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Clusters of closely-spaced objects in orbit present unique tracking and pre-

diction challenges. Association of observations to individual objects is often not

possible until the objects have drifted sufficiently far apart from one another. This

dissertation proposes a new paradigm for initial tracking of these clusters of ob-

jects: instead of tracking the objects independently, the cluster is tracked as a single

entity, parameterized by its centroid and extent, or shape. The feasibility of this

method is explored using a decoupled centroid and extent estimation scheme. The

dynamics of the centroid of a cluster of satellites are studied, and a set of modified

equinoctial elements is shown to minimize the discrepancy between the motion of the

centroid and the observation-space centroid. The extent estimator is formulated as

a matrix-variate particle filter. Several matrix similarity measures are tested as the

filter weighting function, and the Bhattacharyya distance is shown to outperform

the others in test cases. Finally, the combined centroid and extent filter is tested on

a set of three on-orbit breakup events, generated using the NASA standard breakup



model and simulated using realistic force models. The filter is shown to perform

well across low-Earth, geosynchronous, and highly-elliptical orbits, with centroid

error generally below five kilometers and well-fitting extent estimates. These re-

sults demonstrate that a decoupled centroid and extent filter can effectively track

clusters of closely-spaced satellites. This could improve spaceflight safety by provid-

ing quantitative tracking information for the entire cluster much earlier than would

otherwise be available through typical means.
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Chapter 1: Introduction

Space surveillance–the tracking of objects in orbit around the Earth, usually in a

non-cooperative way–is as old as spaceflight itself. With the launch of Sputnik-1

in October 1957, Western nations urgently recorded optical measurements through

telescopes and measurements of the Doppler shift of the signal from its radio beacon

in efforts to track the spacecraft [1][2, Appendix A]. Later, developments in elec-

tronics and processing technology made it possible to track satellites using radar [3].

In the decades that followed, networks of sensors such as the U.S. Space Surveillance

Network (the largest such system) used radar and optical measurements to update

the orbits of all observable, man-made objects in orbit around the Earth. With

some exceptions, the process for doing so has remained largely unchanged since its

inception. However, several factors are converging to form looming challenges.

First, sensor technology is improving–ground-based sensors are increasing at-

tainable measurement precision, decreasing the minimum detectable size, and ex-

panding the volume of space they can survey at once. The Space Fence [4] and the

Space Surveillance Telescope (SST) [5] are two such sensors that will become oper-

ational in the near future, representing a significant advance in radar and optical

satellite tracking technology, respectively. As a result, existing objects that were

1



previously below the detectability threshold will become observable, increasing the

total number of objects that must be tracked.

The second factor is the growth of the satellite population. Increased access to

and use of space by many nations and, more recently, non-governmental organiza-

tions, corporations, and even individuals, has already overturned the status quo of

space being the domain of only world superpowers. As the satellite population ages,

on-orbit breakups are becoming more common as well, adding significantly to the

number of objects that must be tracked. The rise of the CubeSat form factor has

enabled launches that carry and deploy dozens of separate payloads at a time [6],

[7]. Missions that themselves deploy hundreds of tiny “chipsats” have already been

developed [8]. Additionally, several commercial companies have presented plans for

what have been termed “megaconstellations”—systems consisting of hundreds to

thousands of satellites in low-Earth orbit [9]. Overall, the number of objects that

must be tracked, as well as the number of missions that must be protected, is grow-

ing at a very rapid pace, making space surveillance much harder and more critical

than ever. Figure 1.1 shows the dramatic growth in the satellite population since

the launch of Sputnik-1.

Historically, on-orbit breakups have been rare, and objects were in such dis-

parate orbits that breakups rarely put other operational satellites in immediate

danger. This, combined with the inherent accuracy limitations of the standard gen-

eral perturbations orbit model (SGP4 and its predecessors [10]), meant that breakup

processing largely consisted of waiting for the objects to naturally drift apart from

one another, then individually cataloging the pieces large enough to be consistently

2
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Figure 1.1: Growth in the number of satellites over time. Reproduced from the
Orbital Debris Quarterly News, volume 21, issue 1, February 2017. https://www.
orbitaldebris.jsc.nasa.gov/quarterly-news/newsletter.html

tracked once the identity was unambiguous.

In fact, the current nature of the space surveillance enterprise makes processing

on-orbit debris events a time-consuming and difficult process–sensor resolution is

limited, sensor locations (and thus measurements) are disparate, and sensor and

processing resources, assigned the task of maintaining and updating the catalog,

are constrained. This is evident when looking at the timelines for publicly-released

two-line element sets (TLEs) associated with major debris events.

Figure 1.2 shows the number of objects added to the public catalog in the year

following the January 2007 Chinese antisatellite test [11], based on the epoch of the

first available TLE for a given object. The first objects were cataloged about seven

days after the event. Batches of objects are then added regularly; however, by the
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Figure 1.2: Number of TLEs published for the 2007 Chinese antisatellite test.

end of the first year, only about two thirds of the total debris population had been

cataloged. The number of cataloged objects for the collision between Iridium 33 and

Cosmos 2251 in February 2009 is shown in Figure 1.3, and a similar trend can be

seen. In another case, a 2012 explosion of a Russian Briz-M upper stage (NORAD

catalog #38746) resulted in the SSN “tracking over 500 pieces of debris” [12]. The

initial set of 80 two-line element sets (TLEs) was published 8 days after the assessed

breakup time, and only 111 debris pieces were ever added to the public catalog [13].

These cataloging delays are not limited to debris events: in recent mass-satellite

deployment scenarios, initial tracking and identification of the payloads can take

days or even weeks to settle [14, Section: Falcon 9]. From these examples, it is clear

that the vast majority of a debris cloud cannot be cataloged in the very early stages

after the precipitating event.

The dynamics of a debris cloud in orbit is far from being an understudied

topic: there is a significant amount of published literature addressing debris cloud
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Figure 1.3: Number of TLEs published for the 2009 Iridium-Cosmos collision.

modeling ([15]–[19]; see Chapter 2). While this work is important for understanding

the evolution of these clouds of objects, no attempt has been made to couple this

with estimation techniques–that is, direct observation and tracking of these clouds

as clouds. The technique presented here is an attempt to do just that.

The novel tracking technique presented here is based on group tracking tech-

niques originally applied to the problem of tracking a missile warhead in a cloud

of decoys and chaff [20]. Instead of tracking each member of the cluster, or group,

individually, the entire cloud is tracked as a single entity, along with the shape, or

extent, of the cloud. This alleviates the need for a very dense data set to identify

individual objects between frames of measurements, and still allows for an accurate

assessment of the hazardous volume associated with such a cluster. By treating each

set of observations as a collective, the computational requirements for solving the

assignment problem (in which observations are assigned to targets) may be avoided

altogether.
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This method is intended to be used only when the cloud of objects is relatively

dense–that is, when the assignment problem would prove to be excessively difficult.

This corresponds to the early phases of a breakup on-orbit, or a mass deployment

event–what Jehn refers to as the “pulsating ellipsoid” phase [21]—before natural

orbit perturbations cause the objects to drift away from each other, forming a ring

(see Figure 2.2 and Section 2.1.3 for more detail on these phases).

Broadly, the group tracking process consists of the following steps. First,

the entire set of observations is screened for potential outliers, so that only cluster

“members” are included (a process called gating). Then, the measured centroid is

used to update the centroid of the cluster, and the extent of the cloud of observations

is used to update the extent of the cluster in state space. This allows for an accurate

description of the hazardous area presented by a debris cloud well before the pieces

are separated enough to be cataloged in the traditional way.

This dissertation proposes and evaluates a solution to this problem. The key

contributions can be summarized as follows. A characterization method and an

estimation method for clusters of closely-spaced objects in orbit are developed. A

matrix-variate particle filter is implemented in order to demonstrate the efficacy

of this estimation method. Finally, simulations involving realistic fragmentation

models and dynamics are performed across a variety of orbit regimes in order to

demonstrate the performance of this method.

This dissertation has the following structure. Chapter 2 presents a review

of the existing literature in space surveillance, multiple target tracking, and related

fields. Chapter 3 introduces the dynamic models used throughout and defines extent

6



in this context. In Chapter 4, the unique dynamics of the centroid of a tracked cluster

are explored, along with the effects of different coordinate systems. Chapter 5

presents the filter formulation, which requires careful selection of the likelihood

function. Results for three different test cases are presented in Chapter 6, and

conclusions and recommendations for future study are given in Chapter 7.
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Chapter 2: Literature Review

This research draws on a body of literature from not only the astrodynamics com-

munity, but also the broader target tracking field, particularly the topic of group

tracking. This chapter presents a review of the relevant literature from both of these

fields, beginning with space surveillance.

2.1 Space Surveillance

Until fairly recently, most space surveillance work used analytical methods (or “gen-

eral perturbations”[22], [23]) such as SGP4 [10] and PPT3 [24] for orbit prediction.

This was largely due to constraints on computational resources–high-precision nu-

merical integration of several thousand objects was simply not feasible. Eventu-

ally, computing capabilities advanced to the point where numerical integration (also

known as special perturbations (SP) propagation) was feasible for the entire catalog

[25], [26].

The orbit determination aspect experienced a shift along with the change

in propagation methods. While analytical models were still in use, batch least

squares differential correction was used to fit observations to the mean elements

used in the model [27]. The shift to SP propagation meant a change to fitting
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osculating elements to numerically-integrated models (also using the batch least

squares process), resulting in more accurate orbits [26].

Additionally, a significant amount of work has been presented in adapting

other estimation methods to the space surveillance problem. In some applications,

batch processing of many observations results in an unacceptable time delay, and

so online estimation methods are more desirable in such situations. The extended

Kalman filter (EKF) linearizes the problem around the current time step, and as

such can be applied to any nonlinear estimation problem, often producing similar re-

sults to a batch least squares process [28, Section 8.4][29]. The EKF has been shown

to be inadequate in some situations, however [30], and the introduction of the un-

scented Kalman filter [31] was quickly adopted for the space object tracking problem

[32]. The UKF eliminates the need for local linearization of the problem, and the

associated computation of partial derivative matrices, by simply propagating a set

of deterministically-chosen points to represent the target uncertainty distribution.

This simplifies the implementation, and provides robustness in situations where an

EKF might diverge. The UKF is a central element in many modern space object

tracking methods [33]–[35].

Applications beyond single point target tracking have been largely limited

to solving the uncorrelated track (UCT) problem (excepting several notable multi-

target tracking studies discussed below). When a radar or telescope records a track1

of observations that does not match the predicted track of a known object in the
1A track here is simply a series of closely-spaced observations, usually associated with the same

object.
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catalog, it is labeled a UCT. Resolving UCTs is largely a manual process, but several

methods have been proposed and tested to alleviate this [36]–[38].

Of particular relevance to this dissertation is breakup processing. There is

little recent documentation in the literature about operational practices, although

two older references describe the process as of the mid-1990s [39], [40]. Once a

breakup is confirmed, unassociated observations are first filtered based on orbital

plane limits to determine whether they are part of the breakup or not. Then, this

(potentially very large) set of unassociated observations must be clustered and fit to

candidate orbits. While there are some automated tools to help with this, the process

is labor-intensive, which can be slow. Additionally, limitations in the distribution

and amount of data often necessitates simply waiting for more observations in order

to construct valid orbits.

2.1.1 Uncertainty Quantification

With the maturation of the orbit estimation field, the increasing number of objects

in orbit, and increasing accuracy requirements for space surveillance and satellite

missions, orbit estimation uncertainty began to attract a great deal of focus in the

literature beginning in the late 1990s. The state uncertainty for satellites, if consid-

ered at all, has traditionally been treated as a multivariate Gaussian distribution.

Methods for propagating the distribution have long relied on linear error theory.

Briefly, linear error theory relies on the fact that the first two statistical moments of

a distribution (which is a full description of a Gaussian distribution) can be trans-
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formed exactly assuming a linear mapping [41].2 In the case of orbit dynamics, the

governing equations tend to be nonlinear in all but the simplest case of Keplerian

motion (using the set of equinoctial orbital elements described in Section 3.1), and

so the process relies on linearization, a technique that can be limited in its validity.

The seminal paper by Junkins, Akella, and Alfriend [42] is regarded as the

canonical introduction to modern nonlinear uncertainty quantification in astrody-

namics. The authors compare covariance propagation under linear error theory with

Monte Carlo results for rectangular, cylindrical, and orbital element coordinates.

They find that linearly-propagated covariance matrices, over time, do a poor job

of describing the true uncertainty, due to the nonlinearity of the orbit propagation

process. Notably, the authors’ choice to use the classical orbital elements “because

all but one of them are ‘slow-varying’ functions of time” [42, p. 541] worked out

well: the measure of nonlinearity presented in the paper is in fact lowest for the or-

bital element coordinate set, and thus the uncertainty in these coordinates is found

to most closely match the true distribution of Monte Carlo points. The concept of

a nonlinearity index would be expanded on by Junkins and Singla [43] later in a

comprehensive tutorial. Figure 2.1 neatly illustrates the issue that has been at the

heart of nearly two decades of astrodynamics research.

Sabol et al. [44] revisited this problem several years later, while adding some

valuable detail. Instead of only investigating the effects of propagation, here the

authors begin with the orbit determination process itself. Their first major finding

is that “the covariance is representative of the state error distribution at the esti-
2See Section 3.3 for more detail.
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Figure 2.1: Effects of nonlinearity on covariance propagation [42, p. 553]. The
“Gaussian approximation” of the confidence surface shown is a Cartesian represen-
tation.

mation epoch for all state representations” [44, p. 509]. They go on to look at the

effects of propagation in various coordinate systems, again finding that Cartesian

coordinates do a poor job capturing the true uncertainty distribution, while slow-

varying element set representations do a much better job. The second key finding

is that the uncertainty distribution in Cartesian coordinates becomes non-Gaussian

largely “due to the limitations of the linear geometric reference frame and not the

linearized dynamics used to propagate the covariance” [44, p. 524]. This suggests

that linear error theory may be acceptable in many situations, as long as the chosen

coordinate system more accurately reflects the physical nature of satellite orbits.

These results heavily influence the choice of coordinate system for the work in this

dissertation, as described in Chapters 3 and 4.

While linear error theory is a convenient way to handle uncertainty, it is by no
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means the only way. In the early 2000s, researchers began exploring the application

of more novel methods of nonlinear uncertainty propagation to the orbit estimation

problem. Park and Scheeres [45] discussed using the Fokker-Planck equations for

this along with what they term state transition tensors (STT), essentially including

higher-order terms from the Taylor series expansion of the dynamics, accounting for

some of the nonlinearity. Fujimoto, Scheeres, and Alfriend [46] extend this work by

showing an analytical solution of the Fokker-Planck equations for the special case

of deterministic Hamiltonian systems. STTs are also a main part of the work by

Majji, Junkins, and Turner [47], which presents the Jth Moment Extended Kalman

Filter (JMEKF), an extension of the first-order EKF that includes the higher-order

nonlinear effects in a familiar Kalman filter framework. These methods allow for

more accurate transformations of the uncertainty distribution by accounting for

effects that are normally removed when relying on linearization alone.

Majji, Weisman, and Alfriend [48] present a similar approach, solving the Liou-

ville equation (which describes distribution dynamics in phase space) for Keplerian

motion through the use of the transformation of variables (TOV) technique. Appli-

cation of the TOV technique, which yields an exact transformation of a probability

distribution function, to orbit uncertainty problems was expanded by Weisman and

Jah [49] and Weisman, Majji, and Alfriend [50].

Terejanu, Singla, Singh, and Scott [51] propose modeling the probability dis-

tribution function as a mixture of Gaussians, a technique that had been proposed

some years before for the general estimation problem (see Alspach and Sorenson

[52] and Ito and Xiong [53]). The benefit of this approach is that existing estima-

13



tion techniques such as Extended Kalman Filters can be easily adapted to handle

an arbitrarily complex, non-Gaussian PDF simply by operating on each (Gaussian)

component. The Gaussian mixture (also referred to as Gaussian sum) modeling

method has proved to be very useful and flexible, and several groups have pursued

this line of research, with significant contributions from Giza et al. [54], Horwood,

Aragon, and Poore [55], DeMars, Bishop, and Jah [56], DeMars and Jah [57], and

Vishwajeet, Singla, and Jah [58]

More recently, the polynomial chaos expansion technique for uncertainty prop-

agation has been explored by Brandon Jones and Alireza Doostan. They have ap-

plied it to the general problem of uncertainty propagation [59], as well as the more

specific problem of estimating probability of collision between satellites [60], [61],

and have demonstrated good results and performance.

Horwood et al. [62] propose the Gauss von Mises (GVM) family of probability

distribution functions. Essentially, for a set of orbital elements (see Section 3.1),

uncertainty in the angular coordinate (or “anomaly”) describing the instantaneous

position along the orbit is defined on the circle, instead of as an unbounded Cartesian

quantity. While other orbital elements are also angular variables, the argument is

made that because they do not vary as quickly, and because typical uncertainties

in these coordinates is small (compared to the anomaly), they may be treated as

Cartesian values without much impact. Thus, the full orbital element state space is

defined on a cylindrical manifold (five Cartesian dimensions and one circular). This

preserves a good deal of uncertainty information for longer propagation times when

compared to treating all six dimensions as unbounded Cartesian quantities. The
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authors discuss the concept of covariance realism, which formalizes the concept of

comparing the validity of covariance matrices, and they implement an estimator with

the same computational cost as the Unscented Kalman Filter (UKF) that maintains

a realistic covariance “for up to eight times as long” [62, p. 276]. Horwood and Poore

[63] present a nice comparative study of different uncertainty propagation methods,

including their GVM-based one, which outperforms the others chosen for the study.

The authors find that GVM-based filters outperform the EKF and UKF in all cases,

and the equinoctial orbital element set yields a more realistic covariance for much

longer propagation times than Cartesian coordinates, as discussed previously.

The present work relies mainly on judicious selection of the coordinate system

to alleviate many of the adverse effects of linearized uncertainty propagation. How-

ever, several more practical problems in space surveillance, such as probability of

collision estimation, require a Cartesian representation. As the previous work has

shown, uncertainty represented by a multivariate Gaussian in Cartesian space can

be quite unrealistic, and so more exotic methods of representation and propagation

become necessary. While this dissertation demonstrates that the cluster tracking

problem is viable using linearization methods in equinoctial orbital element space,

downstream analysis, which may be necessary to perform in Cartesian space, may

require the more advanced uncertainty quantification techniques discussed above.
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2.1.2 Multiple Target Tracking (MTT)

Multiple target tracking involves updating the dynamic states of more than one

object using information derived from various types of sensors. While space surveil-

lance has been a multiple target tracking problem since the beginning,3 target ambi-

guity was rarely an issue, meaning the problem could be simplified to a collection of

many single target tracking problems. Most of the literature in this section focuses

on multiple target tracking in the nontrivial case, in which target ambiguity is a

central issue.

A large portion of the MTT literature deals with the steps leading up to state

estimation, namely observation and track association.4 Given a scene with multiple

targets and sensor noise, it is often difficult to assign sensor returns to the cor-

rect target. Some methods to address this use weighted combinations of multiple

ambiguous measurements to update a target’s state (e.g. joint probabilistic data

association), while others assign a single observation to a single target, often hy-

pothesizing many such assignments (e.g. multiple hypothesis tracking). Both these

“hard” and “soft” assignment methods differ from the group tracking methodology,

in which a collection of nearby observations is used collectively to update some set

of parameters describing the entire group of targets.

Until fairly recently, multiple target tracking techniques have not been partic-

ularly relevant to the astrodynamics community due to the confluence of the his-

torically low population density of satellites, the lack of cluster or formation flying
3Sputnik-1’s launch vehicle upper stage also attained orbit.
4A track in this context is simply a series of observations that are taken from a single target.
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missions, and sensors that could not resolve small debris. The modern spaceflight

environment is now changing such that all three of these are no longer as true as

they once were (see Chapter 1), and there is a small but growing body of multiple

target tracking literature specifically geared toward the space surveillance field.

Binz and Healy [64] surveyed several multiple target tracking techniques, in-

cluding nearest neighbor, probabilistic data association (PDA) and multiple-hypothesis

tracking (MHT), and applied them to a simple satellite tracking scenario. Aristoff

et al. [65] and Singh et al. [34] presented an implementation of their MHT tracker

applied to the space surveillance problem, and demonstrated excellent performance

and results for catalog-level processing.

While some of the literature in applying these traditional MTT techniques

to space surveillance problems demonstrates success, no work to date has demon-

strated the ability to process and characterize a large-scale explosion or breakup

on short timelines (single orbital periods after the event). This is less a failing of

the techniques themselves, and more an indication of the fundamental limitations of

precise target tracking as a whole. Sensor limitations, data sparsity, and surveillance

coverage constraints all limit the effectiveness of target tracking methods for this

particular problem.

2.1.3 Debris Modeling

Satellites may break up for any number of reasons, including collision with other

objects, a loss of structural integrity, or stored energy sources (such as batteries or
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propellant stores) suddenly failing [66]. In all of these cases, the imparted energy on

the resulting fragments is a fraction of the total energy of the original orbit, meaning

the fragments continue to travel along a similar path until differential perturbations

cause them to drift farther apart from one another.

