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Fish in nature have several distinct advantages over traditional propeller driven

underwater vehicles including maneuverability and flow sensing capabilities. Taking

inspiration from biology, this work seeks to answer three questions related to bioin-

spired pursuit and apply the knowledge gained therein to the control of a novel,

reaction-wheel driven autonomous fish robot. Which factors are most important to

a successful pursuit? How might we guarantee capture with underwater pursuit?

How might we track the wake of a flapping fish or vehicle?

A technique called probabilistic analytical modeling (PAM) is developed and

illustrated by the interactions between predator and prey fish in two case studies

that draw on recent experiments. The technique provides a method for investigators

to analyze kinematics time series of pursuit to determine which parameters (e.g.

speed, flush distance, and escape angles) have the greatest impact on metrics such

as probability of survival.

Providing theoretical guarantees of capture become complicated in the case



of a swimming fish or bioinspired fish robot because of the oscillatory nature fish

motion. A feedback control law is shown to result in forward swimming motion

in a desired direction. Analysis of this law in a pursuit scenario yields a condition

stating whether capture is guaranteed provided some basic information about the

motion of the prey.

To address wake tracking inspiration is taken from the lateral line sensing

organ in fish, which is sensitive to hydrodynamic forces in the local flow field. In

experiment, an array of pressure sensors on a Joukowski foil estimates and controls

flow-relative position in a Kármán vortex street using potential flow theory, recursive

Bayesian filtering, and trajectory-tracking, feedback control.

The work in this dissertation pushes the state of the art in bioinspired under-

water vehicles closer to what can be found in nature. A modeling technique provides

a means to determine what is most important to pursuit when designing a vehicle,

analysis of a control law shows that a robotic fish is capable of pursuit engagements

with capture guarantees, and an estimation framework demonstrates how the wake

of a swimming fish or obstacle in the flow can be tracked.
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Chapter 1: Introduction

1.1 Motivation for bioinpired pursuit

The motivation to take inspiration from biology in the development of pursuit

with underwater vehicles follows a long history of man’s fascination with nature’s

design. As far back as the myth of Icarus and Daedalus in Ancient Greece, man

has yearned to make use of the solutions presented by natural selection. Studying

nature to attain inspiration for engineering design has a history all the way from

DaVinci’s glider inspired by the structure of the bat’s wing to the Wright Brother’s

flyer [1]. In more recent history, there has been interest in the touch-at-a-distance

lateral line sensing modality in fish and its uses in an engineering context for the

development of underwater autonomous vehicles [2–6]. Additionally, there have been

many studies of the pursuit tactics used by animals in nature including humans,

dogs, birds, dragonflies, bats, and fish [7–14]. This dissertation focuses on taking

inspiration from the form and behavior of fish in the development of sensing and

control algorithms for autonomous underwater vehicles.

Predation is a fundamental interaction between species, yet it is largely unclear

what tactics are successful for the survival or capture of prey. One challenge in this

area comes with how to test theoretical ideas about strategy with experimental mea-
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surements of features such as speed, flush distance, and escape angles. Tactics may

be articulated with an analytical model that predicts the motion of predator or prey

as they interact. However, it may be difficult to recognize how the predictions of

such models relate to behavioral measurements that are inherently variable. Here an

alternative approach for modeling predator-prey interactions that uses deterministic

dynamics, yet incorporates experimental kinematic measurements of natural varia-

tion to predict the outcome of biological events is presented. This method allows

researchers to hypothesize why a particular species may have an evolutionary im-

perative to improve some features rather than others. From an engineering context,

it allows designers to make informed decisions on where to focus resources. For ex-

ample, is it better to have a faster vehicle or better sensing capabilities given limited

resources?

Theoretical guarantees of capture become complicated in the case of a swim-

ming fish or fish robot because of the oscillatory nature of the fish heading. Knowl-

edge of the conditions under which capture is guaranteed is very important from

both a biological and engineering perspective. In both cases, if it is known ahead

of time that capture is unlikely, it is in the best interest of the pursuer to conserve

resources by not engaging in pursuit.

Wake tracking is achieved by fish in nature through the use of their lateral

line, a distributed sensing organ composed of mechanosensitive hairs that deflect in

response to the flow field around the fish. Fish use this sensing modality to forage,

capture prey, and follow walls even in complete darkness [5]. Equipping an under-

water vehicle with an artificial lateral line composed of distributed pressure sensors
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adds a complementary sensing modality for estimating the location of a target on

top of the traditional computer vision solutions. In particular, this lateral line sens-

ing modality has great use in murky or clouded waters where visual information is

greatly degraded.

1.2 Relation to prior work

1.2.1 Probabalistic modeling of predator-prey interations

Predation is critical to the structure of populations and has guided the evolu-

tionary fate of myriad species. Despite its importance in biology, investigators have

struggled to formulate a predictive body of theory for understanding the behaviors

that succeed in the survival or capture of prey. It is consequently unclear what traits

of a predator or prey are most important to predation. This challenge has been met

through the development of analytical models that articulate tactics and predict

the motion of these animals. However, it is difficult to reconcile these predictions

with kinematic measurements due to the highly uncontrolled and coupled nature of

behavioral interactions between predator and prey. The aim of the current study

is to advance our understanding of the behavior of predation through the introduc-

tion of an analytical approach that incorporates kinematic measurements of natural

variation into analytical models of predator and prey tactics.

The work here is motivated by the importance of predation in the survival

of a species. While this motivation may suggest that we study the growth rate of

species, we instead take a individual-centric approach where we seek to quantify the
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expected value of a metric of success in the predator-prey interaction. We demon-

strate the utility of our approach, called probabilistic analytical modeling (PAM),

by modeling predator-prey interactions in fishes that have been observed experimen-

tally. Measurement of kinematic features such as speed, flush distance (escape or

alert distance), and escape angles from experiment combined with dynamical mod-

eling and probabilistic analysis predict the outcomes of biological events in ways

that experiments or modeling alone cannot.

Hypothetical tactics of predators and prey have been previously formulated

with analytical pursuit-evasion models. These models predict the trajectories of in-

dividuals [15–17], or the swarming behavior of one target and many pursuers [18,19],

as particles capable of responding to the state of the opposing animal according to a

behavioral algorithm [20–23]. Due to the transparency of analytical mathematics, it

is possible to identify the parameters in these algorithms that optimize a particular

aspect of performance. For example, the classic homicidal chauffeur game model

was successfully used to formulate the direction of the escape response by prey fish

that maximizes the distance from a predator [24, 25]. This model has been invoked

in the interpretation of numerous experimental studies on prey fish [26–30].

However, attempts at reconciling theory with experimentation demonstrate

some of the limitations of existing theory. The homicidal chauffeur model assumes

that predator and prey maintain a fixed heading and velocity and that the prey

senses the predator’s speed and heading with perfect accuracy. These assumptions

seem unlikely to hold true in most piscivorous interactions and it is therefore unclear

to what extent measured deviation from predictions may be attributed to violations
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of the model’s assumptions, fish using a different tactic, or other natural variation

in behavior. As a consequence, it is not clear whether prey fish escape optimally

with respect to some metric (e.g., distance from the predator) or not.

The effects of natural variation have been considered by computational models

that include stochasticity. Such data-driven models include those of fish schools that

respond to a predator [31] and a schooling model that investigates how perturbations

among a small number of agents affects the behavior of the school at large [32].

Certain classes of stochastic pursuit-evasion games have even been solved [33] and

the importance of not using deterministic models in stochastic systems is highlighted

in a model of the growth rate of feeding fish [34]. In work on specific species,

data-driven techniques with stochastic or probabilistic elements are used to model

the fast-turning dynamics of zebrafish [35], the probability of capture for suction

feeding sunfish [36], the predation by the exotic shrimp species Dikerogammarus

villosus [37], and the dynamics of the bacterial predation in soil [38]. On a macro

scale, predator-prey population dynamics in the sense of Lotka-Volterra [39] are

modeled with stochastic components to the birth and death rate of the species [40]

and with data fitting techniques that generalize the local predator-prey interactions

to the population dynamics as a whole [41].

Although perhaps more predictive than a classic analytical model, the above

data-driven models lack the advantages of analytical analysis for formulating tactics

that optimize some payout. The same disadvantage is apparent through a Monte

Carlo approach to pursuit-evasion models. Monte Carlo approaches yield distri-

butions of numerical results from batches of deterministic simulations that draw
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parameter values from random-number generation according to measured probabil-

ity distributions [42].

The alternative provided by this dissertation is called probabilistic analytical

modeling (PAM). PAM is similar in concept to a Monte Carlo approach, but has

the additional advantage of providing analytical transparency. Rather than using

many numerical simulations of system dynamics and predicting the outcome from

the resulting distribution of simulation outcomes, PAM applies tools from proba-

bility theory to the dynamics of the system to directly calculate the expected value

of a metric of interest. This new tool provides a means for researchers to examine

kinematic time series of pursuit to evaluate which parameters in a predator/prey

interaction have the greatest effect on the key metric, typically probability of sur-

vival.

1.2.2 Bioinspired pursuit

Pursuit has long been a study of interest to researchers and engineers both for

its mathematical elegance and its practicality in a world at war where intelligent

guidance strategies for boats, planes, and missiles are critical to mission success

[20, 21, 43]. In the context of this dissertation, we are interested in pursuit by

autonomous underwater vehicles. This research area is itself one that bears many

fruit, with applications to surveillance, ship inspection, and search and recovery

[44–46]. However, the focus of this dissertation is more narrow in that it specifically

deals with the state of the art in fish-inspired underwater vehicles.
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A fish-inspired robot has several advantages over a traditional, propeller-driven

underwater vehicle. Robots inspired by fish have been seen to be capable of rapid

turning maneuvers due to their articulated or flexible bodies, energy efficient lo-

comotion, and stealthy swimming [47–49]. Many types of fish-inspired underwater

vehicles are seen in the literature including some with external actuators such as

screws, fins, or wings of underwater vehicles [49–51]. Many of these designs suffer

from excessive noise or distinct acoustic signatures that detract from their ability

to act as surveillance drones [52].

Locomotion via an internal reaction wheel does not suffer from these short-

comings due to the actuating component being contained within the body of the

robot. Reaction wheels are a technology typically used in satellite design to orient

the craft without the use of fuel [53]. The principle of operation is conservation

of angular momentum. As a heavy disc or wheel is accelerated by a motor in one

direction, the body rotates in the opposite direction.

Recently, however, the reaction wheel has begun to see use in the develop-

ment of swimming robots [55–57]. The oscillatory motion of the robots under the

effect of the reaction wheel causes the fish-shaped bodies to form and shed a vor-

tex, propelling the craft forward. These works lack a convenient means to model

the dynamics of a fish robot swimming under this type of reaction wheel actua-

tion, a gap that has been filled in recent years. A mathematical analog between a

fish-shaped robot with an internal reaction wheel and a Chaplygin sleigh with an in-

ternal reaction wheel has been found by taking advantage of a shared non-holonomic

constraint [58].
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(a)

(b)
x

y

Figure 1.1: (a) Chaplygin sleigh schematic. A wheel in the back constrains motion

to be perpindicular to its axis. Two casters in the front allow the sleigh to pivot

about the wheel. A heavy disc on top is actuated by a motor to drive the sleigh

forward. (b) Trajectory of the sleigh under a sinusoidal motor torque. This figure

has been included here for the reader’s clarity and is inspired by a figure from [54].
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Before continuing, it is necessary to give a brief aside on the Chaplygin sleigh.

The Chaplygin sleigh is one of the canonical examples in many classical mechanics

textbooks used to demonstrate how energy methods can be used to derive equations

of motion for a system with non-holonomic constraints [59]. The non-holonomic

system is one with differential constraint, which has the effect of making the state of

the system dependent on the path taken to get there. The non-holonomic constraint

in the Chaplygin sleigh is the wheel or knife’s edge that does not allow any transverse

velocity. It is the similarity of this constraint to the Kutta condition on a foil, which

dictates that flow must leave smoothly at the trailing edge [60], that allows the

treatment of this type of fish robot as having the dynamics of a Chaplygin sleigh.

Figure 1.1 shows a schematic of a Chaplygin sleigh and an illustration of the path

it takes under a sinusoidal input torque on the reaction wheel.

The connection between the Chaplygin sleigh and reaction-wheel propelled fish

robot allows the relatively simple dynamics of the Chaplygin sleigh to be used in

the control design and analysis for steering and propulsion of the fish robot, which

I hereafter refer to as the Chaplygin fish.

To steer a Chaplygin fish using a reaction wheel, various torque profiles such as

symmetric, asymmetric, and impulsive have been used [55,61]. Other works focus on

the analysis of the energy of the Chaplygin sleigh’s motion as a piecewise-smooth

non-holonomic constraint and simulate transitions between distinct dynamics be-

longing to the slip and stick modes [57, 62]. However, these prior works are limited

to solid-bodied robots [57, 61–64], and do not use state-feedback control.

There has been no work prior to this dissertation and a preliminary conference
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paper [65] that provides a control algorithm that is autonomous (meaning no explicit

dependence on time [66]), continuous, or uses state-feedback control. A control

algorithm of this type greatly increases the ease of analysis from a control-theoretic

standpoint and relies less on empirical observations of the robot behavior under

the control law. Furthermore, there has been no work detailing the use of one

of these Chaplygin fish in pursuit, much less any means to provide guarantees of

successful capture. This is likely due to the relative youth of the reaction-wheel

driven underwater vehicle subset of the controls community.

Outside of the context of the Chaplygin fish, however, there has been much

work on how to provide theoretical guarantees of capture. Game theoretic formu-

lations of pursuit can provide formal solutions to the optimal control strategy that

yields the best chances of capture [33, 67]. Advanced nonlinear control techniques

such as sliding mode and robust partial control design have been used to guarantee

capture of evasive targets with unknown dynamics but known maximum accelera-

tions [19,68,69]. These works assume a vehicle with two traditional control inputs,

steering and thrust, to change direction and speed, respectively. The Chaplygin

fish has only one control input, the torque imparted on the internal reaction wheel,

and so more care is needed to provide capture guarantees due to the necessarily

oscillatory motion in the heading.

1.2.3 Vortex estimation and flow relative control

Autonomous navigation of underwater vehicles through complex flow struc-
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tures such as the turbulent wake of another vehicle requires a sensing mechanism to

perceive variable flow patterns. Fish have a sensing structure known as the lateral

line, which contains spatially distributed superficial and canal neuromasts sensitive

to flow velocity and pressure gradients respectively [2, 3], that provides inspiration

for a similar sensing system for underwater vehicles. Fish utilize lateral-line sensing

of the hydrodynamic properties of the flow to help navigate and seek prey, even in

complete darkness [4,5,70]. Bioinspired artificial lateral lines comprised of pressure

sensors have the potential to enable robotic platforms to estimate the flow speed

and angle of attack in uniform flows [71] and the location and strength of circulating

flow structures such as vortices and vortex streets [72].

A frequently studied circulating structure is the Kármán vortex street, a pat-

tern of clockwise and anti-clockwise vortices shed by a blunt body due to flow sepa-

ration [73]. This pattern is also produced in the wake of fish as they swim (though

with opposite vortex strength, known as a reverse Kármán vortex street) [74], and

is investigated here as a precursor to fish-robot multi-vehicle control including pur-

suit and schooling behavior. Figure 1.2 shows a schematic of both a Kármán vortex

street and a reverse Kármán vortex street.

This work describes the use of a Bayesian filter in conjunction with a potential

flow model and distributed pressure sensors on a fish-shaped, underwater Joukowski

foil [60, 75] to estimate the strength, phase, and cross-stream location of a Kármán

vortex street, as well as the design of a feedback controller to drive the foil to

an arbitrary reference trajectory through the street. The Joukowski foil is fixed

in its downstream position in a flow tank and its angle of attack is controlled so

11
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Figure 1.2: Illustration of (a) Kármán vortex street and (b) Reverse Kármán vortex

street. White lines are streamlines. Black circles indicate vortex locations within

the street and arrows indicate the direction of rotation. Orange indicates a pressure

higher than the freestream and blue, lower.
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the foil moves in the cross-stream direction along an air-bearing track. It can be

programmed to follow any differentiable reference trajectory through a vortex street.

In particular, both an optimal sinusoidal path determined by empirical observability

and the slaloming path known as Kármán gaiting are experimentally validated.

Observability is a concept that determines how well a set of states can be reproduced

from a set of measurements, if at all.

Fish in nature slalom through alternating vortices using a combination of their

lateral line and vision system and are capable of Kármán gaiting even in the absence

of vision [76]. Research has also shown that during Kármán gaiting behavior the

tail-beat frequency of the fish matches the vortex-shedding frequency, and muscle

activity decreases compared to station holding in uniform flow [77]. Dead (but still

flexible) trout towed behind an obstacle in the flow can even exhibit Kármán gaiting

and passively generate thrust [78].

The lateral line in fish is an important sensing mechanism for navigating the

underwater space, particularly for Kármán gaiting, but also for schooling [79], preda-

tor/prey detection [80,81], and wall following [5]. The effective sensing range of the

lateral line is on the order of one body length [82]. An artificial lateral line has

the capability of providing the same sensing mechanism to robotic fish and marine

vessels. The signal on the nerve fibers in fish associated with the lateral line carries

enough information to determine the vortex-shedding frequency of a Kármán vortex

street and can also be decoded to locate the source of a vibrating dipole [83, 84].

There is a well established research effort in applying the sensing principles

seen in the lateral line of fish to the development of an artificial lateral line (ALL)
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to be deployed on underwater vehicles. It has been demonstrated that an ALL

comprised of spatially distributed pressure sensors is capable of localizing a vibrating

dipole [85], estimating freestream flow direction [6] as well as freestream speed [71],

localizing upstream obstacles [86], and tracking moving obstacles through a flow

field [87]. These works demonstrate that the ALL sensing modality is capable of

determining some of the basic flow parameters in an engineering context. The ALL

can be used with rudimentary control algorithms to demonstrate some of the same

behaviors as fish, such as rheotaxis [6, 71], the alignment of the head towards the

direction of oncoming flow.

The focus of the ALL work in this dissertation is in the estimation of the state

of a Kármán vortex street. The presupposition of this task is that there exists a

method to estimate the state of a single vortex, since a vortex street is composed of

many vortices. On this front, there has also been progress made by researchers over

the years. ALL have been shown to be capable of estimating the strength of free

vortices [88] and the position of moving vortices [87]. It has been shown that the

readings from an ALL contain enough information to estimate the state of a vortex

street (position, vortex spacing, vortex strength) [89], though no method to do so

was provided in that work. Efforts to estimate the full state of a vortex street have

been only partially successful. Some researchers have utilized empirical methods to

determine whether or not an ALL is within a vortex street [90,91] as well as vortex

shedding frequency [91,92]. Methods to estimate the source of a vortex street from

ALL measurements onboard robots has been demonstrated [92, 93], but no means

to estimate the location of individual vortices within the street are in the literature.
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In order to display the Kármán gaiting behavior onboard an underwater vehicle, it

is necessary to estimate the location of each vortex within the street.

A model-free approach [85,90–93] relies on examining the data from an artifi-

cial lateral line and establishing heuristic methods to determine various parameters

of a vortex street. The analytical model developed herein is independent of the

shape of the Joukowski foil and sensor placement so it is easily adaptable to a va-

riety of platforms, whereas a model-free approach requires new heuristics for each

sensor or body configuration.

The state of the field is thus. There have been many works demonstrating

using an ALL to estimate the state of various flow structures including vortices

and vortex streets. Several of these works have performed control actions relative

to these flow structures, but none have attempted the Kármán gaiting behavior.

The estimation methods include Kalman Filters [88], Particle Filters [87], Bayesian

Filters [71, 86], as well as more empirical methods. This dissertation builds upon

those works and extends the capabilities of the ALL to include estimation of the

position and strength of a vortex street. Additionally, this dissertation provides

a control algorithm that will guide a robot to any arbitrary reference trajectory

through a Kármán vortex street, not only the bioinspired Kármán gaiting path.

