
ABSTRACT

Title of dissertation: LEARNING OF DENSE OPTICAL FLOW,
MOTION AND DEPTH
FROM SPARSE EVENT CAMERAS

Chengxi Ye
Doctor of Philosophy, 2019

Dissertation directed by: Prof. Yiannis Aloimonos and Dr. Cornelia Fermüller
Department of Computer Science

With recent advances in the field of autonomous driving, autonomous agents

need to safely navigate around humans or other moving objects in unconstrained,

highly dynamic environments. In this thesis, we demonstrate the feasibility of re-

constructing dense depth, optical flow and motion information from a neuromorphic

imaging device, called Dynamic Vision Sensor (DVS). The DVS only records sparse

and asynchronous events when the changes of lighting occur at camera pixels. Our

work is the first monocular pipeline that generates dense depth and optical flow

from sparse event data only.

To tackle this problem of reconstructing dense information from sparse infor-

mation, we introduce the Evenly-Cascaded convolutional Network (ECN), a bio-

inspired multi-level, multi-resolution neural network architecture. The network fea-

tures an evenly-shaped design, and utilization of both high and low level features.

With just 150k parameters, our self-supervised pipeline is able to surpass

pipelines that are 100x larger. We evaluate our pipeline on the MVSEC self driving

dataset and present results for depth, optical flow and and egomotion estimation

in wild outdoor scenes. Due to the lightweight design, the inference part of the

network runs at 250 FPS on a single GPU, making the pipeline ready for realtime

robotics applications. Our experiments demonstrate significant improvements upon

previous works that used deep learning on event data, as well as the ability of our

pipeline to perform well during both day and night.

We also extend our pipeline to dynamic indoor scenes with independent mov-

ing objects. In addition to camera egomotion and a dense depth map, the network

utilizes a mixture model to segment and compute per-object 3D translational veloc-

ities for moving objects. For this indoor task we are able to train a shallow network

with just 40k parameters, which computes qualitative depth and egomotion.

Our analysis of the training shows modern neural networks are trained on

tangled signals. This tangling effect can be imagined as a blurring introduced both

by nature and by the training process. We propose to untangle the data with

network deconvolution. We notice significantly better convergence without using

any standard normalization techniques, which suggests us deconvolution is what we

need.

LEARNING OF DENSE OPTICAL FLOW, MOTION AND
DEPTH

FROM SPARSE EVENT CAMERAS

by

Chengxi Ye

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Yiannis Aloimonos, Chair/Advisor
Dr. Cornelia Fermüller, Co-Advisor
Professor Ramani Duraiswami
Professor Dinesh Manocha
Professor James A. Yorke
Dean’s Representative:
Professor Timothy K. Horiuchi

© Copyright by
Chengxi Ye

2019

Acknowledgments

I would like to thank my advisors, Professor Yiannis Aloimonos and Dr Cor-

nelia Fermüller for being so nice and supportive even in those unproductive times.

Without them I would not have obtained my degree.

I would like to thank Prof. James A. Yorke, who has used his experience to

reshape my way of doing research and help me finish my PhD.

I would like to thank Prof. Hector Corrada-Bravo for supporting me doing

base-calling/blind deconvolution research. This has relation with what this thesis

finishes up with.

I would also like to thank Prof. Mihai Pop for helping me to get into UMD,

and for supporting me in the earlier period of my PhD.

I owe many thanks to my family who have waited for me for so long.

I thank my labmates and my friends, who have added lots of fun to the PhD

grinding.

ii

Table of Contents

Acknowledgements ii

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 The Dynamic Vision Sensor . 1
1.2 Structure from Motion . 3
1.3 What is an Artificial Neural Network? 4
1.4 Why is it Hard to Train a Network? 4
1.5 A Missing Piece . 5
1.6 Inspirations from Human Learning 7
1.7 The Organization of the Theis . 8

2 Related Work 10
2.1 Network Architectures . 10
2.2 Event-based Depth Estimation . 11
2.3 Event-based Optical Flow . 12
2.4 Independent Motion Detection . 13
2.5 Learning in Structure from Motion 14

3 Evenly Cascaded Convolutional Networks 15
3.1 Methods . 20

3.1.1 Utilization of Multilevel Features 20
3.1.1.1 From a Network Architectural Point of View 20
3.1.1.2 From a Wavelet Point of View 22
3.1.1.3 From an Optimization Point of View 23

3.1.2 Fractional Scaling . 24
3.1.3 Convolution Block Design . 25

3.2 Experiments . 28
3.2.1 Datasets . 28
3.2.2 Results . 29

iii

3.2.3 Comparison of Convolution Blocks over CIFAR10 and CI-
FAR100 . 31

3.3 Conclusion . 35

4 Unsupervised Learning of Dense Optical Flow, Depth and Egomotion from
Sparse Event Data 37
4.1 Related Work . 39

4.1.1 Event-based Depth Estimation 39
4.1.2 Event-based Optical Flow . 40
4.1.3 Self-supervised Structure from Motion 41

4.2 Methods . 41
4.2.1 Ego-motion Model . 41
4.2.2 Input Data Representation . 42
4.2.3 The Pipeline . 43
4.2.4 Evenly Cascaded Network Architecture 44
4.2.5 Depth Predictions . 46
4.2.6 Feature Decorrelation . 48

4.3 Experimental Evaluation . 49
4.3.1 Implementation Details . 50
4.3.2 Dataset Preparation . 51
4.3.3 Ablation Studies . 52

4.3.3.1 Testing on the SfMlearner 52
4.3.3.2 Normalization Methods 52
4.3.3.3 Visualizing a Shallow and Tiny Network 53
4.3.3.4 Performance Versus Event Rate 53

4.3.4 Qualitative Results . 54
4.3.5 Optical Flow Evaluation . 54
4.3.6 Depth Evaluation . 56
4.3.7 Egomotion Estimation . 56
4.3.8 Discussion and Failure Cases 60

4.4 CONCLUSION . 61

5 EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event
Cameras 67
5.1 The Architecture . 68

5.1.1 Network Input . 68
5.1.2 Overview of the Architecture 70
5.1.3 Motion Model . 71
5.1.4 A Mixture Model for Ego-motion and Independently Moving

Objects . 72
5.1.5 Loss functions . 72

5.1.5.1 Event Warping Loss 73
5.1.5.2 Motion Mask Loss 74
5.1.5.3 Depth Loss . 74

5.1.6 Evenly Cascading Network Architecture 75

iv

5.1.7 Prediction of Depth and Component Weights 75
5.2 EV-IMO Dataset . 76

5.2.0.1 Methodology . 76
5.2.0.2 Dataset Generation 77

5.2.1 Sequences . 79
5.3 Experiments . 80

5.3.0.1 Qualitative Evaluation 82
5.3.0.2 Segmentation and Motion Estimation 83
5.3.0.3 Comparison With Previous Work 84

5.4 Conclusions . 86

6 Network Deconvolution 89
6.1 Introduction . 89
6.2 Related Work . 92

6.2.1 Normalization and Whitening 92
6.3 The Deconvolution Operation . 93

6.3.1 Definition . 93
6.3.2 Expected Isometry via Deconvolution 95
6.3.3 Accelerated Convergence . 96
6.3.4 How Network Deconvolution is Applied in a CNN 97
6.3.5 Efficient Calculation of the Inverse Square Root of the Covari-

ance Matrix . 99
6.3.6 Sparse Representations . 101

6.4 Experiments . 102
6.5 Acknowledgement . 107
6.6 Conclusion . 107
6.7 Appendix . 108

6.7.1 Acceleration via Subsampling 108
6.7.2 Regularizations . 109
6.7.3 Sparse Representations for Convolution Layers 109
6.7.4 Accelerated Convergence . 110

Bibliography 112

v

List of Tables

3.1 CIFAR accuracies for ECN-6 . 28
3.2 ECN-6 architecture . 28
3.3 Results on the ImageNet-32 datase 30
3.4 Error rate comparison with state-of-the-art efficient architectures . . . 31
3.5 Error rate comparison with state-of-the-art architectures 31
3.6 Comparison of convolution blocks on the CIFAR-10 dataset 33
3.7 Comparison of convolution blocks on the CIFAR-100 dataset 35

4.1 Evaluation of the optical flow pipeline 50
4.2 Evaluation of the depth estimation pipeline 57
4.3 Egomotion estimation results . 59

5.1 EV-IMO sequences . 81
5.2 Evaluation on segmentation and motion estimation 85
5.3 Comparison of EV − IMO with a classic method 85
5.4 Evaluation of the depth estimation 87

6.1 Results on CIFAR datasets . 104
6.2 Comparison of top-1 accuracy on ImageNet 108

vi

List of Figures

1.1 The DVS Camera . 2
1.2 The human learning process . 9

3.1 Evenly cascaded network design . 16
3.2 Visualizations of feature maps in ECN. 18
3.3 Multilevel feature representations within ECN. 21
3.4 Evaluation of various convolution blocks 27
3.5 Relationship between network parameter count, block category, and

classification accuracy. 34
3.6 Comparison between parameter count and classification accuracy over

CIFAR-10 for ECN with blocks 4 and 6. 35
3.7 Comparison between parameter count and classification accuracy over

CIFAR-100 for ECN with blocks 4 and 6 36

4.1 Optical flow and depth inference on sparse event data in night scene . 38
4.2 A three-channel DVS data representation 39
4.3 The unsupervised pipeline. 43
4.4 The encoder-decoder structure . 45
4.5 Qualitative results from our evaluation 47
4.6 Comparison of Abs Rel Errors using different normalization methods 62
4.7 Visualization of feature maps of the depth network 63
4.8 Visualization of the pose network . 63
4.9 Evaluation of average endpoint error 64
4.10 Estimation of trajectories . 65
4.11 A typical failure case and a dataset artifact 66

5.1 Depth and per-pixel pose inference on sparse event data, on our EV-
IMO dataset . 68

5.2 Our depth and motion estimation pipeline 69
5.3 The main interface of the automatic annotation tool 78
5.4 Types of background geometry featured in the EV-IMO dataset . . . 80
5.5 Comparison of the full network inference quality with the small version 83
5.6 Qualitative results from our evaluation 84

vii

6.1 Network deconvolution . 91
6.2 im2col . 98
6.3 visualization of deconvolution . 102
6.4 Results on MNIST datasets . 103
6.5 Results on CIFAR-10 . 105
6.6 Results on CIFAR-100 . 105
6.7 Results on ImageNet . 107
6.8 The effects of weight decay w/w.o deconvolution 110
6.9 Visualization of intermediate feature maps 111

viii

Chapter 1: Introduction

With recent advances in the field of autonomous driving, autonomous plat-

forms are no longer restricted to research laboratories and testing facilities - they

are designed to operate in highly dynamic environments and have to maneuver

amongst other moving objects or humans.

This renders the classic structure from motion (SfM) pipeline, often imple-

mented via a SLAM-like [1] algorithms, not only inefficient but also incapable of

solving the problem of motion estimation. A truly autonomous agent should be

able to instantly detect every independently moving object on the scene, estimate

the distance to it and predict its trajectory, while also having the knowledge of its

own egomotion.

Modern self-driving cars are often fitted with a sophisticated sensor rig, featur-

ing a number of LiDARs, cameras and radars, but even those undoubtedly expensive

setups are prone to misperform in difficult conditions - snow, fog, rain or at night.

1.1 The Dynamic Vision Sensor

Recently, there has been much progress in imaging sensor technology, offering

alternative solutions to scene perception. A neuromorphic imaging device, called

1

Figure 1.1: In contrast to conventional cameras which record image frames, DVS

cameras record a stream of events, measured by log intensity changes of each pixel.

(Source: http://www.umiacs.umd.edu/research/POETICON/DVSContours/)

Dynamic Vision Sensor (DVS) [2,3], inspired by the transient pathway of mammalian

vision, can offer exciting alternatives for visual motion perception.

DVS cameras does not record image frames, but asynchronous temporal changes

in the scene in form of a continuous stream of events, each of which is generated

when a given pixel detects a change in log light intensity (Fig. 1.1). This allows

the sensor to literally see the motion in the scene and makes it indispensable for

motion processing and segmentation. The unique properties of event-based sensors

- high dynamic range, high temporal resolution, low latency and high bandwidth

allow these devices to function in the most challenging lighting conditions (such as

almost complete darkness), while consuming an extremely small amount of power.

By its design, this sensor provides ideal properties for applications where high

quality motion estimation and tolerance towards challenging lighting conditions are

desirable. The DVS offers new opportunities for robust visual perception so much

2

needed in autonomous robotics, but challenges associated with the sensor output,

such as high noise, relatively low spatial resolution and sparsity, ask for different

visual processing approaches.

1.2 Structure from Motion

On the algorithmic side, the estimation of 3D motion and scene geometry has

been of great interest in Computer Vision and Robotics for quite a long time, but

most works considered a scene to be static. Earlier classical algorithms studied

the problem of Structure from Motion (SfM) [4] to develop “scene independent”

constraints (e.g. the epipolar constraint or depth positivity constraint) and estimate

3D motion from image to facilitate subsequent scene reconstruction. In recent years,

most works have adopted the SLAM philosophy [1], where depth, 3D motion and

image measurements are estimated together using iterative probabilistic approaches,

usually initialized with SfM estimates. Such reconstruction approaches are known

to be computationally heavy and often fail in the presence of outliers.

To move away from the restrictions imposed by the classical visual geome-

try approaches, Computer Vision and Robotics community started to lean towards

learning. Yet, while the problem of detecting moving objects has been studied both

in the model-based and learning-based formulation, estimating object motion in

addition to spatio-temporal scene reconstruction is still largely unexplored.

3

1.3 What is an Artificial Neural Network?

Following inspirations from neuroscience, researchers have constructed artifi-

cial neural networks as a composition of linear and non-linear mappings.

output = fn ◦Wn ◦ fn−1 ◦Wn−1...f1 ◦W1 ◦ input (1.1)

A loss function is then calculated based on the output.

As an example, here the input can be a 1D vector, Wi’s are linear transform

matrices. As a special case, the Wi’s can be convolution operations: note that a

convolution operation can be written in Toeplitz matrix form.

fi’s are non-linear functions such:

sigmoid(x) =
1

1 + e−x
, (1.2)

ReLU(x) = max(x, 0), (1.3)

tanh(x) =
ex − e−x

ex + e−x
(1.4)

.

The loss function can be the L2 loss or cross entropy loss calculated with the

output and some target values.

1.4 Why is it Hard to Train a Network?

At the time of this writing, neural networks are trained with gradient descent

algorithms. The linear transform coefficients or network weights are adjusted in the

negative gradient direction in order to minimize the Loss.

4

∂Loss

∂Wi

=
∂Loss

∂yn
◦ ∂yn
∂yn−1

◦ ... ◦ ∂yi+1

∂yi
◦ ∂yi+1

∂yi
◦ ∂yi
∂Wi

(1.5)

Here let yi be the output of layer i: yi = fi ◦Wi ◦ fi−1 ◦Wi−1...f1 ◦W1 ◦ input.

A basic analysis using linear algebra/operator theory tells us the above calcu-

lations leads to numerical difficulties. Let the operator norm/ largest singular value

of
∂yj

∂yj−1
be σj. If σj < 1 for all layers, then ∂Loss

∂Wi
→ 0, i→ 1. This is the well-known

vanishing gradient problem known in neural network community for decades. Be-

cause the gradient for shallow layers vanish exponentially, an local-optimal solution

can not be found in reasonable finite time.

1.5 A Missing Piece

In the last chapter of this thesis, we will introduce a novel and simple fix to

alleviate this issue. The motivations are briefly explained here.

We introduce a whitening transform that stretches the yi’s so that each dimen-

sion of the vector is independent and identically distributed (i.i.d) in the statistical

sense. Given a batch of vectors, we calculate the mean subtracted vectors, then

calculate the covariance matrix of the dimensions. Then we calculate an approx-

imated inverse square root of the covariance matrix and multiply with the mean

subtracted data to whiten the yi’s. Let this whitening/decorrelation transform be

Di, our network becomes:

output = fn ◦Wn ◦Dn−1 ◦ fn−1 ◦Wn−1 ◦Dn−2 ◦ ... ◦D1 ◦ f1 ◦W1 ◦D0 ◦ input (1.6)

5

We investigate the properties of the whitening transform. For simplicity, we

assume the activation function is ReLU . Note that this function, is multiplying the

input vector by a diagonal matrix with entries either 1 or 0, based on the sign of

the input. On a batch of data, the average effect of ReLU is an attenuating effect

and we assume the operator norm of it is smaller than 1. We denote the average

ReLU to be a new linear transform ReLU . ReLU(x) = ax where a < 1 is a scalar

number.

In each layer, the transform is:

yi = Di ◦ReLU ◦Wi ◦ xi (1.7)

, here xi is the input to the linear layer.

On a batch of data, the transform is approximated as a sequence of linear

transforms:

yi = Di ◦ a ◦Wi ◦ xi (1.8)

.

If we assume the output dimension is the same as the input dimension, and

if both xi and yi are i.i.d., then Di ◦ a ◦ Wi is having the effect of a rotation,

which keeps the statistical properties of the signal unchanged both in forward and

backward propagation. To emphasize on the back propagation: if a ◦ Wi has a

diminishing effect on the gradients, then Di has a raising effect to counteract with

it.

∂yi
∂xi

= Di ◦
∂fi

∂(Wi ◦ xi)
◦ ∂(Wi ◦ xi)

∂xi
= Di ◦ f ′i ◦Wi = Di ◦ (aWi) = Rotation (1.9)

6

It is important to note that the procedure does not change the learning prob-

lem, as the standard network training is solving for Wi◦Di−1. Instead, this procedure

removes the correlations between feature channels and improves the conditioning of

the optimization problem.

To further explain the favorable property of the whitening transform, assume

we are given a linear regression problem with L2/min squared loss:

y = Xw, (1.10)

loss =
1

2
‖y − ŷ‖2 =

1

2
‖Xw − ŷ‖2. (1.11)

For an explicit solution we have ∂loss
∂w

= X t(Xw − ŷ)=0.

w = (X tX)−1X tŷ (1.12)

. If the input is whitened, we have w = X tŷ. On the other hand, to conduct one

iteration of gradient descent: we have wnew = wold− step len× (X tXwold−X tŷ). If

X tX = I then step len = 1 is optimal and with one iteration we have wnew = X tŷ.