Most of the work involving orbital debris dynamics after a breakup or collision

has focused on modeling the debris field given some prior assumptions about the

nature of the event itself. Barrows, Swinerd, and Crowther [67] presents a compre-

hensive review of this work up to 1996, when it was published. While the authors of

this work split the literature into event modeling and debris field propagation, they

note that the former is “very much a black art”, and the majority of the literature

surveyed falls into the latter category.

Chobotov and Spencer [68] pioneered a simple short-term model based on a

linear state transition matrix derived using the Clohessey-Wiltshire equations for

relative motion, and described the cloud shape as a “pulsating ellipsoid.” McKnight

[69] separates the cloud evolution into phases. The first phase is immediately fol-

lowing a breakup, before the longer-term effects of in-track drift due to differences

in semimajor axis or plane drift due to Earth’s oblateness manifest, when the cloud

can still be described as a pulsating ellipsoid. Tracking the cloud during this phase

is the primary focus of the work in this dissertation. The next phase occurs after the

change in orbit energy has caused the debris pieces to distribute along the orbit track

(but before the orbit planes have diverged significantly), forming a torus. Finally,

after several days or weeks, the torus is spread out around the Earth’s rotational

axis, forming a debris band, which is much longer-lasting than the previous phases.
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Jehn [21] describes similar phases, with an added “transition phase” after the torus

phase but before the debris field has spread uniformly around Earth’s rotational

axis. Figure 2.2 illustrates these four phases.

Ashenberg [70] derives several equations for the time spent in each of these

phases, under the assumption of an isotropic breakup in low-Earth orbit, where

the primary perturbing forces are due to Earth’s oblateness and atmospheric drag.

Typically, the time from fragmentation to full torus formation is about 10-15 orbit

periods5. The typical time for the “band” phase to start is several hundred orbit

periods.

As Hujsak [18] and Chobotov et al. [19] point out, there is another notable

feature during the pulsating ellipsoid phase: the presence of pinch points located at

the initial fragmentation point and half an orbit later (the latter is also referred to

as the pinch wedge). In these regions, the pulsating ellipsoid collapses, leading to a

spike in density, as Hujsak and others have shown. Later work by Healy et al. [17]

revealed the existence of other features in the early phases of a fragmentation by

exactly propagating the debris distribution.

Letizia, Colombo, and Lewis [15], extending the work of McInnes [16], take

a different approach than the previous authors–solving the continuity equation for

fragment density to obtain an analytical expression for the evolution of a debris

cloud. This method is more accurate than the linearized propagation method com-

pared to full numerical propagation of individual pieces, as demonstrated by Letizia,
5The author notes that the expression given for this is an approximation, and “mostly accurate

for a weak impulse” [70].
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(a) Ellipsoid (90 minutes) (b) Torus (9 hours)

(c) Transition (50 days) (d) Band (200 days)

Figure 2.2: Illustration of the four breakup phases described in Jehn [21]. The
approximate elapsed time since the breakup for each phase is given in parentheses.
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Colombo, and Lewis [15]. However, it is only valid once the band phase has been

reached, and numerical propagation of the individual pieces is required during the

earlier phases. The authors also use a Kolmogorov-Smirnoff test to more precisely

define the start of the “band” phase, and find that the approximate band formation

times given in, e.g., Ashenberg [70], underestimate the formation time significantly—

by a factor of about 3.

2.2 Group & Extended Object Tracking

Compared with the more general field of multiple target tracking, group tracking

as a subject has not received quite as much attention. This, however, is beginning

to change, in part due to new challenges arising in related fields, such as computer

vision and video surveillance, which are addressed later in this chapter.

2.2.1 Early Work

Samuel Blackman’s widely-cited book Multiple-Target Tracking with Radar Appli-

cations [71, Ch. 11] contains a chapter outlining the concept of group tracking that

is largely based on earlier work by Taenzer [72], [73], Flad [74], and others. The

problem is introduced as one of conserving radar resources: tracking a collection

of objects as a group requires less computational effort and tracking system band-

width than tracking the objects individually. Blackman classifies this work into

two categories: “centroid group tracking” methods and “formation group tracking”

methods. Details for the centroid tracking method are given in an appendix of his
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book, but Blackman admits these are sometimes “defined based upon ad hoc rules”

[71, p. 325].

The main contribution of this early work is the definition of a “generalized

residual covariance matrix” [71, p. 314]:

SG � ŜD �RG �HPHT . (2.1)

RG is the measurement covariance matrix, HPHT represents the uncertainty in the

centroid state transformed into measurement space, and ŜD is called the dispersion

matrix. The dispersion matrix is a representation of the distribution of the objects

in measurement space around the centroid. Importantly, this only describes the

expected “spread” in measurement space, and thus does not directly represent the

target distribution in state space.

SG is used in determining which observations belong to the cluster. Once this

determination has been made, the centroid of the group of observations is computed

and used to update the centroid group target state. A potential drawback noted

by Blackman is that the centroid can be quite sensitive to the detection (or non-

detection) of one or more group members. This is especially problematic when the

number of group members is relatively low. Blackman suggests that probabilistic

weighting of observations could help to mitigate these effects. The principles from

this early work inform a good deal of the research presented in this dissertation.

In contrast to the centroid group tracking method described above, formation

group tracking methods track the states of all member objects as well as the group
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state. This may be done either by tracking absolute states of each member object, or

by tracking the group centroid state plus relative states of each member. Taenzer’s

paper [72] has more detail on formation group tracking, including logic for handling

missing observations, new targets, merging and splitting targets, and targets that

cross paths with each other. In general, Taenzer and Blackman both place most

of their emphasis on the process of assigning and processing observations, and rely

on slight modifications to typical (at the time) fixed-coefficient or linear Kalman

filtering methods for the estimation part of the problem.

A paper by Drummond, Blackman, and Pretrisor [75] is the next major devel-

opment in the group target tracking literature. The authors identify four “classes”

describing the spectrum of group tracking techniques [75, p. 363]:

• Class 1: Cluster tracking only–no individual target information retained

• Class 2: “Simplified” individual target tracks in addition to cluster tracking

• Class 3: Individual target tracks “supplemented by cluster information”

• Class 4: Individual target tracks with no cluster tracking at all

In addition to the problem of tracking groups of targets, the problem is also posed

in terms of tracking a single extended object, or an object that cannot be reason-

ably described as a dimensionless point target when compared to the resolution of

the observations. In this paper, the authors represent the target group in three di-

mensions by an ellipsoid in Cartesian space, specified by a matrix. The estimation

is done via two separate filters: one to estimate the centroid of the target group,
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and one to estimate the ellipsoid extent parameters. The example given is that of

a group of targets consisting of a missile reentry vehicle and several decoy targets

deployed from a bus. Observations are assumed to exist from passive optical sensors

only–an important point, as the measurement function is no longer a simple linear

function of the target state. The separation velocity is assumed to be fairly small,

and in time the objects separate enough to track individually. This is similar to the

problem of a satellite deployment or a low-energy breakup event, and illustrates a

situation in which one might move from Class 1 to Class 4-type tracking over time.

The authors of [75] demonstrate that such a tracking methodology is feasible.

A good overview of some of the earlier work in the group tracking field is given

by Waxman and Drummond [20], who exhaustively cover publications through July

2002. They explain that a large amount of this work was in response to the Strategic

Defense Initiative (SDI) focus on reentering ballistic missiles. Some of the papers

in this bibliography are only tangentially related to the topic at hand, while many

others exist only as difficult-to-find technical reports written for various companies

and agencies. However, this comprehensive paper represents the state of the art in

group tracking at the time of its publication.

Zimmer and Tsai [76] also address the problem of tracking a missile reentry

vehicle and decoys using multiple optical sensors. In contrast to Drummond, Black-

man, and Pretrisor [75], the cluster extent was only tracked as the two-dimensional

projection of the ellipsoid in the sensor’s field of view. The authors do not use the

full three-dimensional extent ellipsoid because they found it to be “almost unob-

servable using angles-only measurements”. They use an extended Kalman filter to
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track the Cartesian position and velocity of the centroid. Their approach for esti-

mating the projected extent ellipse is similar to those described in Blackman’s book

[71]. As Blackman noted, the authors find that estimates of the centroid state of

the target group tend to be sensitive to unresolved and undetected targets in the

group. Additionally, as the relative configuration of the constituent targets changes

on a relatively slow time scale, measurement error may be consistently biased. The

authors find that the biases induced by this phenomenon are not resolved with the

introduction of a second sensor, contrary to what they expected. The authors also

note that “although the centroid does not follow the ballistic equation of motion

exactly, [they] have found the deviation to be very small” [76, p. 270]. This indi-

cation that centroid motion should be carefully considered is what led to the work

presented in Chapter 4 of this dissertation.

An insightful paper by Daum and Fitzgerald [77] is cited as motivation for

several of these works in group target tracking. In it, the authors derive expressions

for the probability of resolution PR (or the probability that a sensor will be able

to distinguish multiple separate objects from a single object) and the probability of

correct data association PDA as functions of target separation and sensor resolution.

He shows that, in most cases, PR   PDA. In other words, sensor resolution is a

more important problem than observation assignment, even though the majority

of multiple target tracking literature focuses almost exclusively on the latter. By

acknowledging the possibility of ambiguous target resolution, and addressing this

through techniques which consider the dynamics of two or more targets collectively

(i.e. group target tracking), we may address the general multiple target tracking
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problem more effectively.

Yang et al. [78] focused on the specific problem of group initialization. Using

geometric arguments, the authors present ideas for initializing a group target using

Cartesian position vectors as observations. The problem of target grouping/assign-

ment is discussed, as well as the issue of estimating the initial centroid velocity,

using information from all observations within a group. Shea [79] discussed group

tracking approaches for processing ground moving target indicator radar measure-

ments. While little detailed technical content is presented, the overall process as

described seems to use group information while maintaining individual target tracks.

The author’s two-threshold sequential algorithmic scheme for group partitioning is

presented for addressing the “clustering” problem involved in group assignment.

D. J. Salmond and N. J. Gordon published several papers in the late 1990s and

early 2000s on group tracking [80]–[82]. Their first papers [80], [81] described their

process for applying particle filtering methods to the problem of tracking group

(or extended) targets. In all of their papers, the target group was modeled as a

set of individual states, with an overall “bulk” component describing the group

properties. Both a linear-Gaussian (assuming linear models and Gaussian noise

characteristics) multiple hypothesis tracking (MHT) solution and a more generally-

applicable particle filtering implementation are shown in [81]. The later papers

focus on the particle filtering implementation only. Multiple observation association

hypotheses are constructed, though “awkward hypothesis management is avoided”

[82, p. 532] through the use of a particle filter. A detailed Bayesian solution is

presented in Salmond and Gordon [82] for a known number of targets.
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An interesting paper by Connare et al. [83] incorporates several techniques for

dealing with group target tracking. A variable-structure interactive multiple model

(VS-IMM) is used to deal with maneuvering targets, while the joint belief-probability

data association (JBPDA) approach is used for observation assignment. Briefly, the

JBPDA essentially performs the logic of joint probabilistic data association (JPDA)

[84] twice: once for measurement-to-track association (“observation association”),

and once for track-to-group association (“track association”). This framework is

applied to the problem of maneuvering ground targets being tracked with a high-

resolution radar.

This section gives a brief history of early work in the group tracking field.

While many of the concepts are still used in contemporary work, the field has largely

moved on to alternate approaches to the problem. Two of these approaches are

discussed in the following sections.

2.2.2 Finite Set Statistics

Beginning in 1997 [85], Ronald Mahler began publishing about his framework for us-

ing the concept of finite-set statistics (FISST) in the context of multi-target tracking

problems. Mahler [86] presents an application of FISST to the group target tracking

problem. Mahler [87] presents a broad overview of FISST, which he describes as “an

‘engineering friendly’ version of point process theory” [87, p. 54]. Within the FISST

framework, targets, sensors, and measurements are all represented by random finite

sets (RFS), and all estimation operations are done on these sets, instead of their
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constituent members. Issues such as target death and birth, missed detections, and

false detections may all be modeled. This is a potentially powerful method, as it is

a more unified approach to the multi-target tracking problem.

Gilholm et al. [88] applies a very similar technique involving Poisson models to

the group tracking problem. The authors note that a “key aspect of the [Bayesian]

solution is the construction of feasible measurement-source assignment hypotheses

and the evaluation of the probabilities of these hypotheses” [88, p. 1] and in doing

so, they introduce a key aspect of set-based tracking approaches: the ability to avoid

a combinatorial explosion by avoiding explicit assignments when there exist many

measurements and many targets.

One of the most popular implementations of a FISST-based tracking scheme

is the Probability Hypothesis Density (PHD) filter, introduced by Mahler [89]. The

overall aim of the PHD filter is to track the first statistical moment (the “inten-

sity”) of the multi-target RFS, analogous to a constant-gain Kalman filter [89]. The

PHD filter is a simplification of the full Bayesian FISST tracker (which is gener-

ally intractable [90, p. 225]), but is not so basic that it has no utility. Vo and

Ma [91] addresses the issue of “state extraction” (producing target state estimates

from the posterior intensity). Previously, this was done via clustering systems of

particles, and Vo presents a way to perform state extraction in a more efficient way

using Gaussian mixture models (GMM). Several implementations of FISST using

variants of the PHD filter for extended object tracking [92], [93] and group tracking

[94] have been reported in the literature, including a paper by Li and Yi [95] that

examines the missile tracking problem. A recent paper by Lian et al. [96] examines
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the performance bounds of suboptimal RFS-based group target trackers. McCabe

and DeMars [97], LeGrand and DeMars [98], and DeMars et al. [99] have applied

the PHD filter to problems ranging from relative multiple target tracking to satellite

breakup processing, with mixed results.

Recent work by Hussein et al. [100] and Hussein et al. [101], [102] is of partic-

ular relevance to this dissertation. Hussein and his coauthors introduce the FISST

framework to the astrodynamics community with this series of papers, and present

implementations using Gaussian mixtures to approximate the problem, similar to

the PHD approach. The resulting AEGIS-FISST tracker is applied to the problem

of tracking modestly sized sets of targets with noisy or missing measurements, and

initial results are promising. However, this work is largely proof-of-concept, using a

very small number of targets (1-3) and two-body dynamics in two dimensions.

Gehly [103] also presents a study of space object tracking within the FISST

framework, and expands on some of the limitations. Computational complexity of

the method is the main limitation mentioned, as well as computationally expen-

sive calculations associated with using GMM. This is likely the reason why most

published studies present simulations with a relatively small number of objects to

be tracked (e.g. 10 in Gehly [103]). These key limitations are also inherent to the

method: GMMs are required because the problem is formulated in Cartesian space

with large uncertainty regions. It is important to note that the overall goal of these

studies is to distinguish and track all objects individually (Classes 3 and 4 as defined

above), which is distinctly different from the goal of this dissertation of tracking a

large cloud of objects as a single entity, without attempting to solve the association
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problem.

2.2.3 Random Matrix Methods

Koch [104] presents another major development in the group tracking literature. The

author considers the problem of estimating a group target’s “extension”, or shape,

parameters in a rigorous, Bayesian framework. The extension of a group target is

modeled as a symmetric, positive definite (SPD) matrix, which can be thought of as

analogous to a single object’s covariance matrix, but instead of representing state

uncertainty, it represents the physical extension of the group. In this paper, Koch

shows that this extension matrix may be estimated via a “natural extension of the

standard Kalman filter” [104, p. 210], thus obviating the need for particle filters as

in earlier work. He derives this filter with a considerable amount of detail. Perfor-

mance of this new filter is demonstrated with an aircraft formation flying example,

complete with a maneuvering target group and target splitting. This approach is ex-

panded and documented in a seminal 2008 journal article [105]. Importantly, there

are several key assumptions made by the authors. First, this method seems limited

to a Cartesian state space representation, which restricts its use in the orbit estima-

tion application. Second, measurements are assumed to be full Cartesian position

vectors, which, again, is not ideal for this application. Nevertheless, considering the

group target extent as a random matrix-variate state is another key innovation that

enables the work presented in this dissertation.

Feldmann and Franken [106] build on this work, presenting some improve-
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ments in the way sensor performance is handled. Particularly, the authors focus

on an assumption in Koch [105] that the measurement error “is small and thus ne-

glectable in comparison with the object extension that hence dominates the spread

of the measurements” [106, p. 1030]. They then present an alternative to Koch’s

approach that allows for more robust tracking when sensor error does not meet this

restrictive assumption. The authors also discuss the notion of a confidence region

for the elliptical extension. Essentially, a lower and upper bound on the scale of the

extension ellipse may be determined, which yields a sort of elliptical torus shape

representing uncertainty in the extension itself. This work was later expanded and

published as a journal article [107].

Following along this line of research, Lan and Li [108], [109] published a pair

of papers addressing, in part, the same drawback to Koch’s random matrix method

that Feldmann, Franken, and Koch [107] addressed. The authors argue that the

treatment of measurement noise presented in Feldmann, Franken, and Koch [107]

does not lend itself to an easily-derivable Bayesian solution. Further, they point

out that it does not consider the case in which the object extension changes with

time, or distortion of the extension due to sensor-target geometry. To alleviate these

issues, the authors introduce a method that handles these issues by transforming

the extension via the similarity transform. With this modification, the Bayesian

solution is derived and nicely summarized. The second of these papers [109] focuses

on more accurate modeling of an extended object, such as an airplane, through the

use of multiple overlapping ellipsoids.

Granström and Orguner [110] presents a new prediction step for the random
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matrix method of extended object tracking based on the Kullback-Leibler diver-

gence, a measure of similarity between two probability distribution functions [111].

As the author points out, Koch’s original random matrix work predicts the extension

parameters “based on simple heuristics [that] increase the extension’s covariance,

while keeping the expected value constant” [110, p. 1577]. Granström and Orguner

show that their method matches or exceeds prior methods for extension prediction

via several simulations, including a multiple target tracking problem that utilizes a

PHD filter.

Another series of papers by Baum and Hanebeck [112]–[114] considers the

problem of estimating the extent of a target group more accurately through the

use of random hypersurface models. The earliest paper [112] uses elliptic random

hypersurface models, but the later papers [113], [114] allow for more accurate shape

estimation through the use of star-convex random hypersurface models. Sun, Li,

and Lan [115] have similar objectives, and the authors propose the use of support

functions and extended Gaussian images to more accurately model complex target

geometries.

Wieneke and Koch [116] presents an extension to the random matrix method

applicable to multiple extended objects. For this, a probabilistic multi-hypothesis

(PMHT) tracker is proposed, which “simultaneously estimates the ellipsoidal shape

and the kinematics of each object using expectation-maximization (EM)” [116, p.

2349].

Pang, Li, and Godsill [117], [118] presented work focused on modeling intra-

group interactions using stochastic differential equations with repulsive forces. In
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doing so, the authors also developed an efficient filtering algorithm using Markov

Chain Monte Carlo (which they dub “MCMC-particles”) in order to efficiently draw

samples from high-dimensional probability distributions, avoiding the inefficiency

of using a sequential Monte Carlo method (e.g. particle filtering), as with earlier

work. This was adopted for use in other problems, including a space object tracking

problem [119]. In this paper, the authors tracked all individual objects, as well as

the group centroid and an existence variable, using the MCMC-particles algorithm

for filtering and JPDA for measurement association. They noted better tracker

performance when tracking the group centroid. Preliminary work along the same

line was presented by Binz and Healy [120], although this focused more on modeling

the centroid itself, and did not address the issue of estimation.

A very good overview of the various modern schools of thought on the subject

of group tracking is given by Mihaylova et al. [121]. The authors break the subject

down into sub-problems, and summarize the solution methods for each, with em-

phasis on sequential Monte Carlo (SMC, also known as particle filtering) techniques.

For small groups with non-interacting members, standard Bayesian tracking tech-

niques suffice; interacting members of small groups require joint estimation of the

group structure and individual states. Conversely, and more relevant to the debris

tracking problem, large groups (defined as having “many” components that cannot

be easily distinguished) rely on either set-theoretic approaches or other Bayesian

methods, such as random matrix methods, which are discussed elsewhere in this

chapter.
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2.2.4 Computer Vision

Some applications of computer vision involve tracking objects or targets in crowded

scenes, such as tracking individual people in a crowd. As such, the computer vi-

sion/video surveillance field has spurred several advances in group tracking, and

thus deserves special mention here. Gennari and Hager [122] use a Kalman filter to

estimate the group centroid state, cardinality, and extension, similar to early group

target tracking work. The study uses probabilistic data association (PDA) to as-

sociate measurements with groups. Duan et al. [123] examine the extended object

tracking problem from a robotics/machine vision perspective. Bazzani, Cristani,

and Murino [124] use a particle filtering approach to perform joint tracking of in-

dividuals and groups in surveillance video. A good discussion of multiple extended

object tracking is presented by Cancela et al. [125], along with an interesting ap-

plication of the Hellinger distance as a metric between histograms in order to track

“appearance” between video frames, which could be adapted for the more general

group target tracking problem. In fact, several of the metrics explored in Chapter 5

originate from the computer vision field.

2.3 Summary

While the space object tracking field has many mature methods for tracking indi-

vidual point targets, these methods fail in cases where many targets exist in similar

orbits. Indeed, few studies have even attempted to address this problem, with the

exception of the FISST-based methods mentioned–and the limitations of these are
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discussed above.

