
ABSTRACT

Title of dissertation: LOCALLY SYMMETRIC SPACES
AND THE COHOMOLOGY
OF THE WEIL REPRESENTATION

Yousheng Shi
Doctor of Philosophy, 2019

Dissertation directed by: Professor John Millson
Department of Mathematics

We study generalized special cycles on Hermitian locally symmetric spaces

Γ\D associated to the groups G = U(p, q), Sp(2n,R) and O∗(2n). These cycles are

covered by symmetric spaces associated to subgroups of G which are of the same

type. Using the oscillator representation and the thesis of Greg Anderson ( [And]),
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Chapter 1: Introduction

1.1 Generalized special cycles

There are four classes of irreducible reductive dual pairs over R of type I in

the sense of Howe, (see [Ad]):

1. (O(p, q), Sp(2n,R))

2. (U(p, q),U(r, s))

3. (Sp(p, q),O∗(2n))

4. (O(m,C), Sp(2n,C))

Each group belonging to any of the eight families of groups in the above table is

the group that preserves either a non-degenerate Hermitian or skew-Hermitian form

(, ) over a real,complex or quaternionic vector space V . Let Γ be a torsion free

arithmetic subgroup of G such that Γ\G is compact. For this Introduction, we will

assume that G = G(R) is the set of real points of a algebraic group G and Γ is a

congruence subgroup of G(Z) ( in general, we will need to assume G(R) = G×Gc

where Gc is compact). Furthermore we assume we have chosen a lattice L in V

which is invariant under G(Z). In each of the cases that we are interested in, the
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symmetric space D = G/K associated to G where K is a fixed maximal compact

subgroup has a realization as a subspace of a Grassmannian associated to V . In

what follows let M = Γ\D. Once we have chosen an orientation on D after passing

to a (possibility deeper) congruence subgroup of Γ we may assume M is a compact

oriented manifold.

We define and study cycles which are called “generalized special cycles”, to

be denoted Cx,z′ (see below for the explanation of the notation), in the locally

symmetric spaces M . In this paper, we restrict our attention to the cases G =

U(p, q), Sp(2n,R) and O∗(2n). In this case M is a compact Kahler manifold which

is in fact a connected complex algebraic variety ( [BB]), and the cycles Cx,z′ are

algebraic cycles.

We now briefly introduce the definition of Cx,z′ when G = U(p, q), Sp(2n,R),

O∗(2n,R). We will give a self-contained definition of these cycles in Chapter 3.

In what follows we will let V = Cp+q for the case G = U(p, q), V = R2n for the

case G = Sp(2n,R) and V be the rank n free right module over the Hamilton

quaternions for the case G = O∗(2n). Let x = (x1, x2, · · · , xm) ∈ V m. In the

definition of the cycles Cx,z′ we will assume that the vectors x1, x2, · · · , xm are

linearly independent and the restriction of the form (, ) on U = span{x} is non-

degenerate. In particular, for G = Sp(2n,R) this implies that m = 2r for some

positive integer r. For G = U(p, q), let (r, s) be the signature of (, )|U . This is an

important invariant of the cycle Cx,z′ . We then have the orthogonal splitting

V = U ⊕ U⊥.
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For any non-degenerate subspace W ⊆ V , we denote by G(W ), resp. K(W ), resp.

Γ(W ) the stabilizer of W in G, K or Γ respectively. Let D(W ) = G(W )/K(W ) be

the symmetric space of G(W ). Denote by Gx or G(U⊥) the group that fixes each

vector in x, by Dx or D(U⊥) its symmetric space and Γx = Gx ∩ Γ.

There is no canonical embedding from Dx to D. However we can choose

z′ ∈ D(U). Once this choice is made, there is an embedding

sx,z′ : Dx → D.

To be more precise, we can think of D(U) as the set of (inner) Cartan involutions

Ad(σ) ∈ Aut(G(U)), where Ad is the adjoint map and σ is a linear isometry of U

satisfying a positivity condition. Similar descriptions hold for D(U⊥) and D. Now

suppose z′ = Ad(σ′) ∈ D(U) and z = Ad(σ) ∈ D(U⊥). Then

sx,z′ = Ad(σ′ ⊕ σ) ∈ D.

We denote by Dx,z′ the image of Dx under sx,z′ .

We pass to the locally symmetric space level and denote (by abuse of notation)

by sx,z′ the map

sx,z′ : Γx\Dx →M = Γ\D

induced by sx,z′ on the symmetric space level. Since Γx ⊂ Γ and Γx fixes z′, the

above map is well-defined.

sx,z′ is an Riemannian immersion and is generically injective (see Lemma 3.2).
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It is complex analytic hence algebraic by the GAGA principle since both Γx\Dx and

M are projective varieties. We call the map sx,z′ : Γx\Dx → Γ\D a generalized

special cycle. In general, sx,z′ is not an embedding. However, for a given x, we

can pass to a finite index subgroup Λ ⊆ Γ such that

sx,z′ : Λx\Dx → Λ\D

is an embedding (see Lemma 3.1).

However, for general x (and U), we are forced to consider Cx,z′ to be a singular

cycle in the sense of algebraic topology. Namely, we will consider the singular cycle

given by the mapping sx,z′ : Cx → M . We will usually abuse notation and omit

sx,z′ and denote the resulting cycle by Cx,z′ . In particular, if η is a differential form

of degree equal to the dimension of Cx, we will abbreviate
∫
Cx
s∗x,z′η to

∫
Cx
η.

We can also think of Cx,z′ as an element in the Chow group Ch∗(M) of M .

We note that the image of sx,z′ will often have self-intersections and sometimes will

not be orientable (in which case the singular cycle is zero).

Remark 1.1. It is an important fact that the homology class of Cx,z′ does not

depends on the choice z′. Hence when only the homology class is considered, for

example when we take the period of a closed differential form η on Cx,z′, we often

write [Cx] instead of [Cx,z′ ].

Remark 1.2. When s or r is equal to 0 in cases (1),(2),(3) of the table, the corre-

sponding cycle Cx,z′ is called special cycle by Kudla and Millson (see [KM1], [KM2],
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G Gx G’

U(p, q) U(p− r, q − s), (1 ≤ r ≤ p, 1 ≤ s ≤ q) U(r + s, r + s)
O(p, q) O(p− r, q − s), (1 ≤ r ≤ p, 1 ≤ s ≤ q) Sp(2(r + s),R)
Sp(p, q) Sp(p− r, q − s), (1 ≤ r ≤ p, 1 ≤ s ≤ q) O∗(2(r + s))

Sp(2n,R) Sp(2n− 2r,R), (1 ≤ r ≤ n) O(2r, 2r)
O∗(2n) O∗(2n− 2r), (1 ≤ r ≤ n) Sp(r, r)

Sp(2n,C) Sp(2n− 2r,C), (1 ≤ r ≤ n) O(4r,C)
O(n,C) O(n− r,C), (1 ≤ r ≤ n) Sp(2r,C)

Table 1.1: List of isometry groups of generalized special cycles

[KM3], [KM5]). In these cases G(U) is compact and its symmetric space is a single

point. In other words, the choice of z′ in definition of Cx,z′ is not necessary.

The main goal of this paper is to put these generalized special cycles into a

generating series and show that generating series is an automorphic form for another

group G′ such that (G,G′) is a dual reductive pair in the sense of Howe (see [Ad]).

1.2 A special class in the Lie algebra cohomology with values in the

oscillator representation

Let W = S(V m), the Schwartz functions on V m. There is a dual pair (in the

sense of Roger Howe) (G,G′) such that G×G′ (in general a double cover of it, but

we neglect this fact in the introduction) acts on W by a unitary representation ω.

In the three cases of our interest, we have

1. G = U(p, q), G′ = U(m,m) with m = r + s, 0 ≤ r ≤ p, 0 ≤ s ≤ q,

2. G = Sp(2n,R), G′ = O(m,m) with m = 2r, 0 ≤ r ≤ n,

3. G = O∗(2n,R), G′ = Sp(m,m) .
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In all cases, G′ is the linear isometry group of (W,<,>) where W is a 2m dimensional

complex vector space, a 2m dimensional real vector space, or a 2m dimensional

quaternionic vector space respectively, and <,> is a skew-Hermitian, symmetric or

Hermitian form respectively. Given an isotropic splitting W = E + F , we can view

V m as V ⊗ E and S(V m) as S(V ⊗ E). Let P ′ be the parabolic subgroup that

preserves the subspace E. We call P ′ a Siegel parabolic. Then P ′ has a Langlands

decomposition

P ′ = N ′A′M ′,

where N ′ is the unipotent radical and M ′ is the Levi factor. We have

1. A′M ′ ∼= GLm(C),

2. A′M ′ ∼= GLm(R) ,

3. A′M ′ ∼= GLm(H),

respectively in the three cases. For m′ ∈ A′M ′, the action ω(m′) on S(V m) is simply

(ω(m′)f)(x) = detn(m′)f(xm′), (1.1)

where f ∈ S(V m), x ∈ V m and n = p+q
2

for the unitary group.

The action of G via ω is just the induced action on functions

(ω(g)f)(x) = f(g−1x).

for f ∈W = S(V m), x ∈ V m viewed as a (p+ q) by m (resp. 2n by m in the other
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two cases) matrix.

We fix a point z0 in the symmetric space D of G. In other words, we fix a

maximal compact group K of G. Let

g0 = p0 ⊕ k0

be the corresponding Cartan decomposition of the Lie algebra g0 of G (we drop

the subscript 0 to indicate complexification). Let Ω•(D) be the space of smooth

differential forms on D and Ω•(D,W) be the space of differential forms with values

in W.

Let C•(g, K;W) = (∧•p∗ ⊗ W)K . There is an isomorphism given by the

evaluation at z0

Ω•(D,W)G → (∧•p⊗W)K .

Its inverse is given by

ψ 7→ ψ̃(z,x) := L∗
g−1
z

[ψ(g−1
z x)],

where ψ ∈ C•(g, K;W) and gzz0 = z and L∗
g−1
z

is the pullback on differential forms

induced by left translation of G on D. We can further extend the definition of ψ̃ to

let it depend on G′ by the oscillator representation ω,

ψ̃(z, g′,x) := L∗
g−1
z

[(ω(g′)ψ)(g−1
z x)].
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In his PhD thesis [And], Anderson constructed a cocycle

ϕ+ ∈ C•(g, K;W) ∼= Ω•(D,W)G.

It is holomorphic (in particular, of Hodge type (d, 0)) and closed. Using ϕ+ we

can define a hodge type (d, d) class ϕ ∈ C2d(g, K;W) (see Chapter 7). In the

unitary case, the construction of both ϕ+ and ϕ depends on a pair of integers (r, s)

(0 ≤ r ≤ p, 0 ≤ s ≤ q) which will eventually match the signature of (, )|span{x}. In

this case we specify the signature by writing ϕr,s instead of ϕ if necessary. We call

ϕ a special cocycle. We will see that for large λ ∈ R,

[
∑
y∈Γx

ϕ̃(λy)]

is a constant multiple of the Poincaré dual of the cycle Cx,z′ , where [·] means taking

cohomology class in H•(M). In the unitary case, the form ϕr,0 is studied by Kudla

and Millson ( [KM5]).

1.3 Theta series and statements of main theorems

Throughout this section we assume that ϕ is the special canonical cocycle in

the last section. In the unitary case, we fix a signature (r, s) (0 ≤ r ≤ p, 0 ≤ s ≤ q)

and assume ϕ = ϕr,s.

Recall that L is a lattice in V fixed by Γ. By [Weil2], we can choose arithmetic

8



subgroups Γ ⊂ G and Γ′ ⊂ G̃′ such that the distribution θL

θL,ψ =
∑
x∈Lm

ψ(x)

is Γ× Γ′-invariant.

We now apply θL to ϕ̃ to get

θL,ϕ̃ ∈ Ω•(Γ\D)⊗ C∞(Γ′\G′).

We also define

θL,β,ϕ̃(z, g′) =
∑

x∈Lm,(x,x)=β

ϕ̃(z, g′). (1.2)

for a matrix β ∈Mm(B). We have the following Fourier expansion of θL,ϕ̃∞ :

θL,ϕ̃(z, g′) =
∑
β

∑
x∈Lm,(x,x)=β

ϕ̃(z, g′,x)

=
∑
β

θL,β,ϕ̃(z, g′)

where β runs over all possible inner product matrix (x,x). We call θL,β,ϕ̃ the β-th

Fourier term of θL,ϕ̃ as each θL,β,ϕ̃ is a character function under the action of Γ′∩N ′.

Recall that N ′ is the nilpotent radical of the Siegel parabolic P ′ and it is Abelian.

See Chapter 5 for more details.

Now suppose O ⊂ V m is a closed G orbit. Then by a theorem of Borel ( [B],

Theorem 9.11), O ∩ Lm consists of a finite number of Γ-orbits. By Witt’s theorem,
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G acts transitively on the set

{x ∈ V m|(x,x) = β}

when β is non-degenerate.

Thus the set

{x ∈ Lm|(x,x) = β}

consists of finitely many Γ-orbits. We choose Γ-orbit representatives {x1, . . . ,xo}

and define

Ui = spanxi, 1 ≤ i ≤ o.

For each 1 ≤ i ≤ o choose a base point zi ∈ D(Ui). Let Cxi,zi be the generalized

special cycle. Let

z = {z1, z2, . . . , zo}.

Then define

Cβ,z =
o∑
i=1

Cxi,zi .

Cβ,z is a cycle in the Chow group of Γ\D. By remark 1.1, the homology class [Cβ,z]

is independent of the choice of z, so we simply denote by [Cβ] its homology class.

Our main theorem of the paper can be summarized as: if β is nondegenerate

and in the unitary case has signature (r, s), the β-th Fourier term θL,β,ϕ̃ of θL,ϕ̃ will

be a function of G′ which is not constantly zero times the Poincare dual of [Cβ]. In

order to have precise statements, we use the notion of theta correspondence.
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Definition 1.1. Let η be any differential form on Γ\D, define a smooth function

θL,ϕ̃(η) on G′ by

θL,ϕ̃(η) =

∫
Γ\D

η ∧ θL,ϕ̃(g′).

We call the above map theta correspondence defined by ϕ̃∞. When η is closed, the

above gives a map

θL,ϕ̃ : Hd−d′(Γ\D,C)→ C∞(Γ′\G′)

where d = dimD, d′ is the degree of ϕ. θL,ϕ̃ is called (geometric) theta lifts.

Also define aL,β,ϕ̃(η) to be the β-coefficient of θL,ϕ̃(η):

aL,β,ϕ̃(η) =

∫
Γ\D

η ∧
∑

x∈Lm,(x,x)=β

ϕ̃(z, g′,x) (1.3)

Then we have the Fourier expansion:

θL,ϕ̃(η) =
∑
β

aL,β,ϕ̃(η).

We prove the following theorem in Chapter 8.

Theorem 1.1. Assuming that G = U(p, q), Sp(2n,R) or O∗(2n,R), and β is a

non-degenerate (nonsingular) Hermitian, skew symmetric or skew Hermitian matrix

respectively in the three cases. Let m be the R, C or H-rank of β respectively in the

three cases and G′ = U(m,m), O(m,m) or Sp(m,m) respectively. Then we can find

a canonical form ϕ ∈ C•(g, K;S(V m)) such that for any closed differential form η

11



on M and aL,β,ϕ̃(η) defined in equation (1.3), the following is true

aL,β,ϕ̃(η) = κ(g′, β)

∫
Cβ

η

where κ is an analytic function in G′ that depends on β.

Remark 1.3. The canonical form ϕ in the theorem depends on the signature of β.

To be more specific, in the unitary case we have to assume ϕ = ϕr,s, where (r, s) is

the signature of β. In the other two cases there is no notion of signature and there

is no such dependence (on signature) as well.

Let us also briefly recall Poincaré duality in terms of differential forms. For a

closed submanifold C inside an oriented manifold M , we say that a closed form τ is

a Poincaré dual form of C if it satisfies

∫
M

η ∧ τ =

∫
C

η

for any closed form η. Poincaré dual form is unique up to exact forms.

The above definition for a Poincaré dual form can be extended to a singular

cycle. We say that a closed form τ is a Poincaré dual form of the singular cycle

f : C →M if it satisfies ∫
M

η ∧ τ =

∫
C

f ∗η

for any closed form η.

Remark 1.4. If the image f(C) has a stratification such that its open stratum f(C)0

12



is a submanifold of M , then we can replace the right-hand side of the above formula

by
∫
f(C)0

η. If f(C) is an algebraic or a totally geodesic cycle (both are true here)

then f(C) has such a stratification.

With the above discussion in mind, Theorem 1.1 is equivalent to the following

theorem.

Theorem 1.2. Keep the same assumptions on β and ϕ as in Theorem 1.1. Then

[θL,β,ϕ̃] = PD([Cβ])κ(g′, β).

where PD([Cβ]) ∈ H∗(Γ\D) is the Poincaré dual of [Cβ] and κ is an analytic func-

tion in G′ that depends on β.

If we can prove the function κ(g′, β) is not identically zero, then 1
κ(g′,β)

θL,β,ϕ̃(z, g′)

is the Poincareé dual of [Cβ]. We will prove this for generic g′ in Chapter 10.

Theorem 1.3. Let κ(g′, β) be the function defined in Theorem 1.1. Then κ(g′, β)

is an analytic function on G̃′ that is not identically zero. To be more precise, there

exists m′ ∈M ′ such that for sufficiently large λ ∈ R,

κ(λm′, β) 6= 0.

In other words, for a generic g′, 1
κ(g′,β)

θL,β,ϕ̃∞(z, g′) is a Poincaré dual of the cycle

Cβ.

Remark 1.5. In a following paper [MS], Millson and the author of this paper will

study generalized special cycles on the symmetric spaces associated to G = O(p, q),

13



Sp(p, q), Sp(2n,C) and O(n,C). In other words, we can let G be any group that

shows up in a irreducible reductive dual pair over R of type I in the sense of Howe

other than the groups we study in this paper. We will prove the analogue of Theorem

1.1, Theorem 1.2 and Theorem 1.3 in those cases.

In conclusion, θL,ϕ̃ can be seen as a ”generating” series of PD([Cβ]). Of

course, as for now we do not have an explanation for all the Fourier terms θL,β,ϕ̃ as

κ(g′, β)PD([Cβ]). Only for those θL,β,ϕ̃ whose β is non-degenerate and in the unitary

case has a fixed signature (r, s) (when ϕ = ϕr,s), do we have such an explanation.

We will show that the canonical special class ϕ transforms under an irreducible

representation of a maximal compact group K ′ ⊂ G′. Moreover θL,ϕ̃ can be viewed

as matrix coefficients of a automorphic vector bundle on Γ′\G′/K ′.

1.4 History

The question proposed above has a long history of investigation. The modu-

larity of intersection numbers of special cycles was first studied in [HZ] in case of

Hillbert modular surfaces. Later in a series of work ( [KM1], [KM2], [KM3], [KM5]),

Kudla and Millson studied similar phenomenon for higher rank locally symmetric

spaces associated to O(p, q) (resp. U(p, q) and Sp(p, q)). To be more specific they

constructed via Weil representation differential forms that are Poincaré duals to Cx

when (, )|x is positive definite, namely, the special sub-cases of cases (1),(2),(3) in

our table 1.1 when s has to be equal to zero. Sum over x one gets a theta se-

ries which is automorphic in the dual group Sp(2r,R) (resp. U(r, r), O∗(2r)) of
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G = O(p, q) (resp. U(p, q) and Sp(p, q)). Moreover they prove these differential

forms are holomorphic with respect to the dual group Sp(2r,R) (resp. U(r, r)) on

the cohomology level, thus give rise to holomorphic modular forms on Siegel upper

half space of genus r by theta lifting. Using the results of Kudla and Millson, to-

gether with the classification of unitary representations with nonzero cohomology

of Vogan-Zuckerman and endoscopic classification of automorphic representations

of G′, [BMM1] and [BMM2] are able to prove certain cases of Hodge Conjecture on

arithmetic hyperbolic spaces and arithmetic quotients of complex balls.

In this paper, for the unitary group U(p, q) we remove the assumption of [KM1],

[KM2], [KM3], [KM5] that s = 0. The corresponding cycles are no longer special

cycles in the sense of Kudla and Millson. Moreover we give theta lifts from the

cohomology of Hermtian locally symmetric manifolds associated to G = Sp(2n,R)

and O∗(2n) to vector valued automorphic functions associated to the groups G′ =

O(m,m) or Sp(m,m).

In a following paper [MS], Millson and the author will deal with the rest cases

when G = O(p, q), Sp(p, q), O(m,C) or Sp(2n,C). Thus for all groups G which show

up in an irreducible real reductive dual pair of type I, we have constructed for all such

cycles Cβ,z (whenever β is non-degenerate) in the compact locally symmetric spaces

of G, theta series that contains the Poincaré dual of [Cβ] as its Fourier coefficient.

We have to point out that there are many other cycles in locally symmetric

spaces of G which correspond to subgroups of G. However we suspect that the

generalized special cycle Cx we defined here may be the only class of cycles whose

generating series is automorphic in a dual group. In the end, in order to apply Theta
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distributions to the Poincaré duals of the cycles, the cycles have to be determined

by a tuple of vectors x ∈ V m where V is the fundamental module V of G, which is

exactly the case for (the homology classes of) these generalized special cycles.

1.5 Idea of Proof

We construct a fiber bundle

π : Γx\D → Γx\Dx,z′ ,

whose fibers are (topologically) Euclidean spaces. We show that

Lx(ϕ) =
∑
y∈Γx

ϕ̃(y)

is a (constant multiple of) the Thom form for the above fibration. To be more

precise ∫
Γx\D

η ∧ Lx(ϕ) = κ(g′, β)

∫
Γx\Dx,z′

η,

where

κ(g′, β) =

∫
FDx,z′

ϕ̃(z, g′,x),

and FDx,z′ is any fiber of the fibration Γx\D → Γx\Dx,z′ . In some cases, this inte-

gral can be computed explicitly (namely the Kudla-Millson cases in [KM1], [KM2],

[KM3], [KM5]), but in general this integral is extremely hard to compute. So instead
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we show that ∫
FDx,z′

ϕ̃(z, g′, λx)

is nonzero for certain g′ when λ→∞ using the method of Laplace. The method of

Laplace is a very powerful tool and suits our situation very well, which will be used

again in [MS]. After we have proved this, almost everything follows formally from

the unfolding lemma 8.1.

1.6 Open problems

Many interesting questions follow from this paper. First, it is interesting to

know the representation theory of ϕ in terms of G × G′. It is possible that after

taking its cohomology class, [ϕ] is in a unique irreducible unitary representation

π × π′ of G×G′. In fact, unitary representations π of G with nonzero cohomology

are classified in [VZ]. We conjectured that [ϕ] is in a unique representation π of G

with nonzero cohomology and π′ is the theta correspondence of π.

Secondly, the author would like to know more about [θL,β,ϕ̃] when β is degen-

erate or has the ”wrong” signature in the unitary case. In the cases considered by

Kudla and Millson it is shown that if β is not positive semi definite, then [θL,β,ϕ̃m,0 ]

is zero. The author wonders if similar phenomenon are true in the cases considered

by this paper. To be more precise, the author would like to know if [θL,β,ϕ̃r,s ] = 0 if

β is not of signature (r, s).

Another possible direction of research will be the case when Γ is not co-

compact. When G = O(p, q) and Γ is not co-compact, the boundary behavior
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of the special cohomology classes constructed by Kudla and Millson has been stud-

ied in [FM1], [FM2], [FM3] and [FM4]. It would be very interesting to study the

boundary behaviour of ϕ constructed in this paper. In the case when G is Sp(2n,R),

non-compact arithmetic quotients of D include Siegel modular varieties which are

moduli spaces of principally polarized Abelian varieties. The objective along this

line is to construct Poincaré dual of special cycles and theta lifts on various com-

pactifications of these locally symmetric spaces.

1.7 Guidance for readers

This is a long paper so we provide a road map for readers. Chapter 2 constructs

compact arithmetic quotients of D which are in fact complex projective varieties.

Chapter 3 defines the generalized special cycle Cx. In Chapter 4 we describe the

symmetric spaces of U(p, q), Sp(2n,R) and O∗(2n,R), write down the local equa-

tions for the generalized special cycles and prove that they are in fact algebraic

subvarieties. Chapter 5 and 6 reviews some fact about the oscillator representation

and set up coordinate functions for later use. Chapter 7 reviews the construction

of [And], constructs the special class ϕ, proves that it is closed and proves the im-

portant lemma, Lemma 7.7. In Chapter 8 we will prove Theorem 1.1 and Theorem

1.2 assuming rapid decreasing of ϕ̃ on the fiber FDx,z′ . Chapter 9.4 proves the rapid

decreasing of ϕ̃ on the fiber FDx,z′ . Chapter 10 proves Theorem 1.3 using method

of Laplace. Chapter 11 described the K ′-type of ϕ in terms of highest weight theory.

Readers who are familiar with arithmetic groups and the oscillator representation,
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can pick up the definition of special cycles in Chapter 3 and then proceed to Chap-

ter 7 directly and go back to Chapters 4,5 and 6 if necessary. Chapter 8 consists

of formal calculations which are similar to the counterparts of the previous work of

Kudla and Millson ( [KM1], [KM2], [KM3], [KM5]), but it include the case when the

cycle Cβ is singular which the author is not sure has been written down before. For

Chapter 6, 7 and 10, one can focus only on the unitary group case for first reading

as the other two cases are similar.
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Chapter 2: Compact quotients of Hermitian symmetric spaces

In this chapter we construct compact arithmetic quotients of Hermitian sym-

metric spaces associated to U(p, q), Sp(2n,R) or O∗(2n,R). By a Theorem of Baily

and Borel ( [BB]), these compact quotients are in fact projective algebraic varieties.

Let k be a totally real number field with ` distinct embeddings σ1, . . . , σ`

into R. Let v1, . . . , v` be the induced metrics and kv1 , . . . , kv` be the corresponding

completions. Define S∞ = {v1, . . . , v`}. Let F be a CM field whose maximal real

subfield is k. There are ` pairs of conjugate embeddings of F into C. We choose

one inside each pair, denote them by σ1, . . . , σ` by abusing notation. Notice that

the abuse of notation is reasonable as σi|k is the σi defined for k.

Let (B, σ) be a k-algebra with involution of one of the following types:

(B, σ) =


(the CM field F, the generator of Gal(F/k))

(a quaternion algebra with center k, the standard involution)

(2.1)

Let V be a right B vector space and (, ) a non-degenerate σ-skew Hermitian form

(or σ-Hermitian form respectively) on V satisfying

(vb, ṽb̃) = bσ(v, ṽ)b̃ (2.2)
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for v, ṽ ∈ V and b, b̃ ∈ B. Let G be the unitary group of V such that

G = {g ∈ GLB(V )|(gv, gṽ) = (v, ṽ),∀v, ṽ ∈ V } (2.3)

Define Vv = V ⊗k kv and Gv = G(kv), where v is an Archimedean place (metric) v

of k. Extend (, ) to Vv and denote the new form by (, )v. Also define

V∞ =
∏
v∈S∞

Vv,

G∞ =
∏
v∈S∞

Gv.

We want to choose the form (, ) to be anisotropic, which is to say that there is no

vector v ∈ V such that (v, v) = 0.

Let Ok be the ring of integers of k and B(Ok) be the integral closure of Ok in

B. Choose an B(Ok) lattice L ⊂ V and define

G(Ok) = {g ∈ G|gL = L}.

Also define G(I) to be the congruence subgroup

G(I) = {g ∈ G(Ok)|g ≡ Id(modI)} (2.4)

for an ideal I in B(Ok). We want to choose I big enough, namely containing some

fixed ideal J , such that G(I) acts simply on the symmetric space D of G∞. Let
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Γ = G(I). It is a theorem of Borel (see [B]) that Γ is a co-compact subgroup in G∞.

Moreover by a Theorem of Baily and Borel ( [BB]), Γ\D is a complex projective

variety.

We need a lemma.

