-

tributed to unmodeled dynamics.
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In a later study, Houston and Thomson [61] extracted the three components

of the inflow [29] from blade flapping measurements of an autogyro in trimmed

forward flight. Good agreement between theory and experiment was found for the

uniform and longitudinal inflow components. A less satisfactory agreement for the

lateral component was attributed to interactional aerodynamic effects specific to

that particular configuration.

Coupled SH-2G coning/inflow dynamics based on the Pitt-Peters model have

been analytically derived and included in the model structure of higher-order ro-

torcraft model [62, 63]. The final identified model agreed well with flight data and

captured the key aircraft body dynamics very well.

The Sikorsky Bearingless Main Rotor (SBMR) system parameters were also

extracted from frequency sweeps on the full scale rotor performed in a wind tunnel

at two different forward flight conditions [64]. The identification showed that an

accurate model of the on-axis rotor response could be extracted as based on the

Pitt-Peters dynamic inflow model. Emphasis in this work was placed in correctly

predicting the rotor off-axis response by including an aerodynamic phase lag and

wake distortion effects due to rotor flapping.

Direct Approaches:

Carpenter and Freidovich [21] were the first to demonstrate inflow dynamics

directly for single main rotors. The experiments they performed directly measured

dynamic changes in inflow by measuring the change in drag on small balsa wood

paddles mounted on a horizontal bar 2 feet below the rotor blades, immersed in the
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rotor wake. The changes in inflow were produced by different swashplate collective

ramps. They compared these experimental results with an analytical model.

A few of the ODE and PDE inflow models previously discussed are validated

(for single main rotors) with these experiments. The Peters-He model was compared

to this experimental data in Ref. 28. The comparison showed that the model gave

good correlation with the experiment. Because this comparison was performed

with the single radial function, zeroth harmonic version of the Peters-He model,

it is equivalent to, and therefore validates, the Pitt-Peters model also. Free-vortex

methods were compared against these experiments by Bhagwat and Leishman [65,

66]. They showed that the free wake method could accurately predict the time

responses of the mean inflow due to the ramps in collective

The Carpenter and Freidovich experiments demonstrate the inflow dynamics

but they are limited by the amount of time and energy spent exciting the full range of

frequencies. Indeed a ramp response will excite all frequencies however a majority of

the excitation energy will be at low frequency and measurements must be incredibly

precise in order to accurately capture the dynamics at a any higher frequencies.

This is difficult as typically the inflow measurements are not extremely accurate.

Alternatively, a better way to excite inflow dynamics at known frequencies is to

drive the rotor with sinusoidal swashplate inputs, at those frequencies.

Ellenrieder and Brinson [67, 68] presented the one study in literature that

focused on extracting inflow dynamics through actual inflow measurements from

sinusoidal forcing. A hingeless four-bladed 1.54 meter diameter rotor was placed in

a wind tunnel and instrumented with hot wire anemometry probes mounted directly
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below the rotor plane. The rotor had a swashplate that could actuate collective and

cyclic controls at up to 50 Hz. The blades were instrumented with strain gauges

to measure deflections of the blades, and the rotor shaft had a shaft encoder to

measure azimuthal position of each blade.

The spanwise and azimuthwise inflow distribution, as well as flap angles, were

measured for a series of single-frequency collective and cyclic swashplate excitations

at frequencies of up to 1.5/rev. They presented partial inflow and flapping frequency

responses. No models were fit to the frequency responses, but they were compared

with analytical rotor models which used Pitt-Peters model for inflow dynamics. The

dynamic response of the inflow was found to be highly complex, with significant

variations with radius, distance from the rotor plane and frequency of excitation,

because of the effects of both wake geometry and shed vorticity.

Bhagwat et al. [66] used these experimental results to validate the dynamics

of a free wake model for a single main rotor helicopter (UH-60). They created

localized (i.e. at a given radial and azimuthal location) inflow frequency responses

to swashplate controls using the same method as in the experiments. A subset of the

comparisons between experiment and the free wake model are shown in in Fig. 1.6.

This experimental data and free wake model predictions were obtained by

oscillating a rotor control (in Fig. 1.6 case, collective pitch) in a sinusoidal manner

at a constant frequency for each frequency point along the x axis. The induced

velocity at the given location was then measured, and this output generally held

to a sinusoidal shape at the same frequency as the input. The ratio between the

input sine wave’s amplitude to the output sine wave’s amplitude is given as the
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Figure 1.6: Validation of the MFW model (from Ref. 66).; magnitude
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excitation of collective pitch, at various blade radial locations. Solid
symbols: experimental measurements from Ref. 68; solid lines are free
wake model predictions. Results are for hover
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magnitude (expressed in decibels, shown in the first column of Fig. 1.6), and the

phase difference between the input’s sine wave and the output’s sine wave is the

phase (expressed in degrees, shown in the second column of Fig. 1.6). Fig. 1.6 shows

that free wake model tends to predict the correct phase fairly accurately and the

magnitude within about 6 decibels (a factor of about two).

It should be noted that the measurements of Ref. 68 are incomplete, and do

not allow a full validation of theoretical models. For example, aerodynamic loads

(i.e. not including inertial loads) were not measured. Also the trimmed total rotor

thrust was not measured, but rather estimated based on a simulation model. No

other experiments exist that excite a rotor at given frequencies and record rotor

aerodynamic loading as well as inflow.

No inflow dynamic measurements are currently available for coaxial rotors.

The free wake model was only validated for coaxial rotors with static experimental

data [42].

1.2.4 Extraction of time-domain aerodynamic models from frequency-

domain data

There is an extensive literature on the extraction of low order, state-space

aerodynamic models from frequency domain data for unsteady airfoil aerodynamics

and aeroelasticity. Notable references include the pioneering work by Vepa [69], who

introduced the technique of extracting approximate transfer functions from simple

harmonic oscillation data. The method was applied to Theodorsen’s function (C(ω))
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to produce Padé approximants. Padé approximants approximate a known function

of frequency as a transfer function in the form:

C(ω) ' N(jω)

D(jω)
(1.11)

where N and D are polynomials of equal degrees:

N(jω) = (jω)n + a1(jω)n−1 + . . .+ an

D(jω) = (jω)n + b1(jω)n−1 + . . .+ bn

The Padé approximant used in Ref. 69 was 4th over 4th order, i.e. n = 4 in

Eq.(1.11). The difference between the actual value of C(ω) and the Padé approx-

imant was minimized through a least squares technique. Results showed that the

Padé approximant could predict the real and imaginary values of the Theodore

function better than previous approximation methods.

Edwards et al. [70] applied the methodology to a generalized Theodorsen func-

tion for unsteady loads due to arbitrary airfoil motion in incompressible flow. A first

order Padé approximant was used and the resulting states were augmented onto the

airfoil sectional equations of motions. Root Loci of the aeroelastic modes were

produced and the approximation technique gave good agreement with exact calcu-

lations for values of the airfoil aerodynamic flap, torsion, and plunge modes near

the imaginary axis.

Venkatesan and Friedmann [71] applied the methodology to Loewy’s function

for rotorcraft shed wake effects. However, they used an approximate transfer func-

tion with more complex zeros and poles (not necessarily constrained to the same

degree) and showed that the method could capture the real and imaginary parts
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of Loewy’s function in the frequency domain much more accurately than a n = 5

Padé approximant. In much more recent developments, the methodology has been

applied to CFD-based airfoil calculations [72], once again showing that the reduced

order models could match the high fidelity simulations of lift, drag and moment

during dynamic oscillations of the airfoil.

Also notable is the ONERA dynamic stall model, initially formulated by Tran

and Petot [73], consisting of a system of ordinary differential equations, the coeffi-

cients of which are extracted from oscillating airfoil tests. All these references can

be considered as studying shed wake effects, whereas the present work addresses

primarily trailed wake effects. This distinction is not completely rigorous because

there may be overlaps both in methodology and in focus, but it can be conceptually

useful.

There are also studies that have recently identified inflow dynamic models of

the full rotor wake. Gennaretti et al. [74] used frequency domain system identifica-

tion to identify the inflow dynamics of a single main rotor helicopter. The procedure

was performed on a high fidelity Boundary Element Method (BEM) tool which solves

the solution of the boundary integral equation formulation for the velocity poten-

tial field around rotors in arbitrary motion. Frequency responses were identified

frequency by frequency using sinusoidal inputs to the aerodynamic solver. State-

space models for the inflow were obtained through a rational-matrix approximation

algorithm. The first set of state-space matrices were allowed to take on whatever

form was required to best approximate the inflow responses, as opposed to fixing

the states to known quantities and following the form established by Eq.(1.10).
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The second set of state-space models constrained the form to the Pitt-Peters form.

Refs. 75, 76 extends the methodology to higher harmonics of inflow, and presents

both hover and forward flight results for a single main rotor.

Gennaretti et al. [77, 78] expanded the analysis to coaxial rotorcraft inflow

dynamics. The procedure was essentially the same. Two different models were

created. The λ − q model created high order models relating the inflow dynamics

to the hub, controls and flap perturbations. The λ − f model was also higher

order, relating the inflow dynamics to the aerodynamic loading on the rotors. The

λ− f model was not unique as it was dependent on the type of perturbation of the

helicopter that was used to create the aerodynamic loading (i.e. a perturbation in

controls, blade flap, or hub velocities)

He et al. [79] presented a similar identification from a VVPM model for both

single main rotor and coaxial rotor. The rotor was subjected to continuous frequency

sweep as opposed to harmonic oscillations at individual frequencies. Instead of

perturbing the controls of the rotor, the blade circulation was directly prescribed

therefore allowing sweeps in only one of the aerodynamic load terms at a time.

The model that was found was in Peters-He form, but only for the first 3 states.

The single main rotor results were compared to the Peters-He model coefficients

to validate the methodology. The coaxial rotor was modeled by calculating inflow

expansion coefficients on the other rotor, along with proper time delays, which

affected the total inflow on each rotor. Results showed that the identified state-

space models could capture the results of the full VVPM model well in the desired

frequency range.
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Keller et al. [80] used system identification on the CHARM free wake model to

identify dynamic inflow for both single main rotors and coaxial rotors. In this study,

the frequency sweep was also directly applied to the blade circulation function. The

identified responses for the single main rotor were fit with a model in Pitt-Peters

form. Additional models were created with an augmented number of states to

capture the wake distortion effects caused by perturbations of the rotor tip path

plane [81, 82]. The method was then utilized on a coaxial rotor to capture a model

of just the vertical axis (λ0 response to CT on both rotors) interference response.

For both the single main rotor and the coaxial rotor, they showed that the identified

model could capture key inflow dynamics. The augmented model containing more

states and wake distortion effects were able to better capture the responses than the

first-order Pitt-Peters like models.

1.2.5 Flight Dynamics and Control of Coaxial Rotorcraft

Studies into coaxial flight dynamics and control roughly fall into two categories

in terms of the models used for flight dynamic analysis. The first category either

uses the real aircraft in flight test to optimize the control parameters for better

handling qualities, or identifies state-space models from test flight data using time

domain or frequency domain system identification and uses those model to optimize

the control system. The second category instead uses analytically derived models.

Due to a lack of state-space inflow models, these either do not model inflow dynamics
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and instead use either steady state or quasi-steady assumptions for the inflow, or

ignores inflow altogether.

Sweet [11] performed an analysis of the stability of the de Lackner HZ-1 Aero-

cycle, which was a coaxial rotor that a pilot would stand on and lean in a direction

to produce control moments. Pitching moment and static stability derivatives with

respect to angle of attack, velocity, and tipspeed were produced at different advance

ratios using wind tunnel measurements. The stability derivatives were compared

against analytical models which assume steady state longitudinal inflow. It was

concluded that the available control power of the pilot would only allow the aircraft

to reach 17 knots because of the stabilizing pitch moment in forward flight.

Ruddell [83] published a report on the Sikorsky XH-59 ABC Helicopter which

included an investigation into the stability and control of the helicopter. The sta-

bility augmentation system (SAS) for the aircraft was tuned during flight test and

the resulting aircraft was given Cooper-Harper ratings for handling qualities. The

poles of the aircraft were determined, including the hover dynamic stability and

the Dutch-roll mode. These results were not compared with any analytical results

however.

Bourtsev et al. [84–86] discussed the flight dynamics and maneuverability of

Kamov coaxial helicopters. They described the equations of motion and the method-

ology to identify parameters from flight data. Various maneuverability metrics were

explored and time histories for maneuvers were compared with calculated quanti-

ties. It was concluded that the helicopter (particularly the Ka-50) could maneuver

within operational limits and within special aerobatic limitations.

36



Ferguson and Thomson [87] completed a study of compound rotorcraft includ-

ing coaxial rotorcraft with pusher propellers. The author noted that, as of then,

there were no coaxial dynamic inflow models and elected to use Peters-He isolated

rotor models. This work explored the roll, pitch, Dutch roll, and phugoid modes

of the helicopter configurations. Wu et al. [88] analyzed a mid-scale UAV (rotor

diameter of 3 meters) for stability and control. A inflow model is used which is an

extension of momentum theory capturing interference between the rotors by using

downwash interference terms. The study calculated perturbation models through

linearized analysis and investigated the aircraft stability derivatives. Eigenvalue

analysis was performed to explore the aircraft poles, and maneuvers were tested on

a test platform to identify and confirm some parameters from flight test.

The dynamics and controllability of the Sikorsky X2 Technology Demonstra-

tor was explored in depth by Fegely et al. [38]. This work presents a validation

of two different coaxial compound helicopter flight dynamics models by correlation

with the Sikorsky X2 flight test data. This study is perhaps the only study that

uses inflow models that have dynamic interferences. The first flight dynamics model

uses the analytical models from Refs. 30, 33. The flight dynamics model used the

previously described “equivalent climb” dynamic inflow model. Both models showed

good agreement with flight data for steady-state, as well as for dynamic frequency

responses. The analytical models of the coupled rotor and fuselage were then modi-

fied by frequency domain identifications from flight data, thereby increasing fidelity.

The aircraft responses were then explored and the broken-loop and closed-loop be-

havior of the Sikorsky X2 with its controller were analyzed, which matched well
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with flight data. There is likely more work done in respect to the dynamics and

control of the Sikorsky X2, the S-97 Raider [6], and the SB>1 Defiant, but it is not

available in open literature.

Very recently, Chang et al. [89] presented a fairly extensive handling qualities

evaluation of the AVX Joint-Multi-Role Coaxial Compound Helicopter. A real-time

full flight simulation model was developed in FLIGHTLAB. The rotor wake was

modeled using the Peters-He’s finite state dynamic wake model augmented with the

viscous Vortex Particle Method. Mutual aerodynamic interference modeling of the

coaxial rotor was calibrated with the Viscous Vortex Particle Method. It is not clear

whether the mutual interference terms are dynamic in behavior or whether they are

static/quasi-steady. The model was exercised for various piloted simulation tests

on different mission task elements which were given handling quality ratings based

on the Cooper-Harper scale, as prescribed by ADS-33E [90]. The model was also

assessed by calculating various handling qualities quantities such as bandwidths,

phase delays, natural frequencies and other quantities prescribed in ADS-33E.

Lastly there are a large number of studies into coaxial flight dynamics and con-

trol are for small UAV models [91–94]. Though quite different in scale from full-size

coaxial rotorcraft, the studies still typically try to account for the effects of rotor

inflow mutual interference through modeling or through direct identification. How-

ever dynamic interference between the rotors was not considered; the interference

was considered quasi-steady at best.

Common among these flight dynamics and control studies for coaxial rotor-

craft, is that the low order analytical flight dynamics models necessary for the com-
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putation of handling qualities assessments and the design of flight control systems

are not yet available. In particular, they are missing low order, computationally

efficient models of the rotor wake dynamics in ODE form required for linearized

analysis. These studies instead resort to simplified assumptions and modifications

of single main rotor dynamic inflow theory or they identify the aircraft dynamics

from flight test data so that the inflow effects are already contained within the re-

sponses. The dynamics of a coaxial wake are coupled between the rotors and are

further complicated by intersections of vortices with other vortices and also with

the blades of the other rotor. The inflow dynamics have profound effects on the

handling of the rotorcraft and must be accurately modeled. There are simulations

that capture these effects but they are higher order partial differential equations

that must be marched in time and are slow to compute. Most importantly, they are

not in ODE form, and therefore not suitable for linearized analysis. This work will

delve into the methodology to transform these higher order methods into low order

models suitable for flight mechanics analysis.

1.2.6 Publications from Present Research

Portions of the research described in this dissertation have already appeared

in the literature. They are briefly included in this review to highlight their key

contributions to what has been a rapidly expanding field of research.

The first results have been presented in Ref. [95], which focused on the extrac-

tion of a state-space inflow dynamic model for an isolated single main rotor, using
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frequency domain system identification applied to the results of a free wake analysis.

Reference [95] was the result of collaborative work, which included a second method-

ology, primarily developed by Rand and Khromov. Whereas the present research is

based on input-output relations obtained simultaneously over an entire range of fre-

quencies of interest, the second methodology was based on a frequency-by-frequency

fit of a semi-analytical solution, followed by an averaging of the coefficients of the

state-space model over the range of frequencies of interest. Reference [95] was the

first example in the literature of the extraction of a model of rotor wake dynamics

in state-space, ODE form, from refined aerodynamic models not in ODE form.

Reference [96] extended the methodology to coaxial rotor configurations in

hover. Additionally, the coaxial ODE wake model was coupled with a full aircraft

simulation model, and full-aircraft results were presented for the hover response to

pilot inputs both in the time and in the frequency domains. All of these were the

first results of their kind in the literature.

Finally, Ref. [97] extended the methodology to forward flight, showed results

for a coaxial-pusher rotorcraft with a model-following flight control system, and

assessed the consequences of using the simplified inflow model of Ref. [38] on the

controller performance. These were the first closed loop results discussed in the

literature for a coaxial rotorcraft where the inflow model is identified from a higher

fidelity simulation and properly captures aerodynamic mutual interference.
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1.3 Objectives of Dissertation

The primary motivation for the current research is the lack of fundamental

understanding of the flight dynamics and control behavior of coaxial rotorcraft con-

figurations. In particular, the aerodynamic interactions between rotors have been

shown to make it difficult to model the handling qualities characteristics in certain

flight conditions. This difficulty arises from the fact that simple momentum the-

ory models do not accurately predict the correct dynamic behavior of the wake;

yet these simple theories, in ODE form, are the only theories that can be used for

classical control theory analysis. Furthermore, computational efficiency is required

for real-time piloted simulation and certain model-following controller architectures.

With this in mind, this dissertation has the following objectives:

1. To develop a methodology to extract simple, accurate, and computationally

efficient aerodynamic models in state-space, ODE form, from any detailed

aerodynamic model not in state-space form, such as CFD-based models, or

free vortex wake-based rotor inflow models. The methodology is based on

frequency domain systems identification, is very general, and has wide appli-

cability.

2. To demonstrate this methodology by applying it to the extraction of a state-

space model of wake dynamics for a coaxial rotor configuration, starting from

a time-accurate, free vortex wake model, formulated as a set of PDEs. Single

main rotor configurations will be considered first for validation purposes, as
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state-space models are already available for this simpler configuration. Coaxial

rotors, for which such models do not exist, will be considered next.

3. To study the fundamental flight dynamic behavior of a coaxial compound

rotorcraft configuration with a pusher propeller, by including the state-space

inflow model into a full nonlinear flight dynamic simulation, and analyzing

trim, poles, and time- and frequency-domain results.

4. To study the effects of the sophistication of rotor inflow modeling on the design

and performance of flight control systems, by designing an optimized model-

following flight control system for the coaxial-pusher configuration using two

inflow models of different complexity, and comparing open- and closed-loop

performance of the aircraft.

1.4 Outline of Thesis

Chap. 2 describes the mathematical model used for helicopter simulations.

This model consists of the rotorcraft flight dynamics code, HeliUM, as well as the

free-vortex wake method code, MFW. Also described are the mathematical forms

of inflow models extracted in this dissertation.

In Chap. 3, the basic methodology of frequency domain system identification

is reviewed. This methodology is general and applies to more than just the given

coaxial inflow case. It is traditionally used to develop dynamic models of aircraft

from flight test data or wind tunnel data. In this case we use it in a novel way

to identify linear ODE models from outputs of simulations that are not in ODE
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form. This procedure starts with frequency sweep perturbations of the inputs of

the simulation. These time histories are converted into frequency responses in the

frequency domain. These frequency responses are fit with appropriate optimized

state-space models that capture the dynamics of the simulation. The models are

then exercised in the time domain with various simulated inputs to show that the

models correctly predict an approximation of the output behavior.

In Chap. 4, the system identification methodology is applied to extracting

state-space inflow models of a UH-60 like helicopter from a free wake simulation

and compared against classical state-space methods for predicting rotor inflow. The

procedure is repeated for off-rotor locations such as the tail or a wing under the

hub, and is then used to identify rotor inflow models in forward flight. Lastly, an

extension of the procedure is used to identify the effects of tip-path path plane

motion on the inflow dynamics.

In Chap. 5, the extension of this methodology to the identification of a state-

space inflow model of a coaxial rotorcraft configuration in hover is discussed. This

includes extending the state-space model of inflow to include both rotors, as well as

couplings between the two rotors. The model is tested in the time domain to verify

its accuracy.

In Chap. 6, a higher order form for coaxial rotor inflow is proposed which

better captures the behavior of the inflow predicted by the free wake model than

the first order state-space model form Chap. 5. This second order methodology is

first used to identify a better state-space model for hover and is then used to capture

the complex inflow behavior of a coaxial rotorcraft with propeller cruising in forward
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flight at a speed of 200 knots and with a slightly tilted back rotor angle of attack

of about two degrees. This methodology accurately captures the dynamics of the

inflow in both cases, and is tested in the time domain to ensure correct predictions.

In Chap. 7, the identified state-space inflow models of the previous chapters are

inserted back into the full flight dynamics simulation, and compared with classical

theories and flight test data (for single main rotor). Full aircraft models are iden-

tified through linearized analysis, and key aircraft responses are compared. Lastly,

an explicit model-following controller is designed for full aircraft models using a

momentum-based theory inflow model and the higher order inflow model identified

from MFW in hover. Differences in the controller design and resulting handling qual-

ities of the aircraft under the controllers highlight the differences that determining

the correct model can have in flight control design.

Chapter 8 provides a summary and the conclusions to this thesis, as well as

recommendations for future work.
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Chapter 2: Rotorcraft Mathematical Modeling

2.1 Overview

This chapter first presents the mathematical model used to simulate rotorcraft

flight dynamics. The first section summarizes all the main features of the aircraft

simulation model except for the rotor wake. The second section focuses on the rotor

wake modeling and describes five models: (i) The Maryland free wake model used

to extract the state-space model; (ii) The Pitt-Peters and Peters-He dynamic inflow

models, used for single main rotor validations; and (iii) three simplified coaxial rotor

inflow theories, used in the subsequent chapters of this dissertation.

2.2 Flight Dynamic Simulation Model

To analyze the effect of inflow dynamics on the full aircraft response, the full

nonlinear flight dynamics simulation, HeliUM, was used. The mathematical model

in HeliUM has been described in detail in Ref. 98, and only its main features will

be summarized here.
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The computational kernel of HeliUM consists of a system of nonlinear ODEs

in the implicit form:

f(ẋ,x,u, t) = 0 (2.1)

where x is a vector of states, u is a vector of controls, and t is time. This ODE

kernel should ideally comprise the entire mathematical model of the rotorcraft. The

current state of the art is such that mathematical models not in state-space form

are needed for adequate accuracy in several type of problems. One such example

is free wake models of rotor inflow. Models not in state-space form cannot be

linearized numerically, and also need to be properly coupled with state-space mod-

els in time marching simulations. The coupling of the free wake to the rest of the

ODE kernel is schematically shown in Fig 2.1. The wake is placed in the portion

marked “NonODE blocks”. This computational structure is conceptually valid for

all CFD-based models.

The ODE kernel is composed of the following basic elements: (i) Euler rigid-

body equations of motion for the entire aircraft; (ii) A set of rotor equations of

motion, for a user-defined number of rotors of arbitrary location and orientation

on the aircraft, and with an arbitrary number of blades; (iii) and inflow dynamics

equations if a state-space model of inflow is used.

The analysis is based on a “quasi-multibody” formulation, with fully numerical

kinematics, flexible bodies arranged with an open-chain, tree-like topology, floating

and co-rotational reference frames, but no algebraic equations of constraints. All

flexible portions of the aircraft are modeled as beams. The beam model is based
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The model has been further extended by Sridha-
ran (Ref. 21) with the addition of a finite element-based
cable model and the 6-DOF rigid body dynamics of an
underwater vehicle, for a study of the flight dynamics and
control of a helicopter towing a submerged body. A fur-
ther extension to coaxial compound configurations is in
progress (Ref. 22).

The simulation model has also been used in several
optimization studies, including trajectory optimization,
brownout mitigation, and multiobjective performance op-
timization. In these cases, the simulation is placed into a
loop driven by the optimization algorithm, and it provides
the values of objective function(s) and constraints to the
optimizer.

MATHEMATICAL MODEL

General architecture
The computational kernel of HeliUM 2 consists of a sys-
tem of nonlinear ODEs in the implicit form:

f(x, ẋ,u; t) = 0 (2)

where x is a vector of states, u is a vector of controls,
and t is time. This ODE kernel should ideally comprise
the entire mathematical model of the rotorcraft. Unfor-
tunately, the current state of the art is such that math-
ematical models not in state-space form are needed for
adequate accuracy in several type of problems. One such
example is free wake models of rotor inflow. Models not
in state-space form cannot be linearized numerically, and
also need to be properly coupled with state-space mod-
els in time marching simulations. The coupling of the
free wake to the rest of the ODE kernel is schematically
shown in Fig. 1. The wake is placed in the portion marked
“NonODE blocks”. This computational structure is con-
ceptually valid for all CFD-based models.

The system of Eq. (2) is solved using a DAE
solver (Ref. 23), which is placed inside a loop that iterates
over all the time subintervals into which the simulation is
divided. A typical subinterval for flight dynamics prob-
lems corresponds to a rotor blade azimuth ∆ψ = 10◦. The
value of ∆ψ is a user-defined input. The DAE solver has
variable step and variable order, and the actual integration
step size is independent of ∆ψ (Ref. 23).

The ODE kernel is composed of the following basic
elements: (i) Euler rigid-body equations of motion for
the entire aircraft; (ii) A set of rotor equations of motion,
for a user-defined number of rotors of arbitrary location
and orientation on the aircraft, and with an arbitrary num-
ber of blades. The rotor equations comprise: a structural

ODE kernel

NonODE blocks

ODE/DAE solver

Increase final time by Δt

Start

Stop

Maneuver
complete?

Yes

No

Fig. 1. Flow chart for time marching maneuver simu-
lations.

model based on moderate deflection, coupled flap-lag-
torsion beam theory, a finite element discretization, and a
modal coordinate transformation, an inertia model based
on numerically calculated deformations, velocities, and
accelerations, and valid for arbitrary linear and angular
motions, and an aerodynamic, blade element type model
based on quasi-steady aerodynamics, and lookup tables
of aerodynamic coefficients; (iii) inflow dynamics equa-
tions; (iv) a set of equations of motion for an arbitrary
number of flexible appendages, modeled as beams, of ar-
bitrary location and orientation on the aircraft (rotors can
be placed on these appendages, e.g., proprotors at the end
of flexible wings in tilt-rotor configurations); (v) Ballin’s
dynamic model of one or more engines (Ref. 24), plus
transmission dynamics modeled as in Howlett (Ref. 1);
(vi) physics-based model of electro-hydraulic swashplate
actuators (Ref. 25); (vii) a finite element-based model
of a flexible cable for studies of dynamics with slung
and towed loads (Ref. 21); and a second set of Euler
rigid body equations of motion, to model a slung load in
air (Ref. 26) or a towed load immersed in water (Ref. 21).

An unsteady aerodynamic airfoil model for blade air-
foils (Ref. 27) and trailing edge flaps (Ref. 14) was in-
cluded in HeliUM (Ref. 28), but it was removed as part of
the modifications that led to HeliUM 2, and has not been
re-introduced yet. Additional details on some portions of
the model are provided in the sections that follow.

3

Figure 2.1: Flow chart for time marching maneuver simulations [98]

on that of Rosen and Friedmann [99], which is comparable to the classical model

of Hodges and Dowell [100]. The actual model used is a modification that does not

require the use of ordering schemes [101], and remains valid for elastic deformations

beyond what are generally denoted as “moderately large”. the three components of

beam theory, namely, the force-stress relations, the stress-strain relations, and the

strain displacement relations are implemented individually and combined numeri-

cally at solution time (the complete expressions can be found in Ref. 101)
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The rotor equations compute coupled flap-lag-torsion beam theory, using a

finite element discretization, and a modal coordinate transformations, which trans-

form the governing partial differential equations of the blades into ordinary differen-

tial equations. The generalized displacement and velocity coordinates of the blade

modes are then included in the state vector and can be solved for. Blade inertial

forces are computed using the beam theory described above. Blade aerodynamics

are caluclated with blade element theory, and are quasi-steady, with look-up tables

for lift, drag and pitching moment coefficients as a function of Mach number and

incidence angle, and radial flow drag corrections [102]. The inflow model is used

to calculate the induced velocity on the airfoil, which modifies the perpendicular

component of airfoil velocity UP [12], and also the tangential component UT when

the inflow model provides an induced velocity component in that direction (such as

free-wake models).

The non-linear equations of motion of the fuselage are formulated in the body

fixed coordinate system with the assumption that the aircraft body is rigid. Aero-

dynamic look-up tables are available to provide aerodynamic forces and moments

produced by the user-defined fuselage and/or empennages (depends on configura-

tion). Additional rotors, such as tail rotors or pusher-propellers, can be modeled

as Bailey momentum theory type rotors [131]. The equations of motion for the

body include the force and moment equilibrium equations as well as the kinematic

relationship between the aircraft body rates and the Euler rates.
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2.2.1 Numerical Solution Methods

Three types of solutions to the equations of motion are available in the flight

dynamics simulation, which correspond directly to the three types of analysis defined

in Chap. 1. They are: (i) trim (steady-state analysis), (ii) time marching response

(transient analysis), and (iii) full aircraft perturbation models (linearized analysis).

The calculation of a steady state equilibrium condition, or trim, is formulated as a

system of nonlinear algebraic equations, and does not require that the mathematical

model be in ODE form. In particular, free wake or CFD-type calculation of rotor

inflow can be used directly. All trim calculations for the fully coupled aircraft results

were performed using the free wake in its original, finite difference-based formulation.

HeliUM provides the MFW with the blade motion, including flapping and pitching,

and the MFW returns predictions of inflow at the Gaussian quadrature points on

the blade. The time marching response to pilot inputs is formulated as the solution

of a system of ODEs, but portions of the models not in ODE form, such as MFW,

can be used (see Ref. 98 for details concerning the coupling of these portions). For

trim and time marching, the aircraft body equations of motion can be removed to

create a “wind-tunnel” condition in which the shaft is held in a fixed position. In

Chapters 3 through 6 , for the identification of perturbation inflow models, this

wind-tunnel condition will be used. This must be done because the identification

procedure requires a time-marching solution in which the helicopter states do not

diverge. Helicopters are, however, almost always unstable without feedback from

either a pilot or control system. Using the wind-tunnel mode ensures that the time-
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marching solutions stay within the vicinity of trim. Only in chapter 7 will the Euler

rigid-body equations of motion for the entire aircraft be included, with more details

given accordingly. The third type of solution, i.e., linearized analysis, performs the

extraction of a linearized model in state-space form, as detailed in Section 1.1.3,

so long as the equations are described in ordinary differential form (i.e. not with

MFW).

2.2.2 Rotor Inflow Modeling

Several options are available in HeliUM for the modeling of inflow across the

rotor disk. The primary option for single main rotor helicopter is the Peters-He

finite state wake model [26]. This implementation allows the user to set the number

of inflow modes and harmonics that will be used. In its 3 state form, the equations

simplify to the Pitt-Peters model [25]. For a generic rotor configuration (single

main rotor, coaxial rotor, tilt rotor, tandem, etc.) the Maryland Free Wake (MFW)

model is available. Specifically for coaxial configurations, there are three momentum

theory based dynamic models used at various times in this dissertation. Lastly, the

identified state-space inflow model that this dissertation focuses on defining can be

utilized.