1.6 Inspirations from Human Learning

How do humans come to understand their world? Consider the learning of

mathematics - we learn basic mathematics before proceeding to advanced math-

ematics, the understanding of basic math serving as the foundation on which to

develop an understanding of advanced math(Fig. 1.2) . Once an advanced under-

standing of math is acquired, it in turn is used to better understand basic math,

7

reinforcing an understanding of mathematics as a whole. Similarly in perception

- higher levels of abstraction within our perceptual hierarchies are built upon the

lower levels of abstraction. Additionally, using higher level interpretations to rein-

force lower level interpretations can provide benefits to perception as a whole, in the

same way that using a more expansive understanding of mathematics to understand

elementary mathematics reinforces an understanding of mathematics as a whole.

In this thesis we will show how the intuition can be utilized to construct an

artificial neural network (NN). We show favorable results in using variants of the

network to address several computer vision tasks.

1.7 The Organization of the Theis

Following the human learning process, we develop the encoding part of ECN,

in chapter 3 we introduce a novel neural network architecture - the Evenly-Cascaded

convolutional Network (ECN) and show its favorable properties in image classifica-

tion tasks. In chapter 4, we extend the network to an encoder-decoder architecture

to address the problems of event data sparsity for depth, optical flow and egomo-

tion estimation in a self driving car setting. Despite having just 150k parameters,

our network is able to generalize well to different types of sequences. In chapter 5

we present a compositional neural network, which provides supervised up-to-scale

depth and pixel-wise motion segmentation of the scene, as well as unsupervised 6

dof egomotion estimation and a per-segment linear velocity estimation using only

monocular event data. This pipeline can be used in indoor scenarios for motion

8

Figure 1.2: The human learning process.

estimation and obstacle avoidance. Finally, in chapter 6 we conclude the thesis with

an improved way to train convolutional networks.

9

Chapter 2: Related Work

This chapter reviews related work of the learning tasks we addressed.

2.1 Network Architectures

Even though convolutional networks have led to many exciting breakthroughs

in visual and language learning tasks [5], the mathematical understanding of con-

volutional networks is severely underdeveloped. It is intuitively clear that convolu-

tional networks can be understood in part within the context of scale-space theory

or multiresolution analysis [6]. While an excellent attempt has been made [7] to

explain convolutional networks in wavelet terms, it remains unclear how the tech-

niques in wavelet theory can be explicitly used to simplify the construction and

training of convolutional networks.

Skip connections or identity maps in the networks [8–11] are a popular method

for improving network performance. One intuitive understanding of the function of

skip connections is that they pass lower level representations to deeper levels. In

LSTM [8] and ResNet [9] networks the representations are adapted during this pro-

cess. Whereas in DenseNet [10] shallow features are passed to the deeper levels with-

out modification. One recent work, termed Dual Path Networks(DPN) [11], connects

10

the two approaches using a high order recurrent neural network, and horizontally

concatenates ResNet [9] and DensNet [10], and shows improved performance.

Presently, the best performing networks are typically 50 to 100 layers deep [9,

10,12]. Translating an existing backbone architecture to a new application with dif-

ferent input and output sizes is a nontrivial task. The structuring of these standard

designs are constrained by integer resizing operations such as pooling and strided

convolution. Fractional pooling and strides have been explored previously, e.g. [13].

In our implementation of fractional pooling we employ bilinear interpolation, as is

done in [14]. Furthermore, existing architectures merge different levels of features

at the end of each block such that low- and high-level features become entangled

and in-differentiable. ECN safely removes these limitations.

As the networks become wider and deeper, methods such as pruning [15–17],

quantizing [18], and knowledge distillation [19] have been introduced to reduce the

size of these networks. ECN uses recursion [20, 21] to re-use parameters across

layers, allowing for greater compactness of network design. In the other direction,

significant efforts have been spent on discovering more efficient network layers or

overall architectures [10,22–26].

2.2 Event-based Depth Estimation

The majority of event-based depth estimation methods [27,28] use two or more

event cameras. As our proposed approach uses only one event camera, we focus our

discussion on monocular depth estimation methods. The first works on event-based

11

monocular depth estimation were presented in [29] and [30]. Rebecq et al. [29] used

a space-sweep voting mechanism and maximization strategy to estimate semi-dense

depth maps where the trajectory is known. Kim et al. [30] used probabilistic filters

to jointly estimate the motion of the event camera, a 3D map of the scene, and the

intensity image. More recently, Gallego et al. [31] proposed a unified framework for

joint estimation of depth, motion and optical flow. So far there has been no deep

learning framework to predict depths from a monocular event camera.

2.3 Event-based Optical Flow

Previous approaches to image motion estimation used local information in

event-space. The different methods adapt in smart ways one of the three principles

known from frame-based vision, namely correlation [32, 33], gradient [34] and local

frequency estimation [35] The most popular approaches are gradient based - namely,

to fit local planes to event clouds [36] As discussed in [37], local event information

is inherently ambiguous. To resolve the ambiguity Barranco et al. [37] proposed to

collect events over a longer time intervals and compute the motion from the trace

of events at contours.

Recently, neural network approaches have shown promising results in various

estimation problems without explicit feature engineering. Orchard and Etienne-

Cummings [38] used a spiking neural network to estimate flow. Most recently, Zhu

et al. [39] released the MVSEC dataset [40] and proposed self-supervised learning

algorithm to estimate optical flow. Unlike [39], which uses grayscale information as

12

a supervision signal, our proposed framework uses only events and thus can work in

challenging lighting conditions.

2.4 Independent Motion Detection

Many motion segmentation methods used in video applications are based on

2D measurements only [41, 42]. 3D approaches, such as the one here, model the

camera’s rigid motion. Thompson and Pong [43] first suggested detecting moving

objects by checking contradictions to the epipolar constraint. Vidal et al. [44] in-

troduced the concept of subspace constraints for segmenting multiple objects. A

good motion segmentation requires both constraints imposed by the camera motion

and some form of scene constraints for clustering into regions. The latter can be

achieved using approximate models of the rigid flow or the scene in view, for ex-

ample by modeling the scene as planar, fitting multiple planes using the plane plus

parallax constraint [45], or selecting models depending on the scene complexity [46].

In addition constraints on the occlusion regions [47] and discontinuities [48] have

been used. Recently, machine learning techniques have been used for motion seg-

mentation [49, 50]. As discussed next, the well-known SfM learner acquires both,

the depth map and the rigid camera motion, and thus the flow due to rigid motion

is fully constrained.

13

2.5 Learning in Structure from Motion

In pioneering work, Saxena et al. [51] demonstrated that shape can be learned

from single images, inspiring many other supervised depth learning approaches

(e.g. [52]). The concept was recently adopted in the SfM pipeline, and used in

stereo [53] and video [54]. Most recently, Zhou et al. [55] took it a step further,

and showed how to estimate 3D motion and depth through the supervision of op-

tical flow. Wang et al. [56] instead of predicting depth in a separate network

component propose to incorporate a Direct Visual Odometry (DVO) pose predic-

tor. Mahjourian et al. [57] in addition to image alignment enforce alignment of

the geometric scene structure in the loss function. Yang et al. [58] added a 3D

smoothness prior to the pipeline, which enables joint estimation of edges and 3D

scene. Yin et al. [59] include a non-rigid motion localization component to also de-

tect moving objects. Our architecture is most closely related to SfM-Net [60], which

learns using supervised and non-supervised components depth and 3D camera and

object motion. However, due to the lack of a dataset, the authors did not evaluate

the object motion estimation. Our work detects, segments, and estimates the 3D

motion of independently moving objects, and provides the means for evaluation.

14

Chapter 3: Evenly Cascaded Convolutional Networks

Disregarding the interplay between levels of abstraction in perception, the

recent trend in deep neural networks is to simply make networks deeper. Since

networks have become so deep, researchers have developed a now standard design

that divides network layers into blocks of layers [5, 9, 10, 61]. Each block consists

of layers of transforms that produce feature maps of the same shape. Cross-block

transforms recombine the previous features and incorporate strided convolutions or

pooling operations to reshape the feature maps. This strategy is an extension of the

traditional design of the multilayer perceptron or fully-connected network [62]. The

introduction of blocks has allowed a better organization of the evolving layers of

abstraction within those networks. Overall, more high level features are abstracted

through these transforms (Fig. 3.1, 3.3). However, the unstructured recombination

of features in existing networks has made the investigation of deep neural networks

nontrivial [7, 63].

Aside from deviating from basic intuitions about learning and perception, the

now standard design has other apparent shortcomings. Since strided convolution

or pooling are used to resize the feature maps by integer scales, researchers are

compelled to create ad hoc network shapes, ones which are subject to awkward

15

Figure 3.1: Our evenly cascaded design with 6 cascading layers using a scaling rate

of 0.75. The growth rate (the number of high level feature channels generated in

each subsequent layer) is set to 8. From the second layer on, the low level feature

channels are framed in blue boxes, the newly generated high level feature channels

are framed in red boxes.

constraints of integer pooling and strides. Some networks assign more layers in later

stages, where the feature maps are very small [9]. Some other networks are wider but

have fewer layers [64]. The specification of feature map dimensions or distribution

of computational resources is highly engineered and uneven in these designs. It is

difficult to determine which designs outperform others, given that the overall shape

is different. To make things worse, when the task changes, the network shape needs

to be handcrafted again.

Arguably the biggest shortcoming of existing designs is that they afford little

intuition on the training process, and consequently make deep networks notoriously

hard to train. Researchers have expended significant effort in developing better

methods to train these networks.

In this chapter we introduce an architecture more closely in line with intu-

16

itions of biological learning and perception: Evenly Cascaded convolutional Network

(ECN). ECN is 1) easier than existing architectures to adapt to new tasks, 2) pro-

duces internal representations which are more humanly interpretable, 3) performs

robustly as parameter count is restricted, and 4) produces competitive performance

when compared to other state-of-the-art methods.

ECN is structured around the insights that 1) maintaining low-level features

through to the upper layers of a network is beneficial, 2) allowing multiple levels

of features to interact with each other within the network is beneficial, 3) abrupt

changes in feature map dimension could be less ideal than gradual changes, and 4)

the manner in which features are conventionally combined within network blocks

hampers the preservation of low-level features. Our architecture instantiates the

first two of these insights through a “cascade” architecture - a two stream archi-

tecture, one stream for low-level features, one stream for successively higher level

features, where these two streams interact at every layer. This differs from the

existing method of using skip connections to introduce low-level features into up-

per level network layers in that low level features are maintained, and modulated

appropriately, rather than simply jumping layers [10]. This approach differs from

a conventional two-stream approach [65] in that both streams interact with each

other. For the third insight, in both streams of our cascade architecture bilinear in-

terpolation is employed for fractional pooling, allowing a gradual rather than abrupt

decrease of feature map dimensions. Different from existing architectures, in ECN

a scaling factor is introduced which simplifies the design of the shape of the net-

work removing the need for handcrafting network shape. For the fourth insight we

17

(a) (b)

(c) (d) (e) (f)

Figure 3.2: Visualizations of feature maps in ECN. The underlying network has 8

feature maps in the first hidden layer. The feature channel growth rate is set to 8.

In this 6-hidden-layer network there are 8, 16, 24, 32, 40, 48 feature maps in layers

1-6 respectively. In each deeper layer the newly generated higher level feature maps

are appended as a new row. (a) Level 1 feature maps in the first hidden layer. (b)

Level 1 features are adapted and tiled in the first row, level 2 features are newly

generated using level 1 features, and are appended in the second row. (c) Both level

1 and level 2 features are adapted and tiled in the first two rows. Level 3 features

are newly generated from level 1 and level 2 features, and are appended as the third

row. (d) Level 4 features. (e) Level 5 features. (f) Level 6 features are used for

recognition. The feature maps have been rescaled for better visualization.

18

remove the conventional combination of features across blocks in neural networks

in order to preserve the low-level signal in ECN’s two-stream cascade architecture.

We demonstrate that preserving multilevel features enhances training by providing

easy-to-train shortcuts.

Our evaluation of ECN resulted in several intriguing results: 1) With ECN’s

principled structuring, shallow networks (Fig. 3.1) seem to perform competitively

well when compared to extremely deep networks. 2) Complex high level tasks such as

image classification can be approached through evenly downsampling and adapting

a set of highly structured features (Fig. 3.2). 3) Low level features may be of critical

importance in high level tasks such as image classification: not only do these features

remain similar in the deeper adaptation process, but they may have provided major

convenience for the training of high level features.

Finally, we evaluate ECN using multiple convolution block designs and find

that recurrent and recursive designs lead to improved efficiency and accuracy. With-

out additional treatment, a standard convolution block design combined with recur-

rent connections leads to state-of-the-art accuracy in benchmark image classification

tasks. Another block design using a recursive filter gives rise to state-of-the-art ef-

ficiency. Our 6-cascading-layer design with under 500k parameters achieves 95.24%

and 78.99% accuracy on CIFAR-10 and CIFAR-100 datasets, respectively, outper-

forming the current state-of-the-art on small parameter networks, and our 3 million

parameter version is competitive to the state-of-the-art.

19

3.1 Methods

ECN is based on a simple cascading layer design. Intuitively, a cascading layer

incorporates multilevel features and gradually resizes those features before providing

them to the next layer. ECN consists of iteratively stacked cascading layers. This

iterative construction process ends when a stopping condition is met - e.g., when

feature map dimensions fall below a predefined size.

3.1.1 Utilization of Multilevel Features

We now follow the intuition that allowing an interplay between level of ab-

straction within perception can give rise to greater perceptual synergy in introducing

ECN’s usage of multilevel features. To illustrate ECN’s relation to work in the lit-

erature we also provide three additional viewpoints of our utilization of multilevel

features: one from the network architecture, one from wavelet analysis, and one

from optimization of neural networks.

3.1.1.1 From a Network Architectural Point of View

Our cascading design can be viewed as evolving from the designs of several

well-performing networks [9–11]. Our first design can be viewed as a ResNet-inspired

DenseNet, or a DenseNet-inspired ResNet. We make an extension to DenseNet [10]

when passing low level features to deeper layers by allowing them to be modulated

by higher level features. The modulation of low level features can be viewed as a

feedback mechanism, where high level knowledge is providing “advanced viewpoints”

20

Figure 3.3: Multilevel feature representations within ECN. For the i-th layer (i-th

row in the figure), fractional scaling is used to downsample the features from layer

i−1 (row i−1 in the figure). A convolution block is applied over these downsampled

features to generate the modulation signal, and the level i features (red block). The

modulation signal is then added to the features downsampled from the previous

layer. The superscripts in each block represent the number of modulations the

features have undergone.

21

to improve the low level knowledge, effected through a link from the higher level

stream to the lower level stream of the network. The modulation signal is generated

using a convolution block, and is added to the original features as in residual learn-

ing [9]. The generation of high level features is also achieved using the convolution

block - however, the results are appended to the existing channels (Figs. 3.1, 3.3).

Similar to our design, but more costly, Dual Path Network [11] concatenates ResNet

and DenseNet layers. By not passing low-level features through a 1×1 convolution,

such as is done in DPN, ECN better preserves low-level features, making them more

directly available at higher layers.

As a consequence of this ECN is able to pass features throughout the whole

network, rather than only within each block. With this design we explicitly enforce

that the shallowest level features be preserved throughout the whole network, with

adaptations made only if they improve the final task (Figs. 3.1, 3.2).

3.1.1.2 From a Wavelet Point of View

It is noteworthy that the cascading layer is a more general form of the cascade

algorithm used in wavelet packet decomposition [6,65], where previous level signals

are decomposed into a low frequency branch and a high frequency branch, usually

followed by downsampling by a factor of 2. In wavelet packet decomposition, the

original signal is decomposed into a binary tree. The difference between this and

ECN is that in ECN the two siblings are merged before the next level of decompo-

sition, deviating from a tree structure. The extensions we made in our cascading

22

design derive from the adaptations and downsampling of features which we intro-

duce later. Due to the cascading design, the evolution of feature maps within ECN

closely resembles the evolution of modulus maxima in scale-space theory [6]. This

relation suggests a path for further mathematical investigation of neural networks.

3.1.1.3 From an Optimization Point of View

ECN’s construction facilitates training by providing easily trainable shortcuts

to the optimization: we speculate that as a consequence of the two stream archi-

tecture, ECN allows the decomposition of f , the mapping from network input to

output, into a series of progressively hierarchically deeper, and therefore harder to

train, functions: f = f1 + f2 + ...+ fN . See figure 3.3 for a visualization of function

decomposition within and across layers. In figure 3.3 layer N contains features of

levels 1 through N - this provides a direct link from the training (gradient) signal

not only to higher level features, as is the case in other architectures, but to mid-

and low-level features as well. This relaxes the interdependence in training between

fi (low fi can be trained with less dependence on high fi), and has the potential to

facilitate training by allowing a training of f component-wise. The result of this is

the capability to train a complex function, f , by training the simpler functions of

which it is composed, fi.

Decompositions analogous to this kind have been proven to be helpful in mul-

tiscale signal analysis. Complex operations are simplified by conducting them at

multiple scales, either (1) from coarse-to-fine or (2) in parallel. Here, we take the

23

second approach to train different levels in parallel: the easier to train, or coarse,

components can serve as a backbone model for the harder components, where the

harder-to-train layers have only to compensate for the residuals of the learning

problem. We conjecture that ECN’s construction facilitates the progressive train-

ing of neural networks. Note that ECN’s construction is a revival of the layer-wise

pretraining technique [66] which triggered the era of deep learning. This classic

approach followed the correct intuition of progressively developing high level repre-

sentations. But the layer-wise training, which belongs to the first approach, lacks

proper supervision signal.

3.1.2 Fractional Scaling

To facilitate the passing of low level features throughout the whole network,

and to evenly resize the feature maps in a network, we propose to use fractional scal-

ing, performed using bilinear interpolation, replacing the classic integer pooling and

striding operations. Bilinear interpolation was first introduced in Spatial Trans-

former Networks [14] to continuously deform feature maps for recognition tasks.

Here we use bilinear interpolation to replace all the size change operations in the

network.

Using bilinear interpolation, the outputs of the previous layer are fractionally

scaled to the desired shape, and then serve as inputs to the next layer. Since

bilinear interpolation is a locally smooth operation, subgradients can be calculated

for backpropagation. In a network with a decreasing feature map dimension, having

24

a constant scaling factor close to 1 leads to a deep network. Similarly, having a

constant scaling factor close to 0 leads to a shallow network.

