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Automated infusion of medications will be increasingly deployed in patient care as a 

means to deliver high-quality and continuous monitoring and therapy, and also to 

alleviate the excessive workload imposed on the clinicians. Therefore, a well-designed 

automated medication infusion system is an attractive alternative to today’s manual 

treatment requiring caregiver’s interventions. However, it also presents numerous 

challenges: 1) Significant inter- and intra-subject variability; 2) Complexity of 

medication infusion model; 3) Complexity of interaction of multiple medications; 4) 

Difficulty in coordination of medical targets. 

 

In this dissertation, a well-designed automated medication infusion was designed to 

address the various challenges: 

 



  

First, considering the large degree of individual subject variability, an adaptive controller 

was pursued instead of non-adaptive controllers which might be difficult to offer decent 

behavior for all subjects. Since the infusion model of single drug is highly nonlinear and 

complex, a low-order single-input single-output (SISO) model was proposed and a SISO 

semi-adaptive control approach which only adapt can adapt model parameters having a 

large impact on the model’s fidelity was designed. 

 

Secondly, the complicated interaction of multiple medications makes the adaptive 

controller for two medications even more difficult to design. So a model for two 

interacting dose responses was constructed and linearized at one operation point. Then 

the SISO semi-adaptive controller was extended to a two-input two-output case. 

However, this controller is only designed at one operating point. Therefore, based on two 

models associated with two distinct operating regimes, a two-model switching control 

technique was developed and combined with the semi-adaptive controller. 

 

Thirdly, we presented a coordinate mechanism to deal with the medical targets setting 

problem. In real clinical scenarios, the reference targets are empirically specified by 

caregivers, which are not always achievable in all subjects. Therefore, our proposed 

coordinate mechanism can recursively adjusts the reference targets based on the 

estimated dose-response relationship of subjects. 

 



  

Lastly, we conducted SISO control experiments on some pigs. Based on the results, large 

transport delay was observed in the medication infusion of one pig. Therefore, we 

incorporated transport delay in the controller design. 
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Chapter 1: Introduction 

In this chapter, the mediation medication and the advantages of automated medication 

infusion is introduced first. Then the challenges of computerized medication infusion 

system is discussed. Moreover, the approaches to address them is presented. In the end, 

the outline of the dissertation is presented. 

 

1.1 Medication Infusion 

Medication infusion means that a drug is administered intravenously, but the term also 

may refer to situations where drugs are provided through other non-oral routes, such as 

intramuscular injections and epidural routes into the membranes surrounding the spinal 

cord. Typically, the medications sent directly into vein using a needle or tube 

intravenously. With intravenous administration, a thin plastic tube called an intravenous 

catheter is inserted into your vein. The catheter allows your healthcare provider to give 

you multiple safe doses of medication without needing to poke you with a needle each 

time. 

 

Medication infusion has a wide range of application including anesthesia, infections, 

chemotherapy, dehydration, gastrointestinal diseases or disorders which prevent normal 

functioning of the gastrointestinal system, and more. To achieving high-quality 

medication infusions, infusion pharmacies need to provide an extensive array of 

professional services—patient assessment and admission, education and training, care 

planning and coordination, care management by clinical infusion pharmacists, trouble-

shooting and treatment plan oversight, and much more. 

http://www.nhia.org/faqs.cfm#QtsArrayProfSvcs
http://www.nhia.org/faqs.cfm#QtsArrayProfSvcs
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Take the current anesthesia care for an example. Anesthesiologists administer the doses 

based on the average patient. They first infuse the initial dose of anesthetics, observe the 

response, and adjust the dose accordingly. The performance highly depends on the 

anesthesiologist’s understanding of both the pharmacokinetics (PK) and the 

pharmacodynamics (PD) of the drugs in use, as well as the possible drugs interaction. 

The anesthesiologist hence acts as a feedback controller [1]. Therefore, it is natural to 

think about if automatic medication infusion is able to be used for research in clinical 

studies. 

 

1.2 Benefits of Automated Medication Infusion 

Studies investigating the efficacy of closed-loop medication infusion relative to manual 

medication infusion suggest that the former performs as good as, or sometimes even 

outperforms, the latter in sticking to the specified target clinical endpoint in anesthesia 

care [2]–[4], vasopressor therapy [5] and fluid resuscitation [6]–[8]. Computerized 

medication infusion may also reduce physiological variability during treatment relative to 

manual therapy [7], [8], prevent overdosing [9], [10], and facilitate medication weaning 

[11]. Noting that caregivers are extremely overloaded and frequently distracted by 

multiple tasks [12]–[14], a well-designed automated medication infusion system is an 

attractive alternative to today’s manual treatment requiring caregiver’s interventions. 
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1.3 Challenges 

To develop an automated medication infusion system, several challenges are faced as 

summarized below. 

 

1.1.1.  Model Uncertainty: 

One of the key challenges in automated medication infusion is the signification inter- and 

intra-subject variability [7], [15], [16]. However, some existing studies only focused on 

non-adaptive control approaches [17]–[23]. Though suggested to be robust, these 

controllers have only either been tested in limited subject populations, and are probably 

susceptible to uncertainties due to a large inter-individual variability were they to be 

tested over a wide range of diverse subjects, or designed for the worst case situation, 

which may make them sluggish. Therefore, a model based adaptive controller should be 

exploited to deal with the large uncertainty. 

 

1.1.2.  Complexity and Nonlinearity of Dose Response Model: 

Another major source of difficulty results from the complexity of the subjects’ 

pharmacokinetics-pharmacodynamics (PKPD) responses to the drug delivery. Even if for 

a SISO classical PKPD model, it involves a number of individual-specific parameters that 

cannot be easily tuned with the dose profiles anticipated in real clinical settings (i.e., dose 

profiles are typically too simple to faithfully determine all the individual-specific 

parameters in classical PKPD models). Further, the PKPD model usually involves 

nonlinear PD models (such as the Hill equation) that cannot be adapted easily using 

standard linear parameter estimation techniques. Due to these challenges, some of 

existing adaptive control work are only based on black-box models [24], [25]. But no 
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consensus has been established as to the best black-box model or even as to if a particular 

black-box model structure is universally applicable to wide-ranging subject populations. 

Some others are based on the PKPD models. To design an adaptive control, they have 

employed techniques such as linearizing the Hill equation [26], fixing either PK or PD 

model while adapting the other [27], [28], using nonlinear filtering techniques (such as 

the extended Kalman filter) to adapt the nonlinear Hill equation while constraining the 

PKPD model to reduce the number of parameters to be tuned [29]. However, all these 

methods have some disadvantages. They may only works at a small region of operation 

or the parameters they fix actually have large impact on the model’s response. So a better 

approach which can avoid these disadvantages needs to be proposed. 

 

1.1.3.  Complexity of Interaction of Multiple Medications 

Generally, multiple medications must be infused during care of critically ill subjects to 

achieve a multitude of treatment goals. However, the interaction of multiple medications 

is also nonlinear [30]–[34] which makes the adaptive controller even more difficult to 

design. So there is only limited volume of work reported on the closed-loop control for 

infusion of multiple medications to track multiple reference targets [35]–[39]. The limited 

work are usually non-model based [35], [36] or black-box model based [37], [38].  

However, it is desirable to design controllers based on physical models which may have 

better performance. Although [39] utilized a linear approximation of PKPD model around 

the maintenance values and then applied model based predictive controller for it, it may 

not have very good performance over a large region of operation. Therefore, a physical 

model based controller which can work over a wide region should be proposed despite of 

complexity of the MIMO medication infusion models. 
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1.1.4.  Difficulty in Coordination of Medical Targets 

In addition to closed-loop control design, the coordination of reference targets also 

presents a challenge. In real clinical scenarios, reference targets are empirically specified 

by caregivers, e.g., based on population norms and caregivers’ experience. These ad-hoc 

reference targets are not always achievable in all subjects due to the inter-individual 

variability in dose-response relationships and the bounds on medication dose to ensure 

subject safety. In fact, inappropriate coordination of reference targets that cannot be 

achieved in a subject may potentially harm the subject via over-/under-dosing. A critical 

challenge is that it is not possible to specify achievable reference targets for a subject 

before the treatment, since the dose-response relationship of the subject is typically not 

known a priori. Therefore, targets must be recursively adjusted by estimating the 

subject’s dose-response relationship on-line while respecting the caregivers’ therapeutic 

intent. Existing well-known techniques for the adjustment of reference targets are 

reference governors and their variants, add-on schemes used to avoid the violation of 

state and input constraints in a closed-loop control system by adjusting the reference 

targets during the transients [40]–[42]. Yet, these techniques are not appropriate to 

address the challenge at hand for at least two reasons. Most importantly, the primary goal 

of a reference governor is to keep the adjusted reference targets as close as possible to the 

original ones, and ideally, ultimately bring them back to the original ones. In contrast, our 

goal is to adjust inherently unachievable reference targets to achievable ones so that the 

system (the subject in our case) can converge to the adjusted reference targets, while 

accounting for additional safety-critical considerations such as minimizing the total 

medication doses. Furthermore, a reference governor can only reduce the reference 

targets, while our goal is to adjust (i.e., increase or decrease) reference targets according 
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to the sensitivity of each subject to medications and their synergy. Therefore, novel 

approaches for coordinated adjustment of reference targets may be beneficial in 

providing closed-loop medication infusion control systems with resilience to 

inappropriate reference targets specified by caregivers, ultimately improving the safety of 

subjects receiving medication treatments. 

 

1.4 Dissertation Contributions 

In an effort to cope with these challenges, we first exploited a low-order dose-response 

model and presented a SISO semi-adaptive control approach to the model. The rationale 

underlying this approach was to design a controller that can adapt model parameters 

having a large impact on the model’s fidelity while fixing the remaining parameters at 

nominal values to linear parameterize the model because standard adaptive techniques are 

based on linear parameterized models. 

 

Moreover, the SISO approach was extended the two-input two-output case. Because the 

two-input two-output model is nonlinear, we then linearized the multivariable dose-

response model at one operating point to enable the controller design. However, given 

that the coupling effect between multiple medications frequently exhibits complex 

behaviors due to the regime-dependent inter-medication synergy, the controller based on 

one single model maybe not suffice for a trustworthy design. Therefore, we linearized the 

multivariable model at two distinct operating points and design an adaptive controller for 

each model. Two locally linearized modes represent the operating regime in which one 
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medication is used as primary therapy for controlling the clinical responses. Then a two-

model switching control technique was developed to choose the suitable controller. 

 

In addition, because the reference targets have to be adjusted based on the responses of 

the subjects, a coordinate mechanism was then proposed to recursively adjusts the 

reference targets based on the estimated dose-response relationship of a subject to ensure 

that they can be achieved by the subject and minimize the medication use at the same 

time. 

 

In the end, we implemented our SISO controller on pigs to validate the proposed 

approach. The semi-adaptive controller performed well in 3 pigs while it performed 

marginally in 1 pig. Our retrospective analysis indicated that dynamic dose-response 

delay, which is not modeled explicitly in the controller design process, may play an 

important role in determining the performance of the controller in each pig. Therefore, 

we accommodated the dose-response delay in the SISO controller design. 

 

1.5 Outline 

This proposal is organized as follows. Chapter 2 describes a low-order model named the 

direct dynamic dose-response model and its system identification and sensitivity analysis 

results. Chapter 3 elaborates on the design of SISO semi-adaptive controllers. Chapter 4 

extends the SISO controller to a two-input two-output semi-adaptive controller. Chapter 5 

combines the two-model switching techniques to MIMO controller in Chapter 4. Chapter 

6 describes the coordinated semi-adaptive controller which combines a coordination 
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mechanism with the MIMO controller in Chapter 4. Chapter 7 shows the pig experiment 

results of SISO controller and the method to improve the SISO controller. Chapter 8 

concludes the dissertation with future directions. 
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Chapter 2: Low-Order Dose-Response Model 

In this chapter, the SISO model for medication infusion is introduced. Since classical 

adaptive controller can be usually applied to linearly parametrized models, so we need to 

propose a model which is accurate enough to represent the dynamics of medication 

infusion and suitable for adaptive control design at the same time. To achieve this goal, a 

low-order dose-response model was first introduced and validated using three sets of data 

for different drugs. However, this model is still nonlinear which does not lend itself to 

standard adaptive control design techniques. Therefore, sensitivity analysis was 

performed to examine the impact of each parameter. Based on it, we can fix the 

parameter which has the least impact on model’s response to linearly parametrized the 

model. 

 

2.1. Direct Dynamic Dose-Response Model 

A direct dynamic dose-response model proposed by Hahn et al. [43] was used to 

reproduce the effect of medication infusion. In the classical PKPD model (Fig. 1a), 

intermediate state variables (plasma and effect site concentrations of medication, 𝐶𝑝 and 

𝐶𝑒) as well as input (medication dose, 𝐼) and output (𝑦 normalized by its baseline, 𝑦0) are 

directly related to physical quantities. As such, PK and PD can be modeled using the 

measurements of 𝐼, 𝐶𝑝, and 𝑦. However, this is not possible in routine procedures where 

𝐶𝑝 cannot be measured in real time. The direct dynamic dose-response model eliminates 

the reliance of the PKPD model on 𝐶𝑝 by deriving a direct relationship between 𝐼 and 𝑦 

(Fig. 1b). Compared with the PKPD model, 𝐺𝑃𝐾𝑃𝐷(𝑠) is replaced by a unity-gain transfer 

function 𝐺𝐷𝐷𝐷𝑅(𝑠), output of which represents a hypothetical medication dose at the site 
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of action, 𝐼𝑒. In addition, the Hill equation model in the direct dynamic dose-response 

model relates 𝐼𝑒  to 𝑦 in contrast to the PKPD model in which the same Hill equation 

relates 𝐶𝑒  to 𝑦 . In this regard, the parameter 𝐼50  can be interpreted as the medication 

infusion rate associated with 50% depression of 𝑦 from its baseline. In sum, the direct 

dynamic dose-response model can be tuned to each individual solely based on the input-

output data, even in the absence of 𝐶𝑝  measurements. Note that although the PKPD 

model may also be tuned in the same way using 𝐼 and 𝑦, the model thus derived may not 

always be faithful since the dose profiles anticipated in real clinical settings are not rich 

enough to tune a number of parameters involved in the PKPD model. 

 

 

(a) 

 

(b) 

Figure 1: Classical PKPD (a) versus direct dynamic dose-response (b) models. 

 

2.2. Model Identification and Evaluation: Remifentanil Test 

Multiple medications including remifentanil, propofol and vasopressor were utilized to 

validate the direct dynamic dose-response model. At first, the remifentanil dose and 

respiratory rate data collected from 24 pediatric patients undergoing dental restoration 

[44] were used to derive and compare classical PKPD and direct dynamic dose-response 

models. The mixed effects modeling analysis was conducted using the NLMEFIT routine 

available in the MATLAB Statistics Toolbox [45] for system identification as follows. 
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1) Direct Dynamic Dose-Response Model: In this model, the hypothetical remifentanil 

infusion rate 𝐼𝑒 at the site of action is assumed to be related to its intravenous counterpart 

by 

𝐼𝑒(𝑠) = 𝐺𝐷𝐷𝐷𝑅(𝑠)𝐼(𝑠) =
𝑘𝑒

𝑠 + 𝑘𝑒
𝐼(𝑠) (1) 

where 𝑘𝑒  is the equilibration rate constant and 𝑠 is the Laplace operator. The relation 

between 𝐼𝑒 and RR is modeled by the Hill equation model: 

𝑅𝑅(𝑡) = 𝑅𝑅0 [1 −
𝐼𝑒
𝜆(𝑡)

𝐼50
𝜆 + 𝐼𝑒

𝜆(𝑡)
] (2) 

where RR0  is the baseline RR  in the absence of drug effect and 𝜆  is a cooperativity 

constant. Each of the unknowns is assumed to be composed of a nominal value and a 

random effect due to the inter-individual variability: 

𝑘𝑒 = 𝑘𝑒
̅̅ ̅ + 𝜂1, 𝐼50 = 𝐼50

̅̅ ̅̅ + 𝜂2, 𝜆 = 𝜆̅ + 𝜂3, 𝑅𝑅0 = 𝑅𝑅0
̅̅ ̅̅ ̅ + 𝜂4 (3) 

where ∙ ̅  represents the nominal value while 𝜂𝑖 , 𝑖 = 1,⋯ ,4  are zero-mean, normally 

distributed random variables that represent the inter-individual variability. The nominal 

value and the variance associated with each 𝜂𝑖 are identified simultaneously. Noting the 

fast and ultra-short acting nature of remifentanil, a zero-compartment model (𝑘𝑒 = 0) and 

a one-compartment model are considered as candidate models for 𝐺𝐷𝐷𝐷𝑅(𝑠). 