2.2.2.1 Maryland Free-Vortex Wake Model

The Maryland Freewake model is a time-accurate free-vortex wake method

(FVM) model [103] based on the equation of vorticity transport [104]. Each blade
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is modeled as a distribution of vortex singularities (bound vortices) in the flow field

using the Weissinger-L lifting surface model [105]. The wake from each rotor blade

consists of a vortex sheet and a concentrated tip vortex. In the present work, the near

wake is assumed to be rigid and fixed to the blade. The near wake is truncated at

30◦ behind each blade, and is coupled by means of a circulation-preserving boundary

condition to the far wake consisting of a single rolled-up tip vortices trailing from

each blade. These trailed tip vortices are modeled as a set of connected discretized

vortex filaments, with positions defined by Lagrangian markers that are connected

by straight-line segments. These connected filaments approximate the otherwise

curved vortex filaments; see Fig. 2.2. These markers are free to convect to force-

free locations under the influence of the local velocity field. The motion of each

Lagrangian marker is defined by the governing equation of motion for a fluid particle:

dr

dt
= V (r) (2.2)

The velocity field V is the combination of the freestream velocity and the

velocity induced by sources of vorticity, i.e. the bound vortex on each blade, the

near wake of each blade, and the far wake of each blade. The induced velocity at any

location due to one vortex element is computed by application of the Biot-Savart

law which can be written as [12]:

Vi =
Γ

4π

∫

`

d`× rv
|r̃|3

(2.3)
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Figure 2.2: Schematic showing the Lagrangian markers used to represent
the rotor wake [106].

where Γ is the circulation and r̃ is the distance of the point from the vortex line

element `. The total induced velocity at a location is therefore calculated by numer-

ically integrating the induced velocity contribution from each vortex element over

the entire flow field.

The motion of the trailed tip vortex filaments is obtained by solving the

governing equation (Eq.(2.2)) using a time-accurate, two-step backward, predictor-

corrector scheme (PC2B) that was developed by Bhagwat and Leishman [65]. This

scheme results in a prediction of the induced velocity field that is second-order ac-

curate [106]. As such, the model is not in state-space form and a linearized dynamic

wake model cannot be extracted numerically by perturbing states and controls.

Therefore, while trim calculations and time marching simulations can be performed

with the MFW, linearized analyses cannot.
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The MFW results in this work were obtained using tip trailed vortex filaments

discretized with straight segments of length ∆ψ = 10◦, with the length of each fil-

ament equal to six rotor revolutions or 2160◦. Shed vorticity was neglected. Blade

dynamics do affect the MFW model, primarily by affecting the location first La-

grangian Marker of the tip vortex. For this purpose, the tip location of the flexible

blades are inserted from HeliUM. The flap rates also affect the bound circulation

strength and therefore the near wake strength.

There is no requirement that the point used for calculation of induced velocity

be at any particular location, and so this equation can be used to compute the

induced velocity at any point on and off the rotor.

2.2.2.2 Isolated Rotor Model

The simplest model is the “Isolated Rotor” model. In this model, each rotor

is modeled as an isolated single main rotor using Pitt-Peters inflow models. The

rotors operate without any input or change from the other rotor. If the rotors were

sufficiently spaced (as in many rotor radii away) this model would likely be accurate,

as influence from a vortex decays as a function of the distance cubed, making far off

vortices have very little effect. This model is often used (as in Ref. 38) in high speed

forward flight, and likewise will only be used in forward flight for this dissertation.

The assumption here is that the wake is swept backwards away from the rotor quickly

at high speeds and therefore has little influence on the other rotor, or even on itself.
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The inflow dynamics are instead dominated by the rotor’s few vortex segments that

are still in the vicinity of the rotor disk.

2.2.2.3 Climbing Rotor Model

The “Climbing Lower Rotor” theory is based on Ref. 38, and will be used

for comparisons to MFW responses in hover in Chap. 6. In hover, the assumption

that the wake is swept away from the rotors is not valid, therefore some form of

interference must be utilized. The Climbing Lower Rotor theory first models each

rotor as an isolated single main rotor using Pitt-Peters model. It then places only

the lower rotor in a climb equal to the upper rotor’s trimmed average inflow.

In the special case of hover, with pure axial climb velocity µc, the [L]−1 matrix

from the Pitt-Peters model (Eq.(1.10)) can be written as:

[L]−1 =




2λm − 2µc 0 0

0 λm − µc/2 0

0 0 λm − µc/2




(2.4)

where λm is the solution to the momentum theory equation:

λm(λm − µc) = CT/2 (2.5)

Therefore when the lower rotor is placed in a climb, the [L]−1 matrix is changed

according to Eq.(2.4) and Eq.(2.5). No other term in the Pitt-Peters model changes

and so it is solved in the typical fashion. However, for aerodynamic loads calcula-

tions, the total downwash at a given radial and azimuthal station on the lower rotor
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is now:

ṽLi (r̃, ψ) = µLc + λ0 + λ1sr̃ sinψ + λ1cr̃ cosψ (2.6)

Unlike most of the static models, this model assumes that the upper rotor’s

vena contracta has not yet contracted because the rotors are so closely spaced.

Therefore the climb acts upon the whole lower rotor. This model has interference

from the upper to lower rotor in a static sense, but not in a dynamic sense. The

climb velocity of the lower rotor does not change with perturbations to the upper

rotor inflow. It should be noted that this is not the intended usage for the Peters-He

model, but rather an ad-hoc assumption that has been made for comparison. This

work does not suggest that this model is in any way valid, but rather uses this model

to make a point; that simplified assumptions will not necessarily work for coaxials.

2.2.2.4 Dynamic Climb Model

The third model used in this dissertation, named the “Dynamic Climb” model,

more accurately follows Ref. 38 and uses the reference’s dynamic interference terms

for each rotor. A schematic of this inflow model is shown in Fig. 2.3.

The rotor disks of the coaxial are shown in the figure as the two horizontal black

lines connected by the thicker black vertical line which represents the shaft. This

model assumes that the vena contracta does not contract by the time it impinges

the second rotor. It does, of course, contract by a small amount, but due to the

close rotor spacing this contraction is considered negligible.
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Figure 2.3: Schematic showing the Dynamic Climb coaxial rotor wake.

This model implements each rotor separately as a 3 state Pitt-Peters inflow

model, as shown in Eq.(1.10. Furthermore, this model uses standard analytical

values (of a single main rotor) for wake distortion and curvature to modify the

inflow to account for tip-path plane perturbations (this will be explained further in

Sec. 2.2.2.5). The Dynamic Climb model assumes that each rotor is in a climb equal

to a percentage of the other rotor’s average induced inflow. This means that unlike

the climbing lower rotor theory, both rotors affect each other in this model. The

climb velocities for the upper rotor and lower rotor are given as:

µUc = 0.86 ∗ λL0

µLc = 1.13 ∗ λU0 (2.7)
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These climb velocities affect the [L] matrix in the Pitt-Peters model for each

rotor, according to Eqs.(2.4) and (2.5). The Pitt-Peters models for both rotors

then calculate the self induced velocity for each rotor separately. Finally, the total

induced inflow on each rotor be the Peters-He finite state wake inflow plus the climb

velocity produced by the other rotor. Therefore the downwash equations (Eq.(1.9))

for the upper and lower rotors at a given radial and azimuthal station are:

ṽUi (r̃, ψ) = µUc + λU0 + λU1sr̃ sinψ + λU1cr̃ cosψ (2.8)

ṽLi (r̃, ψ) = µLc + λL0 + λL1sr̃ sinψ + λL1cr̃ cosψ (2.9)

This model will be called the “Dynamic Climb” model in this dissertation.

Whereas the climbing lower rotor theory used the trimmed average inflow to define

the climb, this theory allows the climb velocity to change in time. As each rotors av-

erage inflow changes in time, the climb velocities associated with each rotor changes

instantaneously, according to Eq.(2.7). Therefore the [L] matrix of a rotor, and

consequently the derivative the rotors average inflow, is dependent on the average

inflow of the other rotor. Therefore this model couples the rotors dynamically and

changes the poles of the inflow system. The dynamic coupling only extends, how-

ever, to the average inflow. Changes in inflow harmonics on one rotor do not cause

changes in inflow on the other rotor.

This method is easily implemented into existing flight dynamic simulations

for single main rotors because it only uses the Pitt-Peters dynamic inflow equations

applied to a climb (or may use the equivalent 3 state Peters-He finite state model
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if necessary, which are typically already available in the simulation. Ref. 38 shows

that this approach has been shown to work well for steady analysis, being capable

of matching flight test results of measured hub moments and trim rotor controls,

across a full range of flight speeds (0-240 kts, but at each velocity, there are new

percentages in Eq.(2.7)). Ref. 38 also demonstrates the accuracy of this model in

a dynamic sense. They show a comparison between frequency responses of flight

data and the model. The responses shown are roll and pitch rate of the aircraft to

pilot cyclic stick, at hover, 180 kts and 200 kts. Generally the frequency responses

captured the flight data well, however there were several differences which required

updates of the physical parameters of the model to better match the flight data.

2.2.2.5 Identified State-space Models

This section presents the structure of the inflow mode to be used in the iden-

tification study. The single rotor case is discussed first, followed by the extension to

coaxial rotors.

Single Main Rotor Model Structure

Following the original work of Pitt and Peters [25], the inflow is written as

ṽi(r̃, ψ) = ṽtrim(r̃, ψ) + λ0 + λ1sr̃ sinψ + λ1cr̃ cosψ (2.10)

where ṽtrim(r̃, ψ) is the induced velocity of the trim state. Note that within this

work, the above inflow distribution is defined as the one that occurs when a blade is

located at the specific location over the disc. The analysis does not determine the
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inflow at disc locations where a blade is not present. Also the inflow coefficients λ

in Eq.(2.10) are considered to be perturbations from trim. Therefore each should

be considered to actually be ∆λ, with the ∆ dropped for convenience.

The induced velocity perturbation states λ0, λ1s and λ1c are related to the

perturbations of the rotor thrust, and roll and pitch moments (∆CT , ∆CL and

∆CM) by an ODE in the same form as the Pitt-Peters model (Eq.(1.10). For clarity,

the matrix [L̄] will be defined as equivalent to [L]−1. For hover, the matrices in the

Pitt-Peters model take on a diagonal form:



M11 0 0

0 M22 0

0 0 M33








∗
λ0

∗
λ1s

∗
λ1c





+




L̄11 0 0

0 L̄22 0

0 0 L̄33








λ0

λ1s

λ1c





=





∆CT

∆CL

∆CM





(2.11)

In forward flight the longitudinal inflow λ1c and average inflow λ0 coefficients are

coupled in the Pitt-Peters model (lateral inflow λ1s remains uncoupled). Therefore

the matrices take on a different form, with two extra terms added to the [L̄] matrix:



M11 0 0

0 M22 0

0 0 M33








∗
λ0

∗
λ1s

∗
λ1c





+




L̄11 0 L̄13

0 L̄22 0

L̄31 0 L̄33








λ0

λ1s

λ1c





=





∆CT

∆CL

∆CM





(2.12)

Higher order dynamics that are not capable of being captured commonly occur

in the free wake data. In particular, there is often a higher phase roll-off than

can not be captured by the above systems of equations. These phase roll-offs are

well captured with the addition of a time delay between the forcing and the inflow

response. Therefore, for some identifications in this dissertation, the right hand side

of the above equations is modified to delay the forcing:
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· · · =





∆CT

∆CL

∆CM







t−




τ11 0 τ13
∗

0 τ22 0

τ31
∗ 0 τ33







(2.13)

∗ Forward flight only

The time delay matrix τ is written this way for conciseness, however its meaning

requires further clarification. For example, consider Eq.(2.13) with the modification

that all of the elements in [M ],[L̄], and [τ ] are non-zero:

[M ]





∗
λ0

∗
λ1s

∗
λ1c





+
[
L̄
]





λ0

λ1s

λ1c





=





∆CT

∆CL

∆CM







t−




τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33







(2.14)

The time delay matrix always has the dimensions: number of states (inflow coeffi-

cients) by number of inputs (aerodynamic forcing coefficients). If each column has

each of its parameters equivalent to each other, i.e., τ11 = τ21 = τ31, τ12 = τ22 = τ32,

and τ13 = τ23 = τ33, then a given input is always delayed by the same amount, and

the time delay can be written more simply as:

[M ]





∗
λ0

∗
λ1s

∗
λ1c





+
[
L̄
]





λ0

λ1s

λ1c





=





∆CT (t− τ11)

∆CL(t− τ22)

∆CM(t− τ33)





(2.15)

However if the column parameters are not equivalent, the time delay matrix form

actually describes that the forcing term should be delayed a different amount of

time depending on which inflow coefficient is being calculated. This means that the
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system of equations needs to be solved once fully for each inflow coefficient, using

only the time delays from the given row of the [τ ] matrix. For the example shown in

Eq.(2.14), the equations would need to be solved three times, for each of the three

states, i.e.,





for λ0 : [M ]





∗
λ0

∗
λ1s

∗
λ1c





+
[
L̄
]





λ0

λ1s

λ1c





=





∆CT (t− τ11)

∆CL(t− τ12)

∆CM(t− τ13)





for λ1s : [M ]





∗
λ0

∗
λ1s

∗
λ1c





+
[
L̄
]





λ0

λ1s

λ1c





=





∆CT (t− τ21)

∆CL(t− τ22)

∆CM(t− τ23)





for λ1c : [M ]





∗
λ0

∗
λ1s

∗
λ1c





+
[
L̄
]





λ0

λ1s

λ1c





=





∆CT (t− τ31)

∆CL(t− τ32)

∆CM(t− τ33)





(2.16)

The other inflow coefficients that are calculated, which are underlined in

Eq.(2.16), are incorrectly delayed and therefore are only used for the numerical

calculation of the ODE system.

The τ matrix is written in the form shown in Eq.(2.14) not only for conciseness

but also for the method in which it is more often utilized. ODEs with time delays

can not be directly solved by a generic ODE solver, and specifically require a Delay
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Differential Equation (DDE) solver. To avoid this complication, the state-space

equations need to be converted into a different form. Eq.(2.14) can be transformed

with the Laplace transform:

[
λ(s)

C(s)

]
=
[
[M ] s+

[
L̄
]]−1 ◦ exp∗ (− [τ ] s)︸ ︷︷ ︸

[τ(s)]

(2.17)

where exp∗ is element-by-element scalar exponential

The second half of Eq.(2.17) is the time delay transfer function matrix [τ(s)]. Padé

approximations are then used to convert the time delay transfer function matrix

[τ(s)] into the approximate time delay transfer function matrix [τ̂(s)] [107]. The .

Each element of the time delay transfer function matrix is written as:

τij(s) = e−τijs =
e−τijs/2

eτijs/2
≈ 1− τs/2 + τ 2s2/12 . . .

1 + τs/2 + τ 2s2/12 . . .
= τ̂ij(s) (2.18)

The Padé approximant is truncated to the first order term or the second order

term, depending on the length of the time delay. Larger time delays require the

second order term to ensure that the error in the approximation is small. The

approximate time delay transfer function matrix, [τ̂(s)], can now be used to modify

the state-space model written in transfer function form:

[
λ(s)

C(s)

]

TDA

=
λ(s)

C(s)
◦ [τ̂(s)] (2.19)

(where the “TDA” subscript indicates “Time Delays Absorbed”). The new

transfer function, with the time delays absorbed, can then be converted back to

state-space form through state-space minimal realization [108]. The new state-

space form will have added states that correspond to the poles and zeros of the
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time delays. The number of added states will often be quite large, but the systems

themselves are typically still computationally inexpensive.

As will be shown, the definition of the inflow is different from the classical

ones of the original work of Pitt and Peters [25], and they are explicit functions of

time while their definition does not contain any integrations over the disc.

The basic assumptions behind the above formulation are as follows: (i) the

above systems of equations are linear, and therefore, periodic excitation of the right

hand side forcing vector at a single frequency, ω, yields a response of λ0, λ1s, and

λ1c in the same frequency; (ii) the [3 × 3] matrices [M ] and
[
L̄
]

are constants and

not functions of ω.

Definition of the States

Because the dynamic inflow model is based on the assumption of a solid

disk [25,109], some care in the definition of the states is necessary when extracting

the model from a theory that considers a finite number of blades. The baseline def-

inition from Ref. 25 describes the inflow distribution over the rotor disk as uniform

with azimuthal variation:

λ(ψ, r̃) = λ0 + λ1sr̃ sinψ + λ1c r cosψ (2.20)

while the inflow coefficients are described as an integration over the rotor disk:

λ0 =
1

π

∫ ∫
λ dA (2.21)

which is generally decomposed into integrations over the azimuth angle ψ = Ωt and

the nondimensional spanwise coordinate r where dA = r̃ · dr̃ · dψ. When using an
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aerodynamic theory that models individual blades, this definition is not appropriate

for a state, because it requires not only information at the current time, but also

at all other times required to compute the azimuth integral: e.g., over the previous

rotor revolution. Therefore, the following definition is used in the present study:

λ0(t) =
1

Nb

Nb∑

n=1

∫ 1

0

λ(n, r̃) dr̃ (2.22)

Where λ(n, r̃) indicates the induced inflow on the n-th blade at the radial location

r̃ at the given point in time. With this definition, which simply reinterprets the

concept of Eq.(2.21) of an integral over one rotor revolution, λ0 can be rigorously

used as a state. The λ1c and λ1s harmonics are similarly defined.

The slightly different roles of time t and blade azimuth ψ also need to be kept

in mind. Consider for example the definition of λ1c (λc in [25]):

λ1c =
4

π

∫ ∫
λ r cosψ dA (2.23)

then transform the integral and indicate explicitly the dependency on time:

λ1c(t) =
4

π

∫ 2π

0

∫ 1

0

λ(t;ψ, r̃) r̃ cosψ r̃dr̃ dψ (2.24)

For a solution over a disk, r and ψ both play the role of spatial variables (the integral

could have just as well been decomposed according to dA = dx dy using Cartesian

coordinates), and t and ψ = Ωt are interchangeable. For a solution with individual

blades, ψ and t are not interchangeable. For example, the λ1c time response to

a given input depends on the initial location of the blades around the azimuth,

whereas, if the rotor is considered as a solid disk, it does not. Therefore, it may be
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conceptually useful to write the definition of λ1c as:

λ1c(t) =
6

Nb

Nb∑

n=1

∫ 1

0

λ(n, r̃)r̃ cosψn dr̃ (2.25)

where ψn is the azimuth angle of the n-th blade at time t. Similarly, the definition

of λ1s will be written as:

λ1s(t) =
6

Nb

Nb∑

n=1

∫ 1

0

λ(n, r̃)r̃ sinψn dr̃ (2.26)

Wake Curvature and Distortion for Single Main Rotors

The Pitt-Peters inflow model, in its basic form, Eq.(2.12), is not capable of

capturing the effects of wake distortion due to body angular rates and rotor flapping.

Asa a consequence, when used in a flight dynamic simulation, magnitude, and often

even sign, of the off-axis response to pilot inputs were often inconsistent with the

flight test data [110–112]. Keller et al. [81, 82] proposed that perturbations to the

tip path plane due to angular rates and blade flapping cause the wake to curve and

distort in shape. For example, Fig. 2.4, from Ref. 82, shows schematically how the

wake distorts in response to a pitch rate input. This effects the longitudinal inflow

(lateral inflow for roll rate). Also, in the theory, pitch rate q is considered equivalent

to negative longitudinal flap rate −
∗
β1c, and roll rate p is considered equivalent to

negative lateral flap rate −
∗
β1s, in the sense that they produce the same tip path

plane motion, and therefore the same wake distortion. This would be rigorously

true for a teetering rotor, and it is reasonably close to true for other rotor types as

long as the flap hinge offset (or equivalent hinge offset for hingeless rotors) is small.
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Fig. 4. Curved wake structure for mtor undergoing a steady pitch rate. 
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Fig. 3. Comparison behveeo approximate model, nonlinear model, 
and UH-60 fight test data for a longitudinal stick input in hover. 
(a) On-axis response (q/dlong); (b) Off-axis response (pl4.d. 

Fig. 5. Signal flow diagram of aerodynamic model bloek with 
extended momentum theory. (a) With inflow dynamics; (b) Quasi. 
steady inflow (r, = 0). 

Figure 2.4: Wake distortion in response to a pitch rate input (from Ref. 82).

A modification to the Pitt-Peters models for inflow was proposed in Ref. 81.

The equations were originally written as:

τiv̂
′
c + v̂c = −KLCM +KTµx +KR (∆q/Ω + a′1) (2.27)

τiv̂
′s+ v̂s = −KLCL +KTµy +KR (∆p/Ω + b′1)

where:

−KL =
−1

v̄0

= L22 = L33

τi = M22L22 = M33L33

a′1 = −
∗
β1c

b′1 = −
∗
β1s
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These equations can be rewritten as:

[M ] [L]





∗
λ0

∗
λ1s

∗
λ1c





+





λ0

λ1s

λ1c





= [L]





∆CT

∆CL

∆CM





+





0

KTµy +KR

{
∆p

Ω
−
∗
β1s

}

KTµx +KR

{
∆q

Ω
−
∗
β1c

}





(2.28)

or equivalently:

[M ]





∗
λ0

∗
λ1s

∗
λ1c





+ [L]−1





λ0

λ1s

λ1c





=





∆CT

∆CL

∆CM





+ [L]−1





0

KTµy +KR

{
∆p

Ω
−∆

∗
β1s

}

KTµx +KR

{
∆q

Ω
−∆

∗
β1c

}





(2.29)

The equations show that p, q,
∗
β1s and

∗
β1c act as additional inputs. Since there

are no changes to the [M ] and [L] matrices, there are no additional poles added to

the system. Roll, pitch, and flap rates can be described as producing an equivalent

aerodynamic moment to the rotor, which is given as the rate multiplied by the gain

shown above. Also note that the translational velocity components along the x and

y rotor axes have a similar effect on the inflow and are described by the KT terms.

This will not be further explored or identified in this dissertation, but the procedure

would be similar.

Reference 82 derived an analytical solution for the value of KR using potential

flow theory, which was found to be KR = 1.5. Experimentally, they identified (using

frequency domain system identification) KR from a hovering UH-60 helicopter to

be KR = 3.0. They also noted that Ref. 113 identified from flight test data a

differently formulated parameter that was equivalent to KR = 2.2. There clearly

is some variance in the value of KR, which might vary depending on the rotor.
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However, its ability to capture correctly the off-axis response makes it an important

parameter to include in the identification.

Six State Coaxial Rotor Inflow Model

For the coaxial rotor induced inflow, the model can be written as a linearized

extension of the Pitt-Peters model, i.e.,



M11 0 0 M14 0 0

0 M22 0 0 M25 0

0 0 M33 0 0 M36

M41 0 0 M44 0 0

0 M51 0 0 M55 0

0 0 M61 0 0 M66








∗
λU0

∗
λU1s

∗
λU1c

∗
λL0

∗
λL1s

∗
λL1c





+




L̄11 0 0 L̄14 0 0

0 L̄22 0 0 L̄25 0

0 0 L̄33 0 0 L̄36

L̄41 0 0 L̄44 0 0

0 L̄51 0 0 L̄55 0

0 0 L̄61 0 0 L̄66








λU0

λU1s

λU1c

λL0

λL1s

λL1c





· · · =





∆CU
T

∆CU
L

∆CU
M

∆CL
T

∆CL
L

∆CL
M








t−




τ11 0 0 τ14 0 0

0 τ22 0 0 τ25 0

0 0 τ33 0 0 τ36

τ41 0 0 τ44 0 0

0 τ51 0 0 τ55 0

0 0 τ61 0 0 τ66







(2.30)

λ and the aerodynamic loading vector CT now both have 6 coefficients, 3

per rotor. Upper and lower rotor coefficients are now labeled with a “U” and

“L” superscripts respectively. There are now twice as many swashplate controls,

i.e., θ =
[
θU0 θU1S θU1C θL0 θL1S θL1C

]ᵀ
. Although these controls are usually linked in

coaxial rotor helicopters, they will be treated as individual controls in this study.
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Therefore the [M ] and [L]−1 in Eq.(2.30) are now 6 by 6 constant (for a given

flight condition) matrices that define the inflow model, and will be extracted using

frequency domain system identification methods, and [τ ] is a 6 by 6 matrix of time

delays that approximates the higher order dynamics not explicitly included in the

model. The ∆ prefixes on the states and inputs are dropped throughout for brevity,

except when explicitly necessary.

Twelve State Coaxial Rotor Inflow Model

If six inflow states is not enough to accurately capture the dynamic behavior

over a broad frequency range, then more states can be added. In the previous models

there was no distinction between the inflow states and the inflow coefficients; they

were equivalent. In terms of classical control theory, this means that the output

matrix is the identity matrix. More states can be included without adding more

inflow coefficients. One choice could be to assume that each of the six coaxial inflow

coefficients consists of two states, summed together to make the whole coefficient,

i.e., 



λU0

λU1S

λU1C

λL0

λL1S

λL1C





︸ ︷︷ ︸
λ

=





λU0N

λU1SN

λU1CN

λL0N

λL1SN

λL1CN





︸ ︷︷ ︸
λN

+





λU0F

λU1SF

λU1CF

λL0F

λL1SF

λL1CF





︸ ︷︷ ︸
λF

(2.31)
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The two states are labeled with “N” and “F” added to the original subscripts.

Note that Eq.(2.31) can be rewritten as:





λU0

λU1S

λU1C

λL0

λL1S

λL1C





︸ ︷︷ ︸
λ

=




1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1








λU0N

λU0F

λU1SN

λU1SF

λU1CN

λU1CF

λL0N

λL0F

λL1SN

λL1SF

λL1CN

λL1CF





︸ ︷︷ ︸
λNF

(2.32)

The new set of states can all be contained in the new state vector, labeled as

λNF . The output matrix is no longer the identity matrix but is instead the block

diagonal matrix shown in Eq.(2.32). With this inflow output equation the inflow

state equations can be written as:
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[M ]





∗
λU0N
∗
λU0F
∗
λU1SN
∗
λU1SF
∗
λU1CN
∗
λU1CF
∗
λL0N
∗
λL0F
∗
λL1SN
∗
λL1SF
∗
λL1CN
∗
λL1CF





+
[
L−1

]





λU0N

λU0F

λU1SN

λU1SF

λU1CN

λU1CF

λL0N

λL0F

λL1SN

λL1SF

λL1CN

λL1CF





= [B]





∆CU
T

∆CU
L

∆CU
M

∆CL
T

∆CL
L

∆CL
M





(2.33)

The [M ] and [L]−1 matrices would then both be 12x12 matrices. In the 6 state

coaxial inflow system, it was assumed that the form of the terms in the matrices

would mirror the Pitt-Peters form, and many of the terms are assumed to be zero.

But in this case, with larger matrices, the forms would need to be determined. The

equation also has a [B] matrix now which is required in order to make the dimensions

compatible with the input vector. This [B] matrix would therefore need to be 12x6

and its form would also need to be determined. Another way of writing this system

involves making the following substitutions:

[G] = [M ]−1[B] & [F ] = −[M ]−1[L]−1 (2.34)
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Then the inflow state equations can be written as:





∗
λU0N
∗
λU0F
∗
λU1SN
∗
λU1SF
∗
λU1CN
∗
λU1CF
∗
λL0N
∗
λL0F
∗
λL1SN
∗
λL1SF
∗
λL1CN
∗
λL1CF





= [F ]





λU0N

λU0F

λU1SN

λU1SF

λU1CN

λU1CF

λL0N

λL0F

λL1SN

λL1SF

λL1CN

λL1CF





+ [G]





∆CU
T

∆CU
L

∆CU
M

∆CL
T

∆CL
L

∆CL
M





(2.35)

In this case, the [F ] matrix would be 12x12 and the [G] matrix would be 12x6.

Since the forms of the terms inside the matrices are unknown for either way that

the equations are written, Eq.(2.35) offers the advantage that there are less unknown

matrix terms.

Coaxial Rotor Inflow Model with Wake Distortion

One further extensions would be to include the wake distortion effects in this

12 state coaxial inflow model. As shown by Eq.(2.29), the flap rates (or equivalent

body angular rates) can be considered as additional inputs to the inflow model.

Eq.(2.29) could be rewritten so that both the aerodynamic forcing and flap rates

appear in the same input vector. So this will be done with the coaxial system. The

new inputs will be placed in the input vector nearest to the aerodynamic forging

term to which they are most similar. So the lateral flap rates will be after the roll
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moments and the longitudinal flap rates will be after the longitudinal moments. The

resulting state equation is:





∗
λU0N
∗
λU0F
∗
λU1SN
∗
λU1SF
∗
λU1CN
∗
λU1CF
∗
λL0N
∗
λL0F
∗
λL1SN
∗
λL1SF
∗
λL1CN
∗
λL1CF





= [F ]





λU0N

λU0F

λU1SN

λU1SF

λU1CN

λU1CF

λL0N

λL0F

λL1SN

λL1SF

λL1CN

λL1CF





+ [G]





∆CU
T

∆CU
L

∆
∗
βU1S

∆CU
M

∆
∗
βU1C

∆CL
T

∆CL
L

∆
∗
βL1S

∆CL
M

∆
∗
βL1C





︸ ︷︷ ︸
Cβ

(2.36)

The [G] matrix must now be 12x10 to make the dimensions compatible. Therefore

the form of the matrix needs to be further determined. This will be explored in

Chap. 6. Lastly, note that though the equations only explicitly write
∗
β terms, they

are also meant to implicitly include the body angular rates, as this form keeps the

assumption that the body angular rates and the flap rates are equivalent.

2.2.3 Off-Rotor Inflow Modeling

Free vortex wake models must be able to calculate the induced velocity at

arbitrary locations of the flow field, because that velocity is needed to define the

motion of the blade vortices. This can also be used to compute the velocity induced

by the rotor wake at any other points of interest, e.g., on the horizontal tail or on a

wing under the hub.
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It should be noted that an accurate calculation of the induced velocity at an

empennage is difficult, due to the complexity of the flow field, which includes the

interaction of the rotor wake vortices with the fuselage, the effects of the empennage

on the bound and trailed vorticity, and the role of other configuration dependent

elements, such as jet exhaust, tail rotors, and pusher propellers [12]. The models

used in this study capture only some of the relevant physics, and do so in an approx-

imate way. On the other hand, these models are adequate for the development and

the illustration of the methodologies to extract state-space inflow models, because

they are sophisticated and have mathematical characteristics representative of more

advanced aerodynamic theories.

A state-space model can be made with either the rotor aerodynamic loading

or the rotor induced velocity as inputs, and off-rotor induced velocities as output.

This might look very similar to Eq.(2.13), such as:




M11 M12 M13

M21 M22 M23

M31 M32 M33








∗
λ0

∗
λ1s

∗
λ1c





+




L̄11 L̄12 L̄13

L̄21 L̄22 L̄23

L̄31 L̄32 L̄33








λ0

λ1s

λ1c





(2.37)

· · · =





∆CT

∆CL

∆CM








t−




τ11 τ11 τ13

τ11 τ22 τ11

τ31 τ11 τ33







(2.38)
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where v̄x, v̄y, and v̄z are the components of the velocity at a point, or the

average velocity across a surface or volume, normalized by main rotor tipspeed.

Each of the 3x3 matrices here contain 9 unknown quantities, with little known about

whether certain values should be considered zero/negligible or not. Determination

of the form would therefore be part of the identification.

Depending on the location of interest, an even simpler approach is possibly,

that is, to express the induced velocity at that location as simply an output equation,

i.e., as a linear combination of rotor inflow states, with the possible addition of a time

delay, and no additional states. This approximation may be sufficiently accurate for

flight dynamics applications, because in this case the spatial details of the flow

field tend to be relatively unimportant. Furthermore, the induced velocity model

can be extracted using only the low frequency portion, between 1 to 5 rad/s, of

the frequency response, because for flight dynamics purposes, this is the region of

interest.