Lemma 2.1. There is a c ∈ k such that
√
c /∈ k and σi(c) ∈ Ui for 1 ≤ i ≤ `, where

Ui is any open subset of R.

Proof. Choose a non-Archimedean place p of k such at Ok/p is not a field of char-

acteristic two. As taking square is a two to one map on Ok/p, there exists a b ∈ Ok

such that x2 ≡ b mod(p) has no solution in Ok/p. Thus x2 = b has no solution

in Ok and k. Now choose ε small enough such that x2 = a has a solution when

|a− 1|p ≤ ε. By weak appoximation theorem, there exists a c ∈ k such that

1. σi(c) ∈ Ui (1 ≤ i ≤ `)

2. |c− b|p < |b|p · ε

Then c satisfies the assumption of the lemma.

Detailed construction of (B, σ) and (V, (, )) will be given separately in three

cases.

2.1 The U(p, q) case

Choose d1, . . . , dp, dp+1, . . . dp+q be p+ q purely imaginary numbers of F satis-

fying

1. Im(σ1(dα)) < 0, Im(σ1(dµ)) > 0 for 1 ≤ α ≤ p and p+ 1 ≤ µ ≤ p+ q
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2. Im(σi)(dj) < 0 for 2 ≤ i ≤ ` and 1 ≤ j ≤ p+ q.

This is possible because of weak approximation theorem. Let V be a p + q di-

mensional right F vector space and (, ) be the skew Hermitian form defined by the

diagonal matrix with diagonal entries d1, . . . , dp+q. If G is defined by equation 2.3,

we have

1. Gv1
∼= U(p, q)

2. Gvi
∼= U(p+ q) for 2 ≤ i ≤ `,

where Gv = G(kv) for an archimedian place (metric) v of k. In particular since (, )vi

is definite for 2 ≤ i ≤ `, there is no nonzero isotropic vector for (, ) in V .

2.2 The Sp(2n,R) case

By lemma 2.1, we can choose c1, c2 such that σ1(cj) > 0, σi(cj) < 0 and

√
cj /∈ k for j = 1, 2 and 2 ≤ i ≤ `. Let B = Hk(c1, c2) be the quarternion algebra

over k generated by ε1, ε2 with relations

ε21 = c1, ε
2
2 = c2, ε1ε2 = −ε2ε1.

We put ε3 = ε1ε2. Then an element ξ ∈ B can be written as ξ = ξ0+ξ1ε1+ξ2ε2+ξ3ε3,

where ξj ∈ k for 0 ≤ j ≤ 3. We define an anti-involution σ on B by

σ(ξ) = ξ0 − ξ1ε1 − ξ2ε2 − ξ3ε3.
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With the given assumption we know that

B ⊗k kv1 ∼= M2(R)

B ⊗k kvi ∼= H

for 2 ≤ i ≤ `, where H is the classical Hamiltonian quarternions.

Let E be any field that contains
√
c1. We define an anti-involution σ′ on

M2(E) by

σ′(x) = J txJ−1,

where J =

 0 −1

1 0

. We can embed B into M2(E) as follows

i(ξ0 + ξ1ε1 + ξ2ε2 + ξ3ε3) =

 ξ0 + ξ1
√
c1 c2(ξ2 + ξ3

√
c1)

ξ2 − ξ3
√
c1 ξ0 − ξ1

√
c1

 .

It is easy to check that σ′ ◦ i = i ◦ σ, so from now on we abuse notation and denote

both involutions by σ. Now let V be a n-dimensional right B vector space and (, )

be a Hermitian form on V satisfying 2.2. G be the group defined as in 2.3.

Let eij be the matrix with the (i, j)-th entry 1 and all the other entries zero.

Let e = e11. As B ⊗k E ∼= M2(E), we get a decomposition

VE = VEe+ VEe
σ
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as a E vector space, where VE = V ⊗k E. Let SE be the E-bilinear form on VEe

defined by

SE(xe, ye)e21 = (xe, ye)

Following a result of section 2 of [LM] we see that SE is skew symmetric and

GE
∼= Sp((VE, SE)) ∼= Sp(2n,E).

In particular when E = kv1
∼= R, we know that Gv1

∼= Sp((Vv1 , Sv1))
∼= Sp(2n,R).

And we also have

Gvi
∼= Sp(pvi , qvi)

for 2 ≤ i ≤ `, where pvi + qvi = n as B ⊗k kvi ∼= H. In particular we can choose

the form (, ) to be defined by a diagonal matrix with diagonal entries d1, . . . , dn ∈ k

satisfying

σi(dj) > 0

for 2 ≤ i ≤ m and 1 ≤ j ≤ n. We then have

Gvi
∼= Sp(n)

for 2 ≤ i ≤ n. With this choice G will be anisotropic as Sp(n) is. We have

G∞ ∼= Sp(2n,R)× Sp(n)`−1.
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2.3 The O∗(2n,R) case

The construction of G in this case is very similar to that of Sp(2n,R). Let k

be the same totally real number field. By lemma 2.1, we can choose c1, c2 such that

σ1(c1) < 0, σ1(c2) < 0

σi(c1) > 0, σi(c2) < 0

√
c1,
√
c2 /∈ k

for 2 ≤ i ≤ `. B = Hk(c1, c2) as before. This time we have

B ⊗k kv1 ∼= H

B ⊗k kvi ∼= M2(R)

for 2 ≤ i ≤ `, where H is the Hamiltonian quarternions. Now let V be a n-

dimensional right B vector space and (, ) be a σ-skew Hermitian form on V satisfying

2.2. G be the group defined as in 2.3. Then we see that

Gv1
∼= O∗(2n,R)

as D ⊗k kv1 ∼= H. Following a result of section 2 of [LM], we also have

Gvi
∼= O(pvi , qvi)
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for 2 ≤ i ≤ `, where pvi +qvi = 2n as B⊗k kvi ∼= M2(R). In particular we can choose

d1, . . . , dn ∈ k such that σi(dj) > 0 for all 1 ≤ i ≤ `, 1 ≤ j ≤ n, and let (, ) be the

form defined by the diagonal matrix with diagonal entries d1ε2, . . . , dnε2. By lemma

2.1 of [LM], we know that Gvi (2 ≤ i ≤ `) is defined by a block diagonal matrix Svi

with 2 by 2 diagonal blocks −J(d1ε2), . . . ,−J(dnε2). Since

−J(djε2) =

 0 1

−1 0

 ·
 0 c2dj

dj 0

 =

 dj 0

0 −c2dj

 ,

by our assumption Svi will be positive definite for 2 ≤ i ≤ `. Thus Gvi
∼= O(2n,R)

for 2 ≤ i ≤ `. This implies that G is anisotropic and

G∞ ∼= O∗(2n,R)×O(2n,R)`−1.
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Chapter 3: Hermitian symmetric spaces and generalized special cy-

cles

Notations and assumptions are as in the previous chapter. In this chapter

we define generalized special cycles in Γ\D, where D is the symmetric space as-

sociated to G∞ =
∏

v∈S∞ Gv. As a set, it is the set of maximal compact sub-

groups of G∞ or equivalently the set of Cartan involutions. Recall that Gv1
∼=

U(p, q), Sp(2n,R),O∗(2n,R) respectively and all the other factors of G∞ are com-

pact. The symmetric space of G∞ is the set of maximal compact subgroups of G∞

or equivalently the set of Cartan involutions of G∞ and in our case there will be a

canonical one-to-one corresponence with those of Gv1 . We will accordingly identify

the two sets.

Recall that V is a right B vector space and (, ) a non-degenerate σ-skew

Hermitian or σ-Hermitian form. Let

x = (x1, . . . , xm) ∈ Lm.

We will require that U = spanB(x) to be non-degenerate with respect to (, ). We
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then have the decomposition V = U + U⊥. We define

G(U⊥) = {g ∈ G|gv = v,∀v ∈ U} (3.1)

and

G(U) = {g ∈ G|gv = v,∀v ∈ U⊥}.

Let D(U⊥) be the symmetric space associated to G(U⊥)v1 and D(U) be the symmet-

ric space associated to G(U)v1 . Thus we are thinking of G(•) and D(•) as functors

on the categories of real or complex vector spaces equipped with nondegenerate

forms.

Remark 3.1. In order to be consistent with the notation of the work of Kudla and

Millson we will also use the symbol GU to denote the group G(U⊥) defined above

with similar alternative notations for D(U) etc. Hence we have

GU = G(U⊥), GU⊥ = G(U), DU = D(U⊥), DU⊥ = D(U). (3.2)

Define ΓU = Γ ∩ GU . By our construction ΓU\DU is a compact locally sym-

metric manifold. We want to map ΓU\DU to Γ\D to get an algebraic cycle. This

requires the choice of a point in D(U) as we will now see.

Let rU = Id|U ⊕ (−Id)|U⊥ , so rU ∈ G and let σU = Ad(rU) ∈ Aut(G). Any

z′ ∈ D(U) corresponds to a Cartan involution σ(z′) of G(U). We need to extend

σ(z′) to all of D. To do this let Y ⊂ U be the orthogonal complement of z′ thought

of as a linear subspace of U (in our usual realization of D(U) as an open subset of
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a Grassmannian of U). Let rY be reflection in Y . As an involution of D we have

σ(z′) = Ad(rY ). Now consider Y as a subspace of V and define our extension of

σ(z′) to be reflection through Y in V .

For any σ ∈ Aut(G), define

Hσ = {g ∈ H| σ(g) = g}

for any subgroup H of G carried into itself by the action of σi. Since σUσ(z′) =

σ(z′)σU , we know that GσU is carried into itself by the action of σ(z′). Then we

define

GσU ,σ(z′) ∆
= (GσU )σ(z′) = (Gσ(z′))σU

It is easy to see that

GσU = G(U)×G(U⊥).

Consequently the symmetric space DσU of GσU
v1

is the product

D(U,U⊥) := DσU = D(U)×D(U⊥)

A point z ∈ D(U,U⊥) is a pair of Cartan involutions (τ1, τ2) where τ1 (τ2 resp.) is

a Cartan involution of G(U)v1 (G(U⊥)v1 resp.). Equivalently we can view z as a

subspace of V , then

z ∈ D(U,U⊥)⇔ z = z ∩ U ⊕ z ∩ U⊥.
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Definition 3.1. Let U be a non-degenerate subspace of V and z ∈ D. We say (U, z)

(resp. (x, z)) is a compatible pair if z ∈ D(U,U⊥).

There is a natural embedding π defined by

ρ : D(U,U⊥) ↪→ D : (τ1, τ2) 7→ τ1 ⊕ τ2.

When there is no ambiguity we also denote the image of ρ by D(U,U⊥).

Since GσU = G(U)×G(U⊥), we know that

GσU ,σ(z′) = G(U)σ(z′) ×G(U⊥).

Notice that G(U)
σ(z′)
v1 is the maximal subgroup of G(U)v1 fixed by σ(z′). Define

ΓU,σ(z′) = Γ ∩GσU ,σ(z′). By definition

ΓU,σ(z′) = (Γ ∩G(U)σ(z′))× ΓU ,

where Γ∩G(U)σ(z′) is discrete in the compact group G(U)
σ(z′)
v1 hence finite. Moreover

Γ ∩G(U)σ(z′) acts trivially on D(U⊥), so ΓU\G(U⊥) = ΓU,σ(z′)\G(U⊥).

For a Cartan involution σ of G(U⊥)v1 , we define an embedding iz′ :

iz′ : D(U⊥) ↪→ D(U,U⊥) : σ 7→ (z′, σ).

Let ρz′ be the composite map ρ ◦ iz′ .

Definition 3.2. Denote by DU,z′ (or Dx,z′) the image of DU under the map ρz′. We
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call it a generalized special sub symmetric space of D.

Remark 3.2. Note that the fixed point set DY of Y is the cover of a special cycle

in the sense of Kudla and Millson and

DU,z′ = D(U,U⊥) ∩DY

so the universal cover of our generalized special cycle is the simultaneous fixed point

set of a pair of commuting involutions.

iz′ , ρ and ρz′ induce maps (still denoted as iz′ , ρ and ρz′) of locally symmetric

spaces

ΓU\D(U⊥)→ ΓσU\D(U,U⊥), D(GσU )→ Γ\D,ΓU\D(U⊥)→ Γ\D

respectively. Since both σU is rational, the image of the above maps are closed.

The induced map iz′ is always injective(hence an embedding). But in general ρ

(hence ρz′) won’t be injective and the image won’t be a manifold. The following two

lemmas ”resolves the singularities” of the image in two different ways.

Lemma 3.1. There is an arithmetic subgroup Γ′ ⊆ Γ of finite index such that the

following diagram commutes, and ρ′ is an embedding.

(Γ′)σU\D(U,U⊥) Γ′\D

ΓσU\D(U,U⊥) Γ\D

ρ′

ρ

.
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This implies that ρ′z′ : Γ′U\DU → Γ′\D is an embedding.

Proof. U ⊕ U⊥ is a rational eigenspace decomposition of V under rU . Let

Γ′ = Γ ∩ rUΓrU .

Then Γ′ is fixed by Ad(rU) as r2
U = Id. We claim that Γ(N) ⊆ Γ′ for some ideal

N ⊂ Ok. rU is represented by a matrix m for a basis of the lattice L. Let J be the

fractional ideal generated by matrix entries of m and choose N such that NJ2 ⊂ Ok.

Then any g ∈ Γ(N) can be written as

g = Id+ g1, g1 ≡ 0(modN).

Hence all entries of mgm are inOk. That is to say rUΓ(N)rU ⊆ Γ. Hence Γ(N) ⊆ Γ′.

In particular Γ′ is of finite index in Γ.

Suppose that x1, x2 ∈ ΓU\D(U⊥) and γ ∈ Γ′ such that γx1 = x2. Let µ =

γrUγ
−1rU . Then since rUγ

−1rU ∈ Γ′, µ ∈ Γ′. But µx2 = x2 hence µ = 1 as Γ acts

simply. It follows that rUγ
−1rU = γ−1 hence γ ∈ GσU . So γ ∈ (Γ′)σU . So the map

ρ′ : (Γ′)σU\D(U,U⊥) → Γ′\D is injective. Since locally it is an analytic immersion

(see Chapter 4), the lemma is proved.

Lemma 3.2. The map ΓU\D(U⊥)
ρz′−→ Γ\D is a finite birational morphism onto

its image.
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Proof. ∀γ ∈ Γ− ΓU , define

Dγ = D(U⊥) ∩ γD(U⊥).

Then Dγ is an analytic subset of D(U⊥). We claim that it is a proper subset.

Otherwise γ is in the stablizer ofD(U⊥) which isG(U⊥). Hence γ ∈ Γ∩G(U⊥) = ΓU ,

a contradiction.

The image Vγ of Dγ under the natural quotient map D(U⊥)→ ΓU\D(U⊥) is

a proper analytic sub variety of ΓU\D(U⊥). Define

V =
⋃

γ∈Γ−ΓU

Vγ.

Then ρz′ : ΓU\D(U⊥)→ Γ\D is injective outside V .

By the commuting diagram

Γ′U\D(U⊥) Γ′\D

ΓU\D(U⊥) Γ\D

ρ′
z′

ρz′

where Γ′ is as in Lemma 3.1, the map ρz′ is quasi-finite. ρz′ is a regular map

between projective varieties (see Theorem 4.1). It is a projective morphism by

Lemma 28.41.15 of Stack Project, hence is a finite morphism. By the argument in

the previous paragraph, it is injective outside a set of measure 0 with respect to

the measure defined by the Kahler metric on D(U⊥). Hence the degree of the finite

morphism ρz′ must be 1. It must be a birational morphism.

34



We denote the image of ρz′ by CU,z′ . We sometimes also use Cx,z′ to denote

CU,z′ for convenience but it really just depends on U . We will prove in Theorem 4.1

that CU,z′ is a subvariety of Γ\D.

Definition 3.3. We call CU,z′ (or Cx,z′) a generalized special cycle.

Definition 3.4. Denote by MU the image ρ(D(U,U⊥)). We call MU a mixed cycle

associate to U .

Remark 3.3. In the unitary group case, when Uv1 is not positive or negative definite,

MU is called a mixed (special) cycle and denoted DU by [KM5]. In the current paper,

our notation is different.

The cycle CU,z′ depends on the choice of z′ ∈ D(U). However, its homology

class does not. In fact, for any two z′, z′′ ∈ D(U), there is a continuous path

c : [0, 1]→ D(U)

such that c(0) = z′, c(1) = z′′. Thus we can define a map D(U⊥)× [0, 1]→ D by

(σ, t) 7→ c(t)|U ⊕ σ|U⊥ .

Since ΓU fixes U , this map defines a map ΓU\D(U⊥) × [0, 1] ↪→ Γ\D which is a

homotopy equivalence between two different embeddings of ΓU\D(U⊥). From now

on we specify the choice of embedding if necessary, otherwise we use the notation

[CU ] or [Cx] to refer to an equivalent class of cycles.
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We illustrate the above abstract construction in case of the unitary group.

In the next chapter, we will write down in explicit coordinates generalized special

cycles in the symmetric spaces associated to the real groups U(p, q), Sp(2n,R) and

O∗(2n,R). The abstract constructions in this chapter will then become concrete.

3.1 Example: the unitary group case

Recall that we assume that Gv1
∼= U(p, q) and Gv

∼= U(p + q) for the rest

Archimedean places v. It is well-known that the symmetric space D can be identified

with the set of negative q-planes in Vv1

D = {z ∈ Grq(Vv1)| (, )|z < 0}

Let U be a F -subspace of V . If (, )|Uv1 has signature (r, s), then we have G(U⊥)v1
∼=

U(p− r, q − s). And

D(U⊥) = {z ∈ Grq−s(U
⊥
v1

)| (, )|z < 0}

Choose an orthogonal decomposition of F -vector space U = U++U− with respect to

(, ), such that (, )v1|U+
v1

is positive definite and (, )v1|U−v1 is negative definite. Equiv-

alently choose a rational point z′0 = U− in the symmetric space D(U). This is

always possible by weak approximation theorem. We can now define an embedding

DU ↪→ D by

z 7→ z ⊕ U−v1 .
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Under this embedding we identify D(U⊥) with its image DU,z′0
in D:

DU,z′0
= {z ∈ D| U−v1 ⊆ z ⊆ (U+

v1
)⊥}. (3.3)

After passing to arithmetic quotient, CU,z′0 = ρz′0(ΓU\D(U⊥)) becomes an al-

gebraic cycle of Γ\D denoted as CU,z′0 .

Proposition 3.1. When Uv1 is positive or negative definite, the above embedding

is canonically defined. In other words, the choice of z′0 is unnecessary. DU,z′0
=

D(U,U⊥) Moreover DU,z′0
= DU+ ∩DU−.

Proof. When Uv1 is positive (negative resp.) definite, the group G(U) is compact

and the symmetric space D(U) consists of one point z′0 = {0} (z′0 = {U} resp.).

This proves the first statement.

D(U,U⊥) = D(U) × D(U⊥) = D(U) × DU but the first factor is trivial, the

second statement is proved. By equation (3.3)

DU− = {z ∈ D|U−v1 ⊆ z}, DU+ = {z ∈ D|z ⊆ (U+
v1

)⊥}.

The third statement follows from equation (3.3) again.

Remark 3.4. When Uv1 is positive (resp. negative) definite, we simply denote CU,z′0

by CU . This is the situation in [KM1] [KM2], [KM3] and [KM5]. CU is called a

special cycle there. When Uv1 is not necessarily definite, the name special cycle is

reserved for ΓσU\D(U,U⊥).
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3.2 Fibration π : D → DU,z′

We construct a fibering π : D → DU,z′0
. Let N(DU,z′0

) be the normal bundle of

DU,z′0
⊂ D. And denote

NzDU,z′0
= {v ∈ TzD | v ⊥ TzDU,z′}

for each z ∈ DU,z′0
. Then the Riemannian exponential map induces a map F :

N(DU,z′0
)→ D by the formula

F (z, v) = expz(v).

The image of the line through v in the normal fiber Nz(DU,z′0
) over z under the

exponential map is the unique geodesic through z orthogonal to DU,z′0
. Theorem

14.6 of [He] then states that since DU,z′0
is totally geodesic in D the tube D is the

disjoint union of the geodesics in D which are perpendicular to DU,z′0
. Hence we

obtain

Lemma 3.3. The Riemannian exponential map exp : N(DU,z′0
) → D is a diffeo-

morphism.

Let π : D → DU,z′0
be the map whose fibers are geodesics that are perpendicular

to DU,z′0
. By Lemma 3.3, π : D → DU,z′0

is isomorphic to N(DU,z′0
) → DU,z′0

as a

fiber bundle. We denote by

FzDU,z′ := π−1(z) (3.4)
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the fiber of π for any z ∈ DU,z′ .

Since

exp(Ad(g)x) = Ad(g) exp(x),

π is GU = G(U⊥)-equivariant. Thus it induces a fibration which we still denote by

π:

π : ΓU\D → ΓU\DU,z′ .
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Chapter 4: Coordinates of Hermtian symmetric spaces

The notations and assumptions in this chapter are as in the last chapter except

that we work in the category of real groups. We assume G = U(p, q), Sp(2n,R) or

O∗(2n,R) and (V, (, )) be its fundamental module. Let x ∈ V m and U = span{x}.

We write down explicitly coordinates of the symmetric spaces of G. We then write

down the generalized special cycles in these local coordinates and prove that they are

algebraic subvarieties of the ambient locally symmetric spaces. We then construct

embeddings of the symmetric spaces of Sp(2n,R) and O∗(2n,R) into the symmetric

space of U(n, n) and explain the relations of the corresponding generalized special

cycles.

4.1 The U(p, q) case

We start with the case G = U(p, q). We use an explicit inhomogeneous coor-

dinate of the bounded symmetric domain model of D. Recall that D is the set of

negative q-planes. Let (U, z0) be a compatible pair (Definition 3.1). We can choose
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an orthonormal basis {v1, . . . , vp, vp+1, vp+q} such that

(vα, vα) = 1 if 1 ≤ α ≤ p,

(vµ, vµ) = −1 if p+ 1 ≤ µ ≤ p+ q,

(vi, vj) = 0 if i 6= j,

and

U = spanC{v1, . . . , vr, vp+1, . . . , vp+s}, z0 = spanC{vp+1, . . . , vp+q}

Define

U+ = spanC{v1, . . . , vr}, U− = spanC{vp+1, . . . , vp+s},

and

z′0 = z0 ∩ U = U− = spanC{vp+1, . . . , vp+s}.

U has signature (r, s) w.r.t. the Hermitian form (, ). Then by Proposition 3.1, we

know that

DU,z′0
= {z ∈ D|U− ⊆ z, z⊥U+}.

The Cartan involution θ0 corresponding to z0 is conjugation by the g0 = IdV+ +

(−IdV−).

For a negative q-plane z we can find a unique ordered basis {u1, . . . , uq} of z

such that

(u1, . . . , uq) = (v1, · · · , vp+q)

 A

Iq

 (4.1)
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where A = (aij)1≤i,j≤p is a p by p matrix such that

A∗A < Idq. (4.2)

Here < is the usual partial order on the space of q by q Hermitian matrices (de-

fined later). Conversely given A satisfying the inequalities (4.2), the above equation

defines a negative q-frame. We call the matrix A the inhomogeneous coordinates

of the point z and the representation of z as the p + q by q matrix

 A

Iq

 as the

homogeneous coordinates of z.

The action of U(p, q) on the inhomogeneous coordinates of a point z is as

follows.

Lemma 4.1. For g ∈ U(p, q), the action of U(p, q) on D represented by the inho-

mogeneous coordinate is

g · A = BC−1

if g

 A

Iq

 =

 B

C

 where B is a p by q matrix and C is a q by q matrix.

Proof. First compute matrix multiplication g

 A

Iq

 =

 B

C

, then multiply on

the right by C−1 to get

 BC−1

Iq

. The first step takes {u1, . . . , uq} to the neg-

ative q-frame {gu1, . . . , guq}. Since the latter spans a negative q-plane as well, by

our coordinate assumption, ∗BB − ∗CC is negative definite, hence C is invertible.
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Then multiplying on the right by C−1 is equivalent to choosing another basis in-

side span{gu1, . . . , guq} so that we get back to the inhomogeneous coordinate. By

definition g · A = BC−1.

Suppose z is represented by A in inhomogeneous coordinate, the above condi-

tion says the first r rows and first s columns of A are zero, i.e.

DU,z′0
= {A ∈Mp×q(C)|A =

 0 0

0 A4

 , A4 ∈M(p−r)×(q−s)(C), ∗AA < Iq}. (4.3)

4.2 The Sp(2n,R) case

In this section let D1 be the symmetric space of Sp(2n,R) and D be the

symmetric space of U(n, n). Let V0 be a 2n dimensional real vector space with a

non-degenerate skew symmetric form (, )1. Let V = V0 ⊗C. For v ∈ V let v denote

the conjugation of v relative to the real subspace V0. We extend (, )1 from V0 to

V anti-linearly in the first variable and linearly in the second variable. Denote the

resulting form by (, ). It can be easily checked that (, ) is skew Hermitian. By

a calculation using basis of V0 (which we will see soon), one can show that the

Hermitian form 1
i
(, ) has signature (n, n). We can also extend (, )1 linearly in both

variables and still denote the resulting skew-symmetric form by (, )1. Hence we have

(v, w) = (v, w)1, for v, w ∈ V.

We then have three linear isometry groups: G(V0, (, )1) ∼= Sp(2n,R), G(V, (, )) ∼=
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U(n, n) and G(V, (, )1) ∼= Sp(2n,C). Denote by σ the complex conjugation on GL(V )

induced by the above conjugation on V , so from real vector subspace V0 inside V .

Lemma 4.2. (v̄, w̄) = (v, w), (v̄, v̄) = −(v, v) for all v, w ∈ V . σ(U(n, n)) =

U(n, n), σ(Sp(2n,C)) = Sp(2n,C).

Proof. Let v̄ be the complex conjugate of v ∈ V .

(v̄, w̄) = (v, w̄)1 = −(w̄, v)1 = −(w, v) = (v, w).

Since (v, v) is purely imaginary (v̄, v̄) = −(v, v). For any g ∈ U(n, n)

(σ(g)x, σ(g)y) =(gx̄, gȳ) = (gx̄, gȳ)

=(x̄, ȳ) = (x, y)

This shows that σ(U(n, n)) = U(n, n). Similarly, σ(Sp(2n,C)) = Sp(2n,C).

The following is easy to verify

Sp(2n,R) = U(n, n)σ = Sp(2n,C)σ = U(n, n) ∩ Sp(2n,C).

D1 is the set of n dimensional C-subspace z in V such that

1. (, )1 restricted on z is zero (z is Lagragian for (, )1).

2. 1
i
(, ) is negative definite on z.

Since D is the set of negative n-planes of (V, 1
i
(, )), D1 naturally injects into D, this
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injection is in fact an embedding. The involution σ of U(n, n) induces an involution

of D. To be more precise, for any z ∈ D, let z̄ be the complex conjugate of z with

respect to the real structure defined by V0. By Lemma 4.2, z̄ is positive definite.

Define

σ(z) = z̄⊥.

with respest to the Hermitian form 1
i
(, ). One sees immediately that

Lemma 4.3.

σ(g · z) = σ(g) · σ(z),∀g ∈ U(n, n)

and D1 = Dσ.

Proof.

σ(g · z) = (g · z)⊥ = (σ(g) · z̄)⊥ = σ(g)(z̄)⊥

where the second equation follows from the definition of σ(g) and the third equality

follows from the fact that σ is an anti-isometry of (, ) (see the proof of the previous

lemma). Hence the first statement is proved. Let z ∈ D, then

z ∈ Dσ ⇔z = (z̄)⊥

⇔(x̄, y) = 0,∀x, y ∈ z

⇔(x, y)1 = 0,∀x, y ∈ z

⇔z ∈ D1.
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Now let U0 ⊂ V0 be a non-degenerate subspace with respect to (, )1 and z0 be

a point in D(U0). We can find a symplectic basis {E1, . . . , En, F1, . . . , Fn} such that

1. (Ek, Fj)1 = δkj, (Ek, Ej)1 = (Fk, Fj)1 = 0.