 

2) PKPD Model: In the PKPD model, 𝐶𝑝 is predicted using a population-based PK model 

of remifentanil [46]. The effect site remifentanil concentration 𝐶𝑒 is related to 𝐶𝑝 by 

𝐶𝑒(𝑠) =
𝑘𝑒0

𝑠 + 𝑘𝑒0
𝐶𝑝(𝑠) (4) 
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where 𝑘𝑒0 is the equilibration rate constant. The nonlinear Hill equation model is used to 

relate 𝐶𝑒  to 𝑅𝑅 , where 𝐶50  denotes the effect site remifentanil concentration 

corresponding to 50% depression of RR  from the baseline and 𝜆  is a cooperativity 

constant: 

𝑅𝑅(𝑡) = 𝑅𝑅0 [1 −
𝐶𝑒

𝜆(𝑡)

𝐶50
𝜆 + 𝐶𝑒

𝜆(𝑡)
] (5) 

Similarly to the direct dynamic dose-response model, the nominal value and the variance 

associated with each 𝜂𝑖 (𝑖 = 1,⋯ ,4 corresponds to 𝑘𝑒0, 𝐶50, 𝜆, and RR0, respectively) are 

identified simultaneously. 

 

3) Prediction Capability Analysis: The predictive accuracy of the direct dynamic dose-

response versus PKPD models was compared in terms of the root-mean-squared errors 

(RMSE) in individual prediction and the Akaike’s Information Criterion (AIC), as 

computed by the NLMEFIT routine in the MATLAB Statistics Toolbox. 

 

Table 1 and Table 2 summarize the system identification results for the direct dynamic 

dose-response and PKPD models, respectively. Fig. 2 presents measured versus model-

predicted (by the direct dynamic dose-response models) RR responses of 24 subjects. The 

mixed effects modeling analysis resulted in direct dynamic dose-response and PKPD 

models with satisfactory individual prediction capability. The model parameters 

identified for the Hill equation model in both the zero-compartment and one-

compartment direct dynamic dose-response models were consistent and comparable to 

each other (Table 1). This suggests that the Hill equation model was reliably identified in 

both models to reproduce the steady-state RR response to remifentanil infusion. In fact, 
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the consistency in the Hill equation models associated with these direct dynamic dose-

response models is not surprising if the distinct roles of the transfer function model 

𝐺𝐷𝐷𝐷𝑅(𝑠) and the Hill equation model in Fig. 1 are taken into account: the former 

represents the dynamic transients related to the distribution of remifentanil whereas the 

latter stands for the relationship between the remifentanil dose (𝐼𝑒) and the RR response 

in the steady state. 

 

Table 1: System identification results for direct dynamic dose-response models. NV: 

nominal value. s.e.: standard error. 𝜎IIV: inter-individual variability. RMSE: root mean 

squared error. AIC: Akaike’s Information Criterion. 

 Zero-Compartment Model One-Compartment Model 

 
𝑘𝑒 

 [min-1] 

𝐼50 

[mcg/kg/min] 

𝝀 

[-] 

RR0 

 [bpm] 

𝑘𝑒 

 [min-1] 

𝐼50 

[mcg/kg/min] 

𝝀 

 [-] 

RR0 

 [bpm] 

NV (s.e.) - 0.10 (0.02) 2.09 (1.92) 27.7 (1.99) 0.21 (0.03) 0.08 (0.01) 3.12 (0.24) 26.9 (1.69) 

𝜎IIV - 0.04 1.78 8.60 0.16 0.03 2.38 7.87 

RMSE 2.15 m-1 1.62 m-1 

AIC 1.12×105 0.98×105 

 

Table 2: System identification results for PKPD model. Rigby-Jones PK model [46] was 

used to predict the plasma concentration response to remifentanil infusion. NV: nominal 

value. s.e.: standard error. 𝜎IIV: inter-individual variability. RMSE: root mean squared 

error. AIC: Akaike’s Information Criterion. 

 Effect Compartment PD Model 

 
𝑘𝑒0 

 [min-1] 
 

𝑘𝑒0 

 [min-1] 
 

NV (s.e.) 3.80 (2.59) NV (s.e.) 3.80 (2.59) NV (s.e.) 

𝜎IIV 5.55 𝜎IIV 5.55 𝜎IIV 

RMSE 1.86 m-1 

AIC 1.05X105 
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Figure 2: Measured versus model-predicted RR responses of 24 subjects (one-

compartment DDDR model). Circles: RR measurements [m-1].  Solid lines: RR 

predictions [m-1]. Dashed lines: remifentanil infusion rate [X102 mcg/kg/min]. 

 

Compared with its zero-compartment counterpart, a large inter-individual variability was 

observed for 𝜆 in the one-compartment direct dynamic dose-response model (Table 1). 

The increase in the variability associated with 𝜆 in the one-compartment model may be 

attributed to its interaction with 𝑘𝑒. Indeed, the effect of 𝑘𝑒 and 𝜆 on the RR response is 

counteracting to each other: in the low infusion rate regime (which is the case of this 

study), an increase in 𝑘𝑒 and a decrease in 𝜆 both results in an increase in the speed of 

response. As a result, it is not trivial to faithfully identify 𝑘𝑒 and 𝜆 simultaneously. This 

is also supported by a strong negative covariance between the two in the variance-

covariance matrix of the random effects (not shown). In contrast to 𝜆, the inter-individual 

variability associated with 𝐼50 was small for both models. This implies that 𝐼50 has a large 
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impact on the model’s response and thus may be effectively identified. Also, a modest 

positive covariance was observed between 𝜆 and 𝐼50, meaning that their influence on the 

model’s response is synergistic: an increase in both yields a decrease in the speed of 

response. In sum, this pattern illustrates how the random effects are incorporated into 

their respective nominal values in identifying the individualized direct dynamic dose-

response models based on the RR response of each subject. For instance, for a subject 

whose response is not as sensitive to remifentanil as the population average, the random 

effects are determined so that 1) 𝑘𝑒 < 𝑘𝑒
̅̅ ̅, 2) 𝜆 > 𝜆̅, and 3) 𝐼50 > 𝐼50

̅̅ ̅̅ , which fulfills 1) 

sluggish equilibration between plasma and effect site, 2) extended dead zone in the Hill 

equation model to suppress RR responses at low 𝐼𝑒 values, and 3) high 𝐼𝑒 threshold in the 

Hill equation model to prevent RR response in low 𝐼𝑒 values, altogether decreasing the 

sensitivity of an individual’s RR response to remifentanil. 

 

Compared to the PKPD model, the one-compartment direct dynamic dose-response 

model exhibited an improved RMSE (by 13 %) as well as the Akaike’s Information 

Criterion (AIC) (Table 1 and Table 2). On the other hand, the zero-compartment direct 

dynamic dose-response model was inferior to the PKPD model, both in terms of RMSE 

and AIC. This suggests that the plasma-effect site equilibration dynamics of remifentanil 

must be considered in the direct dynamic dose-response model regardless of the ultra-

short acting nature of remifentanil. It is also noted that the two-compartment direct 

dynamic dose-response model did not offer a large incremental improvement in the 

predictive capability of the direct dynamic dose-response model (not shown). In sum, the 

smaller AIC value of the direct dynamic dose-response model than the PKPD model 
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indicates its superior trade-off between predictive capability and model parsimony over 

the PKPD model. The deteriorated performance of the PKPD model, despite its structural 

complexity, is attributable to its use of population-predicted 𝐶𝑝 in that the fidelity of the 

overall PKPD model and the prediction of the PD response are adversely affected when 

the discrepancy between predicted versus underlying 𝐶𝑝  is unacceptably large, as 

illustrated in a previous study [47]. 

 

2.3. Model Identification and Evaluation: Propofol Test 

To validate the model can capture the dynamics of other medications, we also tested 

propofol. The propofol dose and cardiac output (CO) data from 5 pigs were collected 

under the protocol approved by the Institutional Animal Care and Use Committee 

(IACUC) at University of Maryland. Pigs were chosen for this study for several reasons. 

They are the accepted standard model for studies of cardiovascular physiology due to the 

high degree of similarity between human and pig cardiovascular systems. In addition, 

they are of adequate size to accept the instrumentation to be used and are hardy enough to 

tolerate the dose escalations to be performed while under anesthesia.  

 

Each pig received propofol at several distinct infusion rates under general anesthesia and 

mechanical ventilation to elicit a wide range of CO response. The CO was measured per 

second. During experiments, RR was perturbed on purposely in some time intervals to 

examine its effect on CO. Because the perturbation of RR also had effect on CO, these 

data were dropped and not considered in the optimization. So there are some gaps in the 
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CO measurements as shown in Fig. 3. Before analysis, we pre-processed the CO 

measurements with a 25-point median filter to remove noise and outliners. 

 

We performed system identification of the dose-response model by fitting the model to 

the experimental data associated with each pig by the MATLAB Optimization Toolbox to 

minimize the prediction error. As shown in Fig. 3, the DDDR model can capture the 

response in general which implies its superior predictive capability.  

 

Figure 3: Measured versus model-predicted CO responses of propofol for 5 pigs (one-

compartment DDDR model).  
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2.4. Model Identification and Evaluation: Vasopressor Test 

In contrast to the above medications, medications such as vasopressors and inotropes 

exhibit excitatory dose-dependent effects. Similar to the DDDR model, we can reduce 

classical 𝐸𝑚𝑎𝑥 model to derive a similar low order dose-response model: 

𝐼𝑒(𝑠) = 𝐺𝐷𝐷𝐷𝑅(𝑠)𝐼(𝑠) =
𝑘𝑒

𝑠 + 𝑘𝑒
𝐼(𝑠) (6) 

where 𝐼(𝑠)  is the intravenous medication infusion rate, 𝐼𝑒(𝑡)  the infusion rate at the 

(hypothetical) effect site, 𝑘𝑒  the time constant associated with the distribution of 

medication between blood and effect site. The relation between 𝐼𝑒 and HR (heart rate) is 

modeled by the Hill equation model: 

𝐻𝑅(𝑡) = 𝐻𝑅0 + 𝐸𝑚𝑎𝑥

𝐼𝑒
𝜆(𝑡)

𝐼50
𝜆 + 𝐼𝑒

𝜆(𝑡)
 (7) 

where 𝐸𝑚𝑎𝑥  is maximum possible increase of HR, 𝜆 a cooperativity constant, and HR0 

the baseline heart rate (i.e., in the absence of medication infusion). Different from the 

model (5), it has an extra unknown parameter 𝐸𝑚𝑎𝑥  and therefore cannot be readily 

incorporated into control design. In fact, it is extremely difficult to determine the upper 

limit of response in a subject in real clinical settings due to subject safety and ethical 

considerations. To address this challenge, my lab mate Junxi developed a new dose-

response model by a nonlinear transformation: 

𝐼𝑒(𝑠) = 𝐺𝐷𝐷𝐷𝑅(𝑠)𝐼(𝑠) =
𝑘𝑒

𝑠 + 𝑘𝑒
𝐼(𝑠) (8a) 

𝐻𝑅(𝑡) = 𝐻𝑅0 [1 +
1

2ln (
1
3)

ln
𝐼50
𝜆 (𝑡)

𝐼50
𝜆 + 2𝐼𝑒

𝜆(𝑡)
] (8b) 
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To validate and analyze the proposed dose-response model, Junxi utilized experimental 

data collected from 4 pigs under the protocol approved by the IACUC at University of 

North Carolina. Each pig received vasopressor at several distinct infusion rates under 

general anesthesia and mechanical ventilation to elicit a wide range of HR response. The 

HR was measured per second and pre-processed with a 50-point median filter to remove 

noise and outliners. He then performed system identification of the new dose-response 

model (8) to minimize the prediction errors. The results in Fig. 4 indicate the 

effectiveness of the proposed model. 

 

Figure 4: Measured versus model-predicted HR responses of 4 pigs of vasopressor for 4 

pigs (one-compartment DDDR model). 
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2.5. Sensitivity Analysis 

As shown in the three different medications, the strength of the direct dynamic dose-

response model relative to the classical PKPD model is that the former is more 

parsimonious than the latter. Utilizing the low-order direct dynamic dose-response model 

for remifentanil 𝑅𝑅̇(𝑡) = −𝑅𝑅0𝐼50
𝜆 (𝑡)

𝜆𝐼𝑒
𝜆−1(𝑡)

(𝐼50
𝜆 +𝐼𝑒

𝜆(𝑡))
2 (−𝑘𝑒𝐼𝑒(𝑡) + 𝑘𝑒𝐼(𝑡)) as an example, it 

is still nonlinear and does not lead to standard adaptive control design techniques based 

on linear model parameterization. To linearly parameterize the direct dynamic dose-

response model, we proposed to derive a semi-adaptive model in which only the 

parameters having a large impact on the model’s fidelity are adapted while the remaining 

parameters are fixed at nominal values as determined by the system identification of 

remifentanil in Chapter 2.2. For this purpose, a sensitivity analysis was performed to 

examine the importance of the direct dynamic dose-response model parameters 𝑘𝑒, 𝐼50 

and 𝜆 on the response of the model as follows (note that 𝑅𝑅0  is not included in the 

analysis since it is a measured quantity). 

 

First, we perturbed the parameters of the direct dynamic dose-response model from their 

nominal values (as derived from the system identification in Chapter 2.2). With one 

parameter fixed at its nominal value as well as 25 % and 50 % away from the nominal 

value in both positive and negative directions (thus five values), the remaining two 

parameters were widely varied. The models were subject to an escalating dose of 

remifentanil with 5 distinct infusion rates that can yield a wide range of RR response in 

the nominal model. The infusion dose profile used for sensitivity analysis and the 

resulting response of the nominal direct dynamic dose-response model are shown in Fig.5 
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(i.e., the one characterized by the nominal values in Table 1 for the one-compartment 

model). Noting that the nominal value of 𝐼50 is 0.08 mcg/kg/min, this dose profile could 

excite the direct dynamic dose-response model over a wide input-output range. 

 

Figure 5: (a) Remifentanil infusion dose profile for in-silico sensitivity analysis. (b) The 

resulting RR response of the nominal direct dynamic dose-response model. 

 

Then the difference between the RR responses from the nominal model and the perturbed 

models were quantified as RMSE. The RMSE contours across the five different values of 

the fixed parameter were examined to assess the sensitivity of the model response on that 

parameter. Fig. 6 shows the contour plots of the discrepancy between the nominal and 

perturbed RR responses across different values of (a) 𝜆 and (b) 𝐼50 (nominal value and 

±50 % perturbations away from nominal value; ±25 % perturbations are not shown for 

brevity). It can be clearly observed that the change in the trend of contours with respect to 

𝜆 is small (Fig. 6a), whereas the contour undergoes a large change with respect to 𝐼50 

(Fig. 6b). The contours associated with different values of 𝑘𝑒 exhibited a change in trend 

larger than 𝜆 but smaller than 𝐼50 (not shown). In sum, the sensitivity analysis revealed 
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that 𝜆 has negligible impact on the model’s response relative to 𝐼50 and 𝑘𝑒, meaning that 

it is difficult to faithfully identify 𝜆 and it is reasonable to fix it at its nominal value. 

 

 

(a) 

 

 

(b) 

Figure 6: The impact of (a) 𝜆 and (b) 𝐼50 on the model’s response. 

 

Second, based on the results of the sensitivity analysis, the cooperativity constant 𝜆 in the 

direct dynamic dose-response model was fixed at its nominal value 𝜆̅ determined by the 

mixed-effects modeling. The goodness of this "semi-adaptive" model was evaluated by 1) 

generating 100 random models and the corresponding simulated RR responses to the 

escalating dose of remifentanil via 100 uniformly random model parameter perturbations 

{𝑘𝑒,𝑖, 𝐼50,𝑖, 𝜆𝑖}, 𝑖 = 1,⋯ ,100. 2) identifying the semi-adaptive model for each of these 

random models that minimizes the prediction error norm: 
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{𝑘𝑒,𝑖
∗ , 𝐼50,𝑖

∗ } = arg min
𝑘𝑒,𝑖̂ ,𝐼50,𝑖̂

‖𝑅𝑅(𝑘; 𝑘𝑒,𝑖, 𝐼50,𝑖, 𝜆𝑖) − 𝑅𝑅(𝑘; 𝑘𝑒,𝑖̂, 𝐼50,𝑖
̂ , 𝜆̅)‖

2
 (9) 

where {𝑘𝑒,𝑖
∗ , 𝐼50,𝑖

∗ } are the optimal parameters of the semi-adaptive direct dynamic dose-

response model corresponding to the 𝑖 -th random model, 𝑅𝑅(𝑘; 𝑘𝑒,𝑖, 𝐼50,𝑖, 𝜆𝑖)  is the 

simulated RR response of the 𝑖-th random model, 𝑅𝑅(𝑘; 𝑘𝑒,𝑖̂, 𝐼50,𝑖
̂ , 𝜆̅) is the RR response 

of the 𝑖-th random model predicted by the semi-adaptive model with the parameters 

{𝑘𝑒,𝑖̂, 𝐼50,𝑖
̂ } , and finally, 3) evaluating the discrepancy between the responses of the 

original versus semi-adaptive models in terms of the distribution of the root-mean-

squared prediction error (RMSPE), where 𝑁 is the number of data samples: 

𝑅𝑀𝑆𝑃𝐸 =
1

√𝑁
‖𝑅𝑅(𝑘; 𝑘𝑒,𝑖, 𝐼50,𝑖, 𝜆𝑖) − 𝑅𝑅(𝑘; 𝑘𝑒,𝑖̂, 𝐼50,𝑖

̂ , 𝜆̅)‖
2
 (10) 

 

The RMSPE associated with the 100 random models tested were only 0.68 ± 0.45 m-1 

(mean ± SD ) with the best-case and worst-case RMSPE of 0.02  m-1 and 1.55  m-1, 

respectively. Fig. 7 presents the (a) best-case and (b) worst-case fits between true 

(simulated) versus predicted (by the semi-adaptive model derived from (6)) RR responses 

among the 100 randomly generated direct dynamic dose response models. Therefore, the 

semi-adaptive direct dynamic dose-response model with 𝜆 fixed at 𝜆̅ = 3.12 was capable 

of fitting the randomly generated direct dynamic dose-response models with wide-

ranging parameter values (all ranging up to ±50 %  perturbation from the respective 

nominal values listed in Table 1) faithfully.  
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(a) Best fit (RMSPE = 0.02 m-1) 

 

(b) Worst fit (RMSPE = 1.55 m-1) 

Figure 7: True RR response simulated by direct dynamic dose-response model and its 

prediction by semi-adaptive direct dynamic dose-response model. 