1.3 Contributions to the state of the art

This dissertation provides research contributions in the areas of data-driven

modeling, pursuit, and estimation. The main results of this dissertation have been
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already published in peer-reviewed journals or have been submitted to journals

and are under review [14, 94, 95]. Early results for pieces of this project appeared

in conference proceedings [65, 72, 96]. Certain sections of this dissertation have

not appeared elsewhere, notably many of the pursuit results. The work in those

publications was performed in collaboration with the coauthors, but the following

contributions are due to my personal efforts there within.

1.3.1 Probabalistic Analytical Modeling

I created a data-driven framework to identify key features of survival. Starting

with an experimental dataset of the kinematics of the predator/prey interactions,

this technique provides a mechanism to determine which parameter in a dynamic

model has the greatest effect on some key metric (e.g. probability of capture). This

technique was applied in two case studies. The first case study on the predation of

fundulus by bluefish showed that bluefish do not use time-optimal pursuit tactics.

The second case study on the predation of larval zebrafish by adults showed that

sensing range is most important to the survival, having a greater effect on probability

of capture than even escape speed.

1.3.2 Bioinspired pursuit

Taking advantage of the shared non-holonomic connection between this sys-

tem and the Chaplygin sleigh, I propose an autonomous feedback law that results in

a stable, forward-swimming limit cycle of a fish robot in the desired direction. Ad-
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ditionally, I performed analytical and numerical bifurcation analyses to determine

what control gains result in the desired limit cycle. Using this control law, I derived

an expression for evaluating whether or not capture is guaranteed based on param-

eters such as the control gains, physical parameters of the robot, and maximum

speed and turning rate of the prey. Finally, I demonstrated use of this control law

for pursuit in the Neutral Buoyancy Research Facility testbed using a flexible fish

robot driven by an internal reaction wheel facilitated by a motion capture system in

the control loop. This robot was designed and constructed by my labmate Jinseong

Lee, but I am solely responsible for the onboard programming and its experimental

use.

1.3.3 Vortex estimation and flow relative control

I developed a grid-based Bayesian filter framework to estimate the state of a

vortex street. Specifically, distributed pressure sensors combined with a potential

flow model for a Joukowski airfoil in a Kármán vortex street allows the Bayesian

filter to estimate the strength, planar location, and phase relative to a fish robot.

I also developed feedback control of a foil to an arbitrary phased-based reference

trajectory through a Kármán vortex street. I used tools from empirical observability

to establish the optimally observable trajectory through a Kármán vortex street,

which is the one that intersects each vortex in the street.
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1.4 Outline of dissertation

The organization of this dissertation is as follows. Chapter 2 provides necessary

technical background for the subsequent chapters. The mathematical frameworks

of potential flow theory, Bayesian estimation, probability theory, and pursuit are

presented to familiarize the reader with basic tenants of these fields before bringing

their tools to bear on the problem at hand.

Chapter 3 proposes a technique for analyzing kinematic time-series of predator-

prey interactions called Probabalisitc Analytical Modeling. This technique is an

alternative to Monte Carlo simulations and its use in determining which model

parameter has the greatest effect on some metric is demonstrated in two case studies

of fish predator-prey interactions.

Chapter 4 covers the development of a novel, reaction wheel driven underwater

robot inspired by fish as well as the conditions necessary to guarantee capture with

this vehicle. Experimental demonstration in an underwater motion capture arena

shows the vehicle to be capable of pursuit.

Chapter 5 describes the efforts to use an artificial lateral line to estimate the

state of a Kármán vortex street, a pattern of left/right vortices that is shed in the

wake of a swimming fish. Potential flow is used to model the flow field and a grid-

based Bayesian filter is developed to provide real-time estimates of vortex position

for use in closed-loop feedback control.

Chapter 6 summarizes the work done here, presents the contributions of this

work, and makes suggestions for future work in this area.
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Chapter 2: Technical background

Before covering the work done in this dissertation, it is necessary to present

background information on complex variables, potential flow, Bayesian estimation,

pursuit, and the dynamics of the Chaplygin sleigh. The tools provided here are used

in later chapters to derive the results of interest.

2.1 Complex variables

Throughout this dissertation complex variables are used to compactly repre-

sent planar location, rather than pairs of coordinates. A full treatise on this subject

is beyond the scope of this work, and so we provide only the facts necessary to

understand the subsequent content. In a Euclidean space, planar location is most

often represented as coordinate pairs (x, y), the horizontal and vertical displacement

from the origin, or (r, θ), the distance and angle from the origin. Complex variables

have both a real and imaginary component and so a single complex variable z con-

tains two pieces of information, which makes it attractive from a compactness and

aesthetic point of view.

Define a complex variable z = x + jy = r exp(jθ) [97]. Here and throughout

this work we use j =
√
−1 to be the imaginary number. The conjugate of a complex
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variable z is defined as z = x − jy = r exp(−jθ). That is to say, the sign of the

imaginary component of the variable is reversed. This is useful for calculating the

magnitude or absolute value of a complex variable |z| =
√
zz =

√
x2 + y2 = r.

On top of the traditional definition of the conjugate of a variable, there are

several notions of the complex conjugate of a function used in literature and in

this work, so it is important to be clear on what is meant by each. Below are

definitions of 3 types of complex conjugates of a function f(z) where z = x + jy is

a complex number [98–100]. These notions are used in Chapter 5 in the use of the

Milne-Thomson Circle Theorem.

f(z): evaluate f(z) completely and take conjugate of result, e.g.

f(z) = 6z + 3jz2

z∗ = 1− 2j

f(z∗) = 18− 21j

f(z∗) = 18 + 21j

f(z): replace z with z in f(z) and evaluate, e.g.

f(z) = 6z + 3jz2

z∗ = 1− 2j

f(z∗) = 6z∗ + 3jz∗
2

f(z∗) = −6 + 3j

f(z): replace j with −j everywhere it appears explicitly in f(z) (including

constant terms, as in switch z0 to z0 if z0 is a constant that appears in f(z))and
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evaluate, e.g.

f(z) = 6z + 3jz2

z∗ = 1− 2j

f(z) = 6z − 3jz2

f(z∗) = −6− 3j

Notes on f(z):

1. Replacing j with −j must be done before evaluating the argument of the

function. It is best to think of f(z) as a function separate from f(z) entirely.

2. f(z) = f(z)

3. f(z) = f(z)

2.2 Potential flow theory

Potential flow theory provides tools to calculate the velocity at any point in a

field from the derivative of a scalar function. Its use assumes that flow is irrotational,

inviscid, and incompressible [75]. Complex potential flow uses a complex number

z = x + jy to represent planar coordinates. This also allows for a single derivative

with respect to the complex variable z to represent the velocity field, rather than

one derivative each for the x and y velocity components.

Potential flow allows the calculation of the velocity vector field from the deriva-

tive of a scalar function [75]. Let z = x + jy = rejθ be the complex coordinates in
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some reference frame. Define complex potential f(z) = ϕ + jψ where ϕ is the

potential function and ψ is the stream function.

To calculate the conjugate velocity field, take the derivative with respect to z,

df
dz = w(z) = u− jv, (2.1)

where u and v are the real-valued horizontal and vertical velocities respectively. The

true velocity field is found by taking the functional complex conjugate, w(z) = u+jv.

Alternatively, taking the real and negative imaginary components gives

u(z) = Re(w(z))

and

v(z) = − Im(w(z))

Observe the potential flow function for a point vortex at the origin,

fvortex(z) = −j
Γ

2π
log z.

Here we use log z to indicate natural logarithm, which is sometimes also referred to

as loge z or ln z. Taking the derivative with respect to the complex variable z,

dfvortex

dz = −j
Γ

2πz

= −j
Γ

2πrejθ

= −ejπ/2Γe
−jθ

2πr

Complex potential makes use of the principle of superposition allowing mul-

tiple flows to be combined into a single field. To model the flow over a lifting
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cylinder, combine the complex potentials of a uniform freestream, a doublet, and a

point vortex

flifting cylinder = Uz + U
r20
z

− j
Γ

2π
log z. (2.2)

The freestream speed is given by U , the radius of the cylinder by r0, and the circu-

lation strength by Γ. The conjugate velocity W is found by taking the derivative,

Wlifting cylinder =
dflifting cylinder

dz = U − U
r20
z2

− j
Γ

2πz
. (2.3)

Figure 2.1 shows the resulting flow field with color indicating the pressure

difference from p∞. The pressure field was calculated according to Bernoulli’s prin-

ciple, which states that total pressure is conserved for incompressible, irrotational,

inviscid flow [60]. Here, total pressure is given by p∞ + 1
2
ρ|W |2 where p∞ is the

ambient pressure of the flow field at speed U [60]. The circulation term in these

equations can be physically interpreted as rotation of the cylinder, which has the

effect of generating lift. Many phyically meaningful flows can be modeled this way,

by taking advantage of the principle of superposition and the ability to combine

simple flow elements into something greater.

2.3 Grid-based Bayesian filter

The estimation of the states of the vortex street in Chapter 5 is performed

by a recursive, grid-based Bayesian filter [101, 102] and so we provide background

here. The principle of this filter is to form a measurement model that predicts

what the measurements from the sensors would be if the state of the system were a
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Figure 2.1: Lifting cylinder. White lines are streamlines. The color of the gauge

pressure field indicates the difference from the freestream pressure. Orange indicates

that the pressure is higher than the freestream, blue that it is lower, and white that

it is equal. In this example, the pressure differential between the upper and lower

surfaces of the cylinder generates lift. The freestream moves from left to right and

the cylinder rotates in the counter-clockwise direction.
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particular value in the state space. By comparing the measurement predictions of

every point in the state space grid with the actual measurement, a multi-dimensional

conditional probability density function (PDF) is formed, called the measurement

likelihood function. The likelihood function is combined with the prior PDF of the

previous time step to become the posterior PDF according to Bayes’ theorem. The

posterior then becomes the prior of the next time step after it is forecast forward

according to the system dynamics including process noise.

The recursive, grid-based Bayesian filter estimates a set X of parameters from

a set Y of measurements [101]. Suppose the instantaneous measurement vector is

Y = H (X) + η, (2.4)

where H (X) is the (nonlinear) measurement equation relating the state vector X to

the measurement vector Y and η is (Gaussian) sensor noise. With m as the number

of measurements, the measurement vector is

Y = [y1, . . . , ym]
T ∈ Rm. (2.5)

2.3.1 Likelihood function

For the grid-based Bayesian filter with Gaussian measurement noise, the likeli-

hood function is the following conditional probability of measurement Y given state

vector X [101]:

π(Y|X) =
1√

(2π)n det(R)
exp

[
− 1

2
(Y − H (X))TR−1(Y − H (X))

]
, (2.6)

where n is the dimension of the state space and R ∈ Rm×m is the covariance matrix

of the sensor noise. Let mi be the width of the ith dimension in the n-dimensional
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state space, then the discrete grid X ∈ Rm1×m2× . . .×mn of all expected possible

values of the state space is used to evaluate the measurement equation. (For a large

number of grid points, this calculation may be computationally intensive.)

2.3.2 Update step (Bayes’ theorem)

Bayes’ formula allows each new measurement and its likelihood function Eqn.

(2.6) to be combined with the prior estimate, yielding the posterior estimate. Let

Yk be the set of measurements at time tk, with k = 1, 2, . . . . Then,

π(X|Yk, . . . ,Y1) = κπ(Yk|X)π(X|Yk−1, . . . ,Y1),

where κ is a normalizing factor to ensure the posterior integrates to one. After

the incorporation of each new measurement, the posterior becomes the prior for the

next time step. For the initial time step, we choose a uniform prior. The notation

π(X|Y) is used for the posterior π(X|Yk, . . . ,Y1) at an arbitrary value of k.

2.3.3 Forecast step

The posterior estimate π(X|Y) is an n-dimensional matrix with each dimen-

sion corresponding to one of the states in the parameter space. The width mi of each

dimension is determined by how fine a grid is chosen for the Bayesian filter. The

computational time needed for each time step increases with the size of π(X|Y).

The time evolution of the posterior (in order to become the prior of the next time

step) is accomplished by shifting the values of the PDF according to the continuous

dynamics of the states.
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2.3.4 Process noise

Process noise is modeled by convolving the PDF with an n-dimensional, zero-

mean Gaussian kernel as a numerical approximation of the Fokker-Planck equation

with diffusion only [103]. This operation has a blurring effect on the PDF as time

goes on. In the absence of new measurements, the PDF becomes uniform as time

goes to infinity.

2.4 Probability theory

The techniques in this manuscript also require many tools from probability

theory [104], which we now present for completeness. The probability that a ran-

dom variable X has value less than x is described by the cumulative distribution

function FX(x) = P (X ≤ x). The probability density function of the same ran-

dom variable describes how often values occur and is given by fX(x) = dFX(x)/dx.

Many techniques and toolboxes exist for fitting probability density functions to a

data set [105, 106].

The expected value of a random variable X with probability density fX(x)

is [104]

E[X] =

∫ ∞

−∞
xfX(x)dx. (2.7)

The expected value of a function Y = h(X) of random variable X with probability

density fX(x) is [104]

E[Y ] =

∫ ∞

−∞
h(x)fX(x)dx. (2.8)
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The probability that random variable X is less than random variable Y is [104]

P (X ≤ Y ) =

∞ y∫∫
−∞−∞

fXY (x, y)dxdy, (2.9)

where fXY (x, y) is the joint probability density function of X and Y . If X and Y

are independent random variables, then [104]

fXY (x, y) = fX(x)fY (y), (2.10)

otherwise the joint probability density must account for cross-correlation between

the two random variables. Similarly, if two events A and B are independent, then

the probability of both A and B occurring at the same time is [104]

P (A ∩B) = P (A)P (B). (2.11)

The probability density function for the random variable Z = c1X+c2Y, where

c1 and c2 are known scalar values, is [104]

fZ(z) =
1

| c1 |

∫ ∞

−∞
fX

(
1

c1
z − c2

c1
y

)
fY (y)dy. (2.12)

The joint PDF of the linear combination of two random variables V = aX+ bY and

W = cX + dY is [107]

fVW (v, w) =
1

ad− bc
fXY

(
dv − bw

ad− bc
,
−cv + aw

ad− bc

)
. (2.13)

We now turn to two results not found in literature but necessary for subsequent

chapters.
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2.4.1 Expected value of an auxiliary function

Using the bivariate extension of Eqn. (2.8), the independence of X and Y with

Eqn. (2.10), and Eqn. (2.9) the expected value of

h(X,Y ) =


g(Y ) if X ≤ Y,

0 otherwise

is

E[h(X,Y )] =

∞ ∞∫∫
−∞−∞

h(x, y)fXY (x, y)dxdy

=

∞ ∞∫∫
−∞−∞

h(x, y)fX(x)fY (y)dxdy

=


∞ ∞∫∫

−∞−∞
g(y)fX(x)fY (y)dxdy if X ≤ Y

0 otherwise

=

∞ y∫∫
−∞−∞

g(y)fX(x)fY (y)dxdy

=

∫ ∞

−∞
g(y)fY (y)

(∫ y

−∞
fX(x)dx

)
dy.

And so,

E[h(X,Y )] =

∫ ∞

−∞
g(y)fY (y)

(∫ y

−∞
fX(x)dx

)
dy. (2.14)

2.4.2 Minimum of two random variables

Given a random variable Z = min(X,Y ), let us compute fZ(z). We first

state that from the definition of a CDF FZ(z) = P [min(X,Y ) ≤ z]. The event
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min(X,Y ) ≤ z is true if either X ≤ z or Y ≤ z. In set notation,

FZ(z) = P [min(X,Y ) ≤ z]

= P [X ≤ z ∪ Y ≤ z]

= P [X ≤ z] + P [Y ≤ z]− P [X ≤ z ∩ Y ≤ z]

= FX(z) + FY (z)− FXY (z, z),

where the third line is a direct application of the inclusion-exclusion principle which

states that for two events A and B, P [A ∪B] = P [A] + P [B]− P [A ∩B] [104]. To

find the PDF from this CDF, we take the derivative with respect to z,

fZ(z) =
dFz(z)

dz = fX(z) + fY (z)−
d
dzFXY (z, z),

where

d

dz
FXY (z, z) =

d
dz

z z∫∫
−∞−∞

fXY (v, w)dvdw

=

∫ z

−∞
fXY (z, w)dw +

∫ z

−∞
fXY (v, z)dv

=

∫ z

−∞
(fXY (z, w) + fXY (w, z)) dw.

Using the definition of the marginal densities fX and fY allows further simplification,

fZ(z) = fX(z) + fY (z)−
∫ z

−∞
(fXY (z, w) + fXY (w, z)) dw

=

∫ ∞

−∞
fXY (z, w)dw +

∫ ∞

−∞
fXY (w, z)dw −

∫ z

−∞
(fXY (z, w) + fXY (w, z)) dw

=

∫ ∞

z

(fXY (z, w) + fXY (w, z)) dw.
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And so, the probability density of a random variable Z = min(X,Y ) is (see Section

2.4.2)

fZ(z) =

∫ ∞

z

(fXY (z, w) + fXY (w, z)) dw. (2.15)

This two results are included here as background as they are a straightforward

application of probability theory that are both necessary to the work in later chapters

and demonstrates how to derive probabilistic relationships.

2.5 Pursuit tactics

Literature on pursuit is multi-disciplinary, with works coming from both the

animal behavior [12,13,21,108] and missile guidance [20,43,109] communities. Due

to this mixing of disciplines and a lack of formalization in the field, there are many

(sometimes conflicting) terms used to describe various pursuit tactics. In pure pur-

suit, also sometimes called tracking or classical pursuit, a pursuer aligns its velocity

vector with the line of sight (LOS), which is the vector from the pursuer to the

target’s current location and is used by many predators [11, 20].

In deviated pure pursuit (DPP) (i.e., constant bearing pursuit or constant aspect

pursuit), the pursuer aligns its velocity vector a fixed angle away from the LOS such

that it leads (or lags) the target. Certain fish [108], insects [11], dogs [8], and

humans [9] exhibit this tactic in their pursuit trajectories. The special case where

the target is not turning or changing speed and the pursuer’s lead angle is such

that it moves in a straight line for the entire pursuit phase is sometimes called

interception.
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In constant absolute target direction (CATD) pursuit (also known as motion

camouflage, parallel navigation, or constant bearing), the pursuer moves in such a

way that the LOS angle stays fixed with respect to some inertial reference frame.

This tactic has the effect of masking the pursuer’s transverse movement from the

perspective of the target, because the pursuer appears only to increase in size.

Certain dragonflies [12], bats [13], and falcons [110] use this tactic. In the case of

a non-manuevering target, CATD pursuit is equivalent to constant bearing pursuit,

but the converse is true only in the case of interception. A common technique to

actualize one of these geometrical tactics into a control law for a physical system with

dynamics is proportional navigation [43], though other techniques exist [20, 111].

32



Chapter 3: Probabilistic analytical modeling of predator-prey inter-

actions

This chapter presents a method called probabilistic analytical modeling (PAM).

This technique fills a gap in the current state of the art for pursuit modeling from

experimental data (see Section 1.2.1). PAM allows researchers to determine which

factors are most critical to survival by analyzing the kinematic time series of their

pursuit trajectories. The use of this method is demonstrated by two case studies.