We adopt a simple uniform sampling when scaling the feature maps for obtain-

ing the sample grid for bilinear interpolation. Non-uniform sampling is a natural

extension [67] and we leave it for future work. Here, the output feature map di-

mension can be either calculated from the scaling factor or manually specified. The

uniformly spaced sampling grid is then calculated to sample from the previous fea-

ture map.

3.1.3 Convolution Block Design

Many researchers have proposed different convolution block designs for use

within layers of convolutional networks. However, in most cases different block

designs are associated with different network architectures. As a consequence, it

is difficult to draw conclusions about the relative merits of different block designs.

However, with ECN’s evenly cascaded design, it is straightforward to incorporate

different block designs. In this chapter we propose and evaluate multiple block

designs. More advanced block designs than are presented here can be evaluated in

subsequent works and potentially result in improved performance. In this chapter

we include six basic blocks:

Block 1: Single convolution (Fig. 3.4(a)). The convolutional layer has one

single convolution operation, combined with standard techniques such as batch nor-

malization [68] and the ReLU activation function [5]. We order these operations as

25

BN → ReLU → Conv.

Block 2: Double convolution (Fig. 3.4(b)). Two single convolution layers are

chained together, the number of intermediate output channels is set to be the larger

of the input and output channels.

Block 3: Recurrent convolution (Fig. 3.4(c)). We iteratively reuse the weights

in Block 1 through recurrent connections. We made alterations to the previously

reported approach [20]. Firstly, the number of input channels do not usually match

the number of output channels. Here we propose a simple solution: when the output

channels (OUT) are more than the input channels (IN), we slice the matching

channels from the output (e.g. the first IN channels) to reuse as input. Similar

to an LSTM [8] we add the outputs of the later iterations to the initial outputs.

It is important to point out that our implementations of this recurrent design lead

to worse results in ECN. The output signals usually have very different statistical

properties from the input signals, and this inconsistency interfered with training.

Our solution to this is that we insert an individual batch normalization operation

for each iteration, leaving the convolution kernel weights shared in all iterations.

This design significantly improves performance with very little increase in number

of parameters (Tables 3.6, 3.7, Fig. 3.5).

Block 4: Recurrent double convolution (Fig. 3.4(d)). Similar to Block 3 we

iteratively reuse Block 2.

Block 5: Recursive convolution (Fig. 3.4(e)). To make the convolutions more

efficient we adopt separable convolution operations [23] to replace standard convo-

lution. Cross-channel 1 × 1 convolution is applied in the first stage to change the

26

(a) (b) (c) (d) (e) (f)

Figure 3.4: Evaluation of various convolution blocks: (a) Single convolution, (b)

Double convolution, (c) Recurrent convolution, (d) Recurrent double convolution,

(e) Recursive convolution. Conv C stands for cross-channel 1 × 1 convolution,

Conv S stands for channel-wise spatial convolution. (f) Recursive quadruple con-

volution.

number of input channels to match the number of output channels, followed by the

channel-wise convolution in the second stage. Compared to standard convolution

which involves more parameters, separable convolutions are usually more efficient

but are weaker than directly applying standard convolutions. One fix for this weak-

ness is to iteratively apply the filtering as in Blocks 3 and 4. Traditionally this

technique is called recursive filtering. We adopt this name and include this class of

filtering in our comparison.

Block 6: Recursive quadruple convolution (Fig. 3.4(f)). Each recurrent double

convolution (Block 4) is replaced by four separable convolutions.

27

Table 3.1: CIFAR accuracies for ECN-6

Conv Block
Initial

Channels

Scaling CIFAR-10 Parameters CIFAR-100 Parameters

type 4 16 3/4 93.49% 214330 68.15% 220180

type 4 32 3/4 95.47% 849130 76.05% 860740

type 4 64 3/4 96.20% 3380170 79.80% 3403300

type 4 128 3/4 96.68% 13488010 81.75% 13534180

type 6 64 3/4 95.24% 421770 78.99% 444900

Table 3.2: ECN-6 architecture

ECN-6

3x3 ConvCascadedConvBlock
FractionalScaling

× 6

global average pooling

Softmax

3.2 Experiments

3.2.1 Datasets

We evaluate ECN over three datasets: CIFAR-10, CIFAR-100 [69], and ImageNet-

32 [70]. These datasets consist of 32x32 pixel images. CIFAR-10 has 10 classes,

CIFAR-100 has 100 classes, and ImageNet-32 has 1000 classes. We employ stan-

dard methods of data augmentation, including horizontal image flips, and random

28

32x32 crops of zero padded images, with 4 pixel padding. CIFAR-10 and CIFAR-

100 each contains 50,000 training samples, and 10,000 testing samples. ImageNet-32

contains images of ImageNet [71], downsampled to 32x32 pixels; it contains 1.2 mil-

lion training samples, and 50 thousand validation samples.

3.2.2 Results

The ECN network we use has a shape where feature map dimensions consis-

tently decrease in size; it is constructed by iteratively stacking cascading layers until

the feature map size is below a preset threshold (4 pixels). In our experiments we

fix the number of iterations in Blocks 3, 4, 5, and 6 to 3.

In table 3.1 we employed a scaling factor of 3
4
, resulting in an evenly cascaded

structure with 6 cascading layers (ECN-6). We report results for differently scaled

structures using block 4, and one more result using a more efficient design using

block 6. At the beginning of the network, a convolution is used to transform the

channel count of the input to init channels, which takes the value 16, 32, 64, or

128. In each consecutive layer, we generate channels of high level features with a

growth rate of init channels× 2× (1− scaling factor), corresponding to 8, 16, 32,

64 respectively in the four networks. The overall network architecture can be found

in table 3.2. Here a cascaded convolution block [6] represents using one convolution

block and grouping the results into a low level branch and a high level branch.

Global average pooling is used to convert the final feature map into a vector for

classification. To avoid overfitting we also insert dropout after ReLU activations for

29

Table 3.3: Results on the ImageNet-32 dataset, for WideResNet [64], and ECN

(channel count)

ImageNet32 Params Top-1 error Top-5 error

WRN-28-1 [64] 0.44M 67.97% 42.49%

WRN-28-2 [64] 1.6M 56.92% 30.92%

WRN-28-5 [64] 9.5M 45.36% 21.36%

WRN-28-10 [64] 37.1M 40.96% 18.87%

ECN-6, block 6 (32) 0.24M 63.91% 38.50%

ECN-3, block 6 (64) 0.48M 59.05% 33.68%

ECN-6, block 6 (64) 0.68M 55.51% 30.26%

ECN-6, block 6 (128) 2.1M 46.29% 21.92%

ECN-3, block 4 (128) 7.8M 45.10% 21.06%

ECN-6, block 4 (128) 14.0M 41.87% 18.61%

the 3 largest networks in table 3.1. The dropout rates range from 0.03-0.25. We

use stochastic gradient descent to train the network for 2000 epochs with a batch

size of 512, for CIFAR10 and CIFAR100, and for 50 epochs and a batch size of 512

for ImageNet-32. The training is scheduled with an initial learning rate of 0.1 and

followed by cosine annealing learning rates. The results can be found in table 3.1.

Our studies on ImageNet-32 demonstrate ECN’s potential to generalize to

larger scale datasets. We evaluate ECN-3 and ECN-6, corresponding to scaling

rates of 1
2

and 3
4
, over ImageNet-32. We use initial channel counts of 32, 64, and 128,

and report results in table 3.2.2, with channel counts given in parentheses. ECN-

30

Table 3.4: Error rate comparison with

state-of-the-art efficient architectures
Model Params CIFAR-10 CIFAR-100

VGG-16 pruned [16] 5.4M 6.60 25.28

VGG-19 pruned [17] 2.3M 6.20 -

VGG-19 pruned [17] 5M - 26.52

Resnet-56 pruned [16] .73M 6.94 -

Resnet-110 pruned [16] 1.68M 6.45 -

Resnet 164-B pruned [17] 1.21M 5.27 23.91

DenseNet-40-pruned [17] .66M 5.19 25.28

CondenseNet-94 [25] .33M 5.00 24.08

CondenseNet-86 [25] .52M 5.00 23.64

ECN, Block 6 .42M 4.76 21.01

Table 3.5: Error rate comparison with

state-of-the-art architectures
Model Params CIFAR-10 CIFAR-100

ResNet-1001 [72] 16.1M 4.62 22.71

Stochastic-Depth-1202 [73] 19.4M 4.91 -

Wide-ResNet-28 [64] 36.5M 4 19.25

ResNeXt-29 [74] 68.1M 3.58 19.25

DenseNet-BC-190 [10] 25.6M 3.46 17.18

NASNet-A* [25] 3.3M 3.41 -

CondenseNet*light-160 [25] 3.1M 3.46 17.55

CondenseNet-182 [25] 4.2M 3.76 18.47

ECN, Block4 3.3M 3.8 20.2

ECN, Block4 13.3M 3.32 18.25

6 is more efficient than the strong baseline results reported in WideResNet [64].

An ECN-6 network using only 2 million parameters shows comparable results to a

WideResNet architecture using 9.5 million parameters. ECN with block 4 produces

competitive results using smaller number of parameters than WideResNet. ECN-3,

which has 3 cascading layers and 7 million parameters outperforms the 9.5 million

parameter WRN-28-5 result. A larger ECN-6 network using block 4 with 14 million

parameters achieves accuracy that is comparable to WRN-28-10, which contains

37.1 million parameters.

3.2.3 Comparison of Convolution Blocks over CIFAR10 and CIFAR100

We have compared the six block designs over CIFAR10 and CIFAR100 using

various sized networks. The networks are trained for 500 epochs. We tested scal-

ing factors 1
2
, 3
4
, and 7

8
, and the corresponding networks have 3, 6, and 12 cascading

31

layers. The growth rates are calculated using the same strategy as explained above.

For these experiments we use 3-stage learning rate scheduling, decreasing the learn-

ing rate at 40% and 80% total epoch count by a factor of 10. We set batch size

to 512 for CIFAR-10. For CIFAR-100 a batch size of 128 usually leads to better

performance, and we report the better of size 128 and size 512 batches. The results

over CIFAR-10 and CIFAR-100 can be found in tables 3.6 and 3.7, respectively.

By comparing Blocks 1 and Blocks 3 in tables 3.6 and 3.7, and Fig. 3.5, we

found that reusing the convolution weights via recurrent connections significantly

improves performance, while maintaining a small network size. When the convolu-

tion block becomes powerful, and especially when the model gets large, the improve-

ment due to recurrent connections becomes smaller (Blocks 2 vs Blocks 4). Still, we

find a surprise here that through recurrent connections even the single convolution

can perform competitively with the widely used double convolution, using the same

number of parameters (Fig. 3.5). The optimal balance between depth and width

varies from block to block. Our most efficient convolution block is block 6, which

uses recursive quadruple convolutions. We reach state-of-the-art efficiency and the

best results are reported in the last row of table 3.1. It is noteworthy that although

using separable convolution [23] reduces the number of parameters, the gain in effi-

ciency also comes with a decrease in accuracy. The effective reduction in parameters

enabled by using separable convolutions in ECN blocks 5 and 6 is around 2 fold to

4 fold.

When compared to other state-of-the-art efficient architecture designs, listed in

table 3.4, ECN using block 6 achieves the lowest error rate without using any pruning

32

Table 3.6: Comparison of convolution blocks on the CIFAR-10 dataset

CIFAR-10 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Ch Sc Acc Params Acc Params Acc Params Acc Params Acc Params Acc Params

16 1/2 83.35% 47482 89.71% 114586 88.59% 47866 91.84% 115546 84.56% 9066 88.59% 19514

16 3/4 88.58% 97258 92.04% 212410 90.96% 98122 92.57% 214330 87.90% 17090 89.92% 35370

16 7/8 90.12% 195082 93.26% 407194 91.51% 196906 93.12% 411034 89.35% 32946 91.02% 66986

32 1/2 87.88% 187114 92.40% 454954 91.66% 187882 93.86% 456874 89.78% 28362 91.47% 64106

32 3/4 91.13% 385738 94.09% 845290 93.15% 387466 94.59% 849130 91.04% 55418 93.36% 117450

32 7/8 92.70% 776074 94.36% 1622506 93.93% 779722 94.67% 1630186 92.64% 108762 93.87% 223754

64 1/2 90.41% 742858 94.41% 1813066 94.39% 744394 95.29% 1816906 92.25% 97674 93.59% 228554

64 3/4 93.53% 1536394 95.43% 3372490 95.24% 1539850 95.66% 3380170 93.96% 195818 94.87% 421770

64 7/8 94.65% 3095818 95.75% 6477514 95.63% 3103114 95.68% 6492874 94.54% 389034 94.82% 806666

methods. This is significant, as a simple and principled architecture design is proving

to be better than sophisticated methods such as pruning described in [17], [16] and

even better than [25] with smaller parameter count (Figs. 3.6, 3.7). On the other

hand, ECN block 4 does relatively well compared to other architectures listed in

table 3.5 that are using more advanced designs than ours.

We have shown that there are avenues for improving the performance of con-

volutional networks by using principled designs like ECN. Even the simplest designs

can reach state-of-the-art performance. Due to limitations in space and computa-

tional resources, only the 6 basic block designs are evaluated. More advanced block

designs can modularly replace our basic block designs and potentially produce even

better numbers.

33

(a)

(b)

Figure 3.5: Relationship between network parameter count, block category, and

classification accuracy on (a) CIFAR-10 and (b) CIFAR-100 datasets. The results

are labeled according to the rows in which they appear in tables 3.6 and 3.7.

34

Table 3.7: Comparison of convolution blocks on the CIFAR-100 dataset

CIFAR-100 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Ch Sc Acc Params Acc Params Acc Params Acc Params Acc Params Acc Params

16 1/2 53.93% 53332 64.93% 120436 59.64% 53716 66.45% 121396 54.88% 14916 61.95% 25364

16 3/4 61.50% 103108 68.45% 218260 63.62% 103972 67.95% 220180 59.96% 22940 64.86% 41220

16 7/8 65.40% 200932 71.23% 413044 66.43% 202756 71.26% 416884 63.21% 38796 66.71% 72836

32 1/2 62.17% 198724 71.12% 466564 68.19% 199492 72.72% 468484 64.85% 39972 69.44% 75716

32 3/4 68.98% 397348 75.02% 856900 71.66% 399076 75.62% 860740 67.61% 67028 71.34% 129060

32 7/8 71.72% 787684 76.04% 1634116 73.16% 791332 76.42% 1641796 70.36% 120372 73.22% 235364

64 1/2 67.02% 765988 75.47% 1836196 74.00% 767524 77.13% 1840036 70.23% 120804 74.25% 251684

64 3/4 73.79% 1559524 78.64% 3395620 76.67% 1562980 79.03% 3403300 73.70% 218948 76.80% 444900

64 7/8 74.87% 3118948 79.57% 6500644 77.76% 3126244 80.07% 6516004 75.38% 412164 76.93% 829796

Figure 3.6: Comparison between parameter count and classification accuracy over

CIFAR-10 for ECN with blocks 4 and 6. Results are based on architectures listed in

table 3.4. Additionally, our best result using ECN-6 with block 6, attained through

longer training, is plotted as “ECN-6, block 6”.

3.3 Conclusion

Taking inspiration from cascading methods in wavelet packet decomposition,

we have developed Evenly Cascaded convolutional Networks (ECN) for image tasks.

35

Figure 3.7: Comparison between parameter count and classification accuracy over

CIFAR-100 for ECN with blocks 4 and 6. Results are based on architectures listed in

table 3.4. Additionally, our best result using ECN-6 with block 6, attained through

longer training, is plotted as “ECN-6, block 6”.

ECN differs from other networks in the use two interacting streams - a high-level

feature stream and a low-level feature stream. ECN’s two streams allow for the

promulgation of low-level features throughout the entire network, as well as the

modulation of those low-level features using advanced perspectives from high-level

features. The explicit use of multilevel features not only leads to highly capable

networks but provides shortcuts for the training process. Additionally, ECN is

structured such that feature map dimensions decrease in a consistent manner, re-

moving burdens of ad hoc architecture design, and potentially improving feature

preservation and utility. We have evaluated ECN over CIFAR-10 and CIFAR-100,

obtaining state-of-the-art performance, for both datasets, for small network settings;

and over ImageNet-32 ECN obtains competitive results.

36

Chapter 4: Unsupervised Learning of Dense Optical Flow, Depth

and Egomotion from Sparse Event Data

In this work we introduce a novel lightweight encoding-decoding neural net-

work architecture - the Evenly-Cascaded convolutional Network (ECN) to address

the problems of event data sparsity for depth, optical flow and egomotion estimation

in a self driving car setting. Despite having just 150k parameters, our network is

able to generalize well to different types of sequences. The simple nature of our

pipeline allows it to run at more than 250 inferences per second on a single NVIDIA

1080 Ti GPU. We perform ablation studies using the SfMlearner architecture [55]

as a baseline and evaluate different normalization techniques (including our novel

feature decorrelation) to show that our model is well suited for event data.

We demonstrate superior generalization to low-light scenes. Fig. 4.1 shows an

example featuring night driving - the network trained on a day light scene was able

to predict both depth and flow even with a low event rate and abundance of noise.

This is facilitated by our event-image representation: instead of the latest event

timestamps, we use the average timestamp of the events generated at a given pixel.

The averaging helps to reduce the noise without losing the timestamp information.

Moreover, we use multiple slices as input to our model to better preserve the 3D

37

Figure 4.1: Optical flow and depth inference on sparse event data in night scene:

event camera output (left), ground truth (middle column), network output (right)

(top row - flow, bottom row - depth). The event data is overlaid on the ground

truth and inference images in blue. Note, how our network is able to ‘fill in’ the

sparse regions and reconstruct the car on the right.

structure of the event cloud and more robustly estimate egomotion. The main

contributions of our work can be summarized as:

• The first unsupervised learning-based approach to structure from motion using

monocular DVS input. Our pipeline trains on data in day but transfers well

to night.

• Demonstrating that dense, meaningful scene and motion information can be

recovered from sparse event data.

• A new lightweight high-performance encoder-decoder network that extends a

recent cascaded design [75].

• A new alternative to normalization techniques, called feature decorrelation,

38

Figure 4.2: A three-channel DVS data representation. The first channel represents the

time image described in [76]. The second and third channels represent the per-pixel positive

and negative event counts. Best viewed in color.

which significantly improves training time and inference quality.