 

Therefore, 𝜆 can be fixed to its nominal value. Then the semi-adaptive direct dynamic 

dose-response model can be transformed to a linearly parameterized model as follows. 

First, (2) can be rewritten as: 

𝐼𝑒 = 𝐼50 √
𝑅𝑅0 − 𝑅𝑅

𝑅𝑅

𝜆

≜ 𝐼50𝑞 (9) 

where 𝑞 = √
𝑅𝑅0−𝑅𝑅

𝑅𝑅

𝜆
. Then, (1) can be rewritten as follows in the time domain where 𝑢 =

𝐼: 

𝑞̇ = −𝑘𝑒𝑞 +
𝑘𝑒

𝐼50
𝑢 (10) 

which can be linearly parameterized with respect to 𝑘𝑒 and 
𝑘𝑒

𝐼50
, and thus, 𝑘𝑒 and 𝐼50 can 

be adapted online based on the measured dose-response data. 
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Chapter 3: SISO Semi-Adaptive Control Design 

In this chapter, a SISO semi-adaptive controller is introduced based on the linearly 

parameterized model in chapter 2. The “semi-adaptation” implies one parameter is fixed 

at its nominal value to derive the linearly parametrized model. Two adaptive control 

methods are presented in this chapter: direct model-reference adaptive control (MRAC) 

and composite adaptive control (CAC). Comparative simulation studies were conducted 

to demonstrate the advantages of the proposed methods over non-adaptive method. The 

tracking and estimation results of two proposed adaptive controllers were also compared. 

 

3.1. Model-Reference Adaptive Control (MRAC) 

The desired performance of the closed-loop controlled dose-response system is specified 

by a 1st-order reference model: 

𝑞̇𝑚 = −𝑎𝑚𝑞𝑚 + 𝑏𝑚𝑟 (11) 

where 𝑎𝑚 = 𝑏𝑚 are positive constants, and 𝑟 is a bounded external reference signal. The 

objective is to formulate adaptive control laws to force 𝑞  to converge to 𝑞𝑚 

asymptotically: lim
𝑡→∞

𝑞(𝑡) − 𝑞𝑚(𝑡) = 0.   

 

Consider the following control law: 

𝑢 = 𝑎𝑟̂𝑟 + 𝑎𝑞̂𝑦 − 𝑝(𝑞 − 𝑞𝑚) = 𝑎𝑟̂𝑟 + 𝑎𝑞̂𝑞 − 𝑝𝑒   (12) 

where 𝑎𝑟̂ and 𝑎𝑦̂ are variable feedback gains, 𝑝 is a constant feedback gain, and 𝑒 = 𝑞 −

𝑞𝑚 is tracking error. Note that (12) with 𝑎𝑟̂ = 𝑎𝑟 = 𝑏𝑚
𝐼50

𝑘𝑒
 and 𝑎𝑞̂ = 𝑎𝑞 = (𝑘𝑒 − 𝑎𝑚)

𝐼50

𝑘𝑒
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leads to a perfect matching of the plant dynamics to the reference model under the full 

knowledge of the plant model parameters: 

𝑞̇ = −𝑘𝑒𝑞 +
𝑘𝑒

𝐼50
𝑢 = −𝑘𝑒𝑞 +

𝑘𝑒

𝐼50
[𝑏𝑚

𝐼50

𝑘𝑒
𝑟 + (𝑘𝑒 − 𝑎𝑚)

𝐼50

𝑘𝑒
𝑞 − 𝑝𝑒] 

= −𝑎𝑚𝑞 + 𝑏𝑚𝑟 

(13) 

In reality, the plant model parameters 𝑘𝑒 and 𝐼50 are unknown. The difference between 

the ideal (𝑎𝑟 and 𝑎𝑞) versus estimated (𝑎𝑟̂ and 𝑎𝑞̂) controller parameters are defined as 

follows: 

𝒂̃ ≜ [
𝑎̃𝑟

𝑎̃𝑞
] =

[
 
 
 𝑎𝑟̂ − 𝑏𝑚

𝐼50

𝑘𝑒

𝑎𝑞̂ − (𝑘𝑒 − 𝑎𝑚)
𝐼50

𝑘𝑒 ]
 
 
 

 (14) 

Then the dynamics of the tracking error when the plant (10) is subject to the control law 

(12) becomes: 

𝑒̇ = 𝑞̇ − 𝑞̇𝑚 = −𝑘𝑒𝑞 +
𝑘𝑒

𝐼50
(𝑎𝑟̂𝑟 + 𝑎𝑞̂𝑞 − 𝑝𝑒) + 𝑎𝑚𝑞𝑚 − 𝑏𝑚𝑟 

= −𝑎𝑚𝑒 +
𝑘𝑒

𝐼50
(𝑎𝑟̃𝑟 + 𝑎𝑞̃𝑞) −

𝑘𝑒

𝐼50
𝑝𝑒 = −𝑎𝑚𝑒 −

𝑘𝑒

𝐼50
𝑝𝑒 +

𝑘𝑒

𝐼50
𝒂̃𝑇𝝓 

(15) 

where 𝝓 = [𝑟 𝑞]𝑇. To derive the adaptive laws for the controller parameters 𝑎𝑟̂ and 𝑎𝑞̂, 

consider the following Lyapunov function candidate, where 𝚪 = [
𝛾1 0
0 𝛾2

] and 𝛾1, 𝛾2 > 0 

are the adaptive gains: 

𝑉 =
1

2
𝑒2 +

1

2

𝑘𝑒

𝐼50
𝒂̃𝑇𝚪−1𝒂̃ (16) 

The time derivative of the Lyapunov function candidate is: 

𝑉̇ = 𝑒𝑒̇ +
𝑘𝑒

𝐼50
𝒂̃𝑇𝚪−1𝒂̇̃ = 𝑒 (−𝑎𝑚𝑒 +

𝑘𝑒

𝐼50
𝒂̃𝑇𝝓 −

𝑘𝑒

𝐼50
𝑝𝑒) +

𝑘𝑒

𝐼50
𝒂̃𝑇𝚪−1𝒂̇̃ (17) 
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Therefore, the time derivative of the Lyapunov function candidate can be made negative 

semi-definite by designing the adaptive laws in (18): 

𝒂̇̃ = [
𝑎𝑟̇̂

𝑎𝑞̇̂

] = −𝚪𝝓𝑒  (18) 

Indeed: 

𝑉̇ = −𝑎𝑚𝑒2 −
𝑘𝑒

𝐼50
𝑝𝑒2 ≤ 0 (19) 

Since 𝑉 is positive definite and 𝑉̇ is negative semi-definite, 𝑉 is bounded. Thus, the dose-

response system (10) with the adaptive control law (12) and (18) is globally stable and 

the signals 𝑒 , 𝑎𝑟̃  and 𝑎𝑞̃  are bounded. The global asymptotic convergence of 𝑒  is 

guaranteed by the Barbalat’s Lemma: due to the boundedness of 𝑒, 𝑎𝑟̃ and 𝑎𝑞̃, 𝑒̇ in (15) is 

bounded. This in turn means that 𝑉̈ is also bounded, and as a consequence, 𝑉̇ is uniformly 

continuous. Hence, lim
𝑡→∞

𝑉̇ = 0, and according to (19), lim
𝑡→∞

𝑒(𝑡) = 0. 

 

3.2. Composite Adaptive Control (CAC) 

CAC is motivated by the recognition that the information on the plant model parameters 

are reflected in both the error between commanded versus actual plant outputs (i.e., 

tracking error) as well as the error between actual versus model-derived plant outputs 

(i.e., prediction error). Thus, CAC strive to estimate plant model parameters from both 

errors. In general, CAC exhibits superior control performance and faster parameter 

convergence relative to direct MRAC [48]. To derive the CAC law, the plant dynamics is 

rewritten as follows: 

𝑞̇ + 𝑎𝑚𝑞 = −(𝑘𝑒 − 𝑎𝑚)𝑞 +
𝑘𝑒

𝐼50
𝑢 (20) 
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Filter (20) using the low-pass filter 
1

𝑠+𝑎𝑚
 to avoid differentiation yields: 

𝑣(𝑠) ≜
1

𝑠 + 𝑎𝑚
𝑢(𝑠) =

𝐼50

𝑘𝑒
𝑞(𝑠) +

𝐼50

𝑘𝑒

(𝑘𝑒 − 𝑎𝑚)

𝑠 + 𝑎𝑚
𝑞(𝑠) 

=
𝑎𝑟

𝑏𝑚
𝑞(𝑠) +

𝑎𝑦

𝑠 + 𝑎𝑚
𝑞(𝑠) = 𝒂𝑇𝝍 

(21) 

where 𝑠 is the Laplace operator, 𝝍 = [
𝑞

𝑏𝑚

𝑞

𝑠+𝑎𝑚
]
𝑇

while 𝑎𝑟  and 𝑎𝑞  are defined in (14). 

The adaptive law for the parametric model (21) based on the gradient algorithm [49] is 

given by: 

[
𝑎𝑟̇̂

𝑎𝑞̇̂

] = −𝜌𝚪𝝍𝜀 (22) 

where 𝜀 = (𝒂̂𝑇𝝍 − 𝑣) is the prediction error and 𝜌 > 0. The control law for CAC is 

given by (12) together with the adaptive law incorporating both (18) and (22): 

[
𝑎𝑟̇̂

𝑎𝑞̇̂

] = −𝚪𝝓𝑒 − 𝜌𝚪𝝍𝜀 (23) 

The stability of the CAC-based closed-loop dose-response dynamics can be shown by 

using the Lyapunov function candidate (16). The time derivative 𝑉̇ of 𝑉 is given by: 

𝑉̇ = −𝑎𝑚𝑒2 −
𝑘𝑒

𝐼50
𝑝𝑒2 −

𝑘𝑒

𝐼50
𝒂̃𝑇𝜌𝝍𝝍𝑇𝒂̃ = −𝑎𝑚𝑒2 −

𝑘𝑒

𝐼50
𝑝𝑒2 −

𝑘𝑒

𝐼50
𝜌𝜀2 ≤ 0 (24) 

Since 𝑉 is positive definite and 𝑉̇ is negative semi-definite, 𝑉 is bounded. Thus, the dose-

response system (10) with the adaptive control law (12) and (18) is globally stable and 

the signals 𝑒, 𝜀, 𝑎𝑟̃ and 𝑎𝑞̃ are bounded. The global asymptotic convergence of 𝑒 and 𝜀 is 

guaranteed by the Barbalat’s Lemma: 𝑒̇ in (15) and 𝜀̇ = 𝒂̇̃𝑇𝝍 − 𝒂̃𝑇𝝍̇ are bounded due to 

the boundedness of 𝑒, 𝜀, 𝑎𝑟̃ and 𝑎𝑞̃. This in turn means that 𝑉̈ is also bounded, and as a 
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consequence, 𝑉̇  is uniformly continuous. Hence, lim
𝑡→∞

𝑉̇ = 0 , and according to (24), 

lim
𝑡→∞

𝑒(𝑡) = 0 and lim
𝑡→∞

𝜀(𝑡) = 0. 

 

3.3. In-Silico Implementation and Simulation 

To test the validity of the adaptive controllers designed above, in-silico simulation was 

conducted under the following conditions: 1) remifentanil concentration is 10 mcg/ml; 2) 

maximum infusion rate is 1.2 l/h; 3) RR0 is set at 25 bpm; 4) target reference RR is set at 

15  bpm; 5) 𝑎𝑚 = 𝑏𝑚  are set to achieve a 5 %  settling time of 3.74  min; and 6) 

sampling/control update interval is 100 ms. The MRAC and CAC were applied to the 

direct dynamic dose-response models derived for the 24 in-silico subjects (Chapter 2.2) 

in setting. The initial parameter estimates were set at their nominal values. The validity 

and performance of the adaptive controllers were examined by quantifying the 

distribution of the response characteristics including the settling time, the error norm 

between 𝑞  and 𝑞𝑚 , and the steady-state 𝑅𝑅  regulation error. For the purpose of 

comparison, a non-adaptive controller, derived by setting the model parameters 𝑘𝑒 and 

𝐼50 to their nominal values (Table 1) and the adaptive gains to zero in the MRAC and 

CAC, was also applied to the models of the 24 in-silico subjects. Then, the performance 

of the non-adaptive controller was evaluated relative to its adaptive counterparts using the 

same response characteristics. 

 

Table 3 summarizes the performance of the adaptive and non-adaptive controllers on the 

24 in-silico subjects represented by the one-compartment direct dynamic dose-response 

model (Chapter 2.2). Overall, both MRAC and CAC boasted adequate performance in 
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regulating the RR  response at the commanded set point. In particular, the adaptive 

controllers outperformed the non-adaptive controller in terms of the consistency of the 

RR response with respect to the target response dictated by the reference model (11) in 

both transient and steady states. The settling time across the 24  in-silico subjects 

associated with the adaptive controllers was very close to the reference value of 3.74 m 

with a small interquartile range (IQR), which contradicts against the non-adaptive 

controller whose settling time deviates largely from the reference value with a large IQR. 

The superior capability of the adaptive controllers in following the reference model 

relative to the non-adaptive controller is also clearly seen from the RMSE between 𝑦(𝑡) 

and 𝑞𝑚(𝑡)  during the transient state (0 ≤ 𝑡 ≤ 5 min ). Further, the steady-state error 

associated with the adaptive controllers was persistently close to zero across all the 24 in-

silico subjects, whereas the non-adaptive controller resulted in variable and non-zero 

steady-state error. It is noted that the absolute magnitude of steady-state RR  errors 

observed in the in-silico simulation was not too large. However, it may be exacerbated in 

real scenarios by finite RR resolution due to quantization.  

 

Table 3: Performance of adaptive and non-adaptive controllers (median (IQR)). 

100ms/median(IQR) 
5% Settling Time [min] 

(Reference = 3.74 min) 

RMSE between 𝑞 and 𝑞𝑚 [m-1] 

(0 min ≤ t ≤ 5 min) 

Steady-State Error [m-1] 

(Reference = 0 m-1) 

MRAC 3.75 (0.03) 0 0.18 (0.55) 1 0.00 (0.00) 1 

CAC 3.74 (0.26) 1 0.18 (0.46) 1 0.00 (0.00) 1 

Non-Adaptive Control 3.82 (0.69) † 0.34 (0.47) † 0.11 (0.13) † 

†: p<0.05 (paired t-test). 

 

CAC and MRAC showed comparable control performance in terms of the response 

characteristics listed in Table 3. However, CAC modestly outperformed MRAC in terms 
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of parameter estimation (see Fig. 9 for a representative example).  Indeed, among the 24 

in-silico subjects, CAC resulted in more accurate estimation of 𝑎𝑟 = 𝑏𝑚
𝐼50

𝑘𝑒
 and 𝑎𝑞 =

(𝑘𝑒 − 𝑎𝑚)
𝐼50

𝑘𝑒
 than MRAC in 15  subjects (note that the accuracy was assessed with 

respect to {𝑘𝑒,𝑖
∗ , 𝐼50,𝑖

∗ } derived from (9) for all 24 subjects, i.e., 𝑖 = 1,⋯ ,24). Thus, it can 

be concluded that the adaptation drive contributed by the prediction error, in addition to 

the one contributed by the tracking error, is in general beneficial in adapting the dose-

response model to each subject. However, the absolute accuracy of the estimated 

parameters was not superb, which may be attributed, at least in part, to the constant target 

set point that lacks in persistent excitation property [48]. 

 

 

Figure 8: Closed-loop controlled RR responses and remifentanil infusion rates associated 

with (a) MRAC, (b) CAC and (c) non-adaptive control (RR set point = 15 bpm). 
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Figure 9: Representative in-silico results associated with MRAC and CAC. 

