
ABSTRACT

Title of dissertation: REASONING ABOUT GEOMETRIC
OBJECT INTERACTIONS IN 3D
FOR MANIPULATION ACTION
UNDERSTANDING

Konstantinos Zampogiannis
Doctor of Philosophy, 2019

Dissertation directed by: Professor Yiannis Aloimonos
Department of Computer Science

In order to efficiently interact with human users, intelligent agents and au-

tonomous systems need the ability of interpreting human actions. We focus our

attention on manipulation actions, wherein an agent typically grasps an object and

moves it, possibly altering its physical state. Agent-object and object-object interac-

tions during a manipulation are a defining part of the performed action itself. In this

thesis, we focus on extracting semantic cues, derived from geometric object interac-

tions in 3D space during a manipulation, that are useful for action understanding

at the cognitive level.

First, we introduce a simple grounding model for the most common pairwise

spatial relations between objects and investigate the descriptive power of their tem-

poral evolution for action characterization. We propose a compact, abstract action

descriptor that encodes the geometric object interactions during action execution,

as captured by the spatial relation dynamics. Our experiments on a diverse dataset

confirm both the validity and effectiveness of our spatial relation models and the

discriminative power of our representation with respect to the underlying action

semantics. Second, we model and detect lower level interactions, namely object

contacts and separations, viewing them as topological scene changes within a dense

motion estimation setting. In addition to improving motion estimation accuracy in

the challenging case of motion boundaries induced by these events, our approach

shows promising performance in the explicit detection and classification of the lat-

ter. Building upon dense motion estimation and using detected contact events as

an attention mechanism, we propose a bottom-up pipeline for the guided segmenta-

tion and rigid motion extraction of manipulated objects. Finally, in addition to our

methodological contributions, we introduce a new open-source software library for

point cloud data processing, developed for the needs of this thesis, which aims at

providing an easy to use, flexible, and efficient framework for the rapid development

of performant software for a range of 3D perception tasks.

REASONING ABOUT GEOMETRIC OBJECT INTERACTIONS
IN 3D FOR MANIPULATION ACTION UNDERSTANDING

by

Konstantinos Zampogiannis

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Yiannis Aloimonos, Chair/Advisor
Dr. Cornelia Fermüller, Co-Advisor
Professor Shihab Shamma, Dean’s Representative
Professor Ramani Duraiswami
Professor Matthias Zwicker

c© Copyright by
Konstantinos Zampogiannis

2019

Acknowledgments

I would like to thank my research advisors, Prof. Yiannis Aloimonos and

Dr. Cornelia Fermüller, for introducing me to the world of robotic perception and

generously supporting me throughout my PhD journey. Their continuous guidance

and feedback enabled me to develop a deeper, more fundamental perspective on

research problems and directions and provided an endless source of inspiration. The

topics in this thesis are the embodiment of some of the countless ideas that came up

during our discussions. I would also like to thank my doctoral committee members,

Prof. Ramani Duraiswami, Prof. Shihab Shamma, and Prof. Matthias Zwicker for

the insightful feedback they provided on my work.

I am also grateful for having the chance to know and work with some amazing

people in the UMD CS department and UMIACS. The graduate classes I took by

Prof. Michael Hicks, Prof. David Jacobs, and Prof. David Mount were a true

inspiration and allowed me to expand my knowledge and background beyond my

strict area of study. Being a TA for Fawzi Emad, Prof. David Mount, and Nelson

Padua-Perez gave me the opportunity to come in contact with young talent and

realize the importance of helping it develop. Last but not least, I would like to

thank Brenda Chick, Jodie Gray, Tom Hurst, Janice Perrone, and Jennifer Story

for their patience and support, and for turning potentially stressful and laborious

administrative processes into a breeze.

I would like to thank my colleagues and lab mates Francisco Barranco, Chin-

maya Devaraj, Alex Ecins, Matthew Evanusa, Kanishka Ganguly, Gregory Kramida,

ii

Michael Maynord, Anton Mitrokhin, Austin Myers, Chethan Parameshwara, Jack

Rasiel, Behzad Sadrfaridpour, Nitin J. Sanket, Snehesh Shrestha, Chahat Deep

Singh, Peter Sutor, and Yezhou Yang. In addition to some of my best collaboration

experiences, I will always remember our discussions and the fun we had, both within

and outside of the lab. I feel particularly fortunate for the valuable friendships that

have emerged from this, which, among other things, lead to the creation of the

‘Perpetual Rowdy Gangsters’ group, an alternative hue variant of our official PRG

group.

I also feel lucky to have become friends with a number of awesome people

during my years in College Park. Lida Apergi, Ioana Bercea, Jason Filippou, Adi

Hajj-Ahmad, Garrett Katz, Udayan Khurana, Antonis Kyprianidis, Vassilis Lekakis,

Evripidis Paraskevas, Tommy Pensyl, Thodoris Rekatsinas, Eirini Tsiropoulou, Niki

Vazou, Kleoniki Vlachou, Kostas Xirogiannopoulos, and Haytham Yaghi, thank you

all for being there for me, being good friends and roommates, dragging me out the

lab or house, and helping me remain balanced. To the more recent UMD acquisitions

and friends: Eleftheria Briakou, Panos Dimitrellos, Ioanna Galani, Leonidas Lam-

propoulos, Christos Mavridis, Christos Papageorgakis, Sotiria Stathopoulou, and

Leonidas Tsepenekas, thank you all for the awesome time we have spent together

having fun. You give me hope that the Erie Street spirit will live on – whatever

that may entail.

I cannot thank enough my good old friends and NTUA brothers, Haris Angeli-

dakis, Marios-Stavros Grigoriou, and Petros Kapouleas. Thank you for periodically

reminding me that I have a life outside of UMD. No matter where in the world we

iii

are or will be, I will always cherish our friendship and dream of the next reunion!

Finally, I cannot express my gratitude for the people closest to me for their

unconditional love and support. That would include my family, and the smartest,

most beautiful, and most genuinely sweet person I was blessed to have in my life:

Moschoula, thank you for bearing with me during our joint adventure and know

that I am counting on you to always and forever be the light in my life.

iv

Table of Contents

Acknowledgements ii

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1
1.1 Motivation and scope . 1
1.2 Thesis contributions and outline . 2

2 Learning the Spatial Semantics of Manipulation Actions through Preposition
Grounding 6
2.1 Introduction . 7
2.2 Related work . 9
2.3 Our approach . 11

2.3.1 Overview of our method . 11
2.3.2 Point cloud tracking . 12
2.3.3 Spatial relations . 14

2.3.3.1 Relative spaces . 14
2.3.3.2 Spatial relation predicates 17
2.3.3.3 Spatial abstraction 20

2.3.4 Action descriptors . 21
2.3.5 Distance measure . 23

2.4 Experiments . 27
2.4.1 Data description . 27
2.4.2 Spatial relations evaluation 29
2.4.3 Action classification . 30

2.5 Summary . 32

v

3 Topology-Aware Non-Rigid Point Cloud Registration 34
3.1 Introduction . 35
3.2 Related work . 38
3.3 Our approach . 41

3.3.1 Problem statement . 41
3.3.2 Motivation and overview of our approach 43
3.3.3 Warp field estimation . 47

3.3.3.1 Correspondence association 48
3.3.3.2 Warp field optimization 49

3.3.4 Handling topology changes . 53
3.3.4.1 Detecting topology change events 55
3.3.4.2 Local hypothesis blending 58

3.4 Experiments . 61
3.4.1 General setup details . 61
3.4.2 Motion estimation accuracy evaluation 63
3.4.3 Topology change event handling 67

3.4.3.1 Topology event detection 69
3.4.3.2 Registration under dynamic topology 74

3.5 Summary . 75

4 Extracting Contact, Objects, and Object Motions from Manipulation Videos 78
4.1 Introduction . 79
4.2 Related work . 82
4.3 Our approach . 84

4.3.1 Overview . 84
4.3.2 Actor-environment segmentation 86
4.3.3 Contact detection . 88
4.3.4 Manipulated object segmentation and motion 88

4.4 Experiments . 90
4.5 Application: replication from observation by a robot 95

4.5.1 Preprocessing stage . 98
4.5.2 Planning stage . 100

4.5.2.1 Grasp planning . 101
4.5.2.2 Trajectory planning 101

4.5.3 Execution stage . 102
4.6 Summary . 103

5 cilantro: A Lean, Versatile, and Efficient Library for Point Cloud Data
Processing 105
5.1 Introduction . 106
5.2 Design overview . 108
5.3 Functionality . 111
5.4 Performance . 116
5.5 Software release . 119

vi

6 Conclusions and Future Work 121
6.1 Summary . 121
6.2 Future work . 122

Bibliography 124

vii

List of Tables

2.1 Spatial relation defining directions. 15

3.1 Evaluation on the MPI Sintel Dataset. 66
3.2 Topology Change Event Detection. 73
3.3 Registration Under Close-To-Open Topology. 75

4.1 List of our inputs, intermediate results, and final outputs. 85

viii

List of Figures

2.1 Processing steps for our action descriptor extraction. 11
2.2 Point cloud tracking for a Pour action. 13
2.3 Coordinate frames. 14
2.4 Directional relative spaces. 16
2.5 Spatial relations evolution. 28
2.6 Matrix D = (dij) of pairwise distances. 31
2.7 Clustering and embedding of our action descriptors in 2 dimensions. . 32

3.1 Non-rigid registration under a ‘close-to-open’ topology change. 44
3.2 Overview of our topology-aware non-rigid registration pipeline. 46
3.3 Topological event detections on our dataset. 68
3.4 Warping results on our dynamic topology dataset. 76

4.1 A high-level overview of our modules and their relations. 84
4.2 Flipping a pitcher: scene tracking, labeling, and contact detection. . . 91
4.3 Opening a drawer: scene tracking, labeling, and contact detection. . . 91
4.4 Opening a door: scene tracking, labeling, and contact detection. . . . 92
4.5 Motion segmentation of the manipulated object. 93
4.6 Estimated rigid motion of the manipulated object. 94
4.7 High-level representation of opening a refrigerator door. 96
4.8 Robot observing a human opening a refrigerator door. 96
4.9 State transition diagram of our process. 97
4.10 Input to the preprocessing stage from our algorithm. 98
4.11 Door handle detection. 99
4.12 Visualization of planning stage. 100
4.13 Robot imitating human in opening refrigerator door. 102

5.1 Convex hulls of two object scans and their intersection. 112
5.2 Scene segmentation into flat surfaces. 113
5.3 A reconstruction obtained in real time using an RGBD camera. . . . 114
5.4 Non-rigid point cloud registration. 115
5.5 Point cloud segmentation into smooth segments. 117
5.6 Performance comparisons against PCL and Open3D. 118

ix

List of Algorithms

1 W = NonRigidICP(D,S,W0) . 47
2 ExtractTopologyEvents . 57
3 LocalHypothesisBlending . 59

x

Chapter 1: Introduction

1.1 Motivation and scope

Recent technological advances have lead autonomous systems and intelligent

agents to become an ubiquitous part of our everyday life. In order for such systems

to successfully and efficiently interact with human users, they need to be able to

interpret human actions. Action understanding from image or video observations

has been a very active research topic in computer vision [1–4] and robotics [5–7],

as it constitutes a core part for a wide range of applications that include content-

based video indexing, video summarization, surveillance, human-computer/robot

interaction, and robot imitation learning. A family of actions of particular interest

is that of object manipulations, wherein an agent interacts with objects in their

environment, modifying the physical state of the latter in a potentially meaningful

way.

During the course of a manipulation action, an agent typically grasps an object

and moves it, possibly altering its physical state. At the same time, the handled

object may interact in various ways with other objects that are directly or indirectly

involved in the manipulation. For example, an object may be picked and placed

inside another object, or two separate objects may be joined together to form a

1

new, single one. Agent-object and object-object interactions during a manipulation

are a defining part of the performed action itself [8–11].

In this thesis, we focus on modeling and extracting two types of geometric ob-

ject interactions that manifest as objects move in 3D space during a manipulation.

First, we introduce a simple grounding model for the most common pairwise spa-

tial relations between objects and investigate the descriptive power of their dynamic

evolution for action characterization. Second, we model and detect lower level inter-

actions, namely object contacts and separations, viewing them as topological scene

changes within a dense motion estimation setting. The ability to extract and reason

about these types of interactions directly provides semantic cues for manipulation

action understanding at the cognitive level. In particular, contact detection in a ma-

nipulation video can directly answer what was grasped and when, whereas spatial

relations reveal where the object was moved relative to its surroundings. Cognitive-

level cues and representations have the advantage of being applicable not only to

specific tasks that require some form of action understanding (e.g., a discriminative

model for classification), but in a range of applications, from traditional recognition

to robot imitation learning [12,13].

1.2 Thesis contributions and outline

All of our proposed models and algorithms, unless otherwise specified, assume

3D observations as input, either in the form of unorganized 3D point clouds (and

sequences thereof) or RGBD videos. We briefly summarize our contributions and

2

thesis structure in the following.

In Chapter 2, building upon a direct grounding model for the most common

spatial relations between objects tracked in 3D space, we introduce an abstract

representation for manipulation actions that is based on the temporal evolution of

the spatial relations between the involved objects. Our proposed descriptor and

time-normalized distance measure give rise to an object-agnostic, timing-invariant

action representation that is found to be highly descriptive of the underlying high-

level manipulation semantics. As a side-product, our spatial relation grounding

model can directly output spatial relation predicate scores for a given object pair

in a known state, effectively bridging the gap between raw 3D observations and

semantically meaningful relation symbols that correspond to spatial prepositions in

natural language. This chapter is based on published prior work [14].

In Chapter 3, we consider the problem of dense motion estimation between

point cloud geometries that may undergo topological changes. Standard warp field

estimation algorithms tend to produce erratic motion estimates on boundaries asso-

ciated with ‘close-to-open’ topology changes (i.e. object separations). We overcome

this limitation by exploiting an alternative warp field hypothesis that is derived from

backward motion: in the opposite motion direction, a ‘close-to-open’ (separation)

topological event becomes ‘open-to-close’ (contact), which is by default handled

correctly. Our proposed pipeline explicitly detects regions of the deformed geom-

etry that undergo topological changes by means of local deformation criteria and

broadly classifies them as ‘contacts’ or ‘separations’. Subsequently, our two motion

hypotheses (forward and inverted backward) are seamlessly blended on a local basis,

3

according to the type and proximity of detected topological event regions, result-

ing in a topology-aware estimate. Our method is evaluated on motion estimation

accuracy on a public dataset, as well as on explicit topological event detection and

classification on a custom RGBD dataset with topological event annotations. This

chapter is based on prior work [15].

In Chapter 4, we present an active, bottom-up pipeline for the detection of

actor-object contacts and the subsequent extraction (segmentation) of moved objects

and their rigid motions in RGBD manipulation videos. At the core of our approach

lies the non-rigid registration algorithm of Chapter 3: we continuously warp a point

cloud model of the observed scene to the current video frame, generating a set

of dense 3D point trajectories. Under loose assumptions, we employ simple point

cloud segmentation techniques to extract the actor and subsequently detect actor-

environment contacts based on the estimated trajectories. For each such interaction,

using the detected contact as an attention mechanism, we obtain an initial motion

segment for the manipulated object by clustering trajectories in the detected contact

vicinity and then we jointly refine the object segment and estimate its 6DOF pose

in all observed frames. The content of this chapter is based on prior work [16].

In Chapter 5, we introduce cilantro, an open-source software library for

geometric and general purpose point cloud data processing that was developed for

the needs of this thesis. The library aims at being minimal yet versatile, efficient, and

easy to use. At the same time, its comprehensive out-of-the-box functionality and

flexible design (generic algorithms) enable the rapid implementation of performant

point cloud processing software for a wide spectrum of tasks commonly encountered

4

by 3D perception practitioners and roboticists. This chapter is based on published

prior work [17].

Finally, in Chapter 6, we conclude and discuss possible directions for improve-

ments and future research.

5

Chapter 2: Learning the Spatial Semantics of Manipulation Actions

through Preposition Grounding

In this chapter, we introduce an abstract representation for manipulation ac-

tions that is based on the evolution of the spatial relations between involved ob-

jects. Object tracking in RGBD streams enables straightforward and intuitive ways

to model spatial relations in 3D space. Reasoning in 3D overcomes many of the

limitations of similar previous approaches, while providing significant flexibility in

the desired level of abstraction. At each frame of a manipulation video, we evaluate

a number of spatial predicates for all object pairs and treat the resulting set of se-

quences (Predicate Vector Sequences, PVS) as an action descriptor. As part of our

representation, we introduce a symmetric, time-normalized pairwise distance mea-

sure that relies on finding an optimal object correspondence between two actions.

We experimentally evaluate the method on the classification of various manipulation

actions in video, performed at different speeds and timings and involving different

objects. The results demonstrate that the proposed representation is remarkably

descriptive of the high-level manipulation semantics.

6

2.1 Introduction

Intelligent robots built for manipulation tasks need to learn how to manipu-

late. However, given that there is an infinite number of ways to perform a certain

manipulation action, such as for example, making a peanut butter and jelly sand-

wich [18], the robot should be able to store and organize compact representations

effectively, rather than simply a large set of examples that are hard to generalize.

Various aspects and levels of representations of manipulation actions have been stud-

ied, such as objects and tools [19, 20], manipulator trajectories [21, 22], actions and

sub-actions [23], object-wise touch relations [10], action consequences or goals [24],

etc. In this work, we focus on another crucial aspect of manipulation actions, which

is the object-wise spatial relations in 3D space and the correlation of their temporal

evolution to the underlying manipulation semantics.

Why are spatial relations crucial for interpreting manipulations? First of all,

while most primitive spatial relations can be inferred directly from the perceptual

input, their exploitation allows for more complex types of reasoning about not only

geometric, but also the underlying physical relations between objects. For example,

by perceiving that an apple is “ABOVE” a plate as well as that these two “TOUCH”,

we can infer that the plate is the supporting object. Secondly, at a higher level, by

grounding the spatial relations for the most commonly used prepositions in natural

language, we effectively establish a bridge from observation to language and then

from language to execution.

Additionally, a correct understanding of object-wise spatial relations for a

7

given action is essential for a robot to perform the action successfully. For example,

when a robot is asked to “Pour a cup of coffee from the pitcher”, it not only needs to

recognize “cup” and “pitcher” and generate a sequence of trajectories to perform the

“pour” action, but also needs to perform geometric precondition checks on the 3D

spatial relations between “pitcher” and “cup”: unless the “pitcher” tip is “ABOVE”

the “cup”, “pour” should not be triggered! In other words, a correct understanding

of spatial relations can provide the premise of an accurate execution.

Few work has touched upon object-wise spatial relations for manipulation

actions, due to the difficulties inherited from object tracking (inevitable occlusions,

etc.). A joint segmentation and tracking technique to reason about “touch” and

“contain” relations from top-down 2D views is used in [10]. The limitations of

their approach come from reasoning in 2D. For example, their system is not able

to differentiate between spatial predicates “above” and “in”. Other approaches on

spatial reasoning [25] require additional equipment, such as motion capture suits,

which makes them impractical for more general purpose applications.

The goal of our work is to develop a system which equips the robot with a

fundamental and reliable understanding of 3D spatial relations. During both ob-

serving and executing manipulation actions, a robot with our proposed capabilities

will be able to understand and reproduce the evolution of the spatial relations be-

tween involved objects with high accuracy. We show that a 3D spatial relation based

representation is highly descriptive of the underlying action semantics.

At the lower level of this work, we developed a system for RGBD object seg-

mentation and tracking that does not require additional markers on the objects

8

and allows us to overcome difficulties arising from 2D-only image reasoning. Given

point cloud representations for all tracked objects, we adopted a straightforward

yet intuitive way to model geometric relations for the most commonly used natural

language spatial prepositions by partitioning the space around each object. For a

given object pair, our spatial relation predicates effectively capture the spatial dis-

tribution of the first object with respect to the second. The temporal evolution

of each such distribution is encoded in a Predicate Vector Sequence (PVS). At a

higher level, we a) propose a novel action descriptor, which is merely a properly

ordered set of PVSes for all involved object pairs, and b) introduce its associated

distance measure, which relies on finding an optimal, in terms of PVS similarity,

object correspondence between two given actions in this representation. Experi-

ments on real manipulation videos for various actions, performed with significant

amounts of variation (e.g., different subjects, execution speeds, initial/final object

placements, etc.), indicate that our proposed abstract representation successfully

captures the manipulation’s high-level semantic information, while demonstrating

high discriminative performance.

2.2 Related work

From the very beginning of robotics research, a great amount of work has

been devoted to the study of manipulation, due to its direct applications in intel-

ligent manufacturing. With the recent development of advanced robotic manipu-

lators, work on robust and accurate manipulation techniques has followed quickly.

9

For example, [26] developed a method for the PR2 to fold towels, which is based

on multiple-view geometry and visual processes of grasp point detection. In [27],

they proposed learning object affordance models in multi-object manipulation tasks.

Robots searching for objects were investigated in [28], using reasoning about both

perception and manipulation. [21] and [22] developed manipulation and perception

capabilities for their humanoid robot, ARMAR-III, based on imitation learning for

human environments. A good survey on humanoid dual arm manipulation can be

found in [29]. These works reached promising results on robotic manipulation, but

they focused on specific actions without allowing for generalization. Here, we suggest

that the temporal evolution of object-wise 3D spatial relations is a highly descriptive

feature for manipulation actions and thus can be potentially used for generalizing

learned actions.

Several recent works have studied spatial relations in the context of robot ma-

nipulation, either explicitly or implicitly. From a purely recognition point of view,

the prepositions proposed in [30] can be directly used for training visual classifiers.

Recently, [31] built a joint model of prepositions and objects in order to parse natural

language commands, following the method introduced in [32]. In [33] and [34], su-

pervised learning techniques were employed to symbolically ground a specific set of

spatial relations, using displacements of likely object contact points and histograms

that encode the relative position of elementary surface patches as features respec-

tively. However, in general contexts, most common spatial prepositions do not have

ambiguous geometric meanings and can, in principle, be directly modeled. Instead

of grounding them via learning from large sets of annotated data, we directly model

10

spatial relations according to their clear geometric interpretation.

In [10], they developed a 2D video segmentation and tracking system, through

which they proposed a compact model for manipulation actions based on the evo-

lution of simple, 2D geometric relations between tracked segments. Reasoning with

only 2D segments enforces an unwanted and unnecessary type of abstraction in

the representation due to the loss of geometric information. Here, instead, we infer

spatial relations between segmented point clouds in 3D space, which enables our sys-

tem to generate representations of controlled levels of abstraction and discriminative

power.