• Quantitative evaluation on the MVSEC dataset [40] of dense and sparse depth,

optical flow and egomotion.

• A pre-processesed MVSEC [40] dataset facilitating further research on event-

based SfM.

4.1 Related Work

4.1.1 Event-based Depth Estimation

The majority of event-based depth estimation methods [27,28] use two or more

event cameras. As our proposed approach uses only one event camera, we focus our

discussion on monocular depth estimation methods. The first works on event-based

monocular depth estimation were presented in [29] and [30]. Rebecq et al. [29] used

39

a space-sweep voting mechanism and maximization strategy to estimate semi-dense

depth maps where the trajectory is known. Kim et al. [30] used probabilistic filters

to jointly estimate the motion of the event camera, a 3D map of the scene, and the

intensity image. More recently, Gallego et al. [31] proposed a unified framework for

joint estimation of depth, motion and optical flow. So far there has been no deep

learning framework to predict depths from a monocular event camera.

4.1.2 Event-based Optical Flow

The most popular approaches to optical flow computation on event data are

gradient based - namely, to fit local planes to event clouds [36]. As discussed in [37],

local event information is inherently ambiguous. To resolve the ambiguity Barranco

et al. [37] proposed to collect events over a longer time intervals and compute the

motion from the trace of events at contours.

Recently, neural network approaches have shown promising results in various

estimation problems without explicit feature engineering. Orchard and Etienne-

Cummings [38] used a spiking neural network to estimate flow. Most recently, Zhu

et al. [39] released the MVSEC dataset [40] and proposed self-supervised learning

algorithm to estimate optical flow. Unlike [39], which uses grayscale information as

a supervision signal, our proposed framework uses only events and thus can work in

challenging lighting conditions.

40

4.1.3 Self-supervised Structure from Motion

The unsupervised learning framework for 3D scene understanding has recently

gained popularity in frame-based vision research. Zhou et. al [55] pioneered this

line of work. The authors followed a traditional geometric modeling approach and

built two neural networks, one for learning pose from single image frames, and one

for pose from consecutive frames, which were self-supervised by aligning the frames

via the flow. Follow-up works (e.g. [77] have used similar formulations with better

loss functions and networks, and recently [28] proposed SfM learning from stereo

DVS data.

4.2 Methods

4.2.1 Ego-motion Model

We assume that the camera is moving with rigid motion with translational ve-

locity v = (vx, vy, vz)
T and rotational velocity ω = (ωx, ωy, ωz), and that the camera

intrinsic parameters are provided. Let X = (X, Y, Z)T be the world coordinates of

a point, and x = (x, y)T be the corresponding pixel coordinates in the calibrated

camera. Under the assumption of rigid motion, the image velocity u = (u, v)T at

(x, y)T is given as:

u
v

 = 1
Z

−1 0 x

0 −1 y

vx

vy

vz

 +

 xy −1− x2 y

1 + y2 −xy −x

ωx

ωy

ωz

 = Ap (4.1)

41

As such, given the inverse depth and the ego-motion velocities v, ω, we can calculate

the optical flow at a point using a matrix multiplication (Equation 4.1) Here p is

used to denote the pose vector (v, ω)T , and A is a 2 × 6 matrix. Due to scaling

ambiguity in this formulation, depth Z and translation (vx, vy, vz) are computed up

to a scaling factor.

4.2.2 Input Data Representation

The raw data from the DVS sensor is a stream of events, which we treat

as data of 3 dimensions. Each event encodes the pixel coordinate (x, y) and the

timestamp t. In addition, it also carries information about its polarity - a binary

value that disambiguates events generated on rising light intensity (positive polarity)

and events generated on falling light intensity (negative polarity).

The 3D (x, y, t) event cloud (within a small time slice), called event slice, is

projected onto a plane and converted to a 3-channel image. An example of such

image can be seen in Fig. 4.2. Two of the channels are the per-pixel counts of

positive and negative events. The third channel is the time image as described

in [76] - each pixel consists of the average timestamp of the events generated on

this pixel, because the averaging of timestamps provides better noise tolerance. The

neural network input consists of up to 5 such consecutive slice images to better

preserve the timestamp information of the event cloud.

42

Figure 4.3: The depth network (top) with an encoder-decoder architecture is used to

estimate scene depth. The pose network (bottom) takes consecutive frames to estimate the

translational velocity and rotational velocity with respect to the middle frame. Given the

poses of neighboring frames and the depth of the middle frame, we calculate the optical

flow. The neighboring frames are inversely warped to the middle frame and the warping

difference provides the supervision loss. In the networks lighter/darker colors represents

lower/higher level features.

4.2.3 The Pipeline

The global network structure is similar to the one proposed in [55]. It consists

of a depth prediction component and a parallel pose prediction component, which

43

both feed into a optical flow component to warp successive event slices. The loss

from the warping error is backpropagated to train flow, inverse depth, and pose.

Our network components, instead of the standard CNNs, are based on our

ECN network structure. An (ECN based) encoding-decoding architecture is used to

estimate scaled inverse depth 1
Z

from a single slice of events. To address the data

sparsity, we use bilinear interpolation, which propagates local information and fills

in the gaps between events. A second network, which takes consecutive slices of

signals, is used to derive v and ω. Then, using the rigid motion and inverse depth to

predict the optical flow, neighboring slices at neighboring time instances T +1, T +2

and T−1, T−2 are warped to the slice at T (Fig. 4.3). The l1 loss is used to measure

the difference between the warped events and the middle slice as

Losswarp =
∑

T−2≤n≤T+2,n6=T

|Iwarpped
n − IT | (4.2)

It is worth pointing out that the outputs of our networks are multi-scale. The

loss functions are weighted by the number of pixels to calculate the total loss.

4.2.4 Evenly Cascaded Network Architecture

Our transform of features takes biological inspiration from multi-stage infor-

mation distillation, and incorporates feedback [75]. In our architecture, the encoding

layers split the (layer) input into two streams of features (Fig. 4.4): one encodes the

features from the previous layer at lower resolution; the other directly generates a

set of higher level features, as in CNN architectures [78]. At the end of the encoding

44

Figure 4.4: The encoder-decoder structure. Only the generation and merging of features

are shown.

stage, the network has a multi-scale feature representation. This representation is

used in our pose prediction.

In this work we added to the encoder [75] a decoder, which works as follows:

In each decoding layer, we use the higher level features from the previous layer as

a feedback signal to improve the lower level features, and combine them with the

features from the corresponding encoding layer as in the U-Net [79] architecture.

At the end of the decoding stage, the network has acquired a set of modulated high

resolution low-level features.

Our design facilitates training because residual learning is conducted through-

out the network for each level of features, while in comparison, the original ResNet [80]

does that only in design blocks. In the encoder, we generate higher level features

similar to DenseNet [81], but we use residual learning. In the decoder part, the

45

generation process is inverted into a merging process: in each layer the highest level

features are gradually merged back into the lower level features and finally to the

backbone pathway to improve them.

To tackle the challenges raised by sparse event data and evenly resize the

features, we use bilinear interpolation. In the encoding layers, our network evenly

downscales the feature maps by a scaling factor of (s < 1) to get coarser and coarser

features. In the decoding layers, the feature maps are reversely upscaled by a factor

of 1/s. The network construction is automatic and is controlled by the scaling

factor. Bilinear interpolation propagates the sparse data spatially, facilitating dense

prediction of depth and optical flow.

4.2.5 Depth Predictions

In the decoding stage, we make predictions from features at different resolu-

tions and levels (Fig. 4.4). Initially, both high and low-level coarse features are used

to predict a backbone depth map. The depth map is then up-sampled with bilinear

interpolation for refinement. Then the enhanced lower level features are used to es-

timate the prediction residue, which are added to the backbone estimation to refine

it.

Our pipeline is based on monocular vision and predicts depth up to a scale.

In real world driving scenes, the mean depth value stays relatively stable. Taking

advantage of this observation, we use batch normalization before making the depth

prediction so the predicted depths have similar range.

46

Figure 4.5: Qualitative results from our evaluation. The table entries from left to right:

DVS input, ground truth optical flow, network output for flow, ground truth for depth,

network output for depth. The event counts are overlaid in blue for better visualization.

Examples were collected from sequences of the MVSEC [40] dataset: (top to bottom) out-

door day 1, outdoor day 1, indoor flying 1, indoor flying 2, outdoor night 1, outdoor night

2, outdoor night 3. Note that on the ‘night’ sequences the ground truth is occasionally

missing due to Lidar limitations but the pipeline performs well. Best viewed in color.

To further address the sparsity in data, we utilize a sparsity constraint that

promotes non-local information propagation [82]:

Losssmooth(I) =
∑
i

∑
j∈N(i)

|Ij − Ii|p

=
∑
i

∑
j∈N(i)

|Ij − Ii|p−2|Ij − Ii|2 =
∑
i

∑
j∈N(i)

wij|Ij − Ii|2 (4.3)

Here the loss is applied on the first-order derivatives of the depth estimation in

a neighborhood N(i), and we use a sparse penalty where 0 < p ≤ 1. The complete

47

loss of our pipeline is hence defined as:

Loss = Losswarp + λLosssmooth (4.4)

4.2.6 Feature Decorrelation

Gradient descent training of neural networks can be challenging if the features

are correlated. Researchers have proposed normalization strategies [68, 83, 84] to

account for scale inconsistency. However, it is important to point out, scaling the

data without decorrelating it does not guarantee good conditioning. Without cor-

rection, the covariance matrix of the data matrix X is ill-conditioned. The gradient

descent algorithms take many iterations due to this ill-conditioning. Uisng decorre-

lation, the data matrix will be transformed to have I as covariance matrix, and the

condition number will be 1.

We compute the inverse square root of the covariance between the feature

channels. Using the Denman-Beavers square root iteration [85], we can calculate

the inverse square root in a simple and forward fashion. Given a symmetric positive

definite covariance matrix C, Denman-Beavers iterations start with initial values

Y0 = C, Z0 = I. The iteration is defined as: Yk+1 = 1
2
Yk(3I − ZkYk), Zk+1 =

1
2
(3I − ZkYk)Zk, and Zk −→ C−

1
2 [84]. In our implementation, we evenly divide

the features into groups [83, 86], and reduce the correlation between the groups by

performing a few (1-10) Denman-Beavers iterations. We notice that a few iterations

lead to significantly faster convergence and better results.

48

To further explain the favorable property of the whitening transform, assume

we are given a linear regression problem with L2 loss: y = Xw, Loss = 1
2
‖y− ŷ‖2 =

1
2
‖Xw − ŷ‖2.

For an explicit solution we have ∂Loss
∂w

= X t(Xw − ŷ) = 0,

w = (X tX)−1X tŷ. (4.5)

If the input is decorrelated, we have w = X tŷ. On the other hand, to conduct one

iteration of gradient descent: we have wnew = wold− step len× (X tXwold−X tŷ). If

X tX = I then step len = 1 is optimal and with one iteration we have wnew = X tŷ.

Following this spirit, we insert the decorrelation operation before the lin-

ear/convolution layers. In non-linear regression problem, the solution is found iter-

atively. In each layer, the transform is:

yi = ReLU ◦Wi ◦Di ◦ xi, (4.6)

here xi is the input to the i− th layer, Di is the decorrelation operation. It is impor-

tant to note that the decorrelation procedure does not change the learning problem,

as the standard network training is solving for Wi ◦ Di. Instead, this procedure

removes the correlations between feature channels and improves the conditioning of

the optimization problem.

4.3 Experimental Evaluation

Our our self-supervised learning framework can infer both dense optical flow

and depth from sparse event data. We evaluate our work on the MVSEC [40] event

49

Table 4.1: Evaluation of the optical flow pipeline

outdoor day 1 outdoor night 1 outdoor night 2 outdoor night 3 indoor flying1

AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

ECN 0.35 0.04 0.49 0.82 0.43 0.79 0.48 0.80 0.21 0.01

ECNmasked 0.30 0.02 0.53 1.1 0.49 0.98 0.49 1.1 0.20 0.01

Zhu18 [28] 0.32 0.0 - - - - - - 0.84 2.50

EV -FlowNetbest [39] 0.49 0.20 - - - - - - 1.45 10.26

SfMlearner 0.58 0.89 0.59 1.01 0.78 1.32 0.59 1.38 0.55 0.29

ECNerate 0.28 0.02 0.46 0.67 0.40 0.53 0.43 0.67 0.20 0.01

camera dataset which, given a ground truth frequency of 20 Hz, contains over 40000

ground truth images.

The MVSEC dataset, inspired by KITTI [87], features 5 sequences of a car

on the street (2 during the day and 3 during the night), as well as 4 short indoor

sequences shot from a flying quadrotor. MVSEC was shot in a variety of lighting

conditions and features low-light and high dynamic range frames which are often

challenging for an analysis with classical cameras.

4.3.1 Implementation Details

Our standard network architecture has scaling rates of 0.5 and 2.0 respectively

for the encoding and decoding layers, and results in 5 encoding/decoding layers.

Our depth network has 8 initial hidden channels and expands with a growth rate

of 8. We halve these settings to 4 for our pose network. The pose network takes

50

5 consecutive event slices and predicts 6d pose vectors. We use 3× 3 convolutions,

and the combined network has 150k parameters. We train the network with a batch

size of 32 and use the Adam optimizer with a learning rate of 0.01. Interestingly, we

notice that compared to the standard architecture of the SfMlearner, the learning

rate is higher. Thus, the new design allows us to learn at a faster rate. The learning

rate is annealed using cosine scheduling, and we let the training run for 30 epochs.

Our training takes 7-minutes for each epoch using a single Nvidia GTX 1080Ti GPU.

We set the smoothness loss weight λ = 0.1. Our model using batch normalization

runs at 250 FPS at inference as it has been heavily GPU optimized. The model

using feature decorrelation runs at 40 FPS. The slow down is mainly due to matrix

multiplications in our customized layer which is not optimized for the GPU.

4.3.2 Dataset Preparation

In the experiments with the outdoor sequences, we trained the network using

only the outdoor day 2 sequence with the hood of the car cropped. Our experiments

demonstrate that our training generalizes well to the notably different outdoor day

1 sequence, as well as to the night sequences. For the indoor sequences, since they

were too short to create a representative training set, we used 80% of each sequence

for training and evaluated on the remaining 20%. We would like to note that the

outdoor night sequences have occasional errors in the ground truth (see for example

Fig. 4.5 last three rows, or Fig. 4.11). All incorrect frames had to be manually

removed for the evaluation.

51

We have noticed, that although adaptive time windows, based on the event

rate, are sometimes employed in the literature ([76], [28]), these approaches may

not tolerate noise, which is particularly present during night sequences. In our

experiments, we use fixed-width time slices of 1/40-th of a second.

4.3.3 Ablation Studies

4.3.3.1 Testing on the SfMlearner

As baseline we use the state-of-the-art SfMlearner [55] on our data (event

images). SfMlearner has a fixed structure of 7 encoding and 7 decoding layers. It has

32 initial hidden channels and expands to 512 channels. Overall the model contains

33M parameters. SfMlearner is trained using Adam optimizer with a learning rate

of 2e−4 and a batch size of 4. We replace the inputs with our event slices, and we

include the evaluation results for flow and egomotion in tables 4.1 and 4.3.

4.3.3.2 Normalization Methods

We compare two normalization methods and our decorrelation method on the

validation set portion of the outdoor day 2 sequence. We apply 5 Denman-Beavers

iterations in the decorrelation procedure. Compared with normalization methods,

1Due to the size of the indoor dataset, we trained on 80% of the sequences and tested on 20%

- this was only the case for indoor sequences. We would like to note, that EV-FlowNet requires

classical frames for training and Zhu18 uses a stereo camera pair. To compute aggregate results

for [28, 39], we prorate the results they have presented by the number of usable pixels in the

sequence and recompute the average.

52

decorrelation leads to more thorough data whitening, and we have noticed this

layer-wise whitening lead to faster convergence and lower evaluation loss (Fig. 4.6).

4.3.3.3 Visualizing a Shallow and Tiny Network

Our lightweight multi-level, multi-resolution design allows us to construct net-

works of any depth and size. As a preliminary attempt, we set the scaling rate to

1/3 and 3.0 for encoding and decoding layers respectively, so the network has only 3

encoding/decoding layers. As the network is small, we can directly visualize all its

internal feature maps. A deeper and wider network would produce a higher quality

output but also more feature maps, which we do not list here. In Fig. 4.7 we have

listed all the feature maps in the small depth network. The row number corresponds

to the level number of the features for each figure. We notice the encoder seems to

play a feature extraction role in the network and the decoder starts to produce se-

mantically meaningful representation corresponding to the desired output (depth).

By scrutinizing the pose network outputs, we notice the network is intelligent enough

to aggregate information corresponding to different time periods of the events in the

first layer (Fig. 4.8). Otherwise, mixing up the events at different time period would

make the pose estimation harder.

4.3.3.4 Performance Versus Event Rate

Since the event data is inherently sparse, we investigate the performance of

the pipeline in relation to the data sparsity.

53

We measure the data sparsity as a percentage of the pixels on the input im-

ages with at least one event. Fig. 4.9 demonstrates how the event rate is inversely

proportional to the average endpoint error for the optical flow (we have observed

similar behavior for depth and egomotion). The outdoor day 1 sequence is used to

minimize the influence of the noise.

We find the inverse correlation between event rate and inference quality to be

a useful observation, as this property could be efficiently used in sensor fusion in a

robotic system. Motivated by that, we provide an additional row to the Table 4.1:

ECNerate, and report our error metrics once again only for the frames with higher

than average number of event pixels across the datasets.

4.3.4 Qualitative Results

In addition to the quantitative evaluation, we present a number of samples

for qualitative analysis in Fig. 5.6. The last three rows of the table show the night

sequences, and how the pipeline performs well even when only a few events are

available. The third and the fourth rows show indoor scenes. The indoor sequences

were relatively small and it is highly possible that the quality of the output would

increase given a larger dataset.

4.3.5 Optical Flow Evaluation

We evaluate our optical flow results in terms of Average Endpoint Error

(AEE = 1
n

∑
‖~y − ~y∗‖2 with y∗ and y the estimated and ground truth value,

54

and n the number of pixels for which flow was estimated) and compare our re-

sults against two state-of-the-art optical flow methods for event-based cameras:

EV − FlowNet [39] and a recent stereo method [28] (in the tables - Zhu18).