 

 

Figure 10: Distribution of parameter estimation errors in the steady state. (a) 𝑘𝑒. (b) 𝐼50. 
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In-depth scrutiny of the estimated parameters revealed that 𝐼50  may be accurately 

estimated regardless of the inaccuracy in estimating 𝑎𝑟 and 𝑎𝑞. The distribution of the 

errors associated with 𝑘𝑒  and 𝐼50  across the in-silico subjects (normalized by their 

respective true values) are shown in Fig. 9, which demonstrate that overall 𝐼50  was 

estimated more reliably than 𝑘𝑒 in the steady state. This observation may be explained in 

two ways. First, the results of the sensitivity analysis in Chapter 2.5 show that the 

response of the direct dynamic dose-response model is largely affected by 𝐼50  (as 

evidenced by Fig. 6b). Thus, it intuitively makes sense to anticipate that 𝐼50  can be 

faithfully estimated. Second, and perhaps more obviously, (13) indicates that 𝐼50  is 

nothing but a ratio between 𝑢 and 𝑞 in the steady state: 

𝑞̇ = −𝑘𝑒𝑞 +
𝑘𝑒

𝐼50
𝑢  →   

𝑢(∞)

𝑞(∞)
= 𝑢(∞) ∙ √

𝑅𝑅(∞)

𝑅𝑅0 − 𝑅𝑅(∞)

𝜆

= 𝐼50 (25) 

Thus, 𝐼50 can be readily estimated accurately from the remifentanil infusion rate − RR 

response data in the steady state. The knowledge of 𝐼50  may be valuable in securing 

subject safety in the closed-loop control of remifentanil by preventing an infusion rate 

that is excessively higher than subject-specific therapeutic range. 
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Chapter 4: Two-Input Two-Output Semi-Adaptive Control Design 

In this chapter, the SISO semi-adaptive controller is extended to a two-input two-output 

case. Different from the SISO design, the coordination of targets also presents a 

challenge. This is because the reference targets are not always achievable in all subjects 

due to the inter-individual variability in dose-response relationships and the bounds on 

medication dose to ensure subject safety. Because we only want to focus controller 

design in this chapter and Chapter 5, so we assume the initial set targets are achievable 

for in-silico subjects for simplicity in these two chapters. A more general case in which 

the initial set targets are not achievable will be presented in Chapter 6. 

 

In the following, we will first introduce a dose-response model for two interacting 

medications consists of a low-order mixing model in chapter 2 and a response surface 

model. Then the control formation for it will be presented. Comparative simulation 

studies were also done to demonstrate the advantages of the proposed method over non-

adaptive method. 

 

4.1. Dose-Response Model for Two Interacting Medications 

A dose-response model for two interacting medications was derived by combining a low-

order mixing model in chapter 2 and a response surface model reported in Minto et al. 

[33] (Fig. 11). First, the low-order mixing model represents the relationship between the 

intravenous infusion rate and the (hypothetical) infusion rate at the site of action of a 

medication: 
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𝑥̇1 = −𝑘𝑒1𝑥1 + 𝑘𝑒1𝑢1 

𝑥̇2 = −𝑘𝑒2𝑥2 + 𝑘𝑒2𝑢2 

(26) 

where 𝑢1 and 𝑢2 are the intravenous infusion rates associated with the two medications 

𝑀1 and 𝑀2, 𝑥1 and 𝑥2 are the corresponding infusion rates at the sites of action, and 𝑘𝑒1 

and 𝑘𝑒2 are the equilibration constants. Second, the response surface model relates the 

two infusion rates to the system outputs (i.e., clinical endpoints): 

𝑦1 = 𝑦10

[
 
 
 
 
 
 

1 −

(

𝑥1

𝐼50,11
+

𝑥2

𝐼50,12

1 − 𝛽1𝜙1 + 𝛽1𝜙1
2)

𝛾1

1 + (

𝑥1

𝐼50,11
+

𝑥2

𝐼50,12

1 − 𝛽1𝜙1 + 𝛽1𝜙1
2)

𝛾1

]
 
 
 
 
 
 

, 𝜙1 =

𝑥1

𝐼50,11

𝑥1

𝐼50,11
+

𝑥2

𝐼50,12

 

𝑦2 = 𝑦20

[
 
 
 
 
 
 

1 −

(

𝑥1

𝐼50,21
+

𝑥2

𝐼50,22

1 − 𝛽2𝜙2 + 𝛽2𝜙2
2)

𝛾2

1 + (

𝑥1

𝐼50,21
+

𝑥2

𝐼50,22

1 − 𝛽2𝜙2 + 𝛽2𝜙2
2)

𝛾2

]
 
 
 
 
 
 

, 𝜙2 =

𝑥1

𝐼50,21

𝑥1

𝐼50,21
+

𝑥2

𝐼50,22

 

(27) 

where 𝑦1  and 𝑦2  are the system outputs, 𝑦10  and 𝑦20  are the baseline system outputs 

before the infusion starts, 𝐼50,𝑖𝑗 , 𝑖, 𝑗 = 1,2  are the infusion rate of medication 𝑀𝑗 

associated with 50 %  change in the system output 𝑖 , and 𝛾1  and 𝛾2  the cooperativity 

constants. The functions 𝜙1 and 𝜙2 denote the relative dominance of the infusion rates 

associated with the two medications (𝜙1 = 𝜙2 = 1 if only 𝑀1 is infused and 𝜙1 = 𝜙2 =

0 if only 𝑀2  is infused). The parameters 𝛽1 and 𝛽2 represent the degree of synergistic 

interaction between the medications associated with the outputs 𝑦1 and 𝑦2 (0 < 𝛽1, 𝛽2 <

4, where 0 and 4 correspond to zero and maximum interactions, respectively). 
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Dose-Response
[Eq. (2)]

Mixing [Eq. (1)]
(Medication 1)

u1

(Medication 1)

Mixing [Eq. (1)]
(Medication 2)

u2

(Medication 2)

Dose-Response
[Eq. (2)]

y1

(Output 1)

y2

(Output 2)

Ieq,1

Ieq,2

Ieq,1

Ieq,2

Synergy

Synergy

x1

x2

𝑥1
𝐼50,11

+
𝑥2

𝐼50,12

1 − 𝛽1𝜙1 + 𝛽1𝜙1
2 

𝑥1
𝐼50,21

+
𝑥2

𝐼50,22

1 − 𝛽2𝜙2 + 𝛽2𝜙2
2 

 

Figure 11: Dose-response model for two interacting medications, consisting of a low-

order mixing model and a response surface model. 

To derive a control-oriented input-output model relating 𝑦1 and 𝑦2 directly to 𝑢1 and 𝑢2, 

we transform (27) as follows: 

𝑞𝑖 ≜ (
𝑦𝑖0 − 𝑦𝑖

𝑦𝑖
)

1
𝛾𝑖

=

𝑥1

𝐼50,𝑖1
+

𝑥2

𝐼50,𝑖2

1 − 𝛽𝑖𝜙𝑖(𝑥1, 𝑥2) + 𝛽𝑖𝜙𝑖
2(𝑥1, 𝑥2)

, 𝑖 = 1,2 (28) 

which exhibits a large nonlinearity. To facilitate the control design, linearizing (28) 

around an operating point (𝑥10, 𝑥20) yields: 

𝑞𝑖 ≅ 𝑞𝑖(𝑥10, 𝑥20) +
𝜕𝑞𝑖

𝜕𝑥1
|
(𝑥10,𝑥20)

(𝑥1 − 𝑥10) +
𝜕𝑞𝑖

𝜕𝑥2
|
(𝑥10,𝑥20)

(𝑥2 − 𝑥20) 

=

(
𝑥10

𝐼50,𝑖1
+

𝑥20

𝐼50,𝑖2
)
2

[(
𝑥10

𝐼50,𝑖1
)
2

+ (1 + 𝛽𝑖) (
𝑥20

𝐼50,𝑖2
)
2

+ 2(1 − 𝛽𝑖) (
𝑥10

𝐼50,𝑖1
) (

𝑥20

𝐼50,𝑖2
)]

((
𝑥10

𝐼50,𝑖1
)
2

+ (
𝑥20

𝐼50,𝑖2
)
2

+ (2 − 𝛽𝑖) (
𝑥10

𝐼50,𝑖1
) (

𝑥20

𝐼50,𝑖2
))

2

𝑥1

𝐼50,𝑖1

+

(
𝑥10

𝐼50,𝑖1
+

𝑥20

𝐼50,𝑖2
)
2

[(1 + 𝛽𝑖) (
𝑥10

𝐼50,𝑖1
)
2

+ (
𝑥20

𝐼50,𝑖2
)
2

+ 2(1 − 𝛽𝑖) (
𝑥10

𝐼50,𝑖1
) (

𝑥20

𝐼50,𝑖2
)]

((
𝑥10

𝐼50,𝑖1
)
2

+ (
𝑥20

𝐼50,𝑖2
)
2

+ (2 − 𝛽𝑖) (
𝑥10

𝐼50,𝑖1
) (

𝑥20

𝐼50,𝑖2
))

2

𝑥2

𝐼50,𝑖2
 

(29) 
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Assuming 𝑀1 and 𝑀2 are primary and secondary medications, respectively, (29) reduces 

to the following at (𝑥10, 𝑥20) = (𝑥10, 0): 

𝑞1 =
𝑥1

𝐼50,11
+ (1 + 𝛽1)

𝑥2

𝐼50,12
=

𝑥1

𝐼50,11
+ 𝜌1

𝑥2

𝐼50,12
≜

𝑥1

𝜆11
+

𝑥2

𝜆12
 

𝑞2 =
𝑥1

𝐼50,21
+ (1 + 𝛽2)

𝑥2

𝐼50,22
=

𝑥1

𝐼50,21
+ 𝜌2

𝑥2

𝐼50,22
≜

𝑥1

𝜆21
+

𝑥2

𝜆22
 

(30) 

Therefore, 𝑥1 and 𝑥2 can be expressed by 𝑞1 and 𝑞2 as follows: 

𝑥1 =
𝜆11𝜆21

𝜆12𝜆21 − 𝜆11𝜆22

(𝜆12𝑞1 − 𝜆22𝑞2) 

𝑥2 =
𝜆12𝜆22

𝜆11𝜆22 − 𝜆12𝜆21

(𝜆11𝑞1 − 𝜆21𝑞2) 

(31) 

 

Now, differentiating (30) in time yields: 

𝑞̇1 =
1

𝜆11

(−𝑘𝑒1𝑥1 + 𝑘𝑒1𝑢1) +
1

𝜆12

(−𝑘𝑒2𝑥2 + 𝑘𝑒2𝑢2) 

𝑞̇2 =
1

𝜆21

(−𝑘𝑒1𝑥1 + 𝑘𝑒1𝑢1) +
1

𝜆22

(−𝑘𝑒2𝑥2 + 𝑘𝑒2𝑢2) 

(32) 

Finally, substituting (31) into (32) yields the following input-output model between 𝑞1 

and 𝑞2 versus 𝑢1 and 𝑢2 for control design, where Δ ≜ 𝜆12𝜆21 − 𝜆11𝜆22: 

𝑞̇1 =
1

Δ
(−𝑘𝑒1𝜆12𝜆21 + 𝑘𝑒2𝜆11𝜆22)𝑞1 +

𝑘𝑒1

𝜆11
𝑢1 +

1

Δ
(𝑘𝑒1𝜆22𝜆21 − 𝑘𝑒2𝜆21𝜆22)𝑞2

+
𝑘𝑒2

𝜆12
𝑢2 

𝑞̇2 =
1

Δ
(−𝑘𝑒1𝜆12𝜆11 + 𝑘𝑒2𝜆11𝜆12)𝑞1 +

𝑘𝑒1

𝜆21
𝑢1 +

1

Δ
(𝑘𝑒1𝜆22𝜆11 − 𝑘𝑒2𝜆21𝜆12)𝑞2

+
𝑘𝑒2

𝜆22
𝑢2 

(33) 

which leads to the following linearly parameterized model: 
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𝒒̇ = [
𝑞̇1

𝑞̇2
] = 𝑨 [

𝑞1

𝑞2
] + 𝑩 [

𝑢1

𝑢2
] (34) 

where 𝑨 =
1

Δ
[
−𝑘𝑒1𝜆12𝜆21 + 𝑘𝑒2𝜆11𝜆22 𝑘𝑒1𝜆22𝜆21 − 𝑘𝑒2𝜆21𝜆22

−𝑘𝑒1𝜆12𝜆11 + 𝑘𝑒2𝜆11𝜆12 𝑘𝑒1𝜆22𝜆11 − 𝑘𝑒2𝜆21𝜆12
] and 𝑩 = [

𝑘𝑒1

𝜆11

𝑘𝑒2

𝜆12

𝑘𝑒1

𝜆21

𝑘𝑒2

𝜆22

]. 

The model in (34) is formulated in terms of the transformed (by (28)) outputs 𝑞𝑖 rather 

than the actual ones 𝑦𝑖, 𝑖 = 1,2. To derive 𝑞1 and 𝑞2 from 𝑦1 and 𝑦2, 𝛾1 and 𝛾2 must be 

known. In chapter 2, we have shown that 𝛾𝑖  makes relatively small influence on the 

system output compared with 𝑘𝑒𝑖  and 𝐼50,𝑖𝑗  ( 𝑖, 𝑗 = 1,2 ) and may thus be fixed at a 

nominal value [50]. With 𝛾1  and 𝛾2  specified a priori, the model (34) is a linearly 

parameterized control design model with the elements of the matrices 𝑨  and 𝑩  as 

unknowns to be adapted on-line. As the proposed control approach adapts only a subset 

of the plant model parameters (i.e., parameters other than 𝛾1 and 𝛾2), it is semi-adaptive 

rather than fully adaptive. 

 

4.2. Control Design 

Consider the following 1st-order reference model specifying the ideal endpoint responses 

of the subject to a reference target: 

𝒒̇𝒎 = 𝑨𝒎𝒒𝒎 + 𝑩𝒎𝒓 (35) 

where 𝑨𝒎 = −[
𝑎𝑚 0
0 𝑎𝑚

] < 𝟎  is a negative definite matrix, 𝑩𝒎 = −𝑨𝒎 , and 𝒓  is a 

bounded reference target: 𝒓 = [
𝑟1
𝑟2

] . Then, the objective is to formulate an adaptive 

control law that can guide 𝒚 to 𝒚𝒎 asymptotically: lim
𝑡→∞

𝒒(𝑡) − 𝒒𝒎(𝑡) = 𝟎. Consider the 

following model reference adaptive control (MRAC) law: 
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𝒖 = [
𝑢1

𝑢2
] = 𝒂𝒒̂ [

𝑞1

𝑞2
] + 𝒂𝒓̂ [

𝑟1
𝑟2

] + 𝜼 [
𝑞1 − 𝑞1𝑚

𝑞2 − 𝑞2𝑚
] = 𝒂𝒒̂𝒒 + 𝒂𝒓̂𝒓 + 𝜼𝒆 (36) 

where 𝒂𝒒̂  and 𝒂𝒓̂  are variable feedback gains, 𝜼 = − [
𝜂1 0
0 𝜂2

] < 𝟎 a negative definite 

constant feedback gain, 𝑟1 and 𝑟2 the reference targets associated with the system outputs, 

and 𝒆 the tracking error. Note that the MRAC law (36) equipped with 𝒂𝒓̂ = 𝒂𝒓 = 𝑩−𝟏𝑩𝒎 

and 𝒂𝒒̂ = 𝒂𝒒 = 𝑩−𝟏(𝑨𝒎 − 𝑨) results in perfect matching of the plant dynamics (34) to 

the reference model (35): 

𝒒̇ = 𝑨𝒒 + 𝑩𝒖 = 𝑨𝒒 + 𝑩[𝑩−𝟏(𝑨𝒎 − 𝑨)𝒒 + 𝑩−𝟏𝑩𝒎𝒓 + 𝜼𝒆]

= 𝑨𝒎𝒒 + 𝑩𝒎𝒓 + 𝑩𝜼𝒆 

(37) 

 

However, the plant model parameters 𝒂𝒓  and 𝒂𝒒  are not known a priori in reality. 