The chapter proceeds as follows. Section 3.1 introduces two case studies of fish

predator-prey interactions. Section 3.2 presents the general PAM approach used to

analyze each experimental data set in order to determine the most important tac-

tical factors in predator-prey interactions. Section 3.3 applies PAM to a case study

of the pursuit tactics of bluefish predators and Section 3.4 uses the methodology on

a case study on the evasion tactics of zebrafish prey. Although the primary data

analyzed in these two cases is based on two previous experimental studies [14, 42],

the results reported here can be verified using the statistical data provided in this

work. Section 3.5 summarizes the results and describes ongoing work.
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3.1 Case study background

The techniques developed in this chapter are applied to two sets of case study

data of pursuit by fish. The data were not gathered as part of this thesis and I

played no role in the experiments to do so. In the context of this work, it is only

the final kinematic time series data which of interest. This section provides a brief

background on how the data were collected to provide valuable context for the later

sections.

3.1.1 Case study 1: bluefish

Piscivorous interactions may largely be described by two-dimensional kine-

matics, but exhibit a diversity of tactics that have the potential to vary with the

habitat and the physiology of a fish species. Bluefish (Pomatomus saltatrix) are vo-

racious pelagic fish predators that pursue prey at high speed. This species exhibits

predatory behavior in an aquarium with motion that is largely two dimensional and

is therefore conducive to single-camera kinematic measurements. As detailed in a

separate study [14], the high-speed swimming kinematics were measured for bluefish

(∼ 30 cm in length) as they preyed upon smaller prey fish, mummichog (Fundulus

heteroclitus, ∼ 5 cm). These data were gathered by Dr. Matt McHenry and Dr.

James Liao at the University of Florida. The details of these experiments are be-

yond the scope of this thesis, but can be found in Ref. [14]. With that said, a brief

description is necessary to understand the modeling work done later in this chapter.

These experiments introduced an individual prey into the center of a large
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cylindrical aquarium (diameter = 6m), which contained all of the predators. Kine-

matic measurements were performed for the prey and predator that first struck at

the prey. Inherent in this decision is the assumption that the successful predator’s

trajectory is not affected by the presence of other predators in the area. (The valid-

ity of this assumption is addressed in Section 3.3.1.) These measurements consisted

of a manual frame-by-frame tracking of the rostrum of each fish from the moment

that both appeared in the camera’s field of view until the predator’s strike. The

mummichog did not attempt an escape when pursued by bluefish, but rather main-

tained a relatively straight path and consistent speed. The trajectories of predator

and prey were recorded for 70 experimental trials. The dynamical model of bluefish

predation presented in Section 3.3 takes advantage of the largely non-maneuvering

prey, allowing for a deviated pure pursuit representation with only the line-of-sight

range and angle as state variables.

3.1.2 Case study 2: zebrafish

Under laboratory conditions, zebrafish adults (∼ 2.5 cm) prey on larvae (∼

4mm) of the same species [112]. However, unlike the mummichog preyed upon by

bluefish, zebrafish larvae generally remain stationary until initiating an escape re-

sponse at a certain point during the predator’s approach [30]. This response allows

for a consideration of the evasion tactic of a prey fish that can be measured and

modeled. The kinematic data were previously reported from experiments in a hemi-

spherical aquarium (diameter = 8.5 cm), where the predator attempted multiple
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strikes at the prey until successful, See Ref. [42]. Within one second of initiating an

escape, the prey ceased swimming and were stimulated to escape again when ap-

proached by the predator. The predator approached the prey at a constant speed,

well below the prey’s maximum escape speed. This approach was consistent with a

pure-pursuit tactic, such that the predator’s heading was directed towards the in-

stantaneous position of the prey. These interactions repeated for as many as twenty

approaches in experiments performed in a relatively small aquarium and were previ-

ously characterized by iterating a model of a single interaction using a Monte Carlo

technique [42].

3.2 General method

We now present the general PAM procedure used to determine which param-

eters in a given predator-prey interaction are most critical to survival.

1. Choosing a dynamic model. The first step is to analyze the experimental

kinematic data to determine the dynamics of the system. A catalog of standard

pursuit tactics and their dynamical models may be useful [20, 21], see Section 2.5.

In more complicated cases where the prey is highly responsive to the actions of the

predator, a differential-game setting may be required [67].

The chosen model need not exactly predict the actions of the predator and prey

seen in experiments, but it should capture the essential attributes of their behavior.

For example, many of the standard pursuit models assume constant speed of the

predator and prey, which is not the case in a biological system. This assumption
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may be tolerable (as with the bluefish case study in Section 3.3) unless either the

predator or prey exhibit some specific speed-changing behavior (such as the starting

and stopping of the larvae’s motion in response to the zebrafish in Section 3.4).

If the predator-prey interaction is well modeled by a dynamical system from

literature (as it is in Section 3.3), then deriving an analytical expression for the

key metric may be trivial or already available. If a more non-traditional model is

required to describe the behavior (as in Section 3.4), then the development of the

model and the derivation of the expression for the key metric may be an iterative

process.

2. Fitting probability densities to the experimental data. Once a model

has been selected, each of the parameters in that model are fit from the experimen-

tally observed data set. These parameters may include predator or prey speeds,

angles, capture rates, etc. It may be advantageous to model certain parameters as

deterministic and others as probabilistic to simplify the expression of the expected

value of the key metric. For example, in Section 3.3, the predator and prey speeds

are treated as random variables, whereas in Section 3.4 they are treated as deter-

ministic because more interesting behavior in the prey species arises from variations

in sensing range.

Many techniques exist for fitting probability density functions (PDFs) to data

sets [105, 106]. A particular form of the PDF for each parameter is not required

for the following steps (e.g., it need not be normally distributed) and that fact is a

strength of this work. In certain cases, deterministic functions may be fit to data,
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like the success rate of strikes as a function of distance in Section 3.4.

3. Choosing a key metric. The key metric will be a measure of the success of

the predator or prey in either the predation or escape behavior. In many cases, such

as for probability of capture, the predator’s goal is to maximize the metric and the

prey’s goal is to minimize it.

An analytical expression of the key metric is required to calculate its expected

value. The expression is derived from the model of the predator/prey interaction

and both the expression itself and the steps to derive the expression may be unique

to each model and metric. Some component of the system dynamics may need to

be directly integrated and numerical integration may not be sufficient. For this

reason, concurrent or iterative development of the model and the expression of the

key metric may be required to modify the model into an integrable form.

4. Finding the expected value of the key metric. Depending on the form of

the expression of the key metric, a direct application of the multivariate extension

of equation (2.8) will provide the expected value, as is the case in Section 3.3. For

more complicated expressions, something akin to what is done in Section 3.4 may

be required, where conditional statements are incorporated into the calculation of

the expected value.

5. Parameter perturbation analysis. To study the relative effect each of the

parameters in the model has on the expected value of the key metric, we employ a

scheme similar to that used in [42], where the expected values of the probabilistic
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parameters are varied by shifting the terms within the PDFs. In [42], the varied

PDFs were tested in a Monte Carlo framework to recalculate the expected value of

the key metric from a multitude of simulations. In the work described here, the

expression for the expected value of the key metric need only be re-evaluted with

the varied PDFs, taking advantage of the inclusion of the system dynamics in the

key metric.

The expected value of the key metric as a function of the change of each

parameter from its nominal value reveals which parameter most greatly influences

the key metric and, therefore, the survival of either the predator or prey. Though

the PAM technique was developed for predator-prey interactions, it is applicable to

examine metrics for any dynamical process with natural variation in the parameters.

3.3 Bluefish case study

This section describes the application of PAM (Section 3.2) to examine the

predatory behavior of bluefish as they preyed upon mummichog [14]. Section 3.1.1

provides background on the case study data examined here.

3.3.1 Deviated pure pursuit model

Figure 3.1 defines the planar pursuit geometry used in this case study. The

vector of length r between the predator and the prey is known as the line of sight

and is inclined from the inertial reference frame by an angle λ. The predator’s

velocity vector vp is inclined from the line of sight by the pursuit (deviation) angle
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Figure 3.1: Pursuit kinematics for predator (p, red) and prey (t, blue). The swim-

ming direction of both animals are defined by the velocity of prey (vt) and predator

(vp), relative to the range vector (r, at angle λ), specified by the bearing of predator

(δ) and prey (θ). The heading (γ) of each animal is defined relative to the inertial

reference frame.
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Figure 3.2: Trajectories of predator and prey for three representative experiments.

Dotted trajectories are those generated by the deviated pure pursuit (DPP) control

(Eqn. 3.1) with δ∗ = −4◦, 11◦, and 27◦, which were the best match for these trials

from left to right, respectively.

δ and likewise the prey’s velocity vt is inclined by θ. The velocity magnitudes (i.e.,

speeds) are denoted vp > 0 and vt > 0. The angle of the velocity vectors from the

inertial frame are γp and γt for the predator and prey, respectively.

To verify that the bluefish are using DPP, we compared simulations of the

DPP dynamics to the experimental trajectories. Comparisons were very favorable

even without accounting for predator-predator interactions. Figure 3.2 shows three

examples of these comparisons, where the simulated trajectories obey the following

dynamics:

ẋp = vp cos γp

ẏp = vp sin γp

γ̇p = k(λ+ δ∗ − γp) = k(δ∗ − δ)

vp(t) = measured predator speed at time t,

(3.1)

where (xp, yp) is the predator position, k > 0 is the scalar feedback gain, and δ∗
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is the desired pursuit angle. With γp as a control input, these dynamics use only

the geometric angle δ as feedback, a value that may be available to the bluefish

from their visual system [108]. In the experimental data, the predator’s speed vp

varies within a pursuit. Thus, in the simulated trajectories (e.g., Fig. 3.2) the DPP

tactic is used for the predator steering, given the experimentally measured values of

speed. The particular pursuit angle δ∗ used in Eqn. (3.1) is unique to each trial and

was found by sweeping through values δ∗ ∈ (−π, π] and choosing the δ∗ that best

matched the experimental trajectories in the least-squares sense.

3.3.2 Experimental data fitting

Three probabilistic parameters are needed to calculate the expected value of

the time to capture as seen below in the key metric section. The pursuit angle δ as

calculated by the geometry in Fig. 3.1 is well represented by a normal distribution.

However, since δ ∈ (−π, π], we use a von Mises distribution, which is often referred

to as the wrapped normal distribution. Figure 3.3 shows two PDFs given by

f∆(δ) =
1

2πI0(κδ)
exp (κδ cos(δ − µδ)) , (3.2)

where I0 is the modified Bessel function of order 0, µδ is the mean value and κδ ≥ 0

is a term that represents the spread of the distribution with κδ = 0 corresponding to

a uniform distribution. The first PDF is fit from the geometrical δ(t) at every time

step across all experiments and the second is fit from the δ∗ value associated with

each trial from dynamics Eqn. (3.1). The δ(t) PDF has higher variance because

the bluefish do not perfectly track the δ∗ values and oscillate about them in each
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Figure 3.3: PDF for the pursuit angle δ fit from experimental data. Geometric δ(t)

data are determined from the predator heading γp and line of sight angle λ at each

time step. Fit δ∗ data are the angles in dynamics (3.1) that best match the fish

trajectories.

trial. Values for the δ∗ fit parameters are used in this case study (the result is nearly

identical in either case) and are given in Table 3.1.

The probability densities for the speed of the predator and prey are not in-

dependent because although the prey is largely unresponsive to the actions of the

predator, it is unclear whether or not the predator adjusts its speed in response to

the prey. A bivariate log-normal density is fit to the data set of (vp, vt) pairs taken at

every time step across all experimental trials. Let L(vp, vt, µv) = [ln vp, ln vt]
ᵀ − µv.

Figure 3.4 shows the joint PDF

fVp,Vt(vp, vt) =
1

2π
√
detΣv

exp

(
−1

2
L(vp, vt, µv)

ᵀΣ−1
v L(vp, vt, µv)

)
, (3.3)
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Figure 3.4: Joint PDF for predator speed vp and prey speed vt shown as a contour

plot. Marginal PDFs are shown in blue and orange in the vertical axis.

where µv and Σv are given in Table 3.1.

3.3.3 Key metric: expected time to capture

In the experimental setup, many bluefish simultaneously begin pursuit when

the prey fundulus is dropped into the arena. Since the bluefish are nearly always

successful in capturing the prey once they reach it, the first predator to reach the

prey received the reward. Therefore we choose the key metric to be the time to

capture.

Assume a constant speed for the predator and a non-maneuvering prey, mean-

ing the prey moves with constant speed and direction. Though this is not strictly

the case for the experimental data, we seek to examine the effect of pursuit angle

δ and so we do not study the effect of changing speed during a pursuit. Addition-

44



Table 3.1: Parameters of the bluefish pursuit model. Pursuit angle δ has a von Mises

distribution with PDF f∆(δ). The predator speed vp and prey speed vt form a bivari-

ate lognormal PDF fVp,Vt(vp, vt). The given parameters correspond to mean speeds

of 1.38 m/s and 0.95 m/s for the predator and prey, respectively. Intial conditions

are determinisitic with nominal values as given.

Probabilistic

parameters

δ Pursuit angle
µδ = 0.0720 rad

κδ = 73.8049

vp Predator speed µv =

 0.1565

−0.5286


vt Prey speed Σv =

0.2849 0.1070

0.1070 0.9147


Initial

conditions

r0 Range 1 m

θ0 Prey heading π/2 rad
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ally, assume that the predator maintains a constant pursuit angle δ throughout its

trajectory. The predator speed, prey speed, and pursuit angle are considered as

random variables.

With these assumptions, the dynamics of the DPP system in terms of the rate

of change of the line-of-sight range r and angle λ shown in Fig. 3.1 are [20]

ṙ = vt cos θ − vp cos δ

−λ̇ = θ̇ =
1

r
(−vt sin θ + vp sin δ) ,

where λ̇ = −θ̇, because the prey is non-maneuvering. Using these dynamics, the

time to capture is [20]

tc(r0, θ0, vp, vt, δ) = r0
vp + vt cos(θ0 + δ)

(v2p − v2t ) cos δ
. (3.4)

For two random variables X and Y and a nonlinear function Z = g(X,Y, ) it

is not true in general that E[Z] = g(E[X],E[Y ]) [104]. Since three of the parameters

in Eqn. (3.4) are random variables, we must instead calculate the expected value by

using the multivariate extension of Eqn. (2.8):

E[Tc] =
∫∫∫ ∞

−∞
tc(r0, θ0, vp, vt, δ)fVp,Vt(vp, vt)f∆(δ)dvpdvtdδ, (3.5)

which assumes δ is independent from vp and vt.

3.3.4 Non-optimallity of pursuit angle

To determine which parameters have the greatest effect on the time to capture

tc, we use the technique described in Section 3.2. Figure 3.5(a) shows the result
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of this process, in comparison to a deterministic evaluation of Eq. (3.4) directly

using E[Vp], E[Vt], and E[∆]. Increasing the prey speed or decreasing the predator

speed has a much less pronounced effect on E[Tc] as compared to the deterministic

technique. This effect is because the deterministic case considers only single values

of vp or vt that may become very close as either is varied, causing tc to become

large. The probabilistic case balances this effect by considering all possible values of

vp and vt according to their likelihood from Eqn. (3.3). Even if E[Vp] and E[Vt] are

very close, there are still many other values that are accounted for by Eqn. (3.5).

The nominal initial conditions used in Fig. 3.5 are r0 = 1 m and θ0 = π/2 rad.

Figure 3.5(b) shows an extended variation of the pursuit angle δ from its

small nominal value of 4.13◦. We see that there exists an optimal pursuit angle

much higher than the pursuit angle most often used by the bluefish. This optimal

angle corresponds to the intercept tactic (see Section 2.5). Since the bluefish do not

appear to be optimizing this metric, alternative explanations are suggested below.

3.3.5 Discussion

The deterministic versus probabilistic study of the effect of varying the pa-

rameters yields different, yet qualitatively consistent results as seen in Fig. 3.5.

Though the unperturbed (0% change from experimental parameters) value of time

to capture is incorrect, the deterministic study yields the correct trends near the

nominal values, but does not accurately predict time to capture as the parameters

are varied further. For larger deviations, the probabilistic study shows the expected
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Figure 3.5: (a) Probabilistic parameter variation for the bluefish case study (solid).

Dashed lines are those from deterministic perturbation analysis. (b) Extended vari-

ation for the pursuit angle δ with the black circle showing the minimum time to

capture. The region outlined in gray is shown in (a).

effect on the time to capture tc.

As seen in the δ curve in Fig. 3.5(a), increasing/decreasing the pursuit angle

δ has very little effect on the time to capture, because the bluefish most often use

small, but non-zero, pursuit angles (Fig. 3.3). Why the bluefish use a deviated

pure pursuit (DPP) tactic over a pure pursuit (PP) tactic (the δ = 0 case) when it

yields such small changes in capture time is not clear. The analysis shows that a
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time-optimal pursuit angle exists (Fig. 3.5(b)), though the bluefish operate far from

its value. DPP may present a tactical advantage for a more evasive prey than the

prey presently considered. For example, a faster prey might prompt the bluefish to

increase δ such that their swimming trajectory more closely resembles the CATD

tactic (see Section 2.5). Alternatively, DPP may indicate a constraint or bias on the

sensorimotor system of the bluefish. Bluefish may more quickly process the position

of the prey when it is present in the visual field of a single eye, which is facilitated

by a non-zero value for δ. In most cases, the predator chose to fix the prey in the eye

on the side that leads the prey velocity (δ > 0), which does slightly reduce capture

time compared to the negative of that angle.

3.4 Zebrafish case study

The second PAM case study considers prey evasion tactics in larval zebrafish

pursued by adult zebrafish [42]. The prey in this case attempts to escape by accel-

erating to a speed that is faster than the predator, as described in Section 3.1.2.

To calculate the key metric for this case study, a one-dimensional hybrid sys-

tem model of the dynamics is formulated. The continuous part of the hybrid system

describes the approach of the predator and the escape behavior of the prey, whereas

the discrete part handles the switching of parameters between repeated approaches

and the onset of escaping behavior.

A hybrid system is a dynamical system that has a combination of continuous-

and discrete-time behavior [113, 114]. Hybrid systems often involve the discrete
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switching between sets of dynamics, such as a thermostat, or a discrete jump in

states, such as a bouncing ball. Stochastic hybrid systems are those that have non-

deterministic dynamics or non-deterministic conditions on the state switching [115].

Here, a hybrid system is needed to model the switch between freezing and escaping

behavior.

3.4.1 Hybrid dynamics model for repeated escape

Among pursuit tactics [20–22], pure pursuit is best represented by a one-

dimensional model since the predator always moves directly towards the prey and

the distance between them is of prime importance.

The distance between the predator and prey at time t is r(t). The predator

will attempt a strike if r(t) is less than the strike distance s. The prey begins its

escape if r(t) is less than its sensing range (flush distance) l. The prey escapes

for η seconds, reaching its maximum speed vt at a fraction χ of its escape time.

C(s) is the probability of a successful strike as a function of strike distance s and is

experimentally determined. Table 3.2 summarizes the parameters used in the model

and includes their values for this case study.

Assume that the predator reaches its maximum speed vp sufficiently far from

the prey so that predator acceleration may be ignored. The prey remains stationary

until it detects the predator, that is, until r(t) ≤ l, the sensing distance of the prey.

Once the predator is detected, the prey escapes with a sawtooth velocity profile, as

shown in Fig. 3.6. This type of velocity profile is general to many startle responses
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Table 3.2: Parameters of the model for the zebrafish case study. Probabilistic

parameters have log-normal probability density functions fS(s), fL(l), and fH(η).

C(s) is a sigmoidal function of the form C(s) = [1 + exp(−ρ(s− ρ0))]
−1.

Probabilistic

parameters

s Strike distance of predator
µs = −4.980

σs = 0.448

l Sensing distance of prey
µl = −4.546

σl = 0.587

η Escape duration of prey
µη = −1.369

ση = 0.552

Deterministic

parameters

vp Predator speed 0.13 m/s

vt Maximum prey speed 0.4 m/s

χ Fraction of η when u is reached 0.2

Deterministic

function
C(s) Strike success chance

ρ = −0.573

ρ0 = 5.20

seen in nature where the prey quickly flees only to come to rest again a short time

later [42].