2.3 Our approach

2.3.1 Overview of our method

A very brief description of the processing steps involved in our method is

provided here and details are discussed in the following subsections.

Workspace
plane fitting

Object segmentation
and tracking

Action descriptor
Spatial relation

evaluation
RGBD
stream

Figure 2.1: Processing steps for our action descriptor extraction.

A schematic of our action descriptor extraction pipeline is given in Fig. 2.1.

The input to our algorithm is an RGBD video of a manipulation action. The ob-

jects of interest are segmented in the first frame and tracked in 3D space through-

out the rest of the sequence (Section 2.3.2). At each time instant, we evaluate

a predetermined set of pairwise spatial predicates for each pair of tracked objects

11

(Section 2.3.3), thus obtaining a sequence of spatial relation descriptors for every

object pair (Predicate Vector Sequence, PVS). This set of sequences, arranged in

a predetermined order, constitutes our proposed action descriptor (Section 2.3.4).

Subsequently, we define an appropriate pairwise distance function for this represen-

tation, which relies on standard dynamic programming techniques for time series

similarity evaluation. Distance computation between two actions is reduced to find-

ing an optimal, in a sense to be defined, object correspondence between the actions

(Section 2.3.5).

Assumptions. To simplify certain subtasks, we assume that the action takes

place, at least at the beginning, on a planar surface (e.g., on a table) on which all

involved objects initially lie. Furthermore, we assume that the depth sensor used

to record the manipulation remains still throughout the action duration (no ego-

motion). Since our method mostly pertains to applications of robots learning by

watching humans or other robots and as long as objects remain visible in order to

be reliably tracked, we do not consider the latter to be too restrictive.

2.3.2 Point cloud tracking

The initialization of the tracking procedure involves fitting a plane to the

workspace surface in the first RGBD frame of the input sequence. This is done

reliably using standard methods, i.e. least squares fitting under RANSAC. The

points that lie a certain threshold distance above the estimated plane are clustered

based on which connected component of their k-NN graph they belong to. Assuming

12

that the maximum distance between points that belong to the same object is smaller

than the minimum distance between points of different objects, this simple procedure

yields an effective segmentation of all the objects in the initial frame.

Treating these initial segments (point clouds) as object models, we initiate one

tracker for each object and perform rigid object tracking using the KLD-sampling

adaptive Particle Filtering algorithm [35] that is implemented in [36]. This results

in a point cloud for each object, for each video frame. We denote this set of point

clouds at time index t by {X t
1, . . . , X

t
No
}, where No is the number of objects in the

action. In the following, we will use the terms X t
i and “object i (at time t)”, for

some i = 1, . . . , No, interchangeably. A sample output of our point cloud tracker for

a two object manipulation recording is depicted in Fig. 2.2.

Figure 2.2: Point cloud tracking for a Pour action. First row: RGB frames from input
video. Second row: workspace plane and point clouds for the two tracked objects.

We must note that object segmentation and tracking are not the primary

objectives of this study. The approach described here is the one we used in our

experiments (Section 2.4) and primarily serves as a showcase for the feasibility of

subsequent processing steps using readily available tools. We believe that any rea-

sonably performing point cloud tracking algorithm is adequate for our purposes, as

spatial relations can, in general, be quite insensitive to tracking accuracy.

13

2.3.3 Spatial relations

2.3.3.1 Relative spaces

Here, we describe a straightforward yet intuitive approach to modeling pairwise

spatial relations between objects, given their point clouds in 3D space. We begin

by defining an auxiliary coordinate frame, whose axes will directly determine the

left/right, above/below and front/behind directions. As mentioned previously,

we assume a still camera (robot’s eyes) looking at the planar surface where the

manipulation takes place.

The auxiliary axes directions are calculated using general prior knowledge

about the axis orientations of our RGBD sensor world coordinate frame, in which

the object point clouds are in known positions, and the workspace normal vector

that was estimated during the plane fitting step of segmentation/tracking. Natu-

rally, since the planar workspace (initially) supports all the objects involved in the

manipulation, we would want the above/below direction to be directly defined by

its normal vector n.

(a) (b)

Figure 2.3: Coordinate frames.

14

Table 2.1: Spatial relation defining directions.

Direction left right front behind above below

Reference
vector

−û +û −ŵ +ŵ −v̂ +v̂

Our sensor coordinate frame is drawn in Fig. 2.3a. As we can see, the z-

axis corresponds to perceived depth, in roughly the front/behind direction, while

the x and y axes point approximately to the right and downwards, respectively.

This frame can be rotated so that the new axes, u, v and w, are aligned with the

workspace and the aforementioned directions with respect to it (Fig. 2.3b). Axis v

can be set to be parallel to n (e.g., pointing downwards). Axis w can then be defined

as the projection of the original z-axis to the orthogonal complement of v. Axis u

is then uniquely determined as being orthogonal to both v and w (e.g., so that the

resulting frame is right-handed). Let x̂, ŷ and ẑ be the unit length vectors that

are codirectional with the sensor frame axes, n̂ be a unit length workspace normal

and û, v̂, ŵ be the unit length vectors codirectional with the “workspace-aligned”

auxiliary frame axes. The above construction, with the axis directions chosen as in

Fig. 2.3b, is captured by the following equations:

v̂ = sgn (ŷ · n̂) n̂,

ŵ = (ẑ − (v̂ · ẑ) v̂) /‖ẑ − (v̂ · ẑ) v̂‖,

û = v̂ × ŵ,

where a · b is the dot product of vectors a and b, a × b is their cross product, sgn

is the signum function and ‖x‖ is the Euclidean norm of x. Table 2.1 defines the 6

15

spatial relation defining directions in terms of the auxiliary frame axes.

To infer spatial relations between objects, we will first build models for the

regions of 3D space relative to an object. For example, to reason about some object

being on the right of object X at some given time, we first explicitly model the

space region on the right of X. We will consider 7 space regions with respect to a

given object: one that will represent the object interior (for the in relation) and 6

around the object, aligned to the directions of Table 2.1. We will represent all these

relative spaces of X as convex polyhedra and denote them as Sr(X), for r ∈ {in,

left, right, front, behind, below, above}, so that, for example, Sright(X) is the

space region on the right of X.

(a) (b)

Figure 2.4: Directional relative spaces.

We model Sin(X) simply as the smallest bounding box (cuboid) of X that is

aligned with the u, v, w axes (Fig. 2.3b for the blue point cloud). The 6 “direc-

tional” relative spaces are built upon this one, as indicated in Fig. 2.4a. Consider

16

a uvw-aligned cube, concentric to Sin(X), of edge length significantly larger than

the maximum workspace dimension. Clearly, each face of Sin(X) with the closest

face of the surrounding cube that is parallel to it can uniquely define an hexahedron

that also has these two as faces. We will use these 6 hexahedra as models for our

directional relative spaces. In Fig. 2.4b, we draw Sright(X), where X is represented

by the blue point cloud.

A few remarks are in order. First, all relative spaces are represented as sets

(conjunctions) of linear constraints, so checking if a point lies in them is very easy.

Second, one would expect the directional relative spaces to be unbounded (e.g.,

polyhedral cones). They can be modeled this way by simply dropping one of their

defining linear constraints. Finally, while more elaborate models can be considered

for Sin(X), like the convex hull of X, the construction of Fig. 2.4a has the nice

property of partitioning the space around X. This will enable us to easily reason

about object relations in a probabilistic manner, in the sense that our (real-valued)

relation predicates will define the spatial distribution of an object relative to another.

Clearly, this provides a more flexible framework than modeling using binary-valued

predicates, which can be simply inferred anyway.

2.3.3.2 Spatial relation predicates

We are now ready to define our models for a set of basic pairwise spatial object

relations. We will model 7 of them (the inclusion relation and the 6 “directional”

ones) directly based on their respective relative space, and an additional one that is

17

indicative of whether two objects are in physical contact (touch). Let Rf = {in,

left, right, front, behind, below, above, touch} be our full set of spatial rela-

tions. We note that these primitive relations correspond to the spatial prepositions

most commonly used in natural language and can be used to model more complex

relations (e.g., we can reason about on based on above and touch). For each r ∈ Rf ,

we will define a pairwise predicate Rr(X
t
i , X

t
j) that quantifies exactly whether X t

i

is positioned relatively to X t
j according to relation r. For example, Rleft(X

t
i , X

t
j)

indicates to what degree object i is on the left of object j at time t.

LetRs = Rf�{touch} be the set of relations that can be defined by an explicit

space region with respect to X t
j (reference object). Instead of making hard decisions,

i.e. using binary values, we let the predicates Rr(X
t
i , X

t
j), for r ∈ Rs, assume real

values in [0, 1] that represent the fraction of X t
i that is positioned according to r

with respect to X t
j . A reasonable way to evaluate Rr(X

t
i , X

t
j), for r ∈ Rs, is then

simply as the fraction of points of X t
i that lie in the relative space Sr(X

t
j):

Rr(X
t
i , X

t
j) =

∣∣X t
i ∩ Sr(X t

j)
∣∣ / ∣∣X t

i

∣∣ , (2.1)

where by |A| we denote the cardinality of set A. Since Sr(X
t
j), for r ∈ Rs, are

mutually disjoint by construction, the predicates of (2.1) have the property:

∑
r∈Rs

Rr(X
t
i , X

t
j) = 1,

i.e. they define a distribution of the points of X t
i to the relative spaces of X t

j .

18

The touch relation can be useful in capturing other, non-primitive spatial

relations. For example, by having models for both above and touch, one can express

the on relation as their “conjunction”. More expressive power is desirable, as it

can translate to better discriminative performance for our representation. We let

our contactual predicate Rtouch(X
t
i , X

t
j) assume binary values in {0, 1}. Whenever

either of Rin(X
t
i , X

t
j) or Rin(X

t
j , X

t
i) is greater than zero, we can assume that X t

i is

touching X t
j and, therefore, Rtouch(X

t
i , X

t
j) = 1. If this were the defining condition

for Rtouch, incorporating the contactual predicate to our set of spatial relations would

be redundant, in the sense that we already model Rin. However, there are cases

where both Rin(X
t
i , X

t
j) and Rin(X

t
j , X

t
i) are equal to zero, while X t

i is touching X t
j .

We may fail to detect this situation using the above intersection test for various

reasons. For example, the two objects could simply be extremely close to each other

(touching), without part of one lying inside the other. The precision of our sensor

and the accuracy of our tracker can also cause the above condition to falsely fail. To

compensate for these situations, whenever both Rin(X
t
i , X

t
j) = 0 and Rin(X

t
j , X

t
i) =

0, in which case X t
i and X t

j are guaranteed to be linearly separable point sets, we

perform an additional “proximity” test. We train a linear binary SVM on X t
i ∪X t

j ,

with the class labels given by the object ownership for each data point, and use

the classifier margin, dm, as a measure of distance between X t
i and X t

j . If dm falls

below a preset threshold dT , we set Rtouch(X
t
i , X

t
j) = 1. Our complete model of the

19

contactual predicate is then given by:

Rtouch(X
t
i , X

t
j) =

1 if Rin(X
t
i , X

t
j) > 0

or Rin(X
t
j , X

t
i) > 0

or dm < dT ,

0 otherwise.

The value of dT depends, among other things, on point cloud precision related

parameters (e.g., sensor and tracking errors) and was set to a few millimeters in our

trials. We note that, of all relations in Rf , only touch is symmetric.

2.3.3.3 Spatial abstraction

At this point, we have defined our models for all relations r ∈ Rf . Our goal

is to define an action representation using the temporal evolution of spatial object

relations. However, tracking all relations in Rf can yield a representation that is

viewpoint-specific or unnecessarily execution-specific. For example, disambiguating

between left and right or front and behind or, actually, any two of these is

clearly dependent on the sensor viewpoint and might not be informative about the

actual manipulation semantics. As an example, consider a “stir the coffee” action

that involves a cup and a spoon. Picking up the spoon from the left of the cup, then

stirring the coffee and finally leaving the spoon on the right of the cup is expected

to have the same high-level semantics as picking up the spoon from the right of the

cup, stirring and then leaving it in front of the cup. For this reason, we combine

20

the relations {left, right, front, behind} into one, which we can simply name

around, to obtain a desirable kind of spatial abstraction that, in most cases we

can think of, does not leave out information that is actually manipulation-specific.

The new relation can be viewed as the disjunction of the 4 ones it replaces and its

predicate is given by:

Raround(X
t
i , X

t
j) =Rleft(X

t
i , X

t
j) +Rright(X

t
i , X

t
j)+

Rfront(X
t
i , X

t
j) +Rbehind(X

t
i , X

t
j).

This makes Ra = {in, around, below, above, touch} the set of relations upon

which we will build our action descriptors.

2.3.4 Action descriptors

Let Φt(i, j) be the |Ra|-dimensional vector of all relation predicatesRr(X
t
i , X

t
j),

r ∈ Ra, for object i relative to object j at time t, arranged in a fixed relation order,

e.g., (in, around, below, above, touch), so that:

Φt(i, j) ≡
(
Rin(X

t
i , X

t
j), . . . , Rtouch(X

t
i , X

t
j)
)
, (2.2)

where i, j = 1, . . . , No and i 6= j. Let Φ(i, j) denote the sequence of the predicate

vectors (2.2), for t = 1, . . . , T :

Φ(i, j) ≡
(
Φ1(i, j), . . . ,ΦT (i, j)

)
.

21

The latter captures the temporal evolution of all spatial relations in Ra of object i

with respect to object j throughout the duration of the manipulation execution. We

will call Φ(i, j) a Predicate Vector Sequence (PVS). PVSes constitute the building

block of our action descriptors and can be represented as |Ra| × T matrices.

Our proposed action descriptors will contain the PVSes for all object pairs in

the manipulation. As will become clear in the next subsection, comparing two action

descriptors reduces to finding an optimal correspondence between their involved

objects, e.g., infer that object i1 in the first action corresponds to object i2 in the

second. To facilitate this matching task, we require our proposed descriptors to

possess two properties.

The first has to do with the fact that the spatial relations we consider are

not symmetric. A simple solution to fully capture the temporally evolving spatial

relations between objects i and j, where none of the objects acts as a reference point,

is to include both Φ(i, j) and Φ(j, i) in our descriptor, for i, j = 1, . . . , No and i 6= j.

This might seem redundant, but, given our predicate models, there is generally no

way to exactly infer Φt(j, i) from Φt(i, j) (e.g., due to different object dimensions).

Our descriptor will then consist of Nr = No(No− 1) PVSes, as many as the ordered

object pairs.

Finally, we need to be able to identify which (ordered) object pair a PVS

refers to, i.e. associate every PVS in our representation with a tuple (i, j) of object

indices. We opted to do this implicitly, by introducing a reverse indexing func-

tion and encoding the mapping information in the order in which the PVSes are

stored. Any bijective function INo from {1, . . . , Nr}, the set of PVS indices, onto

22

{(i, j) | i, j = 1, . . . , No ∧ i 6= j}, the set of ordered object index pairs, is a valid

choice as an indexing function. Our proposed action descriptors are then ordered

sets of the form:

A ≡ (Φ1, . . . ,ΦNr) ,

where, for k = 1, . . . , Nr, Φk = Φ(i, j) and (i, j) = INo(k). Function INo can be

embedded in the descriptor extraction process. Utilizing the knowledge of the PVS

ordering within an action descriptor will simplify the formulation of establishing an

object correspondence between two actions in the following subsection.

2.3.5 Distance measure

To complete our proposed representation, we now introduce an appropriate

distance function d on the descriptors we defined above. If A1 and A2 are two

action descriptors, we design d(A1, A2) to be a symmetric function that gives a time-

normalized distance between the two actions. Additionally, we allow comparisons

between manipulations that involve different numbers of objects. This will enable

us to reason about the similarity between an action and a subset (in terms of the

objects it involves) of another action. In the following, for k = 1, 2, let Nk
r be the

number of PVSes in Ak and Nk
o be the number of objects in manipulation Ak, so

that Nk
o (Nk

o − 1) = Nk
r .

At the core of our action distance evaluation lies the comparison between

PVSes. Each PVS is a time series of |Ra|-dimensional feature vectors that captures

the temporal evolution of all spatial relations between an ordered object pair. Dif-

23

ferent action executions have different durations and may also differ significantly in

speed during the course of manipulation: e.g., certain subtasks may be performed at

different speeds in different executions of semantically identical manipulations. To

compensate for timing differences, we use the Dynamic Time Warping (DTW) [37]

algorithm to calculate time-normalized, pairwise PVS distances. We consider the

symmetric form of the algorithm in [37], with no slope constraint or adjustment

window restriction.

Let Φ1
r1 and Φ2

r2 be PVSes in A1 and A2, respectively, where r1 = 1, . . . , N1
r

and r2 = 1, . . . , N2
r . We form the N1

r ×N2
r matrix C = (cr1r2) of all time-normalized

distances between some PVS in A1 and some PVS in A2, where:

cr1r2 = DTW(Φ1
r1 ,Φ

2
r2).

In the following, we will calculate d(A1, A2) as the total cost of an optimal corre-

spondence of PVSes between A1 and A2, where the cost of assigning Φ1
r1 to Φ2

r2 is

given by cr1r2 .

One could simply seek a minimum cost matching of PVSes between two action

descriptors by solving the linear assignment combinatorial problem, with the assign-

ment costs given in C (e.g., by means of the Hungarian algorithm [38]). This would

yield an optimal cost PVS correspondence between the two actions. However, it is

clear that the latter does not necessarily translate to a valid object correspondence.

Instead, we directly seek an object correspondence between A1 and A2 that induces

a minimum cost PVS correspondence. The object correspondence between A1 and

24

A2 can be represented as an N1
o × N2

o binary-valued assignment matrix X = (xij),

where xij = 1 if and only if object i in A1, i = 1, . . . , N1
o , is matched to object j in

A2, j = 1, . . . , N2
o . We require that every row and every column of X has at most

one nonzero entry and that the sum of all entries in X is equal to min(N1
o , N

2
o).

This ensures that X defines an one-to-one mapping from the objects in the action

involving the fewest objects to the objects in the other action. An object assignment

X is then evaluated in terms of the PVS correspondence it defines. We denote the

latter by YX = (yr1r2), where yr1r2 = 1 if and only if PVS r1 in A1 is mapped to

r2 in A2. The N1
r ×N2

r matrix YX has the same structure as X, with min(N1
r , N

2
r)

nonzero entries. The cost of assignment X, in terms of its induced PVS assignment

YX , is then given by the sum of all individual PVS assignment costs:

J(YX) =

N1
r∑

r1=1

N2
r∑

r2=1

cr1r2yr1r2 . (2.3)

According to our descriptor definition in the previous subsection, the PVS with

index r1 in A1 refers to the ordered object pair (o1
1, o

1
2) = IN1

o
(r1) and, similarly,

r2 in A2 refers to (o2
1, o

2
2) = IN2

o
(r2) (superscripts indicate action). Clearly, yr1r2 is

nonzero if and only if object o1
1 in A1 is assigned to o2

1 in A2 and o1
2 in A1 is assigned

to o2
2 in A2:

yr1r2 = xo11o21xo12o22 .

Using the above, we can rewrite and optimize (2.3) in terms of the object assignment

25

variables xij, for i = 1, . . . , N1
o and j = 1, . . . , N2

o :

Minimize
X

J(X) =

N1
r∑

r1=1

N2
r∑

r2=1

cr1r2xo11o21xo12o22

where (o1
1, o

1
2) = IN1

o
(r1), (o2

1, o
2
2) = IN2

o
(r2)

subject to
∑N2

o
j=1 xij ≤ 1, i = 1, . . . , N1

o

∑N1
o

i=1 xij ≤ 1, j = 1, . . . , N2
o∑N1

o
i=1

∑N2
o

j=1 xij = min(N1
o , N

2
o)

xij ∈ {0, 1}, i ∈ {1, . . . , N1
o },

j ∈ {1, . . . , N2
o }.

The binary quadratic program above encodes an instance of the quadratic

assignment problem (QAP), which is NP-hard. QAP instances of size (number of

objects) N > 30 are considered intractable [39]. However, most manipulations of

practical interest involve a number of objects well below that limit. In our im-

plementation, we used the SCIP (constraint integer programming) solver [40]. To

evaluate the correctness and running time behavior of our optimization scheme, we

ran a small number of tests. For various numbers of objects N , we built an action

descriptor A1 by randomly generating N(N−1) PVSes. We constructed A2 from A1

based on an arbitrary object permutation (assignment), by rearranging the PVSes

of A1 (according to IN and the known object permutation) and adding Gaussian

noise to them. Minimization of J(X) gave back the correct object assignment, even

for significant amounts of noise variance. Running time for N = 10 objects was in

26

the order of a few (≈ 10) seconds on a laptop machine.

The minimum value of J(X), over all possible object assignments, directly

defines the distance between actions A1 and A2:

d(A1, A2) = min
X

(J(X)).

The function d(A1, A2) is symmetric and, being a sum of DTW distances, gives

a time-normalized measure of action dissimilarity. As noted before, d(A1, A2) is

also defined when A1 and A2 involve different numbers of objects (N1
o 6= N2

o). For

example, if N1
o < N2

o , d(A1, A2) is expected to be exactly the same as if A2 only

involved the N1
o of its objects to which the objects in A1 are assigned. This flexibility

can be useful in sub-action matching scenarios.

2.4 Experiments

2.4.1 Data description

All our experiments were performed on a set of 21 RGBD sequences of manip-

ulation executions. All actions involve 2 objects and are partitioned in 4 distinct

semantic classes:

• Pour: water poured from a pitcher into a bowl (8 executions).

• Transfer: small object placed inside a bowl (6 executions).

• Stack: a book placed on top of another (2 executions).

• Stir: bowl content stirred using a ladle (5 executions, one of them performed

27

Figure 2.5: Spatial relations evolution: ladle relative to bowl for two instances of Stir.

by our robot).

Executions within each semantic class were performed by various individuals and

with various initial and final positions of the manipulated objects. For example, in

some instances of Stir, the ladle was initially picked from the left of the bowl and

was finally placed on its left, in others, it was picked from the right and then placed

on the left, etc. Naturally, there were significant timing differences across instances

of the same semantic class (different overall durations and execution speeds at each

action phase).