2. U0 = span{E1, F1, . . . , Er, Fr} and z0 = spanC{E1 − F1i, . . . , Er − Fri}.

According to definition 3.2, we can define a special subsymmetric space DU0,z0 ⊂

D1. Let U = U0 ⊗ C, then U ⊂ V is of signature (r, r) and we have the special

subsymmetric space DU,z0 ⊂ D. The natural embedding D1 → D maps DU0,z0 into

DU,z0 .

Define an orthonormal basis of V for the form (, ) by

v1 =
1√
2

(E1+F1i), . . . , vn =
1√
2

(En+Fni), vn+1 =
1√
2

(E1−F1i), . . . , v2n =
1√
2

(En−Fni).

Clearly, vα = vα+n and vα+n = vα for 1 ≤ α ≤ n. Hence, if

 z

w

 ∈ C2n is the

column vector of coordinates of the vector v ∈ V relative to the basis {v1, · · · , v2n}

then we have

v =

 w

v

 (4.4)

in the same coordinates. For any z ∈ D, we express z as a matrix A as in Equation

(4.1) of the last section. By Equation (4.4), if z is the span of the column vectors in

the matrix

 A

In

 then z̄ is the span of the column vectors in the matrix

 In

Ā

.
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The column vectors in the matrix

 tA

In

 are perpendicular to the column vectors

in the matrix

 In

Ā

 with respect to 1
i
(, ) which has the matrix form

 In 0

0 −In

.

Hence we conclude that in the inhomogeneous coordinate above

σ(A) = tA.

From this description we see that σ is holomorphic and D1 = Dσ in the

inhomogeneous coordinate is the set of n×n symmetric matrix with operator norm

less than 1. Recall that in the inhomogeneous coordinate DU,z0 is represented by

the matrices

{A ∈Mn×n(C)|A =

 0 0

0 A4

 , A4 ∈M(n−r)×(n−r)(C), ∗A4A4 < In−r}. (4.5)

It is easy to see that DU0,z0 is the subset of DU,z0 with the additional requirement

that tA = A. Hence

(DU,z0)
σ = DU0,z0 .

4.3 The O∗(2n,R) case

In this section let D2 be the symmetric space of O∗(2n,R) and D be the

symmetric space of U(n, n). Let V0 be a n dimensional right H-vector space with
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non-degenerate skew Hermitian form (, )2 that satisfies

(vh, ṽh̃)2 = h̄(v, ṽ)h̃.

Let V be the underlying complex vector space of V0. Define (, ) on V by

(v, ṽ) = a+ bi if (v, ṽ)2 = a+ bi+ cj + dk.

Then (, ) is s skew Hermitian form and 1
i
(, ) is of signature (n, n). Also define S(, )

on V by

S(v, ṽ) = (vj, ṽ).

It is easy to see that S(, ) is bi-linear and symmetric. We have three linear isometry

groups G(V0, (, )2) ∼= O∗(2n,R), G(V, (, )) ∼= U(n, n) and G(V, S(, )) ∼= O(2n,C).

Denote by σ the involution on GLC(V ) ∼= GL(2n,C) defined by conjugating by the

element j ∈ H.

Lemma 4.4. (vj, wj) = v, w, (vj, vj) = −(v, v) for all v, w ∈ V . Moreover

σ(U(n, n)) = U(n, n), σ(O(2n,C)) = O(2n,C).

Proof.

(vj, wj) = −j(v, w)j = (v, w)j · j = (v, w).
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Since (, ) is skew Hermitian (v, v) is purely imaginary. It follows that (vj, vj) =

−(v, v). Define J(v) = v · j for v ∈ V0. Then for g ∈ U(n, n),

(σ(g)x, σ(g)y) =(JgJ−1x, JgJ−1y) = (gJ−1x, gJ−1y)

=(J−1x, J−1y) = (x, y).

Hence σ(g) ∈ U(n, n) as well. Similarly σ(O(2n,C)) = O(2,C).

The following can be verified

O∗(2n,R) = U(n, n)σ = O(2n,C)σ = U(n, n) ∩O(2n,C).

D2 is the set of n dimensional C-subspace z of V such that

1. S(, ) restricted on z is zero.

2. 1
i
(, ) is negative definite on z.

Since D is the set of negative n-planes of (V, 1
i
(, )), D2 naturally injects into D, this

injection is in fact an embedding. The involution σ of U(n, n) induces an involution

of D. To be more precise, for any z ∈ D, let z · j be the complex vector space

{vj|v ∈ z}. By Lemma 4.4, z · j is positive definite with respect to 1
i
(, ). Define

σ(z) = (z · j)⊥

with respest to the Hermitian form 1
i
(, ).
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Lemma 4.5.

σ(g · z) = σ(g) · σ(z),∀g ∈ U(n, n)

and D2 = Dσ.

Proof. Define J(v) = v · j for v ∈ V0.Then

(gv) · j = J(gv) = JgJ−1Jv = σ(g)(v · j).

For any g ∈ U(n, n)

((gz) · j)⊥ = (σ(g)(z · j))⊥ = σ(g)(z · j)⊥.

The second equality follows from the fact that σ(g) ∈ U(n, n)(Lemma 4.4). This

proves the first statement. Let z ∈ D, then

z ∈ Dσ ⇔z = (z · j)⊥

⇔(x · j, y) = 0,∀x, y ∈ z

⇔S(x, y) = 0, ∀x, y ∈ z

⇔z ∈ D2.

Now let U0 ⊂ V0 be a non-degenerate H-subspace with respect to (, )2 and z0

be a point in D(U0). We can find a basis {v1, . . . , vn} such that
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1. (vα, vβ)2 = iδαβ for 1 ≤ α, β ≤ n.

2. U0 = spanH{v1, . . . , vr} and z0 = spanC{v1j, . . . , vrj}.

According to definition 3.2, we can define a special subsymmetric space DU0,z0 ⊂ D2.

Let U be the underlying complex vector space of U0, then U ⊂ V is of signature (r, r)

and we have the special subsymmetric space DU,z0 ⊂ D. The natural embedding

D2 → D maps DU0,z0 into DU,z0 .

Define an orthonormal basis of V :

v1, . . . , vn, vn+1 = v1j, . . . , v2n = vnj.

Apparently vαj = vα+n and vα+nj = −vα for 1 ≤ α ≤ n. For any z ∈ D, we

express z as a matrix A as in the last section. z is the span of the column vectors

in the matrix

 A

In

 and z · j is the span of the column vectors in the matrix

 −In
Ā

. The column vectors in the matrix

 −tA
In

 are perpendicular to the

column vectors in the matrix

 −In
Ā

 with respect to 1
i
(, ) which has the matrix

form

 In 0

0 −In

. Hence we conclude that in the inhomogeneous coordinate above

σ(A) = −tA.
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From this description we see that σ is holomorphic and D2 = Dσ in the

inhomogeneous coordinate is the set of n× n anti-symmetric matrix with operator

norm less than 1. Recall that in the inhomogeneous coordinate DU,z0 is represented

by the matrices

{A ∈Mn×n(C)|A =

 0 0

0 A4

 , A4 ∈M(n−r)×(n−r)(C), ∗A4A4 < In−r}.

It is easy to see that DU0,z0 is the subset of DU,z0 with the additional requirement

that tA = −A. Hence

(DU,z0)
σ = DU0,z0 .

4.4 Generalized special cycles are subvarieties

Theorem 4.1. The generalized special cycle CU,z′ defined in 3.3 is an algebraic

subvariety in M = Γ\D.

Proof. First let us assume that the map ρz′ : ΓU\DU → Γ\D is an embedding.

By equation (4.3) and its analogues for G = Sp(2n,R) and G = O∗(2n,R), the

subsymmetric space DU,z′ is a complex analytic subvariety of D. Hence ΓU\DU is

a complex analytic subvariety of D. By the main theorem of [Chow], ΓU\DU is a

complex algebraic subvariety of Γ\D.

In the general case, we apply Lemma 3.1. By the previous argument we see that

(in the notation of Lemma 3.1) (Γ′)U\DU is a complex algebraic subvariety of Γ′\D.

Since the map f : Γ′\D → Γ\D is an analytic covering between complex projective
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varieties, it is automatically a regular map of complex projective algebriac varieties

by [Serre]. Hence f is projective by Lemma 28.41.15 of Stack Project. Being a finite

covering map, f is automatically quasi-finite, hence a finite morphism. Hence f is

proper and in particular closed. Then the image CU,z′ = f((Γ′)U\DU) is a closed

subvariety of Γ\D.
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Chapter 5: The oscillator representation

5.1 Dual reductive pairs

Let (B, σ) be defined as in 2.1. Let ε be −1 or 1. We define a non-degenerate

ε-Hermitian form (, ) on a right B vector space V and a −ε-Hermitian form <,> on

a left B vector space W which satisfy

(v1b1, v2b2) = bσ1 (v1, v2)b2

(v1, v2) = ε(v2, v1)σ

< b1w1, b2w2 >= b1 < w1, w2 > bσ2

< w1, w2 >= −ε < w2, w1 >
σ

for v1, v2 ∈ V , w1, w2 ∈ W and b1, b2 ∈ B. Let G be defined as in 2.3 and

G′ = {g′ ∈ GLB(W )| < w1g
′, w2g

′ >=< w1, w2 > ∀w1, w2 ∈ W}.
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We view G and G′ as algebraic groups over k. Let

n = dimBV,

and

2n′ = dimBW.

Also let

W = V ⊗B W

and

〈〈, 〉〉 = trB/k((, )⊗ <,>σ) (5.1)

So that W is a k-vector space with a non-degenerate alternating form 〈〈, 〉〉. Then

(G,G′) is a dual reductive pair in the sense of [Ho2].

5.2 the Schrodinger model

Now we assume that (W,<,>) is split over B. i.e. there is a decomposition

W = W ′ +W ′′

with B subspaces W ′ and W ′′ which are isotropic for <,>. We fix a decomposition

of W and choose B-bases e1, . . . , e
′
n for W ′ and e′1, . . . e

′
n for W ′′ such that

< ei, e
′
j >= δij.
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This choice of basis gives rise to an isomorphism

G′ ∼=


 a b

c d

 ∈ GL2n(B)|ad∗ − bc∗ = 1, ab∗ = ba∗, cd∗ = dc∗

 ,

where a∗ = >aσ etc and to isomorphisms

W ∼= V 2n′

W′ := V ⊗B W ′ ∼= V n

W′′ := V ⊗B W ′′ ∼= V n.

Under these isomorhpism

〈〈[x1, y1], [x2, y2]〉〉 = trB/k((x1, y2)− (y1, x2)),

where we think of [x1, y1], [x2, y2] as elements in W for x1, y1, x2, y2 ∈ V n and

(x, y) = ((xi, yj)) ∈Mn(B)

if x, y ∈ V n. Also note that the parabolic subgroup P ′ ⊂ G′ which stabilizes W ′′

then has the form

P ′ =


 a b

0 d

 ∈ G′

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and hs unipotent radical

N ′ =

n′(b) =

 1 b

0 1

 |b ∈Mn(B) with >bσ = εb

 (5.2)

and Levi factor

M ′ =

m′(a) =

 a 0

0 â

 |a ∈ GLn(B) and â = (>a−1)σ

 . (5.3)

Fix a non-trivial additive chracter ψ of kA trivial on k and let

(ω, L2(V (A)n
′
))

be the Schródinger model of the global oscillator representation of ˜Sp(W(A)), the

two fold metaplectic cover of Sp(W(A)), corresponding to ψ and the polarization

(1.7) in [Weil2] and [Ho2]. As usual , we identify Sp(W(k)) with its image in

˜Sp(W(A)) under the canonical splitting, and we have the Sp(W(k))-invariant dis-

tribution θ defined by

θϕ =
∑

x∈V (k)n

ϕ(x),

where ϕ ∈ S(V (A)n), the Bruhat Schwartz functions on V (A)n. Let G̃′(A) denote

the inverse image of G′(A) in ˜Sp(W(A)). Then the action of G′(A) in L2(V (A)n)

defined by the restriction of ω to G′(A) commutes with the natural action of G(A)
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defined by

ω(g)ϕ(x) = ϕ(g−1x),

where g ∈ G(A), ϕ ∈ L2(V (A)n).

To describe the action of the parabolic subgroup P̃ ′(A) of G̃′(A) we fix a

section of the covering ˜Sp(W(A))→ Sp(W(A)) and hence an identification:

˜Sp(W(A)) ∼= Sp(W(A))× µ2

as in [R]. Then

ω(m′(a), ζ)ϕ(x) = ζχV (a)ϕ(xa) (5.4)

where

χV (a) =


εV (a)|a|m2 case 1

|a|m2 cases 2 and 3,

where |a| is the modulus of multiplication by a on Bn
A and εv(a) is as in the notation

of [R]. Also

ω(n′(b), ζ)ϕ(x) = ζψ(
1

2
tr(b(X,X)))ϕ(x). (5.5)

Define L = {β ∈ Mn(B)| >bσ = εb} and we have the Fourier expansion according

to the action(character) of Ñ ′(A):

θϕ =
∑
β∈L

∑
x∈V (k)n,(x,x)=β

ϕ(X).
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Notice that this is just a way to rewrite the summation. Finally we define

θϕ(g, g′) =
∑

x∈V (k)n

ω(g)ω(g′)ϕ(x).

5.3 Classical theta distribution

Let L be an open subgroup of V (Af ). Let ϕL be the characteristic function of

an open subgroup Ln ⊂ V (Af ). For any ϕ ∈ S(V n
∞), define ϕ∞ ∈ S(V (A)n) by

ϕ∞ = ϕ⊗ ϕL.

We now apply the Sp(W(k))-invariant theta distribution to ϕ∞:

θϕ∞(g, g′) =
∑

x∈V (k)n

ϕ∞(g, g′,x).

Define

L = L ∩ V (k).

Via the map V (k) → V∞, L is a lattice in V∞. There exist arithmetic subgroups

Γ ⊂ G(k) (actually Γ = G(k)∩GL(L)) and Γ′ ⊂ G′(k) such that for any g ∈ Γ, g′ ∈

Γ′, we have

∑
x∈V (k)m

ω(g, g′)(ϕ⊗ ϕL)(x) =
∑
x∈Ln

ω(g, g′)(ϕ⊗ 1)(x).
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In other words, each open subgroup L ⊂ V (Af ) induces a V∞ lattice L, groups

Γ ⊂ G(k), Γ′ ⊂ G′(k), and a Γ× Γ′-invariant distribution θL on S(V n
∞) defined by

θL,ϕ∞ =
∑
x∈Ln

ϕ∞(x).

This is the classical theta distribution that we will use later.
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Chapter 6: Real reductive dual pairs

In this chapter, we study real dual reductive pairs. We construct the division

algebra (B, σ), the B vector space V (resp. W ), the form (, )(resp. <,>) and the

group G(resp. G′) as in section 5.1 except that now we are interested in the case

k = R instead of a number field (so B=R,C or H).

6.1 The infinitesimal Fock model

The discussion in this section follows that of section 6 in [KM5] closely. But

we correct a sign error in that paper. Let W be a be a vector space over R with

a non-degenerate skew-symmetric form 〈〈, 〉〉 and J0 be a positive definite complex

structure (i.e. the form 〈〈J0, 〉〉 is positive definite) on W. We may decompose W⊗C

according to

W⊗ C = W′ + W′′,

where W′ is the +i eigenspace of J0 and W′′ is the −i eigenspace of J0. Notice that

both W′ and W′′ are isotropic for 〈〈, 〉〉.

We now construct a one-parameter family of representations ωλ of sp(W⊗C)

on Sym(W′)∗, the symmetric algebra of the dual of W′. We observe that W′ and
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W′′ are dually paired by 〈〈, 〉〉 and it suffices to construct a one-parameter family of

representations on Sym(W′′).

DefineWλ to be the quotient of the tensor algebra T •(W⊗C) of the complex-

ification of W by the ideal generated by the elements x ⊗ y − y ⊗ x − λ〈〈x, y〉〉1

where x, y ∈ W. Let p : T •(W ⊗ C) → Wλ be the quotient map. Clearly

p(T •(W′)) = Sym•(W′) and p(T •(W′′)) = Sym•(W′′). Wλ has a filtration F • inher-

ited from the grading of T •(W⊗ C) and

[F pWλ, F
qWλ] ⊂ F p+q−2Wλ.

Thus F 2Wλ is a Lie algebra and we have a split short exact sequence of Lie algebras

0→ F 1Wλ → F 2Wλ → sp(W⊗ C)→ 0

where the splitting j : sp(W⊗ C) ∼= Sym2(W⊗ C)→ F 2(Wλ) is given by

j(x ◦ y) =
1

2λ
[p(x)p(y) + p(y)p(x)].

Now let I be the left ideal in Wλ generated by W′. Then Wλ = Wλ/I is a Wλ-

module and a fortiori an sp(W ⊗ C) module via the splitting j. The projection

p : Sym•(W′′) → Wλ induces an isomorphism onto Wλ/I and we obtain an action

of Wλ and sp(W⊗ C) by left multiplication.
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Explicitly let {e1, . . . , eN , f1, . . . fN} be a symplectic basis for W such that

J0ej = fj and J0fj = −fj (6.1)

for 1 ≤ j ≤ N . Define

w′j = ej − fji and w′′j = ej + fji

for 1 ≤ j ≤ N . Then {w′1, . . . , w′N} (resp. {w′′1 , . . . , w′′N}) is a basis for W′ (resp.

W′′). Let zj be the linear functional given by

zj(w
′) = 〈〈w′, w′′j 〉〉.

Then Sym•(W′′) can be identified with Pol(W′) ∼= Pol(CN) = C[u1, . . . , uN ]. Denote

by ρλ the action of Wλ on Pol(CN). We have (Lemma 6.1 of [KM5])

Lemma 6.1.

1. ρλ(w
′′
j ) = uj

2. ρλ(w
′
j) = 2iλ ∂

∂uj
.

From now on we specialize to the case λ = 2πi and let W = W2πi. Let ω

denote the action of sp(W⊗C) on W. We call (W, ω) the infinitesimal Fock model

of the oscillator representation of sp(W⊗ C).
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6.2 The Schrodinger Model

If we decompose W as

W = X⊕ Y

where X and Y are Lagrangian subspaces of W. The Schrodinger model can be

viewed as the Schwartz functions X . Explicitly if we assume

X = span{e1, . . . , eN}

Y = span{f1, . . . , fN}

Then we have

ρλ(ej) =
∂

∂xj

ρλ(fj) = λxj

where {x1, . . . , xN} are coordinate functions with respect to the basis {e1, . . . , eN}.

We define

ϕ0 = exp(−π
N∑
i=1

x2
i ).

ϕ0 is the unique vector in S(X) that is annihilated by ρ(w′j) for all 1 ≤ j ≤ N . The

oscillator representation ω is a representation of the metaplectic group Mp(2N,R)

and Ũ(N) is a maximal compact subgroup of Mp(2N,R). We then have a unique

Wλ-intertwining (thus sp(W)-intertwining) operator ι : Wλ → S(X). ι maps the

infinitesimal Fock model W onto the Ũ(N)-finite vectors in the Schrodinger model
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which consists of functions on X of the form p(z)ϕ0(z) where p(z) is a polynomial

function on X. More specifically, it maps 1 ∈ W to ϕ0 and it is easy to show that

(Lemma 6.3 of [KM5])

Lemma 6.2.

ι(zj) = (
∂

∂xj
− 2πxj)

As in previous chapters we are going to give detailed construction of Fock and

Schrodinger model case by case. We will see later that the Fock (resp. Schrodinger)

models of the dual pairs (U(n, n),U(m,m′)), (Sp(2n,R),O(2m, 2m′)) and (O∗(2n), Sp(m,m′))

are isomorphic since they come from isomorphic (W, 〈〈, 〉〉). The common Fock

(Schrodinger) model of these dual pairs can be used to study the seesaw dual pairs:

U(n, n) O(2r, 2s)

Sp(2n,R)

OO 99

U(r, s)

OOee
(6.2)

and

U(n, n) Sp(r, s)

O∗(2n)

OO ::

U(r, s)

OOdd
. (6.3)
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6.3 The (U(p, q),U(m,m′)) case

Let V be a p + q dimensional right vector space over the complex numbers.

(, ) be a non-degenerate skew-Hermitian form on V with signature (p, q) satisfying

(vh, v′h′) = h(v, v′)h′

for h, h′ ∈ C and v, v′ ∈ V . Choose a basis {v1, . . . , vp, vp+1, . . . , vp+q} of V such

that

1. (vα, vα) = −i

2. (vµ, vµ) = i

for 1 ≤ α ≤ p, p + 1 ≤ µ ≤ p + q (in this section we keep this convention of index)

and (vj, vk) = 0 if j 6= k.

Let W be a m+m′ dimensional vector space over the complex numbers with

a Hermitian form <,> of signature (m,m′) satisfying

< hw, h′w′ >= h < w1, w2 > h′

for h, h′ ∈ C and w,w′ ∈ W . Choose a basis {w1, . . . , wm, wm+1, . . . , wm+m′} of W

such that

1. < wa, wa >= 1

2. < wk, wk >= −1
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for 1 ≤ a ≤ m,m+1 ≤ k ≤ m+m′(in this section we keep this convention of index)

and < wj, wk >= 0 if j 6= k.

Define W = V ⊗C W and 〈〈, 〉〉 on W by

〈〈v ⊗ w, ṽ ⊗ w̃〉〉 = (v, ṽ) < w̃,w > .

One checks easily that 〈〈, 〉〉 is a skew Hermitian form that is anti-linear in the first

variable and linear in the second variable. Define 〈〈, 〉〉R = Re〈〈, 〉〉, then 〈〈, 〉〉R is a

symplectic form on the underlying real vector space of W.

Define J0 = iIp,q ⊗ Im,m′ , where Ia,b is the matrix

 Ia 0

0 −Ib

 .

Then J0 is a positive definite complex structure for the symplectic form 〈〈, 〉〉R.

Now define WC = W ⊗R C ∼= V ⊗C (W ⊗R C). Denote the new complex

structure by right multiplication by i. Define

w′a = wa − iwai (6.4)

w′′a = wa + iwai

w′k = wk + iwki

w′′k = wk − iwki.
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WC = W′⊕W′′ where W′(W ′′ resp.) is the +i(−i resp.) eigenspace of J0. Then we

have

Lemma 6.3.

W′ = spanC{vα ⊗ w′a, vµ ⊗ w′′a, vα ⊗ w′k, vµ ⊗ w′′k}

W′′ = spanC{vα ⊗ w′′a, vµ ⊗ w′a, vα ⊗ w′′k , vµ ⊗ w′k}

Define linear functionals

1. uαa(v ⊗ w) = 〈〈vα ⊗ w′′a, v ⊗ w〉〉R

2. uµa(v ⊗ w) = 〈〈vµ ⊗ w′a, v ⊗ w〉〉R

3. uαk(v ⊗ w) = 〈〈vα ⊗ w′′k , v ⊗ w〉〉R

4. uµk(v ⊗ w) = 〈〈vµ ⊗ w′k, v ⊗ w〉〉R

We can now identify Sym•(W′′) ∼= Pol(W′) with the space of polynomials in complex

variables {uij, 1 ≤ i ≤ p+ q, 1 ≤ j ≤ m+m′} and this will be the Fock model W.

Now we assume m = m′. In this case, the Schrodinger model of the oscillator

representation is given by the space of Schwartz functions on S(V ⊗C E) ∼= S(V m)

on V m where E is a given Lagrangian subspace of W . We use complex coordinates

z = (z1, . . . , zm)

with

zj = t(z1,j, . . . , zp+q,j)
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zj,k = xj,k + iyj,k.

with respect to the basis {v1, . . . , vp+q}. If we fix the parameter λ = 2πi, then we

have

ϕ0(z) = exp(−π
p+q∑
k=1

m∑
a=1

|zka|2).

The Weil representation action of sp(W, 〈〈, 〉〉) now arises by the following action of

quantum algebra Wλ:

ρλ(vα ⊗ w′a) =
1√
2

(−λiz̄αa + 2
∂

∂zαa
), ρλ(vµ ⊗ w′′a) =

1√
2

(−λizµa + 2
∂

∂z̄µa
),

ρλ(vα ⊗ w′a+n) =
1√
2

(λizαa − 2
∂

∂z̄αa
), ρλ(vµ ⊗ w′′a+n) =

1√
2

(λiz̄µa − 2
∂

∂zµa
),

ρλ(vα ⊗ w′′a) =
1√
2

(λizαa + 2
∂

∂z̄αa
), ρλ(vµ ⊗ w′a) =

1√
2

(λiz̄µa + 2
∂

∂zµa
),

ρλ(vα ⊗ w′′a+n) =
1√
2

(−λiz̄αa − 2
∂

∂zαa
), ρλ(vµ ⊗ w′a+n) =

1√
2

(−λizµa − 2
∂

∂z̄µa
)

where 1 ≤ α ≤ p, p+ 1 ≤ µ ≤ p+ q, 1 ≤ a ≤ m and

∂

∂zjk
=

1

2
(
∂

∂xjk
− ∂

∂yjk
i)

∂

∂z̄jk
=

1

2
(
∂

∂xjk
+

∂

∂yjk
i)

ι : W→ S(V m) maps 1 ∈W to ϕ0 and
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Lemma 6.4.

ι(uαa) =
1√
2

(λizαa + 2
∂

∂z̄αa
), ι(uµa) =

1√
2

(λiz̄µa + 2
∂

∂zµa
),

ι(uαk) =
1√
2

(−λiz̄αa − 2
∂

∂zαa
), ι(uµk) =

1√
2

(−λizµa − 2
∂

∂z̄µa
)

for 1 ≤ α ≤ p, p+ 1 ≤ µ ≤ p+ q, 1 ≤ a ≤ m, k = a+m

Let p be a monomial of degree d of the variables {uαa, uµa, uαk, uµk| ≤ α ≤

p, p+ 1 ≤ µ ≤ p+ q, 1 ≤ a ≤ m,m+ 1 ≤ k ≤ 2m}. Suppose

p =

p∏
α=1

p+q∏
µ=p+1

m∏
a=1

2m∏
k=m+1

udαaαa u
dµa
µa u

dαk
αk u

dµk
µk .

Then we have

ι(p) =

p∏
α=1

p+q∏
µ=p+1

m∏
a=1

2m∏
k=m+1

(
√

2)dαa+dµa(−
√

2)dαk+dµk

· ( ∂

∂z̄αa
− πzαa)dαa(

∂

∂zµa
− πz̄µa)dµa(

∂

∂zαa
− πz̄αa)dαk(

∂

∂z̄µa
− πzµa)dµaϕ0.

We will need the following lemma later

Lemma 6.5.

ι(p) = p̃ϕ0.

where p̃ is a polynomials of the variables {zαa, zµa, zαk, zµk|1 ≤ α ≤ p, p + 1 ≤ µ ≤
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p+ q, 1 ≤ a ≤ m,m+ 1 ≤ k ≤ 2m} whose highest order term (degree d term) is

p∏
α=1

p+q∏
µ=p+1

m∏
a=1

2m∏
k=m+1

(−2
√

2πzαa)
dαa(−2

√
2πz̄µa)

dµa(2
√

2πz̄αa)
dαk(2

√
2πzµa)

dµk .

Proof. Since

ϕ0 =

p+q∏
α=1

m∏
a=1

exp(−π|zαa|2)

and the operators {ι(uαa), ι(uµa), ι(uαk), ι(uµk)| ≤ α ≤ p, p+ 1 ≤ µ ≤ p+ q, 1 ≤ a ≤

m,m + 1 ≤ k ≤ 2m} commute with each other, it suffices to prove the lemma for

one variable case. That is it suffices to prove the case when

ϕ0 = exp(−π|z|2)

and

ι(u) =
√

2(
∂

∂z̄
− πz)

ι(u) =
√

2(
∂

∂z
− πz̄).