Instead, we can draw inspiration from the broader multi-target tracking field,

in which several attempts have been made to address this problem. Group tracking

is chosen as the most promising approach, as it eliminates the computationally-

expensive association problem and conceptually matches the stated motivations.

Unfortunately, most studies use Cartesian coordinates in their state space represen-

tations, which is ill-suited for the orbit problem due to the nonlinearity of many of

the operations involved. As such, this dissertation will use the findings that more

natural orbital element state space representations reduce the effects of this nonlin-

earity. Additionally, we can extend the use of random matrix methods to represent

distributions across ellipsoids in such state space.
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Chapter 3: Extent Modeling

This chapter presents the background necessary to model a cluster of objects in orbit.

The various relevant coordinate systems are discussed, followed by a description of

the method used for satellite propagation, including the relevant orbit perturbations.

Finally, the ellipsoid representation of the cluster is discussed, along with various

tools for working with such a representation.

3.1 Coordinate Systems

As discussed in Chapter 2, there are several options for describing the motion of a

satellite in orbit, and careful coordinate system selection is key.

The most common coordinate system used to describe an orbit is the set of

classical orbital elements [126, p. 104]. Details can be found in any orbital mechanics

reference, including the aforementioned reference, and the elements are listed here

for completeness:

a semimajor axis

e eccentricity

i inclination
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Ω right ascension of the ascending node

ω argument of periapsis

ν true anomaly

The elements corresponding to orientation of the orbital plane are illustrated

in Figure 3.1.

Figure 3.1: Illustration of the classical orbital elements.

Another representation, and the coordinate system used for the majority of

this dissertation, is the equinoctial element set pn, af , ag, χ, ψ, λq [127], [128], which

is nonsingular except for the case of retrograde equatorial orbits. These elements

are defined in terms of the better-known classical orbital elements as follows:
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n �
c
µ

a3

af � e cospω � Ωq

ag � e sinpω � Ωq

χ � tan
i

2
sinΩ

ψ � tan
i

2
cosΩ

λ �M � ω � Ω.

(3.1)

There is significant variation in the literature concerning equinoctial elements.

The set presented here is identical to that published by Arsenault, Ford, and Koskela

[127]. Often, the mean motion n will be replaced with either semimajor axis a (as

in Montenbruck and Gill [129, p. 30]), or the semilatus rectum, as in Walker,

Ireland, and Owens [130]. Another common difference is in the variable names

themselves: paf , agq are often denoted pk, hq, and pχ, ψq as pp, qq. Additionally, the

set presented by Walker, Ireland, and Owens [130] introduces the “retrograde factor”

I, which removes the singularity for retrograde equatorial orbits. The history of the

different equinoctial element sets is nicely summarized in an appendix of Wright

[128]. Figure 3.2 shows the definition of the equinoctial reference axes (X̂eq, Ŷ , Ẑeq)

with respect to the inertial frame (X̂, Ŷ , Ẑ) and the node vector n̂.

As discussed in Chapter 2, distributions described in equinoctial elements have

been shown to remain valid for longer periods of time than other descriptions such

as Cartesian state vectors or classical orbital elements [63], this is the coordinate
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Figure 3.2: The equinoctial frame (recreated from Long et al. [28, p. 3-9]).

system used in this dissertation. The following section describes a method for high-

accuracy orbit propagation using the equinoctial element set.

3.2 Dynamics

Two-body motion is simple to describe in equinoctial element space. All elements

remain constant, except for the mean longitude λ, which changes as a linear function
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of the element n:

nptq � n0

af ptq � af0

agptq � ag0

χptq � χ0

ψptq � ψ0

λptq � λ0 � n0pt� t0q.

(3.2)

3.2.1 Variation of Parameters

In order to incorporate perturbing accelerations into the equations of motion, ex-

pressions for the time rate of change of the equinoctial elements are needed. Gauss’s

variational equations provide such a framework, and the expressions are presented

here. Using these equations has the benefit of allowing us to integrate the equa-

tions of motion directly using our preferred coordinate system, without needing to

perform computationally-expensive and potentially error-prone coordinate transfor-

mations at every time step. Following Long et al. [28], we can define the time rate

of change of a given “slow” element α as

dα

dt
� Bα
B 9x

P , (3.3)
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where 9x is the inertial velocity vector, and P is the perturbing acceleration vector

in inertial coordinates. For the “fast” coordinate (also called the time element) β,

the time derivative is defined as

dβ

dt
� β1 � Bβ

B 9x
P , (3.4)

where β1 is the time derivative of β for Keplerian motion. Long et al. gives the time

rate of change of semimajor axis [28, p. 5-32]:

da

dt
� 2 9x

n2a
� P . (3.5)

In order to get this in terms of the mean motion n, we invoke the chain rule.

Combining Equations (3.3) and (3.5), we see that

Ba
B 9x

� 2 9x

n2a
. (3.6)

Then from the definition of mean motion, we see that

n �
c
µ

a3

Bn
Ba � B

Ba
�c

µ

a3

�
� �3n

2a
. (3.7)
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Then, using the chain rule,

Bn
B 9x

� Ba
B 9x

Bn
Ba

� 2 9x

n2a
� �3n

2a
� �3 9x

na2
, (3.8)

and finally

dn

dt
� �3 9x

na2
� P . (3.9)

So, the full set of equations from Long et al. [28, Section 5.7.2] (with the

replacement of semimajor axis with mean motion) is then:

dn

dt
� �3 9x

na2
� P

dag
dt

�
�
1

µ

�
p2 9X1Y1 �X1

9Y1qf̂ �X1
9X1ĝ
�
� af
G
pψY1 � χX1qŵ

�
� P

daf
dt

�
�
� 1

µ

�
Y1 9Y1f̂ � p2X1

9Y1 � 9X1Y1qĝ
�
� ag
G
pψY1 � χX1qŵ

�
� P

dχ

dt
�
�
1� χ2 � ψ2

2G
Y1ŵ

�
� P

dψ

dt
�
�p1� χ2 � ψ2q

2G
X1ŵ

�
� P

dλ

dt
�
�
n� 2

na2
x� β

�
af
Bag
B 9x

� ag
Baf
B 9x



� 1

na2
pψY1 � χX1qŵ

�
� P .

(3.10)

Here, X1, 9X1, Y1, 9Y1 are the components of the position and velocity of the

satellite in the equinoctial frame, which is defined by orthogonal axes pf̂ , ĝ, ŵq (also
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called (X̂eq, Ŷeq, Ẑeq), see Figure 3.2). The factors G and β are defined as

G � na2
b
1� a2f � a2g (3.11)

β � 1

1�
b
1� a2f � a2g

. (3.12)

x and 9x are the Cartesian position and velocity, respectively, expressed in an inertial

frame.

These equations need to be numerically integrated using an ordinary differ-

ential equation (ODE) solver. In this work, a fourth-order Runge-Kutta method

with fifth-order error control and Dormand Prince coefficients is used, mostly for its

flexibility and good general performance [131]1.

3.2.2 Perturbation Forces Modeled

In addition to the force of gravity exerted on a satellite by the central body, there are

other, smaller forces, known as perturbations. For Earth-orbiting objects, the most

important perturbations come from Earth’s non-spherical gravity field, atmospheric

drag, solar radiation pressure, and gravity effects from other massive bodies. Smaller

effects, such as Earth’s tides, relativity, and Earth albedo, are typically only useful

in very high-precision applications, such as satellite geodesy.

For the extent estimation application, in which the times of interest are only

several hours or days after an event, only the stronger perturbative forces are likely to

matter: the lower-order spherical harmonics in Earth’s gravity field, and atmospheric
1Implemented in the DifferentialEquations.jl Julia library[132].
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drag for low Earth orbits. The simulations in Chapter 6 include all dynamic effects

that are appropriate for the given orbit regime, and while the dynamics model could

be simplified to improve performance for an operational implementation, that study

is considered future work.

3.2.2.1 Central Body Gravity

Besides atmospheric drag for low-altitude satellites, the dominant perturbation for

Earth-orbiting satellites is due to the fact that Earth is not a perfect sphere, but

instead is more pear-shaped. King-Hele gives an exaggerated cross-sectional view of

the Earth’s geoid, reproduced in Figure 3.3. This represents the mass distribution

within Earth, not the actual surface shape.

The result of this imperfect mass distribution is that the magnitude and di-

rection of the acceleration due to gravity varies over the satellite’s orbit. We can

model this complicated gravity field using a spherical harmonic expansion [126, p.

545]. The potential function may be written as [126, p. 543]:

U � µ

r

�
1�

8̧

l�2

ļ

m�0

�
RC
r


l

Pl,mrsinφgcs tCl,m cospmλq � Sl,m sinpmλqu
�
. (3.13)

In this equation, Pl,m is the associated Legendre polynomial of degree l and

order m [134, pp. 247–248], Cl,m and Sl,m are un-normalized gravity field coefficients

[135], λ and φgc are the longitude and geocentric latitude of the satellite respectively,

RC is the Earth’s mean radius, r is the distance of the satellite from the center of the
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Figure 3.3: Earth’s geoid (solid line), relative to the simpler model of a flattened
ellipsoid (dashed line) [133].
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Earth, and µ is the Earth’s gravitational parameter. The equations for the inertial

acceleration components are given in Appendix A.

Of highest significance are the so-called zonal harmonics, defined by m � 0

[126, p.545], and usually denoted by2 Jn � �Cl,0. These are symmetric around

the Earth’s z-axis. The J2 zonal harmonic is most significant by several orders of

magnitude, and causes secular changes in an orbit’s right ascension of the ascending

node, argument of perigee, and mean anomaly [126, p. 643]. In fact, a reasonable

approximation for an orbit’s true perturbed motion can be obtained by modeling

only the secular effects of J2, and this approximation is used often, e.g. when

computing the partial derivatives required for orbit determination [127].

3.2.2.2 Atmospheric Drag

For low Earth orbits, the other perturbation that must be taken into account is

atmospheric drag. The acceleration on a satellite due to drag is [126, p. 549]

adrag � �1

2

cDA

m
ρv2rel

vrel

|vrel| , (3.14)

where ρ is the density of the atmosphere, vrel is the relative velocity of the at-

mosphere with respect to the satellite, cD is the drag coefficient, and A{m is the

satellite’s area to mass ratio. The quantity cDA{m is often referred to as the satel-

lite’s ballistic coefficient. For most satellites, the ballistic coefficient has an attitude

dependence and perhaps explicit time dependence, but often, including in this dis-
2As King-Hele describes in his book A Tapestry of Orbits, the Jn notation was chosen as the

standard as an homage to the geophysicist Sir Harold Jeffreys [1, p. 40].
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sertation, a constant value is used.

In this work, we use a simple exponential model of atmospheric density [126,

p. 562]:

ρ � ρ0 exp

�
�h� h0

H

�
. (3.15)

Here, ρ0 is the reference density at the reference height h0, h is the actual satellite

altitude above the ellipsoid, and H is the scale height. Values for H, h0, and ρ0

have been tabulated as in, e.g., NASA, NOAA, and USAF [136].

3.2.2.3 Solar Radiation Pressure

Solar radiation pressure results from photons from the Sun reflecting off of a satel-

lite’s surface and transferring momentum. For higher orbits, this can have a signif-

icant effect on the orbit. The acceleration due to solar radiation pressure can be

approximated by the formula given in Kubo-oka and Sengoku [137]:

aSRP � �cRA
m

Φ

c
ŝ, (3.16)

where Φ is the solar constant (1367W{m2 [126, p. 575]), c is the speed of light,

ŝ is the unit vector from the Sun to the satellite, and cR is the radiation pressure

coefficient:

cR � 1� 4

9
δ, (3.17)

where δ is the diffuse reflectivity coefficient [137]. This is the cannonball model for

solar radiation pressure, and is an approximate model that is not always applicable,
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for instance when the satellite has a very high area to mass ratio (see, e.g., DeMars,

Bishop, and Jah [138]). The actual acceleration due to solar radiation pressure is

sensitive to many parameters, including variations in the solar flux, the attitude of

the satellite, the area to mass ratio, and the surface properties of the material.

3.3 Covariance Transformations

While the previous section describes the motion of individual point masses in orbit,

it is often necessary to be able to propagate a distribution. In the case of an

arbitrary distribution, this is generally not possible without resorting to Monte Carlo

techniques or other numerical approximations, however, if a Gaussian distribution

is assumed, a number of simplifications can be made that makes this analytically

solvable.

As discussed in Chapter 2, the state uncertainty is often represented as a mul-

tivariate Gaussian distribution for convenience–an assumption that is often good

near the estimation epoch, but breaks down as the nonlinear effects of propagation

begin to manifest themselves. The need to manipulate covariance matrices (trans-

form them from one coordinate system to another, or propagate them in time) often

arises, and there are several techniques for doing so.

If we define Px as the covariance matrix of the Gaussian random vector x �

N pµx, Pxq, and the linear transformation (e.g., a reference frame rotation) from x
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to y as y �Mx, it is a well-known result [139, pp. 75–76] that µy �Mµx and

Py � E
�py � µyqpy � µyqT

�
� E

�pMx�MµxqpMx�MµxqT
�

� E
�
Mpx� µxqpx� µxqTMT

�
�ME

�px� µxqpx� µxqT
�
MT

�MPxM
T . (3.18)

Note that this is valid for any linear transformation M . In the more general

case where y � mpxq, we can linearize the transformation with a Taylor series

expansion around the mean (keeping in mind that µy � mpµxq):

y|µx � mpµxq � Bm
Bx
����
µx

px� µxq � ...

� mpµxq � Jpx� µxq � ...

Py � E
�py � µyqpy � µyqT

�
� E

�
pmpµxq � Jpx� µxq � µyq pmpµxq � Jpx� µxq � µyqT

�

� E
�
pJpx� µxq pJpx� µxqT

�

� E
�
Jpx� µxqpx� µxqTJT

�
� JPxJ

T . (3.19)

J � Bm
Bx

is the Jacobian matrix. This process is often referred to as the similarity

transformation [140], and that term is used throughout this dissertation, however it
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seems to be more commonly applied to a transformation of the form B �M�1AM

that preserves the eigenvalues of A [141, p. 232]. Note that this process can be

applied to reference frame transformations (which are linear, e.g., quasi-inertial to

Earth-fixed), coordinate system transformations (which are generally not linear, e.g.,

Cartesian to Keplerian elements), and propagation.

An alternative method is to use the unscented transform to propagate or trans-

form the covariance matrix. This method provides better accuracy for long-term

propagation since there is no explicit linearization. Full details are given in Chap-

ter 5, but briefly, the unscented transform propagates/transforms the covariance

by computing the weighted sample covariance of a set of individually-transformed,

deterministically-chosen sigma points. This method has the advantage of not re-

quiring explicit linearization or formation of Jacobian matrices, and has been shown

to result in a more realistic covariance when compared to a fully nonlinear transfor-

mation via Monte Carlo [142].

Besides the use of the unscented transform in the centroid filter (see Sec-

tion 5.3.1), the similarity transform is used throughout this dissertation when prop-

agating and transforming covariance and extent matrices.

3.4 Extent Modeling

This section describes the method chosen for this dissertation to describe the size,

shape, and orientation of a cluster of objects: the extent.3 In two dimensions,
3Portions of this section have been published previously by the author in Binz and Healy [120],

[143].
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constant-probability contours of a bivariate Gaussian distribution take the form of

ellipses. In three dimensions, these become ellipsoidal constant-probability surfaces.

Generalizing to N dimensions, the constant-probability surfaces become hyperellip-

soids. Analogous to these constant-probability hyperellipsoidal surfaces, the cluster

extent is represented here by a symmetric, positive-definite matrix in equinoctial

element space. This matrix X defines the orientation and dimensions of the extent,

while the center is the estimated state of the centroid of the cluster x̄, such that the

cluster surface consists of the level set of points x such that [144, p. 692]

px� x̄qTX�1px� x̄q � 1. (3.20)

No assumption about the distribution of objects within the extent is required, nor

is one made. 4

Conceptually, the ellipsoid described by X is similar to the covariance of

a given state estimate. However, there are several key differences. Primarily, the

covariance describes the uncertainty of the state estimate, whereas the extent matrix

describes a “surface” containing all members of the satellite cluster. Further, because

we decouple the problem of estimating the centroid of the cluster from the problem

of estimating its extent, both the covariance estimate and the extent matrix estimate

may be used, with the expectation that the covariance will be significantly different

from the extent. This enables precision tracking of the centroid with uncertainty
4As an aside, note that because a symmetric, positive-definite matrix can be represented as an

ellipsoid, we will occasionally use the terms “extent matrix” and “extent ellipsoid” interchangeably,
particularly when discussing random matrices in Chapter 5.
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similar to that of a single tracked object, while maintaining information about the

spread of objects for sensor tasking and conjunction warnings.

Prior work has shown that a covariance represented in equinoctial elements

remains realistic over longer propagation spans than one represented in other coor-

dinate systems, such as Cartesian [44], [63]. As shown in Section 3.2, the two-body

problem is linear in the equinoctial elements, with the first five elements undergoing

no change, and the sixth element, mean longitude, changing as λptq � λ0�npt� t0q.

As Horwood, Aragon, and Poore point out [55], the fact that, for two-body dynam-

ics, λptq can be expressed as a linear combination of the state variables themselves,

a Gaussian PDF in equinoctial elements will remain Gaussian indefinitely, i.e., if

x � N pµ,Σq and y � Fx, then y � N pFµ, FΣF T q [145, p. 285]. No such state-

ments about linearity can be made for the Keplerian or Cartesian satellite state

representations (or even for an equinoctial element set that uses semimajor axis in-

stead of mean motion), and so the Gaussian assumption about PDFs in these spaces

does not remain valid for very long [44].5

3.4.1 Computing Extent

While the previous section introduces an unambiguous definition for extent, there

are multiple ways to compute extent given an actual set of points. This section

discusses the two options considered for this work.

First, the unbiased sample covariance of the set of N points, given the sample
5It should be noted here that the fact that λ is an angle means that it requires special handling in

a statistical sense. Horwood and Poore [63] introduces the Gauss von Mises distribution to address
this problem specifically, and techniques for computing statistics involving angular quantities are
discussed in Chapter 4.
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mean ȳ, is defined as:

Ys � 1

N � 1

Ņ

i�1

pyi � ȳqpyi � ȳqT . (3.21)

The ellipsoid described by this matrix, however, corresponds to only a 1σ bound.

In order to enclose the entire set of points, consistent with our definition of extent,

we then scale Ys by the largest Mahalanobis distance of the set of points [143]. The

Mahalanobis distance of the ith point yi is defined as [146]

ki �
a
pyi � ȳqTY �1

s pyi � ȳq. (3.22)

The extent is then

Y � k2maxYs, (3.23)

where

kmax � maxtkiu, i P t1, 2, ..., Nu. (3.24)

An alternative method of calculating extent is to use the minimum-volume

enclosing ellipsoid (MVEE) for the set of points. Techniques for doing this have

been studied extensively, as MVEEs (also called Loewner or Loewner-John ellipsoids

[147]) are useful tools for problems in statistics and optimization [148].

The method for solving for the MVEE used here is the Fedorov-Wynn-Frank-

Wolfe method, described in Todd [148]. It requires a set of centered points, thus the

first step is to transform the entire set tyu to tycenteredu � tyi� ȳu @ yi P tyu, where
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Figure 3.4: Comparison of the MVEE extent (dotted line) and the scaled covariance
(solid line) for a set of points. On the right, the farthest point (using Mahalanobis
distance) has been removed and the MVEE and scaled covariance ellipses recalcu-
lated.

special consideration is taken for angular quantities, as discussed in Chapter 4.

Figure 3.4 shows a set of points from the bivariate unit normal distribution

N p0,12q, along with the 1σ sample covariance ellipse (dashed line), the scaled co-

variance ellipse (solid line), and the MVEE (dotted line). On the right, the farthest

point (using Mahalanobis distance) is removed from the set, and the scaled covari-

ance is re-scaled, while the MVEE is recomputed. Unlike the scaled covariance

ellipsoid, the MVEE is dependent only on the outer hull of points, and not the

overall structure of the cluster. As such, the orientation of the MVEE is extremely

sensitive to individual points, which can be undesirable when cluster members are

being dynamically included or excluded from the cluster (see Section 5.2.1).

Due to this sensitivity of the MVEE method to individual points, the esti-

mation process uses the scaled sample covariance, while the output of the filter is

compared against a truth extent in state space generated as a MVEE. The relative

smoothness of transitions (when individual objects get included or excluded) allows
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for a better-performing estimator, while a comparison against a MVEE truth extent

ensures the description is realistic and accurate with respect to this definition of

extent.

When computing extent in equinoctial element space, the tolerance of this

iterative method is chosen to be 10�5, as this yields consistent results for this problem

while being fast to compute. At this tolerance level, convergence usually takes

several hundred iterations, however the overall computation time is still acceptably

low (on the order of 50 milliseconds on a single 1.7 GHz processor core).

3.4.2 Sampling the Extent

It is often desirable to be able to generate points uniformly within a given extent

matrix, e.g. for visualization. This section outlines the process for doing so.