Figure 3.7 illustrates the hybrid dynamics of this non-deterministic system for

one or more approaches. The approach number an = n counts the number of times

the prey has begun escaping from the predator. The time since observation begins

is t. The time from when approach an begins is t(n) = t − t
(n)
0 , where t(n)0 is the
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Figure 3.6: Prey velocity profile (vt) after detecting the predator. The prey escape

duration is η; it reaches its maximum speed at fraction χ of the escape duration.

time when an increments. Additionally, on approach n, each of the probabilistic

parameters s(n), l(n), and η(n) are redrawn from their densities, fS(s), fL(l), and

fH(η), respectively. Figure 3.8 shows a sample trajectory of the dynamics using the

case-study data.

3.4.2 Experimental data fitting

All of the parameters in Table 3.2 were experimentally determined or fit in [42].

The probabilistic parameters have log-normal PDFs with the form

fX(x) =
1

x
√
2πσ2

x

exp

(
−(lnx− µx)

2

2σ2
x

)
.

The strike probability of success has the form C(s) = [1+exp(−ρ(s−ρ0))]−1. Though

the experiments showed some variation in the maximum speed of the predator and

prey, here they are treated as constants because we seek to study the more interesting

fleeing behavior of the prey.
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Figure 3.7: Non-deterministic hybrid system model of predator-prey interaction.

The box represents the discrete dynamics and the ellipses represent continuous dy-

namics. Probabilistic variables are redrawn from their respective PDFs each time

the approach number an is incremented.

3.4.3 Key metric: expected probability of capture

Probability of capture has relevance to both the predator and prey, one seeking

to maximize it and the other to minimize. The goal is now to analyze the hybrid

system to derive an expression for the expected value of the probability of capture

on approach and the probability of survival after n approaches.

For the prey to be captured, two conditions must be met. First, the minimum

distance r(n) must be less than the strike distance. If r(n) is not less than s(n), then

no other point on the trajectory will be. This condition states that a strike will be
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Figure 3.8: Sample trajectory of the simulated dynamics in Fig. 3.7 using the

zebrafish case-study data and model. The prey begins escape three times before a

strike occurs at the black ×.

attempted, though not where the strike will occur. Second, the strike must be suc-

cessful. This condition is given by the function C(s), which gives the probability of

success of a strike at distance s(n). Thus for the predator-prey interaction described

by the dynamics in Fig. 3.7, the probability of capture on approach is

PCoA = E[C(s)], given r ≤ s.

Critical to this analysis is finding the minimum distance r(n) between the

predator and prey. With the goal to find the minimum distance r on a single

approach, we restrict our analysis to the interval t(n) ∈ [0, η(n)]. The first of two

possibilities where r may achieve a minimum is r1 during the prey accelerating phase

in Fig. 3.7, when ṙ = 0 at t(n) = vpχη
(n)/vt. The second possibility is r2 during

the prey decelerating phase in Fig. 3.7, which occurs at the end of the interval,

t(n) = η(n). The minimum on the interval is then r = min(r1, r2).
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To find r1, from Fig. 3.7, we have

ṙ(t) = −vp +
vt
χη
t, r(0) = l (3.6)

on the interval t ∈ [0, χη], where we dropped the superscripts on t(n), η(n), and l(n)

as we are considering only a single approach and each approach is an independent

event. Integrating directly and evaluating at t = vp(χη/vt), the local minimum is

r1(η, l) = −
v2pχ

2vt
η + l. (3.7)

The second possible minimum, r2, occurs at the end of the entire escape phase

shown in Fig. 3.6 at t = η. The distance traveled by the predator and prey during

this time are vpη and vtη/2, so

r2(η, l) =
(vt
2
− vp

)
η + l, (3.8)

The two possible minima r1 and r2 are each a linear combination of η and l,

so the joint PDF is expressed in terms of fH(η) and fL(l) as (see Eq. 2.13)

fR1R2(r1, r2) =
1

ad− bc
fH

(
dr1 − br2

ad− bc

)
fL

(−cr1 + ar2

ad− bc

)
, (3.9)

where a = −v2pχ/2vt, b = 1, c = vt/2− vp, and d = 1. The PDF of the minimum of

r1 and r2 is found using Eqn. (2.15):

fR(r) =

∫ ∞

r

(
fR1R2(r, w) + fR1R2(w, r)

)
dw, (3.10)

The joint probability density function of r and s is fRS(r, s) = fR(r)fS(s)

[104], assuming the minimum distance and the strike distance are independent. The

probability of capture PCoA = E[Ĉ(r, s)], where Ĉ(r, s) is an auxiliary function that
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takes value C(s), if r ≤ s, and 0 otherwise. From (2.14), we have the probability of

capture on approach

PCoA =

∫ ∞

−∞
C(s)fS(s)

(∫ s

−∞
fR(r)dr

)
ds. (3.11)

Equation (3.11) provides the probability that the prey is captured on a given

approach of the predator. Applying this equation to the case-study data yields

PCoA = 0.07. As a check, the dynamics given in Fig. 3.7 were simulated until

the result was invariant to the number of simulations and it was found that PCoA

matched the result from Eqn. (3.11). For each trial in the simulation, r(t) was

integrated using a first-order Euler method. To calculate PCoA, the total number

of captures was divided by the total number of trials in the simulation. Figure

3.9 shows the result of the Monte Carlo trials, where 100,000 trials were needed to

converge to the output of the single equation Eqn. (3.11).

Assuming each approach is an independent event, the probability that the

prey survives after n approaches is [104]

PSnA(n) = (1− PCoA)
n. (3.12)

Equation (3.12) in conjunction with Eqn. (3.11) allows experimentally gath-

ered PDFs of predator-prey parameters to be used to calculate the odds of prey sur-

vival after repeated approaches by the predator. Note that as n→ ∞, PSnA(n) → 0

and thus, in this model, the prey are always captured eventually.
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Figure 3.9: Monte Carlo simulation results of the dynamics in Section 3.4.1. The

dashed line indicates the prediction of Eqn. (3.11).

3.4.4 Importance of sensing range

3.4.4.1 Parameter perturbation analysis

Equations (3.10) and (3.11) allow interrogation of experimentally gathered

data to find which parameters are most important in the predator-prey interac-

tion. By shifting the mean of the probabilistic parameters (or shifting the values

of the deterministic parameters) and recalculating Eqn. (3.11), the most important

parameters to prey survival become readily apparent.

Figure 3.10 shows the result of the perturbation analysis. Increasing sensing

range l and maximum escape speed vt increases the probability of survival of the

prey. However, there is a larger increase seen when sensing range is increased rather

than escape speed. Increasing escape duration η decreases probability of survival,

likely because it takes the prey longer to reach its maximum speed (escape duration
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% Change in Parameter

Figure 3.10: Probability of suvival PSnA(1) = 1 − PCoA for n = 1 approach as the

means of the parameter distributions are varied.

and maximum speed determine acceleration). Parameter χ, the fraction of the

escape time at which the prey reaches its maximum speed, matches the result of

varying η almost exactly because both terms determine the prey’s acceleration on

the first leg of its velocity profile.

When strike distance s is increased, the probability of survival also increases.

In this case study, the decrease in probability of capture that results from the con-

dition r ≤ s is outweighed by the decrease in likelihood of a strike being successful

at the increased range (capture probability C(s) is much lower when striking from a

farther distance). Decreasing s decreases prey survival only up until a point where

the trend reverses. The probability densities interact such that the increased odds

of a successful strike at a short distance eventually outweigh the chance that the

prey escapes due to sensing the predator before it can strike.
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3.4.4.2 Discussion

Trend-reversing behavior, such as is seen here when strike distance is varied,

cannot be predicted from the dynamics of the non-deterministic hybrid system pre-

sented in Fig. 3.7 alone as it depends on the particular parameter PDFs. The

ability to predict behavior of this type by combining experimentally fit PDFs with a

model of the dynamics is a strength of the data-driven approach. In this case study,

sensing range is pivotal to prey survival. Especially in the negative changes in l,

there is a much larger decrease in survivability compared to the other parameters.

These results agree with those of a comparable analysis performed by a Monte Carlo

simulation [42], but were resolved here analytically.

The PAM method gives something more than agreement with numerical sim-

ulations for this case study: it explains why sensing range is most important. The

derivation of the probability of capture revealed that it is imperative to increase the

minimum distance if the prey wishes to survive. The analytical expressions Eqn.

(3.7) and Eqn. (3.8) for the minimum distance show that it has a one-to-one corre-

spondence with sensing range. (Compare this observation to the other parameters

that enter the expressions multiplied by other factors.) To increase survivorship,

natural selection would favor individuals with greater sensing range more so than

greater speed. However, to account for additional features such as a requirement of

the prey to feed or predators that have difficulty sensing motionless prey, the model

used here is insufficient. Special consideration would be needed in that case, which

adds complexity to the model formulation.
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Figure 3.10 also includes a curve corresponding to varying escape angle θ from a

nominal value of 2π, which corresponds to when the prey flees directly away from the

predator. Since our dynamics model is one dimensional, a reasonable approximation

to the two-dimensional concept of escape angle is to reduce the effective escape

speed to ueff = u cos θ. Note that in the model any variations away from direct

escape result in lower chances of survival, something not seen in [42]. The choice

to represent the pursuit in only the one-dimension r ignores any turning dynamics

that may exist in the predators motion, i.e., it is always heading directly towards

the prey. This choice neglects the potential tactic of the prey of changing its escape

direction unexpectedly after each escape phase, thereby requiring the predator to

change its orientation with some associated time delay corresponding to its turning

dynamics. Expanding this model to include turning dynamics of the predator and

thereby allowing an investigation of the benefit of unpredictability in the prey’s

escape angle is a suitable topic for future work.

3.5 Summary of chapter

This chapter models the tactical behavior of predator or prey with a novel com-

bination of analytical mathematics and data-driven variability called probabilistic

analytical modeling (PAM). Experimental measurements of kinematic features such

as speed and flush distance combined with PAM predict the outcomes of biological

events in ways that experiments or modeling alone cannot. The first case study

showed that the trajectory of a bluefish predator may be predicted with a devi-
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ated pure pursuit tactic. Analysis of this tactic revealed no substantial advantage

compared to pure pursuit, indicating that the small, non-zero values for the pursuit

angle observed in bluefish predation may indicate a sensorimotor bias or perhaps

a tactical advantage not revealed by the prey species presently considered. The

second case study on zebrafish predicted the survivorship of prey using a simple

evasion algorithm. Analysis of this model was consistent with previous numerical

results showing that sensing range is most important to survival among the behav-

ioral parameters of the prey. In both case studies, PAM demonstrates the utility of

a principled approach for understanding tactics in predation.

Beyond predator-prey interactions, the PAM method offers advantages for the

modeling of a variety of dynamical systems. These benefits compare well against a

Monte Carlo method, which may similarly incorporate measurements but requires

numerical simulations to formulate its predictions. Unlike Monte Carlo, the predic-

tions of PAM do not vary with the number of simulations or the tolerances of the

numerical solver [116]. PAM scales well with the number of probabilistic variables

in the model, whereas the number of Monte Carlo simulations required to formu-

late a prediction is a multiple of these variables. Models with stochastic processes

additionally challenge the capacity of numerical solvers to converge or arrive at an

accurate solution [117]. Therefore, the capacity of PAM to formulate predictions

through analytical means should become increasingly more apparent for systems of

greater complexity.
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Chapter 4: Bioinspired pursuit

This chapter covers the effort to achieve pursuit behavior onboard a bioinspired

fish robot. This content is an extension of the current state of the art in fish-like

robotics to include pursuit behavior (see Section 1.2.2). The ultimate goal of this

chapter is to derive a condition under which capture is guaranteed. A common

criterium for guaranteed capture is to show that the range between the predator

and prey is always decreasing. Analysis of the two-agent range dynamics converts

this criterium into a condition on the maximum heading deviation away from the

desired swimming direction.

To draw conclusions about whether a pursuit engagement will be successful, it

is first necessary to derive the equations of motion in a two body pursuit scenario.

As shown in the pursuit geometry in Fig. 4.1, define r as the distance between agent

1 and agent 2 and θ as the angle from the inertial reference of the line from 1 to 2.

Define δi as the angle of the agent’s velocity from the line of sight.

Thus, with j =
√
−1

rejθ = (x2 − x1) + j(y2 − y1).
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Figure 4.1: Pursuit geometry.

Taking the derivative,

d
dt(re

jθ) = (ẋ2 − ẋ1) + j(ẏ2 − ẏ1)

d
dt(re

jθ) = (v2 cos γ2 − v1 cos γ1) + j(v2 sin γ2 − v1 sin γ1)

d
dt(re

jθ) = v2e
jγ2 − v1e

jγ1

ṙejθ + jrθ̇ejθ = v2e
jγ2 − v1e

jγ1

ṙ + jrθ̇ = v2e
j(γ2−θ) − v1e

j(γ1−θ)

ṙ + jrθ̇ = v2e
jδ2 − v1e

jδ1 ,

Separate the real and imaginary parts to arrive at,

ṙ = v2 cos δ2 − v1 cos δ1 (4.1)

rθ̇ = v2 sin δ2 − v1 sin δ1, (4.2)

or see Ref. [20] for an alternative derivation. From Eqn. (4.1), a sufficient condition

for ṙ < 0 is cos δ1 >
v2
v1
cos δ2, or equivalently,

|δ1| < cos−1

(
v2
v1

cos δ2

)
. (4.3)
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And so to state whether capture is guaranteed, information about the prey move-

ment and the bound on |δ1| are needed. To determine this bound, it is first necessary

to show that the control law results in a stable, forward-swimming limit cycle in the

desired direction. As will be seen in Section 4.2, the average swimming speed and

angular velocity of the limit cycle are also needed in the derivation of the bound

and so these are determined in Section 4.1.

The chapter then proceeds as follows. Section 4.1 analyzes an autonomous

control law to determine which gains result in the desired swimming behavior. Sec-

tion 4.2 derives the capture condition for this vehicle by deriving an expression for

the bound on |δ1|. Section 4.3 details the experimental demonstration of pursuit

under this control law with the fish robot.

4.1 Feedback control of Chaplygin fish

With the ultimate goal of providing a condition under which capture is guar-

anteed, it is first necessary to present an autonomous control law that results in

a stable, forward-swimming limit cycle. This section presents that result by per-

forming a limit cycle and bifurcation analysis. At the end of this section, the mean

speed and angular velocity of the stable limit cycle are determined. These are used

in Section 4.2 to aid in determining the bound on the pursuit angle.
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4.1.1 Dynamics of a Chaplygin fish

As mentioned in Chapter 1, the modeling work done here takes advantage of

the connection between the Chaplygin sleigh and a fish robot driven by an internal

reaction wheel. The Chaplygin sleigh is a well understood dynamical system with

a nonholonomic constraint. A sleigh with a reaction wheel of inertia Jd located at

the center of mass (x, y) on a body of inertia J has dynamics [118]

ẋ = v cos γ − lω sin θ

ẏ = v sin γ + lω cos θ

v̇ = l ω2 − ζd
m
v

γ̇ = ω

ω̇ =
1

b

(
ζmψ̇ − ω

(
ζdl

2 + ζr
)
−mlvω − τ

)
ψ̈ = −θ̈ + 1

Jd

(
−ζmψ̇ + τ

)
where v is the forward speed of the sleigh, γ is the inertial heading angle, ψ̇ is the

speed of the wheel with respect to the body frame, b = J + Jd, ζd is a translational

drag term, is ζr a rotational drag term, and ζm is a motor drag term.

For ζm = ζr = 0, the equations of motion become

v̇ = l ω2 − dv (4.4)

γ̇ = ω (4.5)

ω̇ =
ml

b
vω − 1

b
τ (4.6)

ψ̈ = −θ̈ + 1

Jd
τ, (4.7)
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where d = ζd/m. These equations of motion are used throughout this chapter with

the control law presented in Section 4.1.2.

4.1.2 Limit Cycle

It must first be established that there exists a control law to steer the Chap-

lygin fish in the desired direction while undergoing forward swimming behavior in

a limit cycle. Consider the control law

u = b (−K1ω +K2 sin(γ − γd + µ)) , (4.8)

where b is the moment of inertia J +ml2, and K1 and K2 are the feedback gains.

The feedback law given in Eqn. (4.8) with drag coefficient d ≥ 0, mass m > 0 ,

length l > 0, moment of inertia b > 0, K1 > 0, and K2 > 0 results in the closed-loop

dynamics

ω̇ = −ml
b
vω +K1ω −K2 sin(γ − γd) + µ, (4.9)

where K1 and K2 are feedback gains and µ is a parameter used later to adapt this

law for pursuit.

The simulation with µ = γd = 0 shown in Fig. 4.2 suggests that these dynamics

result in a forward swimming limit cycle with some nominal speed v. A stable limit

cycle is a periodic trajectory through a state space to which all initial conditions

converge. The following section establishes the existence of a stable limit cycle for

this system.
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Figure 4.2: Limit cycle in the speed v, angular velocity ω plane. Dashed line

indicates the average forward speed v .

4.1.3 Bifurcation analysis of closed-loop system

The closed-loop system exhibits bifurcation behavior in which the desired limit

cycle corresponding to forward swimming behavior is achieved only for certain values

of the control gains K1 and K2. For other values of these gains, the angular velocity

in the resulting limit cycle does not switch signs and the model fish spins in a circle,

see Fig. 4.3(b). Turn now to a bifurcation analysis to establish the existence of the

desired limit cycle and determine the allowable range of gains.

First, Eqn. (4.4) can be re-written as

v̇ = d

(
l

d
ω2 − v

)
. (4.10)

For ω̇ = 0, i.e., ω = ω0 constant, the subsystem in Eqn. (4.10) exponential stabilizes

v = l
d
ω2
0 with Lyapunov function

V1(v) =
1

2

(
l

d
ω2
0 − v

)2

. (4.11)

For d ≫ 1, there is a time-scale separation between the v subsystem (fast) and the

(θ, ω) subsystem (slow). Let a = ml2

bd
> 0. Without loss of generality, let reference
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(a)

(b)

Figure 4.3: (a) Forward-swimming trajectory of a Chaplygin sleigh under the control

law in Eqn. 4.8 and (b) undesirable trajectory resulting from a global bifurcation

related to the control gains.

Figure 4.4: Bifurcations of the nonlinear pendulum in phase space: (Left) unstable

limit cycle for −2
√
K2 < a < 0; (Middle) stable limit cycle for 0 < a < 2

√
K2; and

(Right) two stable limit cycles for a > a∗ > 2
√
K2. Black dashed lines are the stable

and unstable manifolds of the linearization of the saddle point at θ = ±π.
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angle θd = 0. Substituting the solution v= l
d
ω2 (with ω treated as a constant) into

the slow subsystem yields

θ̇ = ω

ω̇ = −aω3 +K1ω −K2 sin θ, (4.12)

which is the equation of motion of a pendulum with nonlinear damping and natural

frequency
√
K2. The system given by Eqn. (4.12) has equilibrium points (0, 0) and

(±π, 0). As will soon be shown, it also has a limit cycle for certain values of a and

K1.