This is an easy induction on the degree d. When d = 0, there is nothing to prove.

Suppose

ι(u)d1ι(u)
d2
ϕ0 = pd1,d2ϕ0

where pd1,d2 is a degree d1+d2 polynomial of z, z̄ with highest order term (−2
√

2πz)d1(−2
√

2πz̄)d2 .

Then

∂

∂z
ϕ0 = −πz̄ϕ0
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∂

∂z̄
ϕ0 = −πzϕ0.

Both ∂
∂z

and ∂
∂z̄

reduce the degree of pd1,d2 . So

ι(u)d1+1ι(u)
d2
ϕ0 = pd1+1,d2ϕ0

where pd1+1,d2 is a polynomial of with highest order term (−2
√

2πz)d1+1(−2
√

2πz̄)d2 .

The lemma is proved.

6.4 The seesaw dual pairs 6.2

Let V0 be a 2n dimensional real vector space with a non-degenerate skew

symmetric form (, )0. Let V = V0⊗C and we extend (, )0 from V0 to V anti-linearly

in the first variable and linearly in the second variable. Denote the resulting skew

Hermitian form by (, ).

Let W be a r + s dimensional complex vector space with a Hermitian form

<,> of signature (r, s) which is linear in the first variable and anti-linearly in the

second variable. We denote the underlying real vector space of W as WR. And

define <,>R= Re <,>. Then <,>R is a symmetric form of signature (2r, 2s). We

have

V ⊗C W = (V0 ⊗R C)⊗C W ∼= V0 ⊗R WR.

Define W = V ⊗C W and 〈〈, 〉〉 on W by

〈〈v ⊗ w, ṽ ⊗ w̃〉〉 = (v, ṽ) < w̃,w > .
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Also define a symplectic form 〈〈, 〉〉R on W (regarded as V0 ⊗WR) by

〈〈v ⊗ w, ṽ ⊗ w̃〉〉R = (v, ṽ)0 < w̃,w >R .

It is easy to check directly that

Lemma 6.6.

Re〈〈, 〉〉 = 〈〈, 〉〉R.

Remark 6.1. The above lemma shows that the seesaw dual pairs in 6.2 share the

same underlying symplectic module (W, 〈〈, 〉〉R). Thus they give rise to the same

oscillator representation. Thus the Fock and Schrodinger model of (U(n, n),U(r, s))

can serve as the Fock and Schrodinger model of (Sp(2n,R),O(2r, 2s)) as well.

Now suppose r = s. We want to write down the coordinate functions in the

Schrodinger model S(V 2r
0 ) ∼= S(V r). Let E1, . . . , En, F1, . . . , Fn be a symplectic

basis of (V0, (, )0). Then

1. vα = 1√
2
(Eα − iFα) for 1 ≤ α ≤ n

2. vµ = 1√
2
(Eµ−n + iFµ−n) for n+ 1 ≤ µ ≤ 2n.

Then

1. (vα, vα) = −i

2. (vµ, vµ) = i

Choose a split basis {w1, . . . , w2r} of (W,<,>) such that
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1. < wa, wb+r >= δab

2. < wa, wb >=< wa+r, wb+r >= 0

for 1 ≤ a, b ≤ r. Then {w1, iw1, . . . wr, iwr, wr+1, wr+1, . . . , w2r, iw2r} is a split basis

of (WR, <,>R). Define

E = spanC{w1, . . . , wr}.

Then the Schrodinger model of the seesaw dual pair (6.2) is S(V ⊗C E) ∼= S(V0 ⊗

ER) ∼= S(V r) ∼= S(V 2r
0 ). We use complex coordinates

z = (z1, . . . , zr)

with

zj = t(z1,j, . . . , z2n,j)

zj,k = xj,k + iyj,k.

with respect to the basis {v1, . . . , v2n} and {w1, . . . , wr}. Then it is easy to see that

xα,a(Eα ⊗ wa) =
1√
2
, xα+n,a(Eα ⊗ wa) =

1√
2
,

yα,a(Eα ⊗ iwa) =
1√
2
, yα+n,a(Eα ⊗ iwa) =

1√
2
,

yα,a(Fα ⊗ wa) =
1√
2
, yα+n,a(Fα ⊗ wa) = − 1√

2
,

xα,a(Fα ⊗ iwa) =− 1√
2
, xα+n,a(Fα ⊗ iwa) =

1√
2
.

for 1 ≤ α ≤ n, 1 ≤ a ≤ r. All other pairings between {xj,k, yj,k|1 ≤ j ≤ n, 1 ≤ k ≤
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r} and {Eα ⊗ wa, Fα ⊗ wa, Eα ⊗ iwa, Fα ⊗ iwa|1 ≤ α ≤ n, 1 ≤ a ≤ r} are zero.

6.5 The seesaw dual pair 6.3

Let V be a n-dimensional right H vector space with skew Hermitian form (, )

satisfying

(vh, ṽh̃) = h(v, ṽ)h̃,

where v, ṽ ∈ V and h, h̃ ∈ H. VC is the underlying complex vector space of V .

Define a skew Hermitian form H(, ) on VC by

H(v, ṽ) = a+ bi

if (v, ṽ) = a+ bi+ cj + dk. Define S(, ) on VC by

S(v, ṽ) = H(vj, ṽ).

S is symmetric and complex linear. Let W be a r+ s dimensional left C vector spae

with non-degenerate Hermitian form <,> of signature (r, s) that is comlex linear

in the first variable and anti-linear in the second variable. Define WH = H ⊗C W ,

extend <,> to a form on WH denoted as <,>H satisfying

< hv, h̃ṽ >H= h < v, ṽ >H h̃,
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for h, h̃ ∈ H. Then we have a canonical isomorphism

V ⊗H WH ∼= VC ⊗C W

Let W = V ⊗H WH. Define 〈〈, 〉〉R on W by

〈〈v ⊗ w, ṽ ⊗ w̃〉〉 = Re[(v, ṽ) < w̃,w >H].

〈〈, 〉〉R is well-defined on W and is a symplectic form. Also define 〈〈, 〉〉 on W (re-

garded as VC ⊗C W )by

〈〈v ⊗ w, ṽ ⊗ w̃〉〉 = H(v, ṽ) < w̃,w > .

Then we have

Lemma 6.7.

〈〈, 〉〉R = Re〈〈, 〉〉.

Remark 6.2. The above lemma shows that the seesaw dual pairs in 6.2 share the

same underlying symplectic module (W, 〈〈, 〉〉R). Thus they give rise to the same

oscillator representation. Thus the Fock and Schrodinger model of (U(n, n),U(r, s))

can serve as the Fock and Schrodinger model of (O∗(2n), Sp(r, s)) as well.

Now suppose r = s. We want to write down the coordinate functions in the
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Schrodinger model S(V r) ∼= S(V r
C ). Choose a basis v1, . . . , vn of V . such that

(vα, vβ) = −iδαβ.

Let vα+n = vαj. Then {v1, . . . , vn, vn+1, v2n} is a basis of VC. Choose a split basis

{w1, . . . , w2r} of (W,<,>) such that

1. < wa, wb+r >= δab

2. < wa, wb >=< wa+r, wb+r >= 0

for 1 ≤ a, b ≤ r.

Define

E = spanC{w1, . . . , wr}.

Then the Schrodinger model of the seesaw dual pair (6.2) is S(V ⊗C E) ∼= S(V r).

We use complex coordinates

z = (z1, . . . , zr)

with

zj = t(z1,j, . . . , z2n,j)

zj,k = xj,k + iyj,k.

with respect to the basis {v1, . . . , vn, v1j, . . . , vnj} and {w1, . . . , wr}.
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Chapter 7: Special Schwartz classes in the relative Lie Algebra co-

homology of the Weil representation

In this section we review the construction of holomorphic differential forms

in [And]. We use this result to construct the special canonical class ϕ as in Theorem

1.1. We prove that ϕ is closed.

Recall that

C•(g, K;M) = HomK(∧•(g/k),M) ∼= HomK(∧•p,M) ∼= (∧•p∗ ⊗M)K

is a cochain complex and gives rise to the relative Lie algebra cohomologyH•(g, K;M)

(see [BW]) for the (g, K) module M.

Let g0 be the Lie algebra of G and g be its complexification. Fix a maximal

compact subgroup z0 = K of G and the corresponding Cartan decomposition g0 =

k0+p0. Identify Tz0D with p0 whereD = G/K. Note thatD is Hermitian symmetric.

Decompose p = p0 ⊗ C into holomorphic and anti-holomorphic tangent vectors

p = p+ + p−.

In his Phd thesis, [And], G. Anderson constructed cochains ϕ+ in HomK(∧•p+,W
p−)
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where W is the Fock model of the oscillator representation. Here, the notation Wp−

denotes the subspace of W annihilated by p−. By left-translating using elements

in G, the cochains ϕ+ give rise to G-invariant holomorphic differential forms on D

with values in W. We now give this construction case by case.

7.1 The U(p, q) case

We follow the assumptions and notations of section 6.3. Let V ∗ = HomC(V,C).

Given a Hermitian form (, ) on V , there is a map V → V ∗ given by

v 7→ (v, ·).

Hence we can view the underlying Abelian group of V ∗ as the same with that of V ,

and we denote by v∗ the element v ∈ V if we think of v as an element in V ∗ instead.

The scalar multiplication in V ∗ is defined by

hv∗ = vh,∀h ∈ C.

where the left hand side is scalar multiplication in V ∗ while the right hand side is

scalar multiplication in V .

One can also identify V ⊗C V
∗ with HomC(V, V ) by the map

v ⊗ ṽ∗ 7→ v(ṽ, ·).
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Let Sym(V ⊗ V ∗) be the symmetric tensor inside V ⊗C V
∗ (this makes sense since

V and V ∗ have the same underlying Abelian group). By the above identification,

Sym(V ⊗ V ∗) acts on V by

(v ◦ ṽ)(x) = v(ṽ, x) + ṽ(v, x)

where v ◦ ṽ = v ⊗ ṽ∗ + ṽ∗ ⊗ v. One can check that this action satisfies

((v ◦ ṽ)(x), y) + (x, (v ◦ ṽ)(y)) = 0

Moreover we have

Lemma 7.1.

Sym(V ⊗ V ∗) ∼= u(V, (, )) = u(p, q)

Define V + = spanC{v1, . . . , vp} and V − = spanC{vp+1, . . . , vp+q}. The splitting

V = V + + V − corresponds to a point in the symmetric space D of G and gives a

Cartan Decomposition of g0 = u(V, (, )).

g0 = k0 + p0,

where

k0 = (Hom(V −, V −)⊕ Hom(V +, V +)) ∩ g0

and

p0 = (Hom(V −, V +)⊕ Hom(V +, V −)) ∩ g0.
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More explicitly define

Emn = vm ◦ vn and Fmn = ivm ◦ vn (7.1)

for 1 ≤ m,n ≤ p+ q then we have

1. k0 = spanR{Eαβ, Fαβ, Eµν , Fµν}

2. p0 = spanR{Eαµ, Fαµ}

where 1 ≤ α, β ≤ p and p+ 1 ≤ µ, ν ≤ p+ q(in this section we keep this convention

of index). In terms of matrices we have

p0 =


 0 A

∗A 0

 |A ∈Mp×q(C)

 .

We now describe an Ad(K)-invariant almost complex structure Jp acting on p

that induces the structure of Hermitian symmetric domain on U(p, q)/(U(p)×U(q)).

Let ζ = e
πi
4 . Define a(ζ) by

a(ζ)(vα) = vαζ and a(ζ)vµ = vµζ
−1. (7.2)

Now we define

Jp = Ad(a(ζ)).
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It is easy to check under the identification of V ⊗C V
∗ ∼= HomC(V, V ) we have

Ad(a(ζ))(v ⊗ ṽ∗) = (a(ζ)v)⊗ (a(ζ)ṽ∗).

This implies that

Jp(Eαµ) = Fαµ, Jp(Fαµ) = −Eαµ.

Define

Xαµ = Eαµ − iFαµ = 2vα ⊗ v∗µ,

Yαµ = Eαµ + iFαµ = 2vµ ⊗ v∗α.

Let p+(resp. p−) be the +i (resp. −i) eigenspace of Jp. We then have

p+ = spanC{Xαµ}, p− = spanC{Yαµ}.

In matrix form we have

p+ =


 0 A

0 0

 |A ∈Mp×q(C)



p− =


 0 0

tA 0

 |A ∈Mp×q(C)

 .

We also let {ξ′αµ|1 ≤ α ≤ p, p + 1 ≤ µ ≤ p + q} (resp. {ξ′′αµ|1 ≤ α ≤ p, p + 1 ≤ µ ≤

p+ q})be the basis of p∗+ (resp. p∗− ).
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Now fix 1 ≤ r ≤ p, 1 ≤ s ≤ q. Define

U+ = spanC{v1, . . . , vr}, U− = span{vp+1, . . . , vp+s}

and

U = U+ + U−.

Also define

U = spanC{v1, v2, . . . , vr, vp+1, . . . , vp+s}

Recall that the symmetric space D of G = U(p, q) is the set of negative q-planes.

We fix z′0 = U−. In Chapter 3 we define a sub symmetric space of D

DU,z′0
= {z ∈ D|U− ⊂ z ⊂ U+}.

Fix a base point z0 = span{vp+1, . . . , vp+q} ∈ DU,z′0
. Now it is obvious that

Tz0DU,z′0
= spanR{Eαµ, Fαµ|r + 1 ≤ α ≤ p, p+ s+ 1 ≤ µ ≤ p+ q}

where Tz0DU,z′0
is the tangent space of DU at z0. And the holomorphic tangent space

of DU at z0 is

T+
z0
DU,z′0

= spanC{Xαµ|r + 1 ≤ α ≤ p, p+ s+ 1 ≤ µ ≤ p+ q}

Recall that we define a fiber bundle π : D → DU,z′0
in section 3.2 as follows. At
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each point z ∈ DU,z′0
, the fiber is the union of all geodesics that are perpendicular to

DU,z′0
at z. The tangent space of the fiber Fz0DU,z′0

= π−1(z0) at z0 can be described

as

Nz0DU,z′0
= spanR{Eαµ, Fαµ|(α, µ) ∈ I} (7.3)

where I is the index set

I = {(α, µ)|1 ≤ α ≤ r, p+1 ≤ µ ≤ p+q}∪{(α, µ)|r+1 ≤ α ≤ p, p+1 ≤ µ ≤ p+s}.

(7.4)

Nz0DU,z′0
⊥Tz0DU,z′0

with respect to the Killing form of g. We also have

N+
z0
DU,z′0

= {Xαµ|(α, µ) ∈ I}.

Next let W− be the infinitesimal Fock model defined in section 6 for the dual

pair (U(p, q),U(0, r + s)). We now define polynomials f+, f− ∈W− by

Definition 7.1.

f+ = det


u11 u12 . . . u1r

. . . . . . . . . . . .

ur1 ur2 . . . urr



f− = det


up+1 r+1 up+1 r+2 . . . up+1 r+s

. . . . . . . . . . . .

up+s r+1 up+s r+2 . . . up+s r+s


These polynomials are special cases of the polynomials studied in [KV]. We
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define an element of (∧•p+ ⊗W
p−
− )SU(p,q) following the construction of [And]. To

be more precise, let K = U(p) × U(q) and K̃ be its two fold cover which is the

preimage of K under the map Mp(W)→ Sp(W) and K̃0 be the identity component

of K̃. Then it is a fact known to experts that K̃ is the det−
r+s
2 -cover of K (see for

example [P]):

K̃ ∼= {(g, z) ∈ K × C× | z2 = det(g)−
r+s
2 }.

Define

eDU,z′0
=

∧
(α,µ)∈I

Xαµ.

Also define

fDU,z′0
= f q−s+ fp−r−

It can be shown that k acts on W− by

ω(vα ⊗ v∗β) =
r+s∑
k=1

zαk
∂

∂zβk
+

1

2
δαβ(r + s)

ω(vµ ⊗ v∗ν) = −
r+s∑
k=1

zνk
∂

∂zµk
− 1

2
δµν(r + s).

The adjoint action of k on p+ induces an action on ∧•p+. Define

b = spanC{vα ⊗ v∗β|1 ≤ α ≤ β ≤ p} ⊕ spanC{vµ ⊗ v∗ν |p+ 1 ≤ ν ≤ µ ≤ p+ q}.

t = spanC{vα ⊗ v∗α|1 ≤ α ≤ p} ⊕ spanC{vµ ⊗ v∗µ|p+ 1 ≤ µ ≤ p+ q}.

n− = spanC{vα ⊗ v∗β|1 ≤ β < α ≤ p} ⊕ spanC{vµ ⊗ v∗ν |p+ 1 ≤ µ < ν ≤ p+ q}.
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Then b is a Borel sub-algebra of k. One can verify that both eDU,z′0
and fDU,z′0

are

highest weight vectors with respect to b. The weight of eDU,z′0
with respect to b is

(q, . . . , q︸ ︷︷ ︸
r

, s, . . . , s︸ ︷︷ ︸
p−r

,−p, . . . ,−p︸ ︷︷ ︸
s

,−r, . . . ,−r︸ ︷︷ ︸
q−s

).

The weight of fDU,z′0
with respect to b is

(
q +

1

2
(r − s), ., q +

1

2
(r − s)︸ ︷︷ ︸

r

,
1

2
(r + s), .,

1

2
(r + s)︸ ︷︷ ︸

p−r

,

1

2
(r − s)− p, 1

2
(r − s)− p︸ ︷︷ ︸

s

,−1

2
(r + s), .,−1

2
(r + s)︸ ︷︷ ︸

q−s

)
.

It is easy to observe that these two weights differ by

−(
1

2
(r − s), . . . , 1

2
(r − s)︸ ︷︷ ︸

p+q

).

Now denote the irreducible representation of K̃0 generated by eDU,z′0
as V (U),

the irreducible representation of K̃0 generated by fDU,z′0
as A(U) where K̃0 is the

identity component K̃. By the theory of highest weight we have a K̃0-equivariant

map ψ+ : V (U)→ A(U)⊗ det− 1
2

(r−s) such that

ψ+(eDU,z′0
) = fDU,z′0

⊗ 1.

When r and s have different parities, K̃ = K̃0. When r and s have the same parity,

we know that K̃ = K×{±1}. The main result of [And] in this case can be rephrased
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as

Theorem 7.1.

ψ+ ∈ HomK̃0(∧rq+ps−rsp+,W
p−
− ⊗ det−

1
2

(r−s)).

Let {ε1, . . . , εd} be a basis of V (U) ⊂ ∧•p+ such that each εi is a weight

vector of t. Extend {ε1, . . . , εd} to a basis of ∧rq+ps−rsp+, take the dual basis in-

side ∧rq+ps−rsp∗+ and denote the first d basis vectors by Ω1, . . . ,Ωd. We have an

isomorphism

HomK̃0(∧•p+,W
p−
− ⊗ det−

1
2

(r−s)) ∼= (∧•p∗+ ⊗W
p−
− ⊗ det−

1
2

(r−s))K̃
0

.

Under this isomorphism ψ+ maps to an element φ+ ∈ (∧rq+ps−rsp∗+ ⊗ W
p−
− ⊗

det−
1
2

(r−s))K̃
0
:

φ+ =
d∑
i=1

ψ+(εi)Ωi. (7.5)

The element thus defined is independent of the choice of the basis {ε1, . . . , εd} and

is actually in (∧•p+ ⊗W
p−
− )SU(p,q).

We suppose

span{x} = {v1, . . . , vr, vp+1, . . . , vp+s} ∈ V r+s.

Let

i : Fz0DU,z′0
→ D
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be the natural embedding (see equation (3.4) for the definition of Fz0DU,z′0
). We have

the following crucial lemma which states that when restricted to the fiber Fz0DU,z′0

at z0 there is only one term left in φ+.

Lemma 7.2.

i∗(φ+(x))|z0 = f q−s+ fp−r−

∧
(α,µ)∈I

ξ′α,µ

Proof. Recall that {Xαµ | (α, µ) ∈ I} (I is defined in Equation (7.4)) span the

holomorphic tangent space N+
z0
DU,z′0

of Fz0DU,z′0
at z0, and Xαµ is perpendicular to

N+
z0
DU,z′0

if (α, µ) /∈ I. Similarly {ξ′αµ | (α, µ) ∈ I} span the holomorphic cotangent

space of Fz0DU,z′0
at z0, and i∗(ξ′αµ)|z0 = 0 if (α, µ) /∈ I.

Notice that
∧

(α,µ)∈I ξ
′
αµ is the unique lowest weight vector in the irreducible

U(p) × U(q)-representation generated by itself. All the other weight vectors in

the representation are obtained by applying highering operators to
∧

(α,µ)∈I ξ
′
αµ and

hence are of the form

X =
∑
j1,...,jd

ξ′j1 ∧ . . . ∧ ξ
′
jd
,

where {j1, . . . , jd} ∈ {(α, µ) | 1 ≤ α ≤ p, p + 1 ≤ µ ≤ p + q} and for each d-

tuple of index {j1, . . . , jd} that appears in the above summation, there is an index

j ∈ {j1, . . . , jd} such that j /∈ I. Hence

i∗(X)|z0 = 0.

By the definition of φ+, the lemma follows.
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Similarly let W+ be the Fock model for the dual pair (U(p, q),U(r + s, 0)).

One can define an element

ψ− ∈ HomK̃0(∧rq+ps−rsp−,Wp+
+ ⊗ det

1
2

(r−s))

and an element

φ− ∈ (∧rq+ps−rsp∗− ⊗W
p+
+ ⊗ det

1
2

(r−s))K̃
0

We omit the construction of ψ− and φ− because it is completely analogous to the

construction of φ+. Both φ+ and φ− are closed by Theorem 7.4 which we will prove

later.

Now let W be the infinitesimal Fock model for the dual pair (U(p, q),U(r +

s, r + s)). We have

W = W− ⊗W+
∼= W− ⊗ det−

1
2

(r−s) ⊗W+ ⊗ det
1
2

(r−s).

We define

φ = φ+ ∧ φ−.

It is immediate that

φ ∈ (∧2rq+2ps−2rsp∗ ⊗W)K̃
0

.

Moreover since the differential operator d for the chain complex C•(g, K̃0;W) sat-

isfies

d = d− ⊗ 1 + 1⊗ d+
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where d− (resp. d+) is the differential operator for the chain complex C•(g, K̃0;W−⊗

det−
1
2

(r−s)) (resp. C•(g, K̃0;W+ ⊗ det
1
2

(r−s))), we have

dφ = 0.

7.2 The Sp(2n,R) case

We use the fact that G = Sp(2n,R) ∼= Sp(2n,C) ∩ U(n, n). More specifically

let V be a 2n-dimensional complex vector space with a skew Hermitian form H(, )

and a skew symmetric form S(, ). We further assume that we can choose a basis

{v1, . . . v2n} such that

1. H(vα, vα) = −i,

2. H(vµ, vµ) = i,

3. < vj, vk >= 0 if j 6= k,

for 1 ≤ α ≤ n, n+ 1 ≤ µ ≤ 2n(in this section we keep this convention of index) and

1. S(vα, vα+n) = i,

2. S(vj, vk) = 0 if j 6= k + n and k 6= j + n.

Given these assumptions, it can be shown that U(V,H(, ))∩Sp(V, S(, )) ∼= Sp(2n,R).

We have seen in the last section that

u(V,H(, )) ∼= Sym(V ⊗ V ∗).
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It can also be shown that

g = g0 ⊗ C ∼= sp(V, S(, )) ∼= Sym2
C(V )

where g0 = sp(2n,R) and Sym2
C(V ) acts on V by

v ◦C ṽ(x) = vS(ṽ, x) + ṽS(v, x).

We will denote a product element in Sym2
C(V ) as x ◦C y and a product element

in Sym(V ⊗ V ∗) as x ◦ y for x, y ∈ V . The linear transformation a(ζ) introduced

in equation (7.2) sits inside Sp(V, S(, )) ∩ U(V,H(, )). Thus the almost complex

structure

Jp = Ad(a(ζ))

introduced in the last section stablize g0 and we have a Cartan decomposition

g0 = k0 + p0

and

p = p+ + p−

where k is the 0 eigenspace of Jp and p+ (resp. p−) is the +i (resp. −i) eigenspace

of Jp. If we define V + = spanC{v1, . . . , vn} and V − = spanC{vn+1, . . . , v2n} as in the
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last section, we have the identifications

k = spanC{v ◦C ṽ|v ∈ V +, ṽ ∈ V −}

p+ = spanC{v ◦C ṽ|v, ṽ ∈ V +}

p− = spanC{v ◦C ṽ|v, ṽ ∈ V −}.

More explicitly define

Xαβ = vα ◦C vβ

Yµν = vµ ◦C vν

for 1 ≤ α ≤ β ≤ n and n+ 1 ≤ µ ≤ ν ≤ 2n. Then

p+ = spanC{Xαβ}

p− = spanC{Yµν}.

in terms of matrices we have

p0 =


 0 A

∗A 0

 |A ∈Mn(C), tA = A

 (7.6)

p+ =


 0 A

0 0

 |A ∈Mn(C), tA = A


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p− =


 0 0

A 0

 |A ∈Mn(C), tA = A

 .

We also let {ξ′αβ|1 ≤ α ≤ β ≤ n} (resp. {ξ′′µν |n + 1 ≤ µ ≤ ν ≤ 2n}) be the basis of

p∗+ (resp. p∗− ).

Now fix 1 ≤ r ≤ n. Define

U = spanC{v1, . . . , vr, vn+1, . . . , vn+r}.

Recall that the symmetric space D of G = Sp(2n,R) is the set of positive definite

almost complex structures with respect to S(, ). Define the complex structure JU

on U to be

1. JU(vα) = ivα for 1 ≤ α ≤ r

2. JU(vα+n) = −ivα+n for 1 ≤ α ≤ r.

In Chapter 3 we define a sub symmetric space DU of D:

DU,JU = {J ∈ D|J |U = JU}.

Fix the base point z0 = a(ζ)2 ∈ DU,JU . We have

Tz0DU,JU ⊗ C = T+
z0
DU,JU ⊕ T−z0DU,JU

where Tz0DU,JU is the tangent space of DU,JU at z0, and T+
z0
DU,JU (resp. T−z0DU,JU )
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is the holomorphic (resp. anti-holomorphic) part of it. And we have

T+
z0
DU,JU = spanC{Xαβ|r + 1 ≤ α ≤ β ≤ n}

T−z0DU,JU = spanC{Yµν |n+ r + 1 ≤ µ ≤ ν ≤ 2n}

The holomorphic tangent space of the fiber Fz0DU,z′0
(see Section 3.2 ) at z0 is

N+
z0
DU,JU = spanC{Xαβ|(α, β) ∈ I} (7.7)

where I is the index set

I = {(α, β)|1 ≤ α ≤ r, α ≤ β ≤ n}. (7.8)

Define eDU,JU ∈ ∧
•p+ by

eDU,JU =
∧

(α,β)∈I

Xαβ.

Let W− be the infinitesimal Fock model for the dual pair Sp(2n,R),O(0, 2r)

defined in Chapter 6. Define f+ ∈W− by

f+ = det


u11 u12 . . . u1r

. . . . . . . . . . . .

ur1 ur2 . . . urr


Also define

fDU,JU = fn−r+1
+ .
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It can be shown that k acts on W− by

ω(vα ◦C vβ+n) = −i
r∑

k=1

(uα+n,k
∂

∂uβ+n,k

+ uα,k
∂

∂uβ,k
)− irδαβ.

The adjoint action of k on p+ induces an action on ∧•p+. Define

b = spanC{vα ◦C vβ+n|1 ≤ α ≤ β ≤ n}.

t = spanC{vα ◦C vα+n|1 ≤ α ≤ n}.

n− = spanC{vα ◦C vβ+n|1 ≤ β < α ≤ n}.

b is a Borel sub-algebra of k. Both eDU,JU and fDU,JU are eigenvectors under the

action of b. Moreover they have the same weight

(n+ 1, . . . , n+ 1︸ ︷︷ ︸
r

, r, . . . , r︸ ︷︷ ︸
n−r

).