First, we generate a set of points uniformly distributed on the surface of a

n-dimensional hypersphere, where n is the dimension of the extent matrix. This is

a straightforward process: generate n random draws from the unit normal distribu-

tion: xi � N p0, 1q, i � 1, 2, ..., n. Then, the vector

x � 1a°n
i�1 x

2
i

�
�����������

x1

x2

...

xn

�
�����������

(3.25)

is distributed normally over the surface of the unit n-dimensional hypersphere [149].
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This essentially chooses a uniformly-distributed random direction for a given point.

In order to sample from within the volume of the hypersphere, Harman and

Lacko [150] shows that multiplying the above vector by a factor of u1{n, where

u � Up0, 1q is the uniform distribution, we get a uniformly-distributed point inside

the hypersphere: u1{nx.

Next, the points must be scaled and rotated according to the eigenvalues and

eigenvectors of the extent matrix. The vector u1{nx may be scaled by multiplying

each component by the square root of the corresponding eigenvalue vi:

xscaled � u1{n

�
�����������

?
v1x1

?
v2x2

...

?
vnxn

�
�����������

(3.26)

The rotation is dictated by the eigenvectors of the extent matrix di. If D �

rd1|d2| . . . |dns is the matrix of eigenvectors, this is essentially a rotation matrix from

our original frame to the frame defined by the principal axes of the extent, and the

rotation can be written as

xellipsoid � Dxscaled. (3.27)

The end result is a point from a uniform distribution over the hyperellipsoid defined

by the extent matrix centered at the origin. All that remains is to translate each

point: xextent � xellipsoid � xcentroid.

As an example, this process is used to generate points over the volume of the
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three-dimensional ellipsoid defined by XTAX � 1, where

A �

�
�������
1{16 1{32 1{16

1{32 1{4 1{16

1{16 1{16 1{4

�
�������
. (3.28)

Figure 3.5 shows a set of 500 samples as black dots, along with the ellipsoid

surface.

This chapter presented the preliminaries necessary to simulate the dynamics

of a point object in space, methods for generalizing this to distributions of particles,

and techniques for representing and manipulating the extent of a cluster of particles.

These tools will be applied to the cluster estimation problem in the following two

chapters.
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Figure 3.5: Uniform sampling over the volume of an ellipsoid.
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Chapter 4: Centroid Dynamics

As discussed in the previous chapters, this work decouples the cluster estimation

problem into two parts: estimation of the centroid of the cluster, and estimation of

its extent.1 This chapter discusses the former: the definition of the cluster centroid,

and its dynamic behavior as compared to a single orbiting object.

The centroid of a cluster of satellites is defined as the “average orbit” over

all of the satellites in the cluster. Of course, there are multiple ways of defining

this based on which parameterization of the orbit is used, and the first part of this

chapter compares several.

Centroid estimation involves finding the geometric center of all gated, or in-

cluded, observations, then using this “virtual observation” to update the centroid

state of the cluster. Near the limit of a sensor’s resolution, the centroiding may be

done implicitly–two or more objects could be so close together that they present a

single merged target.

However, the centroid of a group of satellites will not necessarily exhibit the

same dynamical behavior of the satellites themselves. One aim of this chapter is to

quantify how closely the dynamics of a centroid match those of a physical, orbiting
1Portions of this chapter have been published previously by the author in Binz and Healy [120].
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object.

This chapter begins with a simple 2D example to illustrate the effects of coor-

dinate system selection. Then, more realistic comparisons between a measurement

space centroid and a state space one are made by simulating observations of a satel-

lite cluster from a radar. The last section explores the effects of cluster size and

spread on centroid error. The results from this chapter are intended to characterize

the motion of a composite centroid satellite state and justify the choice of coordinate

system.

4.1 Instantaneous Centroid

As a simple illustration of this process, we begin by examining the centroid in two

dimensions. Consider Keplerian motion of two satellites in circular orbits, one with

a radius of 7000 km and the other 50 km lower. At t � 0 they share the same angular

position, that is, the lower object is directly below the higher one. In the plane of

the orbit [151, Section 2.10], it is simple to represent the motion of each of these

objects in two-dimensional Cartesian space:

xptq � r cospntq (4.1)

yptq � r sinpntq, (4.2)
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where n � a
µ{r3 is the angular velocity, or mean motion. The representation in

polar form is:

r � r0 � constant (4.3)

Mptq � nt�M0 (4.4)

where M is the polar angle (mean anomaly) and r is radius.2

Taking the components of the instantaneous state of each of the two objects,

the Cartesian centroid of the combined set is simply

x � x1 � x2
2

(4.5)

y � y1 � y2
2

, (4.6)

and the centroid in polar form is similarly

r � r1 � r2
2

(4.7)

M � M1 �M2

2
, (4.8)

ignoring, for now, the fact that M is an angular variable.

Both objects, along with the Cartesian centroid (calculated at each time step),

are plotted in Figure 4.1 for t � 400–500 seconds, with markers every ten seconds.

The faster angular rate of the lower object is readily apparent. Plotting the mag-

nitude of the Cartesian centroid position (Figure 4.2), however, identifies a key
2For this example, we define M to be the angle from the �x axis to the position vector.
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problem with centroiding in Cartesian coordinates: the radius of the centroided or-

bit decreases in time. In the extreme case, when the two objects are 180� out of

phase, the centroid would be nearly at the focus of the orbits. Clearly, a different

treatment is required, especially for large separation distances.
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Figure 4.1: Cartesian centroid test case. Object A is in a higher orbit than Object
B, resulting in a secular in-track drift.
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Figure 4.2: Change in position magnitude of the Cartesian centroid in time. Values
are relative to the initial centroid radius (6975 km).

The polar form of the centroid will have a constant radius, which is the intuitive

result of averaging two circular orbits. However, the angular component must be

more carefully analyzed. To get the average direction, we use the tools of directional

statistics[152, Ch. 2]. The mean direction of a set of angles tMku is then calculated
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as

z � 1

N

Ņ

k�1

exppiMkq (4.9)

M � Argpzq. (4.10)

When working with only two objects, the benefit of this is only evident when

the angular difference between the two objects is greater than 180� when measured

on the range r0�, 360�q (for instance, when crossing the 360� boundary). However,

when considering larger numbers and distributions of objects, treating the angular

coordinate properly becomes more important, and the difference between the above

method and the arithmetic mean become more pronounced. This method of cen-

troiding angular quantities is used throughout the work presented here, both for

angular state variables and angle measurements.

Because the angular rate n in Equation (4.4) is dependent on the radius of the

orbit, calculating the centroid in polar form has two possible interpretations. In the

first, the radius centroid is calculated as in Equation (4.7), and the resulting polar

angle, now as a function of time, is

Mptq �
c
µ

r3
t�M0, (4.11)

where M0 is the average of the mean anomaly at epoch of each constituent satellite,

calculated with Equations (4.9) and (4.10). This formulation results in a circular

orbit whose radius is the average of the two satellites’.
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Alternatively, the average rate (mean motion) could be used, in which case

the centroid would be calculated as

n � 1

2

2̧

i�1

c
µ

r3i
(4.12)

r � 3

c
µ

n2 , (4.13)

with the polar angle now calculated as

Mptq � nt�M0. (4.14)

Note that because n �
a
µ{r3 (when r1 � r2), these two methods yield different

orbits. In effect, we can either average the orbit rate, or the orbit radius (or, more

generally, the semimajor axis).

It is not immediately obvious which of the averaging methods above yields a

more realistic description of the centroid dynamics. In order to compare the two,

we first find the average radius centroid using Equations (4.7) and (4.11). This

yields a constant orbit radius of r � 6975 km, and a mean anomaly defined by

Equation (4.11), with M0 � 0. Then, we can use the mean motion centroid as

defined in Equation (4.13). The resulting orbit radius from this method is 110m

lower. Each of these is used to generate a centroid orbit state at epoch that may be

used for prediction and propagation. The distance between the two centroids can

be expressed in closed form as a function in time from the formula for the distance

between two points in polar coordinates:
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dptq �
gffe�r1 � r2

2

	2
�
� µ
n̄2

	2{3
� pr1 � r2q 3

c
µ

n̄2
cos

�
t

�
n̄�

d
8µ

pr1 � r2q3
��

.

(4.15)

Plotting this out for 1000 seconds, we see in Figure 4.3 that the distance

grows from its initial value of about 110 meters to over 200 meters. This distance

is periodic with period equal to the synodic period of the two orbits, that is, the

reciprocal of the sum of the reciprocals of the individual periods.
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Figure 4.3: Distance between satellites constructed with two different centroiding
methods–one with a mean radius, the other with a mean rate.

The next step is to investigate each method’s accuracy when compared to the

centroid of all observations in a given frame of measurements. Here, centroid mea-

surements are calculated by averaging the range and polar angle to each satellite

at each time step.3 Then, each state-space centroid is propagated, and range and

polar angle to the centroid position are calculated. The series of centroided mea-
3For simplicity, “measurements” here are taken from the center of the Earth.
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surements, in effect, represents an object with average semimajor axis and average

mean motion, which is not possible for a non-maneuvering satellite. Thus, there

will be a difference between the position derived from centroided measurements and

the centroided states. The position difference between the mean measurements and

each element space centroid for 1000 seconds after epoch is plotted in Figure 4.4.
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Figure 4.4: Position difference between measurement-space and each state-space
centroid technique.

When averaging the angular rate, the resulting polar angle is, in fact, the

mean polar angle of the two satellites. Meanwhile the radius (derived from the

mean motion) is slightly offset from the mean radius of the two satellites, resulting

in a constant bias between the measurement-space and state-space centroids (dashed

line in Figure 4.4). When the mean radius is calculated and used to define the mean

motion of the centroid, however, the result is a constant drift away from the mean

polar angle value, because the rates do not match exactly (solid line in Figure 4.4).

This is a consequence of the nonlinear relationship between semimajor axis and
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mean motion.

It is important to note that, in this example, the measurements are geocentric

range and angle, not topocentric (from the Earth’s surface). Later examples use

a more realistic scenario with topocentric measurements. Despite the simplicity of

this example, it indicates that an orbit with an average mean motion, not semimajor

axis, is likely preferable due to the absence of a secularly increasing difference.

We can also address this problem using a relative motion approach. The ref-

erence frame used here is centered on one of the satellites, dubbed the primary, and

constructed by aligning the first axis with the position vector of the primary (R̂), the

third along the orbit normal (Ŵ ), and the second (Ŝ) in the along-track direction,

completing the triad[126, pp. 163–164] (see Figure 4.5). As the orbits are circu-

lar, we can use the solutions to Hill’s equations for linearized relative motion[153,

pp. 84–90]. Designating the higher satellite as the primary (an arbitrary choice),

the motion of the lower satellite will simply be a linear drift along the in-track axis.

Centroiding in Cartesian space in the RSW frame is essentially finding the midpoint

between the second satellite and the origin, and so there are no issues in this frame

due to the linearized motion. Further, when the satellites are coelliptic, the in-track

velocity term is a linear function of radial displacement ( 9y � �3{2x0nprimary) [126,

p. 403] and so the issues of averaging rate versus averaging semimajor axis do not

appear here. As such, determining the centroid relative state at epoch and prop-

agating it independently (using the solutions to Hill’s equations) yields the same

motion as centroiding the relative state at each time step.

It is important to remember the assumptions inherent to the solutions of Hill’s
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Figure 4.5: RSW (red) and curvilinear RSW (blue) frames.

equations, however: this is only valid for near-circular orbits, and for small separa-

tion distances. After converting the centroid ephemeris back to an inertial frame,

we see a departure from the initial centroid orbit radius of 6975 km, as shown in

Figure 4.6. This is due to the linear nature of the in-track axis, and is significantly

improved through the use of a curvilinear frame (see Figure 4.5),[153, pp. 99–103]

in which the Ŝ and Ŵ axes follow the curvature of the orbit. Figure 4.7 shows the

error in the curvilinear RSW frame. The maximum drift in radius of about 10 cm

occurs when the satellites have already separated by tens of kilometers. While the

centroid orbit radius does drift in time, the error grows at a much slower rate than

with the linear RSW frame.

This section indicates that, considering the different centroid methods, aver-

aging the angular rate variable (mean motion, here) may be preferable. While the

curvilinear relative centroid results in very low drift in the centroid orbit radius,
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Figure 4.6: Drift in radius resulting from calculating the Cartesian centroid in the
RSW frame.
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Figure 4.7: Drift in radius resulting from centroiding in a curvilinear relative frame.

the restrictive assumptions required are problematic for the general case. The next

section takes this further by analyzing a set of more realistic simulations than the

simple illustrative models used in this section.

4.2 Simulation

In order to further investigate the dynamics of the centroid, a scenario with a single

ground station and pairs of satellites was constructed. Each scenario begins with

a reference orbit with Keplerian elements pa, e, i,Ω, u0q � p7000 km, 0, 60�, 175�, 0�q

where u0 � ω � ν0 is the argument of latitude, used because the orbit is circular at

epoch. The simulations include only two-body dynamics.4 Each satellite is propa-

gated in time, and range, azimuth, and elevation measurements are taken from the
4Comparisons with a propagator including the secular effects of the J2 zonal harmonic show

only very slight differences over the time periods considered here.

69



ground station to both satellites simultaneously. Measurements are assumed to be

perfect for our purposes (including perfect observation association), so that we do

not conflate error due to the centroid method with error due to measurement noise.

Measurements are taken for both satellites, and they are combined using sep-

arate techniques: Equation (4.7) for range values, and Equations (4.9) and (4.10)

for the angular components. These averaged measurements are then converted back

to an inertial state vector. The combination of range and two angles allows for an

exact transformation from centroided measurement to inertial position vector.

x1pt0q

x2pt0q

xpt0q

x1ptq

x2ptq

xptq

y1ptq

y2ptq

yptq

xyptq

|∆rptq|

fp�q hp�q

h�1p�q��

Figure 4.8: Diagram of the comparison process. x are object state vectors, y are
measurement vectors, the symbol represents the centroiding process, fp�q repre-
sents the dynamics function (i.e. propagation), and hp�q is the measurement func-
tion.

This averaged position vector is compared to the state vector resulting from av-

eraging the full satellite states directly at epoch, using the three methods described

above: average semimajor axis, average mean motion, and average initial relative

state. The element set used for the first two is the equinoctial coordinate system

pn, af , ag, χ, ψ, λq (discussed in Section 3.1). The elements pn, af , ag, χ, ψq are not

angular coordinates, and may be averaged as in Equation (4.7). The mean longitude

λ is an angular coordinate and must be handled as such by using Equations (4.9)
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and (4.10). As explained previously, the state-space centroid representation will

be different than the one obtained by averaging in measurement space, since the

measurement-space centroid effectively represents an object that does not quite fol-

low Keplerian dynamics. The overall process for comparing the state space centroids

with measurement space ones is shown in Figure 4.8.

The first example involves a deployment of one satellite from another shortly

prior to the start of the pass, in which the secondary satellite is separated from

the primary satellite along the �R̂ axis at 1m{s roughly 6 minutes prior to the

ground pass. The magnitude of the position difference between the measurement

space centroid and state-space centroids is plotted in Figure 4.9.
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Figure 4.9: Difference between measurement-space and state-space centroid repre-
sentations for the radial deployment scenario. The curves for average mean motion
and average semimajor axis are on top of one another.

As the simulated deployment is in the radial direction, there is no change to the

semimajor axis, and so no difference between the average mean motion and average

semimajor axis methods. In all cases, the range difference begins by increasing
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slowly, until the satellites near peak elevation (around 86�) with respect to the

ground station. Near this peak elevation, the measured azimuthal angle for each

satellite is changing at a high rate, resulting in a larger azimuth angle separation.

The maximum difference between the centroids is about 24 cm. Over the same pass,

the true separation between satellites is about 1.6 km. In general, the error seems to

grow with increasing angular separation (see Figure 4.10). While the relative state

centroid exhibits the same pattern, it actually performs slightly better over most of

the pass.
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Figure 4.10: Angular separation between the two satellites as measured from the
ground station.

A deployment in the in-track direction, on the other hand, will yield the largest

difference between the two element space centroid techniques. A 1m{s in-track

deployment is simulated, and the position difference is plotted in Figure 4.11. As

expected, there is a pronounced difference between the techniques, and the difference

grows with time. The difference from the relative state centroid is the lowest at the

beginning of the pass, but as the satellites drift apart the average mean motion
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method outperforms it. A similar dependence on angular separation is seen when
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Figure 4.11: Magnitude of the difference between the position vector derived from
centroided measurements and those derived from the state-space centroids for the
in-track deployment scenario.

averaging in mean motion.

In the next test case, 1000 deployment vectors are drawn from a uniform

distribution on the unit sphere (see Section 3.4.2), while the magnitude of the initial

separation remains constant at 1m{s. The same centroiding techniques described

above are used, and the maximum range error (between measurement-space and

element-space centroids) is mapped to color on the unit sphere in Figures 4.12, 4.13,

and 4.15. As in the previous sections, all simulations were again performed using a

two-body propagator.

First, we look at the error resulting from averaging the semimajor axis of the

two satellites at epoch (Figure 4.12). The reference axes in the figure correspond to

the RSW frame. The maximum position difference (about 29 cm) occurs when the

deployment vector is roughly along the Ŝ axis, or along-track. This corresponds to a
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greater increase in semimajor axis, and a higher difference between the two centroid

methods. Referring back to Figure 4.4, we can see that averaging semimajor axis

leads to a secular drift (in-track), away from the measurement-space centroid.

Figure 4.12: Maximum position difference between measurement-space and state-
space (using semimajor axis) centroids for a randomly-chosen deployment vector.

Figure 4.13 shows the result of averaging the mean motion of the two satellites

at epoch. The maximum position error here (8.93 cm) is much lower than that in

Figure 4.12. Here, error is highest when the deployment vector is along the R̂ axis.

To understand this, first note that radial deployment vectors result in the smallest

change in semimajor axis. Thus, the difference between the two centroid methods

is smallest for these directions. The error in this case, then, is simply driven by

the angular separation (as shown in Figure 4.10). Figure 4.14 illustrates this for

the randomly sampled deployment vector case. Larger angular separations over the

pass occur near the R̂ axis, corresponding to the higher error at these deployment
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directions.

Figure 4.13: Maximum position difference between measurement-space and state-
space (using mean motion) centroids for a randomly-chosen deployment vector.

Finally, Figure 4.15 shows the result of averaging in relative state-space at

epoch. The magnitude of the position difference is similar to the average mean

motion centroid, with a maximum difference of 8.85 cm. However, the deployment

vector at which this difference is maximal is at about 45� off-zenith in the orbit plane.

Referring to Figure 4.14, this does not quite correspond to peak angular separation.

Plotting the separation distance between the two satellites in Figure 4.16, the same

trend as in Figure 4.15 is evident. This indicates the error when using relative

state-space centroiding is driven by the Euclidean distance between satellites. Note

that this distance also affects the validity of the assumptions that go into using the

solutions to Hill’s equations for propagation.

As an interesting side note, the results presented in Figures 4.14 and 4.16
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Figure 4.14: Maximum angular separation between satellites for a randomly-chosen
deployment vector.

Figure 4.15: Position difference between measurement-space and relative state-space
centroids for a randomly-chosen deployment vector.
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Figure 4.16: Maximum distance between the two satellites for a randomly-chosen
deployment vector.

indicate preferred deployment vectors for mission designers who wish to induce

maximum separation during a satellite deployment. Angular separation is likely

most desirable from the standpoint of discrimination and identification, although

of course the trajectory resulting in the maximum angular separation immediately

post-deployment (along the R̂ axis) will return to a point near the original deploy-

ment one orbit later. The preferred direction in Figure 4.16 changes the energy of

the orbit, ensuring a secular drift along-track and still resulting in a modest angular

separation immediately post-deployment. See Atchison and Rogers [7] for further

discussion of this.

These simulations confirm the findings in the first section, and further quantify

the advantage of using the average mean motion technique. The remainder of this

chapter expands on the effects of the cluster makeup itself, including size and spread.
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4.3 Effect of Cluster Size

Here, we examine the effect of cluster size (number of members) on centroid error.

A low-discrepancy sequence5 of 1000 unit vectors is generated according to the

technique in Brauchart, Dick, and Fang [155], summarized here. First, a three-

dimensional Sobol sequence is generated (using a Julia implementation6), resulting

in a set of uniformly-distributed points in the three-dimensional unit cube. Then,

each point x is transformed to the surface of a sphere by:

xsphere �

�
�������

a
1� p1� 2x2q2 cosp2πx1qa
1� p1� 2x2q2 sinp2πx1q

1� 2x2

�
�������
. (4.16)

The result is a low-discrepancy sequence on the surface of the unit sphere [155].

The key property of a low-discrepancy sequence is that all smaller subsets of the

sequence have the same underlying distribution as larger subsets. This allows the

number of objects to scale without affecting the characteristics of the distribution,

thus minimizing the effects of skewed sets of samples (particularly when the number

of samples is small) on the overall result. Figure 4.17 shows the first 200 points from

the two-dimensional Sobol sequence and 200 draws from a pseudorandom number

generator (PRNG).