We also included a robot execution for an instance of Stir (Fig. 2.5, bottom

rows) that took roughly 4 times the average human execution duration to complete

and demonstrated disproportionately long “idle” phases throughout the manipula-

tion. Our robot platform is a standard Baxter humanoid with parallel grippers. To

generate trajectories, we used predefined dynamic movement primitives [41]. The

trajectory start and end points were given from the point cloud segmentation and

transferred onto the robot via a standard inverse kinematics procedure. We also

28

used visual servoing to ensure a firm grasp of the tool.

2.4.2 Spatial relations evaluation

We begin with a quick evaluation of the performance of our spatial relation

models. To establish our ground truth, we sampled 3 time instances from each

execution sequence. To evaluate a rich enough set of spatial relations, we sampled

at roughly the beginning, the middle and the end of each manipulation. For each

sample frame, we picked one of the objects to act as reference (say X1) and picked

the relation r ∈ Rs = {in, left, right, front, behind, below, above} that best

described the position of the second object, X2, relative to X1. For testing, we

calculated the spatial predicates Rr(X2, X1), for all r ∈ Rs for all 63 annotated

frames and labeled each according to the relation of maximum predicate value. This

gave a classification error rate of 3/63 ≈ 4.8%. However, 2 of the errors were due

to tracking issues and not the spatial predicates per se: in both Stack executions,

significant part of the book at the bottom overlapped the top one (the tracked point

clouds were barely distinguishable), so in dominated above. The third error was

from a Stir instance (during the stirring phase), where we decided in with a ground

truth of above, which was the second largest predicate. Overall, we believe that,

up to severe tracking inaccuracy, our spatial relation estimation can be considered

reliable.

In Fig. 2.5, we depict part of the temporal evolution of the spatial predicate

vector of the ladle relative to the bowl for two executions of Stir (samples from

29

the corresponding PVS for all relations in Rf): one performed by a human and one

by our robot. From the figure, we can see that our system can reliably track the

temporal evolution of spatial relations in both observation and execution scenarios.

2.4.3 Action classification

To evaluate the discriminative performance of our proposed representation, we

begin by forming the matrix D = (dij) of all pairwise distances for our Na = 21

manipulation executions, where dij = d(Ai, Aj), for i, j = 1, . . . , Na. We depict the

values of D in Fig. 2.6. As expected, D is symmetric with zero diagonal. Manipu-

lation executions of the same semantic class were grouped together to consecutive

indices (e.g., 1-8 for Pour, 9-14 for Transfer, 15-16 for Stack and 17-21 for Stir).

Given this, the evident block-diagonal structure of low distance values in D (blue re-

gions) suggests that the proposed representation can be quite useful in classification

tasks.

To confirm this intuitive observation, we considered a clustering scenario by

applying the Affinity Propagation algorithm [42] on our data. Affinity Propagation

is an unsupervised clustering algorithm that does not assume prior knowledge of the

number of classes. Instead, the resulting number of clusters depends on a set of real-

valued “preference” parameters, one for each data point, that express how likely the

point is to be chosen as a class “exemplar” (cluster centroid). A common choice [42]

is to use the same preference value for all points, equal to the median of all pairwise

similarities. A similarity measure between actions Ai and Aj, for i, j = 1, . . . , Na, is

30

Figure 2.6: Matrix D = (dij) of pairwise distances.

directly given by sij = −dij. Clustering using this scheme resulted in 4 clusters that

correctly corresponded to our 4 semantic classes and there were no classification

errors. In Fig. 2.7, we plot a 2-dimensional embedding of the action descriptors for

all executions, where we use the same color for all data points of the same cluster

and mark the cluster centroids. The outcome of our simple clustering experiment

confirms our intuition about matrix D (Fig. 2.6), suggesting that our proposed

abstract representation is indeed descriptive of the actual high-level manipulation

semantics.

It is worth noting that the descriptor for the robot stirring scenario was cor-

rectly classified as a Stir instance (marked in Fig. 2.7). This empirically shows

that, even when the specific movement trajectories are quite different, e.g., between

31

Figure 2.7: Clustering and embedding of our action descriptors in 2 dimensions, based on
our similarity/distance measure.

human trials and robot executions, our PVS-based representations remain relatively

invariant under the proposed distance function. Thus, our learned from observation

manipulation representations could be used to provide additional constraints for

robot control policies.

2.5 Summary

In this chapter, we introduced our direct take on grounding spatial relations,

by properly partitioning the space around an object to a set of relative spaces, and

then proposed a novel compact representation that captures the geometric object

interactions during the course of a manipulation. Experiments conducted on both

human and robot executions validate that 1) our relative space models successfully

capture the geometric interpretation of their respective relation and the correspond-

ing predicates can be reliably evaluated; 2) the temporal evolution of object-wise

32

spatial relations, as encoded in our abstract representation, is indeed descriptive of

the underlying manipulation semantics.

Knowledge of models for spatial relations for common natural language prepo-

sitions is a very strong capability by itself. First, it enables certain types of nontrivial

spatial reasoning, which is a fundamental aspect of intelligence. Second, it narrows

the gap between observation and execution, with language acting as the bridge. Par-

ticularly, from the human-robot interaction perspective, a robot equipped with these

models will be able to answer a rich repertoire of spatial queries and understand

commands such as: “pick up the object on the left of object X and in front of object

Y”. Another such task, closer in spirit to this work, is the automatic generation of

natural language descriptions for observed actions.

In this work, the matching of our spatial-relation sequence representations is

performed at once on whole sequences. Currently, we are investigating the possibility

of modifying the matching algorithm into an online one. An online action matching

algorithm is needed if we want a fast system that observes actions and is able

to predict during their course (e.g., for monitoring the correctness of execution).

Additionally, here, we only took into account one aspect of manipulation actions:

object-wise spatial relations. A complete action model, that would attempt to bridge

the gap between observation and execution, needs to be a multi-layer combination

of spatial relations and many other aspects, such as movement trajectories, objects,

goals, etc.

33

Chapter 3: Topology-Aware Non-Rigid Point Cloud Registration

In this chapter, we introduce a non-rigid registration pipeline for pairs of un-

organized point clouds that may be topologically different. Standard warp field esti-

mation algorithms, even under robust, discontinuity-preserving regularization, tend

to produce erratic motion estimates on boundaries associated with ‘close-to-open’

topology changes. We overcome this limitation by exploiting backward motion:

in the opposite motion direction, a ‘close-to-open’ event becomes ‘open-to-close’,

which is by default handled correctly. At the core of our approach lies a general,

topology-agnostic warp field estimation algorithm, similar to those employed in re-

cently introduced dynamic reconstruction systems from RGBD input. We improve

motion estimation on boundaries associated with topology changes in an efficient

post-processing phase. Based on both forward and (inverted) backward warp hy-

potheses, we explicitly detect regions of the deformed geometry that undergo topo-

logical changes by means of local deformation criteria and broadly classify them as

‘contacts’ or ‘separations’. Subsequently, the two motion hypotheses are seamlessly

blended on a local basis, according to the type and proximity of detected events.

Our method achieves state-of-the-art motion estimation accuracy on the MPI Sin-

tel dataset. Experiments on a custom dataset with topological event annotations

34

demonstrate the effectiveness of our pipeline in estimating motion on event bound-

aries, as well as promising performance in explicit topological event detection.

3.1 Introduction

Motion estimation in 3D is a problem of great importance in computer vi-

sion, robotics, and computer graphics, playing a central role in a wide range of ap-

plications that include 3D scene reconstruction/modeling, human and object pose

tracking, robot localization, augmented reality, human-computer interfaces and de-

formable shape manipulation. The advent of affordable, commercial depth sensors

has caused significant research effort on 3D motion estimation from 3D input, lead-

ing to the development of RGBD algorithms for fast visual odometry [43,44], efficient

and accurate scene flow estimation [45, 46], as well as notable SLAM systems for

both static [47,48] and dynamic [49,50] environments.

Given the availability of 3D input, dense non-rigid registration is the most

general motion estimation problem and it is particularly challenging. In its general

form, the problem can be described as computing a motion field, densely supported

on the surface of a 3D shape, that deforms the latter in order to geometrically align

it to another, fixed “template” shape. This process of non-rigid 3D registration

shares fundamental similarities with 2D image registration, known in the computer

vision community as optical flow estimation: both problems pose similar challenges

in deriving formulations that lead to accurate alignment while encoding reasonable

prior constraints (regularization) to overcome ill-posedness.

35

A classical problem variant that is closely related to 3D non-rigid registration

is that of RGBD scene flow. Given a pair of images, scene flow refers to the per-pixel

3D motion of observed points in space from the first frame to the second; optical

flow refers to the per-pixel 2D projected motion. There have been a number of

successful recent works on scene flow estimation from RGBD frame pairs, following

both classical (variational) [45,46,51–53] and deep learning [54] frameworks. While

of great relevance to a number of motion reasoning tasks, RGBD scene flow targets

a specific instance of dense 3D motion estimation, as it inherently registers pairs of

2.5D geometries (depth maps). This hinders its application in scenarios that require

alignment of fully 3D geometries, such as model-to-frame registration for dynamic

reconstruction or model-to-model shape deformation.

Recently introduced dynamic reconstruction pipelines from RGBD input [49,

50, 55, 56] solve a more general problem by implementing warp field optimization

algorithms for their model-to-frame registration step. Despite adopting different

approaches for their model representations and surface fusion steps, they all rely

on similar, point cloud based formulations for non-rigid registration. Scenes with

dynamic topology are a challenging case for dynamic reconstruction systems: [49]

and [50] make no provisions at all for these cases, while [55] and [56] deal with

registration errors that occur because of dynamic topology at a subsequent stage,

by discarding problematic regions and reinitializing model tracking. The fully volu-

metric approaches of [57] and [58] do not use point representations for registration,

directly aligning Signed Distance Fields (SDFs) [59] instead. While they intrinsi-

cally handle topological changes, significant scalability limitations are introduced by

36

relying on volumetric representations. To the best of our knowledge, there exists no

non-rigid point cloud registration algorithm producing warp fields that are error-free

on motion boundaries induced by dynamic scene topology.

We note that, throughout our discussion, we use the term ‘point cloud’ to

refer to a geometry representation by a discrete point set sample of the underly-

ing surface, as opposed to a volumetric 3D image. Our broad definition does not

preclude additional per-point attributes. Therefore, oriented point clouds (point

sets equipped with per-point normals) and surfel clouds (oriented point clouds with

per-point radii) both fall within what we refer to simply as point cloud based rep-

resentations.

Contributions. We introduce a complete pipeline for the non-rigid registra-

tion of unorganized, oriented 3D point cloud pairs, which explicitly detects topology

changes between the input point sets and produces piecewise-smooth warp fields

that respect motion boundaries that result from these events. At the core of our

approach lies a general warp field estimation algorithm (Section 3.3.3), inspired by

those employed in recent dynamic reconstruction systems from RGBD input. We

improve motion estimation on motion boundaries associated with topology changes

in an efficient post-processing phase (Section 3.3.4) that exploits the different prop-

erties of warp fields that are estimated in different directions (i.e. forward and

backward) with respect to different types of topological events (i.e. ‘contact’ or

‘separation’, Section 3.3.2). After explicitly detecting regions of topology change

events by means of simple, intuitive tests of local deformation, our method blends

the forward and inverted backward motion hypotheses on a local basis, based on

37

the type and proximity of detected events, ensuring smooth, seamless hypothesis

transitions on the deformed surface. This stage makes no assumptions about the

underlying registration engine and can be easily adapted for integration into exist-

ing pipelines. The implementation of our warp field estimation module (without the

topology event handling) is openly available as part of our point cloud processing

library [17]. Furthermore, the ability to detect and classify motion boundaries as-

sociated with dynamic topology is a byproduct of our pipeline that may be useful

in tasks beyond geometric registration.

After discussing related work, we present our proposed method in detail in

Section 3.3. In Section 3.4, we provide two kinds of quantitative evaluation of our

approach, focusing on our registration accuracy and the effectiveness of our topology

event handling framework, respectively.

3.2 Related work

RGBD scene flow estimation. The term ‘scene flow’ was introduced in [60]

to refer to “the three-dimensional motion field of points in the world, just as optical

flow is the two-dimensional motion field of points in an image.” Since then, signif-

icant research focus has shifted towards scene flow estimation from RGBD input.

The formulation of [51] couples an L1-norm data term derived from the optical flow

and range flow [61] constraints with weighted TV regularization. In [52], the authors

follow a similar variational approach but use a rigid motion parameterization of the

flow field, computing 6DoF per-pixel transformations and enforcing a local rigidity

38

prior on the solution. A 6DoF local parameterization is also used in [62], which in-

troduces a correspondence search mechanism that relies on 3D spheres rather than

image plane patches, and effectively handles large displacements. In [63], a proba-

bilistic approach for joint segmentation and motion estimation method is proposed;

a depth-based segmentation is used for motion estimation, which is in turn regu-

larized based on the mean rigid motion of each layer. A joint segmentation and

scene flow estimation method is also presented in [53], which assumes that the scene

movement can be described by a small number of latent rigid motions. Starting

with a spatial k-means clustering for the motion label initialization, the algorithm

iterates between motion estimation and segmentation (soft labeling), merging la-

bels in the process. In [45], the first real-time RGBD variational scene flow method

is introduced, achieving state-of-the-art accuracy. An efficient joint odometry and

piecewise-rigid scene flow estimation method is proposed in [46], where the scene is

segmented into ‘static’ and ‘moving’ geometric clusters, from which odometry and

independent non-rigid motions are computed.

As mentioned in our introduction, scene flow solves a somewhat restricted

problem in the context of dense 3D registration, as the support of the computed

motion field is image bound.

Dynamic scene reconstruction. General non-rigid 3D registration algo-

rithms have been developed in the context of online reconstruction of dynamic

scenes from RGBD input. Most of them are formulated within a non-rigid Iter-

ative Closest Point (ICP) framework, similar to the one introduced in [64], with the

goal of registering a point cloud representation of the scene model to the current

39

frame, while there also exist purely volumetric approaches [57] that align Signed

Distance Field (SDF) geometry representations. DynamicFusion [49] was the first

system to achieve high quality, real-time dense reconstructions from RGBD input.

While it performs volumetric (SDF) fusion [59], its warp field estimation algorithm

is based on oriented point cloud renderings of the model geometry. The estimated

warp field is defined on a sparse ‘Embedded Deformation’ (ED) graph [65], with a

6DoF transformation attached to each node, and its evaluation on arbitrary points

is performed via interpolation. The registration objective consists of a point-to-

plane ICP cost, coupled with an ‘As-Rigid-As-Possible’ (ARAP) [66], hierarchically

defined regularization term, both under robust loss functions. The non-rigid tracker

of VolumeDeform [50] does not rely on an ED graph and estimates individual 6DoF

transformations for every source geometry point. Its cost function consists of a dense

point-to-plane cost, a sparse point-to-point term derived from SIFT [67] correspon-

dences, and an ARAP prior based on a ‘flat’ neighborhood graph, with all terms

being quadratic. Fusion4D [55] combines the input of multiple range cameras for

the task of dynamic reconstruction, using an ED warp field parameterization and

following a similar registration objective formulation that additionally includes a

‘visual hull’ term. CoFusion [68] and MaskFusion [69] segment, using semantic and

motion cues, and reconstruct multiple moving objects in real-time, assuming that

every object moves rigidly. SurfelWarp [56] is a purely point (surfel) cloud based

approach that also relies on an ED motion field representation and uses the same

registration costs as DynamicFusion, but under the quadratic loss function. On the

other end of the spectrum, KillingFusion [57] and SobolevFusion [58] are purely vol-

40

umetric approaches that rely on direct SDF-to-SDF alignment [70] via variational

minimization under novel regularizers that enforce the motion field to be isometric

and preserve level set geometry.

All of the above systems produce results of remarkable quality, especially given

their real-time budget. However, with the exceptions of [55], [56], and [57], they can-

not handle scenes with dynamic topology, with the ‘close-to-open’ case (‘separation’,

in our terminology) being particularly problematic. According to our introductory

discussion, [55] and [56] deal with these cases essentially by discarding affected re-

gions, while the volumetric registration approaches of [57] and [58] are inherently

immune to these events. Our proposed method is the first to tackle dynamic topol-

ogy within the context of motion estimation and within a scalable point-based rep-

resentation framework.

3.3 Our approach

3.3.1 Problem statement

Given a pair of unorganized 3D point sets, our goal is to estimate a warping

function that non-rigidly deforms the first point cloud (source geometry) towards

the second one (target) in a piece-wise smooth manner.

Let S = {xsi} ⊂ R3 and D =
{
xdi
}
⊂ R3 be the source and target geometry

point sets, respectively, and W : R3 7→ R3 be a warping function. In our non-rigid

alignment setting, W is required to have the following properties:

• The image of point set S viaW ,W [S], should be aligned as close to the target

41

geometry D as possible. Typically, this is formulated as the minimization of

the sum of residuals between points in W [S] and their corresponding points

(e.g., nearest neighbors) in D.

• Local transformations of neighboring points that lie on the same moving sur-

face in S should be similar; i.e. W should be smooth. At the same time,

motion discontinuities should be preserved: neighboring points in S that lie

on independently moving surfaces should be allowed to have different local

transformations. This combined prior is known as piecewise-smoothness.

In a typical registration objective minimization formulation, the first property is

expressed by the sum of registration residuals (e.g., point-to-point and/or point-

to-plane distances) over corresponding point pairs in the objective (data term),

while the second one renders the otherwise under-constrained problem well-posed

by introducing terms that penalize differences in local transformations of neighboring

points (regularization term).

The loss function used to model the regularization penalty terms, plays an

important role in the behavior of the warping function in motion boundary regions.

For example, it is well known from the optical flow literature that quadratic regu-

larization tends to oversmooth motion boundaries. On the other hand, robust loss

functions (e.g., L1-norm approximations for the penalty terms) are more effective in

producing piecewise-smooth motion fields that preserve discontinuities.

In this work, we focus on estimating warp fields that respect motion bound-

aries resulting from changes in scene topology. Our notion of topology is directly

derived from object-level connectivity: a change in scene topology can occur either

42

when two or more separate objects come into contact or when two or more initially

connected objects separate. We note that we use the term ‘object’ simply to re-

fer to independently moving scene surface regions, without attaching to them any

semantic meaning or assuming prior knowledge thereof.

In the following, we show that simply adopting a robust loss function for

regularization still produces visible warping artifacts in motion discontinuity regions

that result from scene topology changes, and we present a complete registration

pipeline that effectively and efficiently solves this problem.

3.3.2 Motivation and overview of our approach

Motion estimation errors on motion boundaries typically manifest as over-

smoothing of the warp field because of excessive regularization and can be suppressed

by eliminating regularization penalty terms for points in S that lie on different sides

of the discontinuity. However, without any knowledge about S and its motion (e.g.,

some form of segmentation into independently moving objects), we cannot obtain a

“correct” regularization graph a priori. Instead, the common choice is to use a k-NN

graph of points in S to define the regularization terms. It is easy to see that this

choice is particularly problematic in cases where connected objects in S move apart

in D, as k-NN regularization over S will introduce penalty terms that relate points

that lie on different objects, resulting in some amount of motion field oversmoothing

over the separation boundary.

Such a challenging scenario that involves object ‘separations’ is depicted in

43

(a) Left, middle: color frames (source and target) captured by an RGBD camera. Right:
warped source frame by the result of a standard non-rigid registration algorithm.

(b) Results of our proposed method. Left: detected (red) topological event regions (Section
3.3.4.1). Middle: blending weight wib ∈ [0, 1] for the inverted backward hypothesis using
a ‘blue-to-red’ colormap (blue: forward, red: inverted backward) shown at the bottom
(Section 3.3.4.2). Right: source frame transformed by our topology-aware warp field.

Figure 3.1: Non-rigid registration under a ‘close-to-open’ topology change.

Fig. 3.1a, where the general, topology-agnostic warp field estimation algorithm de-

scribed in Section 3.3.3 was used to non-rigidly align two RGBD frames. Despite

the fact that the algorithm’s regularization term is formulated based on the robust,

discontinuity-preserving Huber-L1 loss function (see Section 3.4.1 for parameter de-

tails), the registration result (warped source geometry) shows visible artifacts near

the object separation areas. Quadratic regularization is known to induce even more

excessive smoothing on motion boundaries. Since quadratic and L1-norm approx-

imation regularization types are the most commonly used ones in the literature,

most current non-rigid registration algorithms are expected to exhibit a very similar

behavior on these types of motion boundaries.

44

At the same time, it is clear that any change in topology between S and D

will be directly reflected on the (different) nearest-neighbor graph structures of the

source and target geometries. We exploit this fact in the following way. Consider

the case where two or more objects that are connected in S become separate in

D. As discussed above, estimating the warp field Wf
S that aligns S to D using the

source geometry’s k-NN graph to define the regularization penalties is expected to

result in some amount of oversmoothing over the motion boundary of the separation.

However, in the backward motion direction (from D to S), the same topology change

manifests as a connection of separate objects. Estimating the backward warp field

Wb
D that aligns D to S using the target (D) geometry’s k-NN graph to define the

regularization penalties should not exhibit any oversmoothing over the connection

boundary, because the corresponding k-NN graph edges that would define regular-

ization terms over the discontinuity are not there in the first place. Inverting the

warping function Wb
D yields another forward warp field hypothesis, Wb

S, that will

be free of oversmoothing over separation motion boundaries. Of course, the latter,

being derived from Wb
D, may suffer from oversmoothing over motion boundaries

that correspond to object separations in the backward motion direction (from D to

S), or, equivalently, to objects coming into contact from S to D. These cases are

expected to be handled correctly in the first place by the standard forward warp,

Wf
S .

Based on the above observations, the standard forward warp Wf
S is expected

to exhibit good behavior over contact boundaries, but to oversmooth separation

boundaries. On the other hand, the inverted backward warp Wb
S is expected to

45

Input point cloud pair
(S,D)

Estimate forward warp
(S→D)

Estimate backward warp
(D→S)

Detect stretched
areas in S

Detect compressed
areas in S

Blend forward
and backward warp

hypotheses

Topology-aware
forward warp (S→D)

Figure 3.2: Overview of our topology-aware non-rigid registration pipeline.

behave the opposite way, preserving separation discontinuities, but possibly blurring

motion estimates in contact areas. Our proposed registration pipeline builds upon

this idea by first detecting regions in S that are likely to be contact or separation

boundaries, and then locally blending the warp hypothesesWf
S andWb

S accordingly

in a seamless manner. The final result is a piecewise-smooth warp field that aligns

S to D and respects motion boundaries because of changes in scene topology.