In the present study, output equation models were developed for average in-

duced velocity along the 1/4 chord line of the horizontal tail. Although only the

component of the main rotor inflow normal to the rotor disk is used, all three compo-

nents of the induced velocity at the tail are considered. Therefore, the three induced
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velocity components are defined by the following model:





v̄x

v̄y

v̄z





=




K0x K1cx K1sx

K0y K1cy K1sy

K0z K1cz K1sz








λ0(t− τ0)

λ1c(t− τ1C)

λ1s(t− τ1S)





(2.39)

where v̄x, v̄y, and v̄z are the average induced velocity components at the 1/4 chord

of the horizontal tail, non-dimensionalized by tip-speed, and the λ terms are the

inflow harmonics at the rotor disks, and the notation λ0(t − τ0) denotes the value

of λ0 delayed by τ0 seconds. The 9 constants K and the 3 delays τ in Eq.(2.39) are

the unknowns of the model which needs to be identified.

A similar model was produced for the induced velocity at the wing under the

hub. In this case, a similar spread of points as for the horizontal tail were calculated

in order to still get an average, but they were located below the rotor. The form

used for wing induced velocity was different, using up to nine time delays:





v̄x

v̄y

v̄z





=




K0x K1cx K1sx

K0y K1cy K1sy

K0z K1cz K1sz




◦




t− τ0x t− τ1cx t− τ1sx

t− τ0y t− τ1cy t− τ1sy

t− τ0z t− τ1cz t− τ1sz








λ0

λ1c

λ1s





(2.40)

where v̄x, v̄y, and v̄z are the average induced velocity components at the 1/4 chord

of the wing under the hub, non-dimensionalized by tip-speed, and the λ terms are

the inflow harmonics at the rotor disks. The unknowns of the model which need

to be identified are the gains K and the time delays τ . As an illustration of the
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notation of Eq.(2.40), consider the expansion of the v̄x induced velocity component:

v̄x = K0xλ0(t− τ0x) +K1cxλ1c(t− τ1cx) +K1sxλ1s(t− τ1sx)

These models can then be directly used in flight dynamic simulations, when

state-space models are available to predict the average, lateral, and longitudinal

inflow. Time delays must be handled similarly to the way described in the previous

section.
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Chapter 3: System Identification Methodology

3.1 Overview

This chapter presents the basics of frequency domain system identification of

state space models for perturbation dynamics. This methodology is a well-vetted

approach used frequently on flight data or wind tunnel data [63]. This dissertation

takes the novel approach of applying the methodology to a free-vortex wake simula-

tion to identify state-space models of the inflow. This method will be utilized for a

few different applications, including single main rotor inflow, off-rotor inflow, coax-

ial rotor inflow and higher order coaxial rotor inflow. This chapter will present the

basics of system identification that will be common among all of these applications.

3.2 Non-parametric Identification

The first step to frequency domain identification uses inputs in the form of

frequency sweeps to excite the dynamics over a broad frequency range, allowing

for identification to identify frequency responses using a single time history. This

procedure can be performed as a flight, wind tunnel, or simulation.
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The procedure must first start from a position of equilibrium or trim. For

flight tests, this simply means allowing the pilot to trim the aircraft. A simulation

must be marched forward in time until equilibrium is achieved for all the states.

With simulations such the MFW, the wake geometry must converge to a periodic

solution which is steady in the non-rotating frame. Next, a frequency-sweep [63] is

applied to the inputs in the input vector u. Each input in u is individually exercised

in the manner shown in Fig. 3.1.

50 100 150 200

Time [sec]

16.0°

16.5°

17.0°

17.5°

18.0°

18.5°

Figure 3.1: Representative frequency-sweep input.

This frequency sweep input starts at the trim value and then starts to cycle in

a sinusoidal manner. The initial frequency of the sweep is set by the desired lower

bound. The identification will only accurately capture dynamics that occur above

this lower bound. For flight dynamics purposes, this is often set around 1 rad/sec.

Anything below this bound is generally not important to handling qualities and is
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easily corrected for by pilot inputs. The frequency of the input slowly increases until

it reaches an upper bound. For flight dynamics and handling qualities applications,

this bound is typically set between 10 to 30 rad/sec. Fig. 3.1 shows a representative

input used in the present study. A representative output is shown in Fig. 3.2.

50 100 150 200

Time [sec]

3

4

5

6

7
#10-3

Figure 3.2: Representative output of a frequency sweep

The time histories are processed through Fourier transforms and subsequent

manipulations to transform the data into the frequency domain. The system iden-

tification code CIFER [63] is used in this dissertation to process the time histories

from the frequency sweeps, though any other similarly implemented code could be

used to perform the procedure. First, a non-parametric model is identified. Here,

model input-output behavior is characterized by frequency response curves (Bode

plots) and there is no assumed model structure. The Fourier transform for a signal
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x(t) can be written as a finite Fourier transform:

X(f, T ) =

∫ T

0

x(t)e−2πiftdt ⇐⇒ x(t) = 0





t ≤ 0

t ≥ T

(3.1)

where f is any real number, and corresponds to new independent variable of the

Fourier transform; the frequency (in hertz, as written). The if and only if conditional

in Eq.(3.1) requires that the signal starts from zero and returns to zero (or trim)

as is shown in both of the representative signals (Figs 3.1 and 3.2). Signals are not

measured continuously, but rather as a sequence of discrete time points at a certain

sample rate. Therefore the finite Fourier Transform must be written as a discrete

Fourier transform (DFT) for the finite set of N sampled data points [114]:

X(fk) = X

(
k

N∆t

)
= ∆t

N−1∑

n=0

x(n∆t)e(−2πikn)/N (3.2)

where k and n = 0, 1, 2, . . . , N − 1. ∆t is the time increment of the sampled

data. X(fk) are the Fourier coefficients at the discrete frequency points fk. The

DFT is computed numerically through a special implementation of the fast Fourier

transform (FFT), specifically the chirp z-transform [115], to reduce computational

cost. The FFT produces estimates of the power spectral densities, which are defined

as:

ĜAB =
2

T

[
A(f)ᵀB(f)

]
(3.3)

The input auto-spectrum (Ĝuu where u are inputs), the output auto-spectrum (Ĝyy

where y are outputs), and the cross-spectrum (Ĝuy where u are inputs and y are

outputs) are produced. The FFT is performed multiple times on each time history

data set, each time with a different spectral window that is sized in length so that
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it captures certain frequency ranges optimally. This results in several different esti-

mates of the spectral densities, which are more or less accurate at certain frequencies

based on the window size used. An optimization based composite-windowing pro-

cedure then combines the various results from the different window sizes to achieve

a single smooth estimate of the spectral densities [63,116,117].

The spectral density results can then be used to calculate the frequency re-

sponse from input to output at each frequency response. For a single-output-single-

input (SISO) system, the relationship can be described as the ratio between the

cross-spectrum and the input auto-spectrum :

y(s)

u(s)
= Ĥuy(ω) =

Ĝuy(ω)

Ĝuu(ω)
(3.4)

Along with the frequency response curves, response coherence is also generated.

Coherence of a SISO frequency response is defined as:

γ2
uy(ω) =

|Ĝuy(ω)|2
|Ĝuu(ω)||Ĝyy(ω)|

(3.5)

and it can be interpreted a direct measure of the linearity between the input and

output. Responses with high coherence are linear, have a high signal-to-noise ratio,

and are not excited by secondary inputs.
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3.3 Parametric identification : State-space

Next, a parametric model is fitted to the frequency response curves, with an

assumed model structure, in state-space form:

ẋ = [A]x+ [B]u (3.6)

y = [C]x (3.7)

where the state-vector is x (of size Nx), the input vector is u (of size Nu), and the

output vector is y (of size Ny).

This basic structure is often modified by the addition of a time delay matrix

to account for unmodeled higher order dynamics:

ẋ = [A]x+ [B]u(t− [τ ]) (3.8)

y = [C]x (3.9)

where [τ ] is the time delay matrix, which functions as described in the single main

rotor model structure part of Sec. 2.2.2.5. These equations are also sometimes

modified to be in another form:

[M ]ẋ+ [L̄]x = u(t− [τ ]) (3.10)

y = [C]x (3.11)
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First, note if [B] is square (which requires u to be the same length as x) and

invertible, then the following can be stated as equivalent:

[B]−1 = [M ] and − [B]−1[A] = [L̄] (3.12)

In the present study, The [C] matrix in the output equations will typically

be the identity matrix therefore making the outputs identical to the states and

restricting the number of states to the number of outputs. The C matrix can also

be a larger matrix allowing for more states than outputs, as will be shown in Chap.

6. However the values in the matrix are still assumed and are not identified.

The A and B matrices, or equivalently the M and L̄ matrices in the inflow

models, contain the parameters that need to be identified. These are referred to

as “free variables” or “free parameters”. These parameters can be collected in the

vector Θ. Not all the values in matrices are free parameters. Many are assumed

to be zero and sometimes a parameter can be assumed to have a constant value.

Some parameters are known to be equivalent to other terms and therefore can be

constrained to the value or a function of another free variable. This often hap-

pens when there is some known physical mechanism for symmetry in the system.

Additional details will be provided in subsequent chapters.

The free variables in this state-space model are optimized for a best fit to the

non-parametric frequency responses. The state space model can be represented as

an complex-valued matrix T in the frequency domain. The various non-parametric

frequency responses can also be grouped in a frequency response matrix labeled T̂c.

The model accuracy is measured by a cost function, J , which is a direct measure
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of phase and magnitude differences between the model and the non-parametric fre-

quency responses. The cost function for an individual transfer function fit used in

the present study is defined as [63]:

J =
20

nω

nω∑

n=1

Wγuy

[
Wg(|T̂c(ωn)| − |T (ωn)|)2 +Wg(∠T̂c(ωn)− ∠T (ωn))2

]
(3.13)

where the three weighting values are defined, respectively, as:

Wγuy =
[
1.58

(
1− e−γuy(ωn)2

)]2

, Wg = 1, Wp = π/180 (3.14)

Only the first weight is a function of the calculated coherence at the frequency

ωn. The ωn are a set of frequency points along the frequency range that are equally

spaced on the log-frequency scale. This ensure that the minimum cost corresponds to

the function that produces the best fit when displayed on the Bode plot. When there

are multiple frequency responses to be fit with a single state-space model, an average

cost Jave is used as the optimization metric, though most often, the individual costs

are still listed, as it is important to check that no particular cost is too high. For this

cost function, the standard guideline [63] is that Jave < 50 indicates an excellent fit,

Jave < 100 indicates a good fit, and Jave < 200 are considered acceptable for some

individual transfer function (e.g. off-axis responses for rotorcraft flight dynamics

problems).

Parameters Θ within the state-space model are further analyzed by their nor-

malized Cramer-Rao bounds CR and normalized insensitivity values I. The nor-

malized insensitivity of a parameter is a measure of its overall effect on the cost
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function, and is defined for the i-th parameter as [63]:

I i =

∣∣∣∣∣∣∣∣∣∣

1/

√[
∂2Jsum
∂Θ∂Θᵀ

]

ii

Θi

∣∣∣∣∣∣∣∣∣∣

× 100% (3.15)

where Jsum is the summation of the individual costs. The Cramer-Rao value is a

measure of a parameter’s correlation with other parameters in the model structure,

and is defined as [63]:

CRi =

∣∣∣∣∣∣∣∣∣∣∣∣

2

√√√√
[[

∂2Jsum
∂Θ∂Θᵀ

]−1
]

ii

Θi

∣∣∣∣∣∣∣∣∣∣∣∣

× 100% (3.16)

Parameters with low insensitivity (< 10%) and low Cramer-Rao bounds (< 20%)

are well identified and important to an accurate model and are retained. Parame-

ters with high Cramer-Rao and insensitivity values are unreliable and therefore are

eliminated from the model structure as long as they do not incur a large loss of

accuracy [63]. Removing these terms typically means fixing them to zero, though

it can also be achieved by constraining their value to another term. Upon removal

and subsequent re-optimization, the cost may increase slightly (∆Jave ≈ 1 to 2) but

the resulting simpler system is more desirable [63]. If removal incurs a large cost

penalty, then other ways of reducing the system should be explored, or the current

insensitivities and Cramer-Rao bounds should be accepted as is.
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3.3.1 Correlation Problem

The procedure laid out in the previous section assumes that one input can

be swept independently of the other inputs. The other inputs are held constant

while only one input is swept with the frequency sweep. However, sometimes the

desired state-space system has inputs that are not truly simulation inputs. For

example, classical inflow systems relate inflow to the aerodynamic loading on the

rotor, however both of these are actually outputs of the simulation, while the true

inputs are the swashplate controls. Another example is on a real aircraft when there

are redundant flight controls and a flight control system that converts the the pilot

inputs into a different set of actuator inputs. In these cases the actual inputs would

be the swashplate controls or the pilot controls. These are fully governable in the

sense that they can be forced to any value desired and are not a product or outcome

of the simulation or physical system. These actual inputs can be referred to as

controls, and labeled θ.

The inputs that are really outputs, which can be referred to as “input-outputs”,

are not necessarily fully governable in the sense that it is difficult to force them to

take on a desired value in time because they are truly an outcome of the simulation

or system. It can be very difficult to only excite one of the input-outputs while

keeping all the remaining input-outputs at their trim values. And often the input-

outputs will be intensely coupled and it is not trivial to separate the contributions

of each input-output to each output. In this case, the input-outputs to the model

are said to be correlated. An example of this correlation is shown in Fig. 3.3. A
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single frequency sweep on a control of the simulation produces the two input-outputs

shown in the figure. The two input-outputs cycle at the same frequency as the actual

input and so are correlated in time. Given only these two time histories, as well as

an output caused by these combined input-outputs, it would be impossible to tell

which of the inputs actually caused the output. This means that the time histories

are multiple-input-multiple-output (MIMO) and must be handled differently than

SISO identifications.

20 40 60 80 100
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Figure 3.3: Example of two correlated input-output time histories from
a frequency sweep.

3.3.2 MIMO system identification

To identify a system with multiple inputs, the inputs be independent and

uncorrelated 63. Because input-outputs are driven by the same physical input, they

are highly, if not completely correlated. A simple example demonstrates why this
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is a problem. Assume first that a system has two inputs and two outputs but the

system is not coupled, meaning that input A affects only output A and input B

affects only output B. This type of system can be referred to as diagonal. This can

be written in transfer function form as shown in Eq.(3.17):

yA(s) =
yA(s)

uA(s)
∗ uA(s) (3.17)

yB(s)︸ ︷︷ ︸
Outputs

=
yB(s)

uB(s)︸ ︷︷ ︸
Transfer Fcns.

∗ uB(s)︸ ︷︷ ︸
Inputs

(3.18)

If the equations are really written this way, then system identification would

really just be two separate SISO identifications. A single time history gives values for

the two inputs in time and values for two outputs in time. Based on the given form,

it would be assumed that input A only affects output A, and input B only affects

output B. However, in most cases, it is not known whether a system is diagonal.

Input B may have some effect on output A, and input A might have some effect

on output B. Even if the equations are dominated by the diagonal terms it is still

important to account for the influence of the off-diagonal terms and not assume that

they are negligible.

If there are extra non-diagonal terms, the Eq.(3.18) could take the form shown

in Eq.(3.19):

yB(s)︸ ︷︷ ︸
Outputs

=
yB(s)

uB(s)︸ ︷︷ ︸
On-axis

Transfer Fcns.

∗ uB(s)︸ ︷︷ ︸
On-axis

Inputs

+
yB(s)

uA(s)︸ ︷︷ ︸
Off-axis

Transfer Fcns.

∗ uA(s)︸ ︷︷ ︸
Off-axis

Inputs

(3.19)
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If this were written in terms of spectral densities:




GuByB(ω)

GuAyB(ω)





=



GuBuB(ω) GuBuA(ω)

GuAuB(ω) GuAuA(ω)




︸ ︷︷ ︸
Input Auto-Spectrum Matrix





yB(s)
uB(s)

yB(s)
uA(s)





(3.20)

Therefore, the solution for the frequency responses require the Input Auto-Spectrum

matrix to be inverted. This matrix is not invertible when the cross-control coher-

ence is one or close to one. Cross control coherence is a measure of how linear

the relationship is between the controls, just as regular coherence measures the lin-

ear relationship between input and output, and is therefore the direct measure of

correlation.

High cross-control coherence means that the other control can be largely pre-

dicted through a linear relationship if the first control is known. Perfect cross-control

coherence means that the two controls are perfectly correlated and the relationship

can be quantified perfectly with a linear system (i.e. bode plot, transfer function

or state-space model). Therefore, identifications can not be performed when the in-

puts are correlated. Three separate methods have been assessed to try to remove or

negate the effects of correlation. They consist of cross-feeds, decorrelation through

noise, and the Joint-Input-Output Method.

3.3.3 Cross-feed Method

One approach is to use a combination of the actual inputs or controls to

remove or at least minimize one of the input-outputs so that it can be considered

negligible. This reduces Eq.(3.20) so that there is only one input on the right hand

90



side of the equation, and the problem is well-posed for a single time history. A

proper combination of actual inputs can achieve responses that are dominated by

a single input-output. This is done by utilizing a cross-feed, i.e., by injecting as

input a proper combination of both θA and θB into the simulation. The cross-feed

transfer function for Eq.(3.18) would seek to minimize the off-axis transfer function

part as typically that would be the easiest to remove since it is already the smaller

contribution. For Eq.(3.18), this means trying to minimize the size of uA. The cross-

feed which determines the combination as a function of the frequency of excitation,

is the solution K(s) to the following:

uA(s)

θB(s)
+K(s)

uA(s)

θA(s)
= 0 (3.21a)

K(s) = −uA/θB(s)

uA/θA(s)
= −θA

θB
(s) (3.21b)

K(s) describes in the frequency domain how much θA should be used when θB is used,

so that only (or at least primarily) uB is produced. More accurately, it describes

the precise amplitude ratio and phasing ratio between the two actual inputs.

The required frequency responses to compute this cross-feed are uB/θA(s) and

uB/θB(s) so they must be produced first. Frequency sweep inputs of θA only, and

of θB only, are applied separately to the simulation, and the time histories of uA

and uB due to each input are obtained. Because the actual inputs are able to be

independently excited, these responses can be computed as SISO identifications.

The non-parametric frequency responses of the off-axis input uB to each of the two

actual inputs are computed. CIFER can then perform frequency response arithmetic

to calculate the non-parametric cross-feed frequency response, as in Eq.(3.4). The
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NAVFIT utility in CIFER is then used to fit a parametric transfer function to

the cross-feed frequency response. The output cross-feed θA time history is then

determined by simulating K(s) with a θB frequency input, using an ODE solving

algorithm such as LSIM from the Control System Toolbox for MATLAB.

The combined input of the θB frequency sweep and the θA cross-feed to the sim-

ulation wake will provide primarily the on-axis input-output uB and a substantially

reduced off-axis input-output uA. Figure 3.4 gives an example of a frequency sweep

and cross-feed that would produce only the on-axis input-output from Fig. 3.3. The

gray line represents the actual frequency response part and the black line shows the

amount of off-axis control that must be added to cancel the off-axis input-output.

The resulting outputs with the cross-feed are shown in Fig. 3.5, which shows that

the off-axis response black line response is at least an order of magnitude lower

than the on-axis gray line response at all frequencies. With most of the off-axis

input-output (black line) canceled, the system has essentially one input and can be

analyzed using the SISO method shown earlier.

The downsides to such a method are apparent. First, any error in the cross-

feed results in a solution that does not have the off-axis input-output fully canceled

out. This is shown in Figure 3.5 where at the higher frequency range the off-axis

input-output is not quite zero, and is in fact just barely small enough to safely

ignore. This error can be caused by several things.

First, if the relationship between actual inputs and input-outputs are not quite

linear, then the crossfeed will only cancel the linear portion of the off-axis input-

output. Next the cross-feed relies on low order polynomial fits to capture the full
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Figure 3.4: Actual input time histories for cross-feed. Gray line shows
frequency sweep, black line shows cross-feed
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Figure 3.5: Input-output time histories with cross-feed. Gray line shows
primary on-axis response, black line shows mostly canceled off-axis re-
sponse

frequency response calculated by Eq.(3.21b). Differences between the low order

fit and the actual frequency response will make the cancellation imperfect. Hand-
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tweaking the cross-feed can help cancel more off-axis input-output, but it is a tedious

process that requires extensive insight and intuition into the form of the cross-feed

transfer function.

Even if the cross-feed does work, it is still a long two-step process. The identi-

fication must first run frequency sweeps without cross-feeds, and then run frequency

sweeps with cross-feeds, resulting in twice as many simulation runs. The last dis-

advantage is that the formula stated in Eq.(3.21b) is for two correlated controls.

A similar derivation for three controls proves to be much more complicated. The

cross-feed becomes a cross-feed matrix, requiring more than one transfer function to

be fit. The size of the matrix grows by (n− 1)2 where n is the number of controls.

Even at 3 correlated controls, the complexity of the cross-feeds can make errors

compound and it becomes very difficult to get the correct answer.

The main benefit of this method is that it is much easier to see that the

method produced the correct result. If the cross-feed is in anyway incorrect, it will

be quite obvious from the resulting time history that the off-axis input-output was

not canceled properly. The cancellation of the off-axis input-output is not obscured

behind a mathematical procedure but takes place in a physical sense (or directly in

simulation). On the other hand, if the off-axis input-output is fully canceled, the

cross-feed is assuredly correct, but also the accuracy of the cross-feed is not really

important as long as the desired affect was achieved.
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3.3.4 Decorrelation Through Noise

The contaminating effects of partially correlated inputs can be removed so

long as they are not highly or fully correlated [63]. As shown in Eq.(3.20), condi-

tioned frequency responses can be achieved by inverting the input auto-spectrum

matrix and multiplying it by the cross-spectrum vector. But this methodology re-

lies upon the inputs being only partially correlated, so that the input auto-spectrum

matrix is invertible and not ill-conditioned. For the case of correlated simulation

input-outputs, this means that the input-outputs must be made to be only partially

correlated

The correlation between input-outputs can be reduced into partial correlation

with proper insertion of noise into the controls. Noise, when fed into the controls,

lowers the correlation between the input-outputs. When the cross-control coherence

is low enough (γ2
uu < 0.5), inversion of the spectral matrices can be achieved, and

Eq.(3.20) can be solved. The downside to this method is that the addition of noise

will decrease the coherence of the identification. Special care must be taken to

keep the signal to noise ratio high enough to allow inversion of the cross-spectrum

matrices, but low enough so that it does not drastically affect the coherence.

To achieve this, Gaussian noise is generated, but then shaped by a shaping

function so that the shape of its peak to peak amplitude curve is roughly the same as

the peak to peak amplitude curve for the frequency sweep shown in figure 3.1. Then

the noise is scaled down by roughly the ratio between the on-axis input-outputs and

the off-axis input-outputs. This signal is then fed into the off-axis controls during
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a frequency sweep so that they produce primarily changes in the off-axis input-

outputs, giving them the noise of the control and therefore decorrelating them from

the other input-outputs.

An example of a frequency sweep with noise input into the controls is shown

in Figure 3.6. The normal frequency sweep is inserted into the main control, shown

by the black line, and a noisy input is inserted into the off-axis control, shown by

the gray line. This produces the input-outputs that are shown in Figure 3.7. These

input-outputs are no longer correlated because the noise primarily feeds into the

off-axis input-output, making the two input-outputs no longer linear dependent on

each-other in time.
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Figure 3.6: Sample control time histories for decorrelation through noise.

The shaping function and the scaling ratio must be tuned and adjusted. The

noise level should be no higher than necessary to achieve inversion of the spectral

matrix because any excess noise tends to degrade the coherence. But noise that
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Figure 3.7: Sample input-output time histories for decorrelation through noise.

is too low will cause the inversion of the input auto-spectrum to break down due

to ill-conditioning. So a few iterations are most often necessary to find an optimal

balance. This means that this method can often be quite expensive in terms of

computational loads and manual input. Also if the inputs are correlated enough,

it becomes almost impossible to remove enough correlation without reducing the

coherence to below acceptable levels.

3.3.5 Joint-Input Output Method

For this work, the issue of correlation is solved not with cross-feeds or noise in-

puts, but rather through transfer function manipulation similar to the methodology

shown in Ref. 74,118. The first step of the Joint-Input Output method is to obtain

a series of Single-Input Multiple-Output (SIMO) frequency responses of the outputs

and the input-outputs to the true simulation inputs or controls. SIMO identification
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can proceed simply as multiple separate SISO identifications governed by Eq.(3.4).

This can be performed now because the user has full authority over the controls.

They are kept decoupled by activating one at a time with the frequency sweep input,

while the other controls are held at their trim value. Each of the control frequency

sweeps produces a non-parametric frequency responses for each of the outputs and

also a non-parametric frequency responses for each of the input-outputs.

When the responses of the controls are grouped in matrix form, two transfer

function matrices are generated. The matrix

[
y(s)

θ(s)

]
describes the output responses

to the control inputs. The element in the i-th row and j-th column is the response

of the i-th component of the output vector y to a frequency response input of

the j-th component of the control vector θ with all other controls held at their

respective trim values (the notation that implies the division between two vectors

is not mathematically rigorous, and is used only for clarity). The matrix

[
u(s)

θ(s)

]

describes the input-output responses to the control inputs. Note that each element

of the two response matrices is generally a function of frequency, therefore in practice

the two matrices are three-dimensional, with frequency as the third dimension.

The desired frequency responses of outputs to input-outputs can then be found

by numerical inversion and multiplication at each individual frequency:

[
y(s)

u(s)

]
=

[
y(s)

θ(s)

]
×
[
u(s)

θ(s)

]−1

(3.22)

For each frequency response in the [y(s)/θ(s)] and [u(s)/θ(s)] matrices the

coherence is also calculated. However, there is not a straightforward way to cal-

culate the exact coherence of frequency responses obtained from the arithmetics
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of Eq.(3.22). But from an analysis of the coherence of the individual frequency

responses that go into the calculation of y(s)/u(s), it is possible to calculate a

weighted average coherence, based on the following considerations.

1. The coherence from input to output is equal to the coherence from output to

input. The coherence matrix of the inverse of a frequency response matrix

must remain the same as that of the original matrix. For this method, this

establishes:

Coh

([
u(s)

θ(s)

]−1

i,j

)
= Coh

([
u(s)

θ(s)

]

i,j

)

2. When two SISO frequency responses are multiplied, the total coherence is

roughly equal to the smaller coherence of the two components. So this is used

to approximate:

Coh

([
y(s)

θ(s)

]

i,j

×
[
u(s)

[θ(s)

]−1

j,i

)
≈

min

{
Coh

([
y(s)

θ(s)

]

i,j

)
, Coh

([
u(s)

θ(s)

]−1

j,i

)}

3. The level of coherence is unimportant if the product of two frequency responses

produces a very small magnitude output, relative to the other contributing

parts. Conversely, if the product of two frequency responses produces a rela-

tively large magnitude output, then its contribution to the overall coherence

is higher. This suggests that a magnitude weight based summation would be

appropriate.
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A singular index of the [y(s)/u(s)] matrix is calculated by:

[
y(s)

u(s)

]

i,j

=
nθ∑

k=1

[
y(s)

θ(s)

]

i,k

×
[
u(s)

θ(s)

]−1

k,j

(3.23)

This broken down equation more clearly shows that nθ (number of controls) trans-

fer function multiplications are summed to give a value for a given index in the

y(s)/u(s) matrix. Magnitude based weights are defined as:

Wi,j(n) =

∣∣∣∣∣

[
y(s)

θ(s)

]

i,n

×
[
u(s)

θ(s)

]−1

n,i

∣∣∣∣∣
∣∣∣∣∣

[
y(s)

u(s)

]

i,j

∣∣∣∣∣

(3.24)

The coherence is then approximately equal to the average weighted coherence:

Coh

([
y(s)

u(s)

]

i,j

)
≈

nθ∑

n=1

(
Wi,j(n)× (3.25)

min

{
Coh

([
y(s)

θ(s)

]

i,n

)
, Coh

([
u(s)

θ(s)

]

n,i

)})

With the responses and coherence of y(s)/u(s) solved at each frequency, the proce-

dure can continue with state-space model identification as described above.

The first advantage of this method are that it works with only one set of

frequency sweeps. The frequency sweeps are run on each of the independent controls

and once this set is complete, the final responses can be calculated. There is no need

for manual changes in the frequency sweep parameters, and no need for repetitive

iterations on the sweeps. This method is rather robust in terms of getting results

versus the other two methods. Therefore this method is much more capable of

being automated, or of being used by a researcher without system identification

background.
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There are some limitations inherent in this method. From Eq.( 3.22), it can be

seen that the
[
u(s)
θ(s)

]
matrix must be invertible at each frequency point. In practice

this is not difficult to do unless one of the frequency sweeps either does nothing

or is a linearly combination of other frequency sweeps. However this limitation of

invertibility does enforce that the matrix must be square. A pseudo-inverse may be

acceptable if there are more controls (θ) than input-outputs terms (u), but it will

not work if there are more input-outputs than controls. So this method does require

one independent sweep per input-output term.

The second disadvantage is that if there low coherence results between the

controls and either the input-outputs or the outputs, it is necessary to establish when

the data will be neglected as unreliable. If the responses have low magnitude (20 dB

lower than on-axis responses) and low coherence then they can be safely neglected.

But large responses that have low coherence likely should not be neglected and

the resulting coherence formulation given by Eq.(3.25) will give a low coherence.

This does not necessarily indicate the linearity of the response anymore but may

simply indicate the reliability of the frequency response. For example the coherence

between u and y may be perfect (because it is linear), but if θ to u or θ to y has low

coherence (because they are non-linear), then the result will not show that perfect

coherence.
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3.3.6 Time Domain Verification

The identified state-space models should be validated in the time domain.

One way to perform this is using another CIFER utility, VERIFY, which performs

time-domain verification. A new set of controls, different from the frequency sweeps

used in the identification, is applied to the simulation or real life system to get

new time histories of the outputs y and the input-outputs ∆u. The new time

histories of ∆u are then used as inputs to a linear simulation based on the state-

space system previously identified, calculating the corresponding outputs y. These

can be directly compared with the simulation or real systems time histories to ensure

adequate agreement [63].

3.4 Summary

The chapter presents the basics of frequency domain system identification

methodology, and also some of the developments necessary for application to high-

fidelity aerodynamic numerical models. The methodology presented in the chapter

is very general, and can be used with many types of aerodynamic prediction model

or even other prediction models not related to aerodynamics. It is also well vetted

for identifying input-output relationships from test flight data and other real life

systems.

Indeed the only real restrictions on the methodology are:
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1. The simulation or system must have a set of independent controls that can be

excited separately in order to excite the dynamics of the system.

2. The simulation or system must have a set of measurable outputs, and if ap-

plicable, a measurable set of input-outputs, though certainly the procedure

works just fine if the desired responses are from controls to outputs.

3. Physical insight is useful but is not wholly necessary. Knowing which outputs

are caused by which inputs can be useful in the initial set-up of the state-space

formulation, and in deciding what quantities may be input-outputs versus

outputs.

4. The dynamics of the system, between desired inputs and outputs, should be

at least mostly linear. This is not a failing of the methodology though as

the procedure will indicate the lack of linearity in the first step. It is just an

obvious corollary that a linear system can not fit a non-linear system. This is

the same as stating that a straight line can not be fit to a parabola. However

this procedure will still try produce the best approximate linear model, just

as linear least squares will still find the best linear fit through a parabola.

As a consequence, it should be possible to extract accurate inflow dynamic

models from high fidelity aerodynamic models that incorporate effects not easily

captured by momentum theory-based models, such as aerodynamic interference, or

stall effects. The methodology can also be applied to extract state-space models

of the inflow at points away from the rotor disk, such as fuselage and empennage.

Lastly, this methodology will readily extend to multi-rotor configurations where
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inflow impingement from one rotor onto another may be prevalent. This will allow

for the identification of coaxial state-space inflow models and investigation into its

inflow and vehicle dynamics.
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Chapter 4: Single Main Rotor Inflow System Identification

4.1 Overview

The single main rotor helicopter is a well-known configuration that has been

studied in detail. In particular, the inflow dynamics have been studied and derived

analytically through momentum and potential flow theory, chiefly by the Pitt-Peters

model [25] and its subsequent extensions. These methods have been shown to well

capture the dynamics that the inflow adds to the full dynamics of a rotorcraft.

It provides a good theoretical basis for the form of inflow dynamics that should

be contained within free vortex wakes and higher fidelity aerodynamic models. It

also provides a vetted model that can be compared against new models identified

directly from the higher fidelity simulations, in absence of better experimental data.