The samples are centroided and compared with observation-space centroids, as

in the previous section. The ∆V magnitude for every sample is 100m{s. Figure 4.18
5Here, the Sobol sequence is used, see Sobol [154].
6https://github.com/stevengj/Sobol.jl, version 0.2.0.
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Figure 4.17: Comparison of a two-dimensional Sobol sequence with a sequence drawn
from a pseudorandom number generator.

shows the effect of cluster size on maximum centroid error. When the cluster size

grows larger than about 200 members, the centroid error converges to a steady state

value.
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Figure 4.18: Maximum centroid error as a function of cluster size.

The equinoctial state space centroid error converges to 1.3 km, while the rel-

ative state space centroid error converges to 1.5 km. This is consistent with the

results shown earlier: the relative state space centroid remains reasonably accurate

only when the underlying assumptions of small relative distances hold. For the large
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∆V magnitude used in this simulation, that assumption breaks down more quickly,

resulting in a higher error than the equinoctial state space centroid. The trend of

lower variation in the maximum error with larger sample sets makes intuitive sense:

the effect of any single sample is diminished in a larger set. The uniform spatial

sampling results in a clearly-defined steady-state maximum value.

4.4 Effect of Separation Velocity

Next, we investigate the effects of the magnitude of the separation velocity. This

will result in a larger spread among cluster members. 100 samples are generated

with random separation vectors. Then, the ∆V magnitude is varied from 1m{s to

100m{s. The same process for centroiding observations and propagating centroids

in the previous section is used here.

Figure 4.19 shows the maximum separation distance (over the ground station

pass) between the cluster members and the primary satellite, which has the same

starting state as the cluster members but undergoes no velocity change. Over the

length of the pass (about 16 minutes), the farthest cluster member is about 120 km

away from the primary for the highest ∆V case.

Figure 4.20 shows how the error between the different centroid methods and

the centroided observation changes as a function of ∆V magnitude. Both centroid

methods exhibit similar growth behavior, with the relative centroid growing slightly

faster with increasing ∆V . This is a result of the larger separation distance shown

in Figure 4.19.
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Figure 4.19: Maximum separation distance between the primary and cluster mem-
bers as a function of ∆V magnitude.
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Figure 4.20: Maximum centroid error as a function of ∆V magnitude.
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The maximum centroid error for the equinoctial centroid is about 1.3 km,

which is only about 1% of the maximum separation distance, while the relative

state space centroid performs slightly worse, with about 1.5 km maximum error.

Figure 4.21 shows normalized error (defined as the ratio of centroid error to maxi-

mum separation distance) as a function of ∆V magnitude.
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Figure 4.21: Centroid error normalized with respect to maximum separation dis-
tance, as a function of ∆V magnitude.

4.5 Summary

This chapter outlined four different ways of computing the centroid of a set of satel-

lites: using inertial Cartesian coordinates, using Keplerian elements, using equinoc-

tial elements, and using a set of Cartesian coordinates relative to one of the satellites.

Through basic two-dimensional examples it was shown that inertial Cartesian coor-

dinates are unsuitable for this problem, and that the choice between using Keplerian

elements and equinoctial elements is non-obvious. A simulation in which a ground
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observer takes measurements of a satellite cluster showed that using the equinoctial

element set introduces the least error in the centroiding process, when compared

with centroided ground observations.

These comparisons show that a centroid with an average mean motion matches

centroided measurements more closely than one with an average semimajor axis,

which provides a good basis for using the equinoctial element set. However, another

key point is that the difference between the state-space and measurement space

centroids is not negligible, even over relatively short time periods. This is important

to keep in mind when the measurement centroid is used to update the state-space

centroid during estimation–essentially, there is error inherent to this process that

limits the attainable accuracy of the cluster centroid. During centroid estimation,

this will be compensated for through the use of process noise. Although process

noise is meant to simulate noise in the state evolution, it is often used to account for

known or unknown deficiencies in the dynamics model, which is precisely the case

here.

Part of the cluster estimation technique developed in this work involves cen-

troid estimation, and although existing filtering methods may be used, it is im-

portant to ensure that the parameterization itself results in a low deviation from

orbital motion. While the relative state space centroid performs reasonably well, it

is typically outperformed by the equinoctial state space centroid technique and has

more restrictive assumptions, and so there is no compelling reason for using it. As

such, the rest of this work will use the equinoctial state space centroid technique.
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Chapter 5: Extent Estimation

The main contribution of this dissertation, a method for estimating the extent of a

satellite cluster, is developed in this chapter.1 First, a simplified problem is presented

in order to explore the unique aspects of the extent estimation problem outside of

the astrodynamics context. Then, observation preprocessing, including gating and

forming extent measurements, is discussed. Following that, the extent particle filter

is developed. A key aspect of this filter, the likelihood function, must be carefully

chosen, and a study of several options is presented. A series of simulations is used

to evaluate these options, and a discussion of the consistency of these measures is

given at the end of the chapter.

5.1 Simplified Problem

To motivate the rest of this chapter, we first consider a simple problem that incor-

porates many of the essential elements of the extent estimation problem. While the

problem is not worked through completely, it is intended to orient the reader to the

extent estimation problem while avoiding some of the complicating, domain-specific

details.
1Portions of this chapter have been published previously by the author in Binz and Healy [120],

[143], [156].
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Consider a simple system (e.g. a spring-mass system) whose dynamics are

described by the differential equation

9x � fpxq, (5.1)

where x � px, 9xq is the full state of the mass (position and velocity). Consider that

the initial state is uncertain, i.e. it is described by a probability density function

x0 � ppxq. Next, consider N samples drawn from ppxq. Each sample xi propagates

according to the same dynamics function: 9xi � fpxiq.

In order to approximate the evolution of the probability density function in

x over time, we estimate the collection of samples, parameterized by the mean

x̄ � 1
N

°
i xi and covariance P � 1

N�1

°N
i pxi � x̄qpxi � x̄qT of the set.

The mean state does not evolve according to the same dynamics function f

but instead a different, unknown function which depends on each individual sample,

i.e. 9x̄ � gpx1,x2, ...xNq (see Chapter 4). We may propagate the covariance using

the similarity transform, i.e. Pk � FPk�1F
T , where Pk is the covariance at the kth

time step and F is the discretized dynamics matrix.

Assume observations are made of the mean and standard deviation of position

only. Thus each observation is dependent on all samples, i.e. y � hpx1,x2, ...xNq.

Updates to the mean and covariance are subject to the additional constraint that

P be a positive semidefinite matrix.

Importantly, the individual samples are not being estimated–only the mean

and covariance are. Additionally, the noise characteristics of the measurements
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are unknown, meaning the measurement likelihood function is also unknown. The

satellite extent estimation problem has several further complicating factors–e.g.,

instead of covariance being estimated, the extent, or bounding surface, is.

5.2 Measurement Processing

5.2.1 Measurement Gating

In a noisy, cluttered environment, some observations collected in a given frame

might have a source that is different than the target of interest, or might simply

be extraneous (i.e. sensor noise). As a result, one of the first processing steps for

target tracking is gating. Gating refers to the process of choosing the observation

(or set of observations) to consider when attempting to associate observations to

targets (it does not refer to the association itself). In the cluster tracking problem,

this means choosing the set of observations to consider as originating from members

of the target cluster.

This work uses the statistical gating process first described by Drummond,

Blackman, and Pretrisor [75]. First, an ellipsoidal gate SG is constructed by combining—

in measurement space–the predicted extent at time tk (denoted X�
k ), the expected

measurement covariance of a single given observation R (typically derived from the

properties of the sensor), and the covariance of the centroid state estimate P :

SG � HX�
k H

T �R �HPHT , (5.2)
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where H is the partial derivatives matrix for the transformation from equinoctial

elements to measurement space. Typically, the size of the gate SG is dominated

by the extent contribution HX�
k H

T , although this could change with very tight

clusters or very noisy sensors.

Once SG is computed, the Mahalanobis distance [146] between each observa-

tion yi and the predicted centroid observation y� is calculated and compared to the

chosen gate size g: b
pyi � y�qTS�1

G pyi � y�q ¤ g, (5.3)

Observations that do not satisfy Equation (5.3) are rejected, and not considered

further. The value chosen for g depends on the problem at hand, but is typically

near one in this work. A larger value for g has the effect of inflating the acceptance

criteria.

5.2.2 Extent Measurements

Given a set of N gated observations of a cluster of satellites tyu, we must compute

a measurement of both the centroid and the extent of the cluster. The centroid

calculation is discussed at length in Chapter 4, though a measure of its uncertainty

is also required. For any individual observation, this would be described by the mea-

surement covariance matrix R; however this does not hold for the derived centroid

measurement. Instead, the sample covariance scaled by the number of elements in

the cluster, as discussed in Drummond, Blackman, and Pretrisor [75], is found to

yield good results when used in the filter. An alternative measurement covariance
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is proposed in Section 5.3.7.

Section 3.4.1 discusses the various methods for computing the extent from

a set of points. For extent in observation space, the scaled covariance method is

used for the reasons described previously, namely that it is less sensitive than the

MVEE to the inclusion (or exclusion) of individual points. To reiterate, the extent

is computed as the unbiased sample covariance (Equation (3.21)) scaled by the

maximum Mahalanobis distance between each point measurement and the sample

mean and covariance of the set (Equations (3.22) and (3.23)).

5.3 Extent Particle Filter

In order to introduce the extent particle filter, a brief summary of Bayesian esti-

mation is given first, which motivates the explanation of the particle filter. The

unscented Kalman filter, used for centroid estimation, is described later in this sec-

tion.

Bayesian estimation involves updating a prior belief based on observed data,

and as such, target tracking is a natural application. The Bayesian tracking and

estimation problem can be expressed generally in a set of two equations. Typically,

these involve complicated, potentially intractable integrals, which is one reason that

so much work goes into formulating alternative approximate solutions to this prob-

lem.

We begin with Bayes’ theorem[144, p. 684]. If A and B are generic “events”,
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then Bayes theorem is written as:

ppA|Bq � ppB|AqppAq
ppBq , (5.4)

where

ppA|Bq is the “posterior” probability of A, given B occurred.

ppB|Aq is the “likelihood” of B, given A occurred.

ppAq is the “prior probability” of A occurring, or simply the “prior”.

Next, we introduce some target tracking-specific terminology. Start with the

following discretized dynamic system:

xk � fpxk�1, tkq � qk�1

yk � hpxkq � rk,

(5.5)

where x is the target state vector, y is an observation vector, k denotes the kth time

step, fp�q is the dynamics function (which maps the state forward in time), hp�q is

the measurement function (which maps state space to measurement space), q and

r are process and measurement noise characteristics, respectively.

The objective of the target tracking problem is to get the optimal estimate of

the target state at tk, given an estimate of the state at the previous time and an

observation of the target. Because no physical quantity may be known or measured

without some degree of uncertainty, each of these quantities may be represented

by a probability density function (PDF). So, the objective is to optimally estimate
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ppxkq. This may be written in a Bayesian sense as

ppxk|y1:kq � ppyk|xkqppxk|y1:k�1q
ppyk|y1:k�1q . (5.6)

The prior ppxk|y1:k�1q is given by the Chapman-Kolmogorov equation[157, p.

30]:

ppxk|y1:k�1q �
»
ppxk|xk�1qppxk�1|y1:k�1qdxk�1. (5.7)

The total probability [158]

ppy1:k�1q �
»
ppyk|xkqppxk|y1:k�1qdxk (5.8)

is a normalizing term. Equation (5.7) is often intractable, though there are a number

of methods to approximate it, including a numerical approximation via Monte Carlo

methods.

The extent estimation component (recall that centroid and extent estimation

are decoupled) developed in this work is based on the particle filtering method.

Particle filtering is a Monte Carlo technique for approximating intractable integrals

that may appear in the tracking equations (see Arulampalam et al. [158] for a

good overview of particle filters). Given some prior distribution in state space, a

large number of samples, also called particles, are randomly generated. Each of

these samples can be propagated through the dynamics function, and converted to

measurement space via the measurement function. Then, each sample is compared

with the observed measurement using a measurement likelihood function. This
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comparison is used to weight each sample such that samples that closely match the

observation are weighted more heavily than those that do not. The resulting set of

weighted particles can then be used to approximate the posterior PDF.

Revisiting Equation (5.6), a particle filter approximates the posterior distri-

bution as the weighted sum of a set of particles [158]:

ppxk|ykq �
Ņ

i�1

wi
kδpxk � xi

kq. (5.9)

In a sampling importance resampling (SIR) particle filter, the sampling of the

posterior occurs at every time step. As such, the weights may be chosen to be [158]:

wi
k�1 9 ppyk�1|xi

k�1q, (5.10)

that is, the weight of a particle is proportional only to the likelihood of the particle.

For the present problem, the steps may be summarized as:

1. Sample the prior distribution X i
k � ppXkq.

2. Propagate the samples: X i�
k�1 � fpX i

kq.

3. Compute the expected measurement for each sample: Y i
k�1 � hpX i�

k�1q.

4. Compute the weights for each sample using some measure of the likelihood

wi 9 ppYk�1|X i�
k�1q and normalize.

5. Compute the mean of the posterior distribution: Xk�1 �
°N

i�1wiX
i�
k�1.

Once the posterior is computed, the process is repeated for the next time step.
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5.3.1 Unscented Kalman Filter

Although any nonlinear sequential estimator may be used for the centroid estimation

component, this work uses the unscented Kalman filter (UKF). Details of the UKF

can by found in any of a number of sources (see Julier and Uhlmann [159] and

Särkkä [160] for two particularly good examples), but essentially it relies on a set of

deterministically-chosen weighted samples, called sigma points, to characterize the

first two moments of the PDF of the target state. The sigma points are propagated

individually through the dynamics function for the filter’s prediction step, and the

same process is used in the update step to represent the measurement PDF. Särkkä

presents a compact version of the UKF equations, shown below [161]. The process

for choosing the set of sigma points is as follows.

Given a state and covariance at some time px, P q, the n-dimensional multi-

variate Gaussian PDF may be represented by the set of sigma points tX u. The

n� n�1 matrix rX s, whose columns comprise the sigma points, is given by

rX s �
�
x � � � x

�
�
?
n� λ

�
0

?
P �?P

�
, (5.11)

where 0 represents an n� 1 zero vector and
?
P denotes the Cholesky decom-

position of the covariance matrix P [141, p. 36]. The constant λ � α2pn� κq � n is

a function of the dimension of the state space (n � 6) and two positive constants

α and κ, which are parameters that affect the spread of the sigma points and allow

for additional tuning based on prior knowledge of the underlying distribution of x,
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respectively (in this work, α � 0.75 and κ � 3 are used) [32], [162], [163]. The

weights are calculated as

w
pmq
0 � λ

n�λ

w
pcq
0 � λ

n�λ
� 1� α2 � β

w
pc,mq
i � 1

2pn�λq
, i � 1, . . . , 2n.

(5.12)

β may be introduced to incorporate prior information about the distribution of

x [163]. For the present problem, the value β � .5 is chosen heuristically–it results

in a converged estimate in all of the test cases, while larger values tend to diverge

in one or more of the cases. A more systematic way of tuning the free parameters

α, β, and κ is a potential subject for future investigation.
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The prediction and update steps are given below.

Prediction:

rX̂ sk � fprX sk�1, k � 1q (5.13a)

x�
k � rX̂ skw (5.13b)

P�
k � rX̂ skWcrX̂ sTk �Qk�1 (5.13c)

Update:

rYs�k � hprX s�k , kq (5.13d)

µk � rYs�k w (5.13e)

Sk � rYs�kWcrYs�T

k �Rk (5.13f)

Ck � rX s�kWcrYs�T

k (5.13g)

Kk � CkS
�1
k (5.13h)

xk � x�
k �Kk ryk � µks (5.13i)

Pk � P�
k �KkSkK

T
k , (5.13j)

rX s and rYs are matrices whose columns are the state-space and measurement

space sigma points, respectively. A “hat” (e.g. rX̂ s) indicates a predicted value, fpq

is the dynamics function, hpq is the measurement function, P is the state covariance,

and R is the measurement covariance. The k subscripts represent the time step. The

2n� 1� 2n� 1 vector w is the weight vector (Equation (5.12)), and the matrix Wc

is constructed as
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Wc � p12n�1�2n�1 � rw � � �wsq (5.14)

� diagpw0 � � �w2nq

� p12n�1�2n�1 � rw � � �wsqT .

5.3.2 Prior Distribution

Following Koch [105], we chose the Inverse Wishart distribution for the prior dis-

tribution of extent matrices. It is often used as the conjugate prior for unknown

covariance matrices of multivariate normal distributions (meaning the distribution

of these unknown matrices is itself Inverse Wishart) [164, p. 111], and has been

used to good effect in the group tracking literature [105], [107].

The probability density function of an Inverse Wishart-distributed random

matrix Y � IWpν,Ψq is [165, p. 272]

fpY q � |Ψ| ν2
2

νp
2 Γp

�
ν
2

� |Y |�
ν�p�1

2 exp�1

2
trpΨY �1q, (5.15)

where

Y is a p� p positive definite matrix,

Ψ is the scale matrix (also p� p and positive definite),

|�| denotes the matrix determinant,

ν is the number of degrees of freedom of the distribution, and
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Γp is the p-variate gamma function, defined as[165, p. 257]

Γpptq � πppp�1q{4
p¹

i�1

Γ

�
t� 1

2
pi� 1q

�
. (5.16)

To illustrate the nature of the Inverse Wishart distribution, Figure 5.1 plots

20 ellipses sampled from the distribution IWp4,12q, where 12 is a two-dimensional

identity matrix. The ellipse specified by the scale matrix 12 is plotted with a heavy

red line. Note that both scale (corresponding to eigenvalue magnitude) and axial

orientation (eigenvectors) are varied.
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Figure 5.1: Samples from the two-dimensional Inverse Wishart distribution
IWp4,12q.

One other important property of the Inverse Wishart distribution that will be

used here is the expected value of an Inverse Wishart-distributed random matrix[165,
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p. 273]:

ErY s � Ψ

ν � p� 1
. (5.17)

Here, the constraint that ν be greater than p� 1 is apparent.

5.3.3 Implementation

Assume we start with an estimate of the cluster centroid, its covariance, and its

extent at time tk, collectively denoted tx, P,Xuk. If we assume that X � IWpν,Ψq,

we can compute Ψk � pν � p � 1qXk. This defines the prior distribution at time

tk, allowing us to draw N random samples in order to approximate the transition

density and measurement likelihood. In the SIR framework, resampling occurs at

every time step, and so all samples begin with equal weights: wi � 1{N .

Each particle X i
k is propagated using the linearized state transition matrix

Fk�1 around the centroid solution xk:

X i�
k�1 � Fk�1X

i
kF

T
k�1 �Qk, (5.18)

where Qk is the process noise covariance matrix (see Appendix D). Note that this

is analogous to propagating the centroid covariance via the similarity transform P ,

and could feasibly be done using, e.g., the unscented transform (see Section 3.3).

The result of this is an approximation of the extent distribution at time tk�1, prior

to the updating step.

Observations of the extent matrix are projections of the extent matrix into
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measurement space involving the nonlinear measurement function hpXq. This pro-

jection may be linearized around the current centroid state, yielding the matrix of

partial derivatives Hk�1 for transforming between state space (equinoctial elements)

and measurement space (e.g., range, azimuth, and elevation). Then, each matrix-

variate particle X i may be transformed into measurement space using the similarity

transformation (see Section 3.3):

Y i
k�1 � Hk�1X

i�
k�1H

T
k�1. (5.19)

While the density of Xk is known a priori, the measurement likelihood is

not, and so we must choose a function that is proportional to the measurement

likelihood that we can evaluate. Denoted si � spYk�1,Y
i
k�1q, this function is a mea-

sure of similarity between the observed measurement extent Yk�1 and the predicted

measurement extent of the ith particle Y i
k�1 (see Section 5.4 for a discussion of the

options). The set of similarities si is then used to construct the set of normalized

particle weights:

wi � si°N
j�1 sj

. (5.20)

With the weighted set of propagated extent particles, we may now compute

an approximation of the a posteriori density:

Xk�1 �
Ņ

i�1

wiX
i�
k�1. (5.21)

Importantly, because samples of the Inverse Wishart matrix are positive definite,
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this sum is guaranteed to be positive definite[141, p. 250]. The centroid state and

covariance px, P qk may be updated separately (see Section 5.3.1), giving a complete

solution at time tk�1: px, P,Xqk�1. This process is then repeated for the next frame

of measurements.

5.3.4 Degrees of Freedom Evolution Model

As discussed in Section 5.3.2, ν is a measure of the degrees of freedom in the Inverse

Wishart distribution. A lower value of ν essentially results in a larger “spread” of

matrix samples. There is a lower bound of ν ¡ p � 1 (see Equation 5.17), and no

mathematical upper bound (though a practical upper bound is introduced in the

model below). Figure 5.2 shows several random draws from IWpν,12q for increasing

values of ν.
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Figure 5.2: Ellipses drawn from IWpν,12q for different values of ν.

During the filtering process, the value of ν should change to reflect the confi-

dence of the current extent estimate. Koch [105] discusses a heuristic approach to

this, which we use as a starting point in this work. Essentially, we desire the distri-

bution to generate samples with a larger variance when the time between updates is
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long, and each update should reduce that variance, representing an increase in the

level of confidence in the extent distribution.