The Jacobian of Eqn. (4.12) is

∂f

∂z
=

 0 1

−K2 cos θ −3aω2 +K1

 , (4.13)

which implies the origin (0, 0) is an unstable node or focus and the point (±π, 0) is

a saddle. To facilitate analysis of the limit cycle in Eqn. (4.12), let K1 = a, which

yields

θ̇ = ω (4.14)

ω̇ = a(−ω3 + ω)−K2 sin θ. (4.15)

The linearization of Eqn. (4.14)–(4.15) at (θ, ω) = (0, 0) becomes

∂f

∂z

∣∣∣∣
(0,0)

=

 0 1

−K2 a

 , (4.16)

which has eigenvalues λ1,2 = a
2
± 1

2

√
a2 − 4K2. Therefore, the eigenvalues are com-

plex if |a| < 2
√
K2. Consider a as a bifurcation parameter. For −2

√
K2 < a < 0,
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Figure 4.5: Numerical bifurcation analysis: the region above a given curve results

in the desired limit cycle.

the origin is a stable focus and, for 0 < a < 2
√
K2, the origin is an unstable fo-

cus. Therefore, as a passes through zero, there is a Hopf bifurcation [119] giving

rise to a stable limit cycle for 0 < a < 2
√
K2 (and an unstable limit cycle for

−2
√
K2 < a < 0).

For some a∗ > 0, there is another global bifurcation and the limit cycle splits

into two limit cycles that orbit the phase cylinder [120]: one in the positive direction

and one in the negative direction. This global bifurcation occurs when the limit cycle

tangentially intersects the stable manifold of the saddle point at θ = ±π.

For the case where K1 ̸= a, a numerical analysis to determine the presence

of the desired limit cycle uses the following scheme. For a given set of parameters

a,K1, K2 > 0, choose an initial condition near the origin (θ, ω) = (0, 0), which is an

unstable fixed point. Simulate the system dynamics for a length of time observed to

be much higher than the period of the limit cycle. If, at the end of the simulation,

|θ| > π, then the desirable limit cycle is not present. This bifurcation analysis shows

70



that if a trajectory reaches the saddle point (±π, 0), the desired limit cycle breaks

into two undesired ones as shown in Fig. 4.4.

To determine which gains (K1, K2) result in the desired behavior for a given

set of physical parameters a, perform this numerical simulation scheme across many

values of K1, K2, and a. Fig. 4.5 shows the results where, for a given a, pairs

(K1, K2) above the curve result in the desirable limit cycle and those below do not.

Gain K1 has an indirect effect on the amplitude of oscillations about the desired

heading angle: larger K1 creates larger heading oscillations and faster average speed

v. Gain K2 appears in the dynamics as the square of the natural frequency of a

pendulum system, so oscillations about the desired heading angle occur at frequency
√
K2. This analysis shows that for a given K2, K1 can be increased only up to the

bounding curve in Fig. 4.5. This allows for gains to be chosen intelligently to achieve

the desired limit cycle, rather than through trial and error.

4.1.4 Mean limit cycle values

From Ref. [121], we know that a limit cycle must have an unstable fixed point

interior to the orbit of the limit cycle. The above limit cycle analysis suggests that

the dynamics are periodic with period T such that ω(t) = ω(t + T ). Write the

dynamics again

v̇ = lω2 − dv (4.17)

γ̇ = ω (4.18)

ω̇ = −ml
b
vω +K1ω −K2 sin γ, (4.19)
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and average the ω dynamics over one period

ω̇ =
1

T

∫ t+T

t

(
d
dtω(t)

)
dt

=
1

T

∫ ω(t+T )

ω(t)

dω

=
ω(t+ T )− ω(t)

T

= 0.

Now take the same integral across both sides of the ω dynamics

1

T

∫ t+T

t

ω̇dt = 1

T

∫ t+T

t

(
−ml
b
vω +K1ω −K2 sin γ

)
dt

0 =
1

T

∫ t+T

t

(
−ml
b
v +K1

)
ωdt−K2

1

T

∫ t+T

t

sin γdt

The second integral on the right hand side goes to zero since we have established

the presence of a limit cycle and the dynamics Eqn. (4.19) are symmetric in γ.

Once more using the time scale separation between the slow ω dynamics and fast v

dynamics, take the ω outside the integral and conclude that

v =
bK1

ml
≈ 1

T

∫ t+T

t

vdt. (4.20)

Take this averaging integral across both sides of the v dynamics

1

T

∫ t+T

t

v̇dt = 1

T

∫ t+T

t

(
lω2 − dv

)
dt

1

T

∫ v(t+T )

v(t)

dv =
l

T

∫ t+T

t

ω2dt− d

T

∫ t+T

t

vdt

v(t+ T )− v(t)

T
= lω2 − dv

0 = lω2 − dv

ω2 =
d

l
v,
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and substituting Eqn. (4.20) yields

ω2 =
dbK1

ml2
. (4.21)

This result is needed in the next section to determine the bounds on the heading

angle, which yields a capture condition for pursuit.

4.2 Pursuit with Chaplygin fish

This section extends the results of the previous section to pursuit. To derive

a condition for guaranteed capture, the mean swimming speed and angular velocity

are used in an analysis of the dynamics. Using this capture condition, several pursuit

tactics capable of being implemented by the Chaplygin fish are presented.

4.2.1 Derivation of capture condition

Now examine the case where γd ̸= 0 and seek to derive capture guarantees for

a pursuer using these inner loop dynamics. From Eqn. (4.1), a sufficient condition

for ṙ < 0 is cos δ1 >
v2
v1
cos δ2, or equivalently,

|δ1| < α = cos−1

(
v2
v1

cos δ2

)
. (4.22)

With the presence of a limit cycle confirmed, it follows that under certain

conditions the heading angle oscillates about some nominal direction – the average

heading of the sleigh. Above it was shown that this limit cycle exists when γd =

µ = 0. Now turn to show that this oscillatory behavior exists under other conditions

and can be used to guarantee capture of a target.
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Let γd(t) = θ+δ∗(t) be a generally time-varying signal. From Fig. 4.1, γ−θ = δ

the deviation angle and so rewrite Eqn. (4.9) as

ω̇ = −ml
b
vω +K1ω −K2 sin(γ − γd) + µ

ω̇ = −ml
b
vω +K1ω −K2 sin(γ − θ − δ∗(t)) + µ

ω̇ = −ml
b
vω +K1ω −K2 sin(δ − δ∗(t)) + µ.

Now choose µ = θ̈ and assume that θ is a slowly varying exogenous input such that

θ̈ ≈ 0 and the limit cycle therefore exists. Define ϵ = δ − δ∗(t) and so

ϵ̈ = ω̇ − θ̈ − d2

dt2 δ
∗(t). (4.23)

This second derivative term includes second derivatives of the prey’s speed and

heading, which is either costly or supernatural for the predator to have access to.

In lieu of a robust controller, assume that the prey is slowly maneuvering enough

such that d2

dt2 δ
∗(t) ≈ 0. With µ = θ̈ the heading angle error dynamics are

ϵ̈ = −ml
b
vω +K1ω −K2 sin ϵ. (4.24)

Substitute v = v+∆v using Eqn. (4.20) where ∆v are the deviations from the mean

value of v.

ϵ̈ = −ml
b
∆vω −K2 sin ϵ. (4.25)

Since speed v > 0, the most conservative bound on ∆v is |∆v| < v = bK1

ml
and so for

K2 ≫ K1, the dynamics are approximately

ϵ̈ ≈ −K2 sin ϵ. (4.26)
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Assume that θ(t) is slowly varying such that θ̇ ≈ 0 and the prey maneuvers slowly

so that δ̇∗(t) ≈ 0 and so ϵ̇ = δ̇ − δ̇∗(t) = γ̇ − θ̇ − δ̇∗(t) ≈ ω. This assumption yields

two results. First, the natural frequency of oscillations is ωn =
√
K2, corresponding

to a period of

T =
2π√
K2

. (4.27)

Second, the exact solution to these dynamics is (see Ref. [122]),

ϵ(t) = 2 arcsin
(
sin

ϵ0
2
sn

[
K

(
sin2 ϵ0

2

)
− ωnt; sin

2 ϵ0
2

])
, (4.28)

where sn(u;m) is the Jacobi elliptic function and K(m) is the complete elliptical

integral of the first kind. By calculating the average ϵ̇2 for this simplified system

and combining with the actual ω2 = dbK1

/
ml2, the amplitude of oscillations can be

determined (because this simplified system oscillates with amplitude ϵ0 under the

ϵ̇0 = 0 assumption). The mean square angular velocity over one period is calculated

as

ω̇2 ≈ δ̇2 ≈ ϵ̇2 =
1

T

∫ T

0

(
d
dtδ(t)

)2

dt. (4.29)

To ease computations from using the exact solution to the undamped pendulum,

use a small angle approximation sin ϵ ≈ ϵ. Now the (even more) simplified dynamics

are

ϵ̈ = −K2ϵ.
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With initial conditions ϵ(0) = ϵ0 and ϵ̇(0) = 0, the solution is

ϵ(t) = ϵ0 cos(
√
K2t)

ϵ̇(t) = −ϵ0
√
K2 sin(

√
K2t)

ϵ̈(t) = −ϵ0K2 cos(
√
K2t) = −K2ϵ(t).

The average square angular velocity is

ϵ̇2 =
1

T

∫ T

0

ϵ̇(t)2dt

=

√
K2

2π

∫ 2π√
K2

0

K2ϵ
2
0 sin

2(
√
K2t)dt

ϵ2 =
1

2
K2ϵ

2
0 (4.30)

Under the small angle approximation, 1
2
ϵ2 ≈ 1 − cos ϵ. Pulling it all together

and recognizing that ϵ plays the role of max ϵ in the limit cycle,

ϵ̇2 = K2(1− cos ϵ0)

ϵ̇2 ≈ ω2 =
dbK1

ml2
= K2(1− cos ϵ0)

ϵ0 = arccos

(
1− dbK1

ml2K2

)
.

Now finally there is an estimate of the amplitude of oscillations within the limit

cycle,

max ϵ ≈ arccos

(
1− dbK1

ml2K2

)
≈

√
2dbK1

ml2K2

. (4.31)

Figure 4.6 shows a simulation of a pursuit of a slowly maneuvering target and the

theoretical bounds on the deviation angles predicted by this result. If max ϵ is such

that Eqn. (4.22) is satisfied, capture is guaranteed. This can be achieved by choice

of K1, K2 with an estimate of the maximum prey speed. To relate Eqn. (4.31) to
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Figure 4.6: Simulation of pursuit of a slowly maneuvering target by a Chaplygin

fish under control law Eqn. (4.8) with δ∗(t) chosen for parallel navigation.
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(a) (b) (c) (d)

Figure 4.7: Simulation of predator and prey trajectories for (a) pure pursuit δ∗ =

0 and a non-maneuvering prey, (b) deviated pure pursuit δ∗ = −0.3 and a non-

maneuvering prey, (c) intercept, and (d) parallel navigation with a maneuvering

prey. Grey dashed lines remain parallel, indicating successful parallel navigation.

capture condition Eqn. (4.22), subtract the effect of the non-zero pursuit angle δ∗(t).

The capture condition becomes

max ϵ+max
t
δ∗(t) < cos−1

(
v2
v1

cos δ2

)
. (4.32)

This condition may be difficult to evaluate without knowledge of maxt δ
∗(t) ahead

of time since the prey’s movements are unpredictable. Knowledge of the prey’s

maximum speed and turning rate may be used to predict if capture will be successful.

4.2.2 Pursuit tactics

Now, the choice of desired pursuit angle δ∗ can be used to implement several

pursuit strategies. See Section 2.5 for an overview of these tactics.
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Pure Pursuit In pure pursuit, the pursuers heading γ is aligned with the line-of-

sight angle θ. In the current context this requires γd = θ and so δ∗ = γd − θ = 0.

δ∗PP(t) = 0 (4.33)

Deviated Pure Pursuit Deviated pure pursuit maintains the pursuer’s heading

γ a fixed angle to the left or right of the line-of-sight angle θ.

δ∗DPP(t) = δ∗ constant (4.34)

Intercept For a constant velocity predator and prey, the intercept angle is given

by Ref. [20] as

δ∗intercept = sin−1

(
v2
v1

sin δ2

)
.

Substituting the expression for the mean speed Eqn. (4.20), the intercept angle for

the Chaplygin fish becomes

δ∗(t)intercept = sin−1

(
ml

bK1

v2 sin δ2

)
. (4.35)

Parallel navigation Parallel navigation is a pursuit tactic where the predator

aims to keep the LOS heading angle θ constant (hence parallel navigation) [20].

This has the effect of eliminating optical flow from the perspective of the prey

(hence Motion camouflage). The prey sees only a looming threat that increases

in size, but does not translate in the optical field. Motion camouflage is also said

to be a strategy where the predator keeps its heading fixed relative to an inertial

reference (e.g. a cheetah keeping a tree on the ray extending from the prey to

the predator throughout its stalking trajectory). Parallel navigation is sometimes
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referred to as motion camouflage with respect a point at infinity or infinity-point

motion camouflage, as opposed to real-point motion camouflage. Parallel navigation

is also sometimes called constant bearing, but the use of the term bearing is so varied

in literature that I prefer to not use it in any context.

For non-maneuvering prey, the intercept strategy in the above section is suf-

ficient to achieve parallel navigation. It follows then for a slowly maneuvering

prey, that allowing tracking a time-varying δ∗ will result in parallel navigation.

Let δ∗ = δ∗(t) so that the pursuit angle can now change as a function of time (more

practically, as a function of the prey’s movement). At any time t let

δ∗(t) = δ∗PN(t) = sin−1

(
ml

bK1

v2(t) sin δ2(t)

)
. (4.36)

Figure 4.7 shows simulations of these four pursuit strategies.

4.3 Experimental demonstration

This section demonstrates how this control law can be implemented in prac-

tice, onboard a robot with a microcontroller and motor driving a reaction wheel.

First, since in practice this control law is implemented by a DC motor, a brief

review of motor dynamics and an implementation of this control law for use on-

board a microcontroller are presented. Afterwards, the design of the fish robot and

experimental testbed are presented before the experimental pursuit is shown.
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4.3.1 Implementing the control law with DC motor

Typical DC motors take not desired torque as an input, but instead require a

voltage input. To generate input torque using a DC motor and a wheel, introduce

the following relationships:

τm = Kτ i, e = KeΩ, (4.37)

where Kτ is the motor torque constant, τm is motor torque, i is current, Ke is the

back EMF (Electromotive Force) constant, Ω is the motor angular rate, and e is the

back-EMF voltage. Modeling the motor system as a closed-loop RLC circuit yields

V = Ldi
dt
+ iR + e. Neglecting the inductance L,

V = iR +KeΩ, (4.38)

where V denotes applied total voltage and R is the resistance of the motor winding.

When a torque τm is applied by the motor, it is amplified by the gear ratio Kg, thus

the input torque applied to the reaction wheel is u = Kgτm. The angular rate ψ̇ of

the reaction wheel, which is measured by an encoder, is reduced by the gear ratio

to ψ̇ = Ω/Kg. Substituting Eqn. (4.37) and the gear ratio into Eqn. (4.38) yields

the relationships

V =
τm
Kτ

R +KeKgψ̇ (4.39)

=
u

KgKτ

R +KeKgψ̇, (4.40)

u = C1V − C2ψ̇, (4.41)

where the constants are C1 = KτKg/R and C2 = KτKeK
2
g/R.
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Since voltage V applied to the motor is proportional to the duty ratio of Pulse

Width Modulation (PWM), then V = VmaxPWM/255 and any arbitrary torque

profile can be determined by PWM. The relation between wheel torque and PWM

is

u =
KτKg

R

(
Vmax

PWM

255
−KeKgψ̇

)
. (4.42)

The PWM corresponding to u is

PWM =
255R

KτKgVmax

(
u+

KτKeK
2
g ψ̇

R

)
. (4.43)

To characterize the motor used in experiments, Kτ and Ke were determined

offline as follows. Stall current was measured at 3 A when a torque load of 0.595

Nm was applied to the motor. A maximum speed of 500 rpm with free load was

measured at a rated voltage (12V). Then, Kτ and Ke in Eqn. (4.37) were determined

to be 0.01 [Nm/A] and 0.01 [Vs], respectively. Given the resistance R and a gear

ratio of Kg 20.4, plugging them into Eqn. (4.40) yields C1 = 0.05 [Nm/V] and C2=

0.01 [Nms] in Eqn. (4.41).

4.3.2 Fish robot overview

Jinseong Lee designed a fish robot made of flexible silicon rubber and 3D-

printed material for use in this project as shown in Fig. 4.8. Reference [65] originally

presented the design of this robot. Inspired by the body shape of carangiform fish,

the robot was modeled with a Bluegill side silhouette and a Joukowski airfoil top

silhouette, to be used in the mathematical analysis of flow sensing [123].

The robot body is made of Dragon Skin 10, a flexible silicon rubber that is
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Table 4.1: Fish robot specification

Item Robot Wheel Units

Size 317(L) x 80(W) x 150(H) 59(D) mm

Mass 1.4 0.4 kg

Inertia 0.005 0.0003 kgm2

Figure 4.8: A reaction-wheel-based swimming robot made from flexible material.

All electronic modules are contained in a watertight pressure vessel. The fish body

was designed and modeled by Jinseong Lee. Electronic components including the

DC motor were chosen by Jinseong Lee as well.
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easily molded to any shape. Its flexibility provides tail flapping motion when the

reaction wheel rotates. To accommodate the motor and electronic components,

the robot contains a pressure vessel made of 3D-printed PLA plastic coated with

epoxy to be watertight. To stabilize and restore the body against rolling motion,

the reaction wheel is placed just below the center of buoyancy so that the center of

mass is lower than the center of buoyancy. The physical specifications are provided

in Table 4.1.

The robot is embedded with various hardware components connected to a

custom printed circuit board shown in Fig. 4.9. The board was designed by two

summer interns, Jenny Mei and Brynne Schoen, to fit the electronic components

chosen by Jinseong Lee. It includes the ARM Cortex-M4 micro processor, reaction

wheel, Pololu 20.4:1 geared DC motor, motor driver, 48 pulse rotary encoder, 11.1V

LiPo battery, micro SD card, custom interface PCB, power switch, umbilical port

for charging and programming, color LEDs, 5/3.3 V regulators, multiplexer, 2.4GHz

XBee transceiver, and MPU9250 IMU sensor. The communication between the

micro processor and the devices is via serial SPI and I2C, and onboard data is

stored in a micro SD card for data analysis. A XBee module transmits data wireless

to a remote PC in real time. Wireless communication supports several commands

such as start and stop for swimming, heading angle reset, feedback gain setting, and

retrieving the files saved on the SD card. The RGB LEDs are activated to convey

the state of the robot while swimming.
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Figure 4.9: Custom printed circuit board used to connect all components used in the

fish robot. The large through-hole allows for the components to be arranged radially

around the motor to fit in the compact pressure vessel. The board was designed by

two summer interns, Jenny Mei and Brynne Schoen, under the direction of Jinseong

Lee.
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Figure 4.10: Neutral Buoyancy Research Facility.

4.3.3 Neutral Buoyancy Research Facility overview

Swimming motion and steering tests for a submerged vehicle have been demon-

strated in the Neutral Buoyancy Research Facility of the University of Maryland

(Fig. 4.10). Use of this facility is thanks to Dr. Dave Akin at the University of

Maryland Space Systems Lab. The facility is equipped with 16 Qualisys under-

water cameras to track three reflective markers mounted on either side of the fish

robot. One of Dr. Akin’s students, Jeremy Chang, introduced the motion capture

system and managed a crew of scientific divers who aimed the cameras under my

direction. To feedback virtual prey position to the fish robot for pursuit, it is neces-

sary to have a medium of communication between the motion capture software and
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Figure 4.11: Experimental block diagram for Chaplygin fish pursuit in the Neutral

Buoyancy Research Facility.

the fish robot. The Qualisys Track Manager program sends marker position data

to a MATLAB program that both creates a virtual prey item and calculates the

line-of-sight angle θ (Fig. 4.1). The line-of-sight angle is then sent over USB serial

communication to a 27 MHz transmitter to the receiver aboard the fish robot. For

pure pursuit, the fish uses this as the desired heading and implements the control

law described in Section 4.1. This communication system was developed for the pur-

poses of this project. Figure 4.11 shows the control architecture interplay between

the onboard computation and sensing and the offboard motion capture system.