So it makes sense to begin establishing the frequency domain system identification

procedure for inflow on a single main rotor. This chapter identifies state space

inflow models from a free-vortex wake simulation of a UH-60-like helicopter with

characteristics defined from Ref. [119]. The models are identified in various flight

regimes and are compared with the models predicted by Pitt-Peters [25]. Extensions

are also shown to demonstrate the ability for the same methodology to predict the
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inflow off of the rotor disk, at other locations where aerodynamic interference may

be important, like at the fuselage or the tail.

4.2 Rotor Inflow Model Identification

Inflow models for a single main rotor are identified in the form given by

Eq.(2.11) for hover and Eq.(2.12) for forward flight. The models are extracted us-

ing frequency domain system identification, as described in Chap. 3, applied to the

inflow time histories generated by the MFW. For this identification, the rotor shaft

is held fixed, as if in a wind-tunnel, to avoid divergence in the time histories due to

aircraft dynamics. For the initial identification, the blade dynamics, i.e. flap, lag,

and torsion degrees of freedom, are held rigid to avoid the effects of wake distortion

described in Sec. 2.2.2.5. First, the wake is marched forward in time until moment

trim is achieved, the wake geometry has converged to a periodic solution, and the

desired value of ∆CT has been reached with a trim value of collective pitch θ0. Next,

a frequency-sweep [63] input of collective pitch θ0, similar to that shown in Fig. 3.1,

is applied to the trimmed rotor, and the corresponding time histories of ∆CT , ∆CL,

and ∆CM and inflow harmonics λ0, λ1c, and λ1s are calculated. A representative

time history of a thrust coefficient CT to a sweeps of collective input θ0 is shown in

fig. 4.1. The inflow response to the same sweep is shown in Fig. 4.2. The frequency

sweep is then repeated on the other swashplate controls, θ1S and θ1c, and once again

the time histories of the inflow components λ0, λ1c, and λ1s and of the aerodynamic

loading ∆CT , ∆CL, and ∆CM are computed. However it should be noted that, in
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hover, axial symmetry of the rotor makes the λ1c(s)/∆CM(s) response identical to

the λ1s(s)/∆CL(s), so only one frequency sweep is actually required.

50 100 150 200
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7
#10-3

Figure 4.1: Representative thrust coefficient CT response to a frequency
sweep of collective θ0.
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Figure 4.2: λ0 response for a frequency sweep of θ0.
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Once the thrust and moment coefficients and inflow harmonics are obtained

from the wake calculation, they become, respectively, the input-outputs and outputs

for the subsequent system identification procedure. The Joint Input-Output method

described in Sec. 3.3.5 is used to solve the correlation problem, which is important

in the hover case particularly because the aerodynamic moments are correlated.

Equation (3.22) of the Joint-Input Output method becomes:

[
λ(s)

∆C(s)

]
=

[
λ(s)

θ(s)

]
×
[

∆C(s)

θ(s)

]−1

(4.1)

Where the λ vector contains [λ0 λ1S λ1C ]ᵀ, the aerodynamic loading vector

∆C contains [∆CT ∆CL ∆CM ]ᵀ, and the swashplate control vector θ contains

[θ0 θ1S θ1C ]ᵀ.

Next, a parametric state-space model is fit to the frequency response curves.

The form for hover is taken from Eq.(2.11), with time delays added as shown in

Eq.(2.15), such that the final form is:



M11 0 0

0 M22 0

0 0 M33







∗
λ0

∗
λ1s

∗
λ1c




+




L̄11 0 0

0 L̄22 0

0 0 L̄33







λ0

λ1s

λ1c




=




∆CT (t− τ11)

∆CL(t− τ22)

∆CM(t− τ33)




(4.2)

Because the responses of λ1c to ∆CM and λ1s are ∆CL are equivalent in hover

due to axial symmetry, it is also helpful to constrain M33 = M22, L̄33 = L̄22, and

τ33 = τ22. This leaves six free variables in this state-space model which are optimized

for the best fit with the non-parametric frequency responses: M11, M22, L̄11, L̄22,

τ11, andτ22.
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For forward flight, the form originates from Eq.(2.12), with time delays added

as shown in Eq.(2.13), such that the final form is:




M11 0 0

0 M22 0

0 0 M33








∗
λ0

∗
λ1s

∗
λ1c





+




L̄11 0 L̄13

0 L̄22 0

L̄31 0 L̄33








λ0

λ1s

λ1c





= · · ·





∆CT

∆CL

∆CM








t−




τ11 0 τ13

0 τ22 0

τ31 0 τ33







(4.3)

In Pitt-Peters model the M22 and M33 are equal, even in forward flight, so

this constraint will be preserved for the identified state space forward flight model.

Eq.(4.3) uses two additional time delays, τ13 and τ31. Compared with the hover

case, two additional frequency responses must be fit with this model to complete

the identification. They are the response of average inflow λ0 to pitch moment

input ∆CM and the response of longitudinal inflow λ1c to thrust input ∆CT . Like all

previous frequency responses, these responses will be produced using the Joint Input-

Output method described in Sec 3.3.5. For the forward flight case, 12 independent

parameters will have to be identified: M11, M22, L̄11, L̄22, L̄33, L̄13, L̄31, τ11, τ22, τ33,

τ13, andτ31.
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4.2.1 Time Domain Verification

The state-space models identified as described in the previous sections is veri-

fied in the time-domain using a set of swashplate controls, different from those used

in the identification. VERIFY then uses the time histories of ∆C as inputs to a

linear simulation based on the state-space system previously identified, calculating

the corresponding outputs ∆λ. These can added to their respective trim values and

then directly compared with the MFW time histories of inflow to ensure that the

identified inflow model sufficiently matches the free wake.

4.3 Hover

4.3.1 Frequency Responses and State-space Modeling

The methodology was applied to a single main rotorcraft in hover, whose

configuration is described in Appendix B.

4.3.1.1 Collective Degree of Freedom

The first results are limited to the collective degree of freedom. The inflow

equation is simply:

M11

∗
λ0 +L̄11λ0 = ∆CT (4.4)

Figure 4.3 compares four λ0(s)/∆CT (s) frequency responses. The first response is

computed using the Pitt-Peters dynamic inflow model [25]. The second is com-

puted using the same model incorporated into the full flight dynamic simulation
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HeliUM [98], such that the actual input is the swashplate collective θ0, and the

thrust coefficient CT is obtained as part of the calculations, with blade flapping mo-

tion included. The third response is the inflow non-parametric frequency response

identified from the MFW. The fourth response is an inflow non-parametric frequency

response identified, using the same procedure, in Ref. [95] with a different free-wake

method model, RAPiD Free Wake model (RFW). All responses are in good agree-

ment at low frequency (ω < 4− 6 rad/sec), where the high-order free wake models

reduce to a simple first-order behavior. Above ω > 5 rad/sec, both the RFW and

the MFW show some additional phase lag.

Fig. 4.4 compares the λ0(s)/∆CT (s) non-parametric frequency response iden-

tified from MFW and the λ0(s)/∆CT (s) frequency response obtained from the state-

space inflow model of Eq.(4.2) extracted through identification. The agreement is

good, and in particular that is identified from the free wake simulation is presented

in . The state-space model matches well with its associated frequency responses and

the pole roll off near 6 rad/sec is well captured. The cost of the identification for the

model is J < 40, indicating an excellent match between in the frequency domain.

Table 4.1 lists coefficients of the identified state-space model identified from

MFW. The coefficients are compared to Pitt-Peters coefficients, and also with two

sets of parameters identified through frequency domain system identification from

HeliUM with Pitt-Peters incorporated, and from RFW. The transfer functions of the

various state-space models are compared in Fig. 4.5. The Cramer-Rao (CRi < 6%)

and insensitivity (Ii < 3%) values are very low, indicating high confidence in, and

low correlation between, the parameter values [63].
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Figure 4.3: Non-parametric average inflow λ0 response to thrust coeffi-
cient ∆CT input.

4.3.1.2 Cyclic Degree of Freedom

For the identification of the response to cyclic inputs, the starting point used

was a Peters-He model, 10 states and 3 harmonics. The controls were subjected to

frequency sweeps the Joint-Input Output method was used to find the λ1c to ∆CM
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Figure 4.4: inflow λ0 response to thrust coefficient ∆CT input: Full
MFW vs. identified state-space model

frequency response. This is also shown in Fig. 4.6, with the line labeled HeliUM

w/ Peters-He. A comparison with the first-order Pitt-Peters model, also shown in

the figure, indicates that the additional states are not necessarily in this frequency

range, as the wake still has essentially a first order behavior. The following first
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Figure 4.5: Inflow λ0 response to thrust coefficient ∆CT input: Compar-
ison of different state-space models.

order transfer function (fit from 1-30 rad/sec):

λ1c

∆CM
=
−262.38

(10.6201)
(4.5)

is therefore sufficiently accurate. Fig. 4.6 shows two more curves. The first, labeled

as “MFW”, is the frequency response from the full, nonlinear MFW. This is the

frequency response that will be used to extract the linearized state-space inflow

model. The second is similar but obtained from the RFW.

The frequency response from the MFW was fit with a state space model of

the form of Eq.(4.2). The results are shown in Fig. 4.7. The coefficients of the
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Table 4.1: Comparison of inflow coefficients in the vertical axis obtained using

frequency sweeps.

Model M11/Ω0 L̄11 τ11

identified from MFW 0.0379 0.187 .0408

Pitt-Peters (Ref. 25) 0.0314 0.214 none

Pitt-Peters identified (including blade flapping) 0.0321 0.211 none

identified from RFW 0.0360 0.148 n/a

identified model are shown in Table 4.2, together with those of the Pitt-Peters

model, the 10-state Peters-He identified model, and the model identified form the

RFW. Good agreement between all the identified models and the Pitt-Peters model

is shown. However, there is a considerable 2nd order shape apparent in MFW and

RFW magnitude curves. At low frequency the slopes are not flat like the Pitt-Peters

models, but rather has a positive slope. This is better fit with a low frequency zero

and two mid frequency poles, hence a second order transfer function. Two poles also

allow for the phase to change by more than 90 degrees as the two free-wake models

do (compared to the dynamic inflow models which stop at -90 degrees). However

a first order model still fits the frequency response data fairly well, as long as time

delays are included.

The transfer function (or state-space model with parameters from Table 4.2

) representations are all compared in Fig. 4.8. The small discrepancies in the L̄22

115



100 101

Frequency [rad/sec]

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

-360°
-315°
-270°
-225°
-180°
-135°

P
ha

se

0

20

40

M
ag

ni
tu

de
 [d

B
]

Pitt-Peters
HeliUM w/ Peter-He
MFW
RFW

Figure 4.6: Non-parametric λ1c frequency response to ∆CM .

values in Table 4.2 are a result of steady-state differences in Fig. 4.6. These steady-

state differences are made more apparent in Fig. 4.8.

Note that, because this is an isolated rotor model, with no fuselage, tail rotor,

or any other feature that could otherwise make the response non-symmetric, the
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Figure 4.7: Non-parametric vs Parametric (State-space Model) λ1c fre-
quency response to ∆CM .

response of the λ1s to ∆CL is identical to the response of λ1c to ∆CM and M22 = M33

and L̄22 = L̄33
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Table 4.2: Comparison of cyclic inflow coefficients (diagonal terms only) obtained

using frequency sweeps.

Model M22/Ω0 L̄22 τ22

Pitt-Peters (Ref. 25) -0.0042 -0.0534 none

HeliUM: 10 state Peters-He -0.0038 -0.0405 none

MFW -.0063 -.0636 0.0369

RFW (Rigid) -0.0043 -0.0651 n/a
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Figure 4.8: Comparison of different state-space model of λ1c response to ∆CM .
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4.3.2 Time Verification

The state-space inflow model obtained from system identification was verified

in the time domain by using inputs different from those used for the identification.

In this case a doublet-like perturbation, shown in Fig. 4.9, was input into the swash-

plate. The time histories of the corresponding aerodynamic loading ∆CT ,∆CL, and

∆CM and inflow coefficients λ0, λ1c, and λ1s were computed using the full, nonlinear

MFW. The inflow coefficients were compared with those predicted by the identified

state-space model.

4 6 8 10 12 14 16 18
Time [sec]

17.0°

17.2°

17.4°

17.6°

3

Figure 4.9: Representative doublet maneuver used for time verification.

Figure 4.10 shows the aerodynamic thrust CT and average inflow λ0 from dou-

blet of collective θ0. The top plot shows the thrust coefficient CT corresponding

to the θ0 doublet, computed using the MFW. The perturbation (from trim) thrust
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Figure 4.10: Time-domain verification of state-space model for average
inflow given a doublet in CT . Dashed line indicates state-space predic-
tion; solid line indicates MFW actual data.

∆CT is then used as input to the identified state-space inflow model. The output of

the identified state-space model is perturbation inflow ∆λ0, which is added to trim

average inflow to obtain total average inflow λ0. The bottom plot shows a compar-

ison of the average inflow λ0 response of the MFW (solid line) and the identified

state-space model (dashed line). There is generally good agreement between the two
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responses. The mismatch is caused by the fact that the model does not capture the

whole frequency range perfectly, because the dynamics are not precisely first order,

as shown in Fig. 4.4.
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Figure 4.11: Time-domain verification of state-space model for longitu-
dinal inflow given a doublet in CM . Dashed line indicates state-space
prediction; solid line indicates MFW actual data.

Similarly, Fig. 4.11 shows the aerodynamic pitching moment CM and longitu-

dinal inflow λ1c from doublet of cyclic θ1c. The top plot shows the pitching moment
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CM corresponding to the θ1c doublet, computed using the MFW. The perturbation

pitch moment ∆CM is then used as input to the identified state-space inflow model.

The output of the identified state-space model is perturbation inflow ∆λ1c, which

is added to trim longitudinal inflow to obtain total longitudinal inflow λ1c. The

bottom plot shows a comparison of the total longitudinal inflow λ1c response of the

MFW (solid line) and the identified state-space model (dashed line). There is gen-

erally good agreement between the two responses. The mismatch is caused by the

fact that the model does not capture the whole frequency range perfectly, because

the dynamics are not precisely first order, as shown in Fig. 4.4. There is more dis-

agreement between the MFW and the identified state-space model as compared to

the λ0-CT time verification. This is directly related to the error shown in Fig. 4.7,

which is larger than for the average inflow frequency response. The model still does

capture the correct sign and most of the magnitude and phasing of the response.

4.4 Forward Flight Results

Inflow models were identified at two advance ratios, µ = 0.1 and µ = 0.2.

4.4.1 Frequency Responses and State-space Modeling

4.4.1.1 Advance Ratio µ = 0.1

The λ0 response to aerodynamic thrust CT at µ = 0.1 is shown in Figure 4.12.

The solid line shows the MFW data, and the dashed line the best state-space model

fit. The match of the model is excellent, and the time delays help capture the higher
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order dynamics shown by the extended phase roll-off (te phase of a rigorously first

order model would have been asymptotic to −90◦).
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Figure 4.12: Inflow λ0 frequency response to CT at µ = 0.1. Cost of the fit is 12.2.

Figure 4.13 shows the response of lateral inflow λ1s to roll moment CL. The

solid line shows the MFW data, and the dashed line showing the state-space model

fit. The magnitude of this response is flatter at low frequency than hover (shown in
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Fig. 4.7). This indicates that a single pole with no zeros will capture the magnitude

curve well. The phase curve can then be corrected by addition of a time delay. The

result is that a first order system, with only one pole, but with a time delay, captures

much better captures the response shape, and produces a very accurate fit.
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Figure 4.13: Inflow λ1s frequency response to CL at µ = 0.1. Cost of the fit is 4.9.
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The last primary response at µ = 0.1 is the longitudinal inflow λ1c response

to input pitch moment CM , shown in Fig. 4.14. The magnitude of this response

is not flat at low frequency, but rather rises, peaks at around 6 rad/sec, and then

falls off. This behavior is similar to that shown in Fig. 4.7, which was noted to have

a better potential fit with a second order system; particularly with a zero at low

frequency and two stable poles in the middle frequency range. The forward flight

state-space model does indeed include these for this response. The transfer function,

corresponding to the dashed line in Fig. 4.14, is:

λ1c

CM
=
−165.72(5.94)

(7.06)(13.35)
(4.6)

The zero, however, is not separated far enough from the poles to really make mag-

nitude slope change apparent, as it is mostly canceled by the pole at 7.06 rad/sec.

However the optimization finds this to be the optimal fit to the state-space model

because it keeps the cost of the other responses low, particularly CM to λ0. Never-

theless the given fit is exceptable in terms of capturing the response.

The first off-axis response in forward flight, shown in this section, is the λ1c

response to thrust CT , shown in Fig. 4.15. This frequency response has a change in

slope in the middle frequency range more indicative of 2 poles, but is nevertheless

captured reasonably well with a single pole and a time delay, as shown by a cost of

J = 80.

The second off-axis response of interest, i.e. the response of average inflow λ0

to pitching moment CM , is shown in Figure 4.15. The response to CM contributes

less towards average inflow λ0 than the primary responses does, but it still needs to
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Figure 4.14: Inflow λ1c frequency response to CM at µ = 0.1. Cost of
the fit is 120.1

be retained to maintain the overall accuracy of the identification. However the cost

of this state-space fit is not as important due to low magnitude of the response.
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Figure 4.15: Inflow λ1c frequency response to CT at µ = 0.1. Cost of the fit is 80.5
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Figure 4.16: Inflow λ0 frequency response to CM at µ = 0.1. Cost of the
fit is 259.4
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The full system in state space form for the µ = 0.1 case is given by:




.0394 0 0

0 −0.00603 0

0 0 −0.00603








∗
λ0

∗
λ1s

∗
λ1c





+




0.234 0 0.038

0 −0.0685 0

0.0521 0 −0.0873








λ0

λ1s

λ1c





=





∆CT

∆CL

∆CM








t−




t− 0.047 0 t− 0.071

0 t− 0.043 0

t− 0.20 0 t− 0.039







(4.7)

4.4.1.2 Advance Ratio µ = 0.2

The λ0 response to aerodynamic thrust ∆CT at µ = 0.2 is shown in Fig. 4.17.

The solid line shows the actual MFW data, and the dashed line the best state-space

model fit to the data. As for the µ = 0.1 case the match of the model, as a first

order system and a time delay, is excellent.

The lateral inflow λ1s response to input roll moment ∆CL is shown in Fig. 4.18.

The magnitude of this response is flat at low frequency and so a first order system

with one pole and a time delay produces an accurate fit.

The last primary response is the longitudinal inflow λ1c response to input pitch

moment ∆CM , shown in Figure 4.19. As for the µ = 0.1 case, the magnitude of

this response has a shape that is well fit by a second order system with two poles

and a zero. However, compared with the µ = 0.1 case, this response has a little less
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Figure 4.17: Inflow λ0 frequency response to ∆CT at µ = 0.2. Cost of
the fit is 18.1.

variation leading to the first order system fitting slightly better than in the µ = 0.1

case.
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Figure 4.18: Inflow λ1s frequency response to ∆CL at µ = 0.2. Cost of
the fit is 19.7.

The response of longitudinal inflow λ1C to thrust ∆CT is shown in Fig. 4.20.

This frequency response is captured accurately with a single pole and a time delay,

as shown by the cost of 20.
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Figure 4.19: Inflow λ1c frequency response to ∆CM at µ = 0.2. Cost of
the fit is 55.5

The small off-axis λ0 response to CM is shown in Figure 4.21. As with the

µ = 0.1 case, the response is very small. Therefore the significantly worse fit,

indicated by a value of the cost function J = 1447, does not affect the accuracy of

the state-space model significantly. This means that the this frequency response can
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Figure 4.20: Inflow λ1c frequency response to ∆CT at µ = 0.2. Cost of
the fit is 55.5

likely be removed from the optimization for the state-space model. However, this

would require changing the form in Eq.(4.3), specifically setting L̄31 and τ13 to zero.

This is not explored in this work because a form equivalent to Pitt-Peters model

was desired.
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Figure 4.21: Non-parametric vs Parametric (State-space (S.S.) Model)
λ0 frequency response to CM at µ = 0.2. Cost of the fit is 1447
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The full system in state space form for the µ = 0.2 case is given by:




.0254 0 0

0 −0.00323 0

0 0 −0.00323







∗
λ0

∗
λ1s

∗
λ1c




+




0.345 0 0.047

0 −0.09 0

0.121 0 −0.129







λ0

λ1s

λ1C




=




t− 0.062 0 t− 0.00

0 t− 0.057 0

t− 0.15 0 t− 0.05







∆CT

∆CL

∆CM




(4.8)

4.4.2 Time Domain Verification

4.4.2.1 Advance Ratio µ = 0.1

The time domain verification of the state-space model of Eq.(4.7) consists of

three doublets , of collective, lateral and longitudinal cyclic pitch, respectively. The

first doublet of collective pitch ∆θ0 = 0.25◦ excites all three aerodynamic inputs,

∆CT , ∆CL, and ∆CM , which in turn produce all three outputs, λ0, λ1s, and λ1c.

Inputs and corresponding on-axis outputs are shown in Figs. 4.22, 4.23 and 4.24,

respectively.
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Figure 4.22: Time domain verification of inflow model, Eq.(4.7); solid
line: MFW, dashed line: Eq.(4.7). Input: doublet of magnitude θ0 =
0.25◦, µ = 0.1.

The match for the λ0 response to the three aerodynamic inputs, ∆CT , ∆CL,

and ∆CM , Fig. 4.22, is excellent. The state space system slightly over predicts the

lateral inflow λ1s response to the three aerodynamic inputs, Fig. 4.23, compared

with the MFW prediction. The agreement is again very good for the longitudinal

inflow λ1c response to the three aerodynamic inputs, Fig. 4.24. Because the primary
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Figure 4.23: Time domain verification of inflow model, Eq.(4.7); solid
line: MFW, dashed line: Eq.(4.7). Input: doublet of magnitude θ0 =
0.25◦, µ = 0.1.

responses to collective are CT and λ0, longitudinal and lateral inflow components

are smaller secondary effects.

The second verification is a doublet of lateral cyclic ∆θ1s of magnitude 0.25

degrees. This maneuver produces a mostly decoupled response with just roll moment

∆CL. Therefore the primary inflow output is lateral inflow λ1s, as is shown in

Fig. 4.25. The agreement with MFW predictions is excellent. The θ1s doublet
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Figure 4.24: Time domain verification of inflow model, Eq.(4.7); solid
line: MFW, dashed line: Eq.(4.7). Input: doublet of magnitude ∆θ0 =
0.25◦, µ = 0.1.

generates very small ∆CT and ∆CM , therefore the corresponding time histories are

not shown.

The third and final verification maneuver is a doublet of longitudinal cyclic

∆θ1c of magnitude 0.25 degrees. This maneuver produces mostly pitch moment

∆CM . Therefore the primary inflow output is longitudinal inflow λ1c, shown in

Fig. 4.26. Longitudinal inflow is overpredicted, compared with the MFW. This is
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Figure 4.25: Time domain verification of inflow model, Eq.(4.7); solid
line: MFW, dashed line: Eq.(4.7). Input: doublet of magnitude ∆θ0 =
0.25◦, µ = 0.1.

caused by the larger error in the state-space fit (shown in Fig. 4.14). The ∆θ1c

doublet generates very small CT , as shown in Fig. 4.27, but through the couplings

of Eq.(4.3), some λ0 is generated, also shown in Fig. 4.27. λ0 is underpredicted and

but also small in magnitude, as is predicted by Fig. 4.16 .
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Figure 4.26: Time domain verification of inflow model, Eq.(4.7); solid
line: MFW, dashed line: Eq.(4.7). Input: doublet of magnitude ∆θ1c =
0.25◦, µ = 0.1.
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Figure 4.27: Time domain verification of inflow model, Eq.(4.7); solid
line: MFW, dashed line: Eq.(4.7). Input: doublet of magnitude ∆θ1c =
0.25◦, µ = 0.1.

4.4.2.2 Advance Ratio µ = 0.2

The time domain verification of the µ = 0.2 state-space model of Eq.(4.8)

consists of three doublets , of collective, lateral and longitudinal cyclic pitch, respec-

tively. The first doublet of collective pitch ∆θ0 = 0.25◦ excites all three aerodynamic

inputs, ∆CT ,∆CL, and ∆CM , which in turn produce all three outputs, λ0, λ1s, and
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λ1c. Inputs and corresponding on-axis outputs are shown in Figs. 4.28, 4.29 and 4.30,

respectively.
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Figure 4.28: Time domain verification of inflow model, Eq.(4.8); solid
line: MFW, dashed line: Eq.(4.8). Input: doublet of magnitude ∆θ0 =
0.25◦, µ = 0.2.

The match for the λ0 response to the three aerodynamic inputs, ∆CT ,∆CL,

and ∆CM , Fig. 4.28, is excellent. As in the µ = 0.1 case, the state space system

slightly over predicts the lateral inflow λ1s response to the three aerodynamic inputs,

Fig. 4.29, compared with the MFW prediction. The agreement is again very good
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Figure 4.29: Time domain verification of inflow model, Eq.(4.8); solid
line: MFW, dashed line: Eq.(4.8). Input: doublet of magnitude ∆θ0 =
0.25◦, µ = 0.2.

for the longitudinal inflow λ1c response to the three aerodynamic inputs, Fig. 4.30.

Because the primary responses to collective are CT and λ0, longitudinal and lateral

inflow components are smaller secondary effects.

The second verification is a doublet of lateral cyclic ∆θ1s of magnitude 0.25

degrees. This maneuver produces a mostly decoupled response with just roll moment

∆CL. Therefore the primary inflow output is lateral inflow λ1s, as is shown in

Fig. 4.31. The agreement with MFW predictions is excellent. The θ1s doublet
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Figure 4.30: Time domain verification of inflow model, Eq.(4.8); solid
line: MFW, dashed line: Eq.(4.8). Input: doublet of magnitude ∆θ0 =
0.25◦, µ = 0.2.

generates very small ∆CT and ∆CM , therefore the corresponding time histories are

not shown.

The third and final verification maneuver is a doublet of longitudinal cyclic

∆θ1c of magnitude 0.25 degrees. This maneuver produces mostly pitch moment

∆CM . Therefore the primary inflow output is longitudinal inflow λ1c, shown in

Fig. 4.26. Longitudinal inflow is overpredicted, compared with the MFW. This is
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Figure 4.31: Time domain verification of inflow model, Eq.(4.8); solid
line: MFW, dashed line: Eq.(4.8). Input: doublet of magnitude ∆θ1s =
0.25◦, µ = 0.2.

caused by the larger error in the state-space fit (shown in Fig. 4.14). The ∆θ1c

doublet generates very small CT , as shown in Fig. 4.27, but through the couplings

of Eq.(4.3), some λ0 is generated, also shown in Fig. 4.27. λ0 is underpredicted

and but also small in magnitude, as is predicted by Fig. 4.21. The ∆θ1c doublet

generates very small CL, therefore, the corresponding time histories are not shown.
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Figure 4.32: Time domain verification of inflow model, Eq.(4.8); solid
line: MFW, dashed line: Eq.(4.8). Input: doublet of magnitude ∆θ1c =
0.25◦, µ = 0.2.
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Figure 4.33: Time domain verification of inflow model, Eq.(4.8); solid
line: MFW, dashed line: Eq.(4.8). Input: doublet of magnitude ∆θ1c =
0.25◦, µ = 0.2.
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4.5 Comparisons with the Perturbation Pitt-Peters Model

This section compares the three models identified for hover, µ = 0.1, and µ =

0.2 with the perturbation version of the Pitt-Peters model [25,26]. Figure 4.34 shows

the three parameters on the diagonal of the M matrix as a function of advance ratio.

In the Pitt-Peters model, the M matrix is not a function of advance ratio.

The identification methodology used in this study does not enforce this constraint

(though the constraint that M22 = M33 is the same as in the Pitt-Peters model).

The parameters are fairly similar in value between the two models across the range

of flight speeds. The average of the identified M11 values is 0.0354 or 12% larger

than Pitt-Peters model. The average of the identified M22 and M33 values is -0.0052

or 20% larger (more negative) than the Pitt-Peters model.

Figure 4.35 shows the three parameters on the diagonal of the L̄ matrix. The

parameters from each model show very similar trends and values. The values on

the diagonal, for the model identified from the MFW, tend to be slightly larger (on

average, around 20-30%) than those of the Pitt-Peters model.

Finally, Fig. 4.36 shows the remaining two parameters not on the diagonal of

the L̄ matrix, i.e. L̄13 and L̄31. Both parameters are set to zero at hover in both

models. The parameter L̄13 remains very small for the identified model, whereas

it increases to about 0.17 at µ = 0.2 for the Pitt-Peters model. The values of the

parameter L̄31 for the two models are generally close with a maximum difference of

about 20
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Figure 4.34: M matrix parameters varying with speed and compared
between MFW identified model and Pitt-Peters dynamic inflow model.

In the absence of experimental results, the reasonably good agreement with the

widely used Pitt-Peters model gives confidence that the identification methodology

developed in this study is suitable for the extraction of low order, state-space rotor

inflow models.
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Figure 4.35: Diagonal terms of the L̄ matrix varying with speed and
compared between MFW identified model and Pitt-Peters dynamic in-
flow model.
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inflow model.
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4.6 Off-Rotor Inflow Models

Using the MFW model, frequency responses can be computed from the rotor’s

induced inflow components λ0, λ1c, and λ1s to the induced velocities v̄x, v̄y and v̄z

at any location off-rotor. The procedure is the same, with the exception that the

inputs and outputs are different. This system can then be fit with a full state-space

model as with the inflow model.

The non-parametric frequency response matrix of interest is now

[
v̄(s)

λ(s)

]
and,

similarly to Eq.(3.22), it is calculated by the Joint Input-Output method:

[
v̄(s)

λ(s)

]
=

[
v̄(s)

θ(s)

]
×
[
λ(s)

θ(s)

]−1

(4.9)

Output equation models in the forms given by either Eqs.(2.39) or (2.40) are fit

to each frequency response. The induced velocity model can be fit using only the

frequency portions, e.g. between 1 to 5 rad/sec, of the frequency responses, because

for flight dynamics purposes, this is the region of interest.

4.6.1 Horizontal Tail Results

The methodology described to identify output-equation off-rotor induced ve-

locity was performed on the MFW to come up with the relationship between λ and

v̄x, v̄y and v̄z for a single main rotor in hover. For the tail inflow model, the average

of the seven points across the 1/4 chord line was used. The output equation for the
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induced velocities was determined to be:




v̄x

v̄y

v̄z





=




−0.2892 −0.3108 0.0532

−0.142 −0.1353 0.3407

0.3148 0.5361 −0.1104








λ0(t− 0.06225)

λ1c(t− 0.2115)

λ1s(t− 0.6929)





Figure 4.37 shows the time-domain verification. This was performed using a

ramp input, and time histories calculated from the state-space model are compared

to the actual output of the MFW. The time-domain verification shows that the

system responds well in the long term, but has some initial higher frequency dis-

crepancies. The error here is attributable to the fact that the velocities have been

approximated to be a linear combination of the inflow coefficients, and the responses

were only fit at low frequency. However, the simple output-only model appears to

give adequate results.
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Figure 4.37: Time-domain verification of induced velocity model at the
horizontal tail; input is a ramp in θ0.
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4.6.2 Wing Under Hub Results

The output equation for the wing under the hub, fit to the form defined by

Eq.(2.40), is:




v̄x

v̄y

v̄z





=




0.0221 −0.7496 −0.2117

0 0.207 −0.766

−1.366 0.02861 0




◦ (4.10)




t− 0.2149 t− 0.541 t− 0.3795

t− 0 t− 0.4452 t− 0.5327

t− 0.07075 t− 0.154 t− 0




×





λ0

λ1c

λ1s





The time-domain verification of these output equations is shown by Fig. 4.38.

A doublet input of θ0 is used, and the time histories from the identified output

equation model are compared to those of the MFW. For this case, a perturbation in

λ0 only produces a significant perturbation in v̄z. The output equation-based model

provides a very good fit.

4.7 Wake Curvature and Distortion Identification

To extract the KR in hover with frequency domain system identification the

following procedure was used. First, since the flap rates are now part of the inputs

to the inflow model, the response of λ1S to
∗
β1s and λ1C to

∗
β1c must be identified.