During the prediction step, a longer time since update should result in a de-

creasing measure of confidence in the extent estimate, corresponding to a decreasing

value of ν. Koch suggests an exponential decay model for prediction:

ν�k � e�∆t{τνk�1, (5.22)

where τ is some time constant, and ∆t is the time between the kth update and the

previous update (k�1). Here, we use a similar model, with the addition of a “floor”,

νmin, to satisfy the constraint that ν ¡ p� 1 (see Section 5.3.2):

ν�k � e�∆t{τ pνk�1 � νminq � νmin. (5.23)

The tuning parameter τ is taken to be equal to one orbit period in this work.

Each successful update step increases our confidence in the estimate of the

extent matrix, reflected by an increased value of ν. For the update step of the filter,

a linear increase, up to some maximum value νmax, is used:

νk �

$'''&
'''%

pνmax�νminq
β

� ν�k , if ν�k   νmax

νmax, otherwise.

(5.24)

β is another tuning parameter that controls the rate at which ν grows during

updates, and is set to some fraction of an orbit period. While these models allow the
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extent matrix distribution to evolve based on the update rate of the filter, in practice

they offer little benefit over a constant-ν model. Nevertheless, this dissertation

incorporates these evolution models. Figure 5.3 shows the evolution of ν over a

typical pass for a LEO satellite.
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Figure 5.3: Evolution of ν in a scenario with updates every 10 seconds, τ � 5400,
and β � 600.

5.3.5 Initialization

When a breakup or other event is detected, and the need for extent estimation

is recognized, the extent filter must be initialized using some a priori data. The

centroid state and covariance, as well as an initial estimate of the extent matrix,

are required. A good initial guess for all of these can be found from the nominal

trajectory estimate of the single, pre-breakup object. Using this state and covariance

estimate as the initial centroid state and covariance estimate works well, and is the

way the simulations in this work are initialized. A propagated state and covariance
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estimate is also acceptable–the estimation epoch of the pre-event object does not

need to be at the event time.

The initial extent estimate deserves more attention. Ideally, the extent esti-

mation process would begin with a minimally restrictive and maximally uncertain

starting point, allowing the filter to converge without, for example, unnecessarily

excluding objects from the cluster. Bernardo calls this a noninmofrmative prior,

which he describes as “a mathematical description of that situation where data

would best dominate prior knowledge about the quantity of interest” [166, p. 17].

In Cartesian space, this could be a large hypersphere around the nominal centroid

state. Converting this into equinoctial element space results in a reasonable initial

extent estimate. One key difference between the initialization of the extent estimate

and the state and covariance estimate initialization is that a large extent is not

necessarily more uncertain than a small extent. Therefore, the uncertainty in the

initial extent estimate (quantified by the parameter ν) is more important than the

actual initial extent estimate, although a larger initial extent will allow for more

inclusive gating early on.

Another option is to use a multiple of the initial centroid covariance estimate.

This encodes some information about the estimated orbit immediately, resulting in,

perhaps, a more restrictive initial estimate. In such a case, a very large multiplier,

such as k � 10 or 20, should be used (as in Section 5.4.3).

Minimizing restrictiveness in equinoctial orbit space requires paying special

attention to degenerate or near-degenerate axes of the 6D hyperellipsoid. That is,

when the extent matrix is projected in all 15 possible planes, the ratio of the semi-
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minor axis to the semi-major axis of the ellipse (or, the determinant of the 2 � 2

sub-matrix corresponding to the projection) should not be nearly zero2. Treating

the extent matrix as a covariance matrix, another way of stating this is that the

correlation coefficient ρ between two variables should not be unity. ρ is defined

as [139, p. 74]

ρxy � σxy
σxσy

, (5.25)

where σxy is the cross-covariance term between two variables x and y, and σx is the

standard deviation in x. The correlation coefficient between all 15 pairs of variables

for the a priori extent estimate should be computed and flagged if less than some

value 1� ε, where ε is small (e.g. 10�4).

For extent matrices with near-degenerate axes, the following method is used

to improve the conditioning of the matrix. Let Xij be the 2� 2 sub-matrix for the

degenerate pi, jq projection of the extent matrix X. Xij can be represented by the

eigenvalue decomposition

Xij � rv1v2s

�
���λ1 0

0 λ2

�
��� rv1v2s�1 . (5.26)

In the degenerate case, the smaller eigenvalue will be several orders of mag-

nitude smaller than the larger eigenvalue. Increasing this by one or more orders of
2Note that, in some cases, the actual distribution of cluster states may fall nearly on a line in

some projections, as in the pn, af q plane in the GEO test case presented in Section 5.4.3.
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magnitude (λ11 � kλ1), then reconstructing the sub-matrix as

X 1
ij � rv1v2s

�
���λ

1
1 0

0 λ2

�
��� rv1v2s�1 (5.27)

has the effect of expanding the minor axis of the projected ellipse. λ11 should be

chosen such that the resulting correlation coefficient of X 1
ij satisfies the lower bound

of 1 � ε. A recent paper by Hall, et al. discusses other methods for correcting

ill-conditioned covariance matrices [167].

5.3.6 Partially Obscured Cluster

As cluster pieces spread apart and the cluster gets larger, there will be passes over

ground observation stations during which the entire cluster is not visible at once.

This causes an issue with the current method, because each step of the particle

filter estimates the entirety of the cluster extent. Further, without observing the

entire cluster, we do not have sufficient information to even estimate the centroid

position. Several articles have explored this problem, mostly as it pertains to video

surveillance and targets that get occluded by some obstruction in the scene [168],

[169]. These techniques do not fit our purposes: either they are too domain-specific

(scene modeling), or simplistic (assuming symmetric shapes). Further, there is a

body of work pertaining to target tracking with missing observations (e.g. Zhang

et al. [170]), but they assume data is randomly missing due to sensor dropouts, not

because of some known obstruction, and so they address a different problem than
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ours. In order to update the cluster extent estimate with the information that is

available (i.e., with the portion of the extent that is currently visible over the ground

station), we borrow and adapt the statistical technique of imputation [171].

Imputation is the process of handling missing data in some data set [172], [173].

There are several imputation methods, including techniques as simple as replacing

the missing data point with the sample mean of the set. In our case, measurements

that are obscured by the Earth or masked by the sensor are imputed using the last

extent estimate. This allows us to assume the non-visible portions of the cluster are

simply propagated forward from the previous estimate using the cluster evolution

model. While not true imputation in the strict sense, it enables an extent estimate

using the available observations. The process is described below.

First, the predicted cluster estimate is used to determine whether the entire

cluster will be visible at the next time step. If it is not, a sample population of

virtual cluster members is generated over the entire extent, using uniform sampling

(see Appendix B.2) over the predicted extent matrix. The number of samples is an

adjustable parameter, and in this work we used 100. Then, we determine whether

there is a line of sight from the ground station to the satellite, i.e.:

arcsin

�
ρz
ρ



¡ elmin, (5.28)

where ρ is the position vector from the ground station to the satellite in the topocen-

tric horizon coordinate system[126, p. 161], and elmin is the minimum elevation at

which the ground station can observe the satellite, set to zero unless there is some
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other obscuration (e.g., nearby mountains).

Those virtual satellites that are in the field of view of the ground station

are discarded, leaving only the unobserved cluster portion sampled. This sample

population is then combined with the set of actual observations, and the observation

reduction and filtering process proceeds as normal, with one exception: the centroid

estimate is not updated, since the measurement centroid cannot be observed at once.

This process is illustrated in Figures 5.4–5.7.

Figure 5.4: Observations of an entire cluster, without taking Earth obscuration
into account. Red markers indicate observations that are below the horizon (black
dashed line).

5.3.7 Adaptive Measurement Covariance

As discussed above, the scaled measurement extent is used to weight the centroid

observations used in the centroid filter. The measurement space extent is sometimes

quite sensitive to the exclusion of a single observation by the gating routine. In
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Figure 5.5: The predicted extent is then populated with uniform random samples.

Figure 5.6: The imputed samples in the obscured part of the cluster are then com-
bined with the unobscured observations, and this set is used to compute the mea-
surement extent.
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Figure 5.7: The imputed extent (solid red line) plotted with the original cluster
observations and the true (unobservable) extent (dashed blue line).

order to account for this when estimating the centroid, an adaptive measurement

covariance is proposed here.

First, we compute the difference in the centroid of the set of measurements

due to the inclusion (or exclusion) of the most distant measurement. For the set of

samples y, the centroid is simply

ȳ � 1

N

Ņ

i�1

yi. (5.29)

Now, let the samples be indexed such that yN is the farthest (using the L2

distance as a metric) sample from the mean ȳ, and as such, the most likely to be

dropped during the gating process. The centroid for this modified set not including

yN is then
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ȳmod � 1

N � 1

N�1̧

j�1

yj. (5.30)

Now, we can solve for the sensitivity of the centroid to removal of the Nth

measurement:

∆ȳ � |ȳ � ȳmod| �
����� 1N

Ņ

i�1

yi � 1

N � 1

N�1̧

j�1

yj

����� (5.31)

�
���� 1N py1 � . . .� yNq � 1

N � 1
py1 � . . .� yN�1q

���� (5.32)

�
�����
°N�1

i yi

NpN � 1q �
yN

N

����� (5.33)

�
���� ȳmod � yN

N

���� . (5.34)

We define Radapt � diag r∆ȳ2
1, . . . ,∆ȳ2

ms (for an m-dimensional measurement

vector) as the adaptive measurement covariance, which is used in the update step

of the centroid filter. For a sizable cluster, this term will be larger than the mea-

surement covariance for an individual observation, which has the effect of decreasing

sensitivity of the centroid estimate to the exclusion of individual observations during

the gating step. For tighter clusters, the sensitivity to individual observations will

be minimal.
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5.4 Ellipsoid Similarity Measures

Given a set of full-state observations, it is known that the maximum likelihood esti-

mate of the covariance matrix is given by Equation (3.21), otherwise known as the

sample covariance [174]. Other Bayesian estimators of unknown covariance matrices

also exist [165, p.273]. There are several reasons why none of these is appropriate

for the current problem. At no point in the extent estimation process are obser-

vations expressed as full state vectors: the observed quantities are, at best, range

and bearing, which are related to the equinoctial elements (state space) via a chain

of nonlinear transformations (see Appendix C). Additionally, the sample covariance

can yield unstable results when the number of samples is small [175], a situation

which may arise here due to the potentially limited observability of individual cluster

members (e.g. in the case of merged observations). Finally, the extent estimation

problem as posed in this dissertation does not actually involve estimating the ex-

tent given observations of individual cluster members–instead, extent matrices in

observation space are used to update the state space extent. The extent estimation

problem involves distributions over positive definite matrices, given observations

that themselves consist of positive definite matrices, with a nonlinear measurement

function relating the two.

Koch [105] presents an example of this specific to extended target tracking,

showing that the measurement likelihood is proportional to a Wishart density. How-

ever, the derivation, like others found in the literature, requires full-state measure-

ments (resulting in a full-state measurement extent), making it unsuitable to the
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satellite cluster tracking problem.

The task then becomes identifying a suitable approximation of the measure-

ment likelihood function that may be used in this context. As Equation (5.10)

shows, we must have some measure of the likelihood of a particle in order to prop-

erly calculate the weights. The approach taken here is to define some function that

acts as a metric between the computed measurement-space extent given a particle

X i
k�1 and the actual measurement extent Yk�1 to act as a proxy for the likelihood

function. This function should yield greater values when the two matrices are simi-

lar (using definitions of similarity given in Section 5.4), and smaller values when the

matrices are very different.

5.4.1 Similarity Measures

There exist several options for measuring the distance between–or similarity of—

two ellipsoids. First, we consider the Frobenius norm. For a m � n matrix A, the

Frobenius norm is defined as [176, p. 195]:

‖A‖F �
gffe m̧

i�1

ņ

j�1

|aij|2. (5.35)

The distance between matrices A and B can then be defined as ‖A � B‖F . Two

similar matrices will have a low Frobenius distance between them, so the measure

of similarity is defined as the reciprocal of ‖AF‖. While this is singular for identical

matrices, that does not pose a practical issue in the extent estimation problem.

An alternative similarity measure called compound similarity is presented by
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Moshtaghi et al. [177]. It is simply a combined measure of the distance between the

center, orientation, and shape of two ellipsoids:

sc � e�‖µ1�µ2‖e�‖sinθ‖e�‖α��β�‖, (5.36)

where µ represents the center of the ellipsoid, θ is a vector of angles between each

pair of eigenvectors from the two ellipsoids, and α� and β� are essentially the

magnitude of each axis of the two ellipsoids. Note that when the ellipsoids share a

center (as is the case for our application), this reduces to

sc � e�‖sinθ‖e�‖α��β�‖. (5.37)

The Kullback-Leibler (KL) divergence is well-known as a measure between

two arbitrary probability distributions. While it is not a specific measure of matrix

or ellipsoid similarity, it is often used in conjunction with the assumption of mul-

tivariate normal distributions to compare covariance matrices, particularly in the

context of image processing [178]–[181]. Additionally, Granström and Orguner [110]

uses a method for extended target tracking based on minimization of the KL diver-

gence. For two k-dimensional multivariate normal distributions p1 � N pµ1,Σ1q and

p2 � N pµ2,Σ2q, the KL divergence is defined as

dKL � 1

2

�
tr
�
Σ�1

2 Σ1

�� pµ2 � µ1qTΣ�1
2 pµ2 � µ1q � k � ln

�
detΣ2

detΣ1




. (5.38)
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When µ1 � µ2, this reduces to

dKL � 1

2

�
tr
�
Σ�1

2 Σ1

�� k � ln

�
detΣ2

detΣ1




. (5.39)

As with the Frobenius norm, the measure of similarity is taken to be the reciprocal

of dKL.

Förstner and Moonen [182] proposes a metric for covariance matrix similarity

that depends on the eigenvalues λipΣ1,Σ2q from |λΣ1 � Σ2| � 0. The distance

measure is defined as

dFörstner �
d

ņ

i�1

ln2λipΣ1,Σ2q. (5.40)

The authors note that this distance accounts for the difference in variance in each

direction weighted by the ratio of the variances. Note that this measure does not

account for differences in the mean, or center, of the covariance matrix.

Like the Kullback-Leibler divergence, the Bhattacharyya distance is another

well-known measure between probability distributions [183], and has been used in

clustering and image processing applications [184], [185]. For two multivariate nor-

mal distributions as defined above, the Bhattacharyya distance is defined as

dB � 1

8
pµ1 � µ2qTΣ�1

m pµ1 � µ2q � 1

2
ln

�
detΣm?

detΣ1 detΣ2



, (5.41)

where Σm � Σ1�Σ2

2
. When the distributions share a mean, this reduces to

dB � 1

2
ln

�
detΣm?

detΣ1 detΣ2



. (5.42)
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Note the similarities between the Bhattacharyya distance and the KL divergence.

Finally, the Hellinger distance is another measure between probability distri-

butions, related to the Bhattacharyya distance in its construction [186], [187]. It is

defined for two multivariate normal distributions as

dH �
d
1� detΣ

1{4
1 detΣ

1{4
2

detΣ
1{2
m

exp

�
�1

8
pµ1 � µ2qTΣ�1

m pµ1 � µ2q
�
, (5.43)

where Σm is defined above. When µ1 � µ2, this reduces to

dH �
d
1� detΣ

1{4
1 detΣ

1{4
2

detΣ
1{2
m

. (5.44)

The inverse of this distance is used to measure similarity.

5.4.2 Simple Comparisons

Because similarity between ellipsoids depends on the metric used, it is helpful to look

at the qualitative behavior of these different metrics for a set of example ellipsoids.

First, each measure’s sensitivity to scale can be illustrated by comparing a set of

concentric circles to the unit circle. The Frobenius norm, compound similarity,

Kullback-Leibler distance, Förstner distance, Bhattacharyya distance, and Hellinger

distance (inverting where appropriate to get a measure of similarity) are computed

for each circle compared to the original unit circle, normalized, and plotted against

the scale factor in Figure 5.8. Normalized values are used because they are most

relevant to this problem: the similarity measures are used for particle weighting,
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and in a particle filter, the weights must sum to one.
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Figure 5.8: Similarity measures for a set of concentric circles.

All metrics display the expected trend: starting at one when the scale factor

is close to unity, and decreasing as the scale factor increases. Compound similarity

stands out in that it decays more slowly than the others, and the KL distance

decays the fastest, indicating a higher sensitivity to the difference in scale between

two ellipsoids.

Next, a set of random ellipsoids is drawn from the distribution IWp4,12q,

and plotted along with the unit circle in Figure 5.9. The corresponding normal-

ized similarity measures between each ellipsoid and the unit circle are plotted in

Figure 5.10.

The pair of ellipses at c are most similar according to all metrics but the
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Figure 5.9: Random ellipses drawn from an Inverse Wishart distribution (orange),
along with the unit circle (blue).
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Figure 5.10: Similarity measures for the ellipse pairs in Figure 5.9.
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Frobenius norm, which indicates the ellipses at a are most similar. Qualitatively,

the latter pair have the most similar shape, while the former pair have a more similar

size. In fact, the pair at c are the least similar of the set according to the Frobenius

norm, while the other five metrics indicate the ellipses at e are the least similar. In

all cases, the Förstner and Hellinger metrics have similar values.

Finally, although it is difficult to visualize an ellipsoid with more than three

dimensions, it’s important to look at the behavior of the similarity measures for

higher-dimensional ellipsoids. For these cases, a set of 500 random 6-dimensional

ellipsoids are drawn from the distribution IWp9,16q (see Section B.2 for details),

and compared with the unit hypersphere described by the 6-dimensional identity

matrix 16. The normalized similarity measure values are plotted in the histogram

in Figure 5.11, and the sample mean and variance of each distribution is listed in

Table 5.1.
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Figure 5.11: Distribution of similarity measure values for a set of 500 random 6-
dimensional hyperellipsoids.
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Measure Sample mean Sample variance

Frobenius 0.067746 0.80344
Compound sim. 0.013068 0.13920
KL 0.012237 0.58894
Förstner 0.004428 0.73853
Bhattacharyya 0.009180 0.58280
Hellinger 0.001231 0.85051

Table 5.1: Sample mean and variance for each ellipsoid similarity measure distribu-
tion plotted in Figure 5.11.

These distributions are informative. First, the inverse of the Frobenius norm

is highly peaked near 1, with very little spread, a trend that is also evident in

Figure 5.10. The other five have a larger spread, which indicates a more nuanced

measure of similarity. The Bhattacharyya and KL divergence metrics are nearly

overlapping, a result of the similar construction of the two metrics. The distri-

bution of compound similarities is heavily skewed toward zero. Due to the use of

normalization, the mean value of each measure is not particularly informative, but

a higher variance in the distribution may indicate a more descriptive measure.

While few conclusions can be drawn from these simple comparisons (except

perhaps that the Frobenius norm between two matrices is not a consistent reflection

of the similarity between the two resulting ellipses) they demonstrate the qualitative

characteristics of each measure. In the next section, these measures are compared

using an actual extent estimation problem.
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5.4.3 Simulation Results

A test case is constructed here for the purpose of investigating which similarity

measure provides the most consistent results. A cluster is initialized at geosyn-

chronous orbit (GEO) by sampling from the Cartesian covariance matrix Pcart,0 �

diagp20 km2, 20 km2, 20 km2, 0.02 km2{s2, 0.02 km2{s2, 0.02 km2{s2q. The cluster is

generated from this distribution–rather than from, for example, a breakup model—

in order to reduce outliers from the bulk of the cluster. Coupled with a very wide

measurement gate, this allows us to observe the extent estimation process without

conflating the results with the effects of gating.

Observations are simulated every 30 seconds from a single ground station for a

period of 15 minutes. Figure 5.12 shows the longitudinal position of the cluster and

the ground station position. Observation noise is modeled as zero-mean Gaussian

distributed, with the noise covariance matrixR � diagp225 m2, 225 µdeg2, 225 µdeg2q.

The effects of a 4�4 spherical harmonic gravity field and solar radiation pressure

are modeled during propagation, and the same dynamics model is used in the filter.

Six tests are run, each one using a different matrix similarity measure as the

likelihood function. The initial parameters are tuned slightly between runs to yield

the best final extent estimate for the chosen likelihood function. The initial extent

estimate is kPcart,0, where k is an integer multiplier (between 10 and 20 for these

simulations), and Pcart,0 is the initial Cartesian covariance matrix given above. It’s

worth noting that since we use the same covariance matrix to initialize the extent

matrix as we do to generate the cluster, the filter is starting with a fairly well-fitting
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Figure 5.12: Observation geometry for the similarity measure test case. The satellite
position is marked in red, and the ground station is the green circle.

extent matrix.

The initial ν parameter (which indicates the confidence in the initial extent

estimate) ranges from 15 to 25 in all of these cases, while the bounds are νmin �

8 and νmax � 30. A small process noise matrix is used in several of the cases.

The matrix used is pQ, where p is a small multiplier on the order of 1 � 10�9

and Q � diagp10�9, 10�7, 10�7, 10�7, 10�7, 10�3q is defined in equinoctial element

space. Table 5.2 lists the values of these tuning parameters used in each case. All

parameters were manually adjusted by running the filter several times and changing

the values.