Due to interference from the magnetic field generated by the motor inside the

fish robot, magnetometer data from the MPU9250 IMU could not be integrated with

the accelerometer and gyroscope data to estimate a heading angle in the North-East-

South-West refernce frame. Instead, only the accelerometer and gyroscope data were

used in a filter to estimate heading with the positive x-axis defined by the initial
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direction of the fish robot on start.

Lacking a means of communication from the fish robot to the MATLAB pro-

gram that manages the virtual prey, the direction of the positive x-axis is defined

by observing the motion of the robot for a short period of time. The virtual prey

is then defined in that reference frame and begins moving while line-of-sight data is

transmitted to the fish robot.

4.3.4 Experimental pursuit results

Before testing the outer-loop pursuit behavior, it is necessary to test the inner-

loop guidance law Eqn. (4.8) in experiment. Figure 4.12 shows the response to a

step function input of desired heading from 0 to 20 degrees. There is some noticeable

disagreement between the heading determined by the onboard IMU and the offboard

motion capture system that increases over time. Because the IMU is not using

magnetometer readings there is inevitable drift in its estimate of heading, which

accounts for this discrepancy. The rate of sensor drift was seen to be anywhere from

roughly 2 to 10 degrees per minute depending on an untold number of variables.

Figure 4.13 shows the results of an experiment with feedback of the position

of a virtual prey. In this pure pursuit test, the line-of-sight angle θ is the desired

heading. As the distance r between the predator and prey decreases, the rate of

change in the line-of-sight angle increases as 1/r, as seen in the increasing amplitude

of oscillations in the desired heading towards the end of the experiment. The inner

and outer control loops were both successful in this experiment and the virtual prey
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Figure 4.12: Experimental step response.

89



Figure 4.13: Experimental pursuit of virtual target.

is captured.

These two experiments provide a stress test of sorts for the theoretical analysis

performed in the previous two sections. Controls engineers often prefer to live in

the model world, testing algorithms and different strategies in simulation. How-

ever, once simulation and theory can yield no more results and the algorithms are

satisfactory, it is a necessary sanity check to implement the control law in the real

world. The documentation of these experiments also provides a starting point for

future researchers wishing to implement pursuit onboard a vehicle of this type.
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The first experiment demonstrates the step response of the system, one of the

most basic tests of a control system. Due to the feedback of the inertial heading from

the IMU, the robot appropriately adjusts its heading when commanded. The second

experiment demonstrates the ability of the system to track a continually changing

reference trajectory using feedback from the motion capture cameras. Typically, a

more rigorous analysis of the system is needed to assure tracking of an arbitrary

reference trajectory, but with the assumption (and virtual choice) of a slowly ma-

neuvering prey, the controller converges to the changing reference at a rate faster

than the changing itself and so the prey is captured.

4.4 Summary of chapter

This chapter covered several topics related to pursuit with a reaction-wheel

driven fish robot. An autonomous control law is presented and shown in theory,

simulation, and experiment to result in a steady, forward-swimming limit cycle in the

desired direction. This result is extended to pursuit by allowing the desired direction

to be a time-varying signal related to the line-of-sight angle between the predator and

prey. Analysis of the pursuit geometry and the closed-loop system dynamics yields a

condition that can be evaluated ahead of time to determine whether a pursuit will be

successful. Given knowledge of the prey’s maneuverability, this condition provides

go/no-go decision that can be implemented onboard a robot to determine if it will

be worth expending the resources to engage in pursuit. Experiments performed with

feedback of prey direction from a motion capture camera system demonstrate the
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use of this type of pursuit in practice.
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Chapter 5: Vortex estimation and flow relative control

This chapter presents efforts to replicate the touch-at-a-distance sensing modal-

ity of the lateral line seen in fish by taking advantage of previous work done in this

area (see Section 1.2.3) to push forward state-of-the-art capabilities to include vortex

street tracking and flow-relative control.

The specific problem that is sought to be solved is to use an array of pressure

sensors in closed-loop, feedback control of a rigid foil in a Kármán vortex street, a

pattern of clockwise and anti-clockwise vortices shed by a blunt body and swimming

fish due to flow separation. Once solved, this problem opens the door for the use of

an artificial lateral line onboard underwater vehicles to track trajectories through a

vortex street, including the energy efficient slaloming path. Measurements from the

pressure sensors are used together with a model of the flow to estimate the location

of the vortices within the street. By actuating angle of attack, the foil generates lift

in the cross-stream direction and tracks reference trajectories through the vortex

street.

The methodology of this work is outlined below and uses tools from poten-

tial flow theory, nonlinear estimation, and nonlinear observability. Estimates of

the strength, phase, and cross-stream location of a vortex street are formed us-
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Figure 5.1: Block diagram showing the estimation and control architecture for the

vortex sensing and flow-relative control experiment described in this chapter.

ing pressure measurements from an artificial lateral line and used in closed-loop,

trajectory-tracking feedback control. The Kármán vortex street is modeled as a

potential flow with two parallel infinite lines of vortices [73]. A Joukowski foil is

placed in the flow model using the Joukowski transformation on a cylinder [75] and

the Milne-Thomson Circle Theorem [100]. Measurement equations formed with the

potential flow model and Bernoulli’s principle output the predicted pressure reading

according to three states: vortex strength of the street, cross-stream position of the

street, and a phase angle that represents the downstream position of the primary

vortex in the street. In line with the goal of a fully autonomous vehicle, all pa-

rameters and calculations are in a reference frame fixed to the Joukowski foil. The

measurement equations, in conjunction with real-time sensor readings, are used in

a nonlinear, recursive, grid-based Bayesian framework to estimate the three states.

The estimate is used in feedback control of the angle of attack of the Joukowski

foil to generate lift in the cross-stream direction and to track a reference trajec-
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tory through the street. Figure 5.1 shows a block diagram illustrating how these

components interact.

The techniques developed in this chapter are demonstrated in an experimen-

tal testbed. The testbed includes a 185 L flow tank, an air-bearing system to allow

movement of the Joukowski foil in the cross-stream direction, and a system to gener-

ate vortices in the desired Kármán vortex street pattern. The system was successful

in estimating the state of the vortex street as well as tracking the reference trajecto-

ries. This work has applications in autonomous underwater navigation in cluttered

environments and sensing or pursuing other fish or robots in water.

The chapter proceeds as follows. Section 5.1 presents the model for the flow

over a Joukowski airfoil subject to a Kármán vortex street and derives the measure-

ment equation for the artificial lateral line. Section 5.2 describes the Bayesian frame-

work used to estimate the location and strength of the vortex street. Section 5.3

covers the dynamics of the Joukowski foil and the controller for the angle of attack

of the Joukowski foil. Section 5.4 presents the work on empirical observability-based

path planning. Section 5.5 describes results from the experimental demonstration.

5.1 Modeling flow over a Joukowski airfoil in a Kármán vortex street

Figure 5.2 shows the physical layout of the modeling framework and the goal of

the sensing and control design below. The Joukowski foil has four pressure sensors

distributed on the forefront of the body. The Kármán vortex street is modeled

with potential flow theory. The inertial reference frame I = (O, e1, e2) is aligned
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Figure 5.2: Illustration of sensor and control system for the Kármán vortex street.

Red circles are pressure sensors.

such that e1 = a1 is pointing downstream. The body-fixed, non-rotating frame

A = (B, a1, a2) is aligned with I and centered on the origin of the Joukowski foil.

The body-fixed frame B = (B,b1,b2) is aligned with b1 pointing to the trailing

edge of the Joukowski foil and is rotated from frame A by the angle of attack α.

The closest anti-clockwise vortex to the Joukowski foil, i.e., the primary vortex,

has coordinates zv = xve1 + yve2 = xv + jyv in frame A, where j =
√
−1 is the

imaginary number. Each vortex has strength γ or −γ and the vortex street moves

to the right with the freestream speed U . Every like-signed vortex in the street is

spaced horizontally by a units. The two lines of vortices are separated vertically

by h units. The Joukowski foil is fixed in the a1 direction and actuates in the a2

direction by controlling its angle of attack α to generate lift.

The Joukowski foil shape of the robot allows the use of a potential flow model

(see Section 2.2 for a review of potential flow). A potential flow model produces the
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Figure 5.3: Simulated flow field of a lifting cylinder near a Kármán vortex street (a)

in the ζ-plane and (b) in the transformed z-plane. The freestream moves from left

to right in both panels.

flow velocity at any point from the derivative of a scalar potential function [75,100,

124]. Potential flow theory characterizes inviscid, irrotational, incompressible flows

at low speed flows where viscous effects are minimal. Though in reality the flow is

viscous and may separate at large angles of attack, the pressure sensors are grouped

towards the leading edge of the Joukowski foil where the flow is attached and the

model remains valid [75]. Section 5.1.1 presents the flow over a cylinder at a non-

zero angle of attack and the corresponding flow induced by a Kármán vortex street.

An altered version of the Milne-Thomson Circle Theorem maintains the cylinder

as a boundary condition. Section 5.1.2 presents the Joukowski transformation that

converts flow past a cylinder to flow past an airfoil and derives the condition on

the circulation around the cylinder to maintain the Kutta condition. Section 5.1.3

uses Bernoulli’s equation to derive the measurement equation that gives the pressure

difference between two sensors in the artificial lateral line as a function of the three

states of the vortex street.

Figure 5.3 shows the flow in the pre-transform ζ-plane and in the post-transform
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z-plane, in which the cylinder is transformed into an airfoil. Note that the vortices

are in a straight line only in the ζ-plane; the Joukowski transformation has an un-

intended effect of shifting the position of vortices near the cylinder. As seen in Fig.

5.3, this discrepancy from a straight line is not severe (a more technical discussion

follows in subsequent sections) and only affects vortices very near the foil. In prac-

tice, this shortcoming of the flow model did not affect the ability to estimate the

location of vortices since the discrepancy was so small.

5.1.1 Flow in the circle plane

Modeling flow around a cylinder is a well known application of potential flow

theory. The potential flow FC(ζ) around a cylinder centered at location ζ0 in the

complex plane is modeled as the summation of uniform flow, a doublet, and a

vortex [75]:

FC(ζ) = U(ζ − ζ0)e
−jα +

Ur20
ζ − ζ0

ejα − j
ΓC

2π
log

(
ζ − ζ0
r0

)
, (5.1)

where U is the flow speed, α is the angle of attack, r0 is the radius of the cylinder, and

ΓC is the circulation strength. In potential flow, the velocity field of a potential flow

f(z) is given by the complex conjugate of the derivative of the potential f(z) [75],

i.e.,

w(z) = u(z)− jv(z) =
df
dz ,

where u(z) and v(z) are the horizontal and vertical components of the velocity. The

true velocity field is found by taking the complex conjugate, w(z) = u(z) + jv(z).
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The conjugate velocity field for the lifting cylinder in the ζ-plane is

dFC

dζ = Ue−jα − U

(
r0

ζ − ζ0

)2

ejα − j
ΓC

2π

1

ζ − ζ0
. (5.2)

From Ref. [73], the potential function for a Kármán vortex street is

FK(ζ) = j
γ

2π

[
log sin

π

a
(ζ − ζv)

− log sin
π

a
(ζ − (

1

2
a+ jh)− ζv)

]
.

Altering this potential for a Kármán vortex street inclined from the real axis at an

angle α yields

FKα(ζ) = j
γ

2π

[
log sin

(π
a
(ζ − ζv)e

−jα
)

(5.3)

− log sin

(
π

a

(
(ζ − ζv)e

−jα − (
1

2
a+ jh)

))]
.

The complex potential Eqn. (5.3) produces singularities (vortices) at ζ = ζv+Nae
jα

and ζ = ζv +Naejα + (1
2
a+ jh)ejα, where N = 0,±1,±2, . . . .

Next, add the potential for a lifting cylinder Eqn. (5.1) to the potential for a

Kármán vortex street Eqn. (5.3) to obtain the potential of a cylinder in a vortex

street. To maintain the lifting cylinder as a boundary in the flow, FKα(ζ) must be

modified with the Milne-Thomson Circle Theorem [100],

w(z) = f(z) + f

(
r20
z

)
, (5.4)

which allows any potential flow f(z) to be augmented to include a cylinder of ar-

bitrary radius r0 placed at the origin of the coordinate system. As will be shown

in Section 5.1.2, it is necessary to impose a cylindrical boundary condition at an

arbitrary center, not the origin. (A thorough proof of the Circle Theorem can be
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found in Ref. [98, Section 2.1].) The key to the proof of Eqn. (5.4) is that for a

point z on a circle C centered at the origin with radius r0, the complex conjugate is

z = r20/z. To derive the Circle Theorem about an off-origin cylinder, we need only

to find the complex conjugate of a point on a circle centered at z0, which can be

shown by substitution to be z = r20/(z−z0)+z0. The Circle Theorem then becomes

w(z) = f(z) + f

(
r20

z − z0
+ z0

)
. (5.5)

(An alternate derivation of the off-origin Circle Theorem using stream functions can

be found in Ref. [125, Corollary 1].)

Applying Eqn. (5.5) to the Kármán vortex street complex potential Eqn. (5.3)

yields

FK◦
α
(ζ) = j

γ

2π

[
log sin

(π
a
(ζ − ζv)e

−jα
)

− log sin

(
π

a

(
r20

ζ − ζ0
+ ζ0 − ζv

)
ejα

)
(5.6)

− log sin

(
π

a

(
(ζ − ζv)e

−jα − (
1

2
a+ jh)

))
+ log sin

(
π

a

((
r20

ζ − ζ0
+ ζ0 − ζv

)
ejα − (

1

2
a− jh)

))]
,

where r0 is the radius of a cylinder centered at ζ0 as in Eqn. (5.1), ζv is the location of

the primary vortex in the Kármán vortex street, and γ is the vortex strength. This

complex potential represents the flow field of a Kármán vortex street augmented to

include the lifting cylinder (which will be transformed to become an airfoil) as a
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streamline of the flow. The conjugate velocity field is

dFK◦
α

dζ = j
γ

2a

[
cot

(π
a
(ζ − ζv)e

−jα
)
e−jα

− cot

(
π

a

(
r20

ζ − ζ0
+ ζ0 − ζv

)
ejα

)
ejα (5.7)

− cot

(
π

a

(
(ζ − ζv)e

−jα − (
1

2
a+ jh)

))
e−jα

+cot

(
π

a

((
r20

ζ − ζ0
+ ζ0 − ζv

)
ejα − (

1

2
a− jh)

))
ejα

]
.

Adding Eqn. (5.1) and Eqn. (5.6) yields the total potential flow of a lifting cylinder

in the flow field of a Kármán vortex street,

FT(ζ) = FC(ζ) + FK◦
α
(ζ). (5.8)

Similarly, adding Eqn. (5.2) and Eqn. (5.7) yields the total conjugate velocity

WT(ζ) =
dF (ζ)

dζ =
dFC(ζ)

dζ +
dFK◦

α
(ζ)

dζ . (5.9)

A simulation of this flow field in the pre-transform ζ-plane can be seen in Figure

5.3(a).

5.1.2 Flow in the foil plane

The Joukowski transformation allows the potential flow over a cylinder to be

used in order to calculate the flow over an airfoil, the parameters of which are chosen

to resemble the cross-section of a fish. The transformation is given by [75]

z(ζ) = ζ +
c2

ζ
, (5.10)

where c = ℓ/4 is the quarter-chord length and ℓ is the chord length (the length of

the fish-shaped body). The center ζ0 and radius r0 of the cylinder in the ζ-plane
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determine the geometry of the airfoil produced by the Joukowski transformation.

The center and radius are [75]

ζ0 = c

(
−4

3
√
3

ta
ℓ
+ 2j

ha
ℓ

)
(5.11)

r0 =

(
ℓ

4
+

ta

3
√
3

)
, (5.12)

where ha is the max height of the camber line from the chord line and ta is the max

thickness of the airfoil. For this work an inflexible and uncambered airfoil is used,

so ha = 0.

The conjugate velocity at a point z in the z-plane is found using the derivative

of the Joukowski transformation [75], i.e.,

W (z) =
dFT

dζ

dζ
dz

=
dFT

dζ

(
dz
dζ

)−1

= WT(ζ(z))

(
1−

(
c

ζ(z)

)2)−1

(5.13)

= u(z)− jv(z).

To find the velocity around the airfoil at point z, Eqn. (5.13) must be evaluated at

the corresponding point in the ζ-plane by the inverse Joukowski transformation [126]

ζ(z) =
1

2

(
z + sgn (Re(z))

√
z2 − 4r20

)
. (5.14)

A simulation of this flow field in the post-transform z-plane is in Figure 5.3(b).

The z-plane is the physical plane, whereas the ζ-plane is a convenient, non-physical

space used to perform calculations. Note that since the vortex street model is defined

in the ζ-plane, vortices are deviated slightly from the intended pattern in the z-plane

after the Joukowski transformation. However, the error in vortex location due to
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the transformation will not exceed r0 − ta/2, the maximum distance a point on

the cylinder’s surface is displaced by the Joukowski transformation. For the foil

used in the experimental demonstration (Section 5.5), this deviation is 2 cm when

a vortex is on the surface of the foil, but quickly decays as the vortex advects with

the flow. Due to the smoothing effect of the Bayesian filter and the fact that most

measurements are taken when the vortices are not exactly on the surface of the foil,

the deviation between modeled and actual vortex location did not prevent successful

use of the model in real-time vortex location estimation.

The circulation of the lifting cylinder ΓC in Eqn. (5.1) remains a free parameter,

but can be prescribed by the Kutta condition [75]. In this context, the Kutta

condition states that the trailing edge of the airfoil must be a stagnation point in

order to avoid non-physical infinite velocities around the sharp trailing edge [75].

Through the Joukowski transformation, the trailing edge of the airfoil corresponds

to the point in the ζ-plane where the cylinder intersects the real axis. The angle

from the center of the cylinder to the trailing edge point is θ0 = −α−2ha/ℓ [75]. To

solve for ΓC, find the tangential and radial components of the velocity with respect

to the center of the cylinder and solve for the circulation that results in a stagnation

point at the trailing edge. Changing to polar coordinates centered on the cylinder

by substituting ζ = ζ0 + rejθ into Eqn. (5.9) yields

W̃T(r, θ) = WT(ζ) = WT(ζ0 + rejθ).

The radial ur and tangential uθ components of a complex velocity are [75]

ur(r, θ)− juθ(r, θ) = W̃T(r, θ)e
jθ,
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which implies

ur = Re
(
W̃T(r, θ)e

jθ
)

(5.15)

uθ = −Im
(
W̃T(r, θ)e

jθ
)
.

Substituting r = r0 and θ = θ0 = −α − 2ha/ℓ in Eqn. (5.15), ur evaluates to 0 as

expected, because the cylinder was chosen to be a boundary in the flow. Setting

uθ = 0 and solving for ΓC yields the circulation that satisfies the Kutta condition

ΓC = 2r0π

[
Im

(
jγejθ0

2a
(A1 + A2 + A3 − A4)

)
+2U sin(θ0)

]
, (5.16)

where θ0 = −α− ha/ℓ,

A1 = ej(α−2θ0) cot
[π
a
ejα

(
ζ0 − ζv + r0e

−jθ0
)]
,

A2 = e−jα cot
[π
a

(a
2
+ jh− e−jα

(
ζ0 − ζv + r0e

jθ0
))]

,

A3 = e−jα cot
[π
a
e−jα

(
ζ0 − ζv + r0e

jθ0
)]
, and

A4 = ej(α−2θ0) cot

[
π

a

(
− a

2
+ jh+ ejα

(
ζ0 − ζv + r0e

−jθ0
))]

.