Because our network produces flow and depth values for every image pixel,

our evaluation is not constrained by pixels which did not trigger a DVS event. Still,

for consistency reasons, we report both numbers for each of our experiments (for

example, ECN and ECNmasked, where the latter has errors computed only on the

pixels with at least one event). Similar to KITTI and EV-FlowNet, we report the

percentage of outliers - values with error more than 3 pixels or 5% of the flow vector

magnitude.

To compare against [39] and [28], we account for the difference in the frame

rates (for example, EV-FlowNet uses the frame rate of the DAVIS classical frames)

by scaling our optical flow. We also provide aggregated results for the indoor scenes

(split on a train and a test set 80/20 as described above), although these are not

the main focus of our study. Our main results are presented in the Table 4.1.

We show that our optical flow performs well during both day and night, all on

unseen sequences. The results are typically better for the experiments with event

masks except for the outdoor night. One possible explanation for that is that this

sequence is much noisier with events being generated not only on the edges, which

leads to suboptimal masking.

55

4.3.6 Depth Evaluation

Since there are currently no monocular event-based methods for the depth

estimation based on unsupervised learning, we provide the classical scale-invariant

depth metrics, used in many works such as [88], [55], [89]:

Accuracy : %ofyi s.t. max(
yi
y∗i
,
y∗i
yi

) = δ < th (4.7)

SILog :
1

n

∑
d2i −

1

n2
(
∑

di)
2, di = log yi − log y∗i (4.8)

AbsoluteRelativeDifference :
1

n

∑ |y − y∗|
y∗

(4.9)

LogarithmicRMSE :

√
1

n

∑
‖log y − log y∗‖2 (4.10)

Our results are presented in Table 4.2 for both event count-masked depth

values and full, dense depth. Since the night driving scenes have similar depth

geometries, we aggregate all 3 sequences in one table entry.

Applying an event mask during the evaluation increases accuracy for all scenes

- this is expected, as the inference is indeed more accurate on the pixels with event

data. On the contrary, the error rate increases on the outdoor scenes and decreases

on the indoor scenes. This is probably due to higher variation of the outdoor scenes

and also faster motion of the car.

4.3.7 Egomotion Estimation

Our pipeline is capable of inferring egomotion on both day and night sequences,

and transfers well from outdoor day 2 onto outdoor day 1 and outdoor night 1,2,3.

56

Table 4.2: Evaluation of the depth estimation pipeline. Results on masked, sparse depth

are separated by ”/”, followed by the results on SfMLearner in braces.

outdoor day 1 outdoor night indoor flying

Abs Rel 0.29 / 0.33 (0.55) 0.34 / 0.39 (0.53) 0.28 / 0.22 (0.49)

RMSE log 0.29 / 0.33 (0.54) 0.38 / 0.42 (0.51) 0.29 / 0.25 (0.50)

SILog 0.12 / 0.14 (0.28) 0.15 / 0.18 (0.32) 0.11 / 0.11 (0.12)

δ < 1.25 0.80 / 0.97 (0.65) 0.67 / 0.95 (0.56) 0.75 / 0.98 (0.57)

δ < 1.252 0.91 / 0.98 (0.78) 0.85 / 0.98 (0.75) 0.91 / 0.99 (0.79)

δ < 1.253 0.96 / 0.99 (0.89) 0.93 / 0.99 (0.87) 0.96 / 1.00 (0.88)

57

Since our pipeline is monocular, we predict the translational component of the ve-

locity up to a scaling factor, while the rotational velocity does not need scaling.

Despite our network outputs full 6 degree of freedom velocity, we did not achieve

high quality on indoor sequences. This is likely due to highly more complicated

motion types and a small size of the indoor dataset. We further discuss this in sec.

4.3.8.

For the driving scenarios we can make an important observation - the mean

distance of the road in respect to the camera is often a constant. We crop the lower

middle part of the inferred depth image and apply a scaling factor such that the

mean depth value (corresponding to the road location) is constant. Consequently,

only a single extrinsic value (camera height on the car) is needed to reconstruct the

scaled motion. In our experiments, we report egomotion with translational scales

taken both from ground truth (AEEgt
tr) and using the depth constancy constraint

(AEEdepth
tr), with a global scale taken from ground truth. The qualitative results

are presented in Fig. 4.10.

Unlike [28], we train SfMlearner on the event images, and not on the classical

frames to allow for evaluation on the night sequences. We provide comparison to

the work in [28], although it uses a stereo pipeline and reports results only on the

outdoor day 1 sequence.

To be consistent with [28], we report our trajectory estimation relative pose

and relative rotation errors asRPE = arccos(
tpred·tgt

‖tpred‖2·‖tgt‖2
) andRRE = ‖logm(RT

predRgt)‖2.

Here logm is matrix logarithm and R are Euler rotation matrices. The RPE es-

sentially amounts to the angular error between translational vectors (ignoring the

58

scale), and RRE amounts to the total 3-dimensional angular rotation error. To ac-

count for translational scale errors, we report classical Endpoint Errors - computed

as a magnitude of the differences in translational component of the velocities. Our

quantitative results are presented in Table 4.3.

Table 4.3: Egomotion estimation results on driving sequences - ‘outdoor day 1’ and ‘out-

door night 1,2,3’. The ARPE and ARRE are reported in degrees and radians respec-

tively [28], AEE is in m/s. AEEgt
tr - translational endpoint error with ground truth nor-

malization. AEEdepth
tr - normalized using depth prediction and a global scaling factor (see

sec. 4.3.7).

ARPE ARRE AEEgt
tr AEEdepth

tr

ECN

ou
td

o
or

d
ay

1

3.98 0.00267 0.70 1.29

Zhu18 [28] 7.74 0.00867 - -

SfMlearner 16.99 0.00916 1.59 2.39

ECN

ou
td

o
or

n
ig

h
t

1

3.90 0.00139 0.42 1.26

SfMlearner 9.95 0.00433 1.04 2.47

ECN

2

3.44 0.00202 0.80 1.34

SfMlearner 13.51 0.00499 1.66 3.15

ECN

3

3.28 0.00202 0.49 1.03

SfMlearner 1.053 0.00482 1.42 2.74

59

4.3.8 Discussion and Failure Cases

A monocular pipeline tends infer more information from the shape of the con-

tours on depth estimation and hence would transfer poorly on completely different

scenarios. Nevertheless, we were able to achieve good generalization on night se-

quences and demonstrate promising results for depth and flow for indoor scenes

(trained separately on parts of indoor sequences).

We observe a relatively small angular drift on trajectory estimation (Fig. 4.10).

Despite our model predicting a full 6 degree of freedom motion we admit that in the

car scenario only 2 motion parameters play a meaningful role and the network may

tend to overfit. For this reason, training on the indoor scenes, featuring more com-

plicated motion would require a notably larger dataset than presented in MVSEC.

We still achieve results superior to SfMlearner and the stereo method [28], while

for the comparison with the latter we must attribute some of our success to the

fact that our translational velocity prediction is only up to scale. A common short-

coming of event-based sensors in the lack of data when the relative motion is not

present. Fig. 4.11 shows such an example. This issue (although it does not affect

egomotion) can be solved only by fusing data from other visual sensors or by moving

the event-based sensor continuously. Because of the smoothness constraint used to

combat data sparsity, the network tends to blur object boundaries. Still, for the

driving environment the contours of obstacles, people and cars are clearly visible,

as can be seen in Fig. 5.6.

60

4.4 CONCLUSION

We have presented a novel low-parameter pipeline for generating dense optical

flow, depth and egomotion from sparse event camera data. We also have shown

experimentally that our new neural network architecture using multi-level features

improves upon existing work.

61

Figure 4.6: Comparison of Abs Rel Errors using different normalization methods on

outdoor day 1 sequence (less is better).

62

Figure 4.7: Visualization of feature maps of the depth network. (a) Input channels. (b-g)

Feature maps of the encoder-decoder network. (h-j) Multiscale predictions by layers (e-g).

Figure 4.8: Visualization of the pose network. (a) Input channels. (b-d) Feature maps of

the pose network.

63

Figure 4.9: The Average Endpoint Error (blue) and the number of pixels with at

least one event (red) for the first 1500 frames of ‘outdoor day1’ sequence of the

MVSEC dataset. Both plots are normalized so that the mean value is 0.5 for easier

comparison.

64

Figure 4.10: Estimated trajectories on ‘outdoor day 1’ (top) and ‘outdoor night 2’ (bottom)

sequences, acquired by integrating the egomotion predictions. The network was trained only

on ‘outdoor day 2’. Black: ground truth. Red: network prediction with translational scale

applied from ground truth. Cyan: result by assuming the mean depth is fixed throughout

the sequence (sec. 4.3.7) and by applying a single global scaling to the translational pose.

65

Figure 4.11: A typical failure case and a dataset artifact: A non-moving car (visible in

the middle ground truth inverse depth image) is not visible on the DAVIS camera (left

image) which prevents ECN from inferring optical flow or depth correctly (right image is

the inference inverse depth image). On the contrary, the moving car on the left side of the

road is clearly visible in the event space and its depth inference is correct, but due to the

Lidar limitations the depth ground truth is completely missing. This frame is taken from

the ‘outdoor night 1’ MVSEC sequence.

66

Chapter 5: EV-IMO: Motion Segmentation Dataset and Learning

Pipeline for Event Cameras

In this chapter we introduce a compositional neural network (NN) pipeline,

which provides supervised up-to-scale depth and pixel-wise motion segmentation of

the scene, as well as unsupervised 6 dof egomotion estimation and a per-segment lin-

ear velocity estimation using only monocular event data (see Fig. 5.1). This pipeline

can be used in indoor scenarios for motion estimation and obstacle avoidance.

We also create a dataset, EV-IMO, which includes 32 minutes of indoor record-

ing with multiple independently moving objects shot against a varying set of back-

grounds and featuring different camera and object motions. To our knowledge, this

is the first dataset for event-based cameras to include accurate pixel-wise masks for

independently moving objects, apart from depth and trajectory ground truths.

To summarize, our contributions are:

• The first NN for estimating both camera and object 3D motion using event

data;

• The first dataset – EV-IMO – for motion segmentation with ground truth

depth, per-object mask, camera and object motion;

67

Figure 5.1: Depth and per-pixel pose inference on sparse event data, on our EV-IMO

dataset. The top, left row is the ground truth depth and pose (the color corresponds

to object’s linear velocity), the bottom left row is the predicted network output.

Camera egomotion is also estimated but not visualized. Best viewed in color.

• A novel loss function tailored for event alignment, measuring the profile sharp-

ness of the motion compensated events;

• Demonstration of the feasibility of using a shallow low parameter multi-level

feature NN architecture for event-based segmentation while retaining similar

performance with the full-sized network;

5.1 The Architecture

5.1.1 Network Input

The raw data from the DVS is a continuous stream of events. Each event,

e(x, y, t, p) is encoded by its pixel position (x, y), timestamp t, accurate to microsec-

68

Figure 5.2: A depth network (top) using an encoder-decoder architecture trained in super-

vised mode is used to estimate scene depth. A pose network (bottom left) takes consecutive

event slices to generate a mixture model for the pixel-wise pose. A mixture of poses and

mixture probabilities (bottom right) are outputs of this network. The outputs of the two

networks are multi-scale and used to generate the optical flow, then to inversely warp the

inputs at various resolutions.

69

onds, and binary polarity, p ∈ {−1, 1}, indicating whether the intensity decreased

or increased.

In the (x, y, t) space, the event stream represents a 3D pointcloud. To leverage

the maximum information from this representation and pass it down to the network,

we subdivide the event stream into consecutive time slices of size δt (in our imple-

mentation - 25 ms). Every time slice is projected on a plane with a representation

as in the previous chapter.

We then feed these 2D maps to the neural networks in our pipeline. The benefit

of the 2D input representation is the reduction of data sparsity, and a resulting

increase in efficiency compared to the 3D learning approaches. Yet, the 2D input

may suffer from motion blur during fast motions. We tackle this problem by using

a fine scale warping loss (sec. 5.1.5.1), which uses 1 ms. slices to compute the loss.

5.1.2 Overview of the Architecture

Our pipeline (see Fig. 5.2) consists of a depth prediction network and a pose

prediction network. Both networks are low parameter [90] encoder-decoder net-

works [79]. Our depth network performs a prediction on a single slice map. A

supervision loss Lossdepth comes by comparing with the ground truth as we describe

in subsection 5.1.5.3. Our pose network uses up to 5 consecutive maps, to better ac-

count for the 3D structure of the raw event data. The pose network utilizes a mixture

model to estimate pixel-wise 3D motion (relative pose) and corresponding motion

masks from consecutive event slices. The masks are learned in supervised mode. We

70

introduce a Lossmask on the motion mask. Finally, the two network outputs are used

to generate the optical flow (Fig. 5.2). Successive event slices within a small period

of time are then inversely warped. Perfectly motion compensated slices should stack

into a sharp profile, and we introduce a two-stage Losswarp to measure the warping

quality. The sum of the losses Loss = Losswarp + wdepthLossdepth + wmaskLossmask

is backpropagated to train flow, inverse depth, and pose.

5.1.3 Motion Model

For each pixel, given the inverse depth, there is a linear relation between the

optical flow and the 3D motion parameters (Eq. 4.1). We model the motion of

individual moving objects as 3D translation (without rotation), since most objects

have relatively small size. The motion (pose) of any object is modeled as the sum

of the rigid background motion and the object translation. Our network uses a

mixture model for object segmentation - the 3D motion pi at a pixel (xi, yi), is

modeled as the sum of the camera motion pego and weighted object translations,

where the weights are obtained from motion masks as:

pi = pego +
C∑

j=1

mi
jtj, (5.1)

In the above equation mi
j are the motion mask weights for the i − th pixel and tj

the estimated translations of the C objects.

71

5.1.4 A Mixture Model for Ego-motion and Independently Moving

Objects

The pose network utilizes a mixture model to predict pixel-wise pose. At the

end of the encoder part, the network outputs a set of poses (p0, t1, ..., tC) in parallel.

p0 is the ego-motion pose pego, and (t1...tC) are interpreted as the translations with

respect to the background or residual translations. The residual translations are

added to the ego-motion pose as in Eq. 5.1 to get the candidate poses of objects

relative to the camera.

In the decoding part, the network predicts pixel-wise mixture weights or mo-

tion masks for the poses. We use the mixture weights and the pose candidates to

generate pixel-wise pose. The mixture weights sum to 1 for each pixel. We found

experimentally that allowing a pixel to belong to multiple rigid motions as opposed

to only one, leads to better results. This is because soft assignment allows the model

to explain more directions of motions. However, since during training, the object

masks are provided, qualitatively sharp object boundaries are learned.

Using the mixture model representation allows us differentiate object regions,

moving with relatively small difference in 3D motion.

5.1.5 Loss functions

We describe the loss functions used in the framework. It is noteworthy that

the outputs of our networks are multi-scale. The loss functions described in this

72

section are also calculated at various scales. They are weighted by the number of

pixels and sum up to calculate the total loss.

5.1.5.1 Event Warping Loss

In the training process, we calculate the optical flow and inversely warp events

to compensate for the motion. This is done by measuring the warping loss at two

time scales, first for a rough estimate, between slices, then for a refined estimate

within a slice where we take full advantage of the timestamp information in the

events.

Specifically, first using the optical flow estimate, we inversely warp neighboring

slices to the center slice. To measure the alignment quality at the coarse scale, we

take 3-5 consecutive event slices, where each consists of 0.05 seconds of motion

information, and use the absolute difference in event counts after warping as the

loss:

Losscoarse =
∑

−K≤n≤K,n6=0

|Iwarpped
n − Imiddle|,

where I denotes the three maps of positive events, negative events and average

timestamps, and K is either 1 or 2. To refine the alignment, we process the event

point clouds and divide the slices into smaller slices of 1ms. Separately warping

each of the small slices allows us to fully utilize the time information contained in

the continuous event stream.

We stack warped slices and use the following sharpness loss to estimate the

warping quality. Intuitively speaking, if the pose is perfectly estimated, the stacking

73

of inversely warped slices should lead to a motion-deblurred sharp image. Let S =∑N
n=−N |Iwarped

n | be the stacking of inversely warped event slices, where n represents

the n-th slice in a stack of 2N + 1 slices. Our basic observation is that the sparse

quasi-norm || · ||p for 0 < p < 1 favors a sharp non-negative image over a blurred

one. That is,
∑

i |xi|p ≥ (
∑

i |xi|)p for 0 < p < 1. Based on this observation, we

calculate the quasi-norm of S to get the fine scale loss: Lossfine = ||S||p, 0 < p < 1.

5.1.5.2 Motion Mask Loss

Given the ground truth motion mask, we apply a binary cross entropy loss on

the mixture weight of the ego-motion pose component to constrain that our model

applies the ego-motion pose in the background region: Lossmask = −
∑

i∈background log(mi
0)

To enforce that the mixture assignment is locally smooth, we also apply a smooth-

ness loss on the first-order gradients of all the mixture weights.

5.1.5.3 Depth Loss

With ground truth depth available, we enforce the depth network output to

be consistent with the ground truth. We adjust the network output and the ground

truth to the same scale, which we denote as predict and truth and apply the fol-

lowing penalty on their deviation: Lossdepth = max(truth
predict

, predict
truth

) + |predict−truth|
truth

.

Additionally, we apply a smoothness penalty on the second-order gradients of the

prediction values, Lossdepth smooth = ||∆predict||1.

74

5.1.6 Evenly Cascading Network Architecture

We adopt the low parameter evenly cascaded convolutional network (ECN)

architecture as our backbone network design [90]. The ECN network aggregates

multilevel feature streams to make predictions. The low level features (Fig. 5.2,

light blue blocks) are scaled with bilinear interpolation and improved throughout the

whole encoding-decoding structure via residual learning. Along that, the network

also progressively generates high level features (Fig. 5.2, darker blue blocks) in the

encoding stage. The decoding stage proceeds reversely, the high level features are

transformed by convolution and progressively merged back to the low level features

to enhance them. Skip links (white arrows) are also used in the network as in the

original U-Net [79].

5.1.7 Prediction of Depth and Component Weights

In the decoding stage, we make predictions using features at different resolu-

tions and levels (Fig. 5.2). Initially, both high and low-level coarse features are used

to predict a backbone prediction map. The prediction map is then upsampled and

merged into existing feature maps for refinements in the remaining decoding layers.