Because the range of magnitudes for each similarity measure varies signifi-

cantly, and since, in the particle filter formulation, only relative magnitude matters,

the results are plotted as normalized trend lines. Additionally, the measures are
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Likelihood Covariance multiplier k Process noise multiplier p ν0

Inverse Frobenius 15 1� 10�7 20
Compound similarity 15 1� 10�7 17
Bhattacharyya 15 0 20
Förstner 15 1� 10�9 20
Kullback-Leibler 20 1� 10�7 25
Hellinger 10 0 20

Table 5.2: Table of parameters used for each test case.

inverted such that the results represent error between the estimated extent matrix

and the true extent matrix. Thus, a value that converges to zero (an arbitrary

value on these plots) is expected for a well-performing filter. Because the similarity

comparison is performed in measurement space, and we are concerned with extent

similarity in state space, all similarity measures are plotted for each likelihood op-

tion. Figures 5.13–5.24 show the extent projections and trend lines from each case.

The extent estimates are plotted as green lines, the true extent is plotted in red,

and the cluster components are blue dots.
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Figure 5.13: Extent estimate projections using the inverse Frobenius norm as the
likelihood.
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Figure 5.14: Error between true extent and extent estimated using each of the six
similarities, when using the inverse Frobenius norm as the likelihood.
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Figure 5.15: Extent estimate projections using compound similarity as the likeli-
hood.
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Figure 5.16: Error between true extent and extent estimated using each of the six
similarities, when using compound similarity as the likelihood.
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Figure 5.17: Extent estimate projections using Bhattacharyya distance as the like-
lihood.
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Figure 5.18: Error between true extent and extent estimated using each of the six
similarities, when using Bhattacharyya distance as the likelihood.
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Figure 5.19: Extent estimate projections using Förstner distance as the likelihood.
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Figure 5.20: Error between true extent and extent estimated using each of the six
similarities, when using Förstner distance as the likelihood.
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Figure 5.21: Extent estimate projections using Kullback-Leibler distance as the
likelihood.
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Figure 5.22: Error between true extent and extent estimated using each of the six
similarities, when using Kullback-Leibler distance as the likelihood.
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Figure 5.23: Extent estimate projections using Hellinger distance as the likelihood.
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Figure 5.24: Error between true extent and extent estimated using each of the six
similarities, when using Hellinger distance as the likelihood.

The final cluster estimate in most cases (the compound similarity case being

a slight outlier) fits the cluster quite well when compared with the true extent,
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computed by finding the minimum value enclosing ellipsoid for the set of cluster

members. Note that in all cases, some of the projections, such as the pag, χq plane,

are consistently off from the true extent. This is likely due to the observability of

the system, as this is a relatively short track of observations compared to the orbit

period. Another factor is the sensitivity of the true extent to the convex hull of

state-space points from which it is computed. This sensitivity is most apparent in

the pn, af q projection, which is the most degenerate plane in this case.3 A very

small perturbation of a single cluster state in either of these elements will affect

the true extent calculation noticeably, while the extent estimation process will not

reflect such sensitivity. In fact, as discussed in Section 5.2.2, this sensitivity of the

minimum volume enclosing ellipse is the main reason it is not chosen to model the

measurement extent.

The similarity measures differ between cases significantly, however. The in-

verse Frobenius norm case shows little improvement over the estimation period by

any measure. Compound similarity seems to change the estimate little, as all er-

ror measures level out to some biased value. Moreover, the compound similarity

metric was found to be rather unstable, yielding values varying by many orders of

magnitude.

The remaining four cases (Bhattacharyya, Förstner, Hellinger, Kullback-Leibler,

and Hellinger) show some similarities. Over the estimation period, the quality of the

extent estimate as measured by these same four metrics improves, while the quality

as measured by the inverse Frobenius and compound similarity metrics seemingly
3See Section B.1 for a discussion of degeneracy in this context.
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diverges. Importantly, those two metrics are some function of an element-wise ma-

trix norm, while the four converging metrics are all functions of the determinant of

the extent matrices. This suggests that element-wise matrix norms are not a good

choice for a likelihood function in this application.

A likely reason for this could simply be the scale of the different components—

for example, when comparing measurement extent matrices in range, azimuth, and

elevation space, the likelihood will be dominated by the differences in the range terms

of the matrices (as they are larger than the angle terms). This de-emphasis on the

angles components could cause a diverging estimate, particularly in the state-space

elements most directly connected with observations in those coordinates. Similarly,

the extent comparisons in state space over-emphasize larger components, such as

mean longitude, over smaller ones such as mean motion. The measurement space

comparisons could potentially be improved via scaling of the range component of

the measurement extent matrices, such that all components are on the same order

of magnitude.

In order to illustrate that this is indeed the problem with the metrics based on

element-wise matrix norms, a test case consisting of a single frame of measurement

data from the GEO test case above is constructed. The measurement extent is com-

puted both in native measurement space (Y , units of kilometers and radians) and

scaled measurement space (Y 1, Earth radii and radians) (GEO altitude is 35.786 km

or about 5.61 Earth radii). 10,000 samples are drawn from the inverse Wishart dis-

tributions IWpν,Y q and IWpν,Y 1q, and ν is varied from 5 to 20. The value of

each distance metric is recorded for every sample (relative to the base matrix), and
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the values obtained using Y are differenced with those using Y 1. Importantly, the

two sets of metrics should not differ significantly–the units of range should not af-

fect the measure of similarity between matrices. Figures 5.25 and 5.26 show the

average value of the difference between metrics for each ν value. Note that in Fig-

ure 5.25, the values all oscillate near zero, regardless of the value of ν. Meanwhile,

there is obvious structure in Figure 5.26, indicating dependence on the scale of the

measurement extent matrix. In other words, these metrics tend to be dominated

by the range component of the measurement extent simply because it has a larger

magnitude.
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Figure 5.25: Sample mean of the differenced Bhattacharyya, Förstner, Kullback-
Leibler, and Hellinger metrics using a scaled matrix versus an unscaled one.
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Figure 5.26: Sample mean of the differenced Frobenius and compound similarity
metrics using a scaled matrix versus an unscaled one.

5.4.4 Consistency

It is also constructive to investigate the behavior of each similarity measure in the

context of the matrix particle filter presented in Section 5.3. This is accomplished

in the following way. First, 10, 000 samples are generated from the six-dimensional

Inverse Wishart distribution IWpν, pν� p� 1q16q (see Equation (5.17)) These sam-

ples may be treated as full-state observations of the base matrix 16. A weighted,

moving-window average is then computed for increasing subsets of samples, using

the aforementioned likelihood function candidates as weighting functions. The dif-

ference between the weighted means and the base matrix (using the same metric

as the weighting function) is plotted for increasing sample size. This is shown for

several discrete values of ν.

In the filtering scheme presented in Section 5.3, ν increases with successive

observations. Therefore, there are several desirable features in each plot. First, for
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all values of ν, the estimate should asymptotically approach the true value (or, the

difference should asymptotically approach zero), with minimal bias. Second, these

trends should improve for increasing values of ν, indicating improvement as the filter

increases its measure of certainty in the estimate.

Generally, more samples reduces the error in all cases. The element-wise mea-

sures are biased from zero, as is the Hellinger distance. The Kullback-Leibler diver-

gence and Bhattacharyya distance show the fastest convergence across all values of

ν.

5.4.5 Summary

The main motivation for this section was to seek a consistent metric for evaluating

the quality of a cluster estimate–that is, the metric should perform well as a likeli-

hood function during extent estimation, and that quality should be reflected in the

a posteriori evaluation. These results show that determinant-based metrics provide

greater consistency than element-wise matrix norms. Most of the four determinant-

based metrics proposed yield similar performance, as seen in the GEO-based demon-

stration case presented. Investigating the consistency of the proposed measures also

proved to be informative. Based on these results, both the Bhattacharyya distance

and the Kullback-Leibler divergence appear to be acceptable approximations for the

measurement likelihood function in the extent filter (perhaps unsurprising, given the

similarities the two share). In the next chapter, the Bhattacharyya distance is used

in the extent filter.
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Figure 5.27: Moving-window average of each matrix difference metric. Darker lines
correspond to higher values of ν; the lightest line corresponds to ν � 8, and the
darkest line corresponds to ν � 15.
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Chapter 6: Results

In order to validate the extent estimation method, three simulated test cases are

analyzed. All three involve an on-orbit breakup (generated using the NASA standard

breakup model, described below), with observations collected some short time after

the event. All cases use realistic perturbing force models for the given orbit class.

6.1 NASA Standard Breakup Model

NASA’s Standard Breakup Model (SBM), a component of the broader EVOLVE 4.0

and LEGEND [188] debris models, is a set of distributions driven by empirical data

that describe the population of debris resulting from on-orbit breakups [189]. Using

the minimum characteristic length (Lc) of the debris population as the independent

variable, SBM gives distributions for the total quantity, as well as the area to mass

ratio and ∆V of each piece. This dissertation uses the SBM models associated with

explosive fragments of upper stages with an initial mass of 600-1000 kg. A brief

summary of the relevant parts of SBM as presented in Johnson et al. [189] follows.

The number of fragments N is determined by the power law

NpLcq � 6L�1.6
c . (6.1)
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The area to mass ratio distribution DA{m is a weighted combination of normal

distributions dependent on λc � log10 Lc, described in full in Johnson et al. [189].

The distribution of log10p∆V q is

D∆V � N pµ, σq, (6.2)

where

µ � 0.2χ� 1.85 (6.3)

χ � log10pA{mq (6.4)

σ � 0.4. (6.5)

A debris population from a breakup is generated in the following way. Given

the desired minimum characteristic length, the number of pieces N is computed from

Equation (6.1). The area to mass ratio of each piece is determined by takingN draws

from DA{m. Finally, the ∆V magnitude of each piece is determined by a random

draw from Equation (6.2), using the area to mass ratio of each object to determine χ.

The model assumes fragments are dispersed isotropically. A uniformly-distributed

random direction vector is computed by

v̂ � q

‖q‖
, (6.6)

where q is a vector of three draws from the unit normal distribution N p0, 1q

[190]. Figures 6.1 and 6.2 show 1000 draws from the area to mass ratio and ∆V

136



distribution functions, respectively, along with the distribution function itself.
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Figure 6.1: Plot of the probability density function DA/m for λc � 10 cm.

6.2 LEO Test Case

The first test case explored is a breakup in a 500 km circular orbit. The pre-breakup

state is listed in Table 6.1. The breakup occurs over the Pacific, and the cluster is

observed by a fictitious ground station in New Mexico about four minutes later. The

threshold characteristic length used for the NASA breakup model is 10 cm (said to

be the approximate lower sensitivity of the U.S. Space Surveillance Network [189]),

resulting in an initial population of 227 objects. Equinoctial element projections

of the initial cloud distribution are plotted in Figure 6.4. Propagation includes

the effects of an 8 � 8 spherical harmonic Earth gravity model and drag using an

exponential atmosphere model (see Chapter 3 for details), and the estimator uses

this same dynamics model.
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Figure 6.2: Plot of the probability density function D∆V for λc � 10 cm.

Table 6.1: Pre-breakup orbit parameters for the LEO test case.

a 6875.7 km n 0.00110737 rad s�1

e 0.000596618 af 0.000170519
i 0.610618 rad ag 0.000571731
Ω �1.39651 rad χ �0.310388
ω 2.67746 rad ψ 0.0546494
ν 4.33258 rad λ 5.61464 rad

Area/mass ratio: 0.004m2{kg
Epoch: 1 Jan 2016 00:07:00.00 UTC
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Figure 6.3: Ground track map for the LEO test case scenario. A dark green triangle
marks the ground station, the visible portion of the ground track is in light green,
and the breakup point is in blue.

139



0.00095 0.00100 0.00105 0.00110 0.00115
n [rad/sec]

0.15

0.20

0.25

0.30

0.35

0.40

-0.02 0.00 0.02 0.04 0.06
af

-0.075

-0.050

-0.025

0.000

0.025

a g
-0.325 -0.320 -0.315 -0.310 -0.305 -0.300

0.040
0.045
0.050
0.055
0.060
0.065
0.070

 [r
ad

]

Figure 6.4: Initial distribution of the debris cloud for the LEO test case.

Range and angles observations, such as from a radar, are corrupted with zero-

mean Gaussian noise:

y � ytrue � ν (6.7)

ν � N p0, Rq, (6.8)

where R � diagpσ2
Range, σ

2
Azimuth, σ

2
Elevationq. The noise variances used in the

simulation are listed in Table 6.2. The pass over the New Mexico ground station

lasts approximately 10min and reaches a maximum elevation of about 80�.

The extent estimate is initialized as follows: the centroid is initialized with the
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Table 6.2: Observation noise parameters.

σRange 0.015 km
σAzimuth 0.015 rad
σElevation 0.015 rad

Table 6.3: Summary description of filter parameters.

Parameter Description

Nparticles Number of extent matrix particles
νmin Minimum value of extent estimate “confidence” ν
νmax Maximum value of extent estimate “confidence” ν
τ With β, forms the time constant for the evolution of ν
β With τ , forms the time constant for the evolution of ν
g Measurement gate size

pre-breakup state, the extent is initialized with the spherical Cartesian covariance

matrix Pcart,0 � diagp50 km2, 50 km2, 50 km2, 0.05 km/s2, 0.05 km/s2, 0.05 km/s2q

(converted to equinoctial element space via the unscented transform), and ν0 � 10.

See Section 5.3.5 for a discussion of extent estimate initialization. In this scenario,

zero process noise is used. The other free parameters in the extent particle filter

(described in Table 6.3) are set to the values listed in Table 6.4.

Three equinoctial element projections of the estimated extent and centroid

at the end of the pass are plotted in Figure 6.5. The gating process eliminated

14 outliers. The evolution of the fit metric for the extent matrix versus the true

Table 6.4: Filter tuning parameters used for the LEO test case.

Parameter Value

Nparticles 10,000
νmin 8
νmax 30
τ 5400
β 600
g 1.2
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extent (Bhattacharyya distance, dB) is plotted in Figure 6.6.1 Each point on the

plot represents a measurement frame, and filled points are times at which the entire

estimated cluster is in view, thus there is no imputation of occluded parts of the

cluster (see Section 5.3.6). As both of these figures show, the estimated extent is

very close to the true extent. Sudden jumps in these plots, such as the one at

280 seconds elapsed time in Figure 6.6, correspond to the gating process including

or excluding observations from a cluster member at that time step, resulting in a

temporary lag between the estimated extent and the true extent (which changes

instantaneously), until the filter “catches up” by processing the new observations.

Figure 6.5: Extent estimate at the end of the pass for the LEO test case.

The error and uncertainty in the centroid estimate are shown in Figure 6.7.
1Note that while the inverse Bhattacharyya distance is used as the likelihood function, the

actual distance is shown for plotting purposes.
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Figure 6.6: Fit metric evolution for the extent estimate for the LEO test case.

As soon as the extent is fully in-view of the ground station (about 30 seconds into

the simulation), the uncertainty in the centroid estimate is driven down, reaching

a steady-state value of about 8 km. The error remains below 5 km over the entire

pass. While this is not particularly precise when compared to a single object orbit

determination, it is approximately 0.5% of the largest extent dimension, and in line

with the results shown in Chapter 4. As discussed above, the sudden changes in

the error correspond to changes in cluster membership as determined by the gating

process.

In addition to the similarity metric between the two extent matrices, an infor-

mative way to visualize the behavior of the extent estimate is to plot the Cartesian

volume over time. This is meaningful because of the way the extent estimates are

likely to be used–for defining volumes in space which should be avoided (if flying a

spacecraft) or sought out (if tasking a sensor network). Both of these tasks require

a description of the cluster in Cartesian space, instead of the native equinoctial
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Figure 6.7: Cartesian position error and uncertainty for the LEO test case.

element space of the estimator.

The extent estimate is propagated to each point using the similarity transform

(see Section 3.3), then transformed to Cartesian space, where the volume is com-

puted. This is plotted with the true extent, which is calculated by propagating each

cluster member to each point in time, computing the minimum volume enclosing

ellipse in equinoctial space, then transforming into Cartesian space to calculate the

volume. Figure 6.8 shows the evolution of the volume of the cluster, predicted over

the next two periods2. The estimated volume tracks the true value very closely.

Note that at the pinch point and anti-pinch line (as described by Hujsak [18] and

Chobotov et al. [19], i.e. the breakup point and a half period later), the volume is

minimized, while maximum volume occurs 90� away from these points. The vol-

ume difference between predicted and estimated is also minimized at the pinch and

anti-pinch points.
2The times are relative to the breakup time, not the end of the ground station pass.
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The estimated volume is systematically lower than the true volume. A likely

explanation for this is that the expansion rate of the cluster is not strongly observ-

able over the ground station pass. Velocity information is limited when using only

position (range and angle) measurements over a relatively short span, even for single

object orbit determination. Additionally, since the true volume calculation does not

account for objects that might typically be gated out of the estimation process, a

small number of individual objects might cause the volume to grow substantially by

drifting away from the original reference orbit faster than the other objects in the

cluster. During the observation span, these objects may be near the middle of the

cluster, masking their contributions to the extent size and shape.

As another way of visualizing the extent estimate, the cluster members (black

dots) and the extent projection (green area) are plotted in the perifocal orbit frame

referenced to the centroid in Figures 6.9 and 6.103. The growth in the in-track

direction is clearly evident after two periods, and the extent contains all cluster

members. This shows that the estimated extent is able to predict the gross size,

shape and behavior of the debris cloud, which is a primary goal of this work, and

implies the potential ability to accurately estimate the breakup time by propagating

backwards and searching for minima. It is also notable that these estimates were

formed over only a single pass, using about 10 minutes of data.
3Due to the nonlinear transformation between the native extent coordinate system (equinoctial

elements) and the Cartesian system, the extent projections are visualized by sampling uniformly
over the entire volume of the extent in equinoctial elements, then transforming the points individ-
ually into the Cartesian perifocal frame.
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Figure 6.8: Predicted Cartesian volume of the estimated extent, with the volume of
the true extent for the LEO test case.

Figure 6.9: Cluster and extent estimates at the end of the fit span for the LEO test
case, plotted in the centroid’s perifocal frame.
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Figure 6.10: Cluster and extent estimates for the LEO test case propagated forward
two periods, plotted in the centroid’s perifocal frame.

6.3 GEO Test Case

Next, a breakup in geosynchronous orbit (GEO) is simulated. The pre-breakup orbit

is shown in Table 6.5, and mapped in Figure 6.11. The NASA breakup model is again

used to generate the debris cloud, this time with a threshold characteristic length of

15 cm, to account for the much farther detection distance. The initial distribution

of 125 cluster members is shown in Figure 6.12. Range and angle measurements are

simulated from a single ground station in Florida using the noise characteristics in

Table 6.2 at a cadence of 30 s over 30min. The simulation includes the effects of a

4� 4 spherical harmonic Earth gravity model and solar radiation pressure.

The extent estimate is initialized using the Cartesian covariance matrix Pcart,0 �
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Table 6.5: Pre-breakup orbit parameters for the GEO test case.

a 42,166.2 km n 7.2916� 10�5 rad s�1

e 0.0 af 0.0
i 0.00147678 rad ag 0.0
Ω 1.53829 rad χ 0.000738
ω 0.0 rad ψ 2.4� 10�5

ν 0.0 rad λ 3.185 rad

Area/mass ratio: 0.004m2{kg
Epoch: 1 Jan 2016 12:00:00.00 UTC

diagp200 km2, 200 km2, 200 km2, 0.20 km/s2, 0.20 km/s2, 0.20 km/s2q, converted to

equinoctial element space and conditioned using the method in Section 5.3.5. A

heuristic tuning process was used for these simulations–several filter runs were per-

formed while varying the tuning parameters one at a time, and filter performance

(namely convergence speed and error characteristics) was noted. While this resulted

in good performance for these simulations, one area of proposed future work is to

develop systematic methods for selecting these parameters. The Tapley process

noise covariance (see Appendix D) is used in the filter with the tuning parameter

q � 5� 10�5. The rest of the filter parameters used are listed in Table 6.6.

The primary projections of the estimated and true extent, along with the

propagated fragments, are plotted in Figure 6.13. The quality of the estimate is

evident here and Figure 6.14 shows how the fit metric improved over the pass. 12

outliers were gated out of the cluster. Unlike the LEO test case, there is no occlusion

this soon after the event, and the estimate does not quite reach steady state over

the 30minute pass.

The position error and uncertainty in the centroid estimate are plotted in Fig-

ure 6.15. The error converges to less than 5 km. After dropping from the initialized
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Figure 6.11: Ground track map for the GEO test case scenario. Stations are in
green, and the breakup point is in blue.

Table 6.6: Filter tuning parameters used for the GEO test case.

Parameter Value

Nparticles 10,000
νmin 8
νmax 30
τ 86,400
β 600
g 1.25
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Figure 6.12: Initial distribution of cluster members for the GEO test case.

Figure 6.13: Extent estimate at the end of the pass.
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Figure 6.14: Evolution of the fit metric for the GEO test case.

value to about 2 km (1σ), the position uncertainty begins growing, a result of the

process noise that is added to the model, and the growing adaptive measurement

noise resulting from the expanding cluster (Section 5.3.7).
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Figure 6.15: Centroid position error and uncertainty for the GEO test case over the
pass.

As described above for the LEO scenario, the cluster volume predictions over

two centroid orbit periods are plotted in Figure 6.16. The evolution of the cluster is

151



very similar to that of the LEO test case, with minima coinciding with the pinch and

anti-pinch points, and maxima approximately a quarter period after the minima.