Let K = U(n) and K̃ be its two cover which is the preimage of K under the map

Mp(W)→ Sp(W). Using the seesaw pair

U(n, n) O(0, 2r + 2s)

Sp(2n,R)

OO 66

U(0, r + s)

OOhh
(7.9)
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and fact about ˜U(r + s) (see section 7.5 or [P]), we can see that

K̃ = K × {±1}.

Now denote the irreducible representation of K generated by eDU,JU as V (U),

the irreducible representation of K generated by fDU,JU as A(U). By the theory of

highest weight we have a K-equivariant map ψ+ : V (U)→ A(U) such that

ψ+(eDU,JU ) = fDU,JU .

The main result of [And] in this case is

Theorem 7.2.

ψ+ ∈ HomK(∧
1
2
n(n+1)− 1

2
r(r+1)p+,W

p−
− ).

Let {ε1, . . . , εd} be a basis of V (U) ⊂ ∧•p+ such that each εi is a weight vector

of t. Extend {ε1, . . . , εd} to a basis of ∧ 1
2
n(n+1)− 1

2
r(r+1)p+, take the dual basis inside

∧ 1
2
n(n+1)− 1

2
r(r+1)p∗+ and denote the first d basis vectors by Ω1, . . . ,Ωd. We have an

isomorphism

HomK(∧•p+,W
p−
− ) ∼= (∧•p∗+ ⊗W

p−
− )K .

Under this isomorphism ψ+ maps to an element φ+ ∈ (∧ 1
2
n(n+1)− 1

2
r(r+1)p∗+⊗W

p−
− )K :

φ+ =
d∑
i=1

ψ+(εi)Ωi.
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The element thus defined is independent of the choice of the basis {ε1, . . . , εd}.

We suppose

spanC{x} = span{v1, . . . , vr}.

Let

i : Fz0DU,JU → D

be the natural embedding (see equation (3.4) for the definition of Fz0DU,JU ). We

can prove the following lemma similarly as Lemma 7.2:

Lemma 7.3.

i∗(φ+(x))|z0 = fn−r+1
+

∧
(α,µ)∈I

ξ′α,µ

Let W+ be the infinitesimal Fock model for the dual pair (Sp(2n,R),O(2r, 0)).

One can analogously define an element

ψ− ∈ HomK(∧
1
2
n(n+1)− 1

2
r(r+1)p−,W

p+
+ )

and an element

φ− ∈ (∧
1
2
n(n+1)− 1

2
r(r+1)p∗− ⊗W

p+
+ )K

Now let W be the infinitesimal Fock model for the dual pair (Sp(2n,R),O(2r, 2r)).

We have

W = W− ⊗W+.
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We regard both φ+ and φ− as elements in C•(g,K;W) and define

φ = φ+ ∧ φ−.

It is immediate that

φ ∈ (∧n(n+1)−r(r+1)p∗,W)K .

dφ+ = dφ− = dφ = 0

The proof of this fact is similar to the one in the previous section which is a conse-

quence of Theorem 7.4.

7.3 The O∗(2n) case

Let V be a n-dimensional right H vector space with skew Hermitian form (, )

satisfying

(vh, ṽh̃) = h(v, ṽ)h̃,

where v, ṽ ∈ V and h, h̃ ∈ H. VC is the underlying complex vector space of V .

Define V ∗ the dual vector space of V as follows. The underlying Abelian group of

V ∗ is the same with that of V and we denote by v∗ the element v ∈ V if we think

of v as an element in V ∗ instead. The scalar multiplication in V ∗ is defined by

hv∗ = vh,∀h ∈ H.

98



where the left hand side is scalar multiplication in V ∗ while the right hand side is

scalar multiplication in V . There is an isomorphism V ∗ → HomC(V,C) given by the

form (, )

v 7→ (v, ·).

One can also identify V ⊗C V
∗ with HomC(V, V ) by the map

v ⊗ ṽ∗ 7→ v(ṽ, ·).

Let Sym(V ⊗ V ∗) be the symmetric tensor inside V ⊗C V
∗ (this makes sense since

V and V ∗ have the same underlying Abelian group). By the above identification,

Sym(V ⊗ V ∗) acts on V by

(v ◦H ṽ)(x) = v(ṽ, x) + ṽ(v, x)

where v ◦H ṽ = v ⊗ ṽ∗ + ṽ∗ ⊗ v. One can check that this action is H-linear and

satisfies

((v ◦H ṽ)(x), y) + (x, (v ◦H ṽ)(y)) = 0

Moreover we have

Lemma 7.4.

Sym(V ⊗ V ∗) ∼= o∗(V, (, )) = o∗(2n)
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Define H(, ) on VC by

H(v, ṽ) = a+ bi if (v, ṽ) = a+ bi+ cj + dk.

Then H(, ) is (complex) skew Hermitian of signature (n, n). We also define S(, ) on

VC by

S(v, ṽ) = H(vj, ṽ).

One can check that S(, ) is symmetric complex bilinear. We have the following fact

O∗(V, (, )) = U(VC, H(, )) ∩O(VC, S(, ))

In other words

O∗(2n) = U(n, n) ∩O(2n,C).

It can also be shown that

g = g0 ⊗ C ∼= o(V, S(, )) ∼= ∧2
C(V )

where g0 = o∗(V, (, )) and ∧2
C(V ) acts on V by

v ∧ ṽ(x) = −vS(ṽ, x) + ṽS(v, x).
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Explicitly choose an orthogonal basis {v1, . . . , vn} of V such that

(vα, vβ) = −iδαβ

for 1 ≤ α, β ≤ n. Then {v1, . . . , vn, vn+1, . . . , v2n} is a basis of VC where

vµ = vµ−nj

for n+ 1 ≤ µ ≤ 2n. The C-linear transformation a(ζ) introduced in equation (7.2)

sits inside O(V, S(, )) ∩ U(V,H(, )). Thus the almost complex structure

Jp = Ad(a(ζ))

stablize g0 and we have a Cartan decomposition

g0 = k0 + p0

and

p = p+ + p−

where k is the 0 eigenspace of Jp and p+ (resp. p−) is the +i (resp. −i) eigenspace

of Jp.

If we define V + = spanC{v1, . . . , vn} and V − = spanC{vn+1, . . . , v2n} as in the
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last section, we have the identifications

k = spanC{v ∧ ṽ|v ∈ V +, ṽ ∈ V −}

p+ = spanC{v ∧ ṽ|v, ṽ ∈ V +}

p− = spanC{v ∧ ṽ|v, ṽ ∈ V −}.

More explicitly define

Xαβ = vα ∧ vβ

Yµν = vµ ∧ vν

for 1 ≤ α < β ≤ n and n+ 1 ≤ µ < ν ≤ 2n. Then

p+ = spanC{Xαβ}

p− = spanC{Yµν}.

in terms of matrices we have

p0 =
{ 0 A

∗A 0

 |A ∈Mn(C), tA = −A
}

(7.10)

p+ =
{ 0 A

0 0

 |A ∈Mn(C), tA = −A
}
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p− =
{ 0 0

A 0

 |A ∈Mn(C), tA = −A
}
.

We also let {ξ′αβ|1 ≤ α < β ≤ n} (resp. {ξ′′µν |n + 1 ≤ µ < ν ≤ 2n}) be the basis of

p∗+ (resp. p∗− ).

Now fix 1 ≤ r ≤ n. Define

U = spanC{v1, . . . , vr, vn+1, . . . , vn+r}.

Recall that the symmetric space D of G = O∗(2n) is the set of n-dimensional

subspace z of VC such that

1. S(, )|z is zero

2. 1
−iH(, )|z is positive definite.

Define z′0 ⊂ U by

z′0 = spanC{v1, . . . , vr}.

In Chapter 3 we define a sub symmetric space DU,z′0
of D:

DU,z′0
= {z ∈ D|z0 ∈ z}.

Fix the base point z0 = spanC{v1, . . . , vn} ∈ D. We have

Tz0DU,z′0
⊗ C = T+

z0
DU,z′0

⊕ T−z0DU,z′0
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where Tz0DU,z′0
is the tangent space of DU,z′0

at z0, and T+
z0
DU,z′0

(resp. T−z0DU,z′0
) is

the holomorphic (resp. anti-holomorphic) part of it. And we have

T+
z0
DU,z′0

= spanC{Xαβ|r + 1 ≤ α < β ≤ n}

T−z0DU,z′0
= spanC{Yµν |n+ r + 1 ≤ µ < ν ≤ 2n}

The holomorphic tangent space of the fiber Fz0DU,z′0
(see Section 3.2 ) at z0 is

N+
z0
DU,z′0

= spanC{Xαβ|(α, β) ∈ I} (7.11)

where I is the index set

I = {(α, β)|1 ≤ α ≤ r, α < β ≤ n}

Define eDU,z′0
∈ ∧•p+ by

eDU,z′0
=

∧
(α,β)∈I

Xαβ.

Let W− be the Fock model defined in the last section for the dual pair

(O∗(2n), Sp(0, r)). Define f+ ∈W− by

f+ = det


u11 u12 . . . u1r

. . . . . . . . . . . .

ur1 ur2 . . . urr



104



Also define fDU,z′0
∈ W− by

fDU,z′0
= fn−r−1

+ .

It can be shown that k acts on W− by

ω(vα ∧ vβ+n) = −i
r∑

k=1

(uα+n,k
∂

∂uβ+n,k

+ uα,k
∂

∂uβ,k
)− irδαβ.

The adjoint action of k on p+ induces an action on ∧•p+. Define

b = spanC{vα ∧ vβ+n|1 ≤ α ≤ β ≤ n}.

t = spanC{vα ∧ vα+n|1 ≤ α ≤ n}.

n− = spanC{vα ∧ vβ+n|1 ≤ β < α ≤ n}.

b is a Borel sub-algebra of k. Both eDU,z′0
and fDU,z′0

are eigenvectors under the action

of b. Moreover they have the same weight

(n− 1, . . . , n− 1︸ ︷︷ ︸
r

, r, . . . , r︸ ︷︷ ︸
n−r

).

Let K = U(n) and K̃ be its two cover which is the preimage of K under the map

Mp(W)→ Sp(W). Using the seesaw pair

U(n, n) Sp(0, r + s)

O∗(2n,R)

OO 77

U(0, r + s)

OOgg
(7.12)
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and fact about ˜U(r + s) (see Section 7.5 or [P]), we can see that

K̃ = K × {±1}.

Now denote the irreducible representation of K generated by eDU,z′0
as V (U), the

irreducible representation ofK generated by fDU,z′0
as A(U). By the theory of highest

weight we have a K-equivariant map ψ+ : V (U)→ A(U) such that

ψ+(eDU,z′0
) = fDU,z′0

.

The main result of [And] in this case is

Theorem 7.3.

ψ+ ∈ HomK(∧•p+,W
p−
− ).

Let {ε1, . . . , εd} be a basis of V (U) ⊂ ∧•p+ such that each εi is a weight vector

of t. Extend {ε1, . . . , εd} to a basis of ∧ 1
2
n(n−1)− 1

2
r(r−1)p+, take the dual basis inside

∧ 1
2
n(n−1)− 1

2
r(r−1)p∗+ and denote the first d basis vectors by Ω1, . . . ,Ωd. We have an

isomorphism

HomK(∧•p+,W
p−
− ) ∼= (∧•p∗+ ⊗W

p−
− )K .

Under this isomorphism ψ+ maps to an element φ+ ∈ (∧ 1
2
n(n−1)− 1

2
r(r−1)p∗+⊗W

p−
− )K :

φ+ =
d∑
i=1

ψ+(εi)Ωi.
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We suppose

span{x} = span{v1, . . . , vr}.

Let

i : Fz0DU,z′0
→ D

be the natural embedding (see equation (3.4) for the definition of Fz0DU,z′0
). We can

prove the following lemma similarly as Lemma 7.2:

Lemma 7.5.

i∗(φ+(x))|z0 = fn−r−1
+

∧
(α,µ)∈I

ξ′α,µ

Let W+ be the infinitesimal Fock model for the dual pair (O∗(2n), Sp(r, 0)).

One can analogously define an element

ψ− ∈ HomK(∧
1
2
n(n−1)− 1

2
r(r−1)p−,W

p+
+ )

and an element

φ− ∈ (∧
1
2
n(n−1)− 1

2
r(r−1)p∗− ⊗W

p+
+ )K

Now let W be the infinitesimal Fock model for the dual pair (O∗(2n), Sp(r, r)).

We have

W = W− ⊗W+.

We regard both φ+ and φ− as elements in (∧n(n−1)−r(r−1)p∗ ⊗W)K and define

φ = φ+ ∧ φ−.
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It is immediate that

φ ∈ (∧n(n−1)−r(r−1)p∗ ⊗W)K .

dφ+ = dφ− = dφ = 0

The proof of this fact is similar to the one in the unitary case which is a consequence

of Theorem 7.4..

7.4 Closedness of holomorphic differentials

In this subsection, we prove that the Anderson cochains ϕ+ are closed hence

cocycles. First we recall the following well-known fact

Lemma 7.6. A holomorphic form on a compact Kähler manifold M is closed.

Proof. On compact Kähler manifold we have the following equality of Laplacians

∆d = 2∆∂ = 2∆∂̄.

A holomorphic form ϕ is ∂̄-closed. It is also ∂̄∗-closed as well because it has Hodge-

type (p, 0). Hence ϕ is ∆∂̄-harmonic, hence ∆d-harmonic. Hence ϕ is closed.

Theorem 7.4. Let G = SU(p, q), Sp(2n,R) or SO∗(2n,R). Then the φ+ (φ− resp.)

constructed in [And] is closed as an element of C•(g,K;W−) (C•(g,K;W+) resp).

Proof. We prove the holomorphic case, the anti-holomorphic case is similar.

Recall that φ+ is generated by the special harmonic polynomial f (f =

f q−s+ fp−r− , fn−r+1
+ , fn−r−1

− respectively for our three cases) considered in [KV]. By
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[KV] f is in a representation A� θ(A) of G×G′ where A is the K-finite vectors of

an irreducible unitary representation and θ(A) is a finite dimensional representation

of the compact group G′. Hence the Anderson cocycle φ+ is a holomorphic cocycle

in H(p,0)(g, K;A).

By the proof of Proposition 2.3 in [And], there is a cocompact lattice Γ of G

and a (g, K)-map

I : W− → C∞(Γ\G),

such that I(f) 6= 0. Since f ∈ A and A is irreducible, we know that I is injective

restricted on A. Hence the map on the cochains:

I∗C
•(g, K,A)→ C•(g, K, C∞(Γ\G))

is also injective.

Now I∗(ϕ+) is a holomorphic form on a compact Kähler manifold. So it is

closed by Lemma 7.6. Since I∗ is a map of chain complexes we know that

I∗(dϕ+) = dI∗(ϕ+) = 0.

Because I∗ is injective on C•(g, K,A), we know that

dϕ+ = 0.
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7.5 ϕ in the Schrodinger Model

Let K be SU(p, q), U(n) (regarded as the maximal compact subgroup of

Sp(2n,R)) or U(n) (regarded as the maximal compact subgroup of O∗(2n)). In

all three cases we have constructed elements in the relative Lie algebra cohomology

φ+, φ−, φ ∈ (∧•p∗ ⊗W)K . Recall that we have an defined a map ι : W→ S(V r+s).

Since ι is an isomorphism between W and its image in S(V m), we define

ϕ+ = (ι−1)∗(φ+), ϕ− = (ι−1)∗(φ−), ϕ = (ι−1)∗(φ)

in (∧•p∗⊗S(V m))K . More explicitly we have in the Schrodinger Model (see equation

(7.5)):

ϕ =
d∑

i,j=1

[(ι ◦ ψ+(εi))(ι ◦ ψ−(ε̄j))ϕ0]Ωi ∧ Ω̄j.

By our construction of ψ and lemma 6.4, ι ◦ ψ+(εi) and ι ◦ ψ−(ε̄j) are polynomials

of the operators that show up on the right hand side of lemma 6.4. Hence we have

(ι ◦ ψ+(εi))(ι ◦ ψ−(ε̄j))ϕ0 = pijϕ0,

and

ϕ = ϕ0

d∑
i,j=1

pijΩi ∧ Ω̄j (7.13)
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where pij is a polynomial in the variables {zαa, z̄αa, zµa, z̄µa | 1 ≤ α ≤ p, p+ 1 ≤ µ ≤

p+ q, 1 ≤ a ≤ m} (in the Sp(2n,R) or O∗(2n) case, p = q = n,m = r). Define

f ′+ = (−2
√

2π)rdet


z11 z12 . . . z1r

. . . . . . . . . . . .

zr1 zr2 . . . zrr



f ′− = (−2
√

2π)sdet


z̄p+1 r+1 z̄p+1 r+2 . . . z̄p+1 r+s

. . . . . . . . . . . .

z̄p+s r+1 z̄p+s r+2 . . . z̄p+s r+s


Recall that i : Fz0DU,z′0

→ D is the natural embedding where U = span{x}

and z′0 are defined as in each subsection.

Lemma 7.7. The highest term (in terms of the degree of the polynomial in front of

ϕ0) of i∗(ϕ(x))|z0 is

(f ′+f̄
′
+)q−s(f ′−f̄−)p−rdVol(Fz0DU,z′0

)|z0 ,

(f ′+f̄
′
+)n−r+1dVol(Fz0DU,z′0

)|z0 ,

(f ′+f̄
′
+)n−r−1dVol(Fz0DU,z′0

)|z0 ,

respectively for G = U(p, q), Sp(2n,R) and O∗(2n,R), where dVol(Fz0DU,z′0
) is the

volume form of the Fiber Fz0DU,z′0
.

Proof. It follows from Lemma 7.2 (resp. Lemma 7.3 or Lemma 7.5), the analogous

expression of i∗(ϕ−) and Lemma 6.5.
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Chapter 8: The Thom form for the fiber bundle Γ\D → Γx\Dx,z′

In this chapter we start to prove the main theorems of the paper. We give

the symmetric space D = G∞/K∞ the G∞-invariant Riemannian metric τ induced

by the trace form on p0. D is then a negatively curved symmetric Kahler manifold

whose sectional curvatures are automatically bounded as it is homogeneous. We

suppose the sectional curvature of D is bounded below by −ρ2. Let x ∈ V m viewed

as a m-tuple of vectors in V .

Let x ∈ V m (1 ≤ m ≤ n) satisfy the following assumptions in the three cases

of our interests respectively:

1. The Hermitian form i(, )v1 restricted to spanBx ⊗ kv1 is non-degenerate and

has signature (r, s). In particular 1 ≤ r ≤ p, 1 ≤ s ≤ q and r + s = m.

2. The Hermitian form (, ) restricted to spanBx is non-degenerate. m = r.

3. The skew-Hermitian form (, ) restricted to spanBx is non-degenerate. m = r.

In each case we define a 2m dimensional B-vector space W , a form <,> on W

that is non-degenerate and split. We assume that it is Hermitian, skew Hermitian

and Hermtian respectively in case (1), (2) and (3). Let G′ be the group of B-linear

transformations on W preserving <,>. Define G′v and G′∞ for G′ the same way for
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G. We have

1. G′∞ = U(r + s, r + s)`

2. G′∞ = O(2r, 2r)`

3. G′∞ = Sp(r, r)`

for case (1), (2) and (3) respectively.

We fix point z0 in the symmetric space D of G∞. That is to say we fix a max-

imal compact group K∞ of G∞. By our assumptions, K∞ = Kv1 ×
∏

v∈S∞,v 6=v1 Gv.

Let

g0 = p0 ⊕ k0

be the corresponding Cartan decomposition on the Lie algebra g0 of G∞ (we drop

the subscript 0 to indicate complexification). Let Ω•(D) be the space of smooth

differential forms on D.

We think of (∧•p∗⊗S(V m
∞ ))K∞ as a cotangent vector with values in S(V m

∞ ) at

the base point z0 where S stands for Schwartz functions. There is an isomorphism

given by the restriction map

(Ω•(D)⊗ S(V m
∞ ))G∞ → (∧•p⊗ S(V m

∞ ))K∞

Let G̃′v1 be the metaplectic cover of G′v1 which is the preimage of G′v1 under
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the map Mp((V m)v1)→ Sp((V m)v1). And let

G̃′∞ = G̃′v1 ×
∏
v 6=v1

G′v.

G̃′ acts on S(V n
∞) by the oscillator(Weil) representation ω and the action commutes

with that of G. Recall that the action of G∞ via ω is just the induced action on

functions

(ω(g)f)(x) = f(g−1x).

for f ∈ S(V m
∞ ), x ∈ V m

∞ viewd as (p+ q) by m matrix.

Any form ψ ∈ (∧•p∗ ⊗ S(V m
∞ ))K give rise to form ψ̃

ψ̃(g, g′,x) = L∗g−1(ω(g, g′)ψ(x))

where g ∈ G∞, g′ ∈ G̃′∞ and Lg denotes the left translation map by g on G∞ and

L∗g is its induced pullback map on Ω•(D). Then we have

ψ̃ ∈ (Ω•(D)⊗ S(V m
∞ ))G∞×G̃

′
∞ .

We will often write ψ̃(z, g′,x) for z ∈ D as ψ̃ only depends on g mod K∞, and

ψ̃(z, g′,x) = L∗gz−1(ω(gz, g
′)ψ(x))

where gz is any element in G that maps our base point z0 to z.
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Let ϕv be the vacuum vector (Gaussian function) of S(Vv) for any Archimedean

place v 6= v1. Define

ϕ∞ = ϕ⊗
∏
v 6=v1

ϕv ∈ (∧•p⊗ S(V m
∞ ))K∞

where ϕ is the form we constructed in the last chapter. Apply the above construction

to ϕ∞ to get a form ϕ̃∞ ∈ (Ω•(D)⊗ S(V m
∞ ))G∞×G̃

′
∞ .

Choose an open subgroup L of V (Af ). Recall from chapter 5 that we can

choose arithmetic subgroups Γ ⊂ G(k) and Γ′ ⊂ G̃′(k) and a Γ × Γ′-invariant

distribution θL

θL,ψ =
∑
x∈Lm

ψ(X)

where L = L ∩ V (k) is a lattice in V∞.

We now apply θL to ϕ̃∞ to get

θL,ϕ̃∞ ∈ Ω•(Γ\D)⊗ C∞(Γ′\G̃′∞).

We also define

θL,β,ϕ̃∞(z, g′) =
∑

x∈Lm,(x,x)=β

ϕ̃∞(z, g′,x)) (8.1)
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for a matrix β ∈Mm(B). We have the following Fourier expansion of θL,ϕ̃∞ :

θL,ϕ̃∞(z, g′) =
∑
β

∑
x∈Lm,(x,x)=β

ϕ̃∞(z, g′,x))

=
∑
β

θL,β,ϕ̃∞(z, g′)

where β runs over all possible inner product matrix (x,x). We call θL,β,ϕ̃∞ the β-th

Fourier coefficient of θL,ϕ̃∞ as it’s a character function under the action of Γ′ ∩ N ′

for certain Nilpotent subgroup N ′ ⊂ G̃′. See chapter 5 for more details.

Now suppose O ⊂ V m
∞ is a closed G∞ orbit. Then by a theorem of Borel ( [B],

Theorem 9.11), O ∩ Lm consists of a finite number of Γ-orbits. By Witt’s theorem,

G∞ acts transitively on the set

{x ∈ V m
∞ |(x,x) = β}

when β is non-degenerate.

Thus the set

{x ∈ Lm|(x,x) = β}

consists of finitely many Γ-orbits. We choose Γ-orbit representatives {x1, . . . ,xo}

and define

Ui = spanxi, 1 ≤ i ≤ o.

For each 1 ≤ i ≤ o choose a base point zi ∈ D(Ui). Let Cxi,zi be the generalized

116



special cycle. Let

z = {z1, z2, . . . , zo}.

Then define

Cβ,z =
o∑
i=1

Cxi,zi .

Cβ,z is a cycle in the Chow group of Γ\D. By remark 1.1, the homology class [Cβ,z]

is independent of the choice of z, so we simply denote by [Cβ] its homology class.

In this chapter whenever we take the period of a closed differential form η on Cβ,z

(resp. Cx,z′ ) we write
∫
Cβ
η (resp.

∫
Cx
η).

Let η be any differential form on Γ\D, define a smooth function θL,ϕ̃∞(η) on

G̃′∞ by

θL,ϕ̃∞(η) =

∫
Γ\D

η ∧ θL,ϕ̃∞(g′).

We call the above map theta lifts defined by ϕ̃∞. When η is closed, the above gives

a map

Hd−d′(Γ\D,C)→ A(Γ′\G̃′∞)

where d = dimD, d′ is the degree of ϕ and A(Γ′\G̃′∞) is the space of automorphic

functions on Γ′\G̃′∞. Also define aL,β(η),ϕ̃∞ to be the β-coefficient of θL,ϕ̃∞(η):

aL,β(η),ϕ̃∞(η) =

∫
Γ\D

η ∧ θL,β,ϕ̃∞(z, g′) =

∫
Γ\D

η ∧
∑

x∈Lm,(x,x)=β

ϕ̃∞(z, g′,x). (8.2)
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Then we have the Fourier expansion:

θL,ϕ̃∞(η) =
∑
β

aL,β,ϕ̃∞(η).

Theorem 8.1. Assuming that β is non-degenerate (a nonsingular matrix), and in

case (1) also assume that σ1(β) has signature (r, s). Then

aL,β(η),ϕ̃∞(η) = κ(g′, β)

∫
Cβ

η

where κ is an analytic function in g′ that depends on β.

Let us also briefly recall Poincaré duality in terms of differential forms. For a

closed submanifold C inside an oriented manifold M , we say that τ is a Poincaré

dual form of C if it is a closed form such that

∫
M

η ∧ τ =

∫
C

η

for any closed form η. Poincaré dual form is unique up to exact forms.

The above definition for Poincaré dual form can be extended to a closed cycle

C (a member of H∗(M)) given that C is almost a submanifold. To be more precise,

if C has a stratification such that its open stratum is a submanifold of M , then the

above definition works.

With the above theory of Poincaré duality in mind, theorem 8.1 then is equiv-

alent to

118



Theorem 8.2. Assuming that β is non-degenerate (a nonsingular matrix), and in

case (1) also assume that σ1(β) has signature (r, s). Then

[θL,β,ϕ̃∞(z, g′)] = PD([Cβ])κ(g′, β).

where [θ] is the value of θ in H∗(Γ\D) and PD([Cβ]) ∈ H∗(Γ\D) is the Poincaré

dual of Cβ.

When the function κ(g′, β) is nonzero, 1
κ(g′,β)

[θL,β,ϕ̃∞(z, g′)](see equation (8.1))

is the Poincaré dual of Cβ. We will prove this for generic g′ in Chapter 10.

Theorem 8.3. κ(g′, β) is an analytic function on G̃′ that is not identically zero.

In particular, κ(g′, β) is nonzero for generic g′. To be more precise, there exists

m′ ∈M ′ such that for sufficiently large λ ∈ R,

κ(λm′, β) 6= 0.

In other words, for a generic g′, 1
κ(g′,β)

[θL,β,ϕ̃∞(z, g′)] is the Poincareé dual of Cβ.

These theorems mean that [θL,ϕ̃∞ ] can be seen as a ”generating” series of

PD([Cβ]). Of course, as for now we do not have an explanation for all the ”Fourier

coefficients” as Poincaré duals of cycles. Only for those satisfying the condition of

theorem 8.2 do we have such an explanation.

First we need the following ”unfolding” lemma:
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Lemma 8.1.