The mathematics allow for any value of ΓC, but only the value that leads to flow

leaving smoothly at the trailing edge is physically realistic. With the analytical

solution to the bound vorticity which maintains the Kutta condition as a function

of vortex locations, the potential flow model is complete.

5.1.3 Artificial lateral line

The complete potential flow model presented in the previous section provides

a means to calculate the velocity field as a function of vortex strength and location.
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However, the artificial lateral line is composed of pressure sensors which are only

indirectly sensitive to flow velocity. Bernoulli’s equation combined with the flow

velocities modeled above predicts the pressure at a point z in the flow field of a

Joukowski foil in a vortex street. Let p(z) denote the static pressure at z, ρ the

fluid density, W (z) the velocity at z, g the gravitational acceleration, and Z the

elevation. Applying Bernoulli’s principle [60] for steady, inviscid, incompressible,

irrotational flow yields

p(z) +
1

2
ρ|W (z)|2 + ρgZ = constant. (5.17)

In the experiment described in Section 5.5, four pressure sensors are mounted

on the body of the Joukowski foil. Inspired by the function of canal neuromasts

[127], pressure differences between sensors are measured and modeled to remove the

effects of ambient pressure, rather than using the absolute pressure measurements.

From Eqn. (5.17), for any two sensor locations zi and zj, we have

p(zi) +
1

2
ρ|W (zi)|2 = p(zj) +

1

2
ρ|W (zj)|2.

The pressure difference, ∆pij = p(zi)− p(zj), is

∆pij =
1

2
ρ

[
|W (zj)|2 − |W (zi)|2

]
, (5.18)

where W (z) is given by Eqn. (5.13). The measurement model is now complete.

Given a vortex street strength and location, the expressions derived in this section

model the pressure that would be measured by a sensor in a particular location. This

measurement model is used in the next section as an integral part of the estimation

of vortex location.

105



5.2 Vortex street estimation

The estimation of the states of the vortex street is performed by a recursive,

grid-based Bayesian filter [101, 102]. The principle of this filter is to use a mea-

surement model that predicts what the measurements from the sensors would be if

the state of the system were a particular value in the state space. A measurement

model for the vortex street was derived and presented in the previous section. By

comparing the measurement predictions of every point in the state space grid with

the actual measurement, a multi-dimensional conditional probability density func-

tion (PDF) is formed, called the measurement likelihood function. The likelihood

function is combined with the prior PDF of the previous time step to become the

posterior PDF according to Bayes’ theorem. The posterior then becomes the prior

of the next time step after it is forecast forward according to the system dynamics

including process noise. The Bayesian filter is a well-tested tool in the controls en-

gineer’s chest. Section 2.3 presents the estimation scheme in its most general form.

The grid-based Bayesian filter is applied below to estimate the state of a vortex

street

In the current framework, the Bayesian filter assimilates pressure difference

measurements to estimate the strength, phase, and cross-stream location of the

vortex street. Equations (5.9), (5.13), and (5.18) are used in Section 5.1 to model

pressure measurements from the sensors. The recursive, grid-based Bayesian filter

estimates a set X of parameters from a set Y of measurements [101]. Suppose the
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instantaneous measurement vector is

Y = H (X) + η, (5.19)

where H (X) is the (nonlinear) measurement equation (5.18) and η is (Gaussian)

sensor noise. With nps pressure sensors, there are np = nps − 1 measurements of

linearly independent pressure differences. Note that there are np = (n2
ps − nps)/2

total pressure differences among the pressure sensors, but they are not linearly

independent. Using redundant pressure sensor differences in the Bayesian filter

framework will have the effect of mitigating sensor noise more quickly (in fewer

time steps), but each time step will take longer. In this work, the minimum number

of linearly independent sensors are used in order to have the maximum update rate

to accommodate the real time dynamics of the Joukowski foil under closed-loop

control. The measurement vector is

Y = [∆p1, . . . ,∆pnp ]
T ∈ Rnp , (5.20)

where each pressure difference entry is given by Eqn. (5.18) evaluated using the

locations of the pressure sensors in frame B.

5.2.1 Likelihood function

For the grid-based Bayesian filter with Gaussian measurement noise, the likeli-

hood function is the following conditional probability of measurement Y given state
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vector X [101]:

π(Y|X) =
1√

(2π)n det(R)
(5.21)

exp

[
− 1

2
(Y − H (X))TR−1(Y − H (X))

]
,

where n is the dimension of the state space and R ∈ Rnp×np is the covariance matrix

of the sensor noise. Let mi be the width of the ith dimension in the n-dimensional

state space, then the discrete grid X ∈ Rm1×m2× . . .×mn of all expected possible

values of the state space is used to evaluate the measurement equation. (For a large

number of grid points, this calculation may be computationally intensive.)

5.2.2 Update step (Bayes theorem)

Bayes’ formula allows each new measurement and its likelihood function Eqn.

(5.21) to be combined with the prior estimate, yielding the posterior estimate. Let

Yk be the set of measurements at time tk, with k = 1, 2, . . . . Then,

π(X|Yk, . . . ,Y1) = κπ(Yk|X)π(X|Yk−1, . . . ,Y1),

where κ is a normalizing factor to ensure the posterior integrates to one. After

the incorporation of each new measurement, the posterior becomes the prior for the

next time step. For the initial time step, we choose a uniform prior. The notation

π(X|Y) is used for the posterior π(X|Yk, . . . ,Y1) at an arbitrary value of k.

5.2.3 Forecast step

The posterior estimate π(X|Y) is an n-dimensional matrix with each dimen-

sion corresponding to one of the states in the parameter space. The width mi of each
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dimension is determined by how fine a grid is chosen for the Bayesian filter. The

computational time needed for each time step increases with the size of π(X|Y).

The time evolution of the posterior (in order to become the prior of the next time

step) is accomplished by shifting the values of the PDF according to the continuous

dynamics of Section 5.3. The angle of attack α is a known input and is assumed

constant over each time step, allowing each point in the posterior to be forecast

using a numerical solver such as ode45 in MATLAB.

5.2.4 Process noise

Process noise is modeled by convolving the PDF with an n-dimensional, zero-

mean Gaussian kernel as a numerical approximation of the Fokker-Planck equation

with diffusion only [103]. This operation has a blurring effect on the PDF as time

goes on. In the absence of new measurements, the PDF becomes uniform as time

goes to infinity.

5.2.5 Parameters to estimate

The full flow field given in Eqn. (5.13) is determined by the geometry of the

Joukowski airfoil, the circulation of the airfoil found by the Kutta condition in Eqn.

(5.16), and the parameters of the Kármán vortex street. Each parameter to be

estimated in the Bayesian filter framework greatly increases the computational time

needed at each time step. It is therefore advantageous to reduce the number of

parameters in the estimation state space as much as possible. For example, the
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geometry of the foil is known by design and ΓC is a function of the other states of

the system.

There are seven parameters that uniquely determine the flow field: U (the

freestream flow speed), α (the angle of attack of the airfoil), γ (the strength of

each vortex in the street), a (the horizontal spacing of the vortices), h (the vertical

spacing of the vortices), xv (the horizontal location of the vortex street in frame A),

and yv (the vertical location of the vortex street in frame A). Previous work [71]

demonstrated the use of pressure sensors to estimate the free-stream speed of a flow

as well as the angle of attack. Thus, assume here that flow speed U and angle of

attack α are estimated by an independent, parallel filter.

The stability analysis in Ref. [73] shows that the vertical spacing h of the

vortices is directly proportional to the horizontal spacing a by h = a 1
π
sinh−1(1) ≈

0.2805a, so h can be removed from the parameter space. The horizontal spacing a

is related to the diameter of the upstream obstacle shedding the vortices through

the Strouhal number St. For low-frequency vortex shedding [128],

St =
fD

U
≈ 0.2, (5.22)

where f is the frequency of shedding, D is the obstacle diameter, and U is the flow

speed. The frequency obeys f = U/a, so if the obstacle diameter is known, then a

may be calculated. Finally, because xv = Re(zv) measures the horizontal distance

to the closest anti-clockwise vortex in an infinite line of vortices moving at constant

speed U , this distance is represented by a phase angle

ϕ = 2π
xv
a
, ϕ ∈ [−π, π). (5.23)
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A phase angle of ϕ = 0 corresponds to when the primary vortex is horizontally

in line with the Joukowski foil; ϕ = π is when the primary vortex is at xv = a/2

and a new vortex becomes the primary vortex. In this way, the parameter space is

reduced to three variables: ϕ (the phase of the vortex street), yv (the cross-stream

distance to the primary vortex of the street), and γ (the strength of the street).

Though only the phase and cross-stream distance are necessary for the controller

described in Section 5.3, the vortex strength must be estimated to have the full

mathematical description of the vortex state that is necessary for the Bayesian filter.

For the Kármán vortex street, the grid of all possible values is three-dimensional

with XK◦
α
∈ Rmϕ×myv×mγ .

5.3 Dynamics and flow-relative control

To design a controller, perform the observability analysis of Section 5.4, and

perform the forecast step of the Bayesian filter, a model of the system dynamics is

needed. Several assumptions about the dynamics of the Joukowski foil and vortices

are needed to perform real-time estimation. The first assumption is that the vortices

are constant strength and do not decay as they move downstream.

The second assumption is that the effect of the vortex street on the Joukowski

foil is ignored. In order to account for these dynamics, the lift L in the a1 direction

(see Figure 5.2) would be given by the Kutta-Joukowski Theorem [75] as L = ρUΓC,

where ΓC from Eqn. (5.16) is a function of angle of attack α. This assumption does

not have theoretical justification, but was needed in order for the control loop to run
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fast enough to operate in real time. In practice, the estimator and controller were

robust enough such that any error between the actual dynamics and the simplified

dynamics here was quickly removed due to the fast convergence of the estimator. In

the absence of a vortex street, i.e., in a uniform flow, this lifting law reduces to the

thin airfoil theory below.

The third assumption is that the airfoil does not affect the path of the vortices

in the street. Each vortex in the street deflects from its nominally straight path as it

interacts with the obstruction of the airfoil. This effect is well modeled in potential

flow using Routh’s Rule [129,130], but individual movement of vortices in the vortex

street is not represented in the current framework because the measurement equation

Eqn. (5.18) assumes the entire vortex street can be represented by one set of planar

coordinates. The error due to this effect is mitigated because the vortices are only

deflected once they are downstream of the airfoil. Previous work [126] has shown

that the most effective sensor placement is near the leading edge of the Joukowski

foil and is thus less effected by the vortex deflection than if the sensors were placed

closer to the trailing edge.

5.3.1 Thin airfoil theory

For the cross-stream coordinate yv dynamics, adopt the lifting law from thin

airfoil theory [60]. Thin airfoil theory shows that the sectional lift coefficient cl =

2πα and

L = clqS = ρπU2Sα, (5.24)
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where S is the surface area of the foil. We model the cross-stream dynamics as

mÿv = −L− bẏv, (5.25)

where b is a damping term and the negative sign on L is included because yv measures

the vertical displacement of the primary vortex relative to the center of the foil. If

the Joukowski foil has positive lift, yv decreases as the foil moves in the positive

a2 direction.

5.3.2 Flow-relative phase dynamics

Because the Joukowski foil is fixed in the downstream direction, the phase

angle ϕ (which keeps track of the a1 coordinate, xv, according to Eqn. (5.23)) is

unaffected by the foil’s movement and the vortices advect in the flow at speed U .

The downstream dynamics are

ϕ̇ = 2π
U

a
= constant. (5.26)

Finally, the vortex strength dynamics are

γ̇ = 0,

because of the assumption that the vortices do not decay as they travel downstream.

5.3.3 Tracking feedback linearization

The goal of the closed-loop control here is to track a phase-dependent reference

trajectory yv,ref = yv,ref(ϕ), meaning for any given phase ϕ there is a reference
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vertical position yv that should be achieved by actuating the angle of attack α of the

Joukowski foil. Note that yv is the position of the vortex street in body-fixed, non-

rotating frame A (see Figure 5.2) so if the Joukowski foil moves in the e2 direction

in the inertial frame I, yv decreases. All calculations within the estimator and

controller are performed in body-fixed frame B. If the Kármán vortex street never

moves in the cross-stream direction, yv still changes if the Joukowski foil translates

in the cross-stream direction. Let ϕ̂ and ŷv represent the maximum likelihood

estimate of the relative phase and cross-stream position of the vortex street from

π(X|Y), the three-dimensional PDF output every time step by the Bayesian filter

(see Section 5.2). Although the posterior is only updated once per time step, the

relatively fast update rate of 20 Hz allows the system to be well characterized by

continuous dynamics. The reference trajectory yv,ref = yv,ref(ϕ̂) is a function of the

estimate of the phase of the vortex street. Letting e1 = ŷv−yv,ref and e2 = ˙̂yv− ẏv,ref ,

the error dynamics are

ė1 = e2

ė2 = − 1

m
ρπU2Sα− b

m
˙̂yv − ÿv,ref ,

where the cross-stream dynamics Eqn. (5.24) and Eqn. (5.25) have been used.

Choose a tracking PD controller [66] for the angle of attack α,

α = − m

ρU2πS

(
ÿv,ref +

b

m
˙̂yv − kpe1 − kde2

)
, (5.27)

with control gains kp = kd = 5. Damping constant b = 15 kg s−1 was found to

best match the experimental dynamics through trial and error. This damping term
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represents the damping effect of the water on the Joukowski foil as well as the

nonzero friction of the air-bearing system. The stable, closed-loop error dynamics

are

ė1 = e2

ė2 = −kpe1 − kde2,

with eigenvalues of

λ = −kd
2

±
√
k2d − 4kp

2
,

which have negative real parts since kp, kd > 0.

5.4 Observability-based path-planning

The observability of a system quantifies the capability of a set of outputs Y to

be used to infer the internal states X of the system on which the outputs depend.

This concept is used here to find the reference trajectory through the vortex street

that leads to the best estimates of the street parameters. Traditional observability

gives a binary answer to the question of whether measurements Y can be used to

estimate states X and, for nonlinear systems such as the one here, often requires

taking Lie derivatives of the system dynamics and evaluating the observability rank

condition [131]. Empirical observability instead gives a quantitative measure of how

easily observed a system is and requires only the ability to simulate the system

dynamics. Krener and Ide conceived the empirical observability gramian Wo [131].

For the nonlinear system

Ẋ = f(t,X) and Y = H (t,X),
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Wo(i, j) =
1

4ϵ2

∫ τ

0

(Y+i −Y−i)⊤(Y+j −Y+j)dt, (5.28)

where Y±i is the measurement produced from the state X±i = X ± ϵei, and ϵei

is a small perturbation along the ith unit vector in Rn, with i = 1, . . . , n. The

inverse of the minimum singular value of Wo on a time interval [0, τ ] is the local

unobservability index, ν = 1/σmin(Wo). Since this metric requires simulating the

system dynamics, it depends on parameters specific to experimental conditions such

as sensor placement, vortex strength, foil geometry, etc., and therefore cannot be

used to compare observability between different configurations. It is, however, useful

for comparing different trajectories with the same experimental configuration. The

path with the lowest unobservability index will lead to the best estimate of the

parameter space.

5.4.1 Unobservability index

To choose the path yv,ref(ϕ), the unobservability indices ν calculated along

sinusoidal trajectories of varying phase and amplitude are compared. Sinusoidal

trajectories are examined because of the periodic structure of the vortex street and

the sinusoidal nature of Kármán gaiting behavior in fish. By simulating the system

dynamics given in Section 5.3 with the control law for α described therein, Eqn.

(5.28) provides the local unobservability index for each trajectory. Nominal initial

conditions are set to start on the reference trajectory. The vortex street spacing,

vortex strength, flow speed, foil geometry, and sensor configuration match those in

the experiment described in Section 5.5. Figure 5.4 shows the local unobservabiltiy
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Figure 5.4: Long-time unobservability index for sinusoidal trajectories of the form

A0 cos(ϕ+ ϕ0)− h/2 through the (ϕ, yv) plane. The white circles represent minima

of the test grid. The black circle represent the path followed in the experiment.

index for each sinusoidal reference trajectory and was generated with the measure-

ment model presented above. The minima on this graph indicated by white circles

are the paths of the Joukowski foil leading to the best estimates of the parameters

XK◦
α
.

The corresponding optimal paths are shown in Figure 5.5 in white. Figure

5.5 was generated not by simulating full trajectories with the proper control law,

but by selecting initial conditions in the (ϕ, yv) plane and simulating the dynamics

with α = 0 for one time step of 0.1 seconds. Figure 5.5 gives a metric for the

unobservability for each point in the plane regardless of how that point was reached,

referred to here as the short-term unobservability index. In contrast, Figure 5.4 gives

a metric for the unobservability of an entire reference trajectory, referred to here
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Figure 5.5: Short-time unobservability index at various points in the (ϕ, yv) plane.

White and black curves correspond to the white and black circles in Fig. 5.4. The

dashed black lines indicate the width of the test section of the experimental setup

described in Section 5.5.
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as the long-term unobservability index. Each point in Figure 5.4 corresponds to

an entire trajectory through Figure 5.5. The low unobservability index areas in

Figure 5.5 are those that bring one of the four pressure sensors close to a vortex

in the street. The optimally observable paths shown in white are those that bring

the vortices close to these low unobservability index areas, creating a large pressure

difference between the sensor pairs and hence a good estimate of the vortex street

location and strength.

5.4.2 Bioinspired slaloming and maximally observable paths

For the experimental demonstration described in Section 5.5, the black tra-

jectory was chosen for yv,ref for three reasons. First, it avoids unmodeled boundary

effects of coming too close to the walls of the test section (indicated by black dashed

lines). Second, the sensors do not pass directly through the singularity of the vor-

tices as they do for the white trajectories. In the potential flow model, the velocity

at the center of each vortex is infinite, which is of course nonphysical, so by avoiding

intentional measurements at the singularities, it avoids a discrepancy between the

model and the real world. Finally, the black trajectory is very close to the two white

trajectories and has a low unobservability index as compared to the rest of the field

in Figure 5.4. The chosen path is

yv,ref1 =
h

2
cos(ϕ)− h

2
, (5.29)

which takes the center of the Joukowski foil (but not the pressure sensors) through

the center of each vortex. The offset −h/2 ensures that the trajectory is centered
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between the upper and lower lines of vortices in the street. It is interesting to

note that fish do not adopt this strategy. Instead, they slalom between the vortices

capturing some of the energy to propel themselves [76], a behavior known as Kármán

gaiting. To demonstrate this path, a second reference trajectory is defined as

yv,ref2 =
h

2
cos(ϕ+ π)− h

2
, (5.30)

representing the Kármán gaiting behavior. Figure 5.6 shows the difference between

the two reference trajectories that are executed in the experiments described in

Section 5.5.

5.5 Experimental demonstration

In order to validate the modeling and estimation scheme presented above, it is

necessary to present a practical demonstration in experiment. This section presents

the testbed used for experiments to track reference trajectories through a Kármán

vortex street and discusses the results in tracking both the optimally observable and

the biologically inspired paths.

5.5.1 Testbed

Figure 5.7 shows the experimental testbed for the Kármán vortex street esti-

mation and flow-relative control experiments. A 185 L Loligo flow tank creates a

uniform 15 cm/s flow in an 88cm × 25cm × 25cm test section. A stepper motor

controls a black acrylic fin that flaps to create vortices at the desired spacing and

frequency. The fin extends to the bottom of the flow tank and is parallel to the
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Figure 5.6: (a) Reference trajectory 1, the optimally observable path through the

vortex street. The Joukowski foil passes through each vortex in the street. (b)

Reference trajectory 2, the slalom path corresponding to Kármán gaiting. Note

that this figure is in a flow-fixed frame. In the inertial frame, the Joukowski foil is

fixed in the downstream coordinate and the vortices flow past it.
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flow until a vortex is generated. The fin then rotates clockwise (or anti-clockwise)

and slowly returns to center to create an anti-clockwise (or clockwise) vortex that

travels downstream with the freestream. This pattern is consistent with that of a

Kármán vortex street shed from an obstacle in the flow. Through the use of dye

packets and image processing, the strength of each vortex in the street was em-

pirically determined to be γ ≈ 0.0605m2s−1 by measuring the time it took for a

dye packet to complete a revolution around a vortex at a particular distance. This

method has many possible sources of error and it would be better to use particle

image velocimetry techniques for a more robust estimate of vortex strength, but the

physical setup of the flow tank made optical access challenging.