In the middle stage, high level features as well as features in the encoding layers are

merged into the low level features to serve as modulation streams. The enhanced

lower level features are used to estimate the prediction residue, which are usually

also low-level structures. The residue is add to the current prediction map to refine

it. The final prediction map is therefore obtained through successive upsamplings

75

and refinements.

5.2 EV-IMO Dataset

One of our contributions is the collection of the EV-IMO dataset - the first

event camera dataset to include multiple independently moving objects and camera

motion (at high speed motion), while providing accurate depth maps, per-object

masks and trajectories at over 200 frames per second. The next sections describe

our automated labeling pipeline, which allowed us to record more than 30 high

quality sequences with a total length of half an hour. The source code for the

dataset generation will be made available, to make it easier to expand the dataset

in the future. A sample frame from the dataset is shown in Fig. 5.3.

5.2.0.1 Methodology

Event cameras such as the DAVIS are designed to capture high speed motion

and work in difficult lighting conditions. For such conditions classical methods of

collecting depth ground truth, by calibrating a depth sensor with the camera, are

extremely hard to apply - the motion blur from the fast motion would render such

ground truth unreliable. Depth sensors have severe limitations in their frame rate

as well. Furthermore it would be impossible to automatically acquire object masks

- manual (or semi-automatic) annotation would be necessary. To circumvent these

issues we designed a new approach:

1. A static high resolution 3D scan of the objects, as well as 3D room reconstruc-

76

tion is performed before the dataset recording takes place.

2. The VICON® motion capture system is used to track both the objects and

the camera during the recording.

3. The camera center as well as the object and room scans are calibrated with

respect to the the VICON® coordinate frame.

4. For every pose update from the VICON motion capture, the 3D point clouds

are transformed and projected on the camera plane, generating the per-pixel

mask and ground truth depth.

This method allows to record accurate depth at very high frame rate, avoiding

the problems induced by frame-based collection techniques. While we acknowledge

that this approach requires expensive equipment, we argue that our method is supe-

rior for event-based sensors, since it allows to acquire the ground truth at virtually

any event time stamp (by interpolating poses provided at 200 Hz) - a property

impossible to achieve with manual annotation.

5.2.0.2 Dataset Generation

Each of the candidate objects (up to 3 were recorded) were fitted with VICON®

motion capture reflective markers and 3D scanned using an industrial high quality

3D scanner. We use RANSAC to locate marker positions in the point cloud frame

and using acquired point correspondences we transform the point cloud to the world

frame at every update of the VICON. To scan the room, we place reflective markers

77

Figure 5.3: a) - The main interface of the automatic annotation tool. Camera cone

of vision, depth and motion masks are visible. b) - Example object used in the

dataset. c) 3D scan of the object.

on the Asus Xtion RGB-D sensor and use the tracking as an initialization for global

ICP alignment.

To compute the position of the DAVIS camera center in the world frame we

follow a simple calibration procedure, using a wand that is tracked by both VICON

and camera. The calibration recordings will be provided with the dataset. The

static pointcloud is then projected to the pixel coordinates (x, y) in the camera

center frame following equation 5.2:

(x, y, 1)T = KCP−1davisPcloudXi (5.2)

Here, K is the camera matrix, Pdavis is a 4 × 4 transformation matrix between

reflective markers on the DAVIS camera and the world, C is the transformation

78

between reflective markers on the DAVIS and DAVIS camera center, Pcloud is the

transformation between markers in the 3D pointcloud and reflective markers in the

world coordinate frame, and Xi is the point in the 3D scan of the object.

Or dataset provides high resolution depth, pixel-wise object masks and ac-

curate camera and object trajectories. We additionally compute, for every depth

ground truth frame, the instantaneous camera velocity and the per-object velocity in

the camera frame, which we use in our evaluations. We would like to mention, that

our dataset allows to set varying ground truth frame rate - in all our experiments

we generated ground truth at 40 frames per second.

5.2.1 Sequences

A short qualitative description of the sequences is given in Table 5.1. We

recorded 6 sets, each consisting of 3 to 19 sequences. The sets differ in the back-

ground (in both depth and the amount of texture), the number of moving objects,

motion speeds and lighting conditions.

A note on the dataset diversity: it is important to note, that for event-based

cameras (which capture only edge information of the scene) the most important fac-

tor of diversity is the variability on motion. Different motions create 3D event clouds

which vary significantly in their structure, even with similar backgrounds. Never-

theless, we organize our sequences into four background groups - ’table’, ’boxes’,

’plain wall’ and ’floor’ (see Fig 5.4), with the latter two having varying amounts of

texture - an important factor for event cameras. We also include several tabletop

79

Figure 5.4: Types of background geometry featured in the EV-IMO dataset (from

left to right): ’table’, ’boxes’, ’plain wall’, ’floor’ and ’tabletop’.

scenes, with clutter and independently moving objects.

5.3 Experiments

We present the first method for motion segmentation on event-based data using

neural networks. Learning for this task is challenging because the data from event-

based sensors is extremely sparse (coming only from object edges). Nevertheless,

we were able to estimate the full camera egomotion, a dense depth map, and the

3D linear velocities of the independently moving objects in the scene.

We trained our networks with the Adam optimizer using a starting learning

rate of 0.01 with cosine annealing for 50 epochs. The batch size was 32. We dis-

tributed the training over 4-Nvidia GTX 1080Ti GPUs and the training finished

within 24 hours. Inference runs at over 100 fps on a single GTX 1080Ti.

80

Table 5.1: EV-IMO sequences

background speed texture occlusions objects light

Set 1 boxes low medium low 1-2 normal

Set 2 floor/wall low low low 1-3 normal

Set 3 table high high medium 2-3 normal

Set 4 tabletop low high high 1 normal

Set 5 tabletop medium high high 2 normal

Set 6 boxes high medium low 1-3 dark / flicker

81

In all experiments, we trained on ’box’ and ’floor’ backgrounds, and tested

on ’table’ and ’plain wall’ backgrounds (see Table 5.1 and Fig. 5.4). For the

Intersection over Union (IoU) scores, presented in Table 5.2 the inferenced object

mask was thresholded at 0.5.

Our baseline architecture contains approximately 2 million parameters. It has

32 initial hidden channels and a growth rate of 32. The feature scaling factors are

1
2

and 2 for the encoding and decoding. Overall the networks have 4 encoding and

4 decoding layers.

However, for many applications (such as autonomous robotics), precision is

less important than computational efficiency and speed. We train an additional

shallow network with just 40 thousand parameters. In this setting we have 8 initial

hidden channels and a growth rate of 8. The feature scaling factors are 1
3

and 3

respectively. The resulting networks have only 2 encoding and 2 decoding layers.

We found that the 40k network is not capable of predicting object velocity reliably,

but it produces reasonable camera egomotion, depth and motion masks, which can

be tracked to extract the object translational velocities.

5.3.0.1 Qualitative Evaluation

Apart from the quantitative comparison we present a qualitative evaluation

in Figs. 5.6 and 5.5. The per-object pose visualization (Fig. 5.6, columns 4 and

5) directly map the 3D linear velocity to RGB color space. The network is capable

of predicting masks and pixel-wise pose in scenes with different amount of motion,

82

Figure 5.5: Comparison of the full network inference quality (2M parameters, top

row) with the small version (40k parameters, bottom row)

number of objects or texture.

Fig. 5.5 shows how the quality of the depth and motion mask output is affected

by reducing the size of the network. While the background depth is affected only to

a small degree, the quality of the object mask and depth suffers notably.

5.3.0.2 Segmentation and Motion Estimation

To evaluate the linear components of the velocities, for both egomotion and

object motion, we compute the classical Average Endpoint Error (AEE). Since our

pipeline is monocular, we apply the scale from the ground truth data in all our eval-

uations. To account for the rotational error of the camera (which does not need scal-

ing) we compute the Average Relative Rotation Error RRE = ‖logm(RT
predRgt)‖2.

Here logm is the matrix logarithm, and R are Euler rotation matrices. The RRE

essentially amounts to the total 3-dimensional angular rotation error of the camera.

We also extract several sequences featuring fast camera motion and evaluate them

83

Figure 5.6: Qualitative results from our evaluation. The table entries from left to

right: DVS input, ground truth for depth, network output for depth, ground truth

pixel-wise pose, predicted pixel-wise pose, predicted motion mask. Examples were

collected from EV-IMO dataset. Best viewed in color.

separately. We present AEE in m/s, and ARRE in radians/s in Table 5.2.

We compute the averaged linear velocity of the independently moving objects

within the object mask (since it is supplied by the network per pixel) and then

also compute AEE. To evaluate the segmentation we compute the commonly used

Intersection over Union (IoU) metric. Our results are presented in Table 5.2.

5.3.0.3 Comparison With Previous Work

As there is no public code available for monocular SfM on event-based data,

we evaluate on a 4-parameter motion-compensation pipeline [76]. We evaluated the

84

Table 5.2: Evaluation on segmentation and motion estimation. The numbers in

braces are values for the 40k version of the network. AEE is in m/s, ARRE is in

rad/s.

Cam AEE Cam ARRE Obj AEE IOU

table 0.07 (0.09) 0.05 (0.08) 0.19 0.83 (0.63)

plainwall 0.17 (0.23) 0.16 (0.24) 0.38 0.75 (0.58)

fastmotion 0.23 (0.28) 0.20 (0.26) 0.43 0.73 (0.59)

egomotion component of the network on a set of sequences without IMOs and with

no roll/pitch egomotion and with planar background found in ’plain wall’ scenes,

to make [76] applicable ([76] does not account for depth variation). Table 5.3

reports the results in m/s for the translation and in rad/s for the rotation. We were

not able to achieve any meaningful egomotion results on scenes with high depth

variation for [76].

Table 5.3: Comparison of EV − IMO with [76].

AEE ARRE

EV-IMO 0.024 0.095

Classical [76] 0.031 0.134

85

We also evaluate our approach against a recent method [90] - ECN network,

which estimates optical flow and depth on the event-based camera output. The

method was originally designed and evaluated on a road driving sequence (which

features a notably more simple and static environment, as well as significantly rudi-

mentary egomotion). Still, we were able to tune [90] and train it on EV-IMO. We

provide the comparison for the depth for our baseline method, the smaller version

of our network (with just 40k parameters) and ECN in Table 5.4.

We conducted the experiments on sequences featuring a variety of backgrounds

and textures (the lack of texture is a limiting factor for event-based sensors). Even

though ECN [90] was not designed to segment independently moving objects, the

comparison is valid, since it infers depth from a single frame. Instead, we attribute

the relatively low performance of [90] to a significantly more complex motion present

in EV-IMO dataset, as well as more diverse depth background.

5.4 Conclusions

Event-based sensing promises advantages over classic video processing in appli-

cations of motion processing because of the data’s unique properties of sparseness,

high temporal resolution, and low latency. In this chapter, we presented a com-

positional NN pipeline, which uses a combination of unsupervised and supervised

components and is capable of generalizing well across different scenes. We also pre-

sented the first ever method of event-based motion segmentation with evaluation

of both camera and object motion, which was achieved through the creation of a

86

Table 5.4: Evaluation of the depth estimation

Error metric Accuracy metric

Abs Rel RMSE log SILog δ < 1.25 δ < 1.252 δ < 1.253

Baseline Approach

plain wall 0.16 0.26 0.07 0.87 0.95 0.97

cube background 0.13 0.20 0.04 0.87 0.97 0.99

table background 0.31 0.32 0.12 0.74 0.90 0.95

40k Network

plain wall 0.24 0.33 0.11 0.75 0.90 0.95

cube background 0.20 0.26 0.07 0.77 0.92 0.97

table background 0.33 0.34 0.15 0.65 0.87 0.95

ECN

plain wall 0.67 0.59 0.33 0.27 0.52 0.80

cube background 0.60 0.56 0.30 0.29 0.53 0.78

table background 0.47 0.48 0.23 0.45 0.69 0.86

87

new state of the art indoor dataset - EV-IMO, recorded with the use of a VICON®

motion capture system.

Future work will delve into a number of issues regarding the design of the NN

and usage of event data. Specifically, we consider it crucial to study event stream

augmentation using partially or fully simulated data. We also plan to investigate

ways to include tracking and connect the estimation over successive time slices,

and investigate different alternatives of including the grouping of objects into the

pipeline.

88

Chapter 6: Network Deconvolution

Convolution is a central operation in Convolutional Neural Networks (CNNs),

which applies a kernel or mask to overlapping regions shifted across the image. In

this work we show that the underlying kernels are trained with highly correlated

data, which leads to co-adaptation of model weights. To address this issue we pro-

pose what we call network deconvolution, a procedure that aims to remove pixel-wise

and channel-wise correlations before the data is fed into each layer. The deconvolu-

tion can be efficiently calculated at a fraction of the cost of a convolution layer. We

show that by removing this correlation we are able to achieve better convergence

rates during model training with superior results without the use of batch normal-

ization on the CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST datasets, as well as

against reference models from ”model zoo” on the ImageNet standard benchmark.

6.1 Introduction

Images of natural scenes depict homogeneous color and texture regions delin-

eated by edges, and adjacent pixels are statistically highly correlated [91,92]. We can

imagine that this correlation is somehow induced by an external process: in the same

way correlations are introduced when a Gaussian kernel blurs an input image, we

89

can think of the natural images themselves as being blurred and correlated by some

unknown operator, which we call the tangling by nature (Figure 6.1). This tangling

complicates object recognition tasks as adjacent pixels contain highly redundant

information, and convolutional networks endure the cost of processing this informa-

tion without accruing substantial benefits. As applying a Gaussian blur complicates

human recognition (leading to the need for corrective lenses), the tangling effect in

natural images may also complicate machine learning in neural networks, requiring

its own method of correcting the image, a method we call network deconvolution.

Convolutional Neural Networks (CNNs) [93], the most widely used networks in

visual learning, have demonstrated superior performance in a variety of tasks ranging

from Computer Vision [94], over Natural Language Processing [95], to Reinforcement

Learning [96], owing to their ability to learn their own convolutional kernels that

extract meaningful features from the input.

In CNNs, resulting from a combination of the tangling effect and the fact that

the kernel shifts only slightly between each receptive field, layers of the neural net-

work are in reality re-learning much of the same information over and over, a factor

that we believe slows down learning. We refer to the correlation between the raw

pixels in a single image or feature map as the pixel-wise correlation. Similarly, in

the case of different channels of a hidden layer of the network, there is a strong cor-

relation or ”cross-talk” between these channels because these channels are provided

with statistically very similar inputs; we refer to this as channel-wise correlation.

The goal of this paper is to remove redundant features that will not lead to effec-

tive learning. In this paper we propose two methods for attacking this problem:

90

Figure 6.1: A ”real world” image that the retina might see, and a convolution ap-

plied. Performing convolution on this image using some kind of filter, such as a

typical Gaussian kernel here, adds in correlations to the resulting image, giving the

typical ”blur” phenomenon, which makes object recognition more difficult. Remov-

ing this blur is the process of deconvolution. Neural networks iteratively learn their

own convolutional kernels, but many of these iterations are applied on highly corre-

lated image patches, which can slow down learning. Just like glasses help a human

see better by removing blur, the proposed deconvolutional operators decorrelate

features so that neural networks ”see” better.

Full deconvolution is the removal of both pixel-wise and channel-wise correlations,

whereas channel deconvolution is the removal of just channel-wise correlations. We

define network deconvolution as the application of full deconvolution to the input at

every layer of a network.

Our contributions are the following:

• We introduce a pixel-wise decorrelation at each layer of the network, which we

call network deconvolution, that aims to ensure that at every step only sparse

and discriminative data is used for learning.

• We propose an novel subsampling based acceleration so that the deconvolution

91

can be carried out at a cost fractional to the corresponding convolution layer.

• We demonstrate consistently superior accuracy of our approach on the CIFAR-

10, CIFAR-100, Fashion-MNIST, and ImageNet datasets compared to batch

normalization, showing that deconvolution can be used as a generic procedure

in a variety of architectures.

6.2 Related Work

6.2.1 Normalization and Whitening

Since its introduction, batch normalization has been the main normalization

technique [97] to facilitate the training of deep networks using stochastic gradient

descent (SGD). Many techniques have been introduced to address cases for which

batch normalization does not perform well. These include training with a small

batch size [83], and on recurrent networks [98]. However, to our knowledge, none of

these methods has demonstrated superior performance on the ImageNet dataset.

In the signal processing community, our network deconvolution is what would

be referred to as a whitening mechanism. There have been previous attempts to

whiten the feature channels and to utilize second-order information. For example,

in [99,100] the authors approximate second-order information using the Fisher infor-

mation matrix. However, we found that implementations of this form are unstable

for deep networks, a fact that was already noted by the authors of [100]. One reason

is that these methods directly compute a matrix inversion and that is excluded from

92

the back propagation. We point out in Eq. 6.4 that there is a first-order correction

term that needs to be included to ensure accurate computation of gradients. More

importantly, previous methods only addressed the correlation of different channels

(that is, across features), but did not consider correlation between nearby pixels

(within a single feature). This is critical, because kernels need to be trained from

the tiny discrepancies between the highly correlated neighboring pixels.

The most related work is [86,101–103], which attempts to decorrelate the data

being fed into each layer, but it only considers correlation across the channels. As

far as we are aware, our work is the first to perform pixel decorrelation.

6.3 The Deconvolution Operation

6.3.1 Definition

In this section we describe the deconvolution operation, and give some intuition

for why it helps the network learn. The task of the deconvolution operation is to

stretch a vector of random variables such that each random variable is independent

and identically distributed (i.i.d) in the statistical sense. The goal of this is to

remove the correlation that a variable has with another variable. We will cover two

types of deconvolutions, pixel and channel deconvolution. Network Deconvolution

is thus the application of these at each layer of the neural network.

Given a batch of vectors x1, x2, ...xN , organized as rows of column vectors,

we calculate their covariance matrix Covx = E(x − µx)T (x − µx) = 1
N

∑N
j=1(xj −

µx)T (xj−µx) = 1
N
XTX. Here X is the centered matrix, such that the mean of each

93

column is 0. We then calculate an approximated inverse square root of the covariance

matrix Dx = Cov
− 1

2
x and multiply this with the centered vectors (x− µx) ·Dx; this

decorrelates each dimension (pixel, channel) from other dimensions. In a sense, we

are deconvolving the tangling originating from the statistics of the raw image or

resulting from the training process. The untangling operator is this inverse square

root of the covariance matrix. If computed perfectly, this would turn the covariance

of the resulting covariance matrix, 1
N
XTX, into the identity matrix I.