An overview of our approach is provided in Fig. 3.2. The (topology-agnostic)

warp field estimation algorithm used to obtain the initial forward and backward warp

hypotheses is described in detail in Section 3.3.3. Our topology event detection

mechanism, as well as our local hypothesis blending approach, are presented in

46

Section 3.3.4.

3.3.3 Warp field estimation

We implement our warp field estimation algorithm within a non-rigid Iterative

Closest Point (ICP) framework [64], similarly to the non-rigid trackers used in the

recently introduced dynamic reconstruction pipelines of [49], [50], and [56].

Algorithm 1 W = NonRigidICP(D,S,W0)

1: W ←W0

2: repeat
3: S ′ ←W [S]
4: C ← FindCorrespondences(D,S ′)
5: Witer ← OptimizeWarpField(D,S ′, C)
6: W ←Witer ◦W
7: until Witer is close to the identity warp

Given the source and target geometries S and D, represented as oriented point

clouds, as well as an initial estimateW0 of the unknown warp fieldW (usually taken

as the identity warp), the algorithm iteratively refines the latter until convergence

has been reached. At the top level, the process iterates between a point corre-

spondence search step between the warped source W [S] (according to the current

W estimate) and D, and a warp field optimization step that updates W given the

established point correspondences (Algorithm 1). The two algorithm phases are

presented in detail in the following.

47

3.3.3.1 Correspondence association

Our framework supports two complementary types of point correspondences

between the (warped) source and the target geometries: dense correspondences that

are established based on spatial point proximity, and sparse correspondences that

result from keypoint matching. Each individual correspondence is represented as a

pair of point indices, whose first component indexes a point in S and its second one

a point in D: C = {Cdense, Csparse}, where Cdense, Csparse ⊆ {1, . . . , |S|} × {1, . . . , |D|}.

We support two mechanisms to establish dense correspondences. By default,

we assume that both S and D have a fully 3D structure and we establish dense

correspondences by finding the nearest-neighbor in D, in terms of Euclidean dis-

tance, of each point in W [S], with the search being performed efficiently by parallel

kd-tree queries. For certain applications that only require frame-to-frame (2.5D-

to-2.5D) or model-to-frame (3D-to-2.5D) registration, we can further speed up the

process by obtaining projective correspondences. This amounts to projecting S and

D onto the target frame image and extracting correspondences based on points that

are projected to the same pixel. This is the mechanism adopted in most real-time

reconstruction pipelines [47,49,50].

In many common situations, dense geometric/depth correspondences alone are

not enough to disambiguate the underlying motion. For example, tracking points

on flat surfaces that lack geometric texture and slide parallel to each other may

exhibit drift. Establishing robust keypoint correspondences between the source and

target geometries can effectively mitigate this problem. We assume that our input

48

geometries are equipped with sparse interest points; our sparse correspondences

are established by the interest point descriptor matches between S and D. In our

implementation, we focus on input geometries that are either RGBD frames or 3D

reconstructions from RGBD input. The availability of regular images along with

(registered) geometry allows us to adopt SIFT keypoint [67] (lifted to 3D) matches

for our sparse correspondences.

To make optimization more stable, we discard correspondence candidates from

the above mechanisms that do not meet some basic proximity and local similarity

criteria. Let {nsi},
{
ndi
}

, and {csi},
{
cdi
}

be the surface normals and colors (e.g.,

RGB value 3-vectors) of the source and target geometries, indexed in the same

way as their support points in S and D. A correspondence candidate (i, j) ∈

{1, . . . , |S|} × {1, . . . , |D|} is considered valid and used in the optimization if all

of the following hold:

• ‖xsi − xdj‖2 < θd

• arccos (nsi
>ndj) < θn

• ‖csi − cdj‖2 < θc

In the above, θd is a point distance threshold, θn is a normal angle threshold, and

θc is a color “distance” threshold.

3.3.3.2 Warp field optimization

Given a set of dense and sparse point correspondences, we shall now describe

our warp field optimization step. Modeling the warp field using locally affine [64]

49

or locally rigid [49] transformations provides better motion estimation results than

adopting a simple translational local model, due to more effective regularization. In

our approach, we adopt a locally rigid (6DoF) model.

Instead of computing a unique rigid transformation for each point in S, we

use the more efficient embedded deformation graph representation [65] for the warp

field W , similarly to [49] and [55]. Let G = {(gi, σi, Ti)} be the set of virtual

deformation nodes, where gi ∈ R3 is the position of the ith node, σi is a radius

parameter that controls the ith node’s area of effect, and Ti ∈ SE(3) is the 6DoF

rigid transformation attached to the ith node. The deformation node positions

are obtained by downsampling the source geometry S by means of a voxel grid of

bin size rb. A reasonable choice for σi that ensures sufficient area of effect overlap

among neighboring nodes is σi = σdef ≡ rb/2, for i = 1, . . . , |G|. As in [50], each

local transformation Ti is parameterized during optimization by a 6D vector θi of 3

Euler angles and 3 translational offsets. The effect of the warp field W , represented

by G, on a point x ∈ R3 is given by interpolating the local node deformations in

the neighborhood of x. Let N (x) ⊆ {1, . . . , |G|} be the indices of the k-nearest

neighbors of x in G. The local transformation parameter vector at x is given by:

θ(x) ≡
∑

i∈N (x) wi(x)θi∑
i∈N (x) wi(x)

, (3.1)

where wi(x) = exp
(
−‖x− gi‖2

2 /(2σ
2
i)
)
. The image of x via W is then:

W(x) ≡ Rot(θ(x))x+ Trans(θ(x)), (3.2)

50

where Rot(θ) and Trans(θ) extract the rotation matrix and translation vector from

our 6D parameterization.

We note that the above 6D parameterization is only used within optimization

(line 5 of Algorithm 1) and that both the estimated incremental warpWiter and the

final composite estimateW have their node transformations Ti expressed in terms of

SE(3) transformation matrices. The fact that we continuously warp S and compute

Witer starting from the identity warp, combined with the smoothness prior imposed

on the warp field (shown below), allows us to overcome any problems associated

with Euler angle parameterizations of rotation.

Our registration objective, as a function of the unknown warp field W , which

in the context of Algorithm 1 is the incremental warp Witer, and the point corre-

spondences C between S and D, which are fixed for this step, is formulated as:

E (D,S, C,W) = Edata (D,S, C,W) + λstiffEstiff (W) . (3.3)

Our data term, Edata (D,S, C,W), is a weighted sum of a point-to-plane and a point-

to-point ICP cost:

Edata (D,S, C,W) = Eplane (D,S, C,W) + λpointEpoint (D,S, C,W) . (3.4)

Pure point-to-plane metric optimization generally converges faster and to better so-

lutions than pure point-to-point [71], and is the standard trend in recent rigid [47,48]

and non-rigid [49, 50, 56] registration pipelines. However, as discussed in Section

51

3.3.3.1, integrating a point-to-point term for robust point matches into the regis-

tration cost can effectively disambiguate motion estimation in cases where surfaces

that lack geometric texture slide parallel to each other. Similarly to [50], we use

our dense geometric correspondences Cdense to define our point-to-plane cost and our

sparse keypoint correspondences Csparse for our point-to-point cost:

Eplane (D,S, C,W) =
∑

(i,j)∈Cdense

(
ndj
> (W (xsi)− xdj

))2

, (3.5)

Epoint (D,S, C,W) =
∑

(i,j)∈Csparse

∥∥W (xsi)− xdj
∥∥2

2
. (3.6)

Our regularization term Estiff (W) directly penalizes differences in transformation

parameters of neighboring virtual nodes of G under the robust Huber-L1 loss func-

tion. If N (i) ⊆ {1, . . . , |G|} is the set of indices of the k-nearest neighbors of gi in

G, our regularization term is formulated as:

Estiff (W) =

|G|∑
i=1

∑
j∈N (i)

wijψδ (θi − θj) , (3.7)

where wij = exp
(
−‖gi − gj‖2 /(2σ2

def)
)

weights the pairwise penalties based on node

distance, and ψδ(∆θ) denotes the sum of the Huber loss function values over the

6 parameter residual components. Parameter δ controls the point at which the

loss function behavior switches from quadratic (squared L2-norm) to absolute-linear

(L1-norm). Since L1-norm regularization is known to better preserve solution dis-

continuities, we use a small value of δ = 10−4. Given our locally rigid motion

model, this regularization scheme enforces an ‘As-Rigid-As-Possible’ [66] prior to

52

the estimated warp field.

The registration objective of equation (3.3) is non-linear in the 6|G| unknowns.

We minimize E (D,S, C,W) by performing a small number of Gauss-Newton itera-

tions. As in [55], we handle non-quadratic terms using the square-rooting technique

of [72]. At every step, we linearize E around the current solution θ ∈ R6|G| (vector

concatenation of all node transformation parameters θi) and obtain a solution in-

crement θ̂ by solving the system of normal equations J>Jθ̂ = J>r, where J is the

Jacobian matrix of the residual terms in E and r is the vector of (negative) resid-

ual values. We solve this sparse system iteratively, using the Conjugate Gradient

algorithm with a diagonal preconditioner.

3.3.4 Handling topology changes

In our post-processing phase for handling topology change motion boundaries,

we first explicitly detect likely contact and separation regions in the source geometry,

and proceed by appropriately blending our (default) forward and inverted backward

warp hypotheses in a local yet seamless manner. It follows from the discussion in

Section 3.3.2 that, as far as topology changes are concerned, the forward warp is

only problematic in separation areas. However, instead of only focusing on and

amending separations, it is beneficial to also explicitly consider contact events. As

will become clear in the following, considering both types of events and treating

them symmetrically robustifies their detection and allows for a less biased hypothesis

blending scheme.

53

Using the same notation as in Section 3.3.2, let Wf
S be the warp field that

aligns S to D and Wb
D the backward warp that aligns D to S, both computed by

Algorithm 1. We will be using the ‘S’ subscript for forward (S → D) motion entities

and the ‘D’ subscript for backward (D → S) ones. For the needs of the following

discussion, we will consider these motion fields to be represented by the per-point

local rigid transformations of their support geometries, so that:

Wf
S = {T fS i, i = 1, . . . , |S|}, (3.8)

Wb
D = {T bDi, i = 1, . . . , |D|}. (3.9)

To invert Wb
D in order to obtain an alternative forward warp, we appropriately

rebase its inverse local transformations on S. To that end, we first compute the

target geometry’s imageWb
D[D] (which should be closely aligned to S) and, to each

point xsi ∈ S, we assign the transformation T bD
−1

j , where j is the index of the nearest

neighbor of xsi in the point set Wb
D[D]. Of course, we assume that the latter is

indexed in the same way as D. The inverted backward warp is then represented as:

Wb
S = {T bSi, i = 1, . . . , |S|}, (3.10)

where T bSi = T bD
−1

j and j is the nearest neighbor index of xsi inWb
D[D]. Analogously,

we obtain an alternative backward warp, by inverting our forward hypothesis:

Wf
D = {T fDi, i = 1, . . . , |D|}, (3.11)

54

where T fDi = T fS
−1

j and j is the nearest neighbor index of xdi inWf
S [S]. To summarize,

we have two forward motion (S → D) warp hypotheses (Wf
S and Wb

S) and two

backward motion (D → S) ones (Wb
D and Wf

D).

3.3.4.1 Detecting topology change events

We detect topology change regions in S based on how our warp estimates

affect local neighborhoods of the source geometry.

Naturally, we expect that if xsi ∈ S is close to a separation boundary, its

distance to some of its neighbors in S should increase after applying the correct

warp to S. We shall refer to this effect as neighborhood stretching. The dual case

of a contact event manifests exactly the same way in the backward motion direction

(stretching of neighborhoods of D), in which the event is perceived as a separation.

In the following, we will use a local measure of stretch over points in S to detect

separation areas, and map the same measure over D in the backward direction onto

S to obtain a dual measure of “compression” that will allow us to detect contacts.

We quantify the above intuition by defining a local “stretch” operator for

point xi ∈ X ⊆ R3 under the warp W as the maximum ratio of the distance to its

neighbors before and after applying W :

Stretch (i,X,W) ≡ max
j∈N (i)

‖W(xi)−W(xj)‖2

‖xi − xj‖2

, (3.12)

where N (i) ⊆ {1, . . . , |X|} indexes the neighbors of xi in X that lie within ρs

distance from it. The choice of the neighborhood radius value ρs depends on the

55

scale and resolution of the input geometries. For close-range point clouds acquired

with Kinect-like cameras, we use ρs = 1.5cm.

To each point in S, we associate one stretch value for each of our two forward

warp hypotheses, according to definition (3.12). For i = 1, . . . , |S|, we have:

StretchfS(i) = Stretch
(
i, S,Wf

S

)
, and (3.13)

StretchbS(i) = Stretch
(
i, S,Wb

S

)
. (3.14)

We also compute the local stretch of the target geometry D under each of the two

backward warps:

StretchfD(i) = Stretch
(
i,D,Wf

D

)
, and (3.15)

StretchbD(i) = Stretch
(
i,D,Wb

D

)
, (3.16)

which we subsequently map onto S, interpreting them as a compression measure

(contact indicator), according to:

CompressfS(i) = StretchfD

(
NN

(
Wf

S (xsi) , D
))

, (3.17)

CompressbS(i) = StretchbD
(
NN

(
Wb

S (xsi) , D
))

, (3.18)

where NN(x,X) ∈ {1, . . . , |X|} is the index of the nearest neighbor of point x in

point set X.

Using the above point-wise stretch/compress values on S, we extract subsets

56

Algorithm 2 ExtractTopologyEvents

Input: S,StretchfS,Stretch
b
S,CompressfS,CompressbS

Output: Con,Sep

1: Con← ∅
2: Sep← ∅
3: for i = 1, . . . , |S| do

4: stretch← max
{
StretchfS(i),StretchbS(i)

}
5: compress← max

{
CompressfS(i),CompressbS(i)

}
6: if stretch > τ and stretch > α · compress then
7: Sep← Sep ∪ {xsi}
8: end if
9: if compress > τ and compress > α · stretch then

10: Con← Con ∪ {xsi}
11: end if
12: end for

of the source geometry that are likely to lie on topology change motion boundaries.

Let Sep,Con ⊆ S be the sets of candidate separation and contact boundary points,

respectively. According to the above discussion, points on a separation boundary

are expected to have high stretch scores, while points on a contact boundary should

exhibit high local compression. To decide whether a point in S is a boundary

candidate, we perform two symmetric tests per case that rely on two threshold

values, an absolute score threshold τ , and a relative (ratio) threshold α. A point

of S is a member of Sep (Con) if and only if the maximum of its two stretch

(compress) scores is greater than τ and also greater than α times its maximum

compress (stretch) score. The process is summarized in Algorithm 2. A sample

output is shown in Fig. 3.1b (left), marked in red; note that Con = ∅ in this case.

As we will show in Section 3.4.3, the above procedure is very effective at

detecting and classifying topology changes, but, because of the continuous nature

57

of our local stretch/compression measures and depending on the selected threshold

values, it may produce “false positives” (e.g., in areas of actual deforming surface

stretching or compression but constant topology). However, under the assumption

that our two forward warp hypotheses behave similarly in the false positive areas

and, as will become clear in the next section, this does not affect our final warp

estimate.

3.3.4.2 Local hypothesis blending

Our blending scheme produces a topology-aware warp field WS by combining

the forward warp hypotheses Wf
S and Wb

S on a per-point basis. Our objective is

to assign a higher weight to Wb
S (inverted backward warp) near separation areas,

and ensure that Wf
S (forward warp) has a stronger weight near contact areas. At

the same time, it is desirable that point weights vary smoothly on S, so that our

warp blending does not introduce seam artifacts on WS[S] due to differences in our

original warp hypotheses.

We achieve the above by attaching a smoothly decaying kernel on each of

our detected event points in Con and Sep and locally computing the weight for

each event class. Assuming a maximum radius of effect ρe (free parameter) for

our event points, we model the influence of each event with an RBF kernel of

bandwidth σ = ρe/3. The weights wif and wib of Wf
S and Wb

S for the source point

xsi are computed by accumulating influences of the event points in Con = {ci} and

58

Algorithm 3 LocalHypothesisBlending

Input: S,Wf
S ,Wb

S,Con = {ci},Sep = {si}, ρe
Output: WS = {TSi, i = 1, . . . , |S|}

1: σ ← ρe/3
2: for i = 1, . . . , |S| do
3: N ← RadiusSearch (xsi ,Con, ρe)
4: wf ← 1
5: for j ∈ N do
6: wf ← wf + exp

(
−‖xsi − cj‖

2 /(2σ2)
)

7: end for
8: N ← RadiusSearch (xsi ,Sep, ρe)
9: wb ← 0

10: for j ∈ N do
11: wb ← wb + exp

(
−‖xsi − sj‖

2 /(2σ2)
)

12: end for
13: w ← wf + wb
14: wf ← wf/w
15: wb ← wb/w

16: TSi ← SE3
(
wfT

f
S i + wbT

b
Si

)
17: end for

Sep = {si} respectively that are within a ρe-radius from xsi :

wif =
1

Z

1 +
∑

j∈NC(i)

exp
(
−‖xsi − cj‖

2 /(2σ2)
) , and (3.19)

wib =
1

Z

 ∑
j∈NS(i)

exp
(
−‖xsi − sj‖

2 /(2σ2)
) , (3.20)

where Z is a normalizing constant ensuring that wif + wib = 1, and NC(i), NS(i)

index the ρe-radius neighbors of xsi in Con and Sep respectively. In the absence

of any topology event influence (e.g., for xsi at least ρe from any event point), the

above defaults to wif = 1 and wib = 0, giving full weight to the standard forward

hypothesis Wf
S . The local transformation of our final, topology-aware warp field

59

estimate WS = {TSi, i = 1, . . . , |S|} at location xsi is then given by:

TSi = SE3
(
wifT

f
S i + wibT

b
Si

)
, (3.21)

where SE3(·) converts the linear blend of the two transformation matrices back to a

valid SE(3) transformation matrix. The complete blending process is summarized

in Algorithm 3 (see also equations (3.8) and (3.10)). A visualization of the blending

weights is given in Fig. 3.1b (middle), where each source geometry point is colored

according to its inverted backward warp hypothesis weight wib.

We note that, for source points close to topology events, one of wif and wib will

dominate the other, effectively rendering the blending of (3.21) a binary selection.

As we move farther from topology events, it is possible that the two weights assume

comparable values (e.g., at points lying between two events of different type). For

our blended output (3.21) to be seamless and error-free in that case, it is expected

that Wf
S and Wb

S do not differ significantly in areas that are “far enough” from

event points. This highlights the importance of parameter ρe, which should be of

adequate magnitude to cover event regions; we have found that values ρe ≥ 3rb work

well in practice, where rb is the resolution of our virtual deformation graph (Section

3.3.3.2).

As a concluding remark, we observe that the most costly operation of our post-

processing phase is the calculation, based on radius-neighborhoods, of the stretch/-

compress values of Section 3.3.4.1. Algorithm 3 also performs radius queries on point

sets Con and Sep, but the latter are typically very small in size. In our experience,

60

the overall running time of the entire phase is significantly smaller than a single

warp field estimation. Furthermore, in the case of RGBD input, image structure

can be easily exploited in order to accelerate the extraction of point neighborhoods.

3.4 Experiments

We conduct two sets of experiments for the evaluation of our registration

pipeline. The first one is performed on a public dataset and examines our algorithm’s

motion estimation accuracy, both with and without the topology handling phase

(Section 3.4.2). For the second one, we use a custom dataset with topology event

annotations and evaluate our event detection performance, as well as our estimated

warp field quality in the presence of separation events (Section 3.4.3).

3.4.1 General setup details

For both sets of experiments, the input is RGBD data, either synthetic (first

set) or captured by a Kinect-like camera (second set).

Point cloud generation. RGBD frames are converted to point clouds that

are equipped with surface normal and color information, as well as a sparse set of

interest points derived from SIFT features. In all cases, the full resolution of the

input depth map is used, which is 1024×436 for the synthetic sequences and 640×480

for the camera data. We use a fixed maximum depth of 5m for all sequences in the

first set, and vary the cut-off value in the range of 0.8m to 1.5m for the camera data,

depending on the sequence. For normal estimation, we use k-NN neighborhoods with

61

k = 30 in our first set of experiments, and ρ-radius neighborhoods with ρ = 1.5cm

in our second set. SIFT keypoints are extracted from the RGB images and lifted to

3D, discarding the ones that lie on depth boundaries.

Warp field estimation. In the correspondence association step (Section

3.3.3.1) of our non-rigid ICP algorithm, we set the maximum correspondence dis-

tance to θd = 15cm for our first set of experiments and θd = 5cm for our second one,

while we use common values θn = 15◦ and θc = 0.4 for the maximum normal angle

and color difference (colors are RGB triplets in [0, 1]3). The embedded deformation

graph G for our warp field parameterization (Section 3.3.3.2) has a resolution of

rb = 2.5cm, with each node’s area of effect being controlled by σdef = rb/2. To

evaluate the local transformation for each point in the source geometry (equation

(3.1)), we use its 4 nearest neighbors in G. The point-to-point weight in our data

term (3.4) is set to λpoint = 2. To favor L1-norm behavior by our regularization

term (3.7), we use a small Huber loss parameter value of δ = 10−4, while we set

the term’s weight to λstiff = 200 (equation (3.3)). Regularization topology is given

by the 6 nearest neighbor nodes of G. We perform a maximum of 10 top-level ICP

iterations, while the process typically converges in less. Within each optimization

step, we perform a maximum of 5 Gauss-Newton iterations.

Dynamic topology handling. In all experiments, local stretch is computed

on neighborhoods of radius ρs = 1.5cm (Section 3.3.4.1). To detect and classify

topology change events, we use an asbsolute score threshold of τ = 2.2 and a relative

ratio of α = 1.5. For our blending step (Section 3.3.4.2), we assume that every

detected event has a radius of effect equal to ρe = 7.5cm.

62

3.4.2 Motion estimation accuracy evaluation

Due to the lack of publicly available datasets with ground truth dense 3D

motion, we perform our accuracy assessments on MPI Sintel [73], a synthetic optical

flow evaluation dataset. The dataset contains multiple sequences of (typically) 50

frames that capture motions ranging from slow, almost rigid to very large, highly

non-rigid ones. In addition to ground truth optical flow, metric ground truth depth

and camera intrinsics are provided, which we use to emulate RGBD input.