The Joukowski foil is suspended in the water from a servomotor that controls

the angle of attack directly according to Eqn. (5.27). The servomotor is mounted on

a set of nearly frictionless air bearings. The air bearings have a supply of compressed

air that is released radially inward towards a 3/4 inch steel shaft, creating a pillow

of air that supports the air bearings as they move. This configuration allows the

servomotor and Joukowski foil to freely translate in the cross-stream direction, but

holds the foil locked at a particular downstream position from the vortex generator.

Four Millar pressure sensors are mounted directly on the side of the foil to emulate

the lateral line seen in biology. The variance of noise in the pressure sensors was

found to be Rp = 49 Pa2. The sensor noise matrix in Eqn. (5.21) is

R = diag(Rp . . . Rp︸ ︷︷ ︸
np

),

where Rp is the expected noise variance of the pressure-difference measurements,
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Figure 5.7: The testbed for the vortex street estimation and flow-relative control

experiments. A flow tank generates flow from left to right. The Joukowski foil,

equipped with four pressure sensors as an artificial lateral line, controls its cross-

stream position by actuating a servomotor to control angle of attack. The Joukowski

foil is attached to an air-bearing system that allows free movement in the cross-

stream direction, but fixes the foil in its downstream position. A stepper motor

actuates a fin to create the vortices in the desired vortex street pattern. An overhead

camera is used to calculate the ground truth location of the vortices.
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found by fitting a Gaussian density to the data collected from the pressure sensors

in uniform flow.

Printed from PLA plastic with a MakerBot Replicator, the rigid Joukowski

foil has the shape detailed in Section 5.1. The print includes internal cutouts to

allow an assembly of 1 cm MakerBeam to mount the foil to the servomotor horn.

The length of the Joukowski foil is 15 cm and maximum thickness is 2 cm. The

body is uncambered. The height of the body (the span of the foil) is 12 cm and

was suspended into the water to leave 2 cm exposed to air and to eliminate any

unmodeled flow over the top of the foil. Pressure sensors were mounted on the

Joukowski foil at the locations shown in Figure 5.2 and were midway down the

depth of the body.

A camera mounted above records the experiments in order for the actual vortex

positions to be determined offline through manual pixel selection and a built-in

MATALB script to map pixels to the dimensions of the tank. This method relies on

the easy visibility of the center of each vortex and therefore does not provide ground

truth when the vortices dissipate or are occluded by something in the experimental

setup. Particle image velocimetry provides more accurate and robust ground truth

data for vortex position, but imaging of this type was precluded here because the

bottom of the tank is opaque and the free surface prevents imaging from above.

The estimation, data acquisition, image capture, control calculation, stepper

motor, and servomotor are all controlled in real time from a laptop computer running

MATLAB. A 30× 30× 15 coarse grid of possible points XK◦
α

in the (ϕ, yv, γ) state

space was used to update the estimate and control at approximately 20 Hz in order
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to have stable convergence to the reference trajectory. Experiments ran for 700

time steps at 20 Hz, equating to nominally 35 second run times (the actual run

time varied by up to 2 seconds due to variable computation time per time step and

unknown loads on the computer’s processor by programs other than MATLAB).

The vortices created by the flapper were spaced by a = 0.6m, which corresponds to

a hypothetical upstream obstacle of diameter 12 cm according to Eqn. (5.22) and a

shedding frequency of 0.25 Hz. This yielded approximately 9 cycles per experiment.

5.5.2 Results

Figure 5.8(a-c) shows the time history of the marginal densities of the three

states in π(X|Y) for the closed-loop experiment to track the optimally observable

reference trajectory given in Eqn. (5.29). The marginal density for each state was

formed by summing along the other two states of the three-dimensional probability

density at each time step. The initial value of ϕ is plotted instead of the current

value for ease of visualization. Integrating Eqn. (5.26) directly and rearranging

yields

ϕ0 = ϕ(t)− 2π
U

a
t, (5.31)

the initial value of ϕ. Since this value is constant and the second term is known, a

proper estimate of ϕ(t) will lead to a constant estimate of ϕ0. The experiment was

successful in actuating the Joukowski foil to pass through each of the vortices after

an initial period of larger error. This period of larger error is due to the time it takes

the estimator to converge on a particular estimate after the control was turned on.
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Figure 5.8: Time history of the marginal posteriors from the Bayesian estimator

during the closed-loop control experiment in the flow tank. Panels (a,d) show the

initial value of ϕ given by Eqn. (5.31), (b,e) yv, and (c,f) γ. Panels (a-c) correspond

to the optimally observable reference trajectory Eqn. (5.29) and panels (e-f) corre-

spond to the Kármán gaiting trajectory Eqn. (5.30). Feedback control starts at 5

seconds.The white lines indicate the ground truth.
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Figure 5.9: Error between reference and ground truth of xv and yv over the Kármán

vortex street experiment for the (a) optimal observability and (b) Kármán gaiting

trajectory. xv is shown rather than the non-dimensionalized ϕ to more easily com-

pare the errors in the two states. Feedback control starts at 5 seconds, indicated by

the dashed vertical lines.

Due to the noisy sensors, it takes many measurements for the filter to determine

the true vortex locations. Figure 5.9(a) shows the time history of the error from the

reference trajectory.

Figure 5.8(d-f) shows the time history of the marginal densities of the three

states in π(X|Y) for the closed-loop experiment to track the Kármán gaiting trajec-

tory given in Eqn. (5.30). The experiment was successful in actuating the Joukowski

foil to slalom through the vortex street after an initial period of larger error. Figure

5.9(b) shows the time history of the error from the reference trajectory.

The estimator and controller were successful in both closed-loop control exper-

iments, meaning that there was stable convergence to the reference trajectories and

errors tended to zero. For the first five seconds for each experiment, the controller

was disabled and the angle of attack was kept at α = 0. During this period, the
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vortices did not come near the pressure sensors on the Joukowski foil and thus the

estimate had a very large variance. In both cases, after the controller was enabled,

the Joukowski foil came close to the vortices in the street (by design in the optimally

observable case and by initial error in the slaloming case) and the variance in the es-

timate was reduced due to the larger difference in the pressure sensor measurements

at this close proximity. This result agrees with the result from the observability

analysis in Section 5.4, which showed that better estimates of the state arise when

the fish is close to the vortices. Notice that after the initial five second period, the

variance in the estimate of yv in Fig. 5.8(b) (the optimally observable path) is lower

than that of Fig. 5.8(e) (the Kármán gaiting path) because the latter trajectory

does not bring the foil as close to the vortices.

The ground truth values well match the areas of high probability in the esti-

mate, indicating that the estimator is functioning properly. In the last 8 seconds of

Fig. 5.8(c), the area of highest probability differs from the ground truth by a sig-

nificant amount. However, the estimate is only one grid-division away from ground

truth. A finer grid of possible value of γ may reduce the estimation error, although

a finer grid may also jeopardize the real time operation.

The estimates of γ and the initial value of ϕ are essentially constant, as ex-

pected, because the ground truth values are constant. One exception is in Fig.

5.8(a) at around 10 seconds, where the estimate of the initial ϕ increases to the

correct value. This increase is accompanied by a decrease in the estimate of γ in

Fig. 5.8(c) at the same time, illustrating the deep coupling of the three parameters

in the Bayesian filter. A particular measurement may correspond to a vortex very
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close and weak, or strong and far away due to the influence of a vortex decaying as

the inverse of the distance. It is through the Bayesian filter’s integration of these

data through time (new measurements are taken each time step) and space (the

distribution of the pressure sensors) that this ambiguity is removed.

The estimates of yv follow a sinusoidal pattern as expected because the robot

is tracking a sinusoidal reference trajectory. The estimator uses the dynamic model

presented in Section 5.3 to shift the probability density at each time step according

to the control input it chooses from Eqn. (5.27).

5.5.3 Discussion of results

The results in the previous section used a potential flow model of a foil in a

vortex street combined with a grid-based Bayesian filter to estimate the location of

the vortices within the street and demonstrate flow-relative control to an arbitrary

reference trajectory. This worked through the interplay of the controller, system

dynamics, pressure sensors, flow model, and estimator seen in Fig. 5.1. The esti-

mator used pressure measurements to converge to the vortex location fast enough

to allow for the controller to track the desired reference trajectory. Additionally,

it was shown that the optimally observable reference trajectory is one that inter-

sects with each vortex in the street, though in practice this yielded only a mildly

better estimate compared to the biologically inspired slaloming trajectory. These

experiments are the first steps in real-time wake estimation for use onboard robots

exhibiting pursuit or schooling behavior.
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5.6 Summary of chapter

In this chapter, in an effort to replicate the wake sensing capabilities of fish

in nature, an artificial lateral line was used onboard a robotic foil to estimate the

location of vortices within a Kármán vortex street. Furthermore, a control law was

presented that actuates angle of attack in order to generate cross-stream lift and

track an arbitrary reference trajectory through the vortex street. These goals were

accomplished using a complex potential flow model and Bernoulli’s principle to form

a measurement equation that takes input of vortex street location and strength and

outputs the expected pressure readings. This measurement equation was used in a

Bayesian filter to provide a real-time estimate of vortex location which was then used

as an input to the trajectory-tracking control law. The experimental demonstration

shows the validity of the modeling work done in this chapter.
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Chapter 6: Conclusion

This dissertation describes the investigation of bioinspired sensing and control

for novel underwater vehicles, particularly for an autonomous, reaction-wheel driven,

fish-inspired robot used in pursuit scenarios. This investigation was facilitated by

many tools including nonlinear control, thin airfoil theory, potential flow, classical

mechanics, and probability theory. The three main chapters of this work address

three questions related to this effort. Chapter 3 developed data-driven modeling

techniques to investigate which factors are most important to a successful pursuit.

Chapter 4 determined how to guarantee capture in underwater pursuit by a fish-

inspired robot. Chapter 5 investigated how we might track the wake of a flapping

vehicle by taking inspiration from the lateral line seen in fish. The contributions of

each of these efforts are outlined below in Sections 6.2.1 – 6.2.3. Section 6.3 makes

suggestions for future work in this area.

6.1 Summary of research

The pursuit modeling tasks, which ultimately resulted in the technique I call

Probabilistic Analytical Modeling, were focused on how to draw conclusions from

nothing more than an experimental dataset of predator/prey interactions. The
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technique was originally much more narrow in scope, applying only to the zebrafish

case study addressed in Section 3.4. I realized that the technique could be applied

much more generally by allowing the dynamics model and key metric to adapt to

the particular predator/prey interaction being examined. The general methodology

requires a researcher to select a dynamics model, fit probability densities of parame-

ters in the model to the dataset, derive an expression for the expected value of a key

metric, and vary the parameters in the model to see the effect on the key metric.

Once this general method was established, I then turned to the bluefish case study

in Section 3.3.

The bioinspired pursuit with a robotic fish tasks were a combination of both

modeling and experimental goals. My early work on this task was focused on the

bifurcation and limit cycle analyses, which showed under what control gains the

fish exhibits the desired forward-swimming behavior. I heavily relied on the study

of nonlinear dynamics presented in [120] and [121]. Once I well understood the

dynamics of the fish robot under our feedback law, I began deriving a condition

under which capture is guaranteed. This goal was achieved through many pages

of pen-and-paper analysis, much of which was fruitless, but ultimately informed

my decisions on what approaches could yield the final result. The experimental

portion of these tasks was mostly an exercise in robotics. I soldered and assembled

the electronics package inside the fish, tuned the gains on the controller to produce

forward-swimming behavior, and programmed the onboard logic to implement the

same. I tested many low frequency radios in an attempt to send a signal deep enough

in the water to reach the fish. Once I found a suitable transmitter, I attached a
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microcontroller and programmed it to send the desired signals to the fish. I aimed

(with the help of divers at the Space Systems Lab) the Qualisys motion capture

cameras and calibrated the system several times over the experiments. I wrote the

MATLAB program which communicates with both the motion capture software via

a TCP/IP server and the fish via a 27MHz radio wave. I performed the experiments

presented in this dissertation and made all necessary repairs to the robot throughout.

The wake sensing tasks were also a combination of modeling and experimental

goals. The modeling was a relatively straightforward application of potential flow

theory. I found the potential flow model of a Kármán vortex street in literature

and applied the Milne-Thomson Circle theorem and the Joukowski transformation

to model the flow field around a foil in a vortex street. The tool used for estimation

in this project was the grid-based Bayesian filter and I provided a means to use

it in real time to estimate the state of a vortex street. This was accomplished by

identifying the states in the model that cannot be inferred from other parameters.

Additionally, states such as flow speed or angle of attack were removed from the

problem and taken as given since those have already been estimated with a Bayesian

filter in the literature. I used empirical unobservability tools to conclude that the

optimally observable path through the vortex street is one that crashes into each

vortex as it comes downstream. Finally, I designed and performed the experiments

presented here which successfully estimated the state of an artificially created vortex

street and converged to the desired reference trajectories.
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6.2 Highlighted original contributions

6.2.1 Probabilistic Analytical Modeling

The data-driven pursuit modeling work performed in this dissertation provides

a new means for researchers and scientists to examine experimentally gathered kine-

matic data in order to determine which parameter is most important to a successful

escape or pursuit. A five-step procedure is presented, which details the process to

use probability density functions of parameters (speed, turning rate, etc.) fit from

experimental data combined with a dynamics model derived from the kinematic

data to quantify which factors are most important to survival. Secondary to this

main contribution is the demonstration of this technique in two case studies. The

case study on the predation of fundulus by bluefish showed for the first time that

bluefish do not use time-optimal pursuit tactics in their choice of pursuit angle. The

case study on the predation of larval zebrafish by adults showed that sensing range

is most important to the survival, confirming what was originally determined in [42].

In contrast to that work, where a Monte Carlo approach was used by numerically

simulating the dynamics model, this work provides analytical results by applying

tools from probability theory and requires no simulations. This probabilistic analyti-

cal modeling technique provides researchers with an alternative to numerical Monte

Carlo simulations in cases where analytical transparency is desired or numerical

simulations too costly.

The following is a summary of contributions:
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1. a probabilistic analytical modeling technique useful in determining key factors

in survival in a predator/prey interaction given an experimental dataset of the

kinematics of pursuit and

2. the negative result that bluefish do not optimize their pursuit angle with

respect to time to capture.

6.2.2 Bioinspired pursuit

The bioinspired pursuit work performed in this dissertation provides a solid

theoretical groundwork for using autonomous feedback control as means to either

steer a flexible fish-robot with an internal reaction-wheel or engage in pursuit. The

conditions under which the robot enters the desirable forward-swimming limit cy-

cle are derived, similar to what is done in [132] with a non-autonomous controller

using different techniques. These conditions depend on the physical parameters of

the robot (weight, length, moment of inertia) as well as the gains chosen in the

autonomous controller. I also present results relevant to pursuit with an underwa-

ter vehicle of this type, which needs special consideration because of the oscillatory

behavior of the instantaneous heading around the desired heading. By specifying

the desired heading to be a value related to the line-of-sight angle between the

predator and prey, I show how pure pursuit, deviated pure pursuit, intercept, and

parallel navigation can be achieved with a vehicle of this type. A boolean condi-

tion derived from the dynamics of the Chaplygin sleigh under the feedback control

law determines whether or not capture is guaranteed. This condition depends on
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the physical parameters of the robot, the gains chosen in the control law, and the

maximum speed/acceleration capabilities of the evader. Finally, an experimental

demonstration of the feedback law used onboard an autonomous fish robot in a 4

meter pursuit establishes that these results do not apply only in theory, but also in

practice.

The following is a summary of contributions:

1. a bifurcation analysis specifying which control gains result in forward swim-

ming behavior of the Chaplygin fish,

2. a condition to evaluate if pursuit by a Chaplygin fish will be successful given

basic knowledge of prey capabilities, and

3. an experimental demonstration of this type of pursuit with a robot fish.

6.2.3 Vortex estimation and flow-relative control

The work in this dissertation on the topic of vortex estimation and flow-relative

control makes many contributions to the artificial lateral line scientific community as

well as the underwater robotics community. The grid-based Bayesian filter frame-

work presented demonstrates in practice how to estimate the position of vortices

within a vortex street in real time. This framework confirms the result from [89]

where it was found that an artificial lateral line composed of pressure sensors is

sensitive to enough information to estimate the vortex spacing, strength, location,

etc. While that work shows it is possible, there has been no means to do so prior to

the work of this dissertation. Within the context of navigating a fish robot through
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a Kármán vortex street, tools from empirical unobservability are used to deter-

mine that the optimally observable trajectory through a vortex street is one that

intersects with each vortex therein. This intuitive result concludes mathematically

that for an artificial lateral line, a better estimate of the state of a flow structure

is achieved by bringing the sensor array closer to the structure of interest. A con-

trol law is presented that allows control of the fish robot to any arbitrary reference

trajectory through the vortex street using angle of attack as the input to generate

cross-stream lift. This result facilitates future work in autonomous fish robot station

holding behind obstacles or swimming fish.

The following is a summary of contributions:

1. specification and demonstration of a Bayesian filter framework that estimates

the strength and location of vortices within vortex street,

2. determination that a trajectory intersecting with each vortex in the street is

optimally observable, and

3. derivation and demonstration of a control law that modulates angle of attack

to drive a fish robot to an arbitrary trajectory through a vortex street.

6.3 Suggestions for future work

Platform integration and improvement. This dissertation has pushed for-

ward the sensing and control capabilities of bioinspired underwater vehicles, but has

not fully integrated the various components into one vehicle. Chapter 4 includes

the description of a robotic platform capable of pursuit when given extrasensory
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information from the motion capture system where the fish was tested. Chapter

5 presents experimental demonstration of estimation and one-dimensional control

relative to a vortex street.

Future work may look to integrate pressure sensors into an artificial lateral

line on the free-swimming fish robot in order to track the wake of swimming bodies

nearby. This sensing modality has an effective range on the order of one body length,

so additional sensing modalities may be needed to track targets at a greater distance.

Continuing with the bioinspiration theme, computer vision might be implemented

to identify targets and determine their coordinates in the body frame of the robot.

A more traditional method such as sonar may also be viable.

The robotic platform described in Chapter 4 has no means of depth control.

For use outside the laboratory environment, depth control is critical and can be

achieved through several avenues. In nature, fish have a lung-like organ called the

swim bladder. A fish can control its buoyancy by generating or releasing gas within

this bladder. A bioinspired analog to this could be implemented on the robotic

platform by installing an expandable chamber under the silicone skin that changes

the volume of water displaced in order to change buoyancy and hence depth. A

second method to achieve depth control could be to implement pitch/roll control.

The fish robot generates thrust by swimming and so could swim up or down by

controlling pitch. Many underwater vehicles have internal actuated masses to control

pitch and roll. A three-dimensional control moment gyro would also enable this type

of control.
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Schooling. Schooling or swarming is a burgeoning area of research. There are

many examples of research into swarming techniques for autonomous aerial vehicles

such as quadcopters, but there is comparatively little in the underwater domain.

The robotic platform developed in this dissertation and its ability to autonomously

control heading combined with the artificial lateral line sensing modality provides

the tools to sense nearby agents and adjust heading accordingly to demonstrate

schooling behavior with other fish robots. By studying the schooling behavior of

fish to determine the rules each agent follows, it may even one day be possible to

school with real fish.
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