∫
Γ\D

η ∧
∑

x∈Lm,(x,x)=β

ϕ̃∞(z, g′,x) =
o∑
j=1

∫
Γxj \D

η ∧ ϕ̃∞(z, g′,xj)

Proof. First we can switch the order of integration and summation on the left hand

side of the equation as η is bounded and ϕ̃∞(z, g′,x) is uniformly fast decreasing in

x:

∫
Γ\D

η ∧
∑

x∈Lm,(x,x)=β

ϕ̃∞(z, g′,x) =
∑

x∈Lm,(x,x)=β

∫
Γ\D

η ∧ ϕ̃∞(z, g′,x)

=
o∑
j=1

∑
y∈Γxj

∫
Γ\D

η ∧ ϕ̃∞(z, g′,y)

We have to justify the exchange of summation and integration in the first equality

above. Let B(r) be the ball of radius r in V∞. Since {x ∈ L ∩ Bm(r)} has finite

cardinality, {x ∈ Lm, (x,x)} ∩ Bm(r) also has finite cardinality. As ||ϕ̃∞|| is a

Schwartz function in V m
∞ , the exchanges of summation and integration follows from

dominated convergence theorem.

We do the summation in each Γ-orbit:

∑
y∈Γx

∫
Γ\D

η ∧ ϕ̃∞(z, g′,y) =
∑

γ′∈Γx\Γ

∫
Γ\D

η ∧ ϕ̃∞(z, g′, γ′−1x)
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By definition of ϕ̃∞(z, g′,x) and the fact that L∗g is contravariant in g we have

ϕ̃∞(z, g′, γ−1x) =L∗
g−1
z

($(gz, g
′)ϕ∞(γ−1x))

=L∗
g−1
z

($(g′)ϕ∞(g−1
z γ−1x))

=L∗γ ◦ L∗(γg)−1
z

($(g′)ϕ∞((γgz)
−1x))

=L∗γ(ϕ̃∞(γz, g′,x)).

And

∑
γ∈Γx\Γ

∫
Γ\D

η ∧ ϕ̃∞(z, g′, γ−1x) =
∑

γ∈Γx\Γ

∫
Γ\D

η ∧ L∗γ(ϕ̃∞(γz, g′,x))

=
∑

γ∈Γx\Γ

∫
Γ\D

L∗γ(η ∧ ϕ̃∞(γz, g′,x))(as η is Γ-invariant)

Now if F is a fundamental domain of the Γ action on D, then ∪γ∈Γx\Γ(γ · F ) is a

fundamental domain of the Γx action on D. So we have

∑
γ∈Γx\Γ

∫
Γ\D

L∗γ(η ∧ ϕ̃∞(γz, g′,x)) =
∑

γ∈Γx\Γ

∫
F

L∗γ(η ∧ ϕ̃∞(γz, g′,x))

=
∑

γ∈Γx\Γ

∫
γ(F )

η ∧ ϕ̃∞(z, g′,x)

=

∫
Γx\D

η ∧ ϕ̃∞(z, g′,x).

The conclusion of our lemma follows.

Define

Ux = spanx.
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Let Gx be the stabilizer in G∞ of x and DUx be the symmetric space associated to

Gx (i.e. the symmetric space associated to U⊥x ). Also let Γx = Γ ∩ Gx. Recall in

Chapter 3, we have an embedding DUx → D by choosing a point z′0 in the symmetric

space associated to (Ux, (, )). The image of the embedding DUx,z′0
is totally geodesic.

After mod out Γ, we have the cycle CUx,z′0
= πz′0(Γx\DUx) of Γ\G∞. In this chapter,

for simplicity we denote DUx,z′0
by Dx,z′0

and CUx,z′0
by Cx,z′0

.

The critical topological observation is that Γx\Dx,z′0
is a totally geodesic sub

manifold of the space Ex = Γx\D and Ex is in a natural way (topologically) a vector

bundle over Γx\Dx,z′0
. There is a fibering π : Ex → Γx\Dx,z′0

defined in section 3.2.

We denote the fiber at a point z ∈ Γx\Dx,z′0
by FzDx,z′0

. For later use, we also define

NzDx,z′0
by

NzDx,z′0
= {~v ∈ TzD|v⊥TzDx,z′0

}

where TzD is the tangent space of D at z. NzDx,z′0
is the tangent space of FzDx,z′0

at z.

As before suppose d = dim(D),d′ = dim(Dx,z′0
). The following theorem is a

special case of theorem 2.1 of [KM4].

Theorem 8.4. Let Φ be a differential d′-form on Ex satisfying

1. Φ is closed.

2. ||Φ|| ≤ exp(−dρr)p(r) for some polynomial p where r is the geodesic distance

to Γx\Dx,z′0
.
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If η is a closed bounded (d− d′)-form on Ex we have

∫
Ex

η ∧ Φ = κ

∫
Γx\Dx,z′0

η

where

κ =

∫
FzDx,z′0

Φ.

for any z ∈ Γx\Dx,z′0
.

Remark 8.1. When κ = 1, Φ is a Thom form of the fiber product Ex → Γx\Dx,z′0
.

Proof of Theorem 8.1 assuming rapid decreasing of ϕ̃∞ on the fiber FzDx,z′0
:

Assume that ϕ̃∞ satisfies the condition of Theorem 8.4.

By the unfolding lemma 8.1, we know that

aβ(η) =
o∑
j=1

∫
Γxj \D

η ∧ ϕ̃∞(z, g′,Xj).

It suffices to show that

∫
Γx\D

η ∧ ϕ̃∞(z, g′,x) = κ(g′, β)

∫
Cx

η

for each x = xj.

We apply theorem 8.4 to Φ = ϕ̃∞(z, g′,x). We already know that ϕ̃∞ is closed.

We will prove in Theorem 9.3 that it is fast-decaying. So it satisfies both conditions
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of the above theorem. Define

κ(g′,x, z′0) =

∫
Fz0Dx,z′0

ϕ̃∞(z, g′,x)

for any z0 ∈ Cx,z′0
. By theorem 8.4, we know that

∫
Γx\D

η ∧ ϕ̃∞(z, g′,x) = κ(g′,x, z′0)

∫
Γx\Dx,z′0

η.

When the map πz′0 : Γx\DUx → Γ\D is an embedding, in other words, we can

identify Γx\DUx with Cx,z′0
. One can immediately conclude that

∫
Γx\D

η ∧ ϕ̃∞(z, g′,x) = κ(g′,x, z′0)

∫
Cx,z′0

η. (8.3)

In general one use lemma 3.2 to conclude that the map

πσ2 : Γx\Dx,z′0
→ Cx,z′0

is generically injective, so ∫
Cx,z′0

η =

∫
Γx\Dx,z′0

η,

and equation (8.3) holds again. This finishes the proof of theorem 8.1 except that

we have to show κ(g′,x, z′0) only depends on g′ and β.

The fiber Fz0Dx,z′0
does not depend on the group Γx, it only depends on Dx,z′0

(D → Dx,z′0
and Γx\D → Cx,z′0

have the same fiber). We want to show that
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Lemma 8.2. κ(g′,x, z′0) is independent of the choice of z′0. Moreover it only depends

on β = (x,x) when β is non-degenerate.

Let η be a Γ-invariant form on D such that
∫
Cx,z′0

η 6= 0. We have seen in the

proof of lemma 8.1 that

∫
Γ\D

η ∧
∑
g∈Γ

ϕ̃∞(z, g′, gx) =

∫
Γx\D

η ∧ ϕ̃∞(z, g′,x).

Theorem 8.4 tells us that

∫
Γx\D

η ∧ ϕ̃∞(z, g′,x) = κ(g′,x, z′0)

∫
Cx,z′0

η.

For different choices of z′0, Cx,z′0
are homologous. Thus

∫
Cx,z′0

η is independent of z′0.

By the nondegeneracy of the pairing between H∗(M) and H∗(M), we can choose η

such that ∫
Cx,z′0

η 6= 0.

So
∫

Γ\D η ∧
∑

g∈Γ ϕ̃∞(z, g′, gx) is independent of z′0. This shows that κ(g′,x, z′0) is

independent of the choice of λ, from now on we simiply denote it by κ(g′,x).

Let x̃ ∈ V m
∞ and λ̃ be a point in the symmetric space associated to (Ux̃, (, )),

z0 ∈ DX̃,λ̃. Suppose there is a g ∈ G∞ such that gx = x̃ then as in the proof of 8.1,
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we have

∫
Fz0DX̃,λ̃

ϕ̃∞(x, g′, x̃) =

∫
Fz0Dgx,λ̃

ϕ̃∞(z, g′, gx)

=

∫
Fz0Dgx,λ̃

L∗g−1(ϕ̃∞(g−1z, g′,x))

=

∫
Lg−1 (Fz0Dgx,λ̃)

ϕ̃∞(z, g′,x)

=

∫
Fg−1z0

Dx,g−1λ̃

ϕ̃∞(z, g′,x)

This proves that κ(g′,x) only depends on the G∞-orbit of x. In particular, when β

is non-degenerate and has signature (r, s) in the unitary case, we can define

κ(g′, β) = κ(g′,x)

for any x such that (x,x) = β.
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Chapter 9: Rapid decrease of ϕ̃ on the Riemannian normal fiber

In this chapter, we prove that ϕ̃∞ defined in Chapter 8 satisfies the condition

of Theorem 8.4.

Throughout the chapter we assume V is a complex vector space with a non-

degenerate skew Hermitian form (, ) of signature (p, q). We fix an orthnormal basis

{v1, . . . , vp+q} as before. For the latter two groups we assume p = q = n in addition.

For G = U(p, q), n = p+ q, m = r + s, x = (~x1, . . . , ~xr+s) and

U := span{x}.

Let z0 ∈ D such that (U, z) is a compatible pair (Definition 3.1). Notice that U

together with z0 gives rise to a sub-symmetric space DU,z′0
where z′0 = z0 ∩ U .

Recall from Section 4.2 that V0 is a 2n dimensional real vector space with a

skew symmetric form (, )1 and V = V0 ⊗R C. Sp(2n,R) = G(V0, (, )1) is a subgroup

of U(n, n) and its symmetric space D1 embedds D, the symmetric of U(n, n). In

this case let m = r and assume x0 = (~x1, . . . , ~xr, ~y1, . . . , ~yr) ∈ V 2r
0 . Denote by U0

and U

U0 = spanR{~x1, . . . , ~xr, ~y1, . . . , ~yr} ⊂ V0, U = U0 ⊗R C ⊂ V
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respectively. Let z0 ∈ D1 such that (U, z0) is a compatible pair. Notice that U0

together with z0 gives rise to a sub-symmetric space DU0,z′0
∈ D1 where z′0 = z0 ∩U .

Recall that we have the isomorphisms V 2r
0
∼= V0 ⊗R E ∼= V ⊗C E ∼= V r (as in

Subsection 6.4). Under this isomorphism x0 is mapped to x in V r, more explicitly

x =
1√
2

(~x1 − i~y1, . . . , ~xr − i~yr) ∈ V m.

Recall from Section 4.3 that O∗(2n,R) is a subgroup of U(n, n) and its sym-

metric space D2 embedds D, the symmetric of U(n, n). In this case let m = r and

assume x = (~x1, . . . , ~xr) ∈ V r and

U = spanH{x}.

We can also view x as in both V r
H and V r. Let z0 ∈ D2 such that (U, z0) is a

compatible pair. U together with z0 gives rise to a sub-symmetric space DU,z′0
∈ D2

where z′0 = z0 ∩ U .

In all three cases, a point z0 ∈ D (in the latter two cases view z0 as in D

instead of D1 or D2) gives rise to a Cartan involution θz : V → V . Define a positive

definite Hermitian form (, )z0 on V by

(x, y)z0 = i(x, θz0y).

We call this form the majorant of (, ) with respect to z0. We denote (v, v)z0 as

‖v‖2
z0

.
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In all the above cases, for any z0 ∈ D, define Mz0 : D × V m → R to be the

function

Mz0(z,x) =
m∑
`=1

||g−1
z ~x`||2z0 , (9.1)

where gz ∈ G is any element such that gzz0 = z. Since the isotropic group of z0 is

K and for any k ∈ K, θz0k = kθz0 , we know that

(kx, ky)z0 =i(kx, θz0ky)

=i(kx, kθz0y)

=i(x, θz0y) = (x, y)z0 .

Hence the function Mz0(z,x) is well-defined.

Lemma 9.1.

Mhz0(hz, hx) = Mz0(z,x).

Proof. Choose a g such that gz0 = z, then hgh−1hz0 = hz. Hence

Mhz0(hz, hx) =
m∑
`=1

||hg−1h−1h~x`||2hz0

=
m∑
`=1

(hg−1h−1 · h~x`, hθz0h−1 · (hg−1h−1 · h~x`))

=
m∑
`=1

(hg−1~x`, hθz0g
−1~x`)

=
m∑
`=1

(g−1~x`, θz0g
−1~x`)

=Mz0(z,x).
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Recall that the Riemannian distance d(D′, z) between the totally geodesic

submanifold D′ and z ∈ D is the length of the shortest geodesic joining z to a point

of D′. This geodesic is necessarily normal to D′. Choose a base point z0 ∈ D′. If

z = expz0 (tu) for u ∈ Nz0D
′ where expz0 denotes the exponential map at the base

point z0, then

d(D′, z) = t.

Our first goal of this chapter is to prove the following estimate on M for all

three cases.

Theorem 9.1. Let (x, z0) be a compatible pair (Definition 3.1) and z′0 = z0 ∩ U .

There is a positive constant c depending on x and z′0 but not on z0 such that

Mz0(z,x) ≥ c exp(2c · d(DU,z′0
, z)). (9.2)

It is easy to see that

d(DU,z′0
, z) = d(DhU,hz′0

, hz). (9.3)

Equation (9.3) together with Lemma 9.1 implies that in order to prove Theo-

rem 9.1 it suffices to assume (by replacing (x, z0) by (hx, hz0) for some h ∈ G)

1. ForG = U(p, q), span{x} = spanC{v1, . . . , vr, vp+1, . . . , vp+s} and z0 = spanC{vp+1, . . . , vp+q}.

2. For G = Sp(2n,R), spanR{x0} = spanR{E1, . . . , Er, F1, . . . , Fr} and z0 =
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spanC{E1 + iF1, . . . , En + iFn}.

3. ForG = O∗(2n,R), span{x}H = spanH{v1, . . . , vr} and z0 = spanC{v1j, . . . , vnj}.

Recall that we have a Gx-equivariant fibration π : D → DU,z′0
with the fiber Fz0DU,z′0

over z0. By the definition of Mz0(z,x) (Equation (9.1)), we see that

Mz0(gz,x) = Mz0(z,x),∀g ∈ Gx.

Hence we can translate z by elements in Gx and assume that z ∈ Fz0DU,z′0
. Hence

we can assume that

z = expz0(X),

for some X ∈ Nz0DU,z′0
where expz0 is the exponential map of the symmetric space

starting from z0. It is well-known that (see for example Section 3 of Chapter IV

of [He])

expz0(X) = exp(X)z0,

where we identify Nz0DU,z′0
as a subspace of p and exp is the exponential map of the

group G. From now on we assume that z = exp(X)z0 with X ∈ Nz0DU,z′0
⊂ p. We

also denote for simplicity (, )0 = (, )z0 .

9.1 Theorem 9.1 for the unitary case

The theorem will be a consequence of Lemmas 9.2 through 9.6.
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Recall that we have the Cartan Decomposition

u(p, q) = k0 + p0

where p0 are Hermitian matrices of the form

p0 =


 0 A

∗A 0

 |A ∈Mp×q(C)

 .

Lemma 9.2. Let A ∈ Hermn and ε > 0 be given. Then there exists δ depending on ε

and A such that for any B ∈ Hermn with ‖A−B‖ < δ there exist R, S ∈ U(n) such

that RAR−1 and SBS−1 are diagonal with ‖RAR−1−SBS−1‖ < ε and ‖R−S‖ < ε.

Proof. For U ∈ U(n), the statement in the lemma is true for A if and only it is true

for UAU−1 (with the same ε and δ). Hence without lost of generality we can assume

we can assume A is diagonal of the form

A =



λ1Ir1 0 0 · · · 0 0

0 λ2Ir2 0 · · · 0 0

0 0 0 · · · 0 λkIrk


(9.4)

where λ1, λ2, . . . λr are distinct eigenvalues of A and r1 + r2 + · · ·+ rk = n.

First we assume that λ1, λ2, . . . λr are all nonzero.
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Define a Lie subalgebra uA ⊆ u(n) to be the set of matrix of the form

X =



0r1 X12 · · · X1k

−X∗12 0r2 · · · X2k

−X∗1k −X∗2k · · · 0rk


. (9.5)

We define a map

φ : uA × Hermr1 × · · · × Hermrk → Hermn,

given by

φ(X,m1, · · · ,mk) = exp (X)A



exp(m1) 0 · · · 0

0 exp(m2) · · · 0

0 0 · · · exp(mk)


exp (−X)

(9.6)

Then the differential of φ at (0, 0, . . . , 0) is given by

dφ0(X,m1, · · · ,mk) = A



m1 0 · · · 0

0 m2 · · · 0

0 0 · · · mk


+ [X,A],
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which in turn is equal to



λ1m1 (λ1 − λ2)X12 · · · (λ1 − λk)X1k

(λ1 − λ2)X∗12 λ2m2 · · · (λ2 − λk)X2k

(λ1 − λk)X∗1k (λ2 − λk)X∗2k · · · λkmk


Because we assume that λ1, λ2, . . . λr are distinct and nonzero, dφ0 is an isomorphism

from uA × Hermr1 × · · · × Hermrk to Hermn. Hence by inverse function theorem, φ

is a diffeomorphism from the product of a ball B(0, η) of radius η around the origin

in uA with a ball B(0, η′) of radius η′ around the origin of Hermr1 × · · · ×Hermrk to

a neighborhood U(η, η′) of A in Hermn.

For a given ε, shrink the size of η and η′ if necessary such that

X ∈ uA and ||X|| < η ⇒ ||I − exp(X)|| < ε (9.7)

and

Y ∈ Hermr1 × · · · × Hermrk and ‖Y ‖ ≤ η′ ⇒ ‖A− A exp (Y )‖ < ε. (9.8)

Choose δ such that B(A, δ) ⊂ U(η, η′). Suppose B ∈ B(A, δ). Since B ∈ U(η, η′)

we have a unique expression

B = exp (X)A exp (Y ) exp (−X) with X ∈ B(0, η) and Y ∈ B(0, η′).
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Put R1 = I and S1 = exp (−X) so R1AR
−1
1 = A is diagonal and S1BS

−1
1 =

A exp (Y ) is block diagonal of the form

S1BS
−1
1 =



B11 0 · · · 0

0 B22 · · · 0

0 0 · · · Bkk


, (9.9)

where Bii is of size ri × ri.

By the above choices of η (equation (9.7)), η′ (equation (9.8)) and δ, it is clear

that we have

‖A−B‖ < δ ⇒ ‖R1 − S1‖ < ε and ‖R1AR
−1
1 − S1BS

−1
1 ‖ < ε. (9.10)

Now there is a block diagonal unitary matrix

R =



R11 0 · · · 0

0 R22 · · · 0

0 0 · · · Rkk


,

where Rii ∈ U(ri) such that RS1BS
−1
1 R−1 is diagonal. Notice that RA = AR, hence

RAR−1 = A is also diagonal.
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Let S = RS1. Since R is unitary, by equation 9.10 we have

||R− S|| = ||R(R1 − S1)|| < ε,

and

||RAR−1 − SBS−1|| = ||R(A− S1BS
−1
1 )R−1|| < ε.

The lemma is now proved for A a block diagonal matrix of the form (9.4) and

λ1, . . . , λk are nonzero.

In general we can choose a λ such that A′ = A + λIn does not have zero

eigenvalue. By the previous argument, there are B′ ∈ Hermn and R, S ∈ U(n) such

that ||R−S|| < ε and ||RA′R−1−SB′S−1|| < ε. Now let B = B′−λIn. The lemma

is now proved.

Recall that the tangent space Nz0DU,z′0
of the fiber Fz0DU,z′0

at z0 can be

identified with a subspace of p0 given by equation (7.3). Our goal is to prove

The Proposition will be a consequence of the following discussion and lemma.

Let X ∈ Nz0DU,z′0
so in particular X ∈ p and is Hermitian with respect to (, )0. Let

ṽ1, · · · ṽn be an orthonormal basis for ( , )0 of V consisting of eigenvectors of X.

Then

X(ṽk) = λkṽk, 1 ≤ k ≤ n.

Suppose

~xj =
n∑
k=1

akj ṽk.
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for 1 ≤ k ≤ n. Then

‖~xj‖2
0 =

∑
λk

‖pλk(~xj)‖2 =
n∑
k=1

|akj |2

where pλk is the orthogonal projection using the metric ( , )0 onto the eigenspace

corresponding to λk.

Remark 9.1. When it is necessary to distinguish to which X ∈ Nz0DU,z′0
the num-

bers akj and λk belong we will write akj (X) and λk(X).

Lemma 9.3. We have

(exp (−tX)~xj, exp (−tX)~xj)0 =
n∑
k=1

‖pλk(~xj)‖2 exp (−2λkt)

where the sum is over all eigenvalues of X.

Proof. Since {ṽk : 1 ≤ k ≤ n} is an orthonormal basis for V we have

(exp (−tX)~xj, exp (−tX)~xj)0 =
n∑
i=1

|(ṽi, (exp−(tX)~xj)0|2 =
n∑
i=1

|
(
ṽi, exp (−tX)(

n∑
k=1

akj ṽk)
)
|2

=
n∑
i=1

|(ṽi,
n∑
k=1

akj exp (−λkt)ṽk)0|2 =
n∑
i=1

|aij|2 exp (−2λit)

We now define
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f(X) = −
r+s∑
j=1

∑
λi(X)<0

|aij|2(X)λi(X) = −
r+s∑
j=1

∑
λi(X)<0

‖pλi(X)(~xj)‖2
0λi(X). (9.11)

Since all the terms in the sum defining f(X) are nonnegative it follows that

f(X) = 0 if and only all the term in the sum are zero. By Lemma 9.2, we can prove

the following.

Lemma 9.4. f(X) is continuous on p0
∼= Tz0D.

Proof. Let X1 ∈ p0. Then for any X ∈ p0 we have

|f(X)− f(X1)| = |
r+s∑
j=1

∑
λi(X)<0

|aij|2(X)λi(X)−
r+s∑
j=1

∑
λi(X1)<0

|aij|2(X1)λi(X1)| (9.12)

Let ε > 0 be given. Apply Lemma 9.2 with A = X1 to find δ such that whenever

‖X−X1‖ < δ, there exist unitary matrices R, S such that RX1R
−1 and SXS−1 are

diagonal and

‖R− S‖ < ε and ‖RAR−1 − SBS−1‖ < ε.

But ‖R − S‖ < ε implies that suitably chosen eigenvectors of A and B are

close. More precisely, if ṽi(X), resp. ṽi(X1), 1 ≤ i ≤ n is the eigenvector of X (resp.

X1), corresponding to the eigenvalue λi(X), resp.λi(X1) which is the i-th row of R,

resp. i-th row of S we have

ε2 > ‖R− S‖2 =
n∑
i=1

‖ṽi(X)− ṽi(X1)2‖2
0 ⇒ ‖ṽi(X)− ṽi(X1)‖2

0 < ε2, 1 ≤ i ≤ m.
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Hence, for all i, j, 1 ≤ i ≤ n and 1 ≤ j ≤ n we have

|aij(X)− aij(X1)|2 = |(~xj, ṽi(X)− vi(X1))0|2 ≤ ‖~xj‖2
0 ‖ṽi(X)− ṽi(X1)‖2

0 < ‖~xj‖2
0 ε

2.

Also

‖RAR−1 − SBS−1‖2 =
m∑
i=1

(λi(X)− λi(X1))2

and consequently

‖RAR−1−SBS−1‖2 < ε2 ⇒
n∑
i=1

(λi(X)−λi(X1))2 < ε⇒ (λi(X)−λi(X1))2 < ε2, 1 ≤ i ≤ n.

Hence, for all i, 1 ≤ i ≤ n we have

|λi(X)− λi(X1)| < ε.

Since X is fixed, we assume that

λi(X) ≤M,λi(X1) ≤M

for 1 ≤ i ≤ n.

Now using the identity |ab− a′b′| ≤ |b||a− a′|+ |a′||b− b′| we obtain

||aij|2(X)λi(X)−|aij|2(X1)λi(X1)| ≤ |λi(X)||aij|2(X)−|aij|2(X1)|+|aij|2(X1)||λi(X)−λi(X1)|.
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Since |λi(X)| ≤M and |aij|2(X1) ≤ ‖~xj‖2
0ε

2 we have

||aij|2(X)λi(X)− |aij|2(X1)λi(X1)| ≤M ||aij|2(X)− |aij|2(X1)|+ ‖~xj‖2
0|λi(X)− λi(X1)|

≤M ||~xj||20 ε2 + ||~xj||20ε = ||~xj||20(Mε2 + ε).

Suppose that the strictly negative eigenvalues of X are λ1(X), · · · , λk(X) and

the strictly negative eigenvalues of X1 are λ1(X1), · · · , λ`(X1). We assume k > `.

The case k = ` is easier (in this case, we have only the first sum in Eqation (9.13)

below) and the case k < ` can be treated in a manner symmetrical to that of the

case k > `.

We have

|f(X)−f(X1)| = |
r+s∑
j=1

∑̀
i=1

(
|aij|2(X)λi(X)−|aij|2(X1)λi(X1)

)
−
r+s∑
j=1

k∑
i=`+1

|aij|2(X)λi(X)|

(9.13)

The first sum is clearly majorized by `
∑r+s

j=1 ‖~xj‖2
0(2Mε2 + ε) using the inequality

immediately above. To majorize the second sum we note that

` < i ≤ k ⇒ λi(X) < 0 and λi(X1) ≥ 0.

Hence |λi(X) − λi(X1)| = −λi(X) + λi(X1). Note that each of the two terms is

positive. But

|λi(X)− λi(X1)| < ε⇒ −λi(X) + λ1(X1) < ε⇒ −λi(X) < ε.
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Hence the second summand is majorized by (k − `)
∑r+s

j=1 ‖~xj‖2
0ε.

Lemma 9.4 follows.

Let S(Nz0DU,z′0
) be the unit sphere of Nz0DU,z′0

, then we have

Lemma 9.5. f(Y ) does not take the value zero on S(Nz0DU,z′0
). As S(Nz0DU,z′0

) is

compact and f(Y ) ≥ 0, there exists C > 0 so that

f(Y ) ≥ C, Y ∈ S(Nz0DU,z′0
).

Proof. Assume f(Y ) = 0. Suppose v is an eigenvector of Y corresponding to a

strictly negative eigenvalue so

Y (v) = λv, λ < 0.

Then

f(Y ) = 0⇒ ‖pλ(~xj)‖2 = 0⇒ (~xj, v)0 = 0.

for 1 ≤ j ≤ r or p+ 1 ≤ j ≤ p+ s.

Let U+ = span{v1, . . . , vr} and U− = span{vp+1, . . . , vp+s}. Let U⊥+ = span{vr+1, . . . , vp}

and U⊥− = span{vp+s+1, . . . , vp+q}. Then v ⊥ U+ ⊕ U− as span{~x1, . . . , ~xr+s} =

U+⊕U−. Let u ∈ V . Using the orthogonal decomposition V = U+ +U⊥+ +U−+U⊥−

we may write u = (v1, w1, v2, w2) with v1 ∈ U+, w1 ∈ U⊥+ , v2 ∈ U−, w2 ∈ U⊥− . Then
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in this representation we have

v = (0, w1, 0, w2) with w1 6= 0 or w2 6= 0

and

Y (v) = λv = (0, λw1, 0, λw2).

But since Y ∈ Nz0Dx,z′0
we have (see equation (7.3))

Y =



0 0 a b

0 0 c 0

∗a ∗c 0 0

∗b 0 0 0


.

Hence

Y (v) = (bw2, 0,
∗cw1, 0) = λv = (0, λw1, 0, λw2).

Since λ < 0 the equation immediately above implies w1 and w2 = 0, a contradiction.

Assume now we have ordered the eigenvalues of X so that the first n eigenval-

ues are negative and the rest nonnegative.