Defining 𝜽 ≜ [𝒂𝒒 𝒂𝒓]  and 𝜽̂ ≜ [𝒂𝒒̂ 𝒂𝒓̂] , the difference between the true versus 

estimated parameters is defined as follows: 

𝜽̃ = 𝜽̂ − 𝜽 = [𝒂𝒒̃ 𝒂𝒓̃] ≜ [𝒂𝒒̂ − 𝒂𝒒 𝒂𝒓̂ − 𝒂𝒓] (38) 

Then, the dynamics of the tracking error when the plant (34) is subject to the MRAC law 

(36) becomes: 

𝒆̇ = 𝒒̇ − 𝒒̇𝒎 = (𝑨 + 𝑩𝒂𝒒̂)𝒒 + 𝑩𝒂𝒓̂𝒓 + 𝑩𝜼𝒆 − 𝑨𝒎𝒒𝒎 − 𝑩𝒎𝒓 

= (𝑨 + 𝑩𝒂𝒒̂ − 𝑨𝒎)𝒒 + (𝑩𝒂𝒓̂ − 𝑩𝒎)𝒓 + 𝑨𝒎𝒆 + 𝑩𝜼𝒆 

= 𝑩𝒂𝒒̃𝒒 + 𝑩𝒂𝒓̃𝒓 + 𝑨𝒎𝒆 + 𝑩𝜼𝒆 

= 𝑩[𝒂𝒒̃ 𝒂𝒓̃] [
𝒒
𝒓
] + 𝑨𝒎𝒆 + 𝑩𝜼𝒆 = 𝑩𝜽̃𝝍 + 𝑨𝒎𝒆 + 𝑩𝜼𝒆 

(39) 

where 𝝍 = [
𝒒
𝒓
].   
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Assuming that all the leading principal minors of  𝑩 are positive, there exists a positive 

definite matrix 𝑷 = [
𝑝1 0
0 𝑝2

] > 𝟎  such that 𝑷𝑩 = [
𝑝1

𝑘𝑒1

𝜆11
𝑝1

𝑘𝑒2

𝜆12

𝑝2
𝑘𝑒1

𝜆21
𝑝2

𝑘𝑒2

𝜆22

] > 𝟎  holds. Noting 

that all the elements in 𝑩 assume positive values due to the physical meaning of the 

parameters 𝑘𝑒𝑖  and 𝜆𝑖𝑗 , 𝑖, 𝑗 = 1,2 , there exist 𝑝1  and 𝑝2  making 𝑷𝑩  symmetric, i.e., 

satisfying 𝑝1
𝑘𝑒2

𝜆12
= 𝑝2

𝑘𝑒1

𝜆21
. Hence, there exists a matrix 𝑺 that satisfies 𝑷𝑩 = 𝑺𝑻𝑺. Finally, 

consider the Lyapunov function 𝑉 = 𝒆𝑻𝑷𝒆 + 𝑡𝑟[𝑺𝜽̃𝚪𝜽
−𝟏𝜽̃𝑻𝑺𝑻]  and the adaptation law 

𝜽̇̂𝑻 = −𝚪𝜽𝝍𝒆𝑻 , where 𝑡𝑟[∙]  is the trace of the argument and 𝚪𝜽  is a positive definite 

adaptation gain matrix. Then, the time derivative of the Lyapunov function candidate 

reduces to the following: 

𝑉̇ = 𝒆̇𝑻𝑷𝒆 + 𝒆𝑻𝑷𝒆̇ + 𝑡𝑟 [𝑺𝜽̇̃𝚪𝜽
−𝟏𝜽̃𝑻𝑺𝑻 + 𝑺𝜽̃𝚪𝜽

−𝟏𝜽̇̃𝑻𝑺𝑻] 

= 2𝒆𝑻𝑷𝒆̇ + 2𝑡𝑟 [𝑺𝜽̃𝚪𝜽
−𝟏𝜽̇̃𝑻𝑺𝑻] 

= 2𝒆𝑻𝑷(𝑩𝜽̃𝝍 + 𝑨𝒎𝒆 + 𝑩𝜼𝒆) − 2𝑡𝑟[𝑺𝜽̃𝝍𝒆𝑻𝑺𝑻] 

= 2𝒆𝑻𝑷𝑩𝜽̃𝝍 + 2𝒆𝑻𝑷𝑨𝒎𝒆 + 2𝒆𝑻𝑷𝑩𝜼𝒆 − 2𝒆𝑻𝑺𝑻𝑺𝜽̃𝝍 

= 2𝒆𝑻𝑷𝑨𝒎𝒆 + 2𝒆𝑻𝑷𝑩𝜼𝒆 

≤ 0 

(40) 

Since 𝑉  is positive definite and 𝑉̇  is negative semi-definite, 𝑉  is bounded. Hence, the 

plant model (34) with the MRAC law (36) and the adaptation law 𝜽̇̂𝑻 = −𝚪𝜽
−𝟏𝝍𝒆𝑻 is 

globally stable, and accordingly, 𝒆, 𝒂𝒒̃  and 𝒂𝒓̃  are bounded. Then, 𝒆̇ is bounded from 

(39), and, 𝑉̈ is also bounded from (40). As a consequence, 𝑉̇ is uniformly continuous.  

Therefore, lim
𝑡→∞

𝑉̇ = 0, and lim
𝑡→∞

𝒆(𝑡) = 𝟎. 
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To prevent the drift in 𝒂𝒒̂ and 𝒂𝒓̂ while 𝒆(𝑡) ≅ 𝟎 (which frequently occurs in case the 

system is regulated at constant set points), we employed the dead zone [48], a scheme to 

stop parameter adaptation when 𝒆(𝑡) ≅ 𝟎: 

𝜽̇̂𝑻 = {
−𝚪𝜽𝝍𝒆𝑻,          |𝑒1(𝑡)| > 𝜖𝑒1

 or  |𝑒2(𝑡)| > 𝜖𝑒2

𝟎,                        otherwise                                     
 (41) 

 

4.3. In-Silico Implementation and Simulation 

To evaluate the proposed semi-adaptive control approach, we considered an example 

scenario in which cardiac output (𝑦1; 𝑟1(0)=2.0 lpm) and respiratory rate (𝑦2; 𝑟2(0)=15 

bpm) are regulated via infusion of propofol (𝑀1) and remifentanil (𝑀2) in an in-silico 

simulation setting. We used the nonlinear dose-response model in (26)-(28) to simulate 

the dose-response relationships of a in-silico subject (note that our control design was 

performed based on the linear model (34), and the controller is subject to the structural 

uncertainty due to the modeling error originating from linearization). We specifically 

simulated pediatric patients based on the available dose-response data, by first setting the 

ranges of the model parameters and then creating a cohort of random subjects.   

 

For the parameters associated with the dose-response relationships for propofol, we 

derived the ranges of 𝑘𝑒1, 𝐼50,11, and 𝛾1 by analyzing the experimental data we obtained 

from swine subjects with body weight ranging 25-30 kg in Chapter 2.3. Then, we derived 

the ranges of the remaining parameters associated with propofol by assuming that (1) 

these ranges translate to pediatric patients of comparable body weight and (2) 𝐼50,11 ≈

𝐼50,21 [51]. The selected ranges for the parameters were: 0.02 ≤ 𝑘𝑒1 ≤ 0.10 min-1, 1 ≤

𝛾1 ≤ 5, 0.2 ≤ 𝐼50,11 ≤ 0.6 mg/kg/min, and 0.2 ≤ 𝐼50,21 ≤ 0.6 mg/kg/min. 
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For the parameters associated with the dose-response relationships for remifentanil, we 

derived the ranges of 𝑘𝑒2 , 𝐼50,22 , and 𝛾2  in Chapter 2.2, while we assumed that the 

influence of remifentanil on cardiac output is relatively small (translating to a large 

𝐼50,12). The selected ranges for the parameters were: 0.10 ≤ 𝑘𝑒2 ≤ 0.50 min-1, 1 ≤ 𝛾2 ≤

5, 0.12 ≤ 𝐼50,12 ≤ 0.36 mcg/kg/min, and 0.04 ≤ 𝐼50,22 ≤ 0.12 mcg/kg/min. 

 

For the parameters associated with the inter-medication interaction (i.e., 𝛽1 and 𝛽2), we 

simply selected a wide range to simulate diverse inter-medication interaction: 1.5 ≤

𝛽1, 𝛽2 ≤ 3. 

 

Based on the ranges of the model parameters selected above and assuming that all the 

model parameters exhibit uniform distributions within the selected ranges, we created in-

silico subjects by selecting a random value for each parameter from the respective range. 

Because we assume the initial targets are achievable in this chapter, 20 in-silico subjects 

who can achieve the reference targets specified are selected for the in-silico simulation. 

 

In summary, the parameters associated with the semi-adaptive control were as follows: 

𝑨𝒎 = [
0.8 0
0 0.8

] = −𝑩𝒎 , 𝜼 = [
5 0
0 5

] , 𝚪𝜽 = 𝑰4×4 , 𝜖𝑒1
= 0.01 , 𝜖𝑒2

= 0.01 , 𝑢1̌ =

0.8mg/kg/min, 𝑢2̌ = 0.07 mcg/kg/min. 

 

In the in-silico evaluation, nominal cardiac output and respiratory rate before medication 

infusion were set at 3.0 lpm and 25 bpm. The initial model parameter values in the 

controller were set at the respective average values from all the in-silico subjects. For 
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control computation, a sampling rate of 1 Hz was used. Considering that higher infusion 

rates (e.g., bolus infusion) are required for reference target tracking during the initial 

transients, we allowed higher propofol (4 mg/kg/min) and remifentanil (0.36 

mcg/kg/min) infusion rates during the first 10 min after the control action started. Then 

the performance of semi-adaptive control was compared with the non-adaptive control. 

 

Fig. 12 presents the in-silico simulation testing results associated with the semi-adaptive 

and non-adaptive controllers in the 20 in-silico subjects with achievable reference targets. 

The semi-adaptive controller was superior to its non-adaptive counterpart both during the 

transient (0 ≤ 𝑡 ≤ 5 min) and steady state. On the average, the semi-adaptive controller 

could reduce the transient reference tracking errors associated with cardiac output and 

respiratory rate by 15% and 21%, respectively (in terms of root-mean-squared error 

(RMSE)); and as well, the steady-state errors (in the absolute sense) by 5% and 83%, 

respectively. In addition, the variances associated with all these errors were consistently 

smaller in semi-adaptive than non-adaptive controller. Considering that the main 

rationale underpinning the development of semi-adaptive control is to ensure robust 

performance against large inter-individual variability in dose-response relationships, the 

efficacy of the semi-adaptive control can be deemed satisfactory if not excellent.  
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Figure 12: In-silico simulation testing results associated with the semi-adaptive and non-

adaptive controls in the 20 in-silico subjects with achievable reference targets. 
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Chapter 5: Switching Two-Input Two-Output Semi-Adaptive Control 

Design 

In Chapter 4, the model is only based on one operating point. However, the coupling 

effect between multiple medications frequently exhibits complex behaviors due to the 

regime-dependent inter-medication synergy, the model based on one operating regime is 

not suffice for trustworthy controller design. Therefore, a two-model switching control 

technique was developed based on two dose-response models associated with two distinct 

operating regimes in this chapter. 

 

In the following, a global nonlinear dose-response model applicable to two interacting 

medications derived from the global model is first presented. Then the semi-adaptive 

switching control approach to the model is described. In the end, the results obtained 

from in-silico testing of the semi-adaptive switching control are discussed. 

 

5.1. Control-Oriented Dose-Response Models 

For multiple medication infusion, a confounding factor is the bi-phasic behavior elicited 

by the inter-medication synergy terms, which makes the input-output relationship 

dependent on the operating regime (i.e., on the magnitudes of 
𝑥1

𝐼50,𝑖1
 and 

𝑥2

𝐼50,𝑖2
 relative to 

each other). More specifically, if 𝑀1 is used as the primary therapy (
𝑥1

𝐼50,𝑖1
>

𝑥2

𝐼50,𝑖2
), an 

increase in the co-infusion of 𝑀2  relative to 𝑀1  will effectively depress 𝑦1  and 𝑦2  by 

improving the inter-medication synergy (i.e., the denominator in 𝐼𝑒𝑞,𝑖, 𝑖 = 1,2 decreases, 

which adds up to an increase in the numerator in 𝐼𝑒𝑞,𝑖, 𝑖 = 1,2 caused by an increase in 
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𝑥2). In contrast, if 𝑀2 is used as the primary therapy (
𝑥1

𝐼50,𝑖1
<

𝑥2

𝐼50,𝑖2
), a further increase in 

the infusion of 𝑀2 relative to 𝑀1 will not be effective in depressing 𝑦1 and 𝑦2 due to the 

weakening of the inter-medication synergy (i.e., the denominator in 𝐼𝑒𝑞,𝑖 , 𝑖 = 1,2 

increases, which cancels an increase in the numerator in 𝐼𝑒𝑞,𝑖 , 𝑖 = 1,2  caused by an 

increase in 𝑥2 ). Therefore, we proposed to linear the model at 2 different operating 

points. First, same as the model in Chapter 4, assume that 𝑀1 and 𝑀2 are secondary and 

primary medications, respectively. Reducing Eq. (29) at (𝑥10, 𝑥20) = (0, 𝑥20) , 

differentiating it in time, and expressing 𝑥1 and 𝑥2 by 𝑞1 and 𝑞2 yields: 

𝑞̇1 =
1

Δ
(−𝑘𝑒1𝜆12

[1]
𝜆21

[1]
+ 𝑘𝑒2𝜆11

[1]
𝜆22

[1]
) 𝑞1 +

𝑘𝑒1

𝜆11
[1]

𝑢1

+
1

Δ
(𝑘𝑒1𝜆22

[1]
𝜆21

[1]
− 𝑘𝑒2𝜆21

[1]
𝜆22

[1]
) 𝑞2 +

𝑘𝑒2

𝜆12
[1]

𝑢2 

𝑞̇2 =
1

Δ
(−𝑘𝑒1𝜆12

[1]
𝜆11

[1]
+ 𝑘𝑒2𝜆11

[1]
𝜆12

[1]
) 𝑞1 +

𝑘𝑒1

𝜆21
[1]

𝑢1

+
1

Δ
(𝑘𝑒1𝜆22

[1]
𝜆11

[1]
− 𝑘𝑒2𝜆21

[1]
𝜆12

[1]
) 𝑞2 +

𝑘𝑒2

𝜆22
[1]

𝑢2 

(41) 

where 𝜆11
[1]

=
𝐼50,11

𝜌1
, 𝜆12

[1]
= 𝐼50,12 , 𝜆21

[1]
=

𝐼50,21

𝜌2
, 𝜆22

[1]
= 𝐼50,22 , and Δ ≜ 𝜆12

[1]
𝜆21

[1]
− 𝜆11

[1]
𝜆22

[1]
, 

which leads to the following linearly parameterized model: 

𝒒̇ = [
𝑞̇1

𝑞̇2
] = 𝑨1 [

𝑞1

𝑞2
] + 𝑩1 [

𝑢1

𝑢2
] (42) 

where 𝑨1 =
1

Δ
[
−𝑘𝑒1𝜆12

[1]
𝜆21

[1]
+ 𝑘𝑒2𝜆11

[1]
𝜆22

[1]
𝑘𝑒1𝜆22

[1]
𝜆21

[1]
− 𝑘𝑒2𝜆21

[1]
𝜆22

[1]

−𝑘𝑒1𝜆12
[1]

𝜆11
[1]

+ 𝑘𝑒2𝜆11
[1]

𝜆12
[1]

𝑘𝑒1𝜆22
[1]

𝜆11
[1]

− 𝑘𝑒2𝜆21
[1]

𝜆12
[1]

]  and 𝑩1 =

[

𝑘𝑒1

𝜆11
[1]

𝑘𝑒2

𝜆12
[1]

𝑘𝑒1

𝜆21
[1]

𝑘𝑒2

𝜆22
[1]

]. 
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Second, assume that 𝑀1  and 𝑀2  are primary and secondary medications, respectively. 

Reducing Eq. (29) at (𝑥10, 𝑥20) = (𝑥10, 0), differentiating it in time, and expressing 𝑥1 

and 𝑥2 by 𝑞1 and 𝑞2 likewise yields: 

𝒒̇ = [
𝑞̇1

𝑞̇2
] = 𝑨2 [

𝑞1

𝑞2
] + 𝑩2 [

𝑢1

𝑢2
] (43) 

where 𝑨2 =
1

Δ
[
−𝑘𝑒1𝜆12

[2]
𝜆21

[2]
+ 𝑘𝑒2𝜆11

[2]
𝜆22

[2]
𝑘𝑒1𝜆22

[2]
𝜆21

[2]
− 𝑘𝑒2𝜆21

[2]
𝜆22

[2]

−𝑘𝑒1𝜆12
[2]

𝜆11
[2]

+ 𝑘𝑒2𝜆11
[2]

𝜆12
[2]

𝑘𝑒1𝜆22
[2]

𝜆11
[2]

− 𝑘𝑒2𝜆21
[2]

𝜆12
[2]

]  and 𝑩2 =

[

𝑘𝑒1

𝜆11
[2]

𝑘𝑒2

𝜆12
[2]

𝑘𝑒1

𝜆21
[2]

𝑘𝑒2

𝜆22
[2]

], 𝜆11
[2]

= 𝐼50,11, 𝜆12
[2]

=
𝐼50,12

𝜌1
, 𝜆21

[2]
= 𝐼50,21, and 𝜆22

[2]
=

𝐼50,22

𝜌2
. 

 

It is noted that the control-oriented models in Eq. (42) and Eq. (43) have linear dynamics 

with state and input coupling. The controllability of these locally linearized models can 

be easily determined based on the matrix pairs (𝑨1, 𝑩1) and (𝑨2, 𝑩2), respectively. In 

case inter-medication coupling is not too large (which is in fact a requisite assumption to 

streamline control design; see Remark 2 in Section 5.2) so that the off-diagonal terms are 

small compared to the diagonal terms in the matrices 𝑩𝑖, 𝑖 = 1,2 in Eq. (42) and Eq. (43), 

the matrices 𝑩𝑖 , 𝑖 = 1,2  have full rank, and therefore, the linearized models are 

controllable. Considering that 𝑦1  and 𝑦2  are related to 𝑞1  and 𝑞2  via monotonic 

transformation in Eq. (28), 𝑦1  and 𝑦2  are likewise controllable. The observability is 

trivial: given that both 𝑦1 and 𝑦2 are available for measurement, the linearized models are 

observable. 