When dealing with multiple feature channels in a convolution layer, the data

matrix is constructed by flattening (large) image patches in each channel into

columns and then concatenating these columns. As noted previously, there are

two types of correlation that affect the learning of weights: one is the cross-channel

correlation, the other is the more prominent autocorrelation between nearby pixels.

In Fig. 6.2 (top right) we show the calculated covariance matrix of the data

matrix X in the first layer of a VGG network [104] from ImageNet. The first

layer is a 3 × 3 convolution that mixes RGB channels. The total dimension of the

weights is 27, the corresponding covariance matrix is 27× 27. The diagonal blocks

correspond to the pixel-wise correlation within 3×3 neighborhoods. The off diagonal

blocks correspond to correlation of pixels across different channels. Generally natural

images demonstrate stronger pixel-wise correlation than cross-channel correlation,

as the diagonal blocks are significantly brighter than the off diagonal blocks.

We denote the deconvolution operation as Di, the input to next layer xi+1 can

be written as:

xi+1 = fi ◦Wi ◦Di ◦ xi (6.1)

94

where ◦ is the (right) matrix multiplication operation, xi is the input coming from

the i−th layer, Di is the deconvolution operation on that input, and Wi is the

weights in the layer. In general, the deconvolution operation removes the correlations

between the columns.

6.3.2 Expected Isometry via Deconvolution

For simplicity, we assume on all layers the activation function is a sample-

variant matrix multiplication. The popular ReLU [105] activation falls into this

category. It is important to note that essentially this function multiplies the input

vector by a diagonal matrix with entries either 1 or 0, based on the sign of the

input sample. Because of this the average effect of ReLU on a batch of data is an

attenuating effect, in that it can only either allow values to pass or turn them off,

(setting them to 0), and we assume that its operator norm is smaller than 1. We

investigate the transform of inputs to the next linear/convolution layer.

zi+1 = Di+1 ◦ fi ◦Wi ◦ zi, (6.2)

where zi is the (deconvolved) input to the linear layer and zi+1 is the (deconvolved)

input to the next linear layer.

If we assume the output dimension and the input dimension to be the same,

and if both zi and zi+1 are i.i.d., then Fi = Di+1 ◦ fi ◦ Wi is an isometry on

expectation, which keeps the statistical properties of the signal unchanged in the

forward propagation. An ideal isometry also keeps properties of gradients unchanged

95

in the backward propagation.

∂Loss

∂zi
=
∂Loss

∂zi+1

∂zi+1

∂zi
(6.3)

∂zi+1

∂zi
= Di+1 ◦ fi ◦Wi +

∂Di+1

∂zi
◦ fi ◦Wi ≈ Di+1 ◦ fi ◦Wi ≈ Rotation (6.4)

To emphasize this property on the backward propagation of the error signal: if

fi ◦Wi has a diminishing effect on the gradients, then Di+1 is expected to raise the

values to counteract.

It is important to note that the procedure does not change the learning prob-

lem, as the standard network training is solving for W ∗
i = Wi ◦ Di. Instead, this

change of variables procedure removes the correlations between feature columns and

improves the conditioning of the optimization problem.

6.3.3 Accelerated Convergence

Another favorable property of deconvolution is that after applying it, optimal

solutions may be computed in one iteration. Assume we are given a linear regression

problem with L2 loss:

y = Xw, (6.5)

where y is the output, X is the input, and w is the weight matrix we are trying to

solve for. Then, we have as an L2/min loss function:

LossL2 =
1

2
‖y − ŷ‖2 =

1

2
‖Xw − ŷ‖2. (6.6)

An explicit solution is given as
∂LossL2

∂w
= X t(Xw − ŷ) = 0

w = (X tX)−1X tŷ (6.7)

96

If the input is deconvolved, we have 1
N
X tX = I, then w = 1

N
X tŷ. On the other

hand, to conduct one iteration of gradient descent on Eq. 6.6, we have:

wnew = wold − step len×
1

N
(X tXwold −X tŷ). (6.8)

If the input is deconvolved then step len = 1 is optimal and with one iteration we

will have wnew = 1
N
X tŷ.

In our experiments section, we show that the deconvolution operation does in

fact significantly speed up training on a variety of standard benchmark tasks.

6.3.4 How Network Deconvolution is Applied in a CNN

In an effort to simplify and understand the calculation of a single kernel with

the input data in a batch, we can rewrite the convolution operation in matrix form

as: x∗kernel = Xw. In essence, we are converting the entire process of convolution

/ shifting over the image into one large matrix multiplication. In the 2-dimensional

case, w is the flattened 2D kernel. The first column ofX corresponds to the flattened

image patch of x[1 : H − k, 1 : W − k]. Neighboring columns correspond to shifted

patches of x: X[:, 2] = vec(x[1 : H − k, 2 : W − k+ 1]), ..., X[:, k2] = vec(x[k : H, k :

W]). This is done using the commonly used function im2col (See Fig. 6.2). When

formulated in this manner, the resulting combined matrix is extremely ill-posed.

This ill-posedness slows down the training algorithm, and cannot be addressed by

normalization methods [97]. Solving for the kernel given the input data X and

the output data y, is known as a kernel estimation problem [106]. It takes tens

or hundreds of gradient descent iterations to converge to a practically close enough

97

Figure 6.2: (Left) Given a single channel image, and a 3 × 3 kernel, the kernel is

first flattened into a 9 dimensional vector w. The 9 image patches, corresponding to

the image regions each kernel entry sees when overlaying the kernel over the image

and then shifting the kernel one pixel each step, are flattened into a tall matrix

X. It is important to note that because the patches are shifted by just one pixel,

the columns of X are highly correlated. The output y is calculated with matrix

multiplication Xw, which is then reshaped back into a 2D image. (Top Right) In a

convolution layer the matrix X and Cov is calculated from Algorithm 1. (Bottom

Right) The pixel-wise and group-wise correlation is removed by multiplying this X

matrix with with Cov−
1
2 , before the weight training.

98

solution. However, we emphasize that a close form solution exists as given by Eq. 6.7.

For convolutional networks, we usually have multiple input feature channels

and multiple kernels in a layer. We vectorize and concatenate all the kernels to get

w and follow Algorithm 1 to construct X and D ≈ (Cov + ε · I)−
1
2 . Here ε · I is

introduced to improve stability. We then apply the deconvolution operation D to X

to remove the correlation between neighboring pixels and across different channels.

The deconvolved data is then multiplied with w. The full equation becomes y =

X ·D · w(Fig. 6.2). The output matrix y is then reshaped into the output shape of

the layer.

6.3.5 Efficient Calculation of the Inverse Square Root of the Covari-

ance Matrix

We compute the approximate inverse square root of the covariance matrix at

low cost using the Denman-Beavers iteration method [85] in a simple and straight-

forward fashion. This method is important because there is a first-order correc-

tion (Eq. 6.4) term that needs to be included to avoid accumulating errors when

training deep networks. Given a symmetric positive definite covariance matrix Cov,

Denman-Beavers iterations start with initial values Y0 = Cov, Z0 = I. The iteration

is defined as: Yk+1 = 1
2
Yk(3I−ZkYk), Zk+1 = 1

2
(3I−ZkYk)Zk, and Zk −→ Cov−

1
2 [84].

It is important to point out a practical implementation detail: when we have Chin

input feature channels, and the kernel size is k × k, then the size of the covariance

matrix is (Chin × k × k)× (Chin × k × k). The covariance matrix becomes large in

99

deeper layers of the network. Inverting such a matrix is slow and highly unstable.

In our implementation, we evenly divide the feature channels Chin into smaller G

groups [83, 86, 101]. Usually we set G ∼ 16. The mini-batch covariance of a small

groups has a manageable size of (G× k × k)× (G× k × k). Denman-Beavers iter-

ations are therefore conducted on small matrices. We notice that only a few (∼ 5)

iterations are necessary to deconvolve both the pixel correlation and the (grouped)

channel correlation, leading to fast convergence and better results. Solving for the

inverse square root takes O((k × k ×G)3).

The computation of the covariance matrix has complexity O(H×W ×k×k×

G×G× Chin

G
) = O(H ×W × k× k×Chin×G). In comparison, the computational

complexity of a regular convolution layer has a similar complexity of O(H×W ×k×

k × Chin × Chout). However, we note that in a direct implementation, the runtime

of our training using deconvolution is slower than convolution using wallclock as a

metric. This is due to the lack of support in implicit calculation of the matrix in

existing libraries. Here we propose a simple S = 4× subsampling technique that

speeds up the operation by 16× while maintaining the training quality. With this

acceleration, the computational complexity of deconvolution operation is reduced

to only a fraction of the corresponding convolution layer. (More details can be

found in the supplementary material.) Without further optimization, our training

speed is roughly the same with training a network using batch normalization on the

ImageNet dataset. Note that the testing stage, deconvolution is faster than batch

normalization because the deconvolution can be merged with the kernels using the

associate rule of matrix multiplication.

100

The overall complexity is O(H×W×k×k×Chin×G
S×S +(k×k×G)3), which is smaller

than the convolution operation in practice.

Algorithm 1 Computing the Deconvolution Matrix

1: Input: C channels of input features [x1, x2, ..., xC]

2: for i ∈ {1, ..., C} do

3: Xi = im2col(xi)

4: end for

5: X = [X1, ..., XC] %Vertically Concatenate

6: X = Reshape(X) %Divide columns into G× k × k groups

7: Cov = 1
N
X tX

8: D ≈ (Cov + ε · I)−
1
2

6.3.6 Sparse Representations

Our deconvolution applied at each layer removes the pixel-wise and channel-

wise correlation and transforms the original dense representations into sparse repre-

sentations, without losing information. This is a desired property of the input data,

and there is a whole field developed around sparse representations [91, 92]. In Fig.

6.3, we visualize the deconvolution operation on an input and show how the re-

sulting representations (6.3(d)) are much sparser than the original image (6.3(b)).

This also holds true for hidden layer representations. We show in the supplementary

material that sparse representations has made classic regularizations more effective.

101

Figure 6.3: As giving the image zero-mean is commonly done as a preprocessing step,

we visualize the three RGB channels of the zero-meaned image transformation on an

example input image. (a) The input image (min-max normalized for visualization).

(b) The absolute value of the zero-meaned input image. (c) The deconvolved input

image (min-max normalized, so gray areas stands for 0). (d) The absolute value of

the deconvolved image.

6.4 Experiments

We now describe experimental results validating that network deconvolution is

a powerful and successful tool for sharpening the data. In fact, our experiments show

that it outperforms identical networks using batch normalization [97], a widely used

method for input normalization. As we will see across all experiments, deconvolution

not only improves the final accuracy but also decreases the amount of iterations it

takes to learn a reasonably good set of weights in a small number of epochs.

We make a note to plot and compare against previous work [101,102] (see Re-

lated Work) that only applied per-channel decorrelation and show that our network

deconvolution technique outperforms only a network channel-wise deconvolution.

102

Linear Regression with L2 loss and Logistic Regression: As a first

experiment, we ran network deconvolution on a simple linear regression task to show

its efficacy. We select the Fashion-MNIST dataset, which contains 60000 28 × 28

article images for training and 10000 for testing. The dataset has 10 categories.

It is noteworthy that with binary targets and the L2 loss, the problem has an

explicit solution if we feed the whole dataset as input. This problem is the classic

kernel estimation problem, where we need to solve for 10 optimal 28× 28 kernels to

convolve with the inputs and minimizes the L2 loss with the binary targets. During

our experiment, we notice it is important to use a small learning rate 0.02− 0.1 for

vanilla SGD training to prevent divergence. However, we notice with deconvolution,

it is possible to use the optimal learning rate 1.0 and get high accuracy as well. It

takes ∼ 5 iterations to get to a low cost under the mini-batch setting (Fig. 6.4(a)).

This even holds if we change the loss to logistic loss(Fig. 6.4(b)).

Figure 6.4: (a-b): Regression Losses on the Fashion-MNIST dataset showing the

effectiveness of deconvolution versus batch normalization on a non-convolutional

layer type. (a) One layer, linear regression model with L2 loss. (b) One layer, linear

regression model with logistic loss. (c-d): Results of a 3-hidden-layer Multi Layer

Perceptron (MLP) network on the MNIST dataset.

103

CIFAR-10 DC BN CD

VGG-11 91.33 89.15 90.23

DenseNet-121 94.71 93.45 93.65

ResNet-50 94.05 90.6 91.7

CIFAR-100 DC BN CD

VGG13 74.74 70.57 74.31

Densenet121 80.27 79.2 79.09

Resnet50 80.43 77.78 76.62

Table 6.1: (Left) Comparison on the CIFAR-10 dataset of final validation accuracy

percentage after 20 epochs of VGG-11, ResNet50, and DenseNet-121 comparing full

pixel and channel network deconvolution (DC), network channel deconvolution only

(CD), and batch normalization (BN). (Right) same comparison but with VGG-13

instead of 11, on the CIFAR-100 dataset, ran for 100 epochs.

Convolutional Networks on CIFAR-10/100: We ran deconvolution on

the CIFAR-10 (Fig. 6.5, Table 6.1(left)) and CIFAR-100 (Fig. 6.6, Table 6.1(right))

datasets, where we again compare the use of network deconvolution versus the use of

batch normalization and the use of network channel-only deconvolution. Across dif-

ferent network architectures for both datasets, deconvolution significantly improves

the final accuracy on these well-known datasets. We find that deconvolution leads

to faster convergence, On the CIFAR-10 dataset, with 20 epochs of training leading

to results that were only achievable using standard training for over 100 epochs.

As settings we remove all batch normalization in the networks and replace

them with deconvolution before each convolution/fully-connected layer. For convo-

lutional layers, we split the feature channels into 16 groups before calculating the

covariance matrix. For fully-connected layers, we split the channels into 512 groups.

104

Here, we showcase the generalizability of deconvolution across a variety of different

CNN architectures. We report results using some of the most popular architectures,

ResNet [107], VGGNet [104], and DenseNet [78], where the standard batch normal-

ization procedure has been replaced with pixel and channel deconvolution. For the

CIFAR-10 experiments, we used a batch size of 128, and a weight decay of .001, to

demonstrate the speed of convergence. For CIFAR-100, we used a batch size of 256

and weight decay of 005, with 100 epochs. Convolutional Networks on Ima-

(a) (b) (c)

Figure 6.5: Results of training various networks on the CIFAR-10 dataset.

geNet: We tested two widely-used model architectures (VGG-11, ResNet-18) from

the PyTorch model zoo and find significant improvements on both networks over

(a) (b) (c)

Figure 6.6: Results of training various networks on the CIFAR-100 dataset. The red

curve, full deconvolution (pixel and channel) performs better across all architectures.

105

the reference models in the model zoo. Notably, for the VGG-11 network, we notice

our method has led to significant improved accuracy, the top-1 accuracy is even

higher than 71.55%, reported by the reference VGG-13 model trained with batch

normalization. The improvement introduced by network deconvolution (+2.72%) is

twice as large as the introduction of batch normalization (+1.36%). This fact also

suggests us improving the training methods may lead to more improvements than

improving the architecture.

As settings we keep most of the default settings to train the two models. For

deconvolution, we use the settings as described above with only one modification.

For deconvolution of the fully-connected layers, we split the features into 32 groups.

Our conjecture is that for this complex dataset, the full feature covariance structure

of the whole dataset is under-represented with a small batch size. However, dividing

these feature into 32 groups alleviates this issue. The networks are trained for 90

epochs with batch size 256, weight decay 0.0001. The initial learning rates are 0.1,

0.01 respectively for ResNet-18 and VGG-11 as described in the paper. We used

cosine annealing to smoothly decrease the learning rate to compare the curves.

Non-Convolutional, Multi-layer Perceptron Networks: Finally, we ran

experiments to confirm that the network deconvolution procedure can extend to

non-convolutional layers via channel deconvolution, and is thus capable of improv-

ing classification on datasets not just important to computer vision but also to the

broader machine learning community. We constructed a 3-layer fully-connected net-

work that has 128 hidden nodes in each layer. For the activation function, we use

the sigmoid. As with the other experiments, we compare the use of batch nor-

106

malization, channel-only deconvolution, and full deconvolution (pixel and channel).

Indeed, applying deconvolution to MLP networks outperforms batch normalization,

as shown in Fig. 6.4.

Figure 6.7: Results of training the VGG-11/ResNet-18 network on the ImageNet

dataset.

6.5 Acknowledgement

We would like to express our gratitude to Prof. Brian Hunt for his insightful

comments.

6.6 Conclusion

In this paper we presented network deconvolution, a novel normalization method

for pixel-wise decorrelation. The method was evaluated extensively and shown to im-

prove the optimization efficiency over standard Batch Normalization. We provided

a thorough analysis regarding its performance and demonstrated consistent perfor-

mance improvements of the deconvolution operation on multiple major benchmarks.

107

ImageNet No Norm. REF BN CD DC

VGG-11 69.02 70.38 71.45 71.74

Resnet-18 N/A 69.76 69.80 70.65

Table 6.2: Comparison of top-1 accuracy of full deconvolution with the model zoo

implementation of VGG-11 and ResNet-18 on ImageNet between: Reference imple-

mentation on PyTorch with no normalization (No Norm.), reference implementation

with batch norm (REF BN), Channel Deconvolution only (CD) and Full Pixel and

Channel Deconvolution (DC).

Our proposed deconvolution operation is straightforward in terms of implementation

and can serve as a good alternative to Batch Normalization.

6.7 Appendix

6.7.1 Acceleration via Subsampling

We have demonstrated the computation of the covariance matrix has complex-

ity O(H ×W × k × k × Chin × G), which is usually lower than the complexity of

a convolution layer in the real settings. However, at the time of this writing, these

operations have not been incorporated into any existing deep learning packages.

Direct computations incur unnecessary memory copy operations which significantly

slow down the training. One key observation is that the covariance matrix is usu-

ally very small compare to the number of pixels involved in the computation. As

108

an example, it is unnecessary to use 1 million samples to calculate a 9 × 9 covari-

ance. Here we propose a simple subsampling technique to siginificantly reduce the

computational cost. When calling the im2col function, we specify a sampling stride

to uniformly subsample from the original image. With subsampling, the cost is re-

duced to O(H×W×k×k×Chin×G
S2). Experimentally we have noticed sampling strides of

S = 3 ∼ 5 reduces the computational cost by 10× ∼ 20×, without sacrificing train-

ing accuracy. With this acceleration, the training wall time is close to a network

using batch normalization on the ImageNet.