Besides the set of frequency sweeps on all the pilot controls, θ, with the flapping
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Figure 4.38: Time-domain verification of off-rotor fuselage induced ve-
locity given a doublet in λ0 (compared with MFW)

set to zero, an additional set of frequency sweeps are performed with the same

inputs except that flapping is free to flap. This second set of frequency sweeps will

be denoted as the responses to the input θβ. The flap rates can be grouped into

the vector
∗
β =

{ ∗
β1s

∗
β1c

}
. With both sets of frequency sweeps, the frequency
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responses of C,
∗
β, and λ to

{
θ θβ

}
can all be found in non-parametric form.

The Joint-Input Output method of Sec. 3.3.5 can then be modified to show that the

following relationship exists:


 λ(s)

∆C(s)

λ(s)

∆
∗
β(s)


 =

[
λ(s)

θ(s)

λ(s)

θβ(s)

]



∆C(s)

θ(s)

∆C(s)

θβ(s)

0
∆
∗
β(s)

θβ(s)




−1

(4.11)

The desired frequency responses for the identification λ(s)/∆C(s) and λ(s)/∆β̇(s)

can then be found numerically at each frequency point using Eq.(4.11).

To calculate KR, take the second row of Eq.(2.29) and write it as (removing

the terms KT and p/Ω):

M22

∗
λ1s +L−1

22 λ1s = ∆CL + L−1
22 KR

(
−∆

∗
β1s

)
(4.12)

and take Laplace Transform:

λ1s(s) =
1(

M22s+ L−1
22

)∆CL(s) +
−L−1

22 KR(
M22s+ L−1

22

)∆
∗
β1s(s) (4.13)

In the frequency domain the inflow equation can also be written as:

λ1s(s) =
λ1s(s)

∆CL(s)
∆CL(s) +

λ1s(s)

∆
∗
β1s(s)

∆
∗
β1s(s) (4.14)

Therefore:

λ1s(s)

∆CL(s)
=

1(
M22s+ L−1

22

) (4.15)

λ1s(s)

∆
∗
β1s(s)

=
−L−1

22 KR(
M22s+ L−1

22

) (4.16)

Substituting Eq.(4.15) into Eq.(4.16) gives:

λ1s(s)

∆
∗
β1s(s)

=
λ1s(s)

∆CL(s)

(
−L−1

22 KR

)
(4.17)
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Rearrange to solve for KR:

KR = −L22

λ1s(s)

∆
∗
β1s(s)

λ1s(s)

∆CL(s)

(4.18)

For the value of L22, one can use the value form the identification with no flapping.

Alternatively, the Pitt-Peters value can be used, which, for a hovering rotor case, is

L22 = −1/VT = −1/
√
CT/2. Finally, this gives the expression:

KR =
1√
CT/2

λ1s(s)

∆
∗
β1s(s)

λ1s(s)

∆CL(s)

(4.19)

Note that although KR is written as a constant, it is generally a function of fre-

quency.

Inflow responses to flapping and roll moment were calculated and manipulated

using Eq.(4.19) to arrive at KR as a function of frequency. This identified response

was also fit with a value constant with frequency to determine the best constant

KR. Figure 4.39 shows the calculated response, along with the best constant KR

value (KR = 1.44) and the analytical solution from Ref. 82 (KR = 1.5).

Therefore, the results indicate that KR is not constant, but rather a function of

frequency. This means that the amount of equivalent moment that flapping produces

is also a function of frequency, with an average value that turns out to be very close to

that predicted by analytical solutions based on potential flow theory [82]. However,

the results shown here suggest that the dynamics of the wake, and the effect of rotor

dynamics on the wake, are more complex than a simplified theory can predict.
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Figure 4.39: Comparison of identified KR frequency response with ana-
lytical solution. Only magnitude shown.

4.8 Summary

The chapter presents a methodology for utilizing advanced high-fidelity aero-

dynamic numerical models to create a first order dynamic-inflow-type of formulation

for the benefit of advanced helicopter flight dynamics applications. The extraction

of the low-order, state space inflow dynamic models is accomplished using frequency

domain system identification techniques described in Chap. 3.

This chapter presents results from the high-fidelity aerodynamic tool, the

Maryland free wake model (MFW), and compares against the results provided by a

similar procedure using the RAPiD wake model (RFW) . Both models were used in

the time domain and their outputs were carefully processed under various assump-

tions to identify the dynamic-inflow-type system of equations.
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The method developed and implemented on the free-wake wake model, uses

frequency sweeps to excite the entire frequency range of interest. System identifi-

cation is possible using a single time history. For the MFW, sweeps are injected

through blade pitch changes and the resulting aerodynamic thrust and inflow vari-

ations are used in the identification process.

For the vertical CT only excitation, the two free wake models produced very

similar results. Both free wake models correctly produced first-order types of inflow

responses to thrust inputs that compare well to the Pitt-Peters dynamic inflow

model. There was a slightly increasing phase roll off (i.e. effective lag) in the

frequency response of both free wake models above approximately 5 rad/sec.

For the cyclic inputs, the MFW and RFW models yield similar behavior to the

dynamic inflow models. The MFW model does require time delays to model uncap-

tured higher order dynamics. For both the MFW and RFW models, a significant

2nd order behavior shows up in the magnitude curves.

The identification procedure was next used to identify Pitt-Peters-like inflow

systems in forward flight. These models well captured the dynamics of the MFW

simulation and showed how the dynamics change with flight condition.

The method was then used to approximately predict the inflow of any point

off of the rotor. For a more accurate representation, a full state-space model could

be determined for the off-rotor point using the same method as for the rotor inflow

state space model. The method employed here, instead, was to compute off-rotor

inflow as a linear combination of the on-rotor inflow states. This has the advantage

of not needing extra states, however this advantage may be negated by the need
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for additional states arising from the Padé approximations to the time delays. The

time-domain verification results show that the approximation is reasonably accurate.

Lastly, the identification method was demonstrated for identification of wake

curvature and distortion effects. An extension of the Joint-Input Output method

was shown to identify inflow responses to flapping rates (or any tip-path plane

perturbations). The model structure required manipulation to allow for the results

to be shown in the form of KR which is comparable with literature. The results

show that these effects do indeed exist in MFW however they likely are a more

complicated function of frequency that is not captured simply by a gain.
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Chapter 5: Coaxial Rotorcraft Inflow System Identification

5.1 Overview

This chapter extends the methodology described in chapters 2-4 to a coaxial

rotor. This chapter identifies a state space inflow model from a free-vortex wake

simulation of a coaxial helicopter in hover, whose configuration is described in Ap-

pendix B. The general features of the state-space model have been described in

Sec. 2.2.2.5. The present chapter will describe the details of the structure of the

model and of the identification process. As for the single main rotor case, frequency

responses of the inflow to the components of the aerodynamic rotor loads will be

extracted as best fits. The model will then be verified in the time domain.

5.2 Frequency Response Generation

As with the single main rotor case, the shaft is held fixed and flap dynamics

are held rigid. The MFW is first marched forward in time until moment trim has

been achieved, the wake geometry has converged to a periodic solution, and the

desired input values of total thrust coefficient, as well as torque balance, have been

reached. Next, frequency sweep “chirp” inputs, shown in Fig. 3.1, of all controls
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in θ are applied, one control at a time, and the corresponding time histories of the

perturbation inflow state vector ∆λ and the perturbation aerodynamic load vector

∆C are calculated. Therefore, ∆λ and ∆C are both outputs of the wake model,

corresponding to the input θ. Since there are six swashplate controls in θ, the

frequency sweep is repeated six times.

The vectors ∆C and ∆λ are also, respectively, the input and outputs for the

system described by Eq.(2.30). This is the state-space system that is extracted from

the wake responses. The frequency domain system identification tool CIFER R© [63] is

utilized to analyze the time histories. The Joint-Input Output method described in

Sec. 3.3.5 is used to account for the correlation of the inputs ∆C. This is even more

important for a coaxial rotorcraft as there are aerodynamic couplings between the

two rotors and therefore the aerodynamic loading is almost always highly correlated.

The other two methods (cross-feed and decorrelation through noise), presented in

Secs. 3.3.3 and 3.3.4, are difficult to perform since the number of couplings is now

much higher, therefore they were not used for the coaxial case.

The first step of the Joint-Input Output method is to obtain a series of Single-

Input Multiple-Output (SIMO) frequency responses of inflow and aerodynamic loads

to swashplate inputs. With a coaxial rotor, there are 6 swashplate control chirps

(3 for the upper rotor and 3 for the lower rotor) each producing 12 non-parametric

frequency responses; 6 describing the response of λ and 6 describing the response

of C, all to the given control. When the responses of all six controls are grouped

in matrix form, two 6 by 6 transfer function matrices are generated,

[
λ(s)

θ(s)

]
and
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[
C(s)

θ(s)

]
. With these matrices, the Joint Input-Output method can be performed

to obtain

[
λ(s)

C(s)

]
using Eq.(4.1). These three matrix transfer functions describe

the same responses as the similar matrices do for the single main rotor case. These

responses can be subdivided into “on-rotor” and “cross-rotor” responses as shown

in Eq.(5.1):

{
Output

Input

}
=




On-Rotor

(Upper on Upper)

Cross-Rotor

(Lower on Upper)

Cross-Rotor

(Upper on Lower)

On-Rotor

(Lower on Lower)




(5.1)

The upper right partition describes the effects of the lower rotor on the upper rotor,

the lower left partition those of the upper rotor on the lower rotor. As distance

between the two rotors goes to infinity, terms of the off-diagonal blocks go to zero,

and the diagonal blocks converge to the corresponding single main rotor results.

This was used as a test case to check the identification procedure.

5.3 State-Space Model Identification

In general, all of the responses [λ(s)/C(s)] obtained from the free wake are

nonzero and the three 6 by 6 matrices [M ], [L]−1, and [τ ] are fully populated,

therefore a total of 108 parameters would need to be identified. Physical insight

along with examination of the frequency responses obtained can be used to reduce

164



the number of free parameters and make the identification problem more tractable.

The following assumptions and simplifications were used:

1. The 3-by-3 [M ] and [L]−1 matrices in the Pitt-Peters dynamic inflow model are

diagonal in hover, and this form was retained for the four 3-by-3 submatrices

of the coaxial rotorcraft model. The same structure was also assumed for the

matrix [τ ]

2. In hover, the rotor behavior in pitch is identical to that in roll but shifted by

90◦. This allows to constrain selected values of the state space matrices to be

identical.

3. If a frequency response had low coherence and small magnitude, it was ex-

cluded from the identification, on the assumption that it was mostly due to

small non-linearities in the system. If response magnitudes were not small,

but the coherences were low, the frequency responses would not be considered

reliable and would have to be ignored even if potentially significant. However,

no such situation occurred in the results of this chapter.

4. If the coherence was high but the magnitude was low, it was assumed that

the response was negligible and the corresponding transfer function was set to

zero.

5. The form of [M ], [L]−1, and τ was assumed to correspond directly to the form

of [λ(s)/C(s)], in the sense that if the magnitude of the {i, j} component of
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λ(s)/C(s) was below some preassigned threshold at all frequencies, then the

{i, j} component of the state space matrices would be set to zero.

Combining all these criteria, and after constraining the following parameters con-

strained to be identical:

m22 = m33 m44 = m55 m25 = m36 m52 = m63

l22 = l33 l44 = l55 l25 = l36 l52 = l63

τ22 = τ33 τ44 = τ55 τ25 = τ36 τ52 = τ63
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the hover preliminary form of [M ] and [L]−1 was found to be (only nonzero terms

are shown):

[M ] =




m11 m14

m22 m25

m22 m25

m41 m44

m52 m55

m52 m55




[L]−1 =




l11 l14

l22 l25

l22 l25

l41 l44

l52 l55

l52 l55




(5.2)

[τ ] =




τ11 τ14

τ22 τ25

τ22 τ25

τ41 τ44

τ52 τ55

τ52 τ55



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In summary the following 24 parameters had to be identified: m11, m22, m14, m25,

m41, m52, m44, m55, l11, l22, l14, l25, l41, l52, l44, l55, τ11, τ22, τ14, τ25, τ41, τ52, τ44, and

τ55.

5.4 Results for Hover

The coaxial rotor, described in Appendix B, was trimmed in hover, with trim

CT for the upper and lower rotors are 0.0053 and 0.0043, respectively. Frequency

responses were then generated.

5.4.1 Frequency Responses

This section presents hover frequency responses obtained using the full, nonlin-

ear MFW, and the corresponding curve fits obtained using the identified state-space

model. In all plots, unless specified other wise, the solid lines indicate the MFW

frequency responses, the dashed lines the state-space model fits.

Figure 5.1 shows the upper and lower rotor average induced inflow λ0 to a

thrust perturbation CU
T of the upper rotor. It is interesting to note that the inflow

responses of the upper and lower rotor are approximately equal in magnitude over

the full frequency range.

At the lowest frequency (1 rad/sec), the upper rotor response is slightly larger

than the lower rotor response, whereas, in the middle frequency band, there is a

larger λL0 response than λU0 response, before falling back below at high frequency.

These responses have values of coherences very close to one across the whole fre-
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Figure 5.1: Responses of λU0 and λL0 to CU
T ; magnitude(top),

phase(middle), and coherence(bottom)
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quency range, as shown by the bottom plot in Fig. 5.1, which implies that the

dynamics of the wake in these conditions are linear and time-invariant. In prin-

ciple, a larger set of equations describing the inflow dynamics could be identified

which would fit the magnitude and phase curves even better without being over-

parameterized. However it was decided to keep the state space model in the first

order form given by Eq.(5.2), with the idea of providing a straightforward extension

to coaxial rotors of the well known dynamic inflow model, and to accept the small

errors shown in the figures.

A second order inflow response would have provided a better fit, especially in

the region of the apparent rise of the λL0 response at mid frequency. Because only

a first order approximation is used, the optimization fits the system with a slightly

higher gain at all frequencies to account for the higher magnitude in the middle

frequencies.

The companion response, i.e. that of the lower rotor thrust CL
T to λU0 and λL0 ,

is shown in Fig. 5.2.
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Relative to the effects of CU
T perturbations, CL

T perturbations have a much

smaller effect on the inflows of both rotors. In particular, the lower rotor thrust

CL
T perturbations have very little effect on the upper rotor inflow λU0 . In fact, the

upper rotor thrust perturbations CU
T have a larger effect on the lower rotor inflow

λL0 than lower rotor thrust CL
T does over the entire frequency range (as was shown in

Fig. 5.1). The MFW frequency responses shows a rather second order behavior and

are not well modeled by the first order model structure assumed in this analysis.

However, for the reasons previously mentioned a first-order dynamic inflow type

form was retained even if probably not optimal.

Figure 5.3 shows the responses of the upper λU1C and lower λL1C longitudinal

inflow to the upper rotor pitching moment CU
M . Once again, the upper rotor effect

on the lower rotor is roughly the same magnitude as effect on the upper rotor it-

self,confirming a strong coupling. Both of these responses require time delays to help

fit the higher order unmodeled dynamics. The lower rotor requires a significantly

larger time delay, because of the larger phase roll-off. Though not shown here, the

equivalent responses of CU
L to λU1S and λL1S are almost exactly the same, due to hover

rotor symmetry. These responses again demonstrate that a first-order inflow model

structure may not be adequate in capturing all the dynamics of a coupled coaxial

rotor system.

In the same manner as the CL
T responses, Fig. 5.4 shows a dissimilar effect on

both rotors longitudinal induced inflow caused by pitching moments of the lower

rotor, CL
M . The response of λL1C is much larger than the response of λU1C , indicating

relatively little upper rotor coupling for this flow condition. Also comparing the
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Figure 5.3: Responses of λU1C and λL1C to CU
M showing MFW non-

parametric model vs the state-space parametric model; magnitude(top),
phase(middle), and coherence(bottom)
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response of λL1C of this figure with the same response on Fig. 5.3 shows that for

the lower rotor, excitations from the upper rotor have a larger magnitude than

excitations from the lower rotor itself.
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Table 5.1 summarizes the costs of all of the transfer function fits, as well as the

average. Generally, costs below 200 are considered acceptable [63]. The majority

of the responses are well represented by the low-order form of the model, with the

collective on-axis having costs of J < 50, meaning an excellent fit is obtained. The

Table 5.1: Cost of state-space parameterizations

Response Cost

λU0 (s)/CU
T (s) 3.7

λL0 (s)/CU
T (s) 17.2

λU1C(s)/CU
M(s) 204.0

λL1C(s)/CU
M(s) 178.1

λU1S(s)/CU
L (s) 204.1

λL1S(s)/CU
L (s) 177.7

λU0 (s)/CL
T (s) 85.3

λL0 (s)/CL
T (s) 28.8

λU1C(s)/CL
M(s) 115.8

λL1C(s)/CL
M(s) 463.6

λU1S(s)/CL
L(s) 115.1

λL1S(s)/CL
L(s) 462.5

Average Cost 171.3190

lower rotor on-axis moment response have the largest costs, meaning the form used

may not be adequate for capturing the dynamics in the frequency range of the fit.

As shown in Table 5.1, the cost of this state-space fit is rather high at 463.61, well

above the recommended maximum amount of 200. In particular, the response has a

large amount of error at low frequency in both phase and magnitude,which implies

that, when these ODE systems are used in the simulation with slow maneuvers,
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there will likely be more λL1C created per unit of CL
M and there will be a phase error

of about 45 degrees, compared with the MFW predictions.

177



The identified state-space model is Eq(2.30) with:

[M ] =




0.851 0 0 −0.4664 0 0

0 −0.243 0 0 0.06601 0

0 0 −0.243 0 0 0.06601

0.674 0 0 1.0563 0 0

0 0.3349 0 0 −0.27 0

0 0 0.3349 0 0 −0.27




[L]−1 =




0.4418 0 0 −0.182 0 0

0 −0.0453 0 0 −0.01089 0

0 0 −0.0453 0 0 −0.01089

−0.7262 0 0 0.6748 0 0

0 0.03581 0 0 −0.06139 0

0 0 0.03581 0 0 −0.06139




[τ ] =




0.03373 0 0 0.09985 0 0

0 0.02264 0 0 0.1265 0

0 0 0.02264 0 0 0.1265

0 0 0 0.02631 0 0

0 0.08218 0 0 0 0

0 0 0.08218 0 0 0




(5.3)

178



5.4.2 Time-Domain Verification

The hover inflow model was validated in the time-domain using smooth doublet

inputs. The first verification was with a doublet on symmetric collective θS0 which

produced a similar looking doublet in both CU
T and CL

T . Figure 5.5 shows these

thrust responses in the top plot. The middle and bottom plot show, respectively,

the λL0 and λU0 responses from the identified state-space model, and are compared

to the actual time histories produced by the full, nonlinear MFW. In general the

agreement is good. The high frequency oscillation in the λL0 MFW response is caused

by blade-vortex interaction caused when the lower rotor blades hit the upper rotor’s

wake. Most of the error of the state-space model can be directly attributed to the

error in the fits shown in Figs. 5.1 and 5.2.

A doublet that excited the longitudinal inflow was also performed, with the

results shown in Fig. 5.6. This doublet was performed on θU1C creating doublets in

both CU
M and CL

M . The corresponding time histories for λU1C and λL1C are shown in

the middle and bottom plots, respectively. The error is slightly larger than for

the collective doublet case, but the general trend is still well captured. The error is

larger due to the larger difference between the identified state-space model and the

MFW, previously pointed out in Figs. 5.3 and 5.4.

5.5 Summary

This chapter presents a frequency domain system identification methodology

to extract a low order coaxial rotor inflow model in the form of a system of ODEs,
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Figure 5.5: Time-domain verification of symmetric collective θS0 doublet,
showing the thrust perturbations and the resulting time histories of λU0
and λL0 from the identified state-space model and the MFW

suitable for flight dynamics and control applications. The methodology is demon-
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θU1C doublet, showing the pitching moment perturbations and the result-
ing time histories of λU1C and λL1C from the identified state-space model
and the MFW
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strated using a free-vortex wake simulation, but it is applicable to a wide variety of

advanced aerodynamic analyses, including CFD-based ones.

The wake dynamics describing the relationship from rotor loads to inflow were

extracted as non-parametric frequency responses. These responses showed that this

type of dynamics of the rotor wake is linear in the frequency range of interest in

flight dynamics. Each non-parametric response had generally high coherence across

that frequency range.

The non-parametric frequency responses were fit with a first order state-space

model, which allows coupling and interference between the rotors. In general, the

state space model fit well the collective responses, but mis-alignment was found

in the lateral and longitudinal inflow responses when compared to the free-wake

frequency responses. The state-space model of the inflow was written in first order

form to provide a straightforward extension to coaxial rotors of the well known

dynamic inflow model. However, it is possible that a higher order model could be

created to better capture the shape of the non-parametric frequency responses. Even

simple second order models for each of the given frequency responses would likely

improve the accuracy of the identification. Higher order models come at the cost of

model complexity and loss of insight into the physical meaning of the inflow states.

In the first order model presented, the states are the inflow coefficients. There is an

appeal in the simplicity of having the states be an exact quantity one can measure.

Further analysis would need to be done to determine the physical meaning of any

higher order states. For this reason, the first order model is used in this chapter,

and higher order analysis is reserved for subsequent chapters.
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Chapter 6: Higher Order Coaxial Rotorcraft Inflow

System Identification

6.1 Overview

The previous chapter completed a preliminary study of the flight dynamics of

coaxial configurations but the role of these inflow dynamic models in steady flight

and maneuvers has not yet been studied in depth. Additionally, Chap. 5 did not

take into account the effects of tip-path plane motion on the inflow. Refs. 81,82 show

the need for modeling the effects of wake distortion caused by movement of the tip-

path plane of single main rotor configurations, either through flap rates or through

body motions. In particular, for single main rotors these effects are necessary to

accurately predict the off-axis response of the aircraft. Wake distortion for the

coaxial rotorcraft was shown to be required for on-axis agreement with flight test

data [38]. The purpose of this chapter is to show an extension of the inflow model

system identification methodology to include rotor flapping and wake distortion.

As part of this extension, the method will also be extended to a case with

a coaxial rotor in forward flight. The identification of a low-order inflow model

for a closely-spaced coaxial configuration in forward flight requires particular care
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for several reasons. First, because the rotors are close, the aerodynamic couplings

between them are strong, and in general it cannot be assumed that, even at high

speed, there is no interference between the two wakes. Second, the physics of a coax-

ial configuration are such that significant correlation between inputs and outputs

exists. Finally, it has been shown [80] that coupling between inflow states and wake

curvature exists, and creates higher-order behavior in the inflow system. As a con-

sequence, the size of the inflow model tends to grow, and the number of parameters

to be identified becomes large.

The Higher order methodology used will be described in detail, including in

particular the determination of the higher order model structure and the challenges

posed by the significant size of the problem (of the order of one hundred parameters

to be identified).

Lastly this chapter will evaluate these inflow model’s effects on flight dynamics

and control. This chapter will explore the key effects of rotor inflow and interfer-

ence on the dynamics of a coaxial rotorcraft configurations, in comparison to an

inflow model without dynamic rotor interference. This chapter will also demon-

strate the design of explicit model-following feedback controllers, showing the effect

of inflow dynamics, including rotor-rotor interference, on the controller parameters

and resulting performance.
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6.2 Higher Order State-Space Model

It has been shown that tip-path plane motion causes wake distortions that

modify the dynamics of the wake [81], and that it is essential to include these effects

to achieve the correct aircraft response [82]. The extension, proposed in Ref. 81, of

the Pitt-Peters model to include the tip-path plane motion “KR” wake distortion

effects was shown in Eq.(2.29). The logical supposition is that these effects would

persist in a coaxial rotorcraft, though they may be modified by the rotor-rotor

interactions. A previous analysis of the performance and handling of the Sikorsky

X2 Technology Demonstrator [38] did include the effects of KR and was able to

adequately match flight test data.

More recently, a second order approach to wake distortion effects was proposed

[80] for a single main rotor which tries to interpret the wake distortion as phenomena

arising from changes in the far-wake and near-wake separately. The idea is that the

far-wake is mostly distorted by tip-path plane motion and the near wake is mostly

distorted by the aerodynamic forcing. However there is still intense coupling between

the two portions of the wake, and so this produces second order responses previously

shown in this dissertation and also in Refs. 80 and 79. These references were all

adequately fit with first-order systems with time delays, but appear to require a

second order ODE to properly fit their shape, and possibly remove the need for a

time delay.

The perception that a higher order model may be necessary is aligned with the

single main rotor results shown in Chap. 4. The inflow responses often looked like
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they needed a few more poles and zeros to accurately capture their values, though

they were likely captured well enough with the lower order models. The results for

KR in Sec. 2.2.2.5 showed that the wake distortion inflow response that was higher

order and required further dynamics (poles and zeros) to truly be captured by a

model. The coaxial results in Chap. 5 truly demonstrated the need for a higher

order model.

The new single main rotor form that was proposed in Ref. [80] takes the 3-state

Pitt-Peters model and turns it into a 5-state model where each harmonic inflow state

is replaced with two inflow states for that harmonic near and far portion. This form

is shown in Eq.(6.1), which is just for the lateral harmonic inflow, but the form is

identical for the longitudinal harmonic inflow.





˙∆λ1SN

˙∆λ1SF





=



F11 0

F21 F22








∆λ1SN

∆λ1SF





+



G11 G12

0 G22








∆CL

˙∆β1S





∆λ1S = ∆λ1SN + ∆λ1SF

(6.1)

It was found that allowing the average inflow to also hold the same form

provides much improved fit to the MFW data. Tip-path plane motion in the vertical

direction was not considered as an “input” to the system, but the wake was allowed

to distort due to the coupling with the near-wake. This is not an effect traditionally

captured by “KR” but wake contractions and expansions in the vertical direction are

highly visible in the far-wake when experiencing thrust perturbations. This rounds

out the full model for a single rotor to have 6 states; 3 near-wake and 3 far-wake.
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6.2.1 Twelve State Coaxial Rotor Inflow Model for Hover

This six state form can be extended to a hovering coaxial rotor system in much

the same way that the three state inflow system was extended to the coaxial rotor in

Chap. 5. The F and G matrices will have the initial form of 4 single-rotor six-state

models stacked in a 2x2 manner, resulting in 12x12 matrices, as shown in Eq.(6.3).





˙∆λU0N
˙∆λU0F
˙∆λU1SN
˙∆λU1SF
˙∆λU1CN
˙∆λU1CF
˙∆λL0N
˙∆λL0F
˙∆λL1SN
˙∆λL1SF
˙∆λL1CN
˙∆λL1CF





= [F ]





∆λU0N

∆λU0F

∆λU1SN

∆λU1SF

∆λU1CN

∆λU1CF

∆λL0N

∆λL0F

∆λL1SN

∆λL1SF

∆λL1CN

∆λL1CF





︸ ︷︷ ︸
λNF

+ [G]





∆CU
T

∆CU
L

˙∆βU1S

∆CU
M

˙∆βU1C

∆CL
T

∆CL
L

˙∆βL1S

∆CL
M

˙∆βL1C





︸ ︷︷ ︸
Cβ





∆λU0

∆λU1S

∆λU1C

∆λL0

∆λL1S

∆λL1C





︸ ︷︷ ︸
λ

=





∆λU0N

∆λU1SN

∆λU1CN

∆λL0N

∆λL1SN

∆λL1CN





︸ ︷︷ ︸
λN

+





∆λU0F

∆λU1SF

∆λU1CF

∆λL0F

∆λL1SF

∆λL1CF





︸ ︷︷ ︸
λF

(6.2)
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F =




0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




G =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0




(6.3)

and indicate upper and lower rotor (respectively) free

parameters in system identification

6.2.2 Twelve State Coaxial Rotor Inflow Model for Forward Flight

Inflow Models were also derived for the case of forward flight at 200 knots,corresponding

to an advance ratio of µ = 0.54. The rotor had an angle of attack of α = 2◦. In
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this trim condition, which is expected to be highly likely for high-speed flight of

coaxial-pusher configurations, the free stream encounters the lower rotor first, and

portions of the upper rotor may be immersed in the wake of the lower rotor. In

this case, there is full coupling between all the aerodynamic inputs and the inflow

outputs. For this case, all of the outputs respond to all of the inputs, creating a very

coupled system. Separation by axis can no longer be assumed as it was for hover,

and terms cannot be constrained to simplify the problem. Due to the difficulty of

this identification, wake distortions due to tip-path plane motion is neglected. Every

term in the 12 by 12 matrices of Eq.(2.35) is now potentially a free parameter to be

identified. However, it was decided that the [F ] matrix would still be a combination

of 6 blocks by 6 blocks, all of the form of the [F ] matrix shown in Eq.(6.1), at

least initially. Therefore, the higher order form for the [F ] matrix in Eq.(6.2.1) was

retained to capture the higher order behavior of the wake, which exist regardless of

tip-path plane perturbations (the wake does experience distortions to its geometry

even with only aerodynamic loading perturbations). The [G] matrix initially has all

free terms, but since the wake distortion due to tip-path plane motion is neglected,

the flap rates are not included as inputs and the [G] matrix only has six columns,

corresponding to the six coaxial rotor aerodynamic loading terms.

Additional details on the structure of the model are provided by Eq.(6.7). The

free parameters (blue and red squares indicate the upper and lower rotor parameters,

respectively) are all obtained for the identification.
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



˙∆λU0N
˙∆λU0F
˙∆λU1SN
˙∆λU1SF
˙∆λU1CN
˙∆λU1CF
˙∆λL0N
˙∆λL0F
˙∆λL1SN
˙∆λL1SF
˙∆λL1CN
˙∆λL1CF





= [F ]





∆λU0N

∆λU0F

∆λU1SN

∆λU1SF

∆λU1CN

∆λU1CF

∆λL0N

∆λL0F

∆λL1SN

∆λL1SF

∆λL1CN

∆λL1CF





︸ ︷︷ ︸
λNF

+ [G]





∆CU
T

∆CU
L

∆CU
M

∆CL
T

∆CL
L

∆CL
M





︸ ︷︷ ︸
C

(6.4)





∆λU0

∆λU1S

∆λU1C

∆λL0

∆λL1S

∆λL1C





︸ ︷︷ ︸
λ

=





∆λU0N

∆λU1SN

∆λU1CN

∆λL0N

∆λL1SN

∆λL1CN





︸ ︷︷ ︸
λN

+





∆λU0F

∆λU1SF

∆λU1CF

∆λL0F

∆λL1SF

∆λL1CF





︸ ︷︷ ︸
λF

(6.5)

190



where:

F =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(6.6)

G =







(6.7)

and indicate upper and lower rotor (respectively) free

parameters in system identification

Eq.(6.2) and Eq.(6.5), for hover and forward flight, both have no time delays.

In Chaps. 4 and 5, time delays were used to model approximately the higher order

dynamics that could not be captured with the first order form. In particular, they

helped capture the phase roll-off that made the error of the state space model quite

high if the time delays were not included. The time delays needed to be converted
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to ODEs using Padé approximations for the model to be rigorously in state-space

form, and this changed the 6 state inflow equation into a system with 32 states. So

with the form of Eq.(6.2), the complexity is actually reduced because there are no

time delays, and therefore fewer states.

6.3 Frequency Response Generation

For forward flight, when wake distortion due to tip-path plane motion is ne-

glected, the frequency response generation is performed the same as in Chap. 5.

The tip-path plane effects are incorporated in the model for hover, however, so the

inflow responses to blade flapping must be identified, as described in Sec. 4.7. The

Joint Input Output method of Sec. 3.3.5 is used as shown in Eq.(4.11), with the

one difference being that each vector is now twice the length, containing both an

upper and lower rotor portion, as was done in Chap. 5. The parametric model is

then found by assuming that the form of the system is as shown in Eq.(6.2), and de-

termining the elements of the matrices [F ] and [G] that best fit the non-parametric

models, both λ(s)/∆C(s) and λ(s)/∆β̇(s).

For a coaxial rotorcraft, it is important to note that flap-inflow coupling may

look quite different than a single main rotor. In Ref. 81, wake curvature was the

motivation behind the extended momentum theory, but in the coaxial case there

is also added effect that rotor spacing is essentially changing with tip-path plane

motion, and rotor-rotor interference therefore may fluctuate. Also there are really

two sets of wake trailers, one for each rotor, with the upper rotor wake inside (most
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of the time) the lower rotor wake. Tip-path plane motion of one rotor is therefore

quite likely to distort the wake of the other rotor.