 

It is also noted that the structure of the control-oriented dose-response models 

corresponding to the 𝑀1-dominant dose-response model (called the 𝑀1 model hereafter) 
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in Eq. (43) and the 𝑀2-dominant dose-response model (called the 𝑀2 model hereafter) in 

Eq. (42) is identical, but not the definition of the parameters therein. This illustrates a few 

notable points on the role of switching control: (1) its most beneficial role may be to 

assist fast adaptation of dose-response relationship by providing a one-time instantaneous 

updating of model parameters, based on their definition (specifically, how 𝜌1 and 𝜌2 are 

incorporated into 𝜆𝑖𝑗
[1]

 and 𝜆𝑖𝑗
[2]

, 𝑖, 𝑗 = 1,2), to facilitate online parameter estimation in case 

the operating regime and the dose-response model used in the controller are inconsistent; 

and (2) the role of switching may be redundant if the dose-response relationship can be 

readily tuned to the operating regime with the parameter adaptation alone. Given these 

points, it may be reasonable to anticipate that the instances in which switching control is 

the most effective are those associated with control set point changes invoking a large 

perturbation in the operating regime that necessitates the switching of the dose-response 

model. 

 

5.2. Semi-Adaptive Switching Control 

To cope with the nonlinearity and inter-individual variability inherent in the dose-

response relationship, we investigated a semi-adaptive switching control approach to the 

infusion of two interacting mediations. The key components of the approach are the 

switching control strategy and multivariable semi-adaptive control.  

 

Considering that a single linearized dose-response model representing a particular 

operating regime (e.g., 𝑀2  model in Eq. (42) or 𝑀1  model in Eq. (43)) may not well 

represent the global nonlinear dose-response behavior, it may be a reasonable idea to 
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equip the controller with an ability to switch its mode depending on the operating 

regimes. In this chapter, we investigated an approach in which the controller can switch 

its mode between the 𝑀1 -dominant and 𝑀2 -dominant regimes. Considering that the 

variables 𝜙1 and 𝜙2 in Eq. (27) indicate the relative dominance of the medications 𝑀1 

and 𝑀2  on the process outputs (i.e., clinical responses) 𝑦1  and 𝑦2 , the overall relative 

dominance of the medication was determined by 
𝜙1+𝜙2

2
: (1) 𝑀2 dominates the process in 

case 0 ≤
𝜙1+𝜙2

2
< 0.5, and a closed-loop controller designed with Eq. (42) must be used 

to control the dose-response dynamics; and similarly, (2) 𝑀1 dominates the process in 

case 0.5 ≤
𝜙1+𝜙2

2
< 1, and a closed-loop controller designed with Eq. (43) must be used 

to control the dose-response dynamics. 

 

Given the above switching strategy, the controller must estimate 𝜙1 and 𝜙2 to determine 

the correct mode to operate and perform mode switching. According to Eq. (27), a pre-

requisite to estimate 𝜙1 and 𝜙2 is the estimation of 𝐼50,𝑖𝑗, 𝑖, 𝑗 = 1,2. Given the matrices 

𝐴𝑘 and 𝐵𝑘 in Eq. (42) and Eq. (43) as estimated by the semi-adaptive control technique 

(as described later in this section; here, 𝑘 = 1 if the current control mode is 𝑀2-dominant 

mode, or 2 otherwise), our approach to estimate 𝐼50,𝑖𝑗, 𝑖, 𝑗 = 1,2 is as follows. First, 𝑘𝑒1 

and 𝑘𝑒2 are computed from the matrix 𝐴𝑘 as its eigenvalues. Second, 𝜆𝑖𝑗
[𝑘]

, 𝑖, 𝑗 = 1,2 are 

computed from each element in 𝐵𝑘. Third, 𝐼50,𝑖𝑗, 𝑖, 𝑗 = 1,2 are computed from 𝜆𝑖𝑗
[𝑘]

, 𝑖, 𝑗 =

1,2 with the knowledge of the parameters 𝜌𝑖, 𝑖 = 1,2 (see Remark 1). 
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Remark 1: It is not practically feasible to estimate both 𝜌𝑖 and 𝐼50,𝑖𝑗, 𝑖, 𝑗 = 1,2 from the 

knowledge of 𝜆𝑖𝑗
[𝑘]

, 𝑖, 𝑗 = 1,2. To cope with this challenge, it was assumed here that a 

priori (yet imperfect) knowledge of 𝜌𝑖 , 𝑖 = 1,2 is available to compute 𝐼50,𝑖𝑗 , 𝑖, 𝑗 = 1,2 

from 𝜆𝑖𝑗
[𝑘]

, 𝑖, 𝑗 = 1,2. To make up for the inaccuracy due to this assumption, the plant (i.e., 

dose-response) models in Eq. (42) and Eq. (43) were rewritten as follows to take the 

errors induced by this assumption explicitly into account in the course of control design: 

𝒒̇ = [
𝑞̇1

𝑞̇2
] = 𝑨10 [

𝑞1

𝑞2
] + 𝑩10 [

𝑢1

𝑢2
] + ∆𝟏 (44) 

𝒒̇ = [
𝑞̇1

𝑞̇2
] = 𝑨20 [

𝑞1

𝑞2
] + 𝑩20 [

𝑢1

𝑢2
] + ∆𝟐 (45) 

where the matrices 𝑨𝑘0 and 𝑩𝑘0, 𝑘 = 1,2 are the matrices 𝑨𝑘 and 𝑩𝑘 in Eq. (42) and Eq. 

(43) constructed with the true 𝑘𝑒1 , 𝑘𝑒2 , and 𝐼50,𝑖𝑗 , 𝑖, 𝑗 = 1,2  together with 𝜌𝑖 , 𝑖 = 1,2 

known a priori, while the vectors ∆𝟏 and ∆𝟐 are the errors due to the mismatch between 

Eq. (42) and Eq. (43) versus Eq. (44) and Eq. (45).  In essence, Eq. (44) and Eq. (45) 

instead of Eq. (42) and Eq. (43) were employed in the control design process as described 

later in this section. 

 

The control switching strategy and semi-adaptive control described above were integrated 

into a semi-adaptive switching controller based on the Lyapunov stability analysis, by 

proving that the stability of the two semi-adaptive controllers designed for Eq. (44) and 

Eq. (45) respectively can be established with a common Lyapunov function [52], [53]. 

Same as Chapter 4, consider the following 1st-order reference model specifying the ideal 

clinical responses of the subject to a reference target: 
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𝒒̇𝒎 = [
𝑞̇𝑚1

𝑞̇𝑚2
] = 𝑨𝒎𝒒𝒎 + 𝑩𝒎𝒓 (46) 

where 𝑨𝒎 = −[
𝑎𝑚 0
0 𝑎𝑚

] is a negative definite matrix, 𝑩𝒎 = −𝑨𝒎 , and 𝒓 a bounded 

reference target: 𝒓 = [
𝑟1
𝑟2

] . The control objective is to guide 𝒚  to 𝒚𝒎  asymptotically: 

lim
𝑡→∞

𝒆(𝑡) = lim
𝑡→∞

𝒒(𝑡) − 𝒒𝒎(𝑡) = 𝟎, while at the same time estimating the subject’s dose-

response relationship in terms of 𝑨𝑘0  and 𝑩𝑘0 , 𝑘 = 1,2 . For the plant in Eq. (44), 

consider the following adaptive control law: 

𝒖 = 𝒖𝟏 = [
𝑢11

𝑢12
] = 𝒂𝒒𝟏̂ [

𝑞1

𝑞2
] + 𝒂𝒓𝟏̂ [

𝑟1
𝑟2

] + 𝒖𝒄𝟏 = 𝒂𝒒𝟏̂𝒒 + 𝒂𝒓𝟏̂𝒓 + 𝒖𝒄𝟏 (47) 

where 𝒂𝒒𝟏̂  and 𝒂𝒓𝟏̂  are variable feedback gains, and 𝒖𝒄𝟏  a nonlinear feedback term to 

guarantee the robustness of the controller against the model uncertainty ∆𝟏. Note that 𝒂𝒒𝟏̂ 

and 𝒂𝒓𝟏̂  the estimations of 𝒂𝒓𝟏 = 𝑩𝟏𝟎
−𝟏𝑩𝒎  and 𝒂𝒒𝟏 = 𝑩𝟏𝟎

−𝟏(𝑨𝒎 − 𝑨𝟏𝟎) . Defining the 

difference between the true versus estimated parameters as follows: 

𝜽𝟏̃ = 𝜽𝟏̂ − 𝜽𝟏 = [𝒂𝒒𝟏̃ 𝒂𝒓𝟏̃] ≜ [𝒂𝒒𝟏̂ − 𝒂𝒒𝟏 𝒂𝒓𝟏̂ − 𝒂𝒓𝟏] (48) 

where  𝜽𝟏 ≜ [𝒂𝒒𝟏 𝒂𝒓𝟏] and 𝜽𝟏̂ ≜ [𝒂𝒒𝟏̂ 𝒂𝒓𝟏̂], then the dynamics of the tracking error 

when the plant in Eq. (44) is subject to the adaptive control law 𝒖 in Eq. (47) is given by: 

𝒆̇ = 𝒒̇ − 𝒒̇𝒎 = 𝑨𝟏𝟎𝒒 + 𝑩𝟏𝟎𝒖 + ∆𝟏 − 𝑨𝒎𝒒𝒎 − 𝑩𝒎𝒓 

= 𝑨𝟏𝟎𝒒 + 𝑩𝟏𝟎(𝒂𝒒𝟏̂𝒒 + 𝒂𝒓𝟏̂𝒓 + 𝒖𝒄𝟏) + ∆𝟏 − 𝑨𝒎𝒒 − 𝑩𝒎𝒓 + 𝑨𝒎𝒆 

= (𝑨𝟏𝟎 + 𝑩𝟏𝟎𝒂𝒒𝟏̂ − 𝑨𝒎)𝒒 + (𝑩𝟏𝟎𝒂𝒓𝟏̂ − 𝑩𝒎)𝒓 + 𝑩𝟏𝟎𝒖𝒄𝟏 + ∆𝟏 + 𝑨𝒎𝒆 

= 𝑩𝟏𝟎𝒂𝒒𝟏̃𝒒 + 𝑩𝟏𝟎𝒂𝒓𝟏̃𝒓 + 𝑩𝟏𝟎𝒖𝒄𝟏 + ∆𝟏 + 𝑨𝒎𝒆 

= 𝑩𝟏𝟎[𝒂𝒒𝟏̃ 𝒂𝒓𝟏̃] [
𝒒
𝒓
] + 𝑩𝟏𝟎𝒖𝒄𝟏 + ∆𝟏 + 𝑨𝒎𝒆 

= 𝑩𝟏𝟎𝜽𝟏̃𝝍 + 𝑩𝟏𝟎𝒖𝒄𝟏 + ∆𝟏 + 𝑨𝒎𝒆 

(49) 
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where 𝝍 = [
𝒒
𝒓
]. Assuming that all the leading principal minors of 𝑩𝟏𝟎 are positive (see 

Remark 2), there exists a positive definite matrix 𝑷 = [
1 0
0 𝑝

] > 𝟎  such that 𝑃𝐵10 =

[

𝑘𝑒1

𝜆11
[1]

𝑘𝑒2

𝜆12
[1]

𝑝
𝑘𝑒1

𝜆21
[1] 𝑝

𝑘𝑒2

𝜆22
[1]

] > 𝟎 holds. Because all the elements in 𝑩𝟏𝟎 are positive due to the physical 

meaning of the parameters 𝑘𝑒𝑖  and 𝜆𝑖𝑗 , 𝑖, 𝑗 = 1,2, a 𝑝  can be found that makes 𝑷𝑩𝟏𝟎 

symmetric, i.e., satisfying 
𝑘𝑒2

𝜆12
[1] = 𝑝

𝑘𝑒1

𝜆21
[1].  Thus, there exists a matrix 𝑺 that satisfies 𝑷𝑩𝟏𝟎 =

𝑺𝑻𝑺.  Consider the Lyapunov function 𝑉 = 𝒆𝑻𝑷𝒆 + 𝑡𝑟 [𝑺𝜽𝟏̃𝚪𝜽
−𝟏𝜽𝟏

𝑻̃𝑺𝑻] and adaptation law 

𝜽𝟏
𝑻̇̂ = −𝚪𝜽𝝍𝒆𝑻 , where 𝑡𝑟[∙]  is the trace of the argument and 𝚪𝜽  is a positive definite 

adaptation gain matrix. Then, the time derivative of the Lyapunov function is calculated 

as follows: 

𝑉̇ = 𝒆̇𝑻𝑷𝒆 + 𝒆𝑻𝑷𝒆̇ + 𝑡𝑟 [𝑺𝜽𝟏̃
̇ 𝚪𝜽

−𝟏𝜽𝟏
𝑻̃𝑺𝑻 + 𝑺𝜽𝟏̃𝚪𝜽

−𝟏𝜽𝟏
𝑻̇̃𝑺𝑻] 

= 2𝒆𝑻𝑷𝒆̇ + 2𝑡𝑟 [𝑺𝜽𝟏̃𝚪𝜽
−𝟏𝜽𝟏

𝑻̇̃𝑺𝑻] 

= 2𝒆𝑻𝑷(𝑩𝟏𝟎𝜽𝟏̃𝝍 + 𝑩𝟏𝟎𝒖𝒄𝟏 + ∆𝟏 + 𝑨𝒎𝒆) − 2𝑡𝑟[𝑺𝜽𝟏̃𝝍𝒆𝑻𝑺𝑻] 

= 2𝒆𝑻𝑷𝑩𝟏𝟎𝜽𝟏̃𝝍 + 2𝒆𝑻𝑷𝑩𝟏𝟎𝒖𝒄𝟏 + 2𝒆𝑻𝑷∆𝟏 + 2𝒆𝑻𝑷𝑨𝒎𝒆 − 2𝒆𝑻𝑺𝑻𝑺𝜽𝟏̃𝝍 

= 2𝒆𝑻𝑷𝑩𝟏𝟎𝒖𝒄𝟏 + 2𝒆𝑻𝑷∆𝟏 + 2𝒆𝑻𝑷𝑨𝒎𝒆 

(50) 

If the element-wise upper bound of 𝑷∆𝟏 is given by 𝜼𝟏 ≜ [
𝜂11

𝜂12
], 𝑉̇ in Eq. (50) can be 

made negative semi-definite by designing 𝒖𝒄𝟏 = −𝒆
|𝒆𝑻|

𝛿0‖𝒆‖𝟐 𝜼𝟏 =

−𝒆
[𝑒1sgn(𝑒1) 𝑒2sgn(𝑒2)]

𝛿0‖𝒆‖𝟐
𝜼𝟏, where 𝛿0 is a value smaller than the smallest eigenvalue of 

𝑃𝐵10.  Indeed: 
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𝒆𝑻𝑷𝑩𝟏𝟎𝒖𝒄𝟏 = −𝒆𝑻𝑷𝑩𝟏𝟎𝒆
|𝒆𝑻|

𝛿0‖𝒆‖𝟐
𝜼𝟏 ≤ −𝛿0‖𝒆‖𝟐

|𝒆𝑻|

𝛿0‖𝒆‖𝟐
𝜼𝟏 = −|𝒆𝑻|𝜼𝟏 

↓ 

𝑉̇ = 2𝒆𝑻𝑷𝑩𝟏𝟎𝒖𝒄𝟏 + 2𝒆𝑻𝑷∆𝟏 + 2𝒆𝑻𝑷𝑨𝒎𝒆 ≤ −2|𝒆𝑻|𝜼𝟏 + 2|𝒆𝑻|𝜼𝟏 + 2𝒆𝑻𝑷𝑨𝒎𝒆

≤ 0 

(51) 

Similarly, for the plant in Eq. (45), consider the following adaptive control law:  

𝒖 = 𝒖𝟐 = [
𝑢21

𝑢22
] = 𝒂𝒒𝟐̂𝒒 + 𝒂𝒓𝟐̂𝒓 + [

𝜌 0

0
1

𝜌

]𝒖𝒄𝟐 (52) 

where 𝒂𝒓𝟐̂ and 𝒂𝒒𝟐̂ are the estimations of 𝒂𝒓𝟐 = 𝑩𝟐𝟎
−𝟏𝑩𝒎 and 𝒂𝒒𝟐 = 𝑩𝟐𝟎

−𝟏(𝑨𝒎 − 𝑨𝟐𝟎). By 

noticing that 𝑨𝟐𝟎 = 𝑨𝟏𝟎  and 𝑩𝟐𝟎 = 𝑩𝟏𝟎 [

1

𝜌
0

0 𝜌
]  (see Eq. (42) and Eq. (43)), 𝒂𝒓𝟐 =

[
𝜌 0

0
1

𝜌

] 𝒂𝒓𝟏  and 𝒂𝒒𝟐 = [
𝜌 0

0
1

𝜌

] 𝒂𝒒𝟏 . Defining the difference between the true versus 

estimated parameters as follows: 

𝜽𝟐̃ = 𝜽𝟐̂ − 𝜽𝟐 = [𝒂𝒒𝟐̃ 𝒂𝒓𝟐̃] ≜ [𝒂𝒒𝟐̂ − 𝒂𝒒𝟐 𝒂𝒓𝟐̂ − 𝒂𝒓𝟐] = [

𝜌 0

0
1

𝜌

]𝜽𝟏̃ (53) 

where 𝜽𝟐 ≜ [𝒂𝒒𝟐 𝒂𝒓𝟐] and 𝜽𝟐̂ ≜ [𝒂𝒒𝟐̂ 𝒂𝒓𝟐̂], then the dynamics of the tracking error 

when the plant in Eq. (45) is subject to the adaptive control law 𝒖 in Eq. (52) is given by: 