Lemma 9.6. There exists strictly positive numbers b, c such that for some i, j, with 1 ≤

i ≤ n, we have

|λi| = −λi ≥ b and |aij|2 ≥ c
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Proof. Since

f(X) = −
r+s∑
j=1

n∑
i=1

λi(X)<0

|aij|2(X)λi(X)

is bounded below by C, at least one of terms in the sum is bounded below by c = C
N

where N is the number of terms in the sum. Suppose this term is −|aij|2λi. Hence

|aij|2|λi| = −|aij|2λi ≥ c for some i, j.

But since
∑n

i=1 |aij|2 = ‖~xj‖2
0 it follows that

|aij|2 ≤ ‖~xj‖2
0, 1 ≤ i ≤ n, 1 ≤ j ≤ r + s.

Hence

|λi| ≥
c

‖~xj‖2
0

.

We put

b =
c

‖~xj‖2
0

.

But since ‖X‖ =
∑n

i=1 λ
2
i = 1, it follows that

|λi| ≤ 1

and hence

|aij|2 ≥ c.
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Proof of Theorem 9.1 for the unitary case: We assume X ∈ S(Nz0Dx,z′0
),

z = exp(Xt)z0 and g = exp(Xt). Then

Mz0(z,x) =
r+s∑
j=1

(exp (−tX)~xj, exp (−tX)~xj)0 =
r+s∑
j=1

n∑
i=1

‖pλi(~xj)‖2
0 exp (−2λit).

But all the terms in the sum immediately above are nonnegative and we have proved

in Lemma 9.6 that one of them is minorized by c exp (2bt). Hence the entire sum is

also minorized by c exp (2bt) and we obtain

Mz0(z,x) ≥ c exp (2bt).

Since

d(Dx,z′0
, z) = t

Theorem 9.1 is proved.

9.2 Proof of Theorem 9.1 for G = Sp(2n,R)

We know that Sp(2n,R) ∈ U(n, n) and the symmetric space Sp(2n,R)/U(n)

embedds into U(n, n)/(U(n)×U(n)). In this section we denoteD = Sp(2n,R)/U(n), D′ =

U(n, n)/(U(n)× U(n)). Let

z0 = span{vn+1, . . . , v2n}.
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Then z0 is a negative n-plane of V . At the same time z0 is a Lagrangian subspace

of (, )1. Here (, )1 is the symplectic form on V0 and we extend it complex linearly to

V . So z0 can be naturally viewed as a point in both D and D′.

z0 corresponds to a Cartan decomposition of g0

g0 = k0 + p0.

With respect to the basis {v1, . . . , v2n} p0 is given by equation (7.6). Now we

need to study a Schrödinger model of the following seesaw dual pairs

U(n, n) O(2r, 2r)

Sp(2n,R)

OO 77

U(r, r)

OOgg
(9.14)

as in Section 6.3 and Section 6.4. To be more precise, recall that W is 2r dimen-

sional complex vector space with a Hermitian form of signature (r, r). Let E be

a Lagrangian subspace of W . Then the Schrödinger model of the above seesaw

dual pair is S(V ⊗C E) ∼= S(V r). Also recall that we have a symplectic basis

{E1, . . . , En, F1, . . . , Fn} of V0 and an orthonormal basis {v1, . . . v2n} of V with re-

lations given in Section 6.4.

Moreover there is an isomorphism V r ∼= V ⊗CE ∼= V0⊗RE ∼= V 2r
0 . Under this

isomorphism, x0 = (~x1, . . . , ~xr, ~y1, . . . , ~yr) ∈ V 2r
0 is mapped to

x′ = (~x1 − i~y1, . . . , ~xr − i~yr) ∈ V m.
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Let x′′ = (~x1 + i~y1, . . . , ~xr + i~yr) ∈ V m. We have assumed that spanR{x0} =

spanR{E1, . . . , Er, F1, . . . , Fr}. Hence spanC{x′,x′′} = spanC{v1, . . . , vr, vn+1, . . . , vn+r}.

Let U = spanR{x0} and U ′ = spanC{x′,x′′}.

We know that

Mz0(z,x0) =
r∑
j=1

((g−1
z xj, g

−1
z xj)0 + (g−1

z yj, g
−1
z yj)0)

=
r∑
j=1

(g−1
z (~xj − i~yj), g−1

z (~xj − i~yj))0

=Mz0(z,x
′).

where (, )0 is the Hermtian form on V with {v1, . . . , v2n} an orthonormal basis and

gz ∈ Sp(2n,R) such that gzz0 = z. Since gz is real and (, )0 is invariant under

complex conjugation, it is also true that

Mz0(z,x0) = Mz0(z,x
′′) =

r∑
j=1

(g−1
z (~xj + i~yj), g

−1
z (~xj + i~yj))0.

Hence

Mz0(z,x0) =
1

2

r∑
j=1

((g−1
z (~xj + i~yj), g

−1
z (~xj + i~yj))0 + (g−1

z (~xj − i~yj), g−1
z (~xj − i~yj))0).

(9.15)
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For X ∈ Tz0D ⊂ p0, let z = exp(tX)z0, then as in Lemma 9.3, we have

Mz0(z,x) =
1

2

r∑
j=1

(exp(−tX)(~xj + i~yj), exp(−tX)(~xj + i~yj))0+

(exp(−tX)(~xj − i~yj), exp(−tX)(~xj − i~yj))0)

=
1

2

r∑
j=1

∑
λ(X)

{‖pλ(X)(~xj − i~yj)‖2
0 exp(−λ(X)t) + ‖pλ(X)(~xj + i~yj)‖2

0 exp(−λ(X)t)},

where the summation runs over the eigenvalues of X and pλ(X) is the projection

onto the eigenspace of X with eigenvalue λ(X).

Since Tz0D ⊂ Tz0D
′, we can define f(X) as in equation (9.11)

f(X) = −
r∑
j=1

∑
λ(X)<0

{‖pλ(X)(~xj − i~yj)‖2
0λ(X) + ‖pλ(X)(~xj + i~yj)‖2

0λ(X)},

where the summation runs over the negative eigenvalues of X. By lemma 9.4, we

know f is continuous on Tz0D
′. As before, we have a generalized special cycle

DU,z′0
∈ D where z′0 = z0∩U . Let Nz0DU,z′0

be the normal vectors to DU,z′0
at z0 and

S(Nz0DU,z′0
) be its unit sphere.

Lemma 9.7. f(X) does not take zero value on S(Nz0DU,z′0
). As S(Nz0DU,z′0

) is

compact there exists C > 0 such that

f(X) ≥ C,X ∈ S(Nz0DU,z′0
).

Remark 9.2. This is the analogue of lemma 9.5. Notice that the symmetric space

D here is different from that of lemma 9.5.
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Proof. Assume f(X) = 0. Suppose v ∈ V0 is an eigenvector of X corresponding to

a strictly negative eigenvalue so

X(v) = λv, λ < 0.

Then

f(X) = 0⇒ ‖pλ(~xj − i~yj)‖2 = ‖pλ(~xj + i~yj)‖2 = 0

Since spanC{~x1−i~y1, . . . , ~xr−i~yr, ~x1+i~yr, . . . , ~xr+i~yr} = spanC{v1, . . . , vr, vn+1, . . . , vn+r},

we know that

(v, vj)0 = 0

for 1 ≤ j ≤ r and n+ 1 ≤ j ≤ n+ r.

Recall that for X ∈ Nz0Dx,z′0
we have (see equation (7.7) and equation (7.6))

X =



0 0 a b

0 0 tb 0

∗a b̄ 0 0

∗b 0 0 0


.

where a = ta. The rest of the proof is exactly the same with that of lemma 9.5.

With lemma 9.7, the conclusion of lemma 9.6 holds for X ∈ Nz0Dx,z0 as well,

so for z ∈ Fz0DU,z′0
Theorem 9.1 can be proved similarly as in the unitary case. The

general case can be derived from this using the argument right after Theorem 9.1.
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9.3 Proof of Theorem 9.1 for G = O∗(2n)

In this section we use notations from Section 6.5. We denote

D = O∗(2n)/U(n), D′ = U(n, n)/(U(n)× U(n)).

Then D ⊂ D′. Let

z0 = span{vn+1, . . . , v2n}.

Then z0 is a negative n-plane of (VC, H(, )). At the same time z0 is a Lagrangian

subspace of (VC, S(, )). So z0 can be naturally viewed as a point in both D and D′.

z0 corresponds to a Cartan decomposition of g0

g0 = k0 + p0.

With respect to the basis {v1, . . . , v2n} p0 is given by equation (7.10). Now we need

to study a Schrödinger model of the following seesaw dual pairs

U(n, n) Sp(r, r)

O∗(2n,R)

OO 88

U(r, r)

OOff
(9.16)

as in Section 6.3 and Section 6.5. To be more precise, recall that W is 2r dimen-

sional complex vector space with a Hermitian form of signature (r, r). Let E be

a Lagrangian subspace of W . Then the Schrödinger model of the above seesaw
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dual pair is S(V ⊗C E) ∼= S(V r). Also recall that we have an orthonormal H-basis

{v1, . . . vn} of V with relations given in Section 6.5.

Recall that WH = H ⊗C W , and we can extend the Hermitian form on W

to WH. Let E be a Lagrangian subspace of W , and EH = H ⊗C E. We have an

isomorphism:

V r ∼= V ⊗C E ∼= V ⊗H EH ∼= V r.

Let x = (~x1, . . . , ~xr) ∈ V r, we have assumed that

U = spanH{x} = spanH{v1, . . . , vr}.

Hence

spanC{x,xj} = spanC{v1, . . . , vr, vn+1, . . . , vn+r}.

We know that

Mz0(z,x) =
r∑

α=1

(g−1
z ~xα, g

−1
z ~xα)0.

where (, )0 is the Hermtian form on V with {v1, . . . , v2n} an orthonormal basis and

gz ∈ O∗(2n,R) such that gzz0 = z.

For X ∈ Tz0D ⊂ p0, let z = exp(tX)z0, then as in Lemma 9.3, we have

Mz0(z,x) =
r∑

α=1

(exp(−tX)~xα, exp(−tX)~xα)0

=
r∑

α=1

∑
λ(X)

‖pλ(X)(~xα)‖2
0 exp(−λ(X)t),

where the summation runs over the eigenvalues of X and pλ(X) is the projection
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onto the eigenspace of X with eigenvalue λ(X).

Since Tz0D ⊂ Tz0D
′, we can define f(X) as in equation (9.11)

f(X) = −
r∑

α=1

∑
λ(X)<0

‖pλ(X)(~xα)‖2
0λ(X),

where the summation runs over the negative eigenvalues of X. By lemma 9.4, we

know f is continuous on Tz0D
′. As before, we have a generalized special cycle

DU,z′0
∈ D where z′0 = z0∩U . Let Nz0DU,z′0

be the normal vectors to DU,z′0
at z0 and

S(Nz0DU,z′0
) be its unit sphere.

Lemma 9.8. f(X) does not take zero value on S(Nz0Dx,z0). As S(Nz0Dx,z0) is

compact and f(X) ≥ 0 there exists C > 0 such that

f(X) ≥ C,X ∈ S(Nz0Dx,z0).

Proof. Since X ∈ o∗(2n), it commutes with right multiplication by j on V which is

a complex anti-linear map on VC. In particular if λ is an eigenvalue of X (λ must

be real as X is Hermitian) and Vλ is the λ-eigenspace of X, Vλ will be preserved by

right multiplication by j.

Suppose Vλ is the λ-eigenspace of X corresponding to a strictly negative eigen-

value λ. Assume f(X) = 0, then

f(X) = 0⇒ ‖pλ(~xα)‖2
0 = 0⇒ vα⊥Vλ,
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for 1 ≤ α ≤ r. As Vλ is preserved by right multiplication by j and (, )0 is preserved

by right multiplication by j, the above implies ~xαj⊥Vλ for 1 ≤ α ≤ r. Since

spanC{x,xj} = spanC{v1, . . . , vr, vn+1, . . . , vn+r}, we have

vα⊥Vλ,

for 1 ≤ α ≤ r and n+ 1 ≤ α ≤ n+ r.

Recall that for X ∈ Nz0Dx,z′0
we have (see equation (7.11) and equation (7.10))

X =



0 0 a b

0 0 −tb 0

∗a −b̄ 0 0

∗b 0 0 0


.

where a = −ta. The rest of the proof is exactly the same with that of lemma 9.5.

With lemma 9.8, the conclusion of lemma 9.6 holds for X ∈ Nz0Dx,z0 as well,

so for z ∈ Fz0DU,z′0
, Theorem 9.1 can be proved similarly as in the unitary case. The

general case can be derived from this using the argument right after Theorem 9.1.

9.4 Rapid decrease of the cocycles over the fiber Fz0Dx,z′0

In this section we want to prove that for any ψ ∈ C•(g, K;S(V m)), ψ̃ satisfies

the decreasing condition of Theorem 8.4.

Theorem 9.2. All the assumptions are as in Theorem 9.1. For any Schwartz func-
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tion ψ ∈ S(V m) and any constant ρ > 0, there is a constant Cρ such that

ψ(g−1x) ≤ Cρ exp(−ρ d(z, g,x)), (9.17)

where d(z, g) is defined in Theorem 9.1.

Proof. Since ψ is a Schwartz function, for any positive integer N , there is a positive

constant CN such that

ψ(x) ≤ CN
(||x||20)N

.

By Theorem 9.1, we know that

ψ(g−1x) ≤ CN
c

exp(−2Nc d(z, g,x)).

We fix a N > ρ
2c

and let Cρ = CN
c

, the theorem is proved.

Theorem 9.3. Fix a nondegenerate x, a point z ∈ D such that (x, z) is a compatible

pair, g′ ∈ G′ and ψ ∈ C•(g, K;S(V m)). For any ρ > 0, there is a positive constant

C ′ρ such that

||ψ̃(z, g′,x)|| ≤ C ′ρ exp(−ρd(z, g,x)),

where the norm is taken with respect to the Riemannian metric τ and d(z, g,x) is

as in Theorem 9.1. In particular, ϕ̃∞(z, g′,x) satisfies the condition of Theorem 8.4

and is integrable on Fz0Dx,z′0
.
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Proof. Let g = gz = exp(Xt) with ‖X‖ = 1. So d(Dx,z′0
, z) = t. Recall that

ψ̃ = (Lg−1)∗(ψ).

where

ψ =
d∑
I

ψIΩI ,

where ψI ∈ S(V m) are polynomial and ΩI ∈ ∧•p∗. Hence

ψ̃(z, g′,x) =
∑
I

(ω(g′)ψI)(g
−1x)L∗g−1(ΩI).

Weil representation preserves the space of Schwartz functions, hence ω(g′)ψI ∈

S(V m).

By Theorem 9.2, we know that for any I and ρ′ > 0, there is a constant CI
ρ > 0

such that

(ω(g′)ψI)(g
−1x) ≤ CI

ρ exp(−ρ d(z, g,x)).

Since the left action of G on D is isometric, we know that

||L∗g−1(ΩI)|| = ||ΩI ||.

Hence define

C ′ρ =

√∑
I

(CI
ρ)2||ΩI ||2.

We know that ||ψ̃∞(z, g′,x)|| ≤ C ′ρ exp(−ρd(z, g)).
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Chapter 10: Asymptotic evaluations of fiber integrals

We want to compute the fiber integral κ(g′, β) defined by

κ(g′, β) =

∫
Fz0Dx,z′0

ϕ̃∞(z, g′,x),

where (x,x) = β and (x, z0) is a compatible pair (Definition 3.1) and z′0 = z0 ∩

span{x}. Our goal is to prove theorem 8.3. This only depends on the symmetric

space G∞/K∞ so we only need to work over real groups. Recall that ϕ∞ = ϕ ⊗∏
v 6=v1 ϕv where ϕ is the cocycle defined in Chapter 7, ϕv is the Gaussian function of

V m
v and v is an Archimedean place for the number field k. Throughout the chapter

we assume that g′ = (g′1, Id, . . . , Id) ∈ G′∞ =
∏

v G
′
v. Hence ϕv(g, g

′) is a nonzero

constant for v 6= v1. So in order to prove the integral κ(g′, β) is nonzero, it suffices

to compute the following rescaled integral

∫
Fz0Dx,z′0

ϕ̃(z, g′,x)

with g′ ∈ G′v1 . So from now on in this chapter, we change our notation and let

G = Gv1 , G
′ = G′v1 and κ(g′, β) =

∫
Fz0Dx,z′0

ϕ̃∞(z, g′,x). Recall that (G,G′) can be

the following three dual pairs
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1. (U(p, q),U(r, r))

2. (Sp(2n,R),O(2r, 2r))

3. (O∗(2n), Sp(r, r))

Recall that the group M ′ ⊂ G′ is

M ′ =

m′(a) =

 a 0

0 â

 | a ∈ GLm(B) and â = (>a−1)σ

 .

An element (m′(a), ζ) in its double cover acts by (see (Chapter 5))

ω(m′(a), ζ)ϕ(x) = ζχV (a)ϕ(xa).

If

(x,x) = β.

Then β is an `-tuple of r × r C-skew Hermitian (resp. 2r by 2r real-valued skew-

symmetric or r by r H-skew Hermitian) matrix. We have

(xa,xa) = >aσβa.

It follows that

κ(g′(m′(a), ζ), β) = ζχV (a)κ(g′, >aσβa).

Suppose β satisfies the condition of theorem 8.1. By the above formula and Gram-

Schmidt process, we can choose m = m′(a) such that >aσβa is of the following
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form:

1. For the group U(p, q) we assume >aσβa is an r + s by r + s diagonal matrix

with diagonal entries {−i, . . . ,−i︸ ︷︷ ︸
r

, i, . . . , i︸ ︷︷ ︸
s

}.

2. For the group Sp(2n,R) we assume >aσβa is the 2r by 2r matrix

 0 −Ir

Ir 0


3. For the group O∗(2n) we assume >aσβa is an r by r H-valued diagonal matrix

with diagonal entries {−i, . . . ,−i︸ ︷︷ ︸
r

}.

So from now on we assume β is of the above form. By translating by appropriate

g ∈ G, we can choose any x such that (x,x) = β and compute κ(g′, β) as

κ(g′, β) =

∫
Fz0Dx,z′0

ϕ̃∞(z, g′,x).

Hence we can assume

1. x = (v1, . . . , vr, vp+1, . . . , vp+s), z0 = spanC{vp+1, . . . , vp+q},

2. x = (E1, . . . , Er, F1, . . . , Fr), z0 = spanC{vn, . . . , v2n},

3. x = (v1, . . . , vr), z0 = spanC{vn, . . . , v2n},

in the three cases respectively (the choice of basis of the vector spaces is as in

Chapter 7). Let a(t) ∈ GLm(B) be scalar matrix t · Id. The exact value of κ(g′, β)

is hard to compute in general, instead we approximate κ(g′, β) for g′ = (m′(a(t)), 1)

as t→∞. We need the following theorem.

158



Theorem 10.1. Let f(x), h(x) be smooth functions on Rn. And let J(υ) be the

integral

J(t) =

∫
Rn
f(x)e−th(x)dx.

And we assume that

1. The integral J(t) converges absolutely for all t > 0.

2. For every ε > 0, ρ(ε) > 0, where

ρ(ε) = inf{h(x)− h(0) : x ∈ Rn, |x− 0| ≥ ε}

3. the Hessian matrix

A = (
∂2h

∂xi∂xj
)|x=0

is positive definite.

Then we have

J(t) ∼ (
2π

t
)
n
2 f(0)det(A)−

1
2 exp[−th(0)],

as t→∞.

The above theorem is one special case of the so-called method of Laplace. The

proof can be found in Section 3 of Chapter IX in [Wong]. To apply Theorem 10.1,

we choose a base point z0 ∈ Dx,z′0
Recall that we identify Tz0D

∼= g0/k0 with p0.

One half of the trace form defines a Ad(K)-invariant metric τ on p0 (thus τ extends

t a G-invariant metric on D). If expz0 is the exponential map of the Riemanian
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manifold (D, τ) and exp is the exponential map in G, then we have the following

commutative diagram( [He] Chapter VI, section 3):

p0
exp−−−→ Gy∼= y

Tz0D
expz0−−−→ G/K

The metric τ also makes Tz0D a (Euclidean) Riemannian manifold in an ob-

vious way, we abuse notation and denote this metric also as τ . If X ∈ p and

gz = exp(X), z = expz0(X) then we have d(z, z0) = ||X||, where both d(z, z0) and

||X|| are defined with respect to the metric τ .

Using the exponential map expz0 we can identify the normal vector space

Nz0Dx,z′0
with the fiber Fz0Dx,z′0

for a suitable choice of base point z0. Then we

apply theorem 10.1 to

J(t) = κ(g′,x) =

∫
Fz0Dx,z′0

ϕ̃(z, g′,x) =

∫
Nz0Dx,z′0

exp∗z0(ϕ̃(Y, g′,x))

for Y ∈ Nz0Dx,z′0
and g′ = (m′(a(t)), 1).

We verify the assumptions of theorem 10.1 one by one. The first assumption

is already proved in Theorem 9.3. Hence we will verify the remaining two in this

section. We will emphasize on the case G = U(p, q) and mention the other two cases

briefly. As the reader will see, the case when G = Sp(2n,R) or G = O∗(2n) follows

easily from the case G = U(n, n).

Proof of theorem 8.3: In theorems 10.2, 10.3 and 10.4 we will compute the

asymptotic value of κ(g′, β) in each cases and show it’s nonzero. It is easy to show
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that the action of G̃′ is analytic on the polynomial Fock space. By the definition of

κ(g′, β) and the fact that ϕ̃∞ is fast decaying on Fz0Dx,λ, κ(g′, β) is analytic on G̃′,

and the theorem is proved.

10.1 The method of Laplace for the U(p, q) Case

Our goal is to apply theorem 10.1. To apply the theorem there are three

conditions to check. (1) is checked in Chapter 9.4. Now we check (2) and (3). We

have assumed

z0 = span{vp+1, . . . , vp+q} ∈ D, z′0 = span{vp+1, . . . , vp+s},

x = (v1, . . . , vr, vp+1, . . . , vp+q) ∈ V m.

Let

Uj = spanC{vj}, 1 ≤ j ≤ p+ q

Dj = DUj

Recall that the definition of Dj does not require a base point (see remark 3.4). Our

key observation is that

Lemma 10.1.

Dx,z′0
= (

r⋂
j=1

Dj)
⋂

(

p+s⋂
j=p+1

Dj).
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Proof. By definition for 1 ≤ j ≤ p, we have

Dj = {z ∈ D|z ⊂ U⊥j }.

For p+ 1 ≤ j ≤ p+ q we have

Dj = {z ∈ D|Uj ⊂ z}.

Since (see remark 3.3)

Dx,z′0
= {z ∈ D| ⊕ p+s

j=p+1 Uj ⊂ z ⊂ (⊕rj=1Uj)
⊥},

the lemma follows.

We define functions M j(X) : D → R by

M j(z) = ||g−1
z vj||20,

where z ∈ D and gz · z0 = z. It is well defined as || · ||0 is K invariant.

Lemma 10.2. For any element z ∈ D, we have

hj(z) = cosh2(t) + sinh2(t)
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where t = d(z,Dj). In particular,

M j(z) ≥M j(z0).

Equality holds if and only if z ∈ Dej .

Proof. Let us assume 1 ≤ j ≤ p. The case p + 1 ≤ j ≤ p + q is similar. Without

loss of generality we can assume j = 1. It is easy to see that

exp(−tEαµ)v1 =


cosh(t) · v1 − isinh(t) · vµ if α = 1

v1 otherwise

.

exp(−tFαµ)v1 =


cosh(t) · v1 + sinh(t) · vµ if α = 1

v1 otherwise

.

Recall that the group GU1 fixes v1. Hence

M1(z) = M1(gz),∀g ∈ GU1 .

We have a GU1-equvariant fibration π1 : D → D1 (see Section 3.2). By translating

z using an element in GU1 , we can assume that π1(z) = z0 and is of the form

z = expz0(X) where X ∈ Nz0D1 and (recall the definition of Eαµ, Fαµ in eqaution

(7.1))

Nz0D1 = span{E1µ, F1µ|p+ 1 ≤ µ ≤ p+ q}.
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We assume that

X =

p+q∑
µ=p+1

x1µE1µ −
p+q∑

µ=p+1

y1µF1µ =

p+q∑
µ=p+1

v1 ∧ (x1µ + iy1µ)vµ.

We define

t =

√√√√ p+q∑
µ=p+1

(|x1µ|2 + |y1µ|2).

and

v =
1

t

p+q∑
µ=p+1

(x1µ + iy1µ)vµ.

Then (v, v) = i and (v1, v) = 0. We have

exp(−X)(v1) = cosh(t) · v1 − isinh(t) · v.

So

M1(z) = ‖cosh(t) · v1 − isinh(t) · v‖2
0 = cosh2(t) + sinh2(t).

Since z = exp(tv1 ◦ v)z0 we know that t = d(z, z0) = d(z,D1). The claim of the

lemma is proved.

Define M : D → R by

M(z) =
r∑
j=1

hj(z) +

p+s∑
j=p+1

hj(z).
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Define h : Nz0Dx,z′0
→ R (hj resp.) by

h = M ◦ expz0 ◦i (hj = M j ◦ expz0 ◦i resp .), (10.1)

where i is the injection i : Nz0Dx,z′0
↪→ Tz0D. M is the function defined in Equation

(9.1).

Proposition 10.1. The function h satisfies condition (2) and (3) of theorem 10.1.

Proof. By lemma 10.2 and lemma 10.1, M(z) obtains its minimal value at z if and

only if z ∈ Dx,z′0
. In particular, z0 is the unique point with minimal h value on

Fz0Dx,z′0
, hence a critical point of h. Now we suppose X ∈ Nz0Dx,z′0

with ||X|| = 1.

We define hX : R→ R by

hX(t) = h(expz0(−Xt)).

Then t = 0 is a global minimum for hX(t), thus we have

d

dt
hX(t)|t=0 = 0. (10.2)

By lemma 9.3, we have

(exp (−tX)vj, exp (−tX)vj)0 =
m∑
k=1

|akj |2 exp (−2λkt).
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From this we know

d2

dt2
hτ,X(t) =

m∑
k=1

{
r∑
j=1

4|akj |2λ2
k exp (−2λkt) +

r+s∑
j=r+1

4|akj |2λ2
k exp (−2λkt)}.

With Lemma 9.6 in mind, we have a uniform lower bound of d2

dt2
hτ,X(t) for all

{||X|| = 1|X ∈ Tz0Fx,y} and t ≥ 0. And a similar argument works for t < 0. So

hX(t), we can assume that h′′X(t) ≥ C for a positive constant C. It follows that

h(X) ≥ h(0) +
1

2
C||X||2.

Hence h satisfies condition (2) of theorem 10.1. Condition (3) is also satisfied because

we know from the above that the Hessian matrix of h is positive definite with the

smallest eigenvalue bigger or equal to C.

Any X ∈ Nz0Dx,z′0
can be written as

X =
∑

(α,µ)∈I

xαµEαµ +
∑

(α,µ)∈I

yαµFαµ

where I is the index set defined in equation (7.4). We denote the function hj◦expz0 ◦i

by h̃j. We think of these as functions in variables {xα, yαµ|(α, µ) ∈ I}. We need

Corollary 10.1. Suppose (α, µ), (β, ν) ∈ I. For 1 ≤ j ≤ p, we have

∂2hj

∂xαµ∂xβν
= 2δαβδαjδµν
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∂2hj

∂yαµ∂yβν
= 2δαβδαjδµν

∂2hj

∂xαµ∂yβν
= 0.

For p+ 1 ≤ j ≤ p+ q, we have

∂2hj

∂xαµ∂xβν
= 2δαβδµjδµν

∂2hj

∂yαµ∂yβν
= 2δαβδµjδµν

∂2hj

∂xαµ∂yβν
= 0.

Proof. We need to compute the following

∂2

∂s∂t
[(exp (sX + tY )v, exp (sX + tY )v)0]|s=t=0.