6.4 State Space Parameter Identification Challenges and Techniques

The new state space model forms present new challenges for the procedure of

identifying the optimal values to fit the non-parametric frequency responses. Most

complex optimization problems are not purely convex in nature and therefore do

not have only a single optimal solution. Many problems have multiple local minima

in addition to the global minima. As the number of design variable increases, the

likelihood of additional minima is generally increased. State-space identification is

no different [63]. The optimization algorithm often will get stuck in local minima,

or in minima that don’t satisfy certain requirements for an optimal solution. In past

chapters, these concerns were mostly non-existent because the number of terms to

identify was much smaller. However, the complexity of the number of additional

terms in this chapter places a burden on the designer to satisfy multiple constraints

for the optimal values chosen.

6.4.1 Stability requirements

The first requirement, which is that the state-space inflow model be stable,

follows from physical considerations. First, if the full, nonlinear MFW simulation

is unstable to perturbations in aerodynamic loading, then the inflow time histories

would be diverging with perturbations of the aerodynamic loading. But this is not
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seen in any of the frequency sweeps indicating that the state-space inflow system

should always be stable. Secondly, time verification will not succeed if the system is

unstable because the state-space inflow model will diverge and not match the MFW.

So the state-space identification procedure needs to always identify a stable inflow

state-space system. The simplest of stability is to compute eigenvalues of the inflow

model and verify that the real parts are all less than zero.

There was no practical was to add a stability constraint in the software used

in this study [63] to perform the identification. Therefore, the approach taken

was to start with a stable solution and repeatedly check the stability of the state-

space inflow model (through eigenvalue computation) throughout the optimization

to ensure that the optimization does not lead to an unstable state-space model. This

happens quite frequently, typically when parameters are added or removed from the

model. In a highly coupled system like Eq.(eq:FFInflowDef), changes in parameters

can very easily change the value of one or more of the twelve eigenvalues, so that

they have negative values. When the solution does go unstable, the parameters are

reverted to the last known stable solution.

6.4.2 Sensitivity and Cramer-Rao Bounds Requirements

State-space models in the form of Eq.(6.2) or Eq.(6.5) must be checked to

ensure that they are not over-parameterized. This means that there are correlated

or insensitive parameters in the matrices that are not necessary to describe the

dynamics. Those parameters will have high Cramer-Rao bounds, Eq.(3.16), or high
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insensitivities, Eq.(3.15). The free parameters in Eqs.(6.2) and (6.5) are those with

which the optimization is started. The insensitivities and Cramer-Rao percentages

must be scrutinized, as stated in Chap. 3. Parameters that are too insensitive

(I i > 10%) or have too high of Cramer-Rao bounds (CRi > 20%) should be removed

[63]. This has not changed from the previous identifications, it has just become

much more common, given the complexity of these systems. As a result, the final

optimizations will be shown to fix many of the parameters and set them to zero.

6.4.3 Initial Conditions

It is especially important to start with a good initial guess of the identification

parameters for this very complex model structure. Choosing the initial condition

can be a difficult process. One solution that tends to work is to first identify the

first order system as shown in Chap. 5. With a first order system identified, the

additional states of this chapter can then be added, with zeroes in their locations.

At that point the system will still have the same cost and behavior because all of the

second order terms are zero. The user can then fix the first order terms and allow

the second order terms to optimize on their own. This produces a system that is a

pretty good initial guess. It has an advantage that the states are “sorted” into first

and second order states, and the user can easily turn off either part by manipulating

the output matrix. This system can then be further optimized by freeing all of the

parameters at once.
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Another approach commonly recommended [63], is to first fit the primary

responses and then subsequently add the remaining responses. In this case this could

mean first fitting the two on-rotor portions of the matrices only using the on-rotor

frequency responses and ignoring the mutual interference frequency responses. Once

the two rotors are fit separately, the on-axis terms can be fixed and the remaining

frequency responses added. The optimization will then provide a solution that fits

the other frequency responses while hopefully not changing the on-axis responses too

significantly. From this solution, often times, every parameter can be freed and the

optimization will likely approach a well behaved solution. The key is that optimizing

with less parameters involved first, allows the optimization to better navigate the

non-linear equations, and keeps the routine from moving too far away from desirable

solutions.

The above two approaches were combined to obtain the results for this chapter.

For clarity, the notation F{i, j} or G{i, j} is used to denote the i-th row, j-th column

element of either the [F ] or [G] matrices. For both hover and forward flight, the

initial model was produced using the following steps.

1. First, fit the on-rotor diagonal responses with first order terms only. This

means only using the responses λU0 /C
U
T , λU1c/C

U
M , λU1s/C

U
L , λL0 /C

L
T , λL1c/C

L
M ,

and λL1s/C
L
L in the cost function. For hover, every parameter in Eq.(6.2) is

fixed to zero except F{1, 1}, F{3, 3}, F{5, 5}, F{7, 7}, F{9, 9}, F{11, 11},

G{1, 1}, G{3, 2}, G{5, 4}, G{7, 6}, G{9, 7}, and G{11, 9}. For forward flight,

every parameter in Eq.(6.5) is fixed to zero except F{1, 1}, F{3, 3}, F{5, 5},
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F{7, 7}, F{9, 9}, F{11, 11}, G{1, 1}, G{3, 2}, G{5, 3}, G{7, 4}, G{9, 5}, and

G{11, 6}. This subset of the parameters is optimized to the subset of frequency

responses. Ensure that the state-space system is stable. This may require some

manual flipping of signs of some parameters.

2. Next, fix the parameters from step 1 to their optimized values, and free the

first order off-rotor parameters F{1, 7}, F{3, 9}, F{5, 11}, F{7, 1}, F{9, 3},

F{11, 5}. Also, for hover, free G{1, 6}, G{3, 7}, G{5, 9}, G{7, 1}, G{9, 2},

and G{11, 4}. For forward flight, also free G{1, 4}, G{3, 5}, G{5, 5}, G{7, 1},

G{9, 2}, and G{11, 3}. Add in the off-rotor frequency responses: λU0 /C
L
T ,

λU1c/C
L
M , λU1s/C

L
L , λL0 /C

U
T , λL1c/C

U
M , and λL1s/C

U
L . Once again optimize param-

eters, and ensure stability.

3. Now free all the non-zero parameters from steps 1 and 2 and optimize together,

while ensuring stability. This produces a state-space inflow model that is

similar to that found in Chap. 5 for a hovering coaxial rotor.

4. For forward flight only, the extended couplings need to be added to this system.

This is best done slowly, by repeating the following steps:

(a) Fix all non-zero parameters

(b) Choose an off-axis frequency response or pair of frequency responses to

add, e.g. λU0 /C
L
M and λU0 /C

L
M .

(c) Free the zero-valued (not yet used) parameters that should have a large

impact on these responses. These are typically terms that have rows and
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columns corresponding to the given inputs and outputs in the chosen

responses. For the given example, this would be terms in the first row

of both matrices. For the [F ] matrix, only odd columns are chosen, so

F{1, 3}, F{1, 5}, F{1, 9}, F{1, 11}. In the [G] matrix, free the given

control of the pair, CL
M , which corresponds to G{1, 6}. Optimize this

subset of parameters, and unsure stability.

(d) The parameters used in the previous step may not all be impactful on the

given responses. The insensitivity of the parameters should be checked

and parameters with very high insensitivities should be set back to a

fixed value of zero. The guideline for insensitive parameters is that the

insentivity of a parameter should not exceed I i > 10% [63], however for

this procedure a much higher threshold is suggested, potentially even

I i > 100%. Highly insensitive parameters will be removed from the

system later, but it is best to, for now, only remove parameters that

seem to have essentially no impact. In the example, F{1, 3} may end up

being very insensitive because it describes the affect of λU1s on λU0 which

is not very relevant to the already added frequency responses. Therefore

it might be set back to zero and fixed. If this is done the free parameters

should be re-optimized.

(e) Now all of the non-zero parameters (which have been used so far), or some

subset that makes sense given the frequency responses that were added,
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should be freed and re-optimized, while ensuring stability. Another check

for really insensitive parameters may be useful again.

this will slowly build the matrices from the ground up, ensuring stability, and

keeping some really insensitive parameters out of the system.

5. For hover only, the first order flap rate terms and frequency responses need to

be added. First fix all non-zero parameters. Add in frequency responses

λU1s/
∗
βU1s, λ

U
1c/
∗
βU1c, λ

U
1s/
∗
βL1s, λ

U
1c/
∗
βL1c, λ

L
1s/
∗
βU1s, λ

L
1c/
∗
βU1c, λ

L
1s/
∗
βL1s, and λL1c/

∗
βL1c.

free the parameters G{3, 3}, G{5, 5}, G{7, 8}, G{9, 10}, G{3, 8}, G{5, 10},

G{9, 3}, and G{11, 5}. Optimize and ensure stability.

6. The system will now be a system in which half of the states do nothing, because

the even rows should be all zeros. Therefore, it is still first order in the sense

that there is one output for each state. For hover, it is likely that the remainder

of the zero fixed parameters can be freed and optimized without leading the

optimization to a local minima/unstable solution. For forward flight, there are

likely too many remaining terms to all be added at once. Instead, a procedure

similar to step 4 should be performed, to slowly add in the remaining terms.

The only difference would be that, at this point, all of the frequency responses

have been added, so step 4(b) would be skipped.

6.4.4 Model Reduction due to Insensitivity and Cramer-Rao Bounds

With a fully populated, or close to fully populated, matrices from Eq.(6.2)

or Eq.(6.5), there are likely either insensitive parameters or parameters with high
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Cramer-Rao bounds. In the single main rotor case, no parameters were ever removed

because the system is already parameterized by so few variables. In the 12 state

forward flight model, Eq.(6.7) shows 180 parameters. Nearly half of them need be

removed in the result that will be shown.

The process for removing them is fairly straight-forward. The goal is for all

parameters to achieve under 10% insensitivity and under 20% Cramer-Rao bound

percentages. The highest insensitivities should be removed first. Every time a

parameter is removed, the new solution should be converged and checked to ensure

that the solution has stayed stable and the cost function has not risen too abruptly,

not more than about 5%. Ref. 63 gives a guideline that a single frequency responses

cost should not rise by more than 10 and the average cost should not rise more than 1-

2. If either of these constraints fails, then the previous parameters should be restored

and the next most insensitive parameter should be tried. Some experimentation may

be needed to determine which parameter really is best to be removed. Once all the

remaining free parameters are below 10% insensitivity, parameters with Cramer-Rao

bound percentages above 20% should start to be removed, with the same deference

to the stated constraints. If the insensitive parameters are becoming difficult to

remove, the highest Cramer-Rao bound percentage could be removed instead. The

procedure can be automated with great care and thoughtful logic. Figure 6.1 gives

an outline of the algorithm that was used to complete the parameter reduction.

200



Revert to previous 

matrices

Compute insensitivities 𝐼𝑖
and Cramer-Rao bounds 𝐶𝑅

Fix top parameter 

𝚯𝐬𝐨𝐫𝐭 1 = 0
in matrices

Optimization 

finished

Optimize all free

parameters

True FalseΔ𝐽𝐴𝑉𝐸 < +2
and State-space

model stable 

Make sorted parameter 

list, 𝚯𝐬𝐨𝐫𝐭:

first, largest to smallest 𝐼𝑖
only including parameters 

with 𝐼𝑖 > 10%,

then, largest to smallest 𝐶𝑅𝑖
only including parameters 

with 𝐶𝑅𝑖 > 20%,

True False𝚯𝐬𝐨𝐫𝐭

empty?

Remove top 

parameter 𝚯𝐬𝐨𝐫𝐭(1)
from list 𝚯𝐬𝐨𝐫𝐭

Start:

fully populated,

over-parameterized

state-space model

Figure 6.1: Flowchart of algorithm used for reducing parameters with
high insensitivity or high Cramer-Rao bounds
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6.5 Results for Hover Model

The coaxial rotor, described in Appendix B, was trimmed in hover, with trim

CT for the upper and lower rotors are 0.0053 and 0.0043, respectively. Frequency

responses were then generated through frequency sweeps.

6.5.1 Frequency Responses

The frequency responses λ(s)/C(s) for the coaxial configuration are shown in

Figs 6.2 to 6.7. In all figures solid lines indicate the frequency responses obtained

with the full, nonlinear MFW, the dashed lines those obtained with the identified

state-space model.

Figures 6.2 and 6.3 show the responses of upper and lower rotor average in-

flow, λU0 and λL0 , to upper rotor and lower rotor thrust perturbations CU
T and CL

T ,

respectively. The costs J of the state-space models are listed on each figure and all

indicate excellent fits.

The fit is generally very good for both sets of responses, giving confidence in

the model structure used.

Figure 6.4 and 6.5 show the responses of lateral harmonic inflow λ1s to upper

rotor and lower rotor roll moment perturbations, CU
L and CL

L , respectively.

The upper rotor roll moment CU
L responses, Fig 6.4, shows significant second-

order attributes and provide excellent fits with the proposed form. The lower rotor

roll moment CL
L responses, Fig 6.5 also show some higher-order behavior but only

fit adequately with the proposed form. The lower rotor lateral inflow λL1s response
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Figure 6.2: Average inflow response λ0 to upper rotor thrust CU
T for both

rotors in hover. Trim CT for the upper and lower rotors are 0.0052 and
0.0043, respectively. Solid line, MFW, dashed line, state-space model.

to lower rotor roll moment has a cost of 108.9 but it very similar in magnitude

to the lower rotor lateral inflow λL1s response to upper rotor roll moment CU
L . It

is important to note that the upper rotor effect on the lower rotor is nearly as

important as lower rotor effect on itself, as shown by the similar magnitudes of the
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Figure 6.3: Inflow response of λ0 on both rotors to lower rotor thrust
CL
T ; Solid line, MFW, dashed line, state-space model.

responses. The model must capture both of these accurately, which it does. The

upper rotor lateral inflow λU1s response to lower rotor roll moment CL
L has the highest

cost of 158.6, but it is also the lowest in magnitude of any of the responses, so this

high cost is deemed acceptable. Overall, the greatly improved cost functions for the
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Figure 6.4: Inflow response of λ1S on both rotors to upper rotor roll
moment CU

L ; Solid line, MFW, dashed line, state-space model.

higher order inflow dynamics model validate this higher order structure. Table 6.1

compares the cost of the 12-state and the 6-state model from Chapter 5. In most

individual frequency responses, the cost of the higher order fit decreased, indicating

a better fit, and the overall average cost decreased by 55%.
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Figure 6.5: Inflow response of λ1S on both rotors to lower rotor roll
moment CL

L ; Solid line, MFW, dashed line, state-space model.

The λ(s)/β̇(s) type responses are shown next, which help determine the wake

distortion effects. Figures 6.6 and 6.7 show the frequency response of both rotors

lateral harmonic inflow λ1s to the upper and lower rotor cyclic flapping rate, β̇U1S

and β̇L1S. The model structure is able to capture all the responses fairly well. There
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Table 6.1: Cost J of 12 state model and 6 state model from Chap. 5

Response J (6 state) J (12 state)

λU0 (s)/CU
T (s) 3.7 5.0

λL0 (s)/CU
T (s) 17.2 11.1

λU1C(s)/CU
M(s) 204.0 48.6

λL1C(s)/CU
M(s) 178.1 39.1

λU1S(s)/CU
L (s) 204.1 48.6

λL1S(s)/CU
L (s) 177.7 39.1

λU0 (s)/CL
T (s) 85.3 3.6

λL0 (s)/CL
T (s) 28.8 5.9

λU1C(s)/CL
M(s) 115.8 158.6

λL1C(s)/CL
M(s) 463.6 108.9

λU1S(s)/CL
L(s) 115.1 158.6

λL1S(s)/CL
L(s) 462.5 108.9

Average Cost 171.3 77.0

are clearly additional dynamics present in the frequency responses, but the form

used captures accurately the key response characteristic.
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Figure 6.6: Inflow response of λ1S on both rotors to upper rotor cyclic

flapping rate ˙βU1S; Solid line, MFW, dashed line, state-space model.
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Figure 6.7: Inflow response of λ1S on both rotors to lower rotor cyclic

flapping rate ˙βL1S; Solid line, MFW, dashed line, state-space model.

209



were calculated and remained similar in value and form to those shown in

Chap. 5, though small changes have occurred due to configuration changes and

additional modeling considerations. The parametric models for each λ(s)/C(s) pair

have improved due to the better ability of the new second-order form to match

the MFW data. The model follows the form shown in Eq.(2.30), with the final

identification giving the matrices shown in Eqs.(6.8) and (6.9). The percentages

listed in the matrices given by Eqs.(6.10) and (6.11) correspond to the identified

model’s Cramer-Rao Bound percentages for the parameter in the same row and

column in Eqs.(6.8) and (6.9). These indices are a measure of parameter uncertainty

and its importance to the model structure [63]. The low values for both Cramer-

Rao show the model is well identified with minimal uncertainty and parameter

correlation. Only heave and lateral axis results will be presented. Since the rotors

are in hover, the longitudinal response matches the lateral one.

F = (6.8)


9.03 0 0 0 0 0 −10.26 0 0 0 0 0

0 −6.85 0 0 0 0 0 0 0 0 0 0

0 0 −9.73 0 0 0 0 0 4.39 0 0 0

0 0 0 −4.83 0 0 0 0 −2.40 0.394 0 0

0 0 0 0 −9.73 0 0 0 0 0 4.39 0

0 0 0 0 0 −4.83 0 0 0 0 −2.40 0.394

19.26 0 0 0 0 0 −18.37 0 0 0 0 0

0 0 0 0 0 0 0 −5.27 0 0 0 0

0 0 12.11 0 0 0 0 0 −9.39 0 0 0

0 0 0 −5.60 0 0 0 0 −3.27 0 0 0

0 0 0 0 12.11 0 0 0 0 0 −9.39 0

0 0 0 0 0 −5.60 0 0 0 0 −3.27 0



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G = (6.9)


7.08 0 0 0 0 36.12 0 0 0 0

0 0 0 0 0 −39.59 0 0 0 0

0 94.12 −0.165 0 0 0 0 0.287 0 0

0 0 −0.0840 0 0 0 0 −0.254 0 0

0 0 0 −94.12 −0.165 0 0 0 0 −0.287

0 0 0 0 −0.0840 0 0 0 0 0.255

0 0 0 0 0 44.43 0 0 0 0

0 0 0 0 0 −39.59 0 0 0 0

0 −43.13 0 0 0 0 90.0 0.586 0 0

0 0 0 0 0 0 0 −0.330 0 0

0 0 0 43.13 0 0 0 0 −90.0 −0.586

0 0 0 0 0 0 0 0 0 0.330




F matrix Cramer-Rao Bound % = (6.10)


36.87 0 0 0 0 0 29.71 0 0 0 0 0

0 16.17 0 0 0 0 0 0 0 0 0 0

0 0 3.72 0 0 0 0 0 4.46 0 0 0

0 0 0 3.99 0 0 0 0 7.23 14.42 0 0

0 0 0 0 3.72 0 0 0 0 0 4.46 0

0 0 0 0 0 3.99 0 0 0 0 7.23 14.42

19.74 0 0 0 0 0 20.44 0 0 0 0 0

0 0 0 0 0 0 0 11.81 0 0 0 0

0 0 7.26 0 0 0 0 0 8.33 0 0 0

0 0 0 7.93 0 0 0 0 7.44 0 0 0

0 0 0 0 7.26 0 0 0 0 0 8.33 0

0 0 0 0 0 7.93 0 0 0 0 7.44 0



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G matrix Cramer-Rao Bound % = (6.11)


15.63 0 0 0 0 24.63 0 0 0 0

0 0 0 0 0 22.76 0 0 0 0

0 4.10 6.25 0 0 0 0 8.47 0 0

0 0 5.94 0 0 0 0 9.26 0 0

0 0 0 4.10 6.25 0 0 0 0 8.47

0 0 0 0 5.94 0 0 0 0 9.26

0 0 0 0 0 19.62 0 0 0 0

0 0 0 0 0 22.76 0 0 0 0

0 12.01 0 0 0 0 5.33 6.64 0 0

0 0 0 0 0 0 0 10.33 0 0

0 0 0 12.01 0 0 0 0 5.323 6.64

0 0 0 0 0 0 0 0 0 10.33




6.5.2 Time Verification

This section contain time domain responses of rotor flapping and inflow com-

ponents. These are used as verification of the inflow state-space model with the

form of Eq.(6.2) and the matrices shown in Eqs. (6.8) and (6.9).

In Fig. 6.8, the swashplate input (not shown in the figure) is a doublet of

lateral cyclic stick at the upper rotor θU1s of magnitude 1◦. The top plot in the figure

shows the aerodynamic roll moment coefficients CU
L and CL

L for upper and lower

rotor, respectively. The second plot shows the corresponding lateral flapping rates

β̇U1s and β̇L1s. The third plot shows the response of the lateral inflow component λU1s

for the upper rotor. There are three curves: (i) the response computed using the full

nonlinear MFW; (ii) the response computed using the identified state-space inflow

model, including the wake distortion effects; and (iii) the same response as (ii) but

without the wake distortion effects. The fourth and final plot contains the same
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information, but for the lower rotor. The results indicate that neglecting the effects

of wake distortion causes the identified model to overpredict the magnitude of the

λU1s peak, and to anticipate the second peak of both λU1s and λL1s.

Figure 6.9 has the same general arrangement as Fig. 6.8, except that it shows

the responses to the same lateral cyclic doublet, but applied to the lower rotor, i.e.,

θL1s. The β̇L1s response is very similar to the β̇U1s of Fig. 6.8, whereas the upper rotor

flap rate is very small. The agreement of the MFW and the state-space predictions

including wake distortion is nearly perfect for λU1s, whereas neglecting wake distortion

underpredicts and anticipates the response peaks. The agreement is generally not

as good as for λL1s, but in this case too including wake distortion effects improves

the fit.

Finally, Fig. 6.10 shows the case of a swashplate doublet of both upper and

lower rotor collective pitch θ0 of magnitude 1◦. The top plot in the figure shows

the corresponding values of the thrust coefficients CU
T and CL

T . The lower two plots

show the constant portion λ0 of the inflow for the upper and lower rotor, respectively.

Each of these plots shows only two curves, namely, the free wake predictions and

those of the identified state-space model. In this essentially symmetric condition,

the effects of wake distortion are negligible. For both inflow components, the state-

space model matches almost perfectly the free wake results through the two peaks

of the response. There is a small discrepancy (about 10% of the total excursion) in

the transient following the end of the input, and agreement is again nearly perfect

when returned to steady-state.
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Figure 6.8: Time verification of the lateral inflow λ1S response to roll
moment CL and cyclic flapping ˙β1S produced by a lateral stick doublet.
State-space model with and without wake distortion (WD) shown.
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Figure 6.9: Time verification of the lateral inflow λ1S response to roll
moment CL and cyclic flapping ˙β1S produced by a lower rotor swashplate
doublet. State-space model with and without wake distortion (WD)
shown.
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6.6 Results for Forward Flight

The coaxial rotor, described in Appendix B, was trimmed at 200 knots, with

time averaged trim CT for the upper and lower rotors of around 0.0073 and 0.0065,

respectively. The coaxial rotor was trimmed with enough propeller thrust to meet

a trim target angle of attack of α = 2◦. Frequency responses were then generated

through frequency sweeps.

6.6.1 Frequency Responses

This section presents an extensive set of frequency responses for various combi-

nations of aerodynamic loading inputs and inflow component outputs. In all figures,

solid lines indicate the frequency responses obtained with the full, nonlinear MFW,

the dashed lines those obtained with the identified state-space model. The specific

combinations and the corresponding figures are listed here in tabular form:

Table 6.2: Table of figures for the different responses of inflow components to aero-
dynamic loading

Outputs

λU0 , λL0 λU1S, λL1S λU1C , λL1C

Inputs

CU
T 6.11 6.12 6.13

CL
T 6.14 6.15 6.16

CU
L 6.17 6.18 6.19

CL
L 6.20 6.21 6.22

CU
M 6.23 6.24 6.25

CL
M 6.26 6.27 6.28
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The first observation is that for all the frequency responses, the coherence

is relatively high. All are above .75 at all frequencies, which is well within the

guidelines of acceptable coherence of [63], indicating that the inflow dynamics are

well represented by a linear system.

The next very interesting observation that can be made is that, in general,

a rotor aerodynamic loading perturbation has a larger effect on the inflow of that

same rotor than on the the inflow of the other rotor. This is shown in the upper

rotor aerodynamic loading responses (Figs. 6.11-6.13,6.17-6.19, and 6.23-6.25) by

the magnitude curve for the upper rotor inflow coefficient always lying above the

lower rotor inflow coefficient. Similarly, for the lower rotor aerodynamic loading

responses (Figs. 6.14-6.16,6.20-6.22, and 6.26-6.28), the magnitude curve for the

lower rotor inflow coefficient is generally below the lower rotor inflow coefficient. The

gap between the magnitude of the responses varies in magnitude for each response,

and within each response with frequency. At the low frequency, the difference is

typically between 3.5 and 18 dB, which corresponds to the off-rotor responses being

somewhere between 12 and 67 % of the magnitude of the response of the on-rotor

inflow response. For example, Fig. 6.11 shows the average inflow response of λ0 on

both rotors to a perturbation of upper rotor thrust CU
T . The upper rotor average

inflow λU0 response magnitude is about 8.5 dB above that of the lower rotor inflow,

or about a factor of 2.7. This means that when the thrust changes on the upper

rotor, the average inflow on the upper rotor changes, but also the lower rotor average

inflow changes about 38% as much. This is still a significant coupling between the

two rotors, and should not be ignored when modeling inflow dynamics.
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This general observation is also not always true. For example, Fig. 6.19, which

shows the response of average inflow on both rotors to lower rotor roll moment CL
L ,

looks different at some frequencies. At frequencies above 3 rad/sec, the on-rotor

response (λL0 response to CL
L) is larger in magnitude than the off-rotor response

(λU0 response to CL
L). But below 3 rad/sec, this is flipped, indicating that slow

perturbations of lower rotor roll moment CL
L have larger off-rotor effects than on-

rotor effects when it comes to average inflow λ0.
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Figure 6.11: Inflow response of λ0 on both rotors to upper rotor thrust
CU
T ; Solid line, MFW, dashed line, state-space model.

220



100 101

Frequency [rad/sec]

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Upper Rotor 6
1S

Lower Rotor 6
1S

-315°

-270°

-225°

-180°

P
ha

se

-10

0

10

20
M

ag
ni

tu
de

 [d
B

]

Figure 6.12: Inflow response of λ1S on both rotors to upper rotor thrust
CU
T ; Solid line, MFW, dashed line, state-space model.
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Figure 6.13: Inflow response of λ1C on both rotors to upper rotor thrust
CU
T ; Solid line, MFW, dashed line, state-space model.
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Figure 6.14: Inflow response of λ0 on both rotors to lower rotor thrust
CL
T ; Solid line, MFW, dashed line, state-space model.
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Figure 6.15: Inflow response of λ1S on both rotors to lower rotor thrust
CL
T ; Solid line, MFW, dashed line, state-space model.
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Figure 6.16: Inflow response of λ1C on both rotors to lower rotor thrust
CL
T ; Solid line, MFW, dashed line, state-space model.
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Figure 6.17: Inflow response of λ0 on both rotors to upper rotor roll
moment CU

L ; Solid line, MFW, dashed line, state-space model.
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Figure 6.18: Inflow response of λ1S on both rotors to upper rotor roll
moment CU

L ; Solid line, MFW, dashed line, state-space model.
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Figure 6.19: Inflow response of λ1C on both rotors to upper rotor roll
moment CU

L ; Solid line, MFW, dashed line, state-space model.
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Figure 6.20: Inflow response of λ0 on both rotors to lower rotor roll
moment CL

L ; Solid line, MFW, dashed line, state-space model.
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Figure 6.21: Inflow response of λ1S on both rotors to lower rotor roll
moment CL

L ; Solid line, MFW, dashed line, state-space model.
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Figure 6.22: Inflow response of λ1C on both rotors to lower rotor roll
moment CL

L ; Solid line, MFW, dashed line, state-space model.
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Figure 6.23: Inflow response of λ0 on both rotors to upper rotor pitching
moment CU

M ; Solid line, MFW, dashed line, state-space model.
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Figure 6.24: Inflow response of λ1S on both rotors to upper rotor pitching
moment CU

M ; Solid line, MFW, dashed line, state-space model.
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Figure 6.25: Inflow response of λ1C on both rotors to upper rotor pitching
moment CU

M ; Solid line, MFW, dashed line, state-space model.
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Figure 6.26: Inflow response of λ0 on both rotors to lower rotor pitching
moment CL

M ; Solid line, MFW, dashed line, state-space model.
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Figure 6.27: Inflow response of λ1S on both rotors to lower rotor pitching
moment CL

M ; Solid line, MFW, dashed line, state-space model.
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Figure 6.28: Inflow response of λ1C on both rotors to lower rotor pitching
moment CL

M ; Solid line, MFW, dashed line, state-space model.
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The costs of the fits to each of the 36 frequency responses are grouped in

Table 6.6.1. All of the costs are low except the lower rotor average inflow response

λL0 to upper rotor roll moment CU
L and to lower rotor pitching moment CL

M . However,

these are very small responses, and are only included in the best fit optimization

for the purpose of keeping the same responses from the state-space model also low

in magnitude. The high cost, i.e. the inaccuracy of the fit, is not particularly

important because amplitude are very low.

Table 6.3: Cost of parameterizations of the frequency responses for the 12 state

model in forward flight; each row corresponds to an output and each column corre-

sponds to an input.

÷ CU
T CU

L CU
M CL

T CL
L CL

M

λU0 15.6 15.3 14.1 32.2 17.1 44.8

λU1S 9.5 11.1 8.3 6.5 10.3 8.7

λU1C 10.2 9.6 6.1 8.8 10.1 25.6

λL0 32.4 337.4 20.1 17.7 42.0 217.2

λL1S 3.4 6.2 4.3 64.4 12.0 15.6

λL1C 14.8 27.9 20.2 20.4 49.2 79.4

Average Cost 77.0

The model follows the form shown in Eq.(6.5), with the identification giving

the numerical value of the matrices shown in Eqs.(6.12) and (6.13).