We base our evaluation on two classical optical flow performance measures, the

endpoint error (EPE) and the angular error (AE) [74]. If f̃ = (ũ, ṽ) is an optical flow

estimate at a given pixel whose ground truth value is f = (u, v), EPE is computed

as:

eEPE

(
f̃ , f

)
=
∥∥∥f̃ − f∥∥∥

2
. (3.22)

The angular error AE is defined as the angle between the 3D space-time vectors

h(f̃) = (ũ, ṽ, 1) and h(f) = (u, v, 1), as:

eAE

(
f̃ , f

)
= arccos

h(f̃)>h(f)

‖h(f̃)‖2‖h(f)‖2

, (3.23)

effectively enabling evaluation at pixels of zero flow. We convert 3D motion estimates

to optical flow by first warping the source points in 3D and then computing the 2D

point/pixel displacements as differences of the projected endpoints onto the image

plane.

We evaluate and compare three methods: PD-Flow [45], a state-of-the-art

63

scene flow algorithm, F-Warp, our general warp field estimation algorithm defined

in Section 3.3.3 (without the topology change handling phase), and FB-Warp, our

complete topology-aware warp field estimation pipeline. We run the three algorithms

on the entire duration of 12 Sintel sequences and compute the average EPE and

AE values per consecutive frame pair. We report the median and mean frame-level

average errors over each sequence in Table 3.1. Median values are not easily affected

by extreme values, often providing a better picture of how accurate estimation is

“half of the time”. We also report overall mean and median error values for each

method, computed over the total number of frames from all sequences.

Our FB-Warp method overall achieves the highest accuracy in terms of both

error metrics, followed closely by our baseline, F-Warp. PD-Flow is very accurate in

estimating slow motions (e.g., in the sleeping 2 sequence), but falls behind in most

cases, producing particularly large errors in sequences that contain very fast mo-

tions, such as ambush 5 and ambush 6. We also refer the reader to the Sintel-based

evaluation of MC-Flow [53] (Table 2 of that paper), another state-of-the-art scene

flow algorithm with significantly better performance than PD-Flow in estimating

large motions. We were unable to evaluate MC-Flow ourselves, because its imple-

mentation has not been released. While 6 of the Sintel sequences in our experiments

and the ones in [53] are common, there are significant differences between our eval-

uation setups: 1) their reported EPE and AE values are computed on one specific

frame pair per sequence, not over whole sequences as in here, 2) they downsample

their input to half its original resolution per dimension (to 512× 218), whereas we

use full resolution images, and 3) they consider only non-occluded pixels, while we

64

compute errors on all valid ones. The above prohibit reaching definitive conclusions.

However, the fact that we adopt an arguably more difficult evaluation strategy (at

full resolution, which means smaller pixel size for EPE interpretation, and evaluat-

ing over whole sequences) and still obtain comparable EPE and AE absolute values

to the ones reported in [53] (averages of 1.203 and 6.559, respectively), leads us to

argue that FB-Warp compares favorably to MC-Flow.

65

T
ab

le
3.

1:
E

va
lu

at
io

n
on

th
e

M
P

I
S

in
te

l
D

at
as

et
.

S
e
q
u
e
n
ce

F
ra

m
e
-w

is
e

E
P

E
o
v
e
r

e
n
ti

re
se

q
u
e
n
ce

F
ra

m
e
-w

is
e

A
E

o
v
e
r

e
n
ti

re
se

q
u

e
n

ce
P

D
-F

lo
w

F
-W

a
rp

F
B

-W
a
rp

P
D

-F
lo

w
F

-W
a
rp

F
B

-W
a
rp

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

a
l
l
e
y
1

0.
77

4
0.

96
4

0.
48

5
0.

51
9

0
.4

8
5

0
.5

1
6

7
.0

0
5

7
.3

1
9

8.
25

6
8.

37
9

8.
28

5
8.

36
1

a
m
b
u
s
h
5

12
.6

51
21

.1
72

1.
71

4
7.

01
7

1
.6

3
9

6
.4

1
1

30
.4

35
29

.5
05

5.
55

8
6.

92
0

5
.2

6
2

6
.3

8
6

a
m
b
u
s
h
6

25
.4

67
28

.9
81

4
.4

0
9

7
.5

3
5

5.
10

6
8.

02
8

37
.8

13
39

.4
70

7.
16

5
7.

52
0

7
.0

8
3

7
.4

5
7

a
m
b
u
s
h
7

1.
86

1
4.

96
9

0.
63

3
0.

92
5

0
.5

8
4

0
.8

9
1

11
.5

17
27

.1
46

11
.3

77
10

.8
85

1
1
.2

7
0

1
0
.7

6
3

b
a
m
b
o
o
1

1.
10

4
1.

22
1

0
.6

7
7

0
.7

1
2

0.
67

7
0.

71
3

8.
15

9
8.

56
0

5
.5

1
7

5
.7

0
5

5.
51

7
5.

71
3

b
a
m
b
o
o
2

0.
88

9
2.

62
8

0.
68

7
1.

02
7

0
.6

8
6

1
.0

1
4

7
.1

3
4

11
.9

24
8.

31
5

8.
72

9
8.

35
7

8
.6

6
9

b
a
n
d
a
g
e
1

1.
68

3
2.

16
0

0.
97

3
0.

95
7

0
.9

3
6

0
.9

3
5

15
.2

01
15

.2
44

10
.1

11
9.

82
9

9
.8

6
2

9
.6

8
1

b
a
n
d
a
g
e
2

0.
76

9
1.

06
2

0
.3

2
9

0.
33

4
0.

33
0

0
.3

3
1

9.
03

5
10

.7
54

6.
52

5
6.

55
4

6
.5

2
3

6
.5

4
2

s
h
a
m
a
n
2

0
.2

8
6

0.
31

7
0.

29
4

0.
28

4
0.

29
2

0
.2

8
4

5
.5

7
1

5
.6

4
3

7.
80

1
7.

83
8

7.
77

9
7.

83
1

s
h
a
m
a
n
3

0.
48

5
0.

55
2

0
.1

7
8

0
.2

9
1

0.
17

9
0.

29
8

8.
12

5
8.

11
5

3.
15

5
4
.5

5
9

3
.1

5
3

4.
60

4
s
l
e
e
p
i
n
g
1

0.
50

2
0
.5

1
4

0.
14

9
0.

54
1

0
.1

4
9

0.
54

1
5.

93
9

6.
11

0
1.

95
4

6
.4

8
7

1
.9

5
4

6.
48

8
s
l
e
e
p
i
n
g
2

0
.1

4
6

0
.1

4
3

0.
17

0
0.

17
1

0.
17

0
0.

17
1

2
.5

0
8

2
.5

2
0

3.
35

2
3.

33
5

3.
35

2
3.

33
5

O
v
e
ra

ll
0.

70
1

4.
12

2
0.

48
8

1.
37

9
0
.4

8
7

1
.3

3
6

7.
89

9
13

.0
09

6.
82

6
7.

21
3

6
.8

1
5

7
.1

3
6

66

3.4.3 Topology change event handling

To evaluate the performance of the topology-handling phase of our pipeline,

we collected, using a Kinect-like camera, an RGBD dataset of 7 sequences that

contain changes in scene topology. The regions of visible topology changes were

manually annotated on the color image as binary masks, drawn in freehand mode,

and classified as either contacts or separations. Our collected sequences capture the

following diverse set of actions:

• Hand-clapping (clap sequence)

• Fast hand-drumming on a desk (drum sequence)

• Two pick-and-place actions on objects lying on a flat surface or on top of each

other (stack and unstack sequences)

• A separation of two touching objects using both hands (separate sequence)

• Two drawer opening action sequences (top drawer and bot drawer)

The annotated ground truth events capture all visible instances of hand-hand, hand-

object, and object-object interaction. Snapshots of our sequences are shown in Fig.

3.3 (first two columns).

Our evaluation of this phase is twofold. First, we assess how well our detected

event points in Con and Sep (Section 3.3.4.1) relate to the ground truth events.

Second, we qualitatively and quantitatively evaluate our topology-aware motion

estimate (FB-Warp), including comparisons with our baseline algorithm (F-Warp),

as well as two scene flow estimation methods.

67

c
l
a
p

d
r
u
m

s
t
a
c
k

u
n
s
t
a
c
k

t
o
p
_
d
r
a
w
e
r

b
o
t
_
d
r
a
w
e
r

Source	state	with
ground	truth	masks Target	state Detected	events

Figure 3.3: Topological event detections on our dataset. Each row corresponds to a
different sequence. First column: source color frame with event mask overlays (blue for
contact, red for separation). Second column: target color frame. Third column: our
topological event detections overlaid on the source geometry (blue for contact, red for
separation).

68

3.4.3.1 Topology event detection

We uniformly represent topology change events as triplets ei = (li, ti, Xi),

where li ∈ {0, 1} is a binary label indicating contact or separation, ti ∈ N is the

time (frame index) of the event, and Xi ⊂ R3 is the subset of points in the source

geometry that lie very close to event motion boundaries. We use the superscript ‘gt’

to denote ground truth event entities, and ‘det’ to denote the ones associated with

detections by our algorithm. Let Egt = {egt
i } and Edet = {edet

i } denote the sets of

ground truth and detected events, respectively. Given an annotated sequence, these

are populated according to the following:

• Labels and timestamps for events in Egt come directly from the annotation

data. Ground truth event point clouds Xgt
i are obtained by the image annota-

tion binary masks, which directly mask regions of the ti-th frame’s point cloud

(input color and depth maps are registered).

• Detected events Edet are derived from the per-frame outputs of Algorithm 2.

At time k (frame pair index), we interpret the connected components, in the

Euclidean sense, of point sets Con and Sep as separate, meaningful events.

We insert all triplets (0, k,Coni) and (1, k,Sepi) into Edet, where {Coni} and

{Sepi} denote the respective connected component sets. We use a distance

threshold of 2cm for the Euclidean segmentation; to avoid noisy detections,

we discard components that contain less than 75 points.

Adopting a 3D point set based representation for the spatial extent of topology

events enables reasoning about event similarity in terms of metric distances.

69

Our assessments on spatial overlap of events will be based on the ‘ρ-overlap’

metric, defined for a pair of point clouds X1 and X2 as:

Overlapρ(X1, X2) ≡
∣∣SX2

ρ (X1)
∣∣+
∣∣SX1

ρ (X2)
∣∣

|X1|+ |X2|
, (3.24)

where SBρ (A) ⊆ A contains exactly the points in A that lie within distance ρ from

their nearest neighbor in set B. Clearly, Overlapρ(X1, X2) ∈ [0, 1]. It is easy

to verify that this metric is simply the intersection-over-union ratio for the sets

X1 ∪ SX1
ρ (X2) and X2 ∪ SX2

ρ (X1). We use a radius value of ρ = 3cm.

We derive a many-to-many matching between sets Egt and Edet by associating

events in the two sets that have a significant spatiotemporal overlap. A ground

truth event egt
i is matched to a detected event edet

j if and only if they both belong

to the same class (contact or separation), their timestamps are very close, and they

share a substantial spatial overlap. IfM = {(i, j)} is the set of event matches, then

M contains all pairs (i, j), for i = 1, . . . , |Egt| and j = 1, . . . , |Edet|, that satisfy all

three conditions:

• lgt
i = ldet

j

• |tgt
i − tdet

j | ≤ 2

• Overlapρ(X
gt
i , X

det
j) ≥ 0.2

Based on the set of all valid spatiotemporal matches M, we derive two interesting

event mappings: one that maps each ground truth event to a single detected one,

and an ‘inverse’ one that maps each detected event to a ground truth one. Both

our ‘ground truth to detected’ and ‘detected to ground truth’ mappings associate

70

an event in the first set with its match in the second one that maximizes overlap:

GtToDet(i) = arg max
j:(i,j)∈M

Overlapρ(X
gt
i , X

det
j), (3.25)

DetToGt(j) = arg max
i:(i,j)∈M

Overlapρ(X
gt
i , X

det
j). (3.26)

Of course, the above are only defined for events (ground truth/detected) that have

valid matches, i.e. (i, j) ∈M.

We present our detection results on our custom dataset in Table 3.2. On

average, our pipeline extracts three times more events than the annotated ones

(columns 2-3). This is normal, as topology changes may manifest gradually in

continuous video sequences, while our annotation process treats them as being in-

stantaneous. In columns 4-6 and 7-9, we evaluate each of the mappings GtToDet

and DetToGt in terms of event coverage (fraction of Egt and Edet, respectively,

that was matched), average spatial overlap, and average detection delay (signed dif-

ference tgt
i − tdet

j). All ground truth events are covered by our detections (column 4),

while an average of 66.47% of the detected events have a valid ground truth match

(column 7). These coverage fractions directly correspond to recall and precision,

yielding an F-score of 0.8. At the same time, the spatial overlap of matched events

is high (almost 80% on average for the covered ground truth events) and within the

error margins of our freehand annotation, while average detection delays are very

small. A small number of our detections (mostly separations) are depicted in the

third column of Fig. 3.3, with the respective ground truth events shown in the first

column.

71

We note that, in our context of non-rigid registration, high recall is more

important than high accuracy, because missing a topology change event is very

likely to result in motion estimation errors. At the same time, as discussed in the

concluding remarks of Section 3.3.4.1, a small number of false positive detections

have essentially no impact on motion estimation under reasonable assumptions.

Therefore, our topology change detection mechanism has desirable properties from

a motion estimation perspective, while, at the same time, being able to detect

contacts and separations with reasonable accuracy.

72

T
ab

le
3.

2:
T

op
ol

og
y

C
h

an
ge

E
v
en

t
D

et
ec

ti
on

.

S
e
q
u
e
n
ce

N
u
m

b
e
r

o
f

e
v
e
n
ts

G
ro

u
n
d

tr
u
th

to
d
e
te

ct
e
d

m
a
p
p
in

g
G
t
T
o
D
e
t

D
e
te

ct
e
d

to
g
ro

u
n

d
tr

u
th

m
a
p

p
in

g
D
e
t
T
o
G
t

G
ro

u
n
d

tr
u
th

D
et

ec
te

d
M

at
ch

ed
fr

ac
ti

on
%

M
ea

n
ov

er
la

p
M

ea
n

d
el

ay
M

at
ch

ed
fr

ac
ti

on
%

M
ea

n
ov

er
la

p
M

ea
n

d
el

ay
c
l
a
p

11
32

10
0.

00
0.

83
2

1.
00

0
78

.1
2

0.
63

3
0.

80
0

d
r
u
m

21
63

10
0.

00
0.

76
3

-0
.1

90
76

.1
9

0.
61

6
-0

.0
42

s
t
a
c
k

4
15

10
0.

00
0.

82
0

-0
.2

50
40

.0
0

0.
71

3
0.

00
0

u
n
s
t
a
c
k

4
20

10
0.

00
0.

68
9

-0
.2

50
40

.0
0

0.
52

7
0.

00
0

s
e
p
a
r
a
t
e

5
17

10
0.

00
0.

66
1

-0
.4

00
70

.5
9

0.
52

7
-0

.5
83

t
o
p
d
r
a
w
e
r

4
11

10
0.

00
0.

95
1

0.
00

0
54

.5
5

0.
81

9
-0

.6
67

b
o
t
d
r
a
w
e
r

3
12

10
0.

00
0.

88
2

0.
00

0
66

.6
7

0.
75

7
-0

.3
75

O
v
e
ra

ll
:

52
17

0
10

0.
00

0.
78

8
0.

05
8

66
.4

7
0.

63
0

0.
03

5

73

3.4.3.2 Registration under dynamic topology

We now quantitatively evaluate our motion estimation performance in the

presence of dynamic topology. As discussed before, object separation events tend to

induce warp field artifacts when not accounted for, while standard ‘forward’ warp

estimates properly handle contacts. Therefore, we focus our assessments on areas

of separation events.

For each ground truth separation event, we compute the average point-to-point

distance between points in the warped source geometry and their nearest neighbors

in the target frame. In our comparisons, we include four different motion field

estimation algorithms: VO-SF [46], PD-Flow [45], F-Warp (our baseline), and FB-

Warp (our proposed method). In order to avoid obscuring the differences between

the two estimates in the areas of interest, instead of averaging over the whole source

frame, we only consider points within our ground truth annotation masks, which

provide reasonable approximations of the true motion boundaries. Furthermore,

we discard occluded warped points using a simple depth test against the target

geometry’s depth map, with a tolerance threshold of ∆zocc = 1cm.

We report per-sequence average registration errors (in mm) over separation

areas in Table 3.3. FB-Warp is more accurate in most sequences, achieving an aver-

age error reduction of about 30% over our F-Warp baseline, with PD-Flow being a

very close second. VO-SF produces significantly less accurate results, because of the

coarse pre-segmentation step on which its piecewise-rigid model is based. We also

provide qualitative registration results for a subset of our ground truth separation

74

Table 3.3: Registration Under Close-To-Open Topology.

Sequence
Registration error (in mm)

VO-SF PD-Flow F-Warp FB-Warp
clap 4.652 1.155 1.326 1.135
drum 2.678 1.006 1.608 1.207
stack 3.209 1.565 1.996 1.452

unstack 6.457 2.371 3.138 2.192
separate 2.249 1.735 2.418 1.985
top drawer 1.995 1.383 2.305 1.325
bot drawer 5.680 1.773 2.380 1.222
Overall: 3.846 1.570 2.167 1.503

events in Fig. 3.4. VO-SF introduces seam artifacts to the warped geometry, as a

result of its pre-segmentation step. As the latter is highly unlikely to align with sepa-

ration boundaries, the algorithm does not preserve motion discontinuities. F-Warp,

as expected, significantly oversmooths separation motion boundaries. FB-Warp

and PD-Flow exhibit the best performance, with the former producing appreciably

cleaner surface separations.

3.5 Summary

We presented a complete pipeline for the non-rigid registration of arbitrary,

unorganized point clouds that may be topologically different. Building upon a gen-

eral warp field estimation algorithm, we introduced an efficient topology event han-

dling post-processing phase that detects and classifies object contact and separation

events, and, by exploiting the different qualities of forward and backward motion

estimates with respect to different event types, locally selects the most appropri-

ate one, in a seamless manner. We evaluated the motion estimation accuracy of

our method on the MPI Sintel dataset, achieving state-of-the-art performance. Our

75

c
l
a
p

d
r
u
m

s
t
a
c
k

u
n
s
t
a
c
k

t
o
p
_
d
r
a
w
e
r

b
o
t
_
d
r
a
w
e
r

Events	on	source VO-SF PD-Flow FB-WarpF-Warp

Figure 3.4: Warping results on our dynamic topology dataset, with focus given to separa-
tion events. Each row corresponds to a different sequence. First column: our topological
event detections overlaid on the source geometry (same as last column of Fig. 3.3, but
rendered from a different viewpoint). Columns 2-5: warped source geometry under VO-
SF, PD-Flow, F-Warp (our topology-agnostic baseline algorithm), and FB-Warp (our
proposed approach).

76

evaluation on a custom dataset with sequences of highly dynamic scene topology

demonstrated the success of our method in estimating motion on topological event

boundaries, and showed promising performance in event detection. To the best of

our knowledge, this is the first approach to handle dynamic topology in the context

of raw point cloud registration. Furthermore, we openly release the implementation

of our baseline warp field estimation algorithm as part of our point cloud processing

library [17].

In this work, we focused on improving dense motion estimation on separation

boundaries by reasoning about two specific types of dynamic topology: ‘open-to-

close’ and ‘close-to-open’. There exist, however, object interactions that induce

different types of topological changes, which our method is not equipped to handle.

One such interesting example is the case of an object sliding on its supporting sur-

face. In this case, while our deformation criteria might give us some hints regarding

the problematic areas, our inverted backward estimate is expected to share similar

oversmoothing properties as a standard, forward warp field. We are currently in-

vestigating insights that would allow us to efficiently tackle those situations, ideally

without attacking the more general and (possibly) much harder problem of joint

motion estimation and motion segmentation.

77

Chapter 4: Extracting Contact, Objects, and Object Motions from

Manipulation Videos

When we physically interact with our environment using our hands, we touch

objects and force them to move: contact and motion are defining properties of

manipulation. In this chapter, we present an active, bottom-up method for the

detection of actor-object contacts and the extraction of moved objects and their

motions in RGBD videos of manipulation actions. At the core of our approach lies

non-rigid registration: we continuously warp a point cloud model of the observed

scene to the current video frame, generating a set of dense 3D point trajectories.

Under loose assumptions, we employ simple point cloud segmentation techniques

to extract the actor and subsequently detect actor-environment contacts based on

the estimated trajectories. For each such interaction, using the detected contact as

an attention mechanism, we obtain an initial motion segment for the manipulated

object by clustering trajectories in the contact area vicinity and then we jointly refine

the object segment and estimate its 6DoF pose in all observed frames. Because of

its generality and the fundamental, yet highly informative, nature of its outputs,

our approach is applicable to a wide range of perception and planning tasks. We

qualitatively evaluate our method on a number of input sequences and present a

78

comprehensive robot imitation learning example, in which we demonstrate how our

outputs facilitate developing action representations/plans from observations.

4.1 Introduction

A manipulation action, by its very definition, involves the handling of objects

by an intelligent agent. Every such interaction requires physical contact between the

actor and some object, followed by the exertion of forces on the manipulated object,

which typically induce motion. When we open a door, pick up a coffee mug, or pull

a chair, we invariably touch an object and cause it (or parts of it) to move. This

obvious observation demonstrates that contact and motion are two fundamental

aspects of manipulation.

Contact and motion information alone are often sufficient to describe manipu-

lations in a wide range of applications, as they naturally encode crucial information

regarding the performed action. Contact encodes where the affected object was

touched/grasped, as well as when and for how long the interaction took place. Mo-

tion conveys what part of the environment (i.e. which object or object part) was

manipulated and how it moved.

The ability to automatically extract contact and object motion information

from video either directly solves or can significantly facilitate a number of common

perception tasks. For example, in the context of manipulation actions, knowledge of

the spatiotemporal extent of an actor-object contact automatically provides action

detection/segmentation in the time domain, as well as localization of the detected

79

action in the observed space [2, 3]. At the same time, motion information bridges

the gap between the observation of an action and its semantic grounding. Knowing

what part of the environment was moved effectively acts as an attention mechanism

for the manipulated object recognition [75, 76], while the extracted motion profile

provides invaluable cues for action recognition, in both “traditional” [2, 3, 77] and

deep learning [78] frameworks.