𝒆̇ = 𝒒̇ − 𝒒̇𝒎 = 𝑨𝟐𝟎𝒒 + 𝑩𝟐𝟎𝒖 + ∆𝟐 − 𝑨𝒎𝒒𝒎 − 𝑩𝒎𝒓 

= 𝑨𝟐𝟎𝒒 + 𝑩𝟐𝟎 (𝒂𝒒𝟐̂𝒒 + 𝒂𝒓𝟐̂𝒓 + [

𝜌 0

0
1

𝜌

]𝒖𝒄𝟐) + ∆𝟐 − 𝑨𝒎𝒒 − 𝑩𝒎𝒓 + 𝑨𝒎𝒆 

= (𝑨𝟐𝟎 + 𝑩𝟐𝟎𝒂𝒒𝟐̂ − 𝑨𝒎)𝒒 + (𝑩𝟐𝟎𝒂𝒓𝟐̂ − 𝑩𝒎)𝒓 + 𝑩𝟏𝟎𝒖𝒄𝟐 + ∆𝟐 + 𝑨𝒎𝒆 

= 𝑩𝟐𝟎𝒂𝒒𝟐̃𝒒 + 𝑩𝟐𝟎𝒂𝒓𝟐̃𝒓 + 𝑩𝟏𝟎𝒖𝒄𝟐 + ∆𝟐 + 𝑨𝒎𝒆 

(54) 
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= 𝑩𝟏𝟎[𝒂𝒒𝟏̃ 𝒂𝒓𝟏̃] [
𝒒
𝒓
] + 𝑩𝟏𝟎𝒖𝒄𝟐 + ∆𝟐 + 𝑨𝒎𝒆 

= 𝑩𝟏𝟎𝜽𝟏̃𝝍 + 𝑩𝟏𝟎𝒖𝒄𝟐 + ∆𝟐 + 𝑨𝒎𝒆 

Then, with the same Lyapunov function and adaptation law 𝜽𝟐
𝑻̇̂ = −𝚪𝜽𝝍𝒆𝑻 [

𝜌 0

0
1

𝜌

], the 

time derivative of the Lyapunov function is calculated as follows: 

𝑉̇ = 𝒆̇𝑻𝑷𝒆 + 𝒆𝑻𝑷𝒆̇ + 𝑡𝑟 [𝑺𝜽𝟏̃
̇ 𝚪𝜽

−𝟏𝜽𝟏
𝑻̃𝑺𝑻 + 𝑺𝜽𝟏̃𝚪𝜽

−𝟏𝜽𝟏
𝑻̇̃𝑺𝑻] 

= 2𝒆𝑻𝑷𝒆̇ + 2𝑡𝑟 [𝑺𝜽𝟏̃𝚪𝜽
−𝟏𝜽𝟐

𝑻̇̃ [

1

𝜌
0

0 𝜌

] 𝑺𝑻] 

= 2𝒆𝑻𝑷(𝑩𝟏𝟎𝜽𝟏̃𝝍 + 𝑩𝟏𝟎𝒖𝒄𝟐 + ∆𝟐 + 𝑨𝒎𝒆) − 2𝑡𝑟[𝑺𝜽𝟏̃𝝍𝒆𝑻𝑺𝑻] 

= 2𝒆𝑻𝑷𝑩𝟏𝟎𝜽𝟏̃𝝍 + 2𝒆𝑻𝑷𝑩𝟏𝟎𝒖𝒄𝟐 + 2𝒆𝑻𝑷∆𝟐 + 2𝒆𝑻𝑷𝑨𝒎𝒆 − 2𝒆𝑻𝑺𝑻𝑺𝜽𝟏̃𝝍 

= 2𝒆𝑻𝑷𝑩𝟏𝟎𝒖𝒄𝟐 + 2𝒆𝑻𝑷∆𝟐 + 2𝒆𝑻𝑷𝑨𝒎𝒆 

(55) 

Similarly to Eq. (51), if the element-wise upper bound of 𝑷∆𝟐 is given by 𝜼𝟐 ≜ [
𝜂21

𝜂22
], 𝑉̇ 

in Eq. (55) can likewise be made negative semi-definite by designing 𝒖𝒄𝟐 =

−𝒆
|𝒆𝑻|

𝛿0‖𝒆‖𝟐 𝜼𝟐 = −𝒆
[𝑒1sgn(𝑒1) 𝑒2sgn(𝑒2)]

𝛿0‖𝒆‖𝟐 𝜼𝟐. 

 

In this way, 𝑉̇ ≤ 0 can be established for both the plants in Eq. (44) and Eq. (45), and 

thus, the switching semi-adaptive controller is globally stable in both 𝑀1-dominant and 

𝑀2-dominant regimes. Because 𝑉 is positive definite and 𝑉̇ is negative semi-definite, 𝑉 is 

bounded. Hence, 𝒆, 𝒂𝒒𝟏̃ and 𝒂𝒓𝟏̃, and also 𝒂𝒒𝟐̃ and 𝒂𝒓𝟐̃ are bounded. Then, 𝒆̇ is bounded 

from Eq. (49) and Eq. (54), and therefore, 𝑉̈ is also bounded by Eq. (50) and Eq. (55). 
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Thus, 𝑉̇  is uniformly continuous. Therefore, lim
𝑡→∞

𝑉̇ = 0  according to the Barbalat’s 

Lemma [48] and lim
𝑡→∞

𝒆(𝑡) = 𝟎. 

 

Remark 2: The assumption that all the leading principal minors of 𝑩𝒌𝟎 , 𝑘 = 1,2  are 

positive may not be readily satisfied in all medication infusion problems.  However, the 

assumption is valid in case the inter-medication coupling is not too large (so that the off-

diagonal terms in 𝑩𝒌𝟎, 𝑘 = 1,2 are not too large). 

 

Finally, the following practical modifications were made when implementing the semi-

adaptive switching controller. First, a hysteresis was incorporated into the switching 

strategy in order to avoid chattering in the switching process. It was implemented so that 

the controller switches from 𝒖𝟏 in Eq. (47) to 𝒖𝟐 in Eq. (52) if 
𝜙1+𝜙2

2
> 0.6, and likewise 

switches from 𝒖𝟐  to 𝒖𝟏  if 
𝜙1+𝜙2

2
< 0.4 . Note that the hysteresis does not impact the 

system stability; considering that control switching is intended to promote fast adaptation 

of the controller through instantaneous parameter updating, delayed switching due to the 

hysteresis may only slow down the adaptation of the controller to individual subjects and 

operating regimes (and may modestly deteriorate the control performance), but it does 

not deteriorate the system stability. Second, the nonlinear feedback term 𝒖𝒄𝒊 =

−𝒆
[𝑒1sgn(𝑒1) 𝑒2sgn(𝑒2)]

𝛿0‖𝒆‖𝟐 𝜼𝒊, 𝑖 = 1,2 in the control law, which has a discontinuity at 𝒆 = 𝟎, 

was modified into a piecewise continuous nonlinear feedback 𝒖𝒄𝒊 =

−𝒆
[𝑒1𝜎(

𝑒1
𝑒1̆

) 𝑒2𝜎(
𝑒2
𝑒2̆

)]

𝛿0‖𝒆‖𝟐 𝜼𝒊 , 𝑖 = 1,2  in order to avoid chattering in the control input [48], 

where 𝜎(∙) is the saturation function given by: 



 

 56 

 

𝜎(𝑥) = {
𝑥 , |𝑥| ≤ 1      
1 , otherwise

 (56) 

and 𝑒𝑖̆, 𝑖 = 1,2 specifies the width of the saturation. Note that this approximation, widely 

used in robust control (e.g., sliding mode control [48]) to suppress the adverse impact of 

uncertainties while avoiding control chattering, still keeps the tracking error bounded 

(i.e., |𝑒1| < 𝑒1̆  and |𝑒2| < 𝑒2̆ ), although it does not guarantee the convergence of the 

tracking error to zero. Third, upper and lower bounds were imposed on the control input 

𝒖: 0 ≤ 𝑢𝑖 ≤ 𝑢𝑖̌, 𝑖 = 1,2, where 𝑢𝑖̌ is the upper bound associated with the medication 𝑀𝑖.  

Specifically, the lower bounds were set to zero due to physical constraint (that 

medications can only be infused but not drawn), while upper bounds were set to ensure 

subject safety against over-dosing. Fourth, a dead zone scheme [48] was implemented in 

the adaptation law to prevent the drift in the process model parameters 𝒂𝒒𝒌̂ and 𝒂𝒓𝒌̂, 𝑘 =

1,2  in the neighborhood of 𝒆 = 𝟎  (which frequently occurs in case the system is 

regulated at constant set points due to the lack of persistent excitation) while maintaining 

the system stability and error boundedness, by de-activating the parameter adaptation 

when 𝒆 is small: 

𝜽𝒌̂
̇ 𝑻

= {
−𝚪𝜽𝝍𝒆𝑻 , |𝑒1(𝑡)| > 𝜖𝑒1

 or  |𝑒2(𝑡)| > 𝜖𝑒2

𝟎 , otherwise                                    
, 𝑘 = 1,2 (57) 

In sum, Fig. 13 schematically illustrates the overall control architecture. 
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Fig. 13: Architecture of semi-adaptive switching control approach. 

 

5.3. In-Silico Evaluation 

An array of in-silico evaluation was conducted to examine the semi-adaptive switching 

control approach to the infusion of two interacting medications. For this purpose, an 

example scenario was considered, in which cardiac output (CO) and respiratory rate (RR) 

were controlled through the infusion of a sedative propofol ( 𝑀1 ) and an opioid 

remifentanil (𝑀2). In the in-silico evaluation, the nonlinear dose-response model in Eq. 

(26)-(27) was used to simulate the process (i.e., in-silico subject’s dose-response 

dynamics), while the control design was conducted based on its linearization in Eq. (44) 

and Eq. (45). Hence, the structural uncertainty due to the modeling error was considered 

in the in-silico evaluation. By exploiting available dose-response data, synthetic pediatric 

subjects were simulated by first setting the appropriate ranges of the model parameters 

and then creating a cohort of random subjects.  Details follow.  

 

For the parameters associated with the dose-response relationships of propofol, the ranges 

of 𝑘𝑒1 , 𝐼50,11 , and 𝛾1  were obtained from the experimental data collected from swine 

subjects with body weight ranging 25-30 kg and by assuming that these ranges translate 
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to the pediatric subjects of comparable body weight used in our previous work [54] to 

derive the parameters associated with remifentanil (based on the hemodynamic similarity 

between swine and humans). The range of the 𝐼50,21 was set by assuming that 𝐼50,11 ≈

𝐼50,21  [51]. The ranges thus selected were: 0.03 ≤ 𝑘𝑒1 ≤ 0.09  min-1, 1.5 ≤ 𝛾1 ≤ 4.5 , 

0.2 ≤ 𝐼50,11 ≤ 0.6  mg/kg/min, and 0.2 ≤ 𝐼50,21 ≤ 0.6  mg/kg/min. For the parameters 

associated with the dose-response relationships of remifentanil, the ranges of 𝑘𝑒2, 𝐼50,22, 

and 𝛾2 were obtained from our previous work in pediatric subjects [54]. The range of 

𝐼50,12 was set by assuming that the influence of remifentanil on CO is relatively small 

compared with its effect on RR (thus a large 𝐼50,12). The ranges thus selected were: 

0.15 ≤ 𝑘𝑒2 ≤ 0.45  min-1, 1.5 ≤ 𝛾2 ≤ 4.5 , 0.1 ≤ 𝐼50,12 ≤ 0.3  mcg/kg/min, and 0.04 ≤

𝐼50,22 ≤ 0.12  mcg/kg/min. Finally, a wide range of inter-medication interaction 

parameters (i.e., 𝛽1  and 𝛽2 ) was considered to simulate diverse inter-medication 

interaction: 0.25 ≤ 𝛽1, 𝛽2 ≤ 2.75. 

 

During the in-silico simulation, nominal CO and RR before the initiation of medication 

infusion were set at 3.0 lpm and 25 bpm. The initial process parameters 𝜽𝒌̂, 𝑘 = 1,2 were 

set at the average values from the respective parameter ranges selected above. The 

adaptation gain matrix of 𝚪𝜽 = 𝑰4×4 was chosen by trial and error so that the speed of 

adaptation is maximized while oscillatory adaptation is prevented in all the in-silico 

subjects investigated in this study. A sampling rate of 1 Hz was used to simulate the 

process and control actions. The upper bounds of propofol (𝑢1̌) and remifentanil (𝑢2̌) 

infusion rates were set to 0.8 mg/kg/min and 0.16 mcg/kg/min, respectively. But, 

considering that higher infusion rates (e.g., bolus infusion) are typically used for 



 

 59 

 

reference target tracking during the initial transients, higher propofol (4 mg/kg/min) and 

remifentanil (0.8 mcg/kg/min) infusion rates were allowed during the first 10 min after 

the control action started. 

 

To investigate the efficacy and limitations of the semi-adaptive switching control 

approach, two in-silico evaluations were performed. First, to examine the role and benefit 

of switching control relative to non-switching control (i.e., the remifentanil-dominant 

control in Eq. (47) and the propofol-dominant control in Eq. (52)), a series of in-silico 

simulations were performed in which the semi-adaptive switching and non-switching 

controllers guided in-silico subjects with diverse dose-response profiles to a target 

clinical set point. For this purpose, 50 in-silico subjects were generated through a 

uniformly random selection of parameters in the dose-response models in Eq. (26)-(27) 

from the respective range described earlier in this section, and the controllers performed 

the task of guiding the in-silico subjects from the nominal CO and RR to the CO (𝑟1) and 

RR (𝑟2) set points of 2.4 lpm and 15 bpm, respectively. The performance of the semi-

adaptive switching versus non-switching controllers was compared based on the 

command tracking errors. In addition, to test the hypothesis that the most beneficial role 

of switching control may be to assist fast adaptation of dose-response relationship by 

providing one-time instantaneous updating of model parameters in case the operating 

regime and the dose-response model used in the controller are inconsistent, the accuracy 

of the estimated process parameters (i.e., 𝒂𝒒𝒌̂  and 𝒂𝒓𝒌̂ , 𝑘 = 1,2) associated with the 

switching versus non-switching controllers were computed and compared to each other. 
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Second, to examine the limitation of switching control relative to non-switching control 

by quantifying its benefit with respect to the operating regime, a series of in-silico 

simulations were performed in which the semi-adaptive switching and non-switching 

controllers guided in-silico subjects to a set of target clinical set points corresponding to 

different levels of medication dominance. For this purpose, 40 in-silico subjects were 

generated through a uniformly random selection of parameters in the dose-response 

models in Eq. (26)-(27) from the respective range, and the controllers performed the task 

of guiding the in-silico subjects from the nominal CO and RR to a set of CO (𝑟1) and RR 

(𝑟2) set points corresponding to a range of medication dominance levels (in terms of 

𝜙1+𝜙2

2
). Specifically, the RR set point was fixed at 15 bpm. In 20 in-silico subjects, the 

semi-adaptive switching and non-switching controllers were tasked to achieve CO targets 

corresponding to 
𝜙1+𝜙2

2
 values between 0.6 and 1 in addition to the RR set point of 15 

bpm. Then, the performance of the switching versus non-switching controllers was 

comparatively examined with respect to 
𝜙1+𝜙2

2
 based on the command tracking errors. 

Considering that the operating regime was propofol-dominant and the control law in Eq. 

(52) must be used, of particular interest was to compare the switching control starting 

from remifentanil-dominant mode to the remifentanil-dominant non-switching control in 

Eq. (47). In the remaining 20 in-silico subjects, the semi-adaptive switching and non-

switching controllers were tasked to achieve CO targets corresponding to 
𝜙1+𝜙2

2
 values 

between 0 and 0.4 in addition to the RR set point of 15 bpm. Then, the performance of 

the switching versus non-switching controllers was likewise examined based on the 

command tracking errors. Considering that the operating regime was remifentanil-
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dominant and the control law in Eq. (47) must be used, of particular interest was to 

compare the switching control starting from propofol-dominant mode to the propofol-

dominant non-switching control in Eq. (52). 

 

5.4. Results and Discussion 

Within the 50 in-silico subjects, the target CO and RR set points of 2.4 lpm and 15 bpm 

resulted in 28 and 22 simulated subjects operating in the propofol- and remifentanil-

dominant regimes, respectively. Therefore, the in-silico subjects generated in this study 

were adequate in evaluating the semi-adaptive switching control in a wide range of dose-

response profiles. 

 

Overall, the switching control offered added benefit relative to non-switching control. 

Table 4 shows the root-mean-squared normalized errors (RMSNE’s; in terms of mean 

and standard deviation) in command tracking associated with the propofol-dominant non-

switching, remifentanil-dominant non-switching, and switching controllers. RMSNE was 

computed as 
1

√𝑁
‖

𝑦1−𝑦𝑚1

𝑦𝑚1
‖

2
+

1

√𝑁
‖

𝑦2−𝑦𝑚2

𝑦𝑚2
‖

2
, 0 ≤ 𝑡 ≤ 15  min, where 𝑦𝑚1  and 𝑦𝑚2  are 

the reference trajectories for 𝑦1 (CO) and 𝑦2 (RR) that can be obtained from Eq. (28) and 

Eq. (46). On the average, the switching control reduced the RMSNE by 22% and 26% 

compared to the propofol-dominant and remifentanil-dominant non-switching control if it 

started from the former, and by 23% and 27% if it started from the latter. It appeared that 

the benefit offered by the switching control was related to the correct and prompt mode 

switching, which assisted the controller with fast adaptation to the in-silico subject’s 

correct dose-response relationship.  Table 4 shows the time at which mode switching 
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occurred in the switching controllers. Within the 50 in-silico simulations, there was no 

incidence of incorrect mode switching, and mode switching, when required, occurred 

very quickly on the average (within 0.92 min after enforcing the set point). 