These trends match the expected behavior quite well. The perifocal projections in

Figures 6.17 and 6.18 also reflect the quality of the fit. After only two periods, some

of the cluster members are more than 180� out of phase with one another, but the

propagated extent estimate reflects this. While this scenario had no further passes

to update the cluster, the more separated cluster members would subsequently be

gated out of the larger cluster, as they would be easily tracked as single objects.
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Figure 6.16: Predicted and actual volume of the satellite cluster in the GEO test
case over two periods.

6.4 HEO Test Case

Finally, a breakup in a highly-elliptical orbit is simulated. The pre-breakup reference

orbit is listed in Table 6.7. This is a typical geosynchronous transfer orbit, which is

an intermediate orbit between the LEO parking orbit attained by the launch vehicle
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Figure 6.17: Cluster and extent estimates at the end of the fit span for the GEO
test case, plotted in the centroid’s perifocal frame.

Figure 6.18: Cluster and extent estimate for the GEO test case propagated forward
two periods, plotted in the centroid’s perifocal frame.
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Table 6.7: Pre-breakup orbit parameters for the HEO test case.

a 24,420.9 km n 0.000165434 rad s�1

e 0.72654 af 0.72654
i 0.174534 rad ag �2.81092� 10�6

Ω �7.15649� 10�6 rad χ �6.26118� 10�7

ω 3.28759� 10�6 rad ψ 0.0874894
ν 2.47479 rad λ 0.989781 rad

Area/mass ratio: 0.004m2{kg
Epoch: 1 Jan 2016 07:00:00.00 UTC

immediately after launch and the final GEO mission orbit. This is a uniquely difficult

regime to track, due to the highly variable distances involved and the different

perturbations affecting the orbit at different times–drag and higher-order Earth

gravity terms near perigee, and solar radiation pressure near apogee [66].

As with previous test cases, the NASA breakup model is used to generate the

initial debris cloud, using a threshold characteristic length of 25 cm, resulting in

a cluster size of 43 objects. The dynamics model includes the effects of an 8 � 8

spherical harmonic Earth gravity model, drag (using an exponential atmosphere

model [136]), and solar radiation pressure. A ground station on Ascension Island

in the Atlantic Ocean records range and angles observations for all objects in the

cluster every 30 s for 45min while the cluster is about 3.5 h from apogee. Observation

noise parameters are identical to previous test cases, and the other filter parameters

are listed in Table 6.8. A single revolution of the pre-breakup orbit, the ground

station location, and the cluster position at the beginning of the pass are plotted in

Figure 6.19, and the initial distribution of cluster objects is plotted in Figure 6.20.

The resulting primary extent projections are plotted in Figure 6.21. The one

obvious outlier in Figure 6.20 is gated out of the cluster, but the rest of the cluster
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Table 6.8: Filter tuning parameters used for the HEO test case.

Parameter Value

Nparticles 10,000
νmin 8
νmax 30
τ 73,200
β 600
g 1.5
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60°N

90°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

Figure 6.19: Ground track map for the HEO test case. The ground station is in
green, the breakup point is in blue.
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Figure 6.20: Initial distribution of cluster members in the HEO test case.

members remain. The quality of the extent estimate is evident both here and in

Figure 6.22, which shows the evolution of the fit metric over the pass. There is a

noticeable amount of noise in this plot early in the pass, but it settles about 12min

in, and appears to reach a steady-state value of about 1.9 approximately 25min into

the pass.

The centroid estimate error and uncertainty are plotted in Figure 6.23. The

error estimate is low but biased near 1 km, while the 1σ position uncertainty collapses

to nearly 1 km early in the pass before slowly increasing.

Figure 6.24 shows the true and predicted volume of the satellite cluster extent

over two periods. The volume evolution is less regular than in the LEO and GEO

cases due to the eccentricity of the orbit, but similar features, such as the pinch
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Figure 6.21: Extent estimate at the end of the pass for the HEO test case.
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Figure 6.22: Evolution of the fit metric for the HEO test case.
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point, are apparent. The maximum volume points are marked on this figure as

well as Figure 6.25—they occur at the same angle away from the apogee as the

pinch point. Figures 6.26 and 6.27 show the extent projections in the perifocal

frame. With the exception of the single cluster member that “escapes” (and would

subsequently be tracked as an individual object), the extent estimate holds over the

propagation period.
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Figure 6.23: Centroid position error and uncertainty for the HEO test case over the
pass.

One thing to keep in mind when considering the predicted extent plots is that

the true extent is often driven by a small number of outliers, perhaps only one or

two. As these plots show pure predictions, with no extent estimate updates, this

manifests as large differences between the prediction and the true extents. However,

subsequent passes would allow these outliers to be gated out of the cluster, allowing

for a more accurate extent estimate.
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Figure 6.24: Predicted and actual volume of the satellite cluster in the HEO test
case over two periods.
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Figure 6.25: Orbit traces of all cluster members in the centroid’s perifocal frame,
annotated with features from Figure 6.24. Additionally, the black dotted line shows
the location of the initial breakup point.
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Figure 6.26: Cluster and extent estimates at the end of the fit span for the HEO
test case, plotted in the centroid’s perifocal frame.

Figure 6.27: Cluster and extent estimates after being propagated two periods, plot-
ted in the centroid’s perifocal frame.
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6.5 Test Case Summary

As demonstrated here, the extent particle filter method described in this work is

robust enough to provide accurate extent and centroid estimates over a variety of

orbits, including high-eccentricity cases, which can be particularly stressing. Cen-

troid position error around 1 km is typical over a single pass, which is quite small

when compared to the size of the cluster extent itself.

A moderate amount of manual tuning was required for the filter in these cases.

Several tuning parameters, including τ , β, N , νmin, and νmax, had marginal effect

on the performance of the filter. Meanwhile, the gate size g was critical not only in

fine-tuning, but in convergence of the filter. It can easily be set too high (allowing all

cluster objects to be accepted), or too low (resulting in a diverging extent estimate

due to too many objects being incorrectly rejected). Notably, zero process noise

was used in the LEO and HEO test cases, while a small process noise covariance

was required for convergence of the GEO filter. At first, this seems at odds with

the conclusions of Chapter 4, but the centroid measurement covariance in these

simulations was sufficiently high to avoid divergence of the centroid filter (except in

the GEO case).

The observability of the 6 � 6 extent matrix with three-dimensional obser-

vations is a potential concern here, particularly when given relatively short mea-

surement arcs. For the test cases presented here, the method of initializing the

extent from a spherical covariance yields good results, although this is not an indi-

cation that the system is generally observable. Using observations besides range and

161



bearing (angles-only telescope observations, for instance) will likely result in poorer

estimates, as range information becomes observable only given sufficient geometric

diversity in the measurements, requiring longer measurement arcs. In general, the

observability of the cluster extent will follow single-object observability trends [191],

[192].

Quantification of the quality of the extent estimate is nuanced, but the tech-

nique used here involving predicting the estimate and comparing it with the com-

puted true extent allows for several key insights. First, the extent estimate is closest

to the true extent at the pinch point, or the point along the reference orbit at which

the breakup occurred. The extent estimate quality remains good at subsequent

pinch point transits as well. This trend is also evident 180� away from the pinch

point as well, at the anti-pinch line. The largest differences between the true and

estimated extent occur 90� away from the pinch point in the circular orbit cases,

which also correspond to the largest cluster extent. The extent estimates track this

pattern rather well, even when using only a single pass of observations.

In the immediate aftermath of a breakup, these extent estimates may be the

only quantitative description of the resulting cluster available. Precision state esti-

mates of individual objects are not yet possible due to the limited amount of data

and high probability of mis-tagged observations. The extent estimates demonstrated

here enable conjunction assessments between a spacecraft of interest and a defined

volume of space, rather than the latest pre-event state of the broken-up spacecraft.

The estimates also allow for sensor tasking against a volume of space (or, more pre-

cisely, the projection of 3D volume into observation space), increasing the likelihood
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that all pieces of a debris cloud are captured. While an accurate description of the

cluster is desirable, the nature of the resulting product does not require the level of

precision required for single target tracking.
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Chapter 7: Conclusions

The rapidly changing space environment is necessitating changes to the way objects

in space are tracked. This dissertation presented a novel method for tracking clusters

of closely-spaced objects in orbit, as in the immediate aftermath of a fragmentation

event such as a breakup or collision. Using established group tracking methods as

a starting point, the problem was decoupled into a centroid tracking filter and an

extent particle filter, allowing a cluster to be tracked by its orbit as well as its size,

shape and orientation.

The problem motivation and background were provided in Chapter 1, a re-

view of the relevant group tracking and space surveillance literature was presented

in Chapter 2, and the necessary tools for modeling the motion of satellites and

representing the extent as an ellipsoid are presented in Chapter 3.

Chapter 4 explored the concept of an average orbit, and the implications of

computing the centroid using different orbit state representations. It was found that

averaging using the equinoctial element set presented in Equation (3.1) results in a

more realistic representation of an average orbit than Cartesian or classical orbital

element representations, as measured by the difference between averaged observables

(range and angles) and averaged states. Although some error is inherent in the fact
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that the centroid does not generally follow the same equations of motion as its

constituent pieces, this error is found to be small in comparison to the extent itself,

and thus acceptable for our purposes (as demonstrated in Chapter 6).

Chapter 5 describes the method for sequentially estimating the extent matrix

using a matrix-variate particle filter. Because the actual measurement likelihood is

unknown, a suitable approximation is investigated by evaluating several potential

matrix comparison metrics. By considering the qualitative behavior of the candidate

metrics, then the performance of each in a representative filtering scenario, the

inverse Bhattacharyya distance is chosen for the simulations in Chapter 6. More

generally, it is found that metrics based on element-wise differences perform worse

overall than determinant-based metrics, largely because of the difference in scale of

one coordinate over the others. The consistency of using the weighted average of

Inverse Wishart-distributed samples is also demonstrated in this chapter, suggesting

that the particle filter will converge to the correct value given a sufficient number

of samples.

Results for three test cases are presented in Chapter 6. The test cases consist

of a spontaneous satellite breakup (modeled using the NASA standard breakup

model) in LEO, HEO, and GEO. The filtering method developed here is shown to

be robust to the choice of orbit, including high-eccentricity cases. Extent estimates

sufficiently capture all members of the clusters and compare favorably to truth, both

during the estimation span and when propagated forward for two orbit periods. This

allows for a specific “region of concern” to be defined, predicted, and refined given

more observational data. The centroid estimate, similarly, compares favorably with
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the true centroid. The volume of the cluster extent is found to follow the familiar

periodic behavior described by past analytical studies of debris clouds. Careful

selection of the gate size and process noise covariance was found to be critical to the

filter performance, in some cases making the difference between a diverged estimate

and a converged one. Further, no significant issues relating to observability of the

extent matrix were encountered.

This method can significantly improve spaceflight safety over the current prac-

tices. As discussed in Chapter 1, it is difficult for a ground-based space surveillance

system to quickly characterize and catalog large-scale on-orbit debris events. The

presented method gives operators a way to characterize such events very quickly

after they occur, enabling warnings or other mitigation efforts on a much faster

timeline. This will become increasingly important as the number of active payloads

in Earth orbit grows in the coming years.

In addition to providing a way to characterize the potential threat to space-

craft from a fragmentation soon after the event, extent tracking could also enable

a more systematic way of tracking and cataloging individual objects resulting from

such events. Sensors could be tasked based on the extended target tracking infor-

mation, and perhaps cued to stare at the region of space the cluster is expected to

pass through, increasing the probability of detection of the entire cluster. As indi-

vidual pieces drift away from the main group, estimates can be bootstrapped with

information from the group tracking estimate for more rapid orbit determination

and cataloging.
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7.1 Limitations

While the extent filter provides a way to rapidly characterize on-orbit breakups and

fragmentations without waiting for the pieces to separate into individually-tracked

objects, there are several limitations to this method. The estimates are valid for a

relatively short period after the event itself–primarily during the pulsating ellipsoid

phase of the debris cloud [69]. This typically lasts for only a few orbit periods. It

should be noted, however, that as the primary cluster spreads out, smaller clusters

could be broken out and tracked in the same way (see below).

Another clear drawback of modeling a cluster in this way is that the extent ma-

trix contains no information about the internal distribution of cluster constituents.

Instead, it is assumed that the spatial density of objects inside the extent enve-

lope is high enough to be dangerous for any other objects passing through. As is

seen by the results in Chapter 6, there is a potential for the estimated extent to be

overly conservative. This could be mitigated somewhat by more careful tuning of

the extent filter.

Finally, the estimates resulting from this cluster tracking method are less pre-

cise than those resulting from a more typical single object orbit determination.

While the latter might result in estimates with tens or hundreds of meters of un-

certainty, the former is often one or two orders of magnitude less precise. This is

inherent to the large cluster dimensions and the way extent is estimated, as well

as the issues with centroid tracking discussed in Chapter 4. Nevertheless, the in-

tended use cases for these tracking products is significantly different than those for
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traditional orbit determination products, and thus there is still significant expected

utility of these cluster estimates, as discussed above.

7.2 Future Work

Considering these limitations, and the fact that this is a new paradigm for tracking

clusters of objects in space, there are myriad ways this research could be improved

and extended.

Validation using real-world events, such as breakups or cubesat deployments,

is obviously desirable, although obtaining the requisite observational data is often

a challenge. However, the increasing availability of this data outside of the typical

government channels in recent years (e.g. from commercial providers) makes it more

likely that this type of study can be pursued as future work.

A multi-cluster tracking scheme could be useful as the cluster continues to

spread, and a single cluster ceases to accurately represent the hazardous areas of

space. The single parent cluster would split into several smaller clusters, each tracked

using the technique described in this work. Parent cluster information could be

used to initialize child clusters, potentially allowing for faster convergence versus

initializing each child cluster with the technique described in Section 5.3.5.

Higher-order extent propagation, as in the second-order EKF[193, Section 3.7],

may improve performance by more accurately predicting the evolution of the extent

over time. Instead of truncating the Taylor series expansion at first order (includ-

ing only the Jacobian of the dynamics function), a second-order formulation also
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includes the Hessian term. This would improve the accuracy of the transformations

involved in the filter, however because the second-order partial derivatives term

needs to be found numerically, there is an associated computational cost in using it.

This increased cost would have to be weighed against the marginal improvement to

accuracy.

A more detailed study of the detection limits, noise characteristics, and pre-

processing algorithms of common sensors used for space surveillance would allow

for a more accurate cluster measurement model. The current model simply assumes

all targets produce a point measurement, but being able to accurately model, for

example, merged or missing targets would allow for more realistic simulations. A

more accurate measurement simulation would better reflect the expected filter per-

formance using real-world data.

Optimal tasking for clusters is another interesting way this research could be

extended. The optimal tasking schedule for a cluster could yield some efficiencies:

currently, breakups and other debris events receive very high tasking priority in

order to observe all associated pieces. If the cluster is quantified early on, this could

relieve some of the tasking pressure, allowing for a more focused search. The extent

volume trends can also help to identify the time of the event, and thus the pinch

points; observing at these pinch points has been identified as an efficient way to

increase the chances of observing the entire cluster [194].

Eventually, the constituents of all clusters will drift apart enough to be track-

able as point targets (unless the cluster is being actively maintained). Instead of

treating each of these newly-separated targets as a new object, using the cluster
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estimate to initialize the new track could reduce the number of observations needed

for a sufficiently converged solution. In the group tracking spectrum defined by

Drummond, Blackman, and Pretrisor [75] (see Chapter 2), this would be moving

from Class 1 (cluster tracking only) to Class 4 (individual target tracks only), using

cluster information to inform individual target track formation (Classes 2 and 3).

A new approach to modeling density evolution directly has recently been ex-

plored by Healy, Binz, and Kindl [195] [17], [196], [197]. This approach uses the

transformation of variables technique to exactly propagate arbitrary distributions,

rather than relying on linearization of the dynamics models. The estimation tech-

niques developed in this dissertation could be coupled with this density model

(termed Eulerian orbit density) and used to update the distribution using obser-

vational data.
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Appendix A: Spherical Harmonic Gravity Model

The partial derivatives of the spherical harmonic gravity potential function in Equa-

tion 3.13 are[126, p. 548]:
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The inertial acceleration components are then [126, p. 548]
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Appendix B: Ellipsoid properties

B.1 Geometric properties

Define the ellipsoid E represented by the positive definite matrix S as

EpSq � ty : yTS�1y ¤ 1u, (B.1)

The eigenvalues of S�1, pλiq, correspond to the semiaxes of the ellipsoid paiq:

ai � λ
�1{2
i , (B.2)

and the eigenvectors correspond to the orientation.

The term degeneracy is used in this dissertation to describe an ellipsoid that

has one axis that is very small compared to the others; in other words, λi{λj Ñ 0.

In two dimensions, this has the appearance of the ellipse being stretched to nearly

a straight line.

We may compute the volume of E as [147]

VolpEq � ρn
?
detS, (B.3)
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where ρn is the volume of the n-dimensional unit sphere, or the unit n-ball [198][199,

Section 5.19]:

ρn � πn{2

Γpn
2
� 1q . (B.4)

B.2 Uniform sampling over the volume of an ellipsoid

Uniform sampling over the interior of an n-dimensional ellipsoid is discussed at

length in [200]. The method presented here involves transforming a sample from

an n-dimensional hypersphere into the ellipsoid. Although Li [201] states that this

does not result in a set of uniformly-distributed points over the ellipsoid, Sun and

Farooq [200] states that this assertion is incorrect, and while their proof is “omitted

…for brevity”, Gammell and Barfoot [202] fills in the final gap in the literature by

presenting a formal proof.

Let EpSq represent an ellipsoid as defined in Equation B.1. Let xi � N p0,1nq

be a random vector drawn from the multivariate unit normal distribution. Then,

xi{||xi|| is uniform on the surface of the unit hypersphere. If u � Up0, 1q is uniform

on r0, 1s, then xsphere � u1{nxi{||xi|| is uniform over the interior of the unit n-

dimensional hypersphere.

Finally, if L is the lower-triangular Cholesky decomposition of S�1, i.e.

LLT � S�1, (B.5)

the uniform point in the hypersphere xsphere can be transformed to the ellipsoid

E via Lxsphere. Further, if the center of the ellipsoid is somewhere other than the
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origin, the point may be translated simply by adding the center vector.
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Appendix C: Measurements

The measurements considered throughout this dissertation are topocentric range,

azimuth, and elevation, such as from a radar [126, Section 4.3]. Given the satellite

and ground station position in an Earth-fixed reference frame (ECEF), the relative

position vector is ρECEF � rsat�rsite. Then ρECEF must be rotated to the topocentric

SEZ frame, which is centered on the ground station, and defined by the Ẑ unit

vector along the line from the center of the Earth to the ground station, and the Ê

unit vector defined as K̂�Ẑ

|K̂�Ẑ|
, where K̂ is the third axis in the Earth-centered inertial

frame. Ŝ completes the triad. The rotation is ρSEZ � R2p90��φgeodeticqR3pλqρECEF,

where φgeodetic is the geodetic latitude, λ is the longitude of the ground site, and R2

and R3 are rotation matrices about the second and third axes, respectively.

Range is simply the magnitude of ρSEZ, and azimuth and elevation may be

calculated:

el � arcsin
ρZ
ρ

(C.1)

az � atan2pρE,�ρSq. (C.2)
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C.1 Partial derivatives

In order to relate these measurements to a satellite’s state, the partial derivatives

matrix By
Bxeq

must be calculated, where y is a vector of range, azimuth, and elevation

measurements, and xeq is the equinoctial state vector. This can be decomposed into

the following chain:

By
Bxeq

� By
BxECEF

BxECEF

BxECI

BxECI

BxRSW

BxRSW

Bxeq
. (C.3)

While these are complicated matrices, they may be found analytically, avoiding

the need for finite-differencing methods. By
BxECEF

is given in Vallado [126, p. 792].

An approximation of BxECEF
BxECI

is

�
���T 0

9T T

�
��� , (C.4)

where T � R3pGAST q and

9T � ω`

�
�������
� sinpGAST q cospGAST q 0

� cospGAST q � sinpGAST q 0

0 0 0

�
�������
. (C.5)

GAST is the Greenwich apparent sidereal time[203, p. 116]. BxECI
BxRSW

is

�
R̂ Ŝ Ŵ

�T
, (C.6)

177



where R̂, Ŝ, Ŵ are the radial, in-track, and cross-track unit vectors[126, p.163].

BxRSW
Bxeq

is given in Long et al. [28, Section 3.3.9].

178



Appendix D: Process noise

This Appendix describes the process noise covariance matrix used in this disserta-

tion.

Tapley, Schutz, and Born derive the process noise covariance matrix Q in

Cartesian coordinates for perturbing accelerations following a Gaussian distribu-

tion [204, Appendix F]:

Qptq � σ2
u

�
���

1
3
pt� t0q313�3

1
2
pt� t0q213�3

1
2
pt� t0q213�3 t� t0

�
��� . (D.1)

The parameter σ2
u is the variance of the distribution governing the perturbing

acceleration, and can be used as a tuning parameter. pt � t0q is the time between

measurement updates. This matrix is transformed into equinoctial element space

by use of the similarity transform.
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