Robot imitation learning is rapidly gaining attention. The use of robots in

less controlled workspaces and even domestic environments necessitates the devel-

opment of easily applicable methods for robot programming: autonomous robots

for manipulation tasks must efficiently learn how to manipulate. Exploiting contact

and motion information can largely automate robot replication of a wide class of

actions. As we will discuss later, the detected contact area can effectively boot-

strap the grasping stage by guiding primitive fitting and grasp planning, while the

extracted object and its motion capture the trajectory to be replicated as well as

any applicable kinematic/collision constraints. Thus, the components introduced in

this work can play an essential role in building more complex, hierarchical models

of action (e.g., behavior trees, activity graphs) as they appear in the recent litera-

ture [10, 12–14,79–81].

In this chapter, we present an unsupervised, bottom-up method for estimat-

ing the human-object contacts and object motions in RGBD video observations of

manipulation actions. Our approach reasons about contact interactions and object

motions in 3D by relying on dense motion estimation. We first initialize a point

cloud model of the observed scene, which captures both the human actor and the

80

part of their environment they will interact with, and then continuously warp/up-

date it throughout the duration of the video. Building upon our estimated dense

3D point trajectories, we segment the actor, using simple approaches that are valid

under reasonable assumptions, and detect actor-environment contact locations and

time intervals. Subsequently, we exploit the detected contact to guide the motion

segmentation of the manipulated object. Finally, we estimate a refined object seg-

ment and its 6DoF pose in all observed video frames. An overview of our process in

shown in Fig. 4.1; our intermediate and final results are summarized in Table 4.1.

The generality of our framework, combined with the highly informative nature of

our outputs, renders our approach applicable to a wide spectrum of perception and

planning tasks.

It is worth noting that we do not treat contact detection and object motion

segmentation/estimation independently: we use the detected contact as an atten-

tion mechanism to guide the extraction of the manipulated object and its motion.

This active approach provides an elegant and effective solution to our joint motion

estimation and motion segmentation task. A passive approach to our problem would

typically segment the whole observed scene into an unknown (i.e. to be estimated)

number of motion clusters. By exploiting contact, we avoid having to solve a much

larger and less constrained problem and gain significant improvements in terms of

both computational efficiency and segmentation/estimation accuracy.

After discussing related work, we provide a detailed technical description of

our method in Section 4.3. In Section 4.4, we demonstrate our intermediate results

and final outputs for a number of input sequences. In Section 4.5, we present a

81

comprehensive example of how our outputs can be used to enable an one-shot robot

imitation learning task.

4.2 Related work

We focus our literature review on recent works in three areas that are most

relevant to our problem and the major processes/components upon which we build.

We are not including works from the action recognition literature; the scope of

this chapter is the extraction of contacts, moving manipulated objects, and their

motions.

Dense 3D motion estimation. We include a comprehensive review of

RGBD scene flow estimation methods, as well as more general warp field estimation

algorithms used in recent systems for dynamic reconstruction from RGBD input, in

Section 3.2. While being of great relevance in a number of motion reasoning tasks,

plain scene flow cannot be directly integrated into our pipeline, which requires model-

to-frame motion estimation: the scene flow motion field has a 2D support (i.e. the

image plane), effectively warping the 2.5D geometry of an RGBD frame, while we

need to continuously warp a fully 3D point cloud model. In this work, we use the

non-rigid registration algorithm of [15], described in detail in Chapter 3.

Contact detection. A CNN-based method for grasp recognition is intro-

duced in [82]. A 2D approach for detecting “touch” interactions between a caregiver

and an infant is presented in [83]. To the best of our knowledge, there is no prior

work on explicitly determining the spatiotemporal extent of human-environment

82

contact.

Motion segmentation. A very large volume of works on motion segmenta-

tion have casted the problem as subspace clustering of 2D point trajectories, assum-

ing an affine camera model [84–89]. In [90], an active approach for the segmentation

and kinematic modeling of articulated objects is proposed, which relies on the robot

manipulation capabilities to induce object motion. In [91], object segmentation is

performed from two RGBD frames, one before and one after the manipulation of the

object, by rigidly aligning and ‘differencing’ the two views and robustly estimating

rigid motion between the ‘difference’ regions. The same method is used in [51],

where scene flow is used to obtain motion proposals, followed by an MRF inference

step. In [68], joint tracking and reconstruction of multiple rigidly moving objects is

achieved by combining two segmentation/grouping strategies with multiple surfel fu-

sion [48] instances. A naive integration of a generic motion segmentation algorithm

for the extraction of the manipulated object into our pipeline would be suboptimal

in multiple ways. For instance, given the fact that there may exist an unknown num-

ber of other object motions that are irrelevant to the manipulation, we would be

potentially solving an unnecessarily hard problem. For the same reason (unknown

number of motion components), we would have little control over the segmentation

granularity, which could cause the manipulated object to be over/under-segmented.

Instead, we leverage the detected contact and bootstrap our segmentation by an

informed trajectory clustering approach that is otherwise in the same spirit as that

of [92].

83

4.3 Our approach

4.3.1 Overview

We present a system that, given a video of a human performing a manipulation

task as input, detects and tracks the parts of the environment that participate in

the manipulation. More specifically, our system is able to visually detect physical

contact between the actor and their environment, and, using contact as an attention

mechanism, eventually segment the manipulated object and estimate its 6DoF pose

in every observed video frame. Our pipeline, as well as the interconnections of

the involved processes, are sketched in Fig. 4.1 and followed by a more detailed

description. We summarize our proposed system’s expected inputs, final outputs,

and some useful generated intermediate results in Table 4.1.

Figure 4.1: A high-level overview of our modules and their relations in the proposed
pipeline.

The input to our system is an RGBD frame sequence, captured by a commod-

ity depth sensor, of a human actor performing a task that involves the manipulation

of objects in their environment. We assume that the input depth images are reg-

84

Table 4.1: List of our inputs, intermediate results, and final outputs.

Input Intermediate results Final outputs

RGBD video of
manipulation

• Dense point trajectories
in 3D that span the whole se-
quence duration
• Actor-environment seg-
mentation labels for every
point at all times

• Detected actor-environment
contact points and their 3D
trajectories
• Handled object segments
and their 6DoF poses for ev-
ery time point

istered to and in sync with their color counterparts. Using estimates of the color

camera intrinsics (e.g., from the manufacturer provided specifications), all input

RGBD frames are back-projected to 3D point clouds (colored, with estimated sur-

face normals), on which all subsequent processing is performed.

At the core of our method lies non-rigid point cloud registration; we use the

algorithm introduced in [15] and described in detail in Chapter 3. An initial point

cloud model of the observed scene is built from the first observed RGBD frame and

is then consecutively transformed to the current observation based on the estimated

model-to-frame warp field at every time instance. This process generates a dense

set of point trajectories, each associated with a point in the initial model. In order

to keep the presentation clean, we opted to obtain the scene model from the first

frame and keep it fixed in terms of its point set. Non-rigid reconstruction techniques

for updating the model over time [49, 50] can be easily integrated to our pipeline if

required.

To perform actor/background segmentation, we follow the semi-automatic ap-

proach described in Section 4.3.2. The obtained binary labeling is propagated to

the whole temporal extent of the observed action via our estimated dense point tra-

85

jectories, and enables us to easily detect human-environment contacts as described

in Section 4.3.3.

Using our extracted dense scene point trajectories, actor/background labels,

and detected contact interaction locations and time intervals, our ultimate goal is,

for each such interaction, to segment the manipulated object and estimate its rigid

motion (6DoF pose) for every time instance. Our contact-guided motion segmenta-

tion approach for this task is described in Section 4.3.4.

4.3.2 Actor-environment segmentation

We follow a semi-automatic approach to perform actor-background segmenta-

tion that relies on simple point cloud segmentation techniques. First, we construct

a proximity (radius-based nearest neighbor) graph over the scene model points in

the initial state, in which each node is a model point and two nodes are connected

if and only if their Euclidean distance falls below a predefined threshold. Assuming

that the actor is initially not in contact with any other part of the scene (i.e. the

minimum distance of an actor point to a background point is at least our predefined

distance threshold) and the observed actor points are not too severely disconnected

in the initial state, the actor points will be exactly defined by a single connected

component of this proximity graph.

The selection of the correct (actor) component can be automated by filtering

all the extracted components based on context-specific criteria (e.g., rough size,

shape, location, etc.) or by picking the component whose image projection exhibits

86

maximum overlap with the output of a 2D human detector [93, 94]. Alternatively,

in order to avoid extracting all the Euclidean segments of the scene, we may begin

by selecting a seed point known to belong to the actor and then perform region

growing on the model point cloud until our maximum distance constraint is no

longer satisfied. The selection of the seed point can also be automated by resorting

to standard 2D means (e.g., by picking the point with the strongest skin color

response [95,96] within a 2D human detector output [93,94]).

We consider the assumptions imposed by our Euclidean clustering based ap-

proach for the actor segmentation task to be not particularly restricting, in the

sense that they can be easily enforced either directly, during data capture, or in a

post-processing step that uses standard common-sense and/or context-specific prior

knowledge. For example, we can easily ensure disconnectedness between the actor

and a manipulated door in the initial state of a door-opening action by segmenting

and removing the floor points that may be connecting the actor and the door. This

is particularly true in the typically controlled setting of human demonstrations for

robot imitation learning.

We note that, since we opted to keep the scene model point set fixed and track

it throughout the observed action, the obtained actor-environment segmentation

automatically becomes available at all time points.

87

4.3.3 Contact detection

The outputs of our full scene model tracking and actor segmentation processes

are a dense set of point trajectories and their respective actor/background labels.

Given this information, it is straightforward to reason about actor-environment

contact, simply by examining whether the minimum distance between parts of the

two clusters is small enough at any given time. In other words, we can easily infer

both when the actor comes into/goes out of contact with part of their environment

and where this interaction takes place.

Some of the contact interactions detected using this simple proximity criterion

may, of course, be semantically irrelevant to the performed action. Assuming a

reasonably controlled setting, we expect that the detected contacts are established

by the actor hands, with the goal of manipulating an object in their environment.

4.3.4 Manipulated object segmentation and motion

Knowing the dense scene point trajectories, labeled as either actor or back-

ground, as well as the actor-environment contact locations and temporal extents,

our next goal is to infer what part of the environment is being manipulated, or, in

other words, which object was moved. We assume that every contact interaction

involves the movement of a single object, and that the latter undergoes rigid mo-

tion. In the following, we only focus on the background part of the scene around

the contact point area, ignoring the human point trajectories. We follow a two-step

approach.

88

First, we bootstrap our segmentation task by finding a coarse/partial mask of

the moving object, using standard unsupervised clustering techniques. Specifically,

we cluster the background point trajectories that lie within a fixed radius of the

detected contact point at the beginning of the interaction into two groups. We

adopt a spectral clustering approach, using the ‘random walk’ graph Laplacian [97]

and a standard k-means final step. Our pairwise trajectory similarities are given

by sij = exp (−(dmax − dmin)2/(2σ2)), where dmin and dmax are the minimum and

maximum Euclidean point distance of trajectories i and j over the duration of

the interaction, respectively. This similarity metric enforces similar trajectories to

exhibit approximately constant point-wise distances, i.e. it promotes clusters that

undergo rigid motion. From the two output clusters, one is expected to cover the

object being manipulated or a part of it. Operating under the assumption that only

interaction can cause motion in the scene, we pick the cluster that exhibits the largest

average motion over the duration of contact as our object segment candidate. In the

above, we restricted our focus within a fixed-radius region of the contact point, in

order to 1) avoid having our binary classification influenced by other motions in the

scene that are not relevant to the current interaction, and 2) make the classification

problem more computationally efficient by drastically reducing its size. The exact

value of the radius of interest is unimportant, as long as it is selected to be sufficiently

large to cover at least part of the manipulated object.

Subsequently, we obtain a refined, more accurate segment of the moving object

by requiring that the latter undergoes a rigid motion that is, at every time point,

consistent with that of the previously found motion cluster. Let Bt denote the

89

background (non-actor) part the scene model point cloud at time t, for t = 0, . . . , T ,

and M̂ t ⊆ Bt be the initial motion cluster state at the same time instance. For

all t = 1, . . . , T , we robustly estimate the rigid motion between point sets M̂0

and M̂ t (i.e. relative to the first frame), using the closed form solution of [98]

under a RANSAC scheme, and then find the set of points in all of Bt that are

potential images of points in B0 under this motion model. Let I t, for t = 1, . . . , T ,

denote this set of motion inliers, so that I t contains exactly the indices of the points

(equivalently, trajectories) in Bt whose motion from B0 to Bt is consistent with

the estimated segment motion from M̂0 to M̂ t. We obtain our final object segment

for this interaction as the intersection of inlier index sets I t for all time instances

t = 1, . . . , T :

I ≡
T⋂
t=1

I t. (4.1)

The subset of the background points indexed by I, as well as the per-frame RANSAC

motion (pose) estimates of this last step, are the final outputs of our pipeline for

the given interaction.

4.4 Experiments

We provide a qualitative evaluation of our method for video inputs recorded

in different settings, covering three different scenarios: 1) a tabletop object manip-

ulation that involves flipping a pitcher, 2) opening a drawer, and 3) opening a room

door. All videos were captured from a static viewpoint, using a standard RGBD

camera.

90

Figure 4.2: Flipping a pitcher: scene tracking, labeling, and contact detection.

Figure 4.3: Opening a drawer: scene tracking, labeling, and contact detection.

91

Figure 4.4: Opening a door: scene tracking, labeling, and contact detection.

For each scenario, in Fig. 4.2, 4.3, and 4.4, we depict the scene model point

cloud state at three time snapshots: one right before, one during, and one right

after the manipulation. For each time point (row), we show the corresponding color

image and render the tracked point cloud from two viewpoints. The actor segment

is colored green, the background is red, and the detected contact point is marked by

blue. We also render the estimated warp field induced point displacements from the

currently visible state to its next as white lines (mostly visible in areas that exhibit

large motion). The outputs displayed in these figures are in direct correspondence

with the processes described in Sections 4.3.2 and 4.3.3.

Next, we demonstrate our attention-driven motion segmentation and 6DoF

pose estimation of the manipulated object. In Fig. 4.5, we render the background

92

(a) Flipping a pitcher.

(b) Opening a drawer.

(c) Opening a door.

Figure 4.5: Motion segmentation of the manipulated object. First column: scene back-
ground points (the actor is removed). Second column: initial motion segment (blue)
obtained by spectral clustering of point trajectories around contact area (yellow). Third
column: final, refined motion segment (blue).

part of the scene model in its initial state with the actor removed (left column)

and show the two steps of our segmentation method described in Section 4.3.4. In

the middle column, the blue segment corresponds to the initial motion segment,

obtained by clustering trajectories in the vicinity of the contact point (propagated

back to the initial state and highlighted in yellow). In the right column, we show the

refined, final motion segment. We note that, because of our choice of the attention

93

radius around the contact point in the first segmentation step, the initial segment

in the first two cases covers the whole object and is the same as the final one.

In Fig. 4.6, we show the estimated rigid motion (series of 6DoF poses) of the

segmented object. To more clearly visualize the evolution of object pose over time,

we attach a local coordinate frame to the object, at the location of the contact point,

whose axes were chosen as the principal components of the extracted object point

cloud segment.

(a) Flipping a pitcher.

(b) Opening a drawer.

(c) Opening a door.

Figure 4.6: Estimated rigid motion of the manipulated object. A coordinate frame is
attached to the object segment (blue) at the contact point location (yellow). First column:
temporal accumulation of color frames for the whole action duration. Second column:
object state before manipulation. Third column: object trajectory as a series of 6DoF
poses. Fourth column: object state after manipulation.

The above illustrations provide a qualitative demonstration of the successful

application of our proposed pipeline to three different manipulation observations. In

94

all cases, contacts were detected correctly and the manipulated object was accurately

segmented and rigidly tracked. A more thorough, quantitative evaluation of our

segmentation outputs on an extended set of inputs is in our future plans.

4.5 Application: replication from observation by a robot

For any human-environment task to be successful, there is a well-defined pro-

cess involved, demarcated into distinct phases based on human-environment contact

and consequent motion. This allows us to generate a graph representation for ac-

tions, such as that shown in Fig. 4.7 for the task of opening a refrigerator door.

Given this general representation of tasks, we demonstrate how our algorithm al-

lows grounding of the grasping process, based on contact detection, and also of the

feedback loop for opening the door, based on motion analysis of segmented objects.

This type of representation can form the basis for a principled method of bridging

perception with planning, enabling robots to replicate observed human actions.

In the following, we present a comprehensive application of our method to a

real-world task, where a robot observes a human operator opening a refrigerator

door and learns the process for replication. Our setup is shown in Fig. 4.8, where a

calibrated RGBD sensor mounted on the robot’s manipulator is used for observation.

Using our methods elucidated in Section 4.3, our process involves the segmentation

of the human from the environment, followed by the contact interaction detection

(in this case, between the hand and the refrigerator door handle) and the joint

segmentation and rigid motion tracking of the manipulated object (door).

95

Figure 4.7: High-level representation of opening a refrigerator door.

Figure 4.8: Robot observing a human opening a refrigerator door.

Using prior domain knowledge about our scenario, the outputs of these analy-

ses are then converted into an intermediate graph-like representation, which encodes

both semantic labeling of regions of interest, such as doors and handles in our case,

as well as motion trajectories computed from the observed manipulation. As we will

show, the combination of the above provides the robot with the ability of low-level

imitation learning (i.e. trajectory replication) given a single demonstration. The

96

combined graph-like representation is visually described in Fig. 4.9, which separates

our process into three phases: preprocessing, planning, and execution. In the follow-

ing, we provide more detailed descriptions of each of these three phases involved in

our application.

Figure 4.9: State transition diagram of our process.

97

4.5.1 Preprocessing stage

The preprocessing stage is responsible for taking the outputs of our approach

described in Section 4.3 (contact point, object segments and their motion trajec-

tories, as summarized in the last column of Table 4.1) and converting them into

robot-specific grasp poses and trajectories that will be used for planning and exe-

cution. A visualization of the input entities to this stage for our door opening task

is provided in Fig. 4.10.

Figure 4.10: Input to the preprocessing stage from our algorithm. (a) RGB frame captured
at the beginning of the door manipulation. (b) Extracted contact point (yellow), object
segment (blue), and initial object pose (frame axes). (c) 6DoF pose trajectory of door
during its manipulation. (d) Final object state, after opening was completed.

In this stage, we exploit domain knowledge to ground and interpret contact

points, as well as object segments and trajectories, in a way that will enable the

replication of the manipulation task by the robot. For instance, since we know that

our task involves opening a refrigerator door, we can make the assumptions that the

contact point between the human agent and the environment will happen at the door

handle and any consequent motion will likely only involve the door. Furthermore,

we know that the manipulated object (door) segment essentially follows a planar

surface model, with the exception of the door handle part.

98

Based on this scenario-specific information, we proceed to robustly fit a plane

to the points of the extracted door segment, using standard least squares fitting

under RANSAC, and obtain a set of points for the door handle as the major Eu-

clidean cluster of the door plane outliers (Fig. 4.11a). We subsequently fit to these

points a cuboid block of consistent orientation with that of the door plane and major

axes (Fig. 4.11b), in order to generate a grasp primitive with a known 6DoF pose

for robot grasp planning (Section 4.5.2.1). The estimated trajectories of the object

segment, as depicted in Fig. 4.10, are not directly utilized by the robot execution

system, but are instead converted to a robot-specific representation before replica-

tion can take place. In particular, the visually extracted trajectory poses and their

relative timestamps are used to define waypoint poses and time constraints for the

robot’s end effector trajectory planning (Section 4.5.2.2).

(a) Diagram depicting refrigerator handle
detection.

(b) Point cloud of refrigerator with de-
tected handle and door.

Figure 4.11: Door handle detection.

99

4.5.2 Planning stage

The outputs from the preprocessing stage, namely the robot-specific 6DoF end

effector poses and the grasp primitive parameters for the door handle, are passed

to the planning stage of our pipeline, for both grasp and trajectory planning. The

RViz [99] package in the Robot Operating System (ROS) [100] allows for simulation

and visualization of the robot during planning and execution, via real-time feedback

from the robot’s state estimator. It also has point cloud visualization capabilities,

which can be overlaid over virtual shapes. We use this tool for the planning stage;

an RViz screenshot of our Baxter robot model and point cloud observations overlaid

over fitted grasp/collision primitive shapes is shown in Fig. 4.12.

Figure 4.12: Visualization of planning stage.

100

4.5.2.1 Grasp planning

Given the location, orientation, and size parameters of the primitive block

shape fitted to the door handle, we use the “MoveIt!” Simple Grasps [101] package

to generate grasp candidates for the parallel gripper mounted on the Baxter robot.

The package integrates with the “MoveIt!” [102] library’s ‘pick-and-place’ pipeline

to simulate and generate multiple potential grasp candidates (i.e. approach poses).

This process also involves a grasp filtering stage, which uses task and configuration

specific constraints to remove kinematically infeasible grasps, by performing feasi-

bility tests via inverse kinematics solvers. At the end of the grasp planning pipeline,

we have a set of candidate grasps, sorted by a grasp quality metric, of which one is

selected for execution.

4.5.2.2 Trajectory planning

The ordered set of the poses over time obtained from the preprocessing stage is

used to generate a Cartesian path, using the ROS “MoveIt!” [102] motion planning

library. The abstractions provided by the library allow us to input a set of poses

through which the end effector must pass, along with constraint parameters for

path validity and obstacle avoidance. The “MoveIt!” library then uses sampling-

based planning algorithms, such as Rapidly-Exploring Random Trees (RRT) [103],

which takes into account inverse kinematics constraints for the specified manipulator

configuration, to generate a trajectory for the robot to execute.

101

4.5.3 Execution stage

The execution stage takes as input the grasp and trajectory plans generated

in the planning stage and executes the task on the robot. First, the generated

grasp candidate is used to move the end effector to a pre-grasp pose, in which the

parallel gripper is aligned to the fitted door handle block primitive. The grasp is

executed based on a feedback control loop, with the termination condition decided

by collision avoidance and force feedback. Upon successful grasp of the handle, our

pipeline transitions into the trajectory execution stage, which attempts to follow

the generated plan based on feedback from the robot’s state estimation system.

Once the trajectory has been successfully executed, the human motion replication

pipeline is complete. A robot execution instance is demonstrated in Fig. 4.13,

beginning with the robot grasping the handle (top-left frame) and ending with the

robot releasing the handle (bottom-left frame), with intermediate frames showing

Figure 4.13: Robot imitating human in opening refrigerator door.

102

the robot imitating the demonstrated trajectory by the human. In future work,

we plan to implement a Dynamic Motion Primitives (DMP) [104] based approach,

which will allow more accurate and robust trajectory following by the robot.