Using the second order approximation of the exponential map

exp (sX + tY ) = I+(sX+tY )+
1

2
(s2X2+t2Y 2+stXY +stY X)+higher order terms

One can check that

∂2

∂s∂t
[(exp (sX + tY )v, exp (sX + tY )v)0]|s=t=0

=
1

2
((XY + Y X)v, v)0 +

1

2
(v, (XY + Y X)v)0 + (Y v,Xv)0 + (Xv, Y v)0.
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We also have

Eαµ(vα) = −ivµ, Eαµ(vµ) = ivα

Fαµ(vα) = −vµ, Fαµ(vµ) = −vα

for 1 ≤ α ≤ p, p+1 ≤ µ ≤ p+q. Also recall that (, )0 is a positive definite Hermitian

form with orthonormal basis {v1, . . . , vp+q}. With these preparations, the formulas

in the lemma follow from routine calculations.

The Hessian matrix A of h at 0 is a 2(rq+ ps− rs) by 2(rq+ ps− rs) matrix.

Corollary 10.2. A is diagonal with diagonal entries

∂2h

∂2xαµ
=

∂2h

∂2yαµ
= 4

for 1 ≤ α ≤ r, p+ 1 ≤ µ ≤ p+ s. And

∂2h

∂2xαµ
=

∂2h

∂2yαµ
= 2

for 1 ≤ α ≤ r, p + s + 1 ≤ µ ≤ p + s or r + 1 ≤ α ≤ p, p + 1 ≤ µ ≤ p + s. In

particular it is positive definite with determinant

det(A) = 4rq+ps.

Proof. Since

h =
r∑
j=1

hj +

p+s∑
j=p+1

hj.
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The corollary follows from 10.1 and simple algebra.

With all the preparations we are ready to prove our main theorem of this

section. Recall that

J(t) = κ(g′,x) =

∫
Fz0Dx,z′0

ϕ̃(z, g′,x) =

∫
Nz0Dx,z′0

i∗ ◦ exp∗z0(ϕ̃(Y, g′,x))

for Y ∈ Nz0Dx,z′0
and g′ = (m′(a(t)), 1).

Theorem 10.2.

J(t) ∼ ζ23rq+3ps−7rsπ3rq+3ps−5rst
1
2

(p+q)−2rs exp(−(r + s)t2),

where ζ is an eighth root of unity.

Proof. Think of Nz0Dx,z′0
as R2(rq+ps−rs). Recall that

ϕ̃∞ = (Lg−1)∗(ϕ) = (Lg−1)∗(ϕ).

where gz0 = z. By equation (7.13), we have

ϕ = ϕ0

d∑
i,j=1

pijΩi ∧ Ω̄j.

where pij are polynomial functions on V m and Ωi ∈ ∧•p∗+ and

ϕ0(x) = exp(−πTr(x,x)0) = exp(−π
m∑
i=1

||~xm||2),
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with x = (v1, . . . , vr, vp+1, . . . , vp+s). So we have

(i∗◦exp∗z0)(ϕ̃)(Y, Id,x) = ϕ0(exp(−Y )x)
∑
i,j

pij(exp(−Y )x)i∗((Lexp(−Y ))
∗(Ωi)∧(Lexp(−Y ))∗(Ωj)),

(10.3)

with

ϕ0(exp(−Y )x) = exp(−h(Y )),

for Y ∈ Nz0Dx,z′0
. Since ϕ̃ and Nz0Dx,z′0

have the same degree.

(i∗ ◦ exp∗z0 ϕ̃)(Y, Id,x) = f(Y ) exp(−h(Y ))dvol

for a function f in Y , where dvol is the volume form of the Euclidean space

(Nz0Dx,z′0
, τ).

Recall equation 5.4, so we have

ω(m′(a(t)), 1)ϕ(x) = ζt
1
2

(p+q)ϕ(xt).

So for a polynomial function p of degree d on V m, we know

ω(m′(a(t)), 1)(pϕ0)(x) = ζt
1
2

(p+q)

d∑
i=1

tipi(x)ϕ0(xt)

=ζt
1
2

(p+q)

d∑
i=1

tipi(x) exp(−h(Y )t2)

where pi is the degree i homogeneous part of pi. After applying g′ = omega(m′(a(t)), 1)

to each term in the summation of Equation (10.3) and combining terms according

170



to t-degree, we have

(i∗ ◦ exp∗z0 ϕ̃)(Y, g′,x) = ζt
p+q
2

2(rq+ps−rs)∑
i=1

tifi(Y ) exp(−h(Y )t2)dvol. (10.4)

Theorem 10.1 can be applied to (i∗ ◦ exp∗z0 ϕ̃)(Y, g′,x). Condition (1) of 10.1 is

checked in theorem 9.3 as each term of Equation (10.4) is in C•(D,S(V m))G. Cond-

tion (2) and (3) are checked in Proposition 10.1, and the determinant of the Hession

of h is checked in corollary 10.2.

As we are interested in asymptotic value when t→∞, only the highest degree

(which is 2(rq + ps− rs)) term of t in Equation (10.4) matters. By Lemma 7.7, we

know that the highest degree term of (i∗ ◦ exp∗z0 ϕ̃)(0, g′,x) evaluated at

x = (v1, . . . , vr, vp+1, . . . , vp+s)

is

(2
√

2πt)2(rq+ps−rs)
∧

(α,µ)∈I

ξ′αµ ∧
∧

(α,µ)∈I

ξ′′αµ

where

I = {(α, µ)|1 ≤ α ≤ r, p+1 ≤ µ ≤ p+q}∪{(α, µ)|r+1 ≤ α ≤ p, p+1 ≤ µ ≤ p+s}.

Since

(i∗ ◦ exp∗z0)|0(
∧

(α,µ)∈I

ξ′αµ ∧
∧

(α,µ)∈I

ξ′′αµ) = dvol
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By 10.1 we know

J(t) ∼(2
√

2πt)2(rq+ps−2rs) · t
1
2

(p+q) · (2π

t2
)ps+rq−rs2−ps−rq exp(−(r + s)t2)

∼23rq+3ps−7rsπ3rq+3ps−5rst
1
2

(p+q)−2rs exp(−(r + s)t2).

The theorem is proved.

10.2 The method of Laplace for the (Sp(2n,R),O(2r, 2r)) Case

We want to apply theorem 10.1 to compute

J(t) =

∫
Nz0 ,Dx,z′0

exp∗z0(ϕ̃∞(Y, g′,x))

in case of the dual pair (Sp(2n,R),O(2r, 2r)). We need to check conditions (1),(2),(3)

of theorem 10.1 again. Fortunately, we don’t need to start from scratch. Our strat-

egy is to use the seesaw dual pair

U(n, n) O(2r, 2r)

Sp(2n,R)

OO 99

U(r, r)

OOee
(10.5)

to reduce a substantial part of the problem to the unitary dual pair case. We proceed

quickly by omitting the proofs that are similar to the unitary group case.
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Recall from Section 6.4 that we have a R vector space V0 and V = V0⊗C. Let

D = Sp(2n,R)/U(n), D̃ = U(r, r)/(U(r)× U(r).

We have assumed that

x = (E1, . . . , Er, F1, . . . , Fr), z0 = spanC{vn, . . . , vn+1}.

Let U0 = spanR{x}, U = spanC{x} and z′0 = U ∩ z0 = spanC{vn, . . . , vn+r}. Then

we can define generalized special cycles DU,z′0
∈ D and D̃U,z′0

∈ D̃.

We have studied the function

M(z) = Mz0(z,x) =
r∑

α=1

(||g−1
z Eα||20 + ||g−1

z Fα||20)

in Chapter 9, where gzz0 = z. By equation (9.15), we know that

M(z) =
r∑

α=1

(||g−1
z vα||20 + ||g−1

z vα+n||20)

Recall that we have defined function h : D̃ → R by h = M ◦ expz0 ◦i where i :

Nz0D̃U,z′0
→ Tz0D̃. Let j be the injection D → D̃ and j∗ : Nz0DU,z′0

→ Nz0D̃U,z′0
be

the induced map. Then we know that

expD̃,z0(j∗(X)) = j(expD,z0(X)) = exp(X)z0, ∀X ∈ Nz0DU,z′0
,
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where expD̃,z0 and expD,z0 are exponential map in the corresponding symmetric

spaces and exp is the exponential map on the group U(n, n). We then have

Lemma 10.3. The function h ◦ j∗ satisfies condition (2) of theorem 10.1.

Proof. By Proposition 10.1, h(z) obtains its minimal value when z = z0 for z ∈ D̃.

As D ⊂ D̃. h|D also obtains its minimal value at z0. If we suppose X ∈ Nz0Dx,z0

with ||X|| = 1. We define hX : R→ R by

hX(t) = h(j∗(Xt)).

Then as in the proof of Lemma 10.1, we know that d2

dt2
hτ,X(t) is bounded below

uniformly by Lemma 9.7. This suggest that z0 is actually the unique minimal point

of h ◦ j∗ on Fz0Dx,z′0
. It also implies that h ◦ j∗ satisfies condition (2) of theorem

10.1 as in the proof of Proposition 10.1.

It is then easy to see that the Hession matrix A of h ◦ expz0 ◦ i at 0 ∈ Nz0Dx,z0

is a 2nr− r2 + r by 2nr− r2 + r positive definite diagonal matrix with determinant

det(A) = 42nr−r2 .

Recall that

J(t) = κ(g′,x) =

∫
Fz0Dx,z′0

ϕ̃(z, g′,x) =

∫
Nz0Dx,z′0

i∗ ◦ exp∗z0(ϕ̃(Y, g′,x))

for Y ∈ Nz0Dx,z′0
and g′ = (m′(a(t)), 1).
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Theorem 10.3.

J(t) ∼ 22nr− 5
2
r2+ 7

2
rπ3nr− 5

2
r2+ 5

2
rtn−r

2+r exp(−rt2).

Proof. Apply lemma 6.5, lemma 7.3 and theorem 10.1. The details are similar to

that of theorem 10.2.

10.3 The method of Laplace for the (O∗(2n), Sp(r, r)) Case

We want to apply theorem 10.1 to compute

J(t) =

∫
Nz0 ,Dx,z′0

exp∗z0(ϕ̃∞(Y, g′,x))

in case of the dual pair (O∗(2n), Sp(r, r)). We need to check conditions (1),(2),(3)

of theorem 10.1. Again we make use of the seesaw dual pair

U(n, n) Sp(r, r)

O∗(2n)

OO ::

U(r, r)

OOdd
. (10.6)

to reduce a substantial part of the problem to the unitary dual pair case.. We use

the assumptions and notations of Section 6.5.

Let

D = O∗(2n,R)/U(n), D̃ = U(r, r)/(U(r)× U(r)
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We assume that

x = (v1, . . . , vr), z0 = spanC{v1, . . . , vn}.

Recall that we have defined function M : D̃ → R by

M(z) = Mz0(z,x) =
r∑
j=1

‖g−1
z vj‖2

z0
.

Let i : Nz0 → Tz0D. We then define h = M ◦ expz0 ◦ i.

Lemma 10.4. The function h satisfies condition (2) of theorem 10.1.

Proof. Similar to that of Lemma 10.3 or Proposition 10.1.

It is then easy to see that the Hession matrix A of h ◦ expz0 ◦ i at 0 ∈ Nz0Dx,z0

is a 2nr− r2− r by 2nr− r2− r positive definite diagonal matrix with determinant

det(A) = 42nr−r2−r.

In this case we have

Theorem 10.4.

J(t) ∼ 22nr− 5
2
r2− 5

2
rπ3nr− 5

2
r2− 5

2
rtn−r

2−r exp(−rt2).

Proof. Apply lemma 6.5, lemma 7.5 and theorem 10.1. The details are similar to

that of theorem 10.2.
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Chapter 11: The associated vector bundle E on Γ′\D′

Recall that G̃′v1 (K̃ ′v1 resp.)is the metaplectic cover of G′v1 (K ′v1 resp.) which is

the preimage of G′v1 (K ′v1 resp.) under the map Mp((V m)v1)→ Sp((V m)v1), and

G̃′∞ = G̃′v1 ×
∏
v 6=v1

G′v, K̃
′
∞ = K̃ ′v1 ×

∏
v 6=v1

K ′v.

G̃′ acts on S(V n
∞) by the oscillator(Weil) representation ω and the action commutes

with that of G. In this appendix, we show that θL,ϕ̃ is a matrix coefficient of an

automorphic vector bundle

E → Γ′\G̃′∞/K̃ ′∞,

where K̃ ′∞ is the maximal compact subgroup of G̃′∞ that fixes the vacuum vector∏
v ϕv where ϕv is the Gaussian function of S(Vv). Let K ′∞ be the image of K̃ ′∞ in

G′∞ under natural projection. Recall that we have

1. G′∞ = U(r + s, r + s)`

2. G′∞ = O(2r, 2r)`

3. G′∞ = Sp(r, r)`

for case (1), (2) and (3) respectively.
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We will compute the K̃ ′∞ action on

ϕ∞ = ϕ⊗
∏
v 6=v1

ϕv

where ϕ is the special class constructed in Chapter 7. Since K̃ ′∞ =
∏

v K̃
′
v and K̃ ′v

acts on ϕv trivially for v 6= v1, it suffices to compute the K̃ ′v1 action on ϕ. It turns

out that often times K̃ ′v1 is the trivial two-fold cover of K ′v1 and the action descends

to K ′v1 . If this is the case, we actually compute the action of K ′v1 . The following

general argument applies to both K̃ ′v1 and K ′v1 representation so we just deal with

the K̃ ′v1 case for brevity.

We will show that ϕ is a highest weight vector of an irreducible representation

of K̃ ′v1 . We denote this representation by σ. To be more precise there is an irreducible

representation (Eσ, σ) of K̃ ′∞ inside W such that

ω(k′)ϕ = σ(k′)ϕ,∀k′ ∈ K̃ ′∞

Hence

ω(g′k′)φ = ω(g′)(σ(k′)ϕ), (11.1)

for all g′ ∈ G̃′∞, k′ ∈ K̃ ′∞ and φ ∈ E.

Let E∗σ = Hom(Eσ,C) be the dual representation of E. There is a canonical

element Φ ∈ Eσ ⊗ E∗σ which corresponds to the identity element in Eσ ⊗ E∗σ
∼=

Hom(Eσ, Eσ). Explicitly we choose a basis {ϕ1, . . . , ϕd} of Eσ and we assume ϕ1 =

ϕ, the special class defined in Theorem 1.1. Let {e1, . . . , ed} be the corresponding
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dual basis of E∗σ. Then we have

Φ =
d∑
i=1

ϕi ⊗ ei.

By definition the diagonal action of G̃′∞ on Φ leaves it invariant:

(σ ⊗ σ∗)(k′)Φ = Φ, k′ ∈ K̃ ′∞ (11.2)

Equivalently,

(σ ⊗ Id)(k′)Φ = (Id⊗ σ∗)((k′)−1)Φ, k′ ∈ K̃ ′∞ (11.3)

where Id stands for the trivial action. For each x ∈ Ln,

Φ(g′,x) = ω(g′)(Φ)(x)

is a function on G̃′∞ with values in E∗σ.

Any φ ∈ W defines a function on G̃′∞ with values inW by associating g′ ∈ G̃′∞

to ω(g′)φ. We use R(g′) to denote the right translation action of g′ ∈ G′ on the

functions with values in a vector space. Equation (11.1) and equation (11.3) together

imply that

R(k′)Φ = (Id⊗ σ∗)((k′)−1)Φ. (11.4)

In other words, Φ is a section of the associated vector bundle E → G̃′∞/K̃
′
∞ to the

representation (E∗σ, σ
∗) of K̃ ′∞.
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We now apply θ-distribution to get

θL,Φ(g′) =
∑
x∈Ln

(ω(g′)⊗ Id)(Φ)(x).

There is a subgroup Γ′ ∈ G′ such that its pullback in G̃′ is the trivial double cover

and

θL,Φ(γ′g′) = θL,Φ(g′), γ′ ∈ Γ′.

By equation (11.4) and the Γ′-invariance of θL,Φ, θL,Φ is a section of the bundle

Γ′\E → Γ′\G̃′∞/K̃ ′∞. The cocycle θL,ϕ is then a matrix coefficient of θL,Φ:

θL,ϕ(g′) = 〈θL,Φ(g′), ϕ〉,

where 〈, 〉 is an K̃ ′∞-invariant bilinear pairing between Eσ and E∗σ.

The group G̃′∞ can be decomposed as G′ = P ′K̃ ′∞. And recall that P ′ =

N ′A′M ′ (Langlands decomposition). We can define

κ(Φ, g′, β) =

∫
Fx,z′

Φ(g′,x),

it is a section of E → G′/K̃ ′∞. Then we have

κ(g′, β) = 〈κ(Φ, g′, β), ϕ〉.

Now we proceed in cases. In case (1) we compute the (K̃ ′v1)
0 (the identity
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component of K̃ ′v1) action by computing highest weights. In case (2) and (3) K̃ ′v1 is

the trivial two-fold cover of K ′v1 and the action descends to K ′v1 , so we compute the

K ′v1 action. The results are essentially the same with those of [KV]. We proceed by

cases.

11.1 Case (1)

In this case G′v1
∼= U(m,m) where m = r + s. Recall in Section 6.3 we choose

a basis {w1, . . . , wm, wm+1, . . . , wm+m′} of Wv1 with the Hermitian form <,> such

that

1. < wa, wa >= 1

2. < wk, wk >= −1

for 1 ≤ a ≤ m,m + 1 ≤ k ≤ m + m′ and < wj, wk >= 0 if j 6= k. Under this basis

U(m)× U(m) is the block diagonal matrices

{ A 0

0 B

 |∗AA = Id, ∗BB = Id
}
.

For simplicity we denote by U(m, 0) the subgroup that is identity on the lower right

block and by U(0,m) the subgroup that is identity on the upper left block.

Let k′ be the Lie algebra of U(m,m). Then k′ ⊗ C acts via the oscillator
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representation by

ω(wa ⊗ w∗b ) = −
p∑

α=1

uα,b
∂

∂uα,a
+

p+q∑
µ=p+1

uµ,a
∂

∂uµ,b
− 1

2
δab(p− q)

for 1 ≤ a, b ≤ m and

ω(wk ⊗ w∗` ) =

p∑
α=1

uα,k
∂

∂uα,`
−

p+q∑
µ=p+1

uµ,`
∂

∂uµ,k
+

1

2
δab(p− q) (11.5)

for m+ 1 ≤ k, ` ≤ 2m.

Let t be the diagonal torus of u(0,m), n be the strictly upper triangular Lie

algebra of u(0,m):

n = {wk ⊗ w∗` |m+ 1 ≤ k < ` ≤ 2m}

Recall that in Section 7 we define the element ϕ+ using the special harmonic

f q−s+ fp−r− . Here f+ and f− are as in definition 7.1 except that we shift b to b + m

where b is the second index of the variable uab. This is because in definition 7.1 our

assumption is that W is negative definite (hence K ′ = U(0,m)). So now U(m, 0)

acts trivially on f q−s+ fp−r− .

Using equation (11.5), it is easy to see that f q−s+ fp−r− has weight

(q − s+
1

2
(p− q), . . . , q − s+

1

2
(p− q)︸ ︷︷ ︸

r

,−(p− r) +
1

2
(p− q), . . . ,−(p− r) +

1

2
(p− q)︸ ︷︷ ︸

s

)

= (−s+
1

2
(p+ q), . . . ,−s+

1

2
(p+ q)︸ ︷︷ ︸

r

, r − 1

2
(p+ q), . . . , r − 1

2
(p+ q)︸ ︷︷ ︸

s

)
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under t. Moreover we can show that f q−s+ fp−r− is killed by n. We have three cases

1. m+ 1 ≤ k < ` ≤ m+ r

2. m+ 1 ≤ k ≤ m+ r,m+ r + 1 ≤ ` ≤ m+ r + s

3. m+ r + 1 ≤ k < ` ≤ m+ r + s.

In case (1), wk⊗w∗` replaces a column of f+ by an existing column and acts trivially

on all the variables in f−. In case (2), wk ⊗ w∗` acts trivially on all the variables in

f+ and f−. In case (3), wk ⊗w∗` acts trivially in all the variables in f+ and replaces

a column of f− by an existing column. In any case wk ⊗ w∗` kills f q−s+ fp−r− .

The conclusion is that f q−s+ fp−r− hence ϕ+ is a highest weight vector of u(0,m).

Similarly ϕ− is a highest weight vector of u(m, 0) with weight

= (s− 1

2
(p+ q), . . . , s− 1

2
(p+ q)︸ ︷︷ ︸

r

,−r +
1

2
(p+ q), . . . ,−r +

1

2
(p+ q)︸ ︷︷ ︸

s

)

Hence ϕ = ϕ+ ∧ ϕ− is a highest weight vector of weight

(s− 1

2
(p+ q), . . .︸ ︷︷ ︸
r

,−r +
1

2
(p+ q), . . .︸ ︷︷ ︸
s

,−s+
1

2
(p+ q), . . .︸ ︷︷ ︸
r

, r − 1

2
(p+ q), . . .︸ ︷︷ ︸
s

)

under the action of the connected component of ˜U(m,m).

11.2 Case (2)

In this case G′v1 = O(2r, 2r).
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Let us use the notation of Section 6.4. Recall that W is a complex vector space

with a Hermitian form <,> of signature (r, r). We denote by WR the underlying

real vector space of W and let <,>R= Re <,>. G′v1 is the linear isometry group of

(WR, <,>R). We can choose an orthonormal basis {wa, wk|1 ≤ a ≤ r, r+1 ≤ k ≤ 2r}

of W such that

< wa, wa >= 1, < wk, wk >= −1

for 1 ≤ a ≤ r, r + 1 ≤ k ≤ 2r. Let O(2r, 0) be the linear isometry group of

the subspace W+ spanned by the first r basis vectors, and O(0, 2r) be the linear

isometry group of the subspace W− spanned by the last r basis vectors. Then

K ′v1 = O(0, 2r) × O(2r, 0) is a maximal compact subgroup of G′v1 . Let k′ be its Lie

algebra. Then

k′ ∼= ∧2(W+)⊕ ∧2(W−) = sp(r, 0)⊕ sp(0, r).

First we focus on O(0, 2r). Define

w′k = wk + iwki

w′′k = wk − iwki,

where r + 1 ≤ k ≤ 2r. Notice that if we extend the form (, )R complex linearly to a

symmetric form on VR ⊗R C. Then

(w′k, w
′′
` )R = −2δk`
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and the inner product between any other vectors among these are zero. Then we

have a split torus t of o(0, 2r)⊗ C spanned by

{w′k ∧ w′′k = w′k ⊗ (w′k)
∗ − w′′k ⊗ (w′′k)

∗|r + 1 ≤ k ≤ 2r}.

We also have a nilpotent algebra n of o(0, 2r)⊗ C:

n = span{w′′k ∧ w′′` |r + 1 ≤ k, ` ≤ 2r} ⊕ span{w′k ∧ w′′` |r + 1 ≤ k < ` ≤ 2r}

The Lie algebra o(0, 2r)× C acts by the Weil representation in the following way:

ω(w′k ∧ w′`) = 2
n∑

α=1

(uα+n,k
∂

∂uα,`
− uα+n,`

∂

∂uα,k
),

ω(w′′k ∧ w′′` ) = 2
n∑

α=1

(uα,k
∂

∂uα+n,`

− uα,`
∂

∂uα+n,k

),

ω(2w′k ⊗ (w′`)
∗ − 2w′′` ⊗ (w′′k)

∗) = ω(w′k ∧ w′′` ) = 2
n∑

α=1

(uα+n,k
∂

∂uα+n,`

− uα,`
∂

∂uα,k
),

Recall that in Chapter 7 we define the element ϕ+ using the special harmonic

fn−r+1
+ . Here f+ is as in definition 7.1 except that we shift b to b+ r where b is the

second index of the variable uab. This is because in definition 7.1 our assumption is

that W is negative definite (hence K ′ = O(0, 2r)). So now O(2r, 0) acts trivially on

fn−r+1
+ .
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Moreover it is easy to see that fn−r+1
+ is killed by n and has weight

(−(n− r + 1), . . . ,−(n− r + 1)︸ ︷︷ ︸
r

)

under t. So fn−r+1
+ hence ϕ+ is a lowest weight vector of so(0, 2r). The corresponding

highest weight is

((n− r + 1), . . . , (n− r + 1)︸ ︷︷ ︸
r

).

Under the group O(0, 2r), fn−r+1
+ generates an irreducible representation that

splits into two irreducible representations of so(0, 2r) with highest weights

((n− r + 1), . . . , (n− r + 1)︸ ︷︷ ︸
r

)

and

((n− r + 1), . . . , (n− r + 1)︸ ︷︷ ︸
r−1

,−(n− r + 1)).

Let us denote this representation by E

Similarly ϕ− is a highest weight vector of o(2r, 0) with weight

((n− r + 1), . . . , (n− r + 1)︸ ︷︷ ︸
r

)

and it generates the same representation E as before under the group action of

O(2r, 0).
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11.3 Case (3)

In this case G′v1 = Sp(r, r).

Let us use the notation of Section 6.4. Recall that WH is a H-vector space

with a Hermitian form <,>H of signature (r, r). G′v1
∼= is the linear isometry group

of (WH, <,>H). We can choose an orthonormal basis {wa, wk|1 ≤ a ≤ r, r + 1 ≤

k ≤ 2r} of WH such that

< wa, wa >H= 1, < wk, wk >H= −1

for 1 ≤ a ≤ r, r + 1 ≤ k ≤ 2r. Let Sp(r, 0) be the linear isometry group of

the subspace W+ spanned by the first r basis vectors, and Sp(0, r) be the linear

isometry group of the subspace W− spanned by the last r basis vectors. Then

K ′v1 = Sp(0, r) × Sp(r, 0) is a maximal compact subgroup of G′v1 . Let k′ be its Lie

algebra. Then

k′ ∼= ∧2(W+)⊕ ∧2(W−) = sp(r, 0)⊕ sp(0, r).

First we focus on Sp(0, r). We have a split torus t of sp(0, r)⊗ C spanned by

{wk ∧ wk − iwk ∧ wki = 2wk ⊗ w∗k|r + 1 ≤ k ≤ 2r}.

We also have a nilpotent algebra n of o(0, 2r)⊗ C:

n = span{wk∧Hw`−iwk∧Hw`i|r+1 ≤ k < ` ≤ 2r}⊕span{wk∧Hjw`−iwk∧Hjw`i|r+1 ≤ k, ` ≤ 2r}
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The Lie algebra sp(0, r) acts by the Weil representation in the following way:

ω(wk ∧H w` − iwk ∧H w`i) = 2
n∑

α=1

(uα,k
∂

∂uα,`
− uα+n,`

∂

∂uα+n,k

),

ω(wk ∧H jw` − iwk ∧H jv`i) = 2
n∑

α=1

(uα,k
∂

∂uα+n,`

+ uα,`
∂

∂uα+n,k

),

ω(wk ∧H jw` + iwk ∧H jw`i) = −2
n∑

α=1

(uα+n,`
∂

∂uα,k
+ uα+n,k

∂

∂uα,`
).

Recall that in Chapter 7 we define the element ϕ+ using the special harmonic fn−r−1
+ .

Here f+ is as in definition 7.1 except that we shift b to b + r where b is the second

index of the variable uab. This is because in definition 7.1 our assumption is that W

is negative definite (hence K ′ = Sp(0, r)). So now Sp(r, 0) acts trivially on fn−r−1
+ .

Moreover it is easy to see that fn−r−1
+ is killed by n and has weight

(−(n− r − 1), . . . ,−(n− r − 1)︸ ︷︷ ︸
r

)

under t. So fn−r−1
+ hence ϕ+ is a lowest weight vector of sp(0, r). And the corre-

sponding highest weight is

((n− r − 1), . . . , (n− r − 1)︸ ︷︷ ︸
r

).

Similarly ϕ− is a highest weight vector of sp(r, 0) with weight

((n− r − 1), . . . , (n− r − 1)︸ ︷︷ ︸
r

).
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