238



F =

[
FUU FUL
FLU FLL

]
(6.12)

where:

FUU =




−4.85 0 0.95 0 0.99 0

0 2.76 0 1756.4 −0.91 0

−0.41 0 −5.26 0 5.31 0

−0.054 −0.11 0 −59.32 0.036 −4.71

0 0 −2.56 0 −6.39 0

0 0.32 0 243.79 −0.12 15.64




FUL =




0 0 0.69 0 −2.06 0

3.68 −82.89 1.12 −3.15 0 31.53

2.95 0 1.17 0 0.64 0

0 2.46 0 0.081 0 −1.00

−3.03 0 −1.23 0 −0.31 0

0.46 −10.44 0 −0.40 0 4.19




FLU =




1.75 0 0 0 0 0

0 −2.45 0 0 0 −148.75

−7.75 0 3.08 0 1.88 0

14.72 194.98 0 0 −2.96 −1072.7

0 0 −1.79 0 0 0

2.34 0 0 0 −0.63 −425.11




FLL =




−5.80 0 0 0 −1.65 0

0 0 2.01 0 −0.057 0

0 0 −5.30 0 0 0

0 −315.92 0 −12.19 0 59.07

10.44 0 1.55 0 −3.08 0

−3.47 0 5.84 0 0 0



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G =




17.13 −14.09 6.13 4.99 5.99 −2.26

0 0 0 −1.82 0 16.80

−45.82 107.77 −22.32 0 0 0

0 0 0 0 0 −0.55

18.65 −39.79 −54.23 0 0 0

0 0 0 −0.41 0 2.28

3.72 0 −2.48 13.24 17.86 7.13

0 0 0 0 0 0

0 −28.97 0 11.26 59.26 6.82

0 33.85 0 0 0 0

0 12.22 0 0 11.91 0

0 0 −1.88 0 0 0




(6.13)

The percentages listed in the matrices of Eqs.(6.14) and (6.15) correspond to

the Cramer-Rao Bound percentages for the parameter of the identified model in the

same row and column in Eqs.(6.12) and (6.13).
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F matrix

Cramer-Rao

Bound %

=

[
FCR
UU FCR

UL

FCR
LU FCR

LL

]
(6.14)

where:

FCR
UU =




9.9 0 16.6 0 16.9 0

0 16.3 0 9.0 17.2 0

29.6 0 5.9 0 6.3 0

10.1 14.3 0 7.7 15.3 12.1

0 0 11.1 0 4.9 0

0 16.5 0 8.9 17.0 8.9




FCR
UL =




0 0 31.0 0 14.1 0

17.8 6.0 16.7 7.7 0 2.3

9.2 0 12.4 0 25.4 0

0 8.9 0 10.6 0 8.4

9.2 0 11.8 0 45.1 0

13.7 6.3 0 8.5 0 3.0




FCR
LU =




12.6 0 0 0 0 0

0 11.8 0 0 0 8.8

11.1 0 10.8 0 17.1 0

11.2 8.2 0 0 16.8 10.7

0 0 6.8 0 0 0

9.4 0 0 0 19.5 8.6




FCR
LL =




7.7 0 0 0 13.4 0

0 0 10.7 0 17.2 0

0 0 8.1 0 0 0

0 9.4 0 9.1 0 12.7

8.9 0 18.5 0 7.1 0

25.4 0 10.1 0 0 0




241



G matrix

Cramer-Rao

Bound %

=




5.6 12.7 18.7 14.0 29.8 17.4

0 0 0 19.4 0 15.4

4.2 4.3 14.6 0 0 0

0 0 0 0 0 20.6

9.1 9.7 5.1 0 0 0

0 0 0 13.7 0 15.8

9.8 0 10.4 6.8 8.0 7.1

0 0 0 0 0 0

0 18.5 0 14.0 5.5 20.1

0 15.9 0 0 0 0

0 12.0 0 0 19.6 0

0 0 16.1 0 0 0




(6.15)

Some of the Cramer-Rao bound percentages were above the recommended

level of 20% but the parameters could not be removed because doing so caused the

cost function Jave to increase too sharply, or caused the system to go unstable, after

re-optimization. The insensitivities for all parameters were under 5%, well within

the guidelines of 10% [63].

6.6.2 Time verification

This section contain time domain responses of rotor inflow components. These

are used as verification of the inflow state-space model with the form of Eq.(6.5)

and the matrices shown in Eqs. (6.12) and (6.13).

In Figs. 6.29 to 6.33, the swashplate input (not shown in the figure) is a doublet

of lateral cyclic stick at the lower rotor θL1s of magnitude 1◦. Figure 6.29 shows the

aerodynamic thrust, roll moment, and pitching moment coefficients, CU
T ,CU

L and CU
M

respectively, for the upper rotor. Figure 6.30 shows those for the lower rotor.
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Figure 6.29: Upper rotor aerodynamic loading for time verification pro-
duced by a lower rotor lateral swashplate doublet in Forward Flight.

Each plot in Figs. 6.31 to 6.33 has two curves: (i) the response computed using

the full nonlinear MFW; (ii) the response computed using the identified state-space

inflow model. Figure 6.31 shows the response of the average inflow components, λU0

and λL0 for the both rotors. Figure 6.32 shows the response of the lateral inflow
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components, λU1S and λL1S, for the both rotors. And lastly, Fig. 6.33 shows the

response of the longitudinal inflow components, λU1C and λL1C for the both rotors.
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Figure 6.30: Lower rotor aerodynamic loading for time verification pro-
duced by a lower rotor lateral swashplate doublet in Forward Flight.

Overall these verifications show pretty good agreement between the identified

model and the actual MFW data. In particular, the lateral inflow dynamics on
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Figure 6.31: Time verification of the average inflow λ0 response on both
rotors for the lower rotor lateral swashplate doublet in forward flight

both rotors experience large perturbations and are well captured by the model. The

average inflow shows some of the periodicity of a coaxial rotor in forward flight.

The inflow clearly has a 1/rev oscillation (there is also a 4/rev and other higher

frequency oscillations which are not shown because the time histories in the figures

are attenuated through a high-pass filter) that cannot be captured by the simple

first harmonic state-space model. However the identified model fits generally very

well through the average of the higher frequency oscillations.
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Figure 6.32: Time verification of the lateral inflow λ1S response on both
rotors for the lower rotor lateral swashplate doublet in forward flight
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Figure 6.33: Time verification of the longitudinal inflow λ1C response
on both rotors for the lower rotor lateral swashplate doublet in Forward
Flight
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Figures 6.34 through 6.36 have the same general arrangement as Figs. 6.29

through 6.31, except that it shows the responses to the same size doublet, but applied

to the upper rotor collective θU0 . The agreement is generally not as good as for θL1s

doublet and demonstrates the complexity of the true rotor flow. In general the lower

rotor inflow is better predicted. The upper rotor lateral inflow λU1S is particularly

bad as it shows the incorrect sign for the inflow prediction, but the actual shape of

the MFW perturbation suggests some complex higher order response. The inflow

once again clearly has a 4 per rev vibration that is not captured by this model. This

part not being captured may be leading to some of the discrepancies between the

state-space model and the full, nonlinear MFW.

There are many more verifications that can be shown, but these two show the

strengths and weaknesses of this particular model. With the current model form,

this is still considered to be as good an approximation as can be attained.
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Figure 6.34: Upper rotor aerodynamic loading for time verification pro-
duced by a upper rotor collective swashplate doublet in forward flight.
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Figure 6.35: Lower rotor aerodynamic loading for time verification pro-
duced by a upper rotor collective in forward flight.
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Figure 6.36: Time verification of the average inflow λ0 response on both
rotors for the upper rotor collective swashplate doublet in forward flight
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Figure 6.37: Time verification of the lateral inflow λ1S response on both
rotors for the upper rotor collective swashplate doublet in forward flight

252



15 16 17 18 19 20 21 22 23 24 25
Time [sec]

0.018

0.020

0.022

0.024

0.026

0.028
6

1c
LMFW

State-space

0.028

0.030

0.032

0.034

0.036

0.038
6

1c
U

Figure 6.38: Time verification of the longitudinal inflow λ1C response on
both rotors for the upper rotor collective swashplate doublet in forward
flight
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6.7 Summary

A need for a second-order model of inflow was seen in Chapter. 5 for coaxial

rotors, which exhibited more dynamics that were not captured but the first-order

model. This was consistent with the findings of several other authors when iden-

tifying inflow model from other free-wake models [80], from viscous vortex particle

methods [79], and from Boundary Element methods [77]. A second-order linear

state-space model was defined and identified from the MFW solution, including the

effects of wake distortion due to angular rates. This second-order model was shown

to correctly capture the dynamic wake response of a coaxial rotor system in Hover.

A version of this model was then used to capture a model of the complex inflow in-

teractions of a coaxial rotor in forward flight with a slightly positive angle of attack,

allowing flow from the free-stream to provide a climb to the rotors, but not so much

as to be in autorotation. This model also proved capable of capturing proper wake

dynamics.
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Chapter 7: Coupled Aircraft Models

7.1 Overview

The results of the previous chapters were obtained for isolated rotors, and

ignoring any couplings with the model of the rest of the aircraft. When the full

aircraft simulation [98] was used, it was only to take advantage of the already existing

rotor dynamic model, therefore, the aircraft rigid body degrees of freedom were

locked and the simulation was not representative of free flight conditions.

This chapter present results obtained with the state-space inflow model fully

coupled with the aircraft simulation. Section 7.2 describes how the state-space inflow

model is coupled with the rest of the mathematical model of the aircraft, and how

the different types of solutions are affected by the model. Section 7.3 and 7.4 present

free flight results from the fully coupled simulations for the single main rotor and

the coaxial configuration, respectively. Fixed-stick stability and frequency responses

to pilot inputs are presented. Finally, section 7.5 shows an example of flight control

system design for the coaxial rotorcraft configuration in hover.
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7.2 Coupling of State-Space Inflow Models

The general architecture of the simulation model has been presented in Sec. 2.2.

Additional details concerning the coupling of the inflow model with the different

solution algorithms are presented below.

7.2.1 Trim Solution

As stated in Chapter 2, the trim problem is formulated as a coupled system

of nonlinear algebraic equations, which enforce, for the present study: (i) force and

moment equilibrium along and about the body axes; (ii) periodicity of the motion

of the rotor blades; and iii) constant averages of inflow harmonics for momentum-

theory based inflow models. A trim solution can be computed even if the wake

model (or any other portion of the model) is not in state-space form. With a free

wake model, a “loose” coupling procedure is used, in which wake geometry and

inflow are updated at every trim iteration using the controls and blade motions of

the previous revolution [98].

The state-space inflow models, such as those presented in the previous chap-

ters, do not affect trim at all, because they are all perturbation models, where

“perturbation” implies “perturbation from trim”, therefore all their states are iden-

tically equal to zero at trim.

256



7.2.2 Time Marching Solution

Time marching solutions of the equations of motion of the entire rotorcraft

do not require that the model be in state-space form, as long as the portions not

in state-space form contain a mechanism to advance the solution in time, as is the

case for the MFW.

For the inflow models used in the present study, three integration options are

possible:

1. MFW only — The time histories of the inflow quantities are obtained from

the full, nonlinear MFW solution:

λ(··· )(r̃, ψ) = λ
(··· )
MFW (r̃, ψ) (7.1)

where the superscript is ignored for a single main rotor, and is ”U” or ”L”

for the upper and lower rotor, respectively, of a coaxial configuration. This is

expected to be the most accurate solution and, in the absence of flight test or

wind tunnel data, it is considered as the “truth” model for the results of this

dissertation.

2. MFW trim solution plus state-space inflow model — The inflow quantities are

given by the sum of a steady, nonlinear inflow distribution over the rotor disk

obtained from the MFW and a linear, time-dependent perturbation computed

from one of the state-space models:

λ(··· )(r̃, ψ) = λ(··· )
eq (r̃, ψ) + ∆λ

(··· )
0 + ∆λ

(··· )
1S r̃ sin(ψ) + ∆λ

(··· )
1C r̃ cos(ψ) (7.2)
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where: λ(··· )
eq (r̃, ψ) = λ

(··· )
MFW (r̃, ψ) at trim (7.3)

3. State-space inflow model only — The inflow quantities are given by the sum

of a linear time-dependent perturbation computed from one of the state-space

models and the initial conditions for the inflow harmonics (λeq):

λ(··· )(r̃, ψ) = λ(··· )
eq (r̃, ψ) + ∆λ

(··· )
0 + ∆λ

(··· )
1S r̃ sin(ψ) + ∆λ

(··· )
1C r̃ cos(ψ) (7.4)

where: λ(··· )
eq (r̃, ψ) =

(
λ

(··· )
0

)
eq

+
(
λ

(··· )
1S

)
eq
r̃ sin(ψ) +

(
λ

(··· )
1C

)
eq
r̃ cos(ψ) (7.5)

and
(

(λ
(··· )
0

)
eq

,
(
λ

(··· )
1C

)
eq

, and
(
λ

(··· )
1S

)
eq

are calculated from the full, nonlinear

MFW inflow distribution (λ
(··· )
MFW (r̃, ψ)) at trim using Eqs.(2.22), (2.25), and

(2.26), respectively.

Depending on the specific problem and the inflow model used, slightly different

state vectors have been used. All state vectors have the following structure:

x =





xrb

xinf

xrot





(7.6)

The vector xrb is the portion containing the rigid body states:

xTrb = [u v w p q r φ θ ψ] (7.7)

where: u, v, and w are the velocity components of the aircraft along its body axes;

p, q, and r are the roll, pitch, and yaw rates; and φ, θ, and ψ are the roll, pitch, and

yaw Euler angles; for both the single main rotor and the coaxial configuration.
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The vector xrot contains the rotor states, which are the modal coefficients

for each individual blade and their time derivatives. For the single main rotor

configuration (which has four blades) the vector is written as:

xrot =
{
q1

1 q1
2 q1

3 q1
4 q̇1

1 q̇1
2 q̇1

3 q̇1
4 · · ·

· · · qNM1 qNM2 qNM3 qNM4 q̇NM1 q̇NM2 q̇NM3 q̇NM4

}
(7.8)

in which qki and q̇ki are the generalized displacement and rate for the i-th blade and

the k-th mode, and NM is the number of modes retained. For the single main rotor

results in this chapter, only the first (predominantly) flap (k = 1) and lag (k = 2)

modes are retained, so the rotor state vector becomes:

xrot =
{
q1

1 q1
2 q1

3 q1
4 q̇1

1 q̇1
2 q̇1

3 q̇1
4 q2

1 q2
2 q2

3 q2
4 q̇2

1 q̇2
2 q̇2

3 q̇2
4

}
(7.9)

For the coaxial configuration, a U or L is added to the blade subscript to indicate

whether the blade is on the upper or lower rotor, respectively. The rotor vector is

written with all the upper rotor terms first, and then with all the lower rotor terms.

For hover results, only the first flap mode (k = 1) was retained:

xrot =
{
q1

1U q1
2U q1

3U q1
4U q̇1

1U q̇1
2U q̇1

3U q̇1
4U · · ·

q1
1L q1

2L q1
3L q1

4L q̇1
1L q̇1

2L q̇1
3L q̇1

4L

}
(7.10)

Besides the first flap (k = 1) and lag (k = 2) modes, the results for the coaxial

configuration in forward flight also include the second flap (k = 3) and lag (k = 4)
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modes, so the rotor state vector becomes:

xrot =
{
q1

1U q1
2U q1

3U q1
4U q̇1

1U q̇1
2U q̇1

3U q̇1
4U · · ·

q2
1U q2

2U q2
3U q2

4U q̇2
1U q̇2

2U q̇2
3U q̇2

4U · · ·

q3
1U q3

2U q3
3U q3

4U q̇3
1U q̇3

2U q̇3
3U q̇3

4U · · ·

q4
1U q4

2U q4
3U q4

4U q̇4
1U q̇4

2U q̇4
3U q̇4

4U · · ·

q1
1L q1

2L q1
3L q1

4L q̇1
1L q̇1

2L q̇1
3L q̇1

4L · · ·

q2
1L q2

2L q2
3L q2

4L q̇2
1L q̇2

2L q̇2
3L q̇2

4L · · ·

q3
1L q3

2L q3
3L q3

4L q̇3
1L q̇3

2L q̇3
3L q̇3

4L · · ·

q4
1L q4

2L q4
3L q4

4L q̇4
1L q̇4

2L q̇4
3L q̇4

4L

}
(7.11)

Finally, the vector xinf is the portion containing the inflow states. For single

main rotors, the inflow states are the same states as in the state vector of Eqs. (2.11)

or (2.12):

xinf =





∆λ0

∆λ1s

∆λ1c





(7.12)

Similarly for the coaxial rotor, the inflow state vector is the same as the state vector

of the model which is being utilized. So for the 6-state inflow model for hover, the

state vector is the same as in Eq.(2.30):

xinf =





∆λU0
∆λU1s
∆λU1c
∆λL0
∆λL1s
∆λL1c





(7.13)
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whereas, for the higher order, 12-state inflow models, the inflow state vector is the

same as Eq.(2.35):

xinf =





∆λU0N
∆λU0F

∆λU1SN
∆λU1SF
∆λU1CN
∆λU1CF
∆λL0N
∆λL0F

∆λL1SN
∆λL1SF
∆λL1CN
∆λL1CF





(7.14)

The inflow models presented in the previous chapters are all perturbation

models, meaning that they are valid around a given equilibrium point or trim.

Therefore the inflow states presented in Eqs.(7.12) through (7.14) are all perturbation

states, and similarly the aerodynamic (or flap rate) inputs in the models are all

perturbation inputs. The symbol ∆, which denotes perturbations, is usually dropped

for convenience, but it is retained in the discussion that follows, for clarity.

When the identified state-space inflow models are used in the fully coupled

aircraft model, the inflow state vector is a perturbation state, and so are the aero-

dynamic inputs ∆C and the perturbation flap rates ∆
∗
β that represent the forcing

function for the model. However, the simulation typically computes the total aero-

dynamic forcing and flap rates. Therefore in order to advance in time the solution

of the identified inflow models, the perturbation inputs must be calculated from the

full values. This requires that the trim values, i.e., the value of the aerodynamic

forcing at trim Ceq be known, together with (depending on the model) the flapping
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rates at trim
∗
βeq. The perturbation values of the vector of aerodynamic forcing

inputs, ∆C(t), can then be calculated by:

∆C(t) = C(t)−Ceq(t) (7.15)

similarly, for the flapping rate perturbations ∆
∗
β(t):

∆
∗
β(t) =

∗
β(t)−

∗
βeq(t) (7.16)

Once ∆C and ∆
∗
β are available, the perturbation inflow xinf can be calculated.

Then, the full value λ(x, ψ) of the inflow, needed by the simulation (e.g., for the

calculation of the blade aerodynamic loads) can be reconstructed at every spanwise

station x and azimuth angle ψ by either Eq.(7.2) or Eq.(7.4).

For single main rotor configurations, the input vector u consists of:

u =





θ0

θ1s

θ1c

θTR





(7.17)

where θ0, θ1s, and θ1c are the swashplate collective, longitudinal and lateral cyclic,

respectively, and θTR is the tail rotor collective.

For the coaxial configuration, there are two sets of swashplate controls, one

for each rotor. Also there is an additional control for the propeller collective. So

control vector can be written as:

u =





θU0
θU1s
θU1c
θL0
θL1s
θL1c
θPR





(7.18)
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where θ0, θ1s, and θ1c are the swashplate collective, longitudinal and lateral cyclic,

respectively, the superscripts “U” and “L” refer to upper and lower rotor, and and

θPR is the collective of the pusher propeller (not used in this study). For this coaxial

configuration, which has no hinge and a flap frequency closer to 1.5/rev, the role

of swashplate cyclics are mostly reversed: θ1s produces primarily roll response and

θ1c produces primarily pitch response, albeit with much more off-axis response than

with a single main rotor.

The six swashplate controls in coaxial rotorcraft are generally not independent,

but are constrained in such a way that only four pilot controls, namely, lateral stick

δlat, longitudinal stick δlon, collective stick δcol, and pedal δped, are independent. For

the present study, the pilot input vector is defined as follows:

δ =





δcol

δlon

δlat

δped

δPR





= K





θU0 + θL0
θU1c + θL1c
θU1s + θL1s
θU0 − θL0
θPR





(7.19)

where K is a simple proportionality constant, which is meant to represent in an

elementary way the stick-to-swashplate connection. For all the bare airframe cases

of this study it is simply K = 0.5.

The difference in lateral cylic swashplate angles (δ∆lat = θU1s − θL1s) is used in

trim only to produce a desired lift-offset. Once this value is set in trim it is not

changed for time integration purposes. It can, in theory, be used but it is generally

not considered a pilot control. This control can however be perturbed for linearized

analysis purposes, to allow exploration of the aircraft behavior produced by such a

swashplate control combination. Finally the longitudinal cyclic swashplate angles

263



are constrained in trim such that δ∆lon = θU1c − θL1c = 0. Once again this value is

held fixed in time integration, but can be utilized in linearized anaylsis.

7.2.3 Linearized Analysis Solution

Linearized analysis utilizes the same ODE kernel as used for the time-marching

solutions, except that the ODEs are not integrated in time, but are perturbed nu-

merically about a trimmed equilibrium position [98]. Of the three time integration

options listed above, the model used in the “MFW only” option cannot be used be-

cause the MFW is not in state-space form. The models used in the other two time

integration options can be used because the overall aircraft model ends up being

fully in ODE form. Therefore the procedure can be carried out exactly as described

in Appendix A. The state-space inflow models are not inserted directly into the the

[A] an [B] matrices of the entire aircraft, but rather the state-space models effects

are quantified when the ODE kernel (containing the inflow equations and inflow

states) is perturbed. As such, full aircraft models created through linearized anal-

ysis are only valid at the equilibrium, or trim, condition at which the state-space

inflow model was identified. The main result of linearized analysis are the state and

control matrices, [A] and [B] respectively, which describe the full aircraft motion

when used in the equation:

ẋ = [A]x+ [B]u (7.20)
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where x and u are the state and input vectors, as described in the previous

section. The results of this chapter are exclusively from linearized anaylsis of HeliUM

with the identified state-space models of inflow inserted as described in the “State-

space inflow model only” integration option. The [A] and [B] matrix results of

linearized analysis can be alternatively shown as Bode plots of full aircraft responses,

such as roll response to pilot stick. Another important result that can be obtained

are the eigenvalues of the [A] matrix, which are the poles of the full aircraft and

describe the aircraft stability. Controllers can be augmented to the state and control

matrices to demonstrate the stability of the aircraft in the presence of feedback

control.

Lastly, Eq.(7.20) can time-integrated, starting from the HeliUM trim solu-

tion corresponding to this linearized model, to create time histories of helicopter

responses, in particular the response of any one of the states in x to any one of the

controls in u. This can be performed with or without the feedback control, but as

with the full HeliUM simulation, a helicopter without feedback control is often un-

stable, rendering its time histories divergent. However, time integration performed

with a controller can give well behaved time histories that stay within the accept-

able bounds of a small perturbation model. Showing comparisons between two time

histories computed with different controllers can show, in a practical sense, the dif-

ference between the performance of the controllers. All the time integration results

that will be shown in this chapter are performed by time-marching the state [A]

and control [B] matrices obtained using linearized analysis, with various feedback

controllers applied to them which will be described in detail.
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7.3 Single Main Rotor

7.3.1 Hovering Aircraft Responses

For a single main rotor in hover, first the full nonlinear MFW simulation was

compared against flight tests and other models, to see how the models compare

before state-space idnetification. The aircraft response of coning flapping β0 to to

collective pitch θ0 was compared in Figure 7.1. The first frequency response, la-

beled “Flight”, is from a collective pitch θ0 frequency sweep flight test data [120].

The next is from HeliUM with the Pitt-Peters model. The third frequency response

is from collective pitch θ0 sweep of HeliUM with the MFW. The last frequency re-

sponse, labeled “Chen”, is a single-axis analytical model (also from Ref. 120). These

responses were not found through linearized analysis, but rather through frequency

sweeps of the collective pitch (shaft-fixed), and then frequency response generation

(Fig. 7.1 leaves them in non-parametric form). The agreement is generally good

with the same dynamics present in all the models. The MFW (not the identified

state-space model but rather the full simulation) model correctly captures the cou-

pled inflow-coning mode at 20 rad/sec. The low-frequency dynamics in the flight

data (0.1 - 3 rad/sec) correspond to fuselage motion of the aircraft, which is not

present in the other wind-tunnel type models.

Next, the coefficients from Table 4.1 were implemented into the HeliUM sim-

ulation (see Sec. 2.2.2). The linearized analysis extracts linearized models of the

full aircraft dynamics in state space form. To accomplish this, the entire simula-
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Figure 7.1: Coning β0 response to collective θ0 input.

tion model must be in state-space form, therefore not allowing the full nonlinear

MFW or RFW simulations. A comparison between the full aircraft linearized mod-

els shows the effect of the various extracted inflow models on overall rotor system

behavior. Figure 7.2 shows the coning response for the different inflow models used

in HeliUM: the Peters inflow model, identified state-space model from MFW, the

identified state-space model from RFW, as well as a static inflow model. The free

wake state space models match very well with the Peters-He dynamic inflow model.

The only noticeable difference is that the steady-state coning response of the RFW

mode is slightly under-predicted. The static inflow model is inaccurate over the

entire frequency range. At low frequency, the model over predicts the coning (and

thus thrust) generated by the rotor, and the phase is incorrectly predicted at higher
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frequencies. This provides further evidence that inflow dynamics are necessary for

accurate computation of aircraft responses and that the inflow state space models

identified are able to provide said dynamics.
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Figure 7.2: Comparison of coning response β0 to collective θ0 using dif-
ferent inflow models.

7.4 Coaxial Rotor

7.4.1 Hovering Aircraft Responses with Six-State Inflow Model

Next comparisons between coaxial rotorcraft modeled with different inflow

models are performed. The linearized full aircraft results of this section were ob-

tained using two types of state-space rotor inflow models in hover.
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The first type, used for most results, is the state-space model extracted from

the MFW using frequency domain system identification, as described in the Chap.

5. The model required nine time delays which became 26 time delay states after

being converted using the Padé approximant (See Sec. 2.2.2.5). The simplicity of

the 26 time delay equations ensures that they are simple for the ODE solver to solve

and there is no noticeable effect on computation time. With the free-wake simplified

into ODE form, the linearized analysis of the full aircraft now properly includes the

effects of the wake and rotor-on-rotor interference. The second type of inflow model,

used for comparison for a few coaxial results, is the “Climbing Lower Rotor” model

(see Sec. 2.2.2), obtained by putting the lower rotor into a climb equivalent to the

upper rotor trim average induced inflow from MFW.

Linearized analysis produce two sets of linearized state and controls matrices.

One for the full aircraft using the identified inflow model from MFW (Eq.(5.3)) and

the other for the full aircraft using the Climbing Lower Rotor theory. The state and

controls matrices make up the full aircraft model (linearized) which describes the

response of all the helicopter states to the pilot controls. Key aircraft responses can

be shown as frequency responses. Figure 7.3 shows the heave velocity response to

the symmetric collective or collective stick δcol.

Very close agreement is shown between the two responses, meaning the iden-

tified hover inflow model aligns well with the Climbing Lower Rotor model. Figure

7.4 shows almost perfect agreement for the yaw rate response to foot pedal.

The roll and pitch response using the identified state-space model differ from

the Climbing Lower Rotor model. As shown in Fig. 7.5, the MFW state-space inflow
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model shows the aircraft having a higher response in roll due to δlat than is predicted

with the Climbing Lower Rotor model with the lower rotor in climb. This response

elevation occurs right around the frequency range of control system crossover (1-10

rad/sec), and would have a direct impact on predicted aircraft stability margins.

Figure 7.6 shows a similar result for the response of pitch rate to δlon. This

response is not exactly the same as the roll rate due to the large variation in pitch

and roll inertia of the aircraft. There are also small but non-zero off-axis responses,
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as in δlat causes some pitch rate and δlon causes some roll rate. This is indicative of

the fact that the swash-plate angle is set to zero for both cases to allow comparison.

Practically, the differences in the two responses may indicate that the design of the

swash-plate phasing would be different depending on which inflow model is used.

Looking at the previous bode plots it is clear that the heave and directional

responses are pretty much the same at high frequency, regardless of the inflow model

used. The low frequency poles are different but poles above 10 rad/sec are essentially
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unchanged. This is further shown in Tables 7.1 and 7.2, which show the poles of

the linearized state matrices for the two different systems. The high frequency rotor

modes are very close in value when using either inflow model.
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Table 7.1: Aircraft poles with Climbing Lower Rotor model.

Freq. (rad/sec) Pole Description

0 0 heading

0.08656 -0.08656 heave

0.478 -0.478 yaw

0.5833 0.007835 ± 0.5833i phugoid

0.5858 0.0852 ± 0.5796i phugoid

2.788 -2.788 spiral

4.18 -4.18 pitch

10.29 -10.29 inflow

11.44 -11.44 inflow

13.68 -3.705 ± 13.17i Regressive Flap

19.28 -19.28 inflow

19.79 -19.79 inflow

19.87 -3.747 ± 19.51i Regressive Flap

21.4 -21.4 inflow

21.71 -21.71 inflow

34.71 -7.631 ± 33.86i Coning Flap

35.36 -7.975 ± 34.45i Reactionless Flap

35.43 -7.34 ± 34.66i Reactionless Flap

35.53 -6.849 ± 34.86i Coning Flap

57.92 -7.262 ± 57.46i Progressive Flap

58.34 -6.572 ± 57.97i Progressive Flap
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Table 7.2: Aircraft poles with MFW identified state-space model inflow.

Freq. (rad/sec) Pole Description

0 0 heading

0.08606 -0.08606 heave

0.321 -0.005125 ± 0.3209i phugoid

0.4252 0.02015 ± 0.4247i phugoid

0.8566 -0.8566 yaw

3.23 -3.23 pitch

3.799 -3.798 ± 0.0969i inflow

3.853 -3.853 inflow

3.853 -3.853 inflow

4.455 -4.455 pitch

4.93 -4.93 pitch

7.408 -7.408 inflow

9.985 -9.179 ± 3.931i inflow

10.89 -10.89 inflow

12.44 -10.93 ± 5.95i inflow

13.62 -12.93 ± 4.284i inflow

13.79 -13.79 inflow

13.79 -13.79 inflow

14.43 -11.58 ± 8.604i inflow

14.94 -4.736 ± 14.17i Regressive Flap

21.05 -4.601 ± 20.54i Regressive Flap

21.85 -21.85 inflow

25.54 -22.07 ± 12.86i inflow

28.47 -23.85 ± 15.54i inflow

34.83 -8.367 ± 33.81i Coning Flap

35.08 -30.72 ± 16.93i inflow

35.36 -7.804 ± 34.49i Reactionless Flap

35.39 -7.576 ± 34.57i Reactionless Flap

35.92 -7.663 ± 35.1i Coning Flap

41.47 -35.94 ± 20.68i inflow

42.91 -37.06 ± 21.63i inflow

49.94 -49.94 inflow

58.92 -7.512 ± 58.43i Progressive Flap

59.3 -7.376 ± 58.84i Progressive Flap

68.53 -68.53 inflow

88.76 -88.73 ± 2.535i inflow
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7.4.2 Aircraft Responses with Twelve-State Inflow Models

Next comparisons are made with coaxial rotorcraft modeled with the higher

order state-space models extracted from the MFW, as described in the Chap. 6,

for both hover and forward flight (200 kts). For hover the identified modeled is

compared against the “Dynamic Climb” model described in Sec. 2.2.2. For forward

flight, the identified model is compared against the “Isolated Rotor” model, also

described in Sec. 2.2.2.

The identified state-space inflow models were inserted into HeliUM as an op-

tion for the calculation of the inflow. Since no time delays were used, no Padé

approximations were needed, and the system need only 12 inflow states. A lin-

earized model of the full helicopter was extracted using linearized analysis at each

flight condition (hover and 200 kts), which will be referred to as the MFW ID aircraft

models. This MFW ID aircraft model describes the response of all the helicopter

states to the pilot controls. A similar linearized model of the helicopter can be

created using the Dynamic Climb (DC) inflow model for hover and Isolated Rotor

inflow model for 200 knots, which were described in Sec. 2.2.2. These linearized full

aircraft models provide a basis of comparison for the free-wake based identification

models and dynamic inflow based approaches (Dynamic Climb and Isolated Rotors)

and will be referred to the Dynamic Climb aircraft model and the Isolated Rotor

aircraft model. The bare airframe frequency responses such as roll rate to lateral

swashplate, p/δlat, can be shown and compared and key poles of the rotor dynamics

and body dynamics can be identified. These dynamics will be different depending
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on which inflow model is used. Note that for the rest of this chapter the models

described are all full aircraft (linearized) models unless explicitly stated as an inflow

model.

7.4.2.1 Forward Flight Bare-airframe Responses

The dynamic response of the two aircraft models in forward flight, one with

the Isolated Rotors inflow model and the other with the MFW Identified inflow

model can now be compared. Figure 7.7 shows the bare airframe response of pitch

rate to longitudinal swashplate, q/δlon. Figure 7.8 shows the bare airframe response

of roll rate to lateral swashplate, p/δlat.

Figure 7.9 shows the bare airframe response of roll rate to lateral swashplate,

p/δlat. Figure 7.10 shows the bare airframe response of roll rate to lateral swashplate,

p/δlat.

The two models have quite different characteristics. Interestingly, The MFW

ID model has more control power than the Isolated Rotor model in roll and yaw

but has less control power in pitch and heave. Also of particular note is that

Figs. 7.8 and 7.10 do have 2-3 decibel (25-40%) differences between 5 and 20 rad/sec

indicating that the inflow models do have a strong influence directly in the flight

dynamics range of interest.
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Figure 7.7: Bare Airframe: pitch rate (deg/s) response to longitudinal swashplate:
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Figure 7.8: Bare Airframe: roll rate (deg/s) response to lateral swashplate: p/δlat
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Figure 7.9: Bare Airframe: heave rate (ft/s) response to symmetric collective swash-
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swashplate: p/δlat
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7.4.2.2 Hover bare-airframe responses

The dynamic response of the two aircraft models, one with the Dynamic Climb

(DC) inflow model and the other with the MFW Identified inflow model can now

be compared. Figure 7.11 shows the bare airframe response of roll rate to lateral

swashplate, p/δlat. The proceeding analysis is for the lateral axis only, the other

axes have been stabilized using coupling-numerators as described previously.