4.6 Summary

In this chapter, we have introduced an active, bottom-up method for the

extraction of two fundamental features of an observed manipulation, namely the

actor-environment contact points and the manipulated object segments and rigid

motion trajectories. We have qualitatively demonstrated the success of our approach

on a set of video inputs and described in detail its enabling role in a robot imitation

scenario. Owing to its general applicability and the manipulation-defining nature of

its output features, our method can significantly facilitate bridging the gap between

observation and the development of action representations and executable plans.

There are many possible directions for future work. At a lower level, we plan

to integrate dynamic reconstruction into our pipeline to obtain a more complete

model for the manipulated object; currently, this can be achieved by introducing a

step of static scene reconstruction before the manipulation happens, after which we

run our algorithm. We also plan to extend our method so that it also can handle

articulated manipulated objects, as well as objects that are indirectly manipulated

(e.g., via the use of tools). On the planning end, one of our future goals is to release a

software component for the fully automated replication of door opening tasks given

only a single human demonstration (Section 4.5). This module will be hardware

103

agnostic up to the final execution stage of the pipeline, so that the generated plan

can be easily adapted to become executable by any robot agent, given their specific

manipulator and end effector configurations.

104

Chapter 5: cilantro: A Lean, Versatile, and Efficient Library for

Point Cloud Data Processing

We introduce cilantro, an open-source C++ library for geometric and general-

purpose point cloud data processing. The library provides functionality that covers

low-level point cloud operations, spatial reasoning, various methods for point cloud

segmentation and generic data clustering, flexible algorithms for robust or local

geometric alignment, model fitting, as well as powerful visualization tools. To ac-

commodate all kinds of workflows, cilantro is almost fully templated, and most of

its generic algorithms operate in arbitrary data dimension. At the same time, the

library is easy to use and highly expressive, promoting a clean and concise coding

style. cilantro is highly optimized, has a minimal set of external dependencies,

and supports rapid development of performant point cloud processing software in a

wide variety of contexts.

Availability: the project source code, with usage examples and sample data,

can be found at https://github.com/kzampog/cilantro.

105

https://github.com/kzampog/cilantro

5.1 Introduction

Processing geometric input plays a crucial role in a number of machine per-

ception scenarios. Robots use stereo cameras or depth sensors to create 3D models

of their environment and/or the objects with which they interact. Autonomous

mobile agents are typically equipped with LiDAR sensors to map their surround-

ings, localize themselves, and avoid collisions. Consumer electronics are increasingly

adopting the integration of depth cameras to identify users and enable “natural”

user interfaces. The output signals of these sensors are either inherently or directly

convertible to 2D or 3D point clouds, highlighting the need for usable and efficient

tools for processing raw geometric data.

Thanks to the central role of geometry in the fields of computational the-

ory and computer graphics, a number of notable 3D data processing open-source

software libraries have been developed. The Computational Geometry Algorithms

Library (CGAL) [105] implements algorithms and data structures for an extensive

set of tasks, including triangulations, shape analysis, meshing, and various geomet-

ric decompositions. The Visualization and Computer Graphics (VCG) library [106]

provides a collection of tools for processing and visualizing 3D meshes and consti-

tutes the back-end of the popular MeshLab [107] GUI-based mesh editor. To sim-

plify working with mesh data, libigl [108] drops complex data structures in favor of

raw data matrices and vectors for shape representations, and supports computation

of discrete differential quantities and operators, shape deformation, and remeshing

functionalities. While mature and feature-rich in their respective contexts, these

106

software packages have had limited adoption by the machine perception and engi-

neering communities.

The Point Cloud Library (PCL) [36] was introduced to fill this gap and be-

came the standard for unorganized point cloud processing among roboticists and

machine vision practitioners. It implements numerous algorithms for filtering, fea-

ture extraction, geometric registration, reconstruction, segmentation, and model

fitting. Partly due to its templated nature, PCL exhibits a steep learning curve;

its user-friendliness is further affected by its verbose coding style and typically long

application compilation times. Furthermore, its performance in very common tasks

is lacking by today’s standards (e.g., due to lack of parallelization in many of its

modules) and the project has been in an essentially dormant state for a long time.

The Open3D [109] library was recently introduced as a potential alternative. It

implements 3D point cloud primitive operations (neighbor queries, downsampling,

surface normal estimation), as well as useful tools for geometric registration and 3D

reconstruction. The library is easy to use and performs better than PCL in common

tasks. However, its supported functionality is quite limited, as it essentially only

targets 3D reconstruction workflows.

We introduce cilantro, a versatile, easy to use, and efficient C++ library

for generic point cloud data processing. We have implemented a concise set of al-

gorithms that cover primitive point cloud operations, spatial reasoning based on

convex polytopes, various methods for point cloud segmentation and generic data

clustering, flexible algorithms for both robust and local (iterative) geometric align-

ment, model fitting, as well as powerful visualization tools. The library is written

107

in C++11, is highly templated and optimized, and makes efficient use of multi-

threading for computationally demanding tasks. Significant effort has been put into

making every component customizable by the user, so that the library does not

hinder the development of “non-standard” workflows. At the same time, we provide

useful convenience functions and aliases for the most common algorithm variants,

ensuring that our adaptable design does not get in the way of productivity.

By virtue of its flexibility, ease of use, and comprehensive out-of-the-box func-

tionality, cilantro is a great fit for a wide spectrum of workflows, enabling the

rapid development of performant point cloud processing software. In the follow-

ing, we briefly state our main design principles (Section 5.2), give a more detailed

overview of our supported functionality (Section 5.3), and demonstrate cilantro’s

performance in some ordinary tasks in comparison to equivalent implementations in

PCL and Open3D (Section 5.4).

5.2 Design overview

We outline cilantro’s main design principles and how they are reflected on

the library implementation.

Simple data representations. We rely on Eigen [110] matrices and common

STL containers to represent point sets and most other entities used/generated by

our algorithms. In particular, the input to almost all of our algorithms is a matrix

view of a point set: a lightweight wrapper, based on the Eigen::Map class template.

Our ConstDataMatrixMap universal input template is parameterized by the scalar

108

numerical type (typically float or double) and the point dimensionality (integer

value), while dynamic (runtime) dimensionality settings are also supported. The

resulting matrix view contains one data point per column. ConstDataMatrixMap is

constructible from many common point set representations, such as Eigen matrix

variants, STL vectors of fixed-size vector/array objects, raw data pointers, etc. The

only requirement is that the mapped data should be contiguously stored in memory,

in column-major order. This mechanism is transparent to the user; as a result, users

can in most cases directly pass their data to cilantro functions, without the need

for type casts or data copying.

Generic algorithms. Almost all of the algorithms implemented in cilantro

operate in arbitrary dimension, according to the nature of the input data. Further-

more, data dimensionality can be either known at compile time or determined and

set dynamically. To accommodate this feature, the library is fully templated, with

the exception of visualization and some of the I/O functions. At the most basic

level, template parameters typically include the input data numerical type and di-

mensionality. More complex algorithms are adaptable to the user’s needs, by being

parameterized by the entities responsible for the simpler tasks involved. For ex-

ample, our ICP base class only implements an interface for the top-level EM-style

iterations of the algorithm and is parameterized by a correspondence search mech-

anism and an estimator entity. This way, we can easily generate ICP variants for

different metrics (e.g., point-to-point or point-to-plane) and different correspondence

search engines (e.g., kd-tree based or projective), while maintaining a common, gen-

eral interface. For performance reasons, we have opted to implement our “modular”

109

high-level algorithms as static interfaces, by making use of the Curiously Recurring

Template Pattern (CRTP) idiom.

Ease of use. Generality should not come at the cost of usability. For this

reason, we tackle template parameter verbosity by providing type aliases and conve-

nience functions for the most standard variants of our algorithms. We also increase

cilantro’s expressiveness by enabling method chaining in almost all of our classes.

Furthermore, the library code is maintained in a clean, consistent style, with class

and function names that are descriptive of the underlying functionality. The follow-

ing code snippet showcases the library usage in a very simple pipeline that involves

reading a 3D point cloud from a file, downsampling it by means of a voxel grid,

estimating its surface normals, and saving the result to a file:

#include <cilantro/point_cloud.hpp >

int main(int argc , char ** argv) {

cilantro :: PointCloud3f(argv [1]).gridDownsample (0.005f).

estimateNormalsRadius (0.02f).toPLYFile(argv [2]);

return 0;

}

The code is very concise, with minimal boilerplate. Readers familiar with PCL will

reckon that an equivalent PCL implementation would require a significantly larger

amount of code.

Performance. The library is highly optimized and makes use of OpenMP

parallelization for computationally demanding operations. Significant effort has

been put into benchmarking alternative implementations of common operations in

order to find the fastest variant and/or parallelization pattern. As a result, cilantro

110

exhibits the lowest running times in the benchmarks of Section 5.4.

Minimal dependencies. cilantro was built upon a carefully selected set

of third party libraries and has minimal external dependencies. The library comes

bundled with: nanoflann [111] for fast kd-tree queries, Spectra [112], an ARPACK-

inspired library for large scale eigendecompositions, Qhull [113] for convex hull and

halfspace intersection computations, and tinyply [114] for PLY format geometry

I/O. The only external dependencies are:

• Eigen [110], an elegant and efficient linear algebra library on which we rely

for most of our numerical operations, and

• Pangolin [115], a lightweight OpenGL viewport manager and image/video I/O

abstraction library, on which our visualization modules were built.

cilantro uses the CMake build system and can be compiled with all major C++

toolchains (GCC, Clang).

5.3 Functionality

For most of our supported functionality, we have adopted an object-oriented

approach, implementing each of our algorithms as a class template, while also pro-

viding free functions for simpler operations. The library components can be con-

ceptually divided in the following categories.

Core operations. We support a wide set of primitive point cloud operations

by implementing:

• An optimized, user-friendly KDTree template that supports general dimension

111

k-NN, radius, and hybrid queries, under all of the distance metrics supported

by nanoflann.

• Arbitrary dimension surface normal and curvature estimation.

• Principal Component Analysis (PCA).

• A generic, optimized GridAccumulator template and its appropriate instan-

tiations for general dimension grid-based point cloud downsampling.

• I/O functions for general matrices and 3D point clouds.

• Utility functions for RGBD to/from 3D point cloud conversions.

All the above algorithms operate on “raw”, ConstDataMatrixMap-wrapped data.

To facilitate common workflows, we also provide a convenience PointCloud class

template that encapsulates point coordinates, normals, and colors, and provides

basic point selection functionality, as well as a large number of helper methods for

normal estimation, downsampling, and geometric transformations. In the 3D case,

PointCloud instances are directly constructible from PLY files and RGBD image

pairs.

Figure 5.1: Convex hulls of two object scans and their intersection.

Spatial reasoning. Building on Qhull’s facilities and a simple feasibility

solver, we provide a ConvexPolytope template that is constructed as either the

convex hull of an input point set or the halfspace intersection defined by an in-

112

put set of linear inequality constraints, enabling seamless representation switch-

ing. Our SpaceRegion class represents arbitrary space regions as unions of convex

polytopes. Both space representations implement set operations (intersection for

ConvexPolytope (Fig. 5.1), all common ones for SpaceRegion), interior point tests,

volume calculation, and can be transformed geometrically.

Figure 5.2: Scene segmentation into flat surfaces.

Clustering/segmentation. cilantro provides four standard clustering al-

gorithms: a parallel, optimized k-means implementation that can optionally use kd-

trees for large numbers of clusters, three common spectral clustering variants [97]

that rely on Spectra, an arbitrary kernel mean-shift implementation, and a par-

allelized, generic connected component segmentation algorithm that supports arbi-

trary point-wise similarity functions. We note that common segmentation tasks such

as extracting Euclidean (see PCL’s EuclideanClusterExtraction) or smooth (see

PCL’s RegionGrowing) segments can be straightforwardly cast as connected com-

ponent segmentation under different similarity metrics. A sample result of smooth

113

segment extraction is shown in Fig. 5.2, where using a very small normal angle

similarity threshold effectively results in the segmentation of the scene into flat

surfaces.

Figure 5.3: A reconstruction obtained in real time using an RGBD camera. Left: colored
3D point cloud model. Right: path of camera poses for all fused frames.

Iterative geometric registration. We provide a CRTP base class template

that implements the top-level loop logic (alternating between correspondence esti-

mation and transformation parameter optimization) of the Iterative Closest Point

(ICP) algorithm. The base template is parameterized by the correspondence esti-

mation mechanism and the transform estimator. We implement a standard, kd-tree

based correspondence search engine, which can operate on arbitrary point feature

spaces, as well as one for correspondences by projective data association for the

3D case. We provide optimizers for rigid [116, 117], affine, as well as non-rigid

(by means of a robustly regularized, locally-rigid [66] or locally-affine [64], densely

or sparsely [65] supported warp field) pairwise registration under the the point-to-

114

Figure 5.4: Non-rigid point cloud registration. First two images: overlaid source (red) and
target (blue) geometries. Middle image: computed per-point displacements (white lines).
Last two images: warped source geometry overlaid on the target one.

point and point-to-plane metrics or weighted combinations thereof. Our modular

design can be easily extended to accommodate less common ICP processes (e.g.,

for multi-way registration). At the same time, cilantro provides useful shortcut

wrappers/definitions for the more common registration workflows. In Fig. 5.3, we

depict a point cloud reconstruction from RGBD video, obtained in real time on CPU

using cilantro’s model-to-frame registration via projective point-to-plane ICP and

a point-based fusion approach similar to that of [118]. In Fig. 5.4, we show a non-

rigid surface registration result obtained using one of the library’s non-rigid ICP

implementations.

Robust estimation. The library comes with a RANSAC template that is

meant to be used as a CRTP base class and only implements the top-level (random

sampling/inlier evaluation) loop logic. We currently provide two general dimension

RANSAC estimator instances: one for robust (hyper)plane fitting and one for rigid

pairwise point cloud alignment given (noisy) point correspondences.

Visualization. cilantro implements a fully customizable, interactive, and

easy to use 3D Visualizer class that supports: an extensible set of renderable

entities with adjustable rendering options, complete control over all projection pa-

rameters, both perspective and orthographic projection modes, image capturing and

115

video recording of the viewport, and custom keyboard callbacks. We also provide a

convenience ImageViewer class. Both our visualization facilities are based on Pan-

golin. To facilitate the visualization of data of potentially unknown dimension, for

which we are only given pairwise distances, we have included a classical Multidimen-

sional Scaling (MDS) implementation that can be used to compute low dimensional,

distance-preserving Euclidean embeddings.

5.4 Performance

We compare cilantro’s performance in common 3D point cloud processing

tasks against PCL and Open3D. Our benchmarking was done on a standard Linux

(Ubuntu 16.04 based) desktop machine, equipped with an Intel R© Core i7-6700K

CPU (4 cores, 8 threads). All three libraries were compiled from source in ‘Release’

configuration, with compiler (GCC 5) optimizations set to the highest level (-O3).

Our first test involves the segmentation of an apartment-scale 3D reconstruc-

tion into smooth segments. We compare PCL’s RegionGrowing with cilantro’s

ConnectedComponentSegmentation, in an essentially equivalent configuration. We

use the apt0 model (Fig. 5.5, left) as input, available on the BundleFusion [119]

project website, which consists of roughly 7.8 million points. After downsampling

the input using a voxel grid of bin size equal to 5mm, using kNN neighborhoods

with k = 30 and a normal angle threshold of 2.8 radians, cilantro produces the

result of Fig. 5.5 (right) in 3.65 seconds, while, for the same parameters, the PCL

implementation took 17.34 seconds. Open3D offers no equivalent/similar function-

116

Figure 5.5: Point cloud segmentation into smooth segments. Black points correspond to
very small clusters that were discarded.

ality.

PCL’s standard point types use single precision floating point numbers, while

Open3D works only with double precision. For all subsequent computations, we use

double precision for cilantro.

In our next test, we compare our normal estimation performance against equiv-

alent implementations in Open3D (parallelized by default) and PCL (the multi-

threaded NormalEstimationOMP variant). We use the fr1/desk sequence of the

TUM RGBD dataset [120] as input (about 600 pre-registered RGBD image pairs

at VGA resolution). We run all three implementations on all input frames at full

resolution, using two types of local neighborhoods: one defined by the 10 nearest

neighbors and one defined by a radius of 1cm. As can be seen in the two top rows of

Fig. 5.6, cilantro consistently outperforms the other two implementations. In the

kNN case in particular, it exhibits speedups of 1.58× and 1.85× over Open3D and

117

0 100 200 300 400 500 600

60

80

100

120

140

160

180

200

220

240

T
im

e
(m

s)

cilantro
Open3D
PCL

cilantro Open3D PCL

Normal estimation (k = 10 neighbors)

0 100 200 300 400 500 600

100

200

300

400

500

600

700

800

T
im

e
(m

s)

cilantro
Open3D
PCL

cilantro Open3D PCL

Normal estimation (radius = 1cm)

0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

1400

1600

T
im

e
(m

s)

cilantro
Open3D
PCL

cilantro Open3D PCL

Point-to-plane ICP

Figure 5.6: Performance comparisons against PCL and Open3D in common operations.
Left column: running time as a function of the input video frame. Right column: box and
whisker plots of running times per library (red lines are means, green lines are medians).

118

PCL, respectively. We note that cilantro and PCL enforce viewpoint-consistent

normals during estimation, while in Open3D this has to be done in a separate pass,

which was not performed in our experiments.

In our last test, we compare point-to-plane ICP performance among the three

libraries. We used the same fr1/desk sequence as before, aligning each frame to

its previous one. All point clouds were downsampled using a voxel grid of bin size

equal to 1cm, and normals were estimated based on 10 nearest neighbor local neigh-

borhoods. To account for different termination criteria conventions, we forced all

three implementations to perform a fixed number of 15 iterations. In all three cases,

correspondences were established by means of nearest neighbor kd-tree queries, with

a rejection distance threshold of 5cm. Registration times are reported in the third

row of Fig. 5.6. We note that, at all times, all three implementations converged to

the same transformation, up to numerical precision. cilantro’s ICP implementa-

tion outperforms the other two by a significant margin, demonstrating speedups of

3.82× and 14.99× over Open3D and PCL, respectively.

5.5 Software release

cilantro is released under the MIT license and its source code is openly avail-

able at https://github.com/kzampog/cilantro. Contributions from the open-

source community are welcome, via the GitHub issues/pull request mechanisms.

The library is under active, continuous development, undergoing frequent API

improvements, functionality additions, and performance optimizations. Future ad-

119

https://github.com/kzampog/cilantro

ditions will include structures and algorithms for surface merging/reconstruction,

more point cloud resampling strategies, and support for geometry I/O in other file

formats. We are also investigating GPU implementations for some of our algorithms,

focusing on improving our non-rigid registration performance.

120

Chapter 6: Conclusions and Future Work

6.1 Summary

In this thesis, we focused on modeling and extracting certain types of geometric

object interactions in RGBD videos of manipulations, with the goal of providing

useful semantic cues for cognitive action interpretation. We focused on two different

types of interactions.

At a higher level, in Chapter 2, we directly modeled pairwise spatial relations

based on their intuitive geometric interpretation and proposed a novel abstract ac-

tion representation that encodes the geometric object interactions during action

execution, as captured by the spatial relation dynamics. Our experiments on a

diverse set of inputs confirm both the validity and effectiveness of our spatial rela-

tion models and the discriminative power of our representation with respect to the

underlying action semantics.

At a lower level, in Chapter 3, we defined a method for the bottom-up de-

tection of object contacts and separations, with the ultimate goal of discontinuity-

preserving non-rigid registration. In addition to state-of-the-art motion estimation

accuracy and measurable improvements over existing approaches in motion esti-

mates on topological event boundaries, our approach shows promising performance

121

in the explicit detection of contact and separation events.

Furthermore, in Chapter 4, we presented a simple bottom-up pipeline that

builds upon our topology-aware dense motion estimation approach and uses de-

tected contact interactions as an attention mechanism in order to obtain a motion-

based segmentation of the manipulated object and track its motion throughout the

duration of an observed manipulation.

The ability to extract and reason about these types of geometric object interac-

tions provides useful semantic cues for the cognitive interpretation of manipulation

actions, as it either fully enables or significantly facilitates answering a number of

fundamental questions about the action at hand. For example, contact detection

in a manipulation video provides strong hints to what was grasped and when; com-

bined with the guided motion segmentation of Chapter 4, both of these questions,

as well as how the object moved, can be fully answered. At the same time, spatial

relations and their dynamics reveal where the manipulated object was moved with

respect to its surroundings.

In addition to our methodological contributions, in Chapter 5, we presented

our publicly released open-source software library for generic point cloud data pro-

cessing that includes implementations of the core functionality required by the com-

ponents of this thesis.

6.2 Future work

There are several paths for improvements and extensions of our work.

122

The abstract, spatial relation based action representation that we introduced

in Chapter 2 is currently equipped with a distance measure that requires temporally

complete observations. Given the compactness of our descriptor, an online action

matching mechanism, applicable also to partial manipulation observations, would

provide the means for efficient action prediction, which would be particularly useful

in quick correctness assessments of monitored executions.

The topology-aware non-rigid registration algorithm of Chapter 3 only con-

siders the cases of contacts and separations. However, there exist interactions, such

as that of an object sliding on a surface, which induce different types of topological

changes that our method does not handle. Investigating ways of reasoning about

other types of interactions would not only be beneficial for improving dense motion

estimation, but also possibly enable the explicit detection and classification of said

interactions, providing additional semantic cues for action interpretation.

Finally, the guided motion segmentation pipeline of Chapter 4 can be adapted

to also integrate dynamic reconstruction, enabling the extraction of a more complete

model for the manipulated object. Other possible extensions include the ability to

extract handled objects that are non-rigid (e.g., articulated) or indirectly manipu-

lated (e.g., via the use of tools).

123

Bibliography

[1] P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea. Machine recog-
nition of human activities: A survey. IEEE Transactions on Circuits and
Systems for Video Technology, 18(11):1473–1488, 2008.

[2] Ronald Poppe. A survey on vision-based human action recognition. Image
and vision computing, 28(6):976–990, 2010.

[3] Daniel Weinland, Remi Ronfard, and Edmond Boyer. A survey of vision-based
methods for action representation, segmentation and recognition. Computer
vision and image understanding, 115(2):224–241, 2011.

[4] Samitha Herath, Mehrtash Harandi, and Fatih Porikli. Going deeper into
action recognition: A survey. Image and vision computing, 60:4–21, 2017.