6.7.2 Regularizations

If two features correlate, weight decay regularization is less effective. If X1, X2

are strongly correlated features, but differ in scale, and if we look at: w1X1 +w2X2.

The weights is likely to co-adapt during the training and weight decay is likely

to be more effective on the larger coefficient. The other, small coefficient is left

less penalized. Network deconvolution reduces the co-adaptation of weights, weight

decay has become less ambiguous and more effective (Fig. 6.8(a)).

6.7.3 Sparse Representations for Convolution Layers

Fig. 6.9 shows the inputs to the 5-th convolution layer in V GG − 11. This

input is the output of a ReLU activation function. The deconvolution operation

first subtract the mean, and then remove the correlation between nearby pixels,

resulting in a sharper and sparser representation.

109

(a) (b)

Figure 6.8: (a)The effects of weight decay on stochastic gradient descent (SGD) and

batch normalization (BN) versus SGD and deconvolution (Deconv) with 5 iterations

done to produce the inverse covariance matrix, training on the CIFAR-100 dataset

on the VGG-13 network. Here we notice that increased weight decay leads to worse

results for standard training. However in our case with deconvolution, the final ac-

curacy actually improves with increased weight decay (.001 to .005).(b)The training

loss of the VGG-11 network on the ImageNet dataset. Only the first 1000 itera-

tions are shown. Comparison is made among SGD, SGD with batch normalization,

channel deconvolution only, and full deconvolution.

6.7.4 Accelerated Convergence

We demonstrate the loss curves using different settings when training the

VGG-11 network on the ImageNet dataset(Fig. 6.8(b)). We can see network de-

convolution leads to significantly faster decay in training loss.

110

(a) (b)

Figure 6.9: (a)Input features to the 5-th convolution layer in VGG-11. (b) Taking

the absolute value of the deconvolved features. The features have been min-max

normalized for visualization.(Best view on a display.)

111

Bibliography

[1] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse.
Monoslam: Real-time single camera slam. IEEE Transactions on Pattern
Analysis & Machine Intelligence, (6):1052–1067, 2007.

[2] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 x 128 at 120db 15 micros
latency asynchronous temporal contrast vision sensor. Solid-State Circuits,
IEEE Journal of, 43(2):566–576, 2008.

[3] C. Brandli, R. Berner, M. Yang, S. Liu, and T. Delbruck. A 240 180 130
db 3 s latency global shutter spatiotemporal vision sensor. IEEE Journal of
Solid-State Circuits, 49(10):2333–2341, Oct 2014.

[4] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems, pages 1097–1105, 2012.

[6] Stphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The
Sparse Way. Academic Press, Inc., Orlando, FL, USA, 3rd edition, 2008.

[7] S. Mallat. Understanding deep convolutional networks. Philosophical Trans-
actions of the Royal Society of London Series A, 374:20150203, April 2016.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–778, 2016.

[10] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected con-
volutional networks. arXiv preprint arXiv:1608.06993, 2016.

112

[11] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and
Jiashi Feng. Dual path networks. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 4467–4475. Curran Asso-
ciates, Inc., 2017.

[12] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway
networks. CoRR, abs/1505.00387, 2015.

[13] Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071,
2014.

[14] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray
Kavukcuoglu. Spatial transformer networks. CoRR, abs/1506.02025, 2015.

[15] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding.
CoRR, abs/1510.00149, 2015.

[16] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. CoRR, abs/1608.08710, 2016.

[17] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and
Changshui Zhang. Learning efficient convolutional networks through network
slimming. CoRR, abs/1708.06519, 2017.

[18] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neu-
ral networks with weights and activations constrained to +1 or -1. CoRR,
abs/1602.02830, 2016.

[19] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge
in a neural network. CoRR, abs/1503.02531, 2015.

[20] Ming Liang and Xiaolin Hu. Recurrent convolutional neural network for ob-
ject recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[21] Richard Socher, Brody Huval, Bharath Bath, Christopher D Manning, and
Andrew Y Ng. Convolutional-recursive deep learning for 3d object classifica-
tion. In Advances in neural information processing systems, pages 656–664,
2012.

[22] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,
William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with
50x fewer parameters and <1mb model size. CoRR, abs/1602.07360, 2016.

[23] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

113

[24] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile devices. CoRR,
abs/1707.01083, 2017.

[25] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
Condensenet: An efficient densenet using learned group convolutions. CoRR,
abs/1711.09224, 2017.

[26] Ting Zhang, Guo-Jun Qi, Bin Xiao, and Jingdong Wang. Interleaved group
convolutions for deep neural networks. CoRR, abs/1707.02725, 2017.

[27] Yi Zhou, Guillermo Gallego, Henri Rebecq, Laurent Kneip, Hongdong Li, and
Davide Scaramuzza. Semi-dense 3d reconstruction with a stereo event camera.
European Conference on Computer Vision(ECCV), 2018.

[28] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis.
Unsupervised Event-based Learning of Optical Flow, Depth, and Egomotion.
arXiv e-prints, page arXiv:1812.08156, Dec 2018.

[29] Guillermo Gallego Henri Rebecq and Davide Scaramuzza. Emvs: Event-based
multi-view stereo. In E. R. Hancock R. C. Wilson and W. A. P. Smith, editors,
Proceedings of the British Machine Vision Conference (BMVC), pages 63.1–
63.11, September 2016.

[30] Hanme Kim, Stefan Leutenegger, and Andrew J. Davison. Real-time 3d re-
construction and 6-dof tracking with an event camera. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016,
pages 349–364, Cham, 2016. Springer International Publishing.

[31] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. A unifying con-
trast maximization framework for event cameras, with applications to motion,
depth, and optical flow estimation. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2018.

[32] T. Delbruck. Frame-free dynamic digital vision. In Proceedings of Intl. Sym-
posium on Secure-Life Electronics, Advanced Electronics for Quality Life and
Society, Tokyo, Japan,, pages 21–26, March 2008.

[33] Min Liu and Tobi Delbruck. Block-matching optical flow for dynamic vision
sensors: Algorithm and fpga implementation. In Circuits and Systems (IS-
CAS), 2017 IEEE International Symposium on, pages 1–4. IEEE, 2017.

[34] Ryad Benosman, Sio-Hoi Ieng, Charles Clercq, Chiara Bartolozzi, and
Mandyam Srinivasan. Asynchronous frameless event-based optical flow. Neu-
ral Netw., 27:32 – 37, March 2012.

[35] Stephan Tschechne, Tobias Brosch, Roman Sailer, Nora von Egloffstein,
Luma Issa Abdul-Kreem, and Heiko Neumann. On event-based motion detec-
tion and integration. In Proceedings of the 8th International Conference on

114

Bioinspired Information and Communications Technologies, pages 298–305,
2014.

[36] R. Benosman, C. Clercq, X. Lagorce, Sio-Hoi Ieng, and C. Bartolozzi. Event-
based visual flow. Neural Networks and Learning Systems, IEEE Transactions
on, 25(2):407–417, 2014.

[37] Francisco Barranco, Cornelia Fermüller, and Yiannis Aloimonos. Contour
motion estimation for asynchronous event-driven cameras. Proceedings of the
IEEE, 102(10):1537–1556, 2014.

[38] G. Orchard and R. Etienne-Cummings. Bioinspired visual motion estimation.
Proceedings of the IEEE, 102(10):1520–1536, Oct 2014.

[39] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis.
Ev-flownet: Self-supervised optical flow estimation for event-based cameras.
Robotics: Science and Systems, 2018.

[40] A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and K. Daniilidis.
The multivehicle stereo event camera dataset: An event camera dataset for
3d perception. IEEE Robotics and Automation Letters, 3(3):2032–2039, July
2018.

[41] Deqing Sun, Erik B Sudderth, and Michael J Black. Layered segmentation
and optical flow estimation over time. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1768–1775. IEEE, 2012.

[42] J-M Odobez and Patrick Bouthemy. Mrf-based motion segmentation exploit-
ing a 2d motion model robust estimation. In Proceedings., International Con-
ference on Image Processing, volume 3, pages 628–631. IEEE, 1995.

[43] William B. Thompson and Ting-Chuen Pong. Detecting moving objects. In-
ternational Journal of Computer Vision, 4(1):39–57, Jan 1990.

[44] René Vidal, Yi Ma, and Shankar Sastry. Generalized principal component
analysis (gpca). In 2003 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 2003. Proceedings., volume 1, pages I–I. IEEE,
2003.

[45] Michal Irani and P Anandan. A unified approach to moving object detection
in 2d and 3d scenes. IEEE transactions on pattern analysis and machine
intelligence, 20(6):577–589, 1998.

[46] Philip HS Torr. Geometric motion segmentation and model selection. Philo-
sophical Transactions of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 356(1740):1321–1340, 1998.

115

[47] Abhijit S Ogale, Cornelia Fermuller, and Yiannis Aloimonos. Motion segmen-
tation using occlusions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(6):988–992, 2005.

[48] Katerina Fragkiadaki, Geng Zhang, and Jianbo Shi. Video segmentation by
tracing discontinuities in a trajectory embedding. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 1846–1853. IEEE, 2012.

[49] Katerina Fragkiadaki, Pablo Arbelaez, Panna Felsen, and Jitendra Malik.
Learning to segment moving objects in videos. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

[50] Pia Bideau, Aruni RoyChowdhury, Rakesh R Menon, and Erik Learned-Miller.
The best of both worlds: combining cnns and geometric constraints for hier-
archical motion segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 508–517, 2018.

[51] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. Learning depth from sin-
gle monocular images. In Advances in neural information processing systems,
pages 1161–1168, 2006.

[52] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction
from a single image using a multi-scale deep network. In Advances in neural
information processing systems, pages 2366–2374, 2014.

[53] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. Unsupervised
cnn for single view depth estimation: Geometry to the rescue. In European
Conference on Computer Vision, pages 740–756. Springer, 2016.

[54] Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3d: Fully automatic 2d-
to-3d video conversion with deep convolutional neural networks. In European
Conference on Computer Vision, pages 842–857. Springer, 2016.

[55] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. Unsuper-
vised learning of depth and ego-motion from video. In CVPR, 2017.

[56] Chaoyang Wang, José Miguel Buenaposada, Rui Zhu, and Simon Lucey.
Learning depth from monocular videos using direct methods. CoRR,
abs/1712.00175, 2017.

[57] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Unsupervised learning
of depth and ego-motion from monocular video using 3d geometric constraints.
CoRR, abs/1802.05522, 2018.

[58] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram Nevatia. LEGO:
learning edge with geometry all at once by watching videos. In Proc. IEEE
Computer Vision and Pattern Recognition Conference, 2018.

116

[59] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learning of dense depth,
optical flow and camera pose. CoRR, abs/1803.02276, 2018.

[60] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Suk-
thankar, and Katerina Fragkiadaki. Sfm-net: Learning of structure and motion
from video, 2017.

[61] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[62] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1. chapter
Learning Internal Representations by Error Propagation, pages 318–362. MIT
Press, Cambridge, MA, USA, 1986.

[63] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. CoRR, abs/1311.2901, 2013.

[64] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR,
abs/1605.07146, 2016.

[65] R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for best
basis selection. IEEE Trans. Inf. Theor., 38(2):713–718, September 2006.

[66] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. In B. Schölkopf, J. C. Platt, and T. Hoff-
man, editors, Advances in Neural Information Processing Systems 19, pages
153–160. MIT Press, 2007.

[67] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable
Convolutional Networks. ArXiv e-prints, March 2017.

[68] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR, abs/1502.03167,
2015.

[69] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images, 2009.

[70] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled
variant of imagenet as an alternative to the CIFAR datasets. CoRR,
abs/1707.08819, 2017.

[71] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255, June 2009.

[72] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. CoRR, abs/1603.05027, 2016.

117

[73] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger.
Deep networks with stochastic depth. CoRR, abs/1603.09382, 2016.

[74] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming
He. Aggregated residual transformations for deep neural networks. CoRR,
abs/1611.05431, 2016.

[75] Chengxi Ye, Chinmaya Devaraj, Michael Maynord, Cornelia Fermüller, and
Yiannis Aloimonos. Evenly cascaded convolutional networks. In IEEE Inter-
national Conference on Big Data, Big Data 2018, Seattle, WA, USA, Decem-
ber 10-13, 2018, pages 4640–4647, 2018.

[76] Anton Mitrokhin, Cornelia Fermuller, Chethan Parameshwara, and Yiannis
Aloimonos. Event-based moving object detection and tracking. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS), 2018.

[77] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Unsupervised learning
of depth and ego-motion from monocular video using 3d geometric constraints.
CoRR, abs/1802.05522, 2018.

[78] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected con-
volutional networks. CoRR, abs/1608.06993, 2016.

[79] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI (3), volume 9351 of
Lecture Notes in Computer Science, pages 234–241. Springer, 2015.

[80] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[81] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 4700–4708, 2017.

[82] Chengxi Ye, Dacheng Tao, Mingli Song, David W. Jacobs, and Min Wu. Sparse
norm filtering. CoRR, abs/1305.3971, 2013.

[83] Yuxin Wu and Kaiming He. Group normalization. CoRR, abs/1803.08494,
2018.

[84] Tsung-Yu Lin and Subhransu Maji. Improved bilinear pooling with cnns.
CoRR, abs/1707.06772, 2017.

[85] Eugene D. Denman and Alex N. Beavers, Jr. The matrix sign function and
computations in systems. Appl. Math. Comput., 2(1):63–94, January 1976.

[86] Chengxi Ye, Yezhou Yang, Cornelia Fermüller, and Yiannis Aloimonos. On
the importance of consistency in training deep neural networks. CoRR,
abs/1708.00631, 2017.

118

[87] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving?
The KITTI Vision benchmark suite. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361, June 2012.

[88] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from
a single image using a multi-scale deep network. In NIPS, 2014.

[89] Ravi Garg, Vijay Kumar B. G, and Ian D. Reid. Unsupervised CNN for single
view depth estimation: Geometry to the rescue. CoRR, abs/1603.04992, 2016.

[90] Chengxi Ye, Anton Mitrokhin, Cornelia Fermüller, James A. Yorke, and Yian-
nis Aloimonos. Unsupervised learning of dense optical flow, depth and ego-
motion from sparse event data. CoRR, abs/1809.08625v2, 2018.

[91] Bruno A. Olshausen and David J. Field. Emergence of simple-cell recep-
tive field properties by learning a sparse code for natural images. Nature,
381(6583):607–609, 1996.

[92] Aapo Hyvrinen, Jarmo Hurri, and Patrick O. Hoyer. Natural Image Statistics:
A Probabilistic Approach to Early Computational Vision. Springer Publishing
Company, Incorporated, 1st edition, 2009.

[93] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[94] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97, 2012.

[95] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12(Aug):2493–2537, 2011.

[96] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[97] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[98] Tim Salimans and Diederik P. Kingma. Weight normalization: A simple
reparameterization to accelerate training of deep neural networks. CoRR,
abs/1602.07868, 2016.

119

[99] James Martens and Roger B. Grosse. Optimizing neural networks with
kronecker-factored approximate curvature. CoRR, abs/1503.05671, 2015.

[100] Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, and koray
kavukcuoglu. Natural neural networks. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 2071–2079. Curran Associates, Inc., 2015.

[101] Chengxi Ye, Anton Mitrokhin, Cornelia Fermüller, James A. Yorke, and Yian-
nis Aloimonos. Unsupervised learning of dense optical flow and depth from
sparse event data. CoRR, abs/1809.08625, 2019.

[102] Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch nor-
malization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 791–800, 2018.

[103] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization:
Beyond standardization towards efficient whitening. CoRR, abs/1904.03441,
2019.

[104] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[105] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[106] Chengxi Ye, Chiaowen Hsiao, and Hctor Corrada Bravo. BlindCall: ultra-
fast base-calling of high-throughput sequencing data by blind deconvolution.
Bioinformatics, 30(9):1214–1219, 01 2014.

[107] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

120

	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	The Dynamic Vision Sensor
	Structure from Motion
	What is an Artificial Neural Network?
	Why is it Hard to Train a Network?
	A Missing Piece
	Inspirations from Human Learning
	The Organization of the Theis

	Related Work
	Network Architectures
	Event-based Depth Estimation
	Event-based Optical Flow
	Independent Motion Detection
	Learning in Structure from Motion

	Evenly Cascaded Convolutional Networks
	Methods
	Utilization of Multilevel Features
	Fractional Scaling
	Convolution Block Design

	Experiments
	Datasets
	Results
	Comparison of Convolution Blocks over CIFAR10 and CIFAR100

	Conclusion

	 Unsupervised Learning of Dense Optical Flow, Depth and Egomotion from Sparse Event Data
	Related Work
	Event-based Depth Estimation
	Event-based Optical Flow
	Self-supervised Structure from Motion

	Methods
	Ego-motion Model
	Input Data Representation
	The Pipeline
	Evenly Cascaded Network Architecture
	Depth Predictions
	Feature Decorrelation

	Experimental Evaluation
	Implementation Details
	Dataset Preparation
	Ablation Studies
	Qualitative Results
	Optical Flow Evaluation
	Depth Evaluation
	Egomotion Estimation
	Discussion and Failure Cases

	CONCLUSION

	 EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event Cameras
	The Architecture
	Network Input
	Overview of the Architecture
	Motion Model
	A Mixture Model for Ego-motion and Independently Moving Objects
	Loss functions
	Evenly Cascading Network Architecture
	Prediction of Depth and Component Weights

	EV-IMO Dataset
	Sequences

	Experiments
	Conclusions

	Network Deconvolution
	Introduction
	Related Work
	Normalization and Whitening

	The Deconvolution Operation
	Definition
	Expected Isometry via Deconvolution
	Accelerated Convergence
	How Network Deconvolution is Applied in a CNN
	Efficient Calculation of the Inverse Square Root of the Covariance Matrix
	Sparse Representations

	Experiments
	Acknowledgement
	Conclusion
	Appendix
	Acceleration via Subsampling
	Regularizations
	Sparse Representations for Convolution Layers
	Accelerated Convergence

	Bibliography