The two models have quite different characteristics. The response of the MFW

ID model tends to be a lot flatter than that of the DC model. Of particular note is

that the regressive flap mode of the DC model is far more lightly damped than in

the MFW ID model ([ζ, ωn] = [.175, 17.7] vs. [.288, 19.7]). Also, the low frequency

body mode of the DC model is unstable whereas it is not for the MFW ID model

([ζ, ωn] = [−.176, 0.756] vs. [.192, .27]).
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Figure 7.11: Bare Airfame: roll rate (deg/s) response to swashplate: p/δlat

7.5 Impact of Dynamic Inflow Modeling on Control Design in Hover

With the Hover MFW ID model and the Dynamic Climb model, explicit

model-following control (EMF) systems were designed and compared. Explicit

model-following is a well established control method in which the controller attempts

to follow the response of a prescribed model with desirable attributes [121–123]. The

basic elements and form of the EMF controller are shown in Fig. 7.12.
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This control system first takes in commands from pilot inputs p/δlats and

converts them into desired aircraft responses by way of a command model. The

commanded aircraft response is then fed through an inverse plant to obtain feed-

forward actuator commands δlatff . The inverse plant is usually a low order (first

or second) transfer function fit to the bare-airframe response in the flight dynamics

frequency range of interest, from about 1 to 12 rad/sec. This feed-forward command

is mixed with feed-back commands δlatfb given by a proportional–integral–derivative

(PID) controller. These mixed commands δlatmx are fed into the actuators for the

swashplate and then fed into the Bare-Airframe model P to produce the aircraft

response. This response is sensed by sensors and filtered to produce measured

aircraft responses. These are mixed with equivalent delays, used to synchronize the

feedback with the feed forward, before being fed into the PID feedback gains.

The baseline case is the Dynamic Climb (DC) model, which represents a sim-

pler approximation that a designer might utilize without identification from a high

fidelity simulation. The MFW ID model is considered a more rigorous flight dy-

namics model and is considered to be a better representative of flight. Therefore a

design optimized to the DC aircraft model but analyzed on the better representative

model, gives an idea for how poor initial controller design could be. So to compare

the impact of using the simplified inflow representation, three cases were presented

in this investigation:

case (A) - An optimal controller for the DC model applied to the DC model
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case (B) - The same optimal controller for the DC model applied to the MFW ID

model

case (C) - An optimal controller for the MFW ID model applied to the MFW ID

model

All three cases used the same explicit model-following form shown in Fig. 7.12

and differed in their bare-airframe model (P ), the inverse plant (P̂−1) and equivalent

delay for synchronization (τEq), and the feedback PID gains. Case(A) and Case(B)

differ only in the plant. Case(C) differs from Case(A) in the plant, inverse plant

and equivalent delay. The command model and sensor and actuator dynamics were

the same between the three cases.

To allow for the optimization and analysis of a single axis, coupling numerators

[123, 124] were used to constrain the pitch, heave, and yaw axes for both the DC

model and the MFW ID model. This left only the roll axis free. Coupling numerators

are a way of constraining responses by assuming tight feedback from one response

to a control input. This freezes the constrained response while leaving the dynamics

of the other axes free. For this investigation, the coupling numerator used was:

p

δlat
(s)

∣∣∣∣∣∣∣∣∣
q → δlon
r → δped
w → δcol

=
N p q r w

δlat δlon δped δcol (s)

N q r w
δlon δped δcol (s)

(7.21)

For case (A), the inverse model was calculated by fitting a 0th over 1st transfer

function to the portion of the bare airframe, plus sensor and actuator dynamics, in

the frequency range of 1-12 rad/sec. The equivalent time delay of the system was
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found by removing the command model and the feedback loop and evaluating the

response from stick to roll rate (p) in the 1-12 rad/sec frequency range. Because

the system in this state is mostly the inverse model multiplied by the model, it is

a relatively flat frequency response (P̂−1P ≈ 1) with a lot of phase roll-off. This

can be fit with a gain of one and a time delay, which becomes the synchronization

delay [122].

The flight control design software CONDUIT [122] was used to optimize the

controllers, so that they meet the quantitative flight control requirements to achieve

desirable handling qualities as defined in ADS-33E [90] as well as stability and

robustness metrics [125–128] . The specifications are listed in Table 7.3 and are

each discussed in detail in Ref. 122. Design margin optimization (DMO) is then

performed to maximize the minimum cross-over frequency and the disturbance re-

jection bandwidth (DRB) to achieve the maximum performance attainable from the

control system [122]. The DMO increases the minimum crossover and DRB Level

1/Level 2 specification boundary until a feasible solution that meets all specifications

can no longer be met.

With the different aircraft models, the lateral axis broken loop responses,

δlatfb/δlatmx , and associated stability and robustness metrics can be compared. Sim-

ilarly, with the two optimized controllers, the closed-loop comparisons p/δlats be-

tween the cases can be performed to look at performance metrics such as bandwidth.

The roll angle disturbance rejection frequency response, φ′/φd, is shown to quantify

adequate rejection. Closed-loop lateral stick impulse responses and roll angle distur-
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Table 7.3: Controller Optimization Specifications for Roll Axes; adapted from
Ref. 122
Description Motivation Short Name Source

Hard Constraints

All eigenvalues in left-half plane Stability EigLcG1 Generic

Nichols margin for loop broken

at mixer input
Stability NicMgG1 Ref. 125

Gain and phase margin for loop

broken at mixer input
Stability StbMgG1 Ref. 126

Soft Constraints

Roll attitude Bandwidth Handling Qualities BnwAtH1 Ref. 90

Performance of aircraft as

compared to command

model; Model-following

control system only

Handling Qualities ModFoG2 Generic

Roll attitude disturbance

rejection; Attitude hold
Hold Characteristics DrbRoH1 Ref. 127

Disturbance rejection peak

magnitude; Attitude hold
Loads, Ride Quality DrpAvH1 Ref. 127

Eigenvalue damping ratio ζ > .1

for freq = 4-20 rad/sec
Handling Qualities, Loads EigDpG1 Ref. 90

Eigenvalue damping ratio ζ > .35

for freq = 0.5-4 rad/sec
Handling Qualities, Loads EigDpG1 Ref. 90

Open-Loop Onset Point spec

for piloted input
Pilot-induced Oscillation OlpOpG1 Ref. 128

Open-Loop Onset Point spec

for disturbance input
Limit Cycle OlpOpG1 Ref. 128

Minimum crossover freq for loop

broken at mixer input
Robustness CrsMnG2 Generic

Summed Objectives

Minimize crossover freq for loop

broken at mixer input
Actuator Activity CrsLnG1 Generic

Minimize mixer input RMS

for pilot input
Actuator Activity RmsAcG1 Generic

Minimize mixer input RMS

for disturbance input
Actuator Activity RmsAcG1 Generic

bance step responses are shown for each model to demonstrate the model following

and disturbance rejection performance in the time domain.
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7.5.1 Control Optimization Results

The linearized MFW ID and DC flight dynamics models were used to create

three different control evaluation cases, as previously stated:

case (A) - An optimal controller for the DC model applied to the DC model

case (B) - The same optimal controller for the DC model applied to the MFW

ID model

case (C) - An optimal controller for the MFW ID model applied to the MFW ID

model

case (A) shows the type of design a designer would get without using a system

identification technique and rather relying on simpler approximations. Case (B)

shows how the design from case (A) would work when utilized in a more realistic

flight simulation. Case (C) shows the type of controller that could be designed if a

designer optimized to a model identified from higher fidelity aerodynamic solvers.

The feedback block in figure 7.12 is a simple PID controller with proportional,

integral and derivative gains, named Kφ, KIφ , and Kp respectively. Their values for

each of these cases, after optimization, are listed in table 7.4. Also shown here are

the equivalent time delays.

Table 7.4: Optimal Controller Parameters.

Parameter cases (A) & (B) case (C)
KP 0.0413 0.0326
Kφ 0.303 0.582
KIφ 0.212 0.626
τEq 0.0265 0.0454
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Table 7.5: Optimal Controller Characteristics.

Characteristic case (A) case (B) case (C)
ωc (rad/sec) 3.53 3.47 5.38
GM (dB) 7.2 6.25 6.00
PM (deg) 45.0 73.0 47.7
min ζ (4-20 rad/sec) 0.1048 0.148 0.193
ωDRB (rad/sec) 1.89 1.97 2.91
DRP (dB) 4.38 2.35 4.87
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Figure 7.13: Broken Loop: δlatfb/δlatmx

Figure 7.13 shows the lateral-axis broken-loop response, δlatfb/δlatmx . This

plot shows 3 lines which represent the three cases defined above. Case (B) and (C)
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Figure 7.14: Closed Loop: p/δlats

have the same MFW ID model for the bare airframe, but the different feedback

gains provide different broken loop responses. All the models are able to have good

stability margins, and the MFW model and controller was able to reach the highest

crossover frequency. This is because the DC model has the lightly damped regressive

lag modes, which limit the allowable gains before stability margin boundaries are

reached.
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Figure 7.14 shows the closed loop response of roll rate to lateral stick, p/δlats .

There are also an additional two lines labeled as the commanded lines which show

what the command model is requesting after the given equivalent time delay, θ′cm/δlats .

These lines differ only in their phase response due to the different equivalent delay

for each case. With a perfect controller, the other lines should lay on top of the com-

manded response, and so the difference provides a metric for the model-following

capability of the system. The regressive flap mode again plays prominently into

these responses and is the limiting factor in the performance of the controllers. This

is a characteristic similar to that seen in Ref. 38.

The controllers reduce the damping ratio of the regressive lag mode. The

damping of the mode by the DC model controller (case(A)) is reduced from ζ = 0.175

to ζ = 0.1048. The DC model controller (case (A)) works well in a broad frequency

range up to the regressive lag mode. At low frequency the response of the DC model

controller tends to lie slightly lower than the commanded value. Additional integra-

tor gain would be required to improve this response, but the current analysis ties

the integral/proportion gain ratio to be 1/5 of crossover frequency. This minimizes

phase loss at crossover from the integrator [122].

In cases (B) and (C), the bare-airframe response is greater so model following

fairs better at low frequency. Case (B) uses the inverse model from the DC model

and therefore has degraded model following performance, since the bare-airframe re-

sponses are different. Case (C) allows for better model following across the frequency

range with an updated inverse. Because the damping ratio for the bare-airframe lag

modes starts at ζ = 0.28 there is more room for optimization, and more latitude
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for increasing the integrator gain due to the higher crossover frequency. In fact,

that damping ratio is only reduced to ζ = 0.193 and is not really the limiting fac-

tor of the controller optimization and therefore allows the DMO to achieve higher

performance.

In the time domain, various responses can also be compared. Figure 7.15

shows the response of the helicopter to a lateral stick impulse. There are three

different plots to show the three different cases. The dashed line on each indicates

the lateral stick position in degrees over time. The dotted line shows the desired

response produced by the command model. The solid black line shows the aircraft

response, with the controller attempt to track the dotted line.

Case (A), for the DC controller applied to the DC model, is the top plot.

The response does not capture the max commanded response and also has quite

a bit of overshoot when returning to steady state. It also shows oscillations with

periods of around 1/3 of a second, which correspond to the frequency of the low

damped regressive flap mode. Case (B), for the DC controller applied to the MFW

ID model, is shown in the middle plot and clearly contains sustained oscillations

with the response not tracking the command model, as was suggested by Fig. 7.14.

Case (C), for the MFW ID controller applied to the MFW ID model, is shown in the

bottom plot and shows much better model following. There is still an influence from

the regressive flap mode but it is much smaller due to the mode’s higher damping.

The integration of this time response provides the roll angle response to the

same lateral stick input, and this is shown in Fig. 7.16 for each of the three cases.

Here the dashed line indicates the desired roll angle from the command model, which
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Figure 7.15: Comparison of lateral stick δlats impulses of three different
cases. p′ (measured roll rate) aircraft response is shown and compared
to the p′cm (commanded roll rate from the command model).

is to approach and hold a roll angle of about 2 degrees. Case (A) is shown in the top

plot and the solid line indicates the actual measured roll angle of the aircraft. Case
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(A) shows significant inability to track the desired steady-state roll angle, steadying

out at a roll angle which is about 71% of the desired angle. Case (B), in the middle

plot, shows that even though the model following is worse, a better response is still

produced, achieving about 90% of the desired roll angle. Case (C) (the bottom plot)

shows the best tracking, achieving about 98% of the desired roll angle.

Figure 7.17 show the disturbance rejection frequency response φ′/φd for the 3

cases. Case (A), shown by the dashed line, has a disturbance rejection bandwidth of

ωDRB = 1.89 rad/sec and a disturbance rejection peak of DRP = 4.38 dB. it is rel-

atively flat at low frequency with a value around -10 dB meaning that a disturbance

attenuation of only roughly 30% is expected. Case (B) and (C) (dotted and solid)

have disturbance rejection bandwidth of ωDRB = 1.97 rad/sec and ωDRB = 2.91

rad/sec respectively. Their disturbance rejection peaks are DRP = 2.35 dB and

DRP = 4.87 dB. The control systems for these cases do a better job at rejecting

low frequency disturbances while still giving a small peak response. All of these dis-

turbance rejection bandwidths are well above the current criteria for the roll axis,

which is ωDRB = 0.9 rad/sec [122].

Step disturbances to roll angle are shown in Fig. 7.18 to demonstrate the

disturbance rejection. Once again there are three plots comparing the three cases.

The input disturbance is a 1 degree disturbance in roll angle, shown by the dashed

line. The desired response would be controller to completely and quickly reject this

disturbance and produce a zero measured roll angle φ′ response (solid line). Case

(A), in the top plot, shows the 30% steady-state disturbance rejection error that

was seen in Fig. 7.17, as well as about 20% overshoot on the return to steady state.
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Figure 7.16: Comparison of lateral stick δlats impulses of three different
cases. φ′ (measured roll angle) aircraft response is shown and compared
to the φ′cm (commanded roll angle from the command model).

The middle plot, showing case (B), presents better overall rejection qualities. The

error is reduced to about 10% and the undershoot is gone because of the much lower
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Figure 7.17: Disturbance Rejection to φ Disturbances for different models, φ′/φd

disturbance rejection peak. The bottom plot shows the disturbance rejection of the

MFW ID model controller (case (C)), which has excellent steady-state rejection.

The rejection also occurs quite a bit faster for this case, but the undershoot is about

equivalent to that of case (A).

7.6 Summary

When the single main rotor state space models of inflow were utilized in He-

liUM, they produced similar coning responses to that of the full MFW model, and

matched closely with coning responses produced with Pitt-Peters inflow model. In
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Figure 7.18: Step Disturbance in φ for different models

particular, the state space model from MFW differentiated itself from the static

inflow model, and produced the behavior that inflow dynamics are well known to

provide.
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The lower order identified state-space model for a coaxial was then used in a

full aircraft simulation. Comparisons of the predicted aircraft response to controls

using the identified state space model and a simple Climbing Lower Rotor model

were given. The results show that for the heave and yaw responses, the inflow

models predicted very similar behavior. The responses to pitch and roll inputs show

quite different responses, indicating that a more complex model with rotor-rotor

interactions is needed to properly predict the aircraft behavior.

A need for a higher-order model of inflow was seen for coaxial rotors in Chapter.

5, and was then identified in Chapter. 6, for both hover and forward flight. After

being combined with a flight dynamics solution, rotorcraft responses were compared

using this identified model and a momentum-based approaches. For forward flight,

the model was compared against an assumption typically made for coaxial in high

speed flight, i.e. that the rotors do not interfere with eachother and can therefore be

modeled as isolated rotors. In hover, the identified state-space model was used to

create and aircraft model that was compared against an aircraft model created using

a momentum-based inflow model with dynamic interference. These results showed

that the identified state-space models have a significant impact on the overall flight

dynamics of the aircraft.

Using these two hover aircraft models, Explicit model-following controllers,

which are a common, well vetted approach, were created, and the controller for the

momentum-based approach was applied to the free-wake identified model in order

to evaluate its shortcomings. The free-wake identified inflow model enables a more

aggressive control system design. The regressive flap mode is more damped, opening
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the control system design space. This led to an over 50% increase in the crossover

frequency when using the free-wake identified inflow model, as well as drastically

improved disturbance rejection and steady-state tracking.

300



Chapter 8: Conclusions and Recommendations

8.1 Conclusions

The main conclusion of the research described in this dissertation is that fre-

quency domain system identification is a new, effective technique for the extraction

of mathematical models of rotor wake dynamics in state-space form, i.e., in the form

of Ordinary Differential Equations (ODEs), from any kind of aerodynamic model

not in state-space form. The availability of wake models in this specific mathemat-

ical form is a key ingredient for the study of the flight dynamic characteristics of

rotorcraft, and for the design of flight control systems, and it was a largely unmet

need, especially for advanced rotor configurations such as coaxial rotors. The re-

search described in the dissertation largely closes this important practical gap, and

this is its most significant contribution to the state-of-the-art.

Additional comments and conclusions from this study are:

1. For the configurations for which state-space wake models were already avail-

able, such as for single main rotor configurations, there was generally good

agreement between these models and those extracted from systems identifica-

tion. At the frequencies at the upper end of the range of interest for flight
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dynamics, i.e., 10-15 rad/sec, good agreement required including additional

dynamics beyond constant and first harmonics of the inflow, either in the

form of additional states or as additional time delays.

2. It is possible to extract low order inflow models for both single and coax-

ial rotors that match very well the inflow responses to aerodynamic loading

predicted by a full, nonlinear free vortex wake, both in the time and in the

frequency domains. Not only are these models accurate, but they are also com-

putationally very efficient, and therefore are suitable for real-time applications

such as pilot-in-the-loop simulation.

3. For closely spaced coaxials, the aerodynamic couplings between the rotors

are strong not only in hover, but also in forward flight, including high speed

flight. The traditional simplifying assumption that at high speed the rotor

wake will be quickly swept away by the free stream, and that the two rotors

will behave as isolated rotors, is not necessarily valid and needs to be verified

for each individual case. Similarly, it is not necessarily true that the direction

of the flow will be from upper to lower rotor, especially for configurations with

auxiliary propulsion at high speed.

4. The nature of the coaxial identification problem, where the physical inputs to

the swashplate generate two outputs, aerodynamic loads and inflow harmon-

ics, the first of which becomes the input of the identification, leads to strong

input correlation. The traditional approach to removing the correlation, based

on the use of crossfeeds, was impractical because of the large number of input-

302



output pairs and the extent of the correlation. A new approach, developed as

part of this research (and later rediscovered in earlier signal processing litera-

ture as the “joint input-output” method) proved easier to use, computationally

less demanding, and of very broad applicability.

5. For coaxial rotors, the relationship between the aerodynamic loading input

and the inflow harmonic output was linear, as clearly indicated by a coherence

essentially equal to 1 for most frequencies of interest. This result was rather

unexpected because of the strong nonlinearities of the free wake model and

the complexity of the coupled flow field. Even though it might not hold for all

possible rotor configurations and flight conditions, this conclusion is especially

interesting.

6. Because the inflow state-space models were extracted from free wake models

that contained the physics of wake geometry distortion, they also correctly

modeled the effects of distortion due to angular body rates or blade flapping

on inflow dynamics in hover and low speed flight. For single main rotors,

these effects are generally captured by a constant parameter often denoted

with KR. Not only was this parameter recovered in the identified state-space

model, with an average value in good agreement with the literature, but it was

discovered for the first time that KR is actually frequency-dependent and, in

a sense, it has its own dynamics.

7. Somewhat surprisingly, the effects of wake geometry distortion on inflow dy-

namics mentioned above are present in coaxial configurations as well, and can
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be significant. Clearly, the presence of the wakes of two counter-rotating rotors

does not lead to cancellation of these effects. They were correctly captured by

the identified state-space models.

8. A 6-state coaxial inflow model, i.e., the natural extension of 3-state single rotor

models, is not sufficiently accurate to properly match the response predicted

by a full nonlinear free wake simulation. Instead, a 12-state model, in which

(with a somewhat arbitrary interpretation) each inflow state is allowed a sec-

ond order dynamics, or a split between a near- and a far-wake contribution,

provides a much better match with the free wake response in the range of

frequencies of interest for flight dynamics and control.

9. With the free vortex model used in this study it was straightforward to com-

pute the velocity induced by the rotor at any point of the flow field. There-

fore, it was possible to apply the same methodology to the extraction of inflow

dynamic models at arbitrary points, such as the horizontal tail and a point

representative of the fuselage. Simple models consisting of constants and time

delays applied to rotor inflow, with no additional dynamics, proved quite ad-

equate to model the low frequency rotor effects on tail and fuselage.

10. As far as the predicted flight dynamics characteristics of a coaxial rotorcraft

configuration are concerned, there are considerable differences between the

second-order inflow model identified in the present study, and a simplified

dynamic inflow model based on momentum theory, in which each rotor is

modeled independently, and with a climb velocity meant to approximate rotor-
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rotor aerodynamic interference. The latter model, referred to as the “dynamic

climb model” in the present study, is attractive for its simplicity, and it has

been used in some industry studies, but its predictions are not accurate enough,

compared with those of a free vortex wake model.

11. The use of the simpler dynamic climb inflow model in the full aircraft sim-

ulation leads to flight control designs that are too conservative, compared

with the identified state space models. Higher performance controllers can

be obtained when the latter are used. The results presented in this disserta-

tion also show degradation in performance of the high-fidelity model when a

momentum-based model is used for control system design.

12. Because of the strong rotor-rotor couplings, the extraction of even a low order

coaxial inflow model required the identification of a large number of parame-

ters. The limit of 100 parameters was due to the specific system identification

software used. The identification problem solved for this research was signifi-

cantly larger than most, if not all, rotorcraft problem solved in the past. Still,

the basic approach of identifying initially a large number of parameters, and

then reducing the number using metrics such as insensitivities and Cramer-

Rao bounds, remained very effective even at this larger scale. The resulting

state-space model was accurate and not over parameterized.
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8.2 Recommendations

The development of the methodology described in this dissertation required

that certain assumptions be made, which should addressed in future research. Other

limitations of the state-of-the-art and ideas for future work were also identified, and

are listed below.

1. There is currently a very critical gap in the state-of-the-art of inflow dynamic

modeling, namely, the nearly complete absence of inflow measurements in

dynamic conditions. This is true for any rotor configuration and any flight

condition. Inflow dynamics can be to some extent reconstructed from blade

dynamic measurements, but this can provide only an indirect, partial valida-

tion. As a consequence, the inflow models generated as part of this research

could not be validated by comparison with experimental results.

2. Only a small number of flight conditions were considered in this study. While

these conditions were adequate for the development of the methodology, it

would be very interesting to extend the spectrum to study, for example, effects

of parameters such as disk loading CT/σ, flight path angle γ, and turn rate

ψ̇. The effects of design parameters such as rotor spacing, number of blades,

twist, radius, and angular velocity could also be studied systematically.

3. Inflow models in state-space form are generally based on small perturbation

equations such as the acceleration potential equations, and therefore have

some intrinsic theoretical limitations. Their validity can sometimes be ex-
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tended through the use of ad-hoc empirical or theoretical corrections. The

methodology developed in this dissertation is applicable without limitation to

any flow field, as long as the aerodynamic model from which the inflow model

is extracted contains the required physics. Therefore, for example, it would

be possible for the first time to extract state-space models that contain the

physics of rotor-fuselage or rotor-wing interaction, ground effect, high rate of

descent flight including the vortex ring state, autorotation, and of any type of

maneuver. It would be very interesting to explore such conditions. In some

of these conditions, a linear inflow model may not be adequate, however the

examination of the coherence of the response will help assess the accuracy of

the model.

4. The input to all inflow models of the study were the aerodynamic thrust and

moment components. This was done to maintain a measure of compatibility

with the inflow dynamics theories commonly used by the rotorcraft community.

However, this is not the only possible set of inputs. Alternate types, such as

swashplate inputs and rotor and body states, alone or in combination, could

also be explored.

5. The range of frequencies studied in this dissertation was that of interest for

flight dynamics and control, i.e., typically well below 1/rev, and often even

below 0.5/rev. The same methodology could be applied at a higher frequency

range, i.e., that of interest for rotor aeroelastic stability and response, where
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availability of accurate inflow models in state-space form is also very limited,

especially for advanced rotor configurations.

6. The identification methodology was applied in this study to a free vortex wake

model, but it is completely general, and applicable to any aerodynamic model

from which a time history can be computed. Therefore, it would be interesting

to apply to state-of-the-art high fidelity CFD solvers. Since the computational

effort required to simulate the several hundred revolutions needed for the iden-

tification could still be prohibitive at this time, it would be worth exploring

approaches that reduce computer time, such carrying out the identification

on a small number of isolated frequencies, instead of a full sweep, or some-

how blending the CFD-based method with a less computationally demanding

method.

7. The system identification procedure used in this study, especially in the more

complex cases such as the identification of a coaxial inflow model in forward

flight, required a nontrivial amount of trial-and-error to reduce the number

of parameters and avoid overparameterization. It would be beneficial to de-

vise techniques to automate this process as much as possible, also to make

the entire methodology more accessible to individuals with a limited systems

identification background. Several recent machine learning techniques appear

promising, and could be explored.
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Appendix A: Derivation of Linearized Perturbation Analysis

For the purposes of linearized analysis (and also transient analysis), the equa-

tions of motion for a helicopter can be written as:

f(ẏ,y,u, t) = 0 (A.1)

For trim, the condition is denoted with a subscript (...)0 and the equation is written

as:

f(ẏ0,y0,u0, t) = 0 (A.2)

Expanding Eq. (A.1) with a Taylor Series expansion gives:

f(ẏ0,y0,u0, t) +
∂f

∂ẏ

∣∣∣∣
0

∆ẏ +
∂f

∂y

∣∣∣∣
0

∆y +
∂f

∂u

∣∣∣∣
0

∆u+O(‖∆ẏ‖2, ‖∆y‖2, ‖∆u‖2) = 0

(A.3)

Where:

∆ẏ = ẏ − ẏ0, ∆y = y − y0, ∆u = u− u0 (A.4)

The three partial derivatives shown in Eq. ( A.1) are the partial derivatives of f

with respect to the state derivatives, the states, and the controls. These can be

approximated through finite difference calculations where a perturbation to one of
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either the states derivatives, states, or controls from trim is calculated and the

resulting f perturbation can be used to calculate the partial derivative as:

∂f

∂ẏ
≈f(ẏ0 + ∆ẏ,y0,u0, t)− f(ẏ0,y0,u0, t)

∆ẏ
state derivative perturbations

∂f

∂y
≈f(ẏ0,y0 + ∆y,u0, t)− f(ẏ0,y0,u0, t)

∆y
state perturbations

(A.5)

∂f

∂u̇
≈f(ẏ0,y0,u0 + ∆u, t)− f(ẏ0,y0,u0, t)

∆u
control perturbations

The second order and higher terms in the Taylor Series (Eq. ( A.3)) are truncated

and the resultant linearized model equation is:

∂f

∂ẏ

∣∣∣∣
0

∆ẏ +
∂f

∂y

∣∣∣∣
0

∆y +
∂f

∂u

∣∣∣∣
0

∆u = 0 (A.6)

Define the following matrices:

[E(t)]
def
=

∂f

∂ẏ

∣∣∣∣
0

, [F (t)]
def
=

∂f

∂y

∣∣∣∣
0

, [G(t)]
def
=

∂f

∂u

∣∣∣∣
0

(A.7)

And now rearrange to obtain:

∆ẏ = −[E(t)]−1[F (t)]∆y − [E(t)]−1[G(t)]∆u

= [A(t)]∆y + [B(t)]∆u (A.8)

In general, the equations are time-varying and periodic. The rotor portion is par-

ticularly periodic and therefore the rotor portions of the state vector and of the

linearized matrices must be transformed to the body fixed non-rotating frame, re-

sulting in a linearized system that is written entirely in a non-rotating system. This

removes most but not all of the time dependency, so the remainder is removed by

averaging the [A(t)] and [B(t)] matrices around one rotor revolution to obtain the

constant [A] and [B] in Eq. ( 1.1).
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Appendix B: Rotorcraft Configurations

B.1 Single Main Rotor Model

The rotor configuration used in the present study is broadly representative

of the main rotor of a Sikorsky UH-60 [119]. The aricraft weighs 17150 lbs, which

corresponds to the rotor initially being trimmed to a nominal CT = .0061 at sea

level, and in standard atmosphere. The 4 bladed rotor has a radius of 26.83 feet

and a rotor speed of Ω = Ω0 = 27 rad/sec. The blades are assumed to be uniform

with no spanwise airfoil variation, no cross-sectional offsets, a total linear twist of

17◦ and a rectangular tip. The chord is a constant value of 1.73 ft, giving a solidity

of σ = 0.0821, and therefore a disk loading CT/σ = 0.0740. Each blade is modeled

with 4 flexible finite elements, each of which has 8 Gaussian quadrature points at

which aerodynamic and inertial loads are calculated. There is a flap, lag, and pitch

hinge modeled at 1.25 feet from the blade root. The first 3.83 feet after the hinge

are considered a spar which produce no lift or pitching moment, but does produce

a drag coefficient of CD = 0.05. The remainder of the blade produces lift, drag and

pitching moment based on airfoil tables obtained for the SC1095 airfoil. The tail

rotor is modeled as a Bailey momentum theory type rotor [131] with a radius of 6.6
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ft. and a rotational speed of 136 rad/sec. Fuselage and empennage aerodynamics

are modeled as found in Ref. 119.

The MFW results were obtained using tip trailed vortex filaments discretized

with straight segments of length ∆ψ = 10◦, with the length of each filament equal

to six rotor revolutions or 2160◦. Shed vorticity was neglected.

B.2 Coaxial Aircraft Model

A coaxial aircraft model was developed to be utilized for the extraction of

coaxial inflow models. Gross sizing and rotor geometry data of the aircraft come

from the “regression” military model found in Ref. 129. Blade structural and mass

properties were scaled using data from the Sikorsky XH-59 Advancing Blade Concept

[83] so that the 1st lag and flap modes match those of the ABC, roughly 1.3/rev for

lag and 1.5/rev for flap. The same airfoils were used as in the XH-59 [83].

Fuselage and empennage component sizes and locations are based on Ref. 129,

but the aircraft has been shortened to be more consistent with publicly available

images of modern coaxial-pusher aircraft, such as the Sikorsky X2 TechnologyTM

Demonstrator [38]. General fuselage aerodynamics also come from Ref. 129. Look-

up tables for horizontal and vertical stabilizer aerodynamics are based on wind-

tunnel data obtained for the XV-15 [130] and contain effects of elevator and rudder

deflection, respectively. However, the lack of free-stream velocity in hover means

that the fuselage and stabilizers are essentially inactive for this chapter’s results,

but will come into effect in Chap. 5. The pusher-propeller is modeled as a Bailey
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momentum theory type rotor [131]. The aerodynamic interference between the

pusher propeller and the coaxial rotor and the fuselage was neglected. Propeller

radius was 6.6 ft. and rotational speed 136 rad/s. The propeller was assumed to

generate only a force directed along the x-body axis of the aircraft, and a torque

about the same axis. In hover, the pusher is assumed to be inactive. In forward

flight, the propeller thrust provides a key control redundancy allowing the aircraft

to trim to a desired angle of attack. The final configuration is shown in Fig. B.1

and key sizing data is found in Table B.1.

Figure B.1: Generic coaxial aircraft model (modified from original found
in Ref. 132)
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Table B.1: Coaxial aircraft characteristics
Characteristic English Metric
Gross Weight 35,185 lb 15,960 kg

# Rotors 2
Rotor Radius 30.55 ft 9.31 m
Hover Rotor Ω 23.7 rad/sec
Forward Flight Rotor Ω 20.3 rad/sec
Rotor Spacing 14% of Radius
# Blades per Rotor 4
Blade Weight 1133 lb 513 kg
1st Flap Freq. 1.5/rev
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