[5] Volker Krüger, Danica Kragic, Aleš Ude, and Christopher Geib. The meaning
of action: A review on action recognition and mapping. Advanced robotics,
21(13):1473–1501, 2007.

[6] Yezhou Yang, Anupam Guha, C Fermüller, and Yiannis Aloimonos. A cog-
nitive system for understanding human manipulation actions. Advances in
Cognitive Sysytems, 3:67–86, 2014.

[7] Yezhou Yang, Yi Li, Cornelia Fermüller, and Yiannis Aloimonos. Robot learn-
ing manipulation action plans by “watching” unconstrained videos from the
world wide web. In AAAI, pages 3686–3693, 2015.

[8] Abhinav Gupta, Aniruddha Kembhavi, and Larry S Davis. Observing human-
object interactions: Using spatial and functional compatibility for recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(10):1775–1789, 2009.

[9] Vincent Delaitre, Josef Sivic, and Ivan Laptev. Learning person-object interac-
tions for action recognition in still images. In Advances in neural information
processing systems, pages 1503–1511, 2011.

124

[10] E.E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter.
Learning the semantics of object-action relations by observation. The Inter-
national Journal of Robotics Research, 30(10):1229–1249, 2011.

[11] Fatemeh Ziaeetabar, Eren Erdal Aksoy, Florentin Wörgötter, and Minija Ta-
mosiunaite. Semantic analysis of manipulation actions using spatial relations.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 4612–4619. IEEE, 2017.

[12] Yezhou Yang. Manipulation Action Understanding for Observation and Exe-
cution. PhD thesis, University of Maryland, College Park, 2015.

[13] Garrett Ethan Katz. A Cognitive Robotic Imitation Learning System Based
on Cause-Effect Reasoning. PhD thesis, University of Maryland, College Park,
2017.

[14] Konstantinos Zampogiannis, Yezhou Yang, Cornelia Fermüller, and Yiannis
Aloimonos. Learning the spatial semantics of manipulation actions through
preposition grounding. In Robotics and Automation (ICRA), 2015 IEEE In-
ternational Conference on, pages 1389–1396. IEEE, 2015.

[15] Konstantinos Zampogiannis, Cornelia Fermuller, and Yiannis Aloimonos.
Topology-aware non-rigid point cloud registration. arXiv preprint
arXiv:1811.07014, 2018.

[16] Konstantinos Zampogiannis, Kanishka Ganguly, Cornelia Fermuller, and
Yiannis Aloimonos. Extracting contact and motion from manipulation videos.
arXiv preprint arXiv:1807.04870, 2018.

[17] Konstantinos Zampogiannis, Cornelia Fermuller, and Yiannis Aloimonos.
Cilantro: A lean, versatile, and efficient library for point cloud data process-
ing. In Proceedings of the 26th ACM International Conference on Multimedia,
MM ’18, pages 1364–1367, New York, NY, USA, 2018. ACM.

[18] Weilie Yi and Dana Ballard. Recognizing behavior in hand-eye coordination
patterns. International Journal of Humanoid Robotics, 6(03):337–359, 2009.

[19] H. Kjellström, J. Romero, D. Mart́ınez, and D. Kragić. Simultaneous visual
recognition of manipulation actions and manipulated objects. Proceedings of
the 2008 IEEE European Conference on Computer Vision, pages 336–349,
2008.

[20] A. Gupta and L.S. Davis. Objects in action: An approach for combining
action understanding and object perception. In Proceedings of the 2007 IEEE
International Conference on Computer Vision and Pattern Recognition, pages
1–8, 2007.

125

[21] Tamim Asfour, Pedram Azad, Florian Gyarfas, and Rüdiger Dillmann. Imi-
tation learning of dual-arm manipulation tasks in humanoid robots. Interna-
tional Journal of Humanoid Robotics, 5(02):183–202, 2008.

[22] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke,
J. Schrder, and R. Dillmann. Toward humanoid manipulation in human-
centred environments. Robotics and Autonomous Systems, 56:54–65, 2008.

[23] Anupam Guha, Yezhou Yang, Cornelia Fermüller, and Yiannis Aloimonos.
Minimalist plans for interpreting manipulation actions. In Proceedings of the
2013 International Conference on Intelligent Robots and Systems, pages 5908–
5914, Tokyo, 2013. IEEE.

[24] Yezhou Yang, Cornelia Fermüller, and Yiannis Aloimonos. Detection of ma-
nipulation action consequences (MAC). In Proceedings of the 2013 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2563–2570, Port-
land, OR, 2013. IEEE.

[25] Mirko Wächter, Sebastian Schulz, Tamim Asfour, Eren Aksoy, Florentin
Wörgötter, and Rüdiger Dillmann. Action sequence reproduction based on
automatic segmentation and object-action complexes. In IEEE/RAS Interna-
tional Conference on Humanoid Robots (Humanoids), pages 0–0, 2013.

[26] Jeremy Maitin-Shepard, Marco Cusumano-Towner, Jinna Lei, and Pieter
Abbeel. Cloth grasp point detection based on multiple-view geometric cues
with application to robotic towel folding. In Proceedings of the 2010 IEEE In-
ternational Conference on Robotics and Automation, pages 2308–2315. IEEE,
2010.

[27] Bogdan Moldovan, Plinio Moreno, Martijn van Otterlo, José Santos-Victor,
and Luc De Raedt. Learning relational affordance models for robots in multi-
object manipulation tasks. In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation, pages 4373–4378. IEEE, 2012.

[28] Mehmet R Dogar, Michael C Koval, Abhijeet Tallavajhula, and Siddhartha
Srinivasa. Object search by manipulation. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE, 2013.

[29] Christian Smith, Yiannis Karayiannidis, Lazaros Nalpantidis, Xavi Gratal,
Peng Qi, Dimos V Dimarogonas, and Danica Kragic. Dual arm manipulation:
A survey. Robotics and Autonomous Systems, 2012.

[30] Abhinav Gupta and Larry S. Davis. Beyond nouns: Exploiting prepositions
and comparative adjectives for learning visual classifiers. In David A. Forsyth,
Philip H. S. Torr, and Andrew Zisserman, editors, ECCV (1), volume 5302 of
Lecture Notes in Computer Science, pages 16–29. Springer, 2008.

126

[31] S. Guadarrama, L. Riano, D. Golland, D. Gohring, Y. Jia, D. Klein, P. Abbeel,
and T. Darrell. Grounding spatial relations for human-robot interaction.
In IEEE/RSJ International Conference on Intelligent Robots and Systems,
November 2013.

[32] Dave Golland, Percy Liang, and Dan Klein. A game-theoretic approach to
generating spatial descriptions. In Proceedings of the 2010 conference on em-
pirical methods in natural language processing, pages 410–419. Association for
Computational Linguistics, 2010.

[33] Benjamin Rosman and Subramanian Ramamoorthy. Learning spatial rela-
tionships between objects. I. J. Robotic Res., 30(11):1328–1342, 2011.

[34] S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Kruger, and F. Guerin.
Learning spatial relationships from 3D vision using histograms. In Robotics
and Automation (ICRA), 2014 IEEE International Conference on, pages 501–
508, May 2014.

[35] Dieter Fox. KLD-Sampling: Adaptive Particle Filters. In Advances in Neural
Information Processing Systems 14 (NIPS 2001), pages 713–720. MIT Press,
2001.

[36] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13 2011.

[37] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spo-
ken word recognition. Acoustics, Speech and Signal Processing, IEEE Trans-
actions on, 26(1):43–49, Feb 1978.

[38] Harold W Kuhn. The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

[39] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura-
Netto, Peter Hahn, and Tania Querido. A survey for the quadratic assignment
problem. European Journal of Operational Research, 176(2):657–690, 2007.

[40] Tobias Achterberg. SCIP: Solving constraint integer programs. Mathematical
Programming Computation, 1(1):1–41, July 2009.

[41] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation
with nonlinear dynamical systems in humanoid robots. In Robotics and Au-
tomation, 2002. Proceedings. ICRA’02. IEEE International Conference on,
volume 2, pages 1398–1403. IEEE, 2002.

[42] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between
data points. Science, 315:972–976, 2007.

127

[43] Albert S Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel
Maturana, Dieter Fox, and Nicholas Roy. Visual odometry and mapping for
autonomous flight using an rgb-d camera. In Robotics Research, pages 235–
252. Springer, 2017.

[44] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Robust odometry esti-
mation for rgb-d cameras. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 3748–3754. IEEE, 2013.

[45] Mariano Jaimez, Mohamed Souiai, Javier Gonzalez-Jimenez, and Daniel Cre-
mers. A primal-dual framework for real-time dense rgb-d scene flow. In
Robotics and Automation (ICRA), 2015 IEEE International Conference on,
pages 98–104. IEEE, 2015.

[46] Mariano Jaimez, Christian Kerl, Javier Gonzalez-Jimenez, and Daniel Cre-
mers. Fast odometry and scene flow from rgb-d cameras based on geometric
clustering. In Robotics and Automation (ICRA), 2017 IEEE International
Conference on, pages 3992–3999. IEEE, 2017.

[47] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux,
David Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges,
and Andrew Fitzgibbon. Kinectfusion: Real-time dense surface mapping and
tracking. In Mixed and augmented reality (ISMAR), 2011 10th IEEE interna-
tional symposium on, pages 127–136. IEEE, 2011.

[48] Thomas Whelan, Stefan Leutenegger, Renato Salas Moreno, Ben Glocker,
and Andrew Davison. Elasticfusion: Dense slam without a pose graph. In
Proceedings of Robotics: Science and Systems, Rome, Italy, July 2015.

[49] Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dynamicfusion: Re-
construction and tracking of non-rigid scenes in real-time. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 343–352,
2015.

[50] Matthias Innmann, Michael Zollhöfer, Matthias Nießner, Christian Theobalt,
and Marc Stamminger. Volumedeform: Real-time volumetric non-rigid re-
construction. In European Conference on Computer Vision, pages 362–379.
Springer, 2016.

[51] Evan Herbst, Xiaofeng Ren, and Dieter Fox. Rgb-d flow: Dense 3-d motion
estimation using color and depth. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 2276–2282. IEEE, 2013.

[52] Julian Quiroga, Thomas Brox, Frédéric Devernay, and James Crowley. Dense
semi-rigid scene flow estimation from rgbd images. In European Conference
on Computer Vision, pages 567–582. Springer, 2014.

128

[53] Mariano Jaimez, Mohamed Souiai, Jörg Stückler, Javier Gonzalez-Jimenez,
and Daniel Cremers. Motion cooperation: Smooth piece-wise rigid scene flow
from rgb-d images. In 3D Vision (3DV), 2015 International Conference on,
pages 64–72. IEEE, 2015.

[54] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers,
Alexey Dosovitskiy, and Thomas Brox. A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estimation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4040–4048, 2016.

[55] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan
Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David
Kim, Jonathan Taylor, Pushmeet Kohli, Vladimir Tankovich, and Shahram
Izadi. Fusion4d: Real-time performance capture of challenging scenes. ACM
Trans. Graph., 35(4):114:1–114:13, July 2016.

[56] Wei Gao and Russ Tedrake. Surfelwarp: Efficient non-volumetric single view
dynamic reconstruction. In Robotics: Science and Systems, 2018.

[57] Miroslava Slavcheva, Maximilian Baust, Daniel Cremers, and Slobodan Ilic.
Killingfusion: Non-rigid 3d reconstruction without correspondences. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1386–1395, 2017.

[58] Miroslava Slavcheva, Maximilian Baust, and Slobodan Ilic. Sobolevfusion:
3d reconstruction of scenes undergoing free non-rigid motion. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2646–2655, 2018.

[59] Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 303–312. ACM, 1996.

[60] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo
Kanade. Three-dimensional scene flow. In Computer Vision, 1999. The Pro-
ceedings of the Seventh IEEE International Conference on, volume 2, pages
722–729. IEEE, 1999.

[61] Hagen Spies, Bernd Jähne, and John L Barron. Range flow estimation. Com-
puter Vision and Image Understanding, 85(3):209–231, 2002.

[62] Michael Hornacek, Andrew Fitzgibbon, and Carsten Rother. Sphereflow: 6
dof scene flow from rgb-d pairs. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3526–3533, 2014.

[63] Deqing Sun, Erik B Sudderth, and Hanspeter Pfister. Layered rgbd scene flow
estimation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 548–556, 2015.

129

[64] Brian Amberg, Sami Romdhani, and Thomas Vetter. Optimal step nonrigid
icp algorithms for surface registration. In Computer Vision and Pattern Recog-
nition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[65] Robert W. Sumner, Johannes Schmid, and Mark Pauly. Embedded deforma-
tion for shape manipulation. ACM Transactions on Graphics, 26:80, 2007.

[66] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Sym-
posium on Geometry processing, volume 4, page 30, 2007.

[67] David G Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[68] Martin Rünz and Lourdes Agapito. Co-fusion: Real-time segmentation, track-
ing and fusion of multiple objects. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 4471–4478, May 2017.

[69] Martin Rünz, Maud Buffier, and Lourdes Agapito. Maskfusion: Real-time
recognition, tracking and reconstruction of multiple moving objects. In 2018
IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
pages 10–20. IEEE, 2018.

[70] Miroslava Slavcheva, Wadim Kehl, Nassir Navab, and Slobodan Ilic. Sdf-2-
sdf registration for real-time 3d reconstruction from rgb-d data. International
Journal of Computer Vision, 126(6):615–636, Jun 2018.

[71] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm.
In 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International
Conference on, pages 145–152. IEEE, 2001.

[72] Chris Engels, Henrik Stewénius, and David Nistér. Bundle adjustment rules.
Photogrammetric computer vision, 2(2006), 2006.

[73] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open
source movie for optical flow evaluation. In A. Fitzgibbon et al. (Eds.), editor,
European Conf. on Computer Vision (ECCV), Part IV, LNCS 7577, pages
611–625. Springer-Verlag, October 2012.

[74] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and
Richard Szeliski. A database and evaluation methodology for optical flow.
International Journal of Computer Vision, 92(1):1–31, 2011.

[75] Ueli Rutishauser, Dirk Walther, Christof Koch, and Pietro Perona. Is bottom-
up attention useful for object recognition? In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer So-
ciety Conference on, volume 2, pages II–II. IEEE, 2004.

[76] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recog-
nition with visual attention. arXiv preprint arXiv:1412.7755, 2014.

130

[77] Heng Wang and Cordelia Schmid. Action recognition with improved trajec-
tories. In Computer Vision (ICCV), 2013 IEEE International Conference on,
pages 3551–3558. IEEE, 2013.

[78] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks
for action recognition in videos. In Advances in neural information processing
systems, pages 568–576, 2014.

[79] Norbert Krüger, Christopher Geib, Justus Piater, Ronald Petrick, Mark Steed-
man, Florentin Wörgötter, Aleš Ude, Tamim Asfour, Dirk Kraft, Damir
Omrčen, et al. Object–action complexes: Grounded abstractions of sensory–
motor processes. Robotics and Autonomous Systems, 59(10):740–757, 2011.

[80] Karinne Ramirez Amaro, Michael Beetz, and Gordon Cheng. Understanding
human activities from observation via semantic reasoning for humanoid robots.
In IROS Workshop on AI and Robotics, 2014.

[81] Douglas Summers-Stay, Ching L Teo, Yezhou Yang, Cornelia Fermüller, and
Yiannis Aloimonos. Using a minimal action grammar for activity under-
standing in the real world. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 4104–4111. IEEE, 2012.

[82] Yezhou Yang, Cornelia Fermuller, Yi Li, and Yiannis Aloimonos. Grasp type
revisited: A modern perspective on a classical feature for vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
400–408, 2015.

[83] Qingshuang Chen, He Li, Rana Abu-Zhaya, Amanda Seidl, Fengqing Zhu, and
Edward J Delp. Touch event recognition for human interaction. Electronic
Imaging, 2016(11):1–6, 2016.

[84] Jingyu Yan and Marc Pollefeys. A general framework for motion segmentation:
Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In
European conference on computer vision, pages 94–106. Springer, 2006.

[85] Roberto Tron and René Vidal. A benchmark for the comparison of 3-d motion
segmentation algorithms. In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[86] Joao Costeira and Takeo Kanade. A multi-body factorization method for
motion analysis. In Computer Vision, 1995. Proceedings., Fifth International
Conference on, pages 1071–1076. IEEE, 1995.

[87] Ken-ichi Kanatani. Motion segmentation by subspace separation and model
selection. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, volume 2, pages 586–591. IEEE, 2001.

131

[88] Shankar Rao, Roberto Tron, Rene Vidal, and Yi Ma. Motion segmentation in
the presence of outlying, incomplete, or corrupted trajectories. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(10):1832–1845, 2010.

[89] René Vidal and Richard Hartley. Motion segmentation with missing data
using powerfactorization and gpca. In Computer Vision and Pattern Recog-
nition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, volume 2, pages II–II. IEEE, 2004.

[90] Dov Katz, Moslem Kazemi, J Andrew Bagnell, and Anthony Stentz. Inter-
active segmentation, tracking, and kinematic modeling of unknown 3d articu-
lated objects. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 5003–5010. IEEE, 2013.

[91] Evan Herbst, Xiaofeng Ren, and Dieter Fox. Object segmentation from motion
with dense feature matching. In ICRA Workshop on Semantic Perception,
Mapping and Exploration, volume 2, 2012.

[92] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation of moving ob-
jects by long term video analysis. IEEE transactions on pattern analysis and
machine intelligence, 36(6):1187–1200, 2014.

[93] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. In CVPR, 2017.

[94] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[95] Michael J Jones and James M Rehg. Statistical color models with application
to skin detection. International Journal of Computer Vision, 46(1):81–96,
2002.

[96] Vladimir Vezhnevets, Vassili Sazonov, and Alla Andreeva. A survey on pixel-
based skin color detection techniques. In Proc. Graphicon, volume 3, pages
85–92. Moscow, Russia, 2003.

[97] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and comput-
ing, 17(4):395–416, 2007.

[98] Shinji Umeyama. Least-squares estimation of transformation parameters be-
tween two point patterns. IEEE Transactions on pattern analysis and machine
intelligence, 13(4):376–380, 1991.

[99] Dave Hershberger, David Gossow, and Josh Faust. RViz. https://github.

com/ros-visualization/rviz, 2012.

132

https://github.com/ros-visualization/rviz
https://github.com/ros-visualization/rviz

[100] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[101] Dave T. Coleman. “MoveIt!” Simple Grasps. https://github.com/

davetcoleman/moveit_simple_grasps, 2016.

[102] S. Chitta, I. Sucan, and S. Cousins. MoveIt! [ROS Topics]. IEEE Robotics
Automation Magazine, 19(1):18–19, March 2012.

[103] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path
planning. Technical report, Iowa State University, 1998.

[104] Stefan Schaal. Dynamic movement primitives - a framework for motor control
in humans and humanoid robotics, 2002.

[105] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial
Board, 4.12 edition, 2018.

[106] Visual Computing Lab of the Italian National Research Council - ISTI. The
vcg library, 2018. http://www.vcglib.net/.

[107] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio
Ganovelli, and Guido Ranzuglia. Meshlab: an open-source mesh processing
tool. In Eurographics Italian Chapter Conference, volume 2008, pages 129–136,
2008.

[108] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry pro-
cessing library, 2017. http://libigl.github.io/libigl/.

[109] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library
for 3D data processing. arXiv:1801.09847, 2018.

[110] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[111] Jose Luis Blanco and Pranjal Kumar Rai. nanoflann: a C++ header-only
fork of FLANN, a library for nearest neighbor (NN) wih kd-trees. https:

//github.com/jlblancoc/nanoflann, 2014.

[112] Yixuan Qiu. Spectra: A header-only c++ library for large scale eigenvalue
problems. https://spectralib.org/index.html, 2018.

[113] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. The quick-
hull algorithm for convex hulls. ACM Transactions on Mathematical Software
(TOMS), 22(4):469–483, 1996.

[114] Dimitri Diakopoulos. tinyply. https://github.com/ddiakopoulos/tinyply,
2018.

133

https://github.com/davetcoleman/moveit_simple_grasps
https://github.com/davetcoleman/moveit_simple_grasps
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://spectralib.org/index.html
https://github.com/ddiakopoulos/tinyply

[115] Steven Lovegrove. Pangolin. https://github.com/stevenlovegrove/

Pangolin, 2018.

[116] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sen-
sor Fusion IV: Control Paradigms and Data Structures, volume 1611, pages
586–607. International Society for Optics and Photonics, 1992.

[117] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp surface
registration. Chapel Hill, University of North Carolina, 4, 2004.

[118] Maik Keller, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim Weyrich,
and Andreas Kolb. Real-time 3d reconstruction in dynamic scenes using point-
based fusion. In 2013 International Conference on 3D Vision-3DV 2013, pages
1–8. IEEE, 2013.

[119] Angela Dai, Matthias Nießner, Michael Zollöfer, Shahram Izadi, and Christian
Theobalt. Bundlefusion: Real-time globally consistent 3d reconstruction using
on-the-fly surface re-integration. ACM Transactions on Graphics 2017 (TOG),
2017.

[120] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A bench-
mark for the evaluation of rgb-d slam systems. In Proc. of the International
Conference on Intelligent Robot Systems (IROS), Oct. 2012.

134

https://github.com/stevenlovegrove/Pangolin
https://github.com/stevenlovegrove/Pangolin

	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation and scope
	Thesis contributions and outline

	Learning the Spatial Semantics of Manipulation Actions through Preposition Grounding
	Introduction
	Related work
	Our approach
	Overview of our method
	Point cloud tracking
	Spatial relations
	Action descriptors
	Distance measure

	Experiments
	Data description
	Spatial relations evaluation
	Action classification

	Summary

	Topology-Aware Non-Rigid Point Cloud Registration
	Introduction
	Related work
	Our approach
	Problem statement
	Motivation and overview of our approach
	Warp field estimation
	Handling topology changes

	Experiments
	General setup details
	Motion estimation accuracy evaluation
	Topology change event handling

	Summary

	Extracting Contact, Objects, and Object Motions from Manipulation Videos
	Introduction
	Related work
	Our approach
	Overview
	Actor-environment segmentation
	Contact detection
	Manipulated object segmentation and motion

	Experiments
	Application: replication from observation by a robot
	Preprocessing stage
	Planning stage
	Execution stage

	Summary

	cilantro: A Lean, Versatile, and Efficient Library for Point Cloud Data Processing
	Introduction
	Design overview
	Functionality
	Performance
	Software release

	Conclusions and Future Work
	Summary
	Future work

	Bibliography