 

Fig. 14 shows 2 representative in-silico simulation examples. In Fig. 14(a), the in-silico 

subject was subject to propofol-dominant regime at the set point. Therefore, the propofol-

dominant non-switching controller performed the best (RMSNE = 0.009). Not 

surprisingly, the switching controller starting from propofol-dominant mode showed the 

same performance to the propofol-dominant non-switching controller without any 

inappropriate mode switching (not shown). As expected, the remifentannil-dominant non-

switching controller performed poorly in comparison to its propofol-dominant 

counterpart (RMSNE = 0.032). In contrast, the switching controller starting from 

remifentanil-dominant mode could promptly switch to the propofol-dominant mode (at 

0.48 min) to minimize the degradation in performance due to incorrect control mode 

(RMSNE = 0.011). Similarly, in Fig. 14(b) the in-silico subject was subject to 

remifentanil-dominant regime at the set point. Therefore, the remifentanil-dominant non-

switching controller (RMSNE = 0.008) exhibited superior performance to its propofol-

dominant counterpart (RMSNE = 0.032). In this case as well, the switching controller 

starting from propofol-dominant mode could promptly switch to the remifentanil-

dominant mode (at 1.45 min) to minimize the degradation in performance (RMSNE = 

0.025). 

 



 

 63 

 

In sum, the above in-silico results suggest that the semi-adaptive switching control offers 

added benefit to its non-switching counterpart by virtue of its ability to operate in a 

correct mode best suited to the given operating regime. 

 

Table 4: Root-mean-squared normalized command tracking errors (RMSNE’s) associated 

with switching and non-switching controllers, and switching times associated with 

switching controllers (mean (SD)). 

Control RMSNE Switching Time 

[min] 

Propofol-Dominant Non-Switching Control 0.019 (0.012) N/A 

Remifentanil-Dominant Non-Switching Control 0.020 (0.017) N/A 

Switching Control, Stating from Propofol-Dominant 

Mode 

0.015 (0.009) 0.77 (0.55) 

Switching Control, Stating from Remifentanil-

Dominant Mode 

0.014 (0.012) 1.03 (1.63) 

 

The results also suggested that the added value offered by the switching control may be 

due to its superior parameter estimation accuracy to the non-switching control. Fig. 15 

shows the parameter estimation errors associated with the semi-adaptive switching versus 

non-switching controllers. The parameter estimation error was computed as the sum of 8 

element-wise RMSNE’s between the actual (𝜽 computed from Eq. (29)) versus estimated 

(𝜽𝒌̂(𝑡) , 𝑘 = 1,2, 0 ≤ 𝑡 ≤ 15  min) controller parameters. In 28 in-silico subjects who 

resided in the propofol-dominant regime at the target set point, the parameter estimation 

RMSNE’s associated with the semi-adaptive switching control and remifentanil-

dominant non-switching control were 13.5 and 24.2 on the average, respectively (Fig. 
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15(a)). Likewise, in 22 in-silico subjects who resided in the remifentanil-dominant 

regime at the target set point, the parameter estimation RMSNE’s associated with the 

semi-adaptive switching control and propofol-dominant non-switching control were 16.0 

and 25.6 on the average, respectively (Fig. 15(b)). Thus, switching control could reduce 

the parameter estimation errors by a large amount. Importantly, the semi-adaptive control 

exhibited smaller parameter estimation errors than non-switching control in most in-silico 

subjects used in this study: Fig. 15, which presents the cumulative distribution of the 

parameter estimation errors, shows that switching control persistently outperforms its 

non-switching counterpart in terms of parameter estimation accuracy. Hence, it can be 

deduced that the instantaneous parameter updating offered by the switching control may 

improve the command tracking performance by improving the model adaptation 

accuracy. 
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Fig. 14: Representative in-silico simulation examples. Blue vertical line indicates the 

instant at which mode switching occurred. (a) An in-silico subject in the propofol-

dominant regime at the set point. (b) An in-silico subject in the remifentanil-dominant 

regime at the set point.  M1: propofol.  M2: remifentanil. 
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Fig. 15: Parameter Estimation RMSNE’s associated with the semi-adaptive switching 

versus non-switching control. (a) 28 in-silico subjects in the propofol-dominant regime 

at the set point. (b) 22 in-silico subjects in the remifentanil-dominant regime at the set 

point. 

 

The above results show that the switching control consistently outperformed non-

switching control via its ability to provide instantaneous model parameter updating.  Yet, 

its benefit may not be large if the dose-response relationship can be readily tuned to the 

operating regime with the parameter adaptation alone.  In Table 5, the command tracking 

performance of semi-adaptive switching versus non-switching controllers are compared 

with respect to the operating regime.  Table 5(a) shows that, in subjects who were subject 

to propofol-dominant regime at the target set point, the difference in the command 

tracking performance between the switching control (which started from remifentanil-

dominant mode) versus remifentanil-dominant non-switching control increased as the 

operating regime became more propofol-dominant (i.e., as 
𝜙1+𝜙2

2
 became larger).  

Likewise, Table 5(b) shows that the same trend was observed for the switching control 

(which started from propofol-dominant mode) versus propofol-dominant non-switching 
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control in subjects who were subject to remifentanil-dominant regime at the target set 

point.  Hence, the effect of switching was large when the gap between the dose-response 

relationship estimated by the controller versus the subject’s actual dose-response 

relationship was large (so that instantaneous model parameter updating could expedite 

the fast adaptation of dose-response relationship), but small otherwise (in which the gap 

may have been easily handled by the adaptation law alone). Indeed, Fig. 16 shows that 

the degree of improvement in command tracking performance (in terms of the RMSNE) 

ranged from 6% to nearly 35% depending on the operating regime of the subject.  This 

suggests that it may be prudent to selectively activate mode switching (i.e., activate it 

only in case it can improve the controller’s command tracking performance) to maximize 

its efficacy. 

 

Fig. 16: Mean percent improvement in command tracking performance offered by 

switching control with respect to operating regime.  (a) In-silico subjects subject to 

propofol-dominant regime.  (b) In-silico subjects subject to remifentanil-dominant 

regime. 
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Table 5: Command tracking performance of semi-adaptive switching and non-switching 

controllers with respect to operating regime (mean (SD)). 

(a) In-silico subjects subject to propofol-dominant regime 

(𝜙1 + 𝜙2) 2⁄  0.6 0.7 0.8 0.9 1.0 

Switching 
0.016 

(0.005) 

0.017 

(0.006) 

0.019 

(0.008) 

0.026 

(0.014) 

0.065 

(0.044) 

Remifentanil-Dominant Non-

Switching 

0.017 

(0.005) 

0.021 

(0.008) 

0.026 

(0.013) 

0.038 

(0.022) 

0.094 

(0.062) 

 (b) In-silico subjects subject to remifentanil-dominant regime 

(𝜙1 + 𝜙2) 2⁄  0.0 0.1 0.2 0.3 0.4 

Switching 
0.015 

(0.009) 

0.013 

(0.007) 

0.013 

(0.007) 

0.015 

(0.008) 

0.017 

(0.009) 

Propofol-Dominant Non-

Switching 

0.023 

(0.014) 

0.020 

(0.011) 

0.019 

(0.010) 

0.018 

(0.011) 

0.020 

(0.013) 
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Chapter 6: Coordinated Two-Input Two-Output Semi-Adaptive 

Control Design 

In this chapter, the problem if the initial set targets are not achievable is addressed. A 

coordinated two-input two-output semi-adaptive controller which consists of a 

coordinated control and the controller in chapter 4 is introduced. 

 

In the following, the architecture of the controller is discussed first. Then the coordinated 

control is presented. Comparative simulation studies were also done to demonstrate the 

advantages of the proposed method over the method in chapter 4. Moreover, the detailed 

behavior of the coordinated controller was examined. 

 

6.1.  Control Architecture 

The proposed control approach consists of an upper-level coordination controller and a 

low-level semi-adaptive controller (Fig. 17). The coordination controller recursively 

adjusts the reference targets, based on the dose-response relationship of a subject 

estimated by the semi-adaptive controller and constraints imposed on the medication use, 

in order to ensure that the reference targets thus derived can be safely achieved by the 

subject. For given reference targets provided by the coordination controller, the semi-

adaptive controller in chapter 4 is utilized to compute and execute the requisite 

medication infusion rates to guide the subject towards the reference targets while 

estimating the subject’s dose-response relationship on-line and providing it to the 

coordination controller. 
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Figure 17: The architecture of coordinated semi-adaptive control. 

 

6.2.  Coordinated Control via Recursive Reference Adjustment 

The primary role of the coordinated control is to keep the reference targets achievable by 

the system driven by the semi-adaptive control outlined in Chapter 4. A coordinated 

control scheme based on a recursive adjustment law for the reference targets was 

developed by considering constraints on (1) the input magnitudes (i.e., bounds on the 

medication infusion rates) and energy (i.e., total medication use) as well as (2) the degree 

of discrepancy between the original (i.e., specified by the caregiver) versus adjusted 

reference targets.   

 

The set of achievable reference targets can be determined by the bounds imposed on the 

input as well as the discrepancy between the originally specified versus adjusted 

reference targets as follows. First, in case of medication infusion, the elements of the 

input 𝒖 must be positive while limited by an upper bound to ensure subject safety: 0 ≤

𝑢𝑖 ≤ 𝑢𝑖̌, 𝑖 = 1,2. Hence, considering (34), the reference targets must satisfy the following 

inequalities in the steady state: 
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0 ≤ 𝒖 = [
𝑢1

𝑢2
] = 𝑩−𝟏𝑨 [

𝑟1
𝑟2

] ≤ [
𝑢1̌

𝑢2̌
] (58) 

Referring to (33), (58) yields the following pair of inequalities in terms of 𝑟1 and 𝑟2: 

0 ≤
𝜆11𝜆12𝜆21

Δ
𝑟1 −

𝜆11𝜆21𝜆22

Δ
𝑟2 ≤ 𝑢1̌   →   

𝜆22

𝜆12
𝑟2 ≤ 𝑟1 ≤

𝜆22

𝜆12
𝑟2 +

Δ𝑢1̌

𝜆12𝜆11𝜆21
 

0 ≤
𝜆12𝜆21𝜆22

Δ
𝑟2 −

𝜆11𝜆12𝜆22

Δ
𝑟1 ≤ 𝑢2̌   →   

𝜆21

𝜆11
𝑟2 −

Δ𝑢2̌

𝜆11𝜆12𝜆22
≤ 𝑟1 ≤

𝜆21

𝜆11
𝑟2 

(59) 

which altogether yields a parallelogram in the (𝑟1, 𝑟2) space as shown in Fig. 14 (note that 

the parallelogram is guaranteed to exist, because the slopes of the constraints in (59) 

satisfy 
𝜆21

𝜆11
>

𝜆22

𝜆12
 given that all the leading principal minors of 𝑩 are positive). Second, the 

discrepancy between the original (i.e., caregiver-specified) versus adjusted reference 

targets may be limited to respect the expertise of the caregiver, which results in the 

following inequalities in terms of 𝑟1 and 𝑟2 (note that these limits may be specified by the 

caregiver in advance): 

𝑟𝑖0 − 𝜖𝑟𝑖
≤ 𝑟𝑖 ≤ 𝑟𝑖0 + 𝜖𝑟𝑖

, 𝑖 = 1,2 (60) 

where 𝑟𝑖0  is the originally specified value for 𝑟𝑖 , 𝑖 = 1,2. These constraints altogether 

yield a rectangle in the (𝑟1, 𝑟2) space as shown in Fig. 18. Finally, the set of achievable 

reference targets is determined as the intersection between the parallelogram and 

rectangle, as shown in Fig. 18. 

 

If the current pair of reference targets (𝑟1, 𝑟2) is not achievable, one (and perhaps the 

easiest) way to make it achievable is to adjust it towards the nearest achievable pair of 

reference targets. From Fig. 18, the nearest achievable pair can be found as the 

intersection between the side of the parallelogram having the smallest distance from the  
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𝜆22

𝜆12
𝑟2 +

Δ𝑢1̌

𝜆12𝜆11𝜆21
 

𝑟1 =
𝜆21
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𝜆11𝜆12𝜆22
 

C

D

 

Figure 18: The set of achievable reference targets specified by the constraints on the input 

magnitudes and deviation from the original reference targets. 

 

current pair of reference targets and the line perpendicular to the side that passes through 

the current pair of reference targets (e.g., the pair “A” is adjusted towards “B”). However, 

this approach is not ideal in terms of input energy (i.e., medication use), because the 

adjusted reference targets will be on a side of the parallelogram, at which 𝑢𝑖 = 0 or 𝑢𝑖 =

𝑢𝑖̌, 𝑖 = 1,2 and the synergistic interaction between the two medications is not exploited to 

minimize the medication use. Hence, it may be sensible to penalize the medication use in 

determining the direction of adjustment of the reference targets in order to minimize the 

medication use. The optimal direction of adjustment, obtained by considering both the 

smallest distance to the set of achievable reference targets and input energy, may not be 

strictly perpendicular to the side of the parallelogram. Regardless, considering that all the 

sides of the parallelogram have positive slopes, that 𝑟1 and 𝑟2 must be adjusted in the 

opposite direction (i.e., if one is increased, the other must be decreased) is a viable 
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requirement in adjusting the reference targets in order to effectively reach the achievable 

reference targets (e.g., adjusting the pair “A” towards “C” is more effective than 

adjusting towards “D”). Hence, this can be enforced in the course of reference targets 

adjustment. 

 

Summarizing the above considerations, we developed a coordinated control scheme 

based on a recursive adjustment law for the reference targets using the model predictive 

control formalism as follows. Consider a simple recursive adjustment law for 𝑟1 and 𝑟2 

given by: 

𝒓̇(𝑡) = [
𝑟1̇(𝑡)

𝑟2̇(𝑡)
] = 𝚪𝒓 [

𝑣1(𝑡)

𝑣2(𝑡)
] = 𝚪𝒓𝒗(𝑡) (61) 

where 𝚪𝒓 = [
𝛾𝑟1 0

0 𝛾𝑟2

]  is a positive definite adaptation gain matrix and 𝒗(𝑡)  the 

adjustment policy that is to be designed. Then, the dynamics of the plant (35), reference 

model (36), MRAC law (37), and reference target adjustment law (61) combined all 

together is given in the discrete-time domain by: 

𝒒(𝑛 + 1) = 𝒒(𝑛) + 

𝑇𝑠{(𝑨̂(𝑛) + 𝑩̂(𝑛)𝒂𝒒̂(𝑛) + 𝑩̂(𝑛)𝜼)𝒒(𝑛) − 𝑩̂(𝑛)𝜼𝒒𝒎(𝑛) + 𝑩̂(𝑛)𝒂𝒓̂(𝑛)𝒓(𝑛)} 

𝜽̂𝑻(𝑛 + 1) = [
𝒂𝒒̂

𝑻

𝒂𝒓̂
𝑻
] = 𝜽̂𝑻(𝑛) − 𝑇𝑠 {𝚪𝜽 [

𝒒(𝑛)

𝒓(𝑛)
] [𝒒(𝑛) − 𝒒𝒎(𝑛)]𝑻} 

𝒒𝒎(𝑛 + 1) = 𝒒𝒎(𝑛) + 𝑇𝑠{𝑨𝒎𝒒𝒎(𝑛) + 𝑩𝒎𝒓(𝑛)} 

𝒓(𝑛 + 1) = 𝒓(𝑛) + 𝑇𝑠𝚪𝒓𝒗(𝑛) 

(62) 

with 𝑩̂(𝑛) = 𝑩𝒎𝒂𝒓̂
−𝟏

 and 𝑨̂(𝑛) = 𝑨𝒎 − 𝑩𝒎𝒂𝒓̂
−𝟏𝒂𝒒̂ . To reconcile constraints on the 

input magnitudes (59) and energy (i.e., total medication use) as well as the degree of 
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discrepancy between the original versus adjusted reference target (60), 𝒗(𝑛), 𝑡 ≤ 𝑛 ≤

𝑡 + 𝑁𝑐 is determined by minimizing the following cost function, where 𝑁𝑐 and 𝑁𝑝 denote 

the control and prediction horizons, respectively: 

𝐽(𝑛) = ∑ [𝜌1(𝑟1(𝑛) − 𝑟10(𝑛))
2
+ 𝜌2(𝑟2(𝑛) − 𝑟20(𝑛))

2
+ 𝜌3𝑢1

2(𝑛)
𝑡+𝑁𝑝

𝑛=𝑡

+ 𝜌4𝑢2
2(𝑛)] 

(63) 

subject to the linear inequality constraints (59) and (60), and the following nonlinear 

inequality constraints to ensure that 𝑟1 and 𝑟2 are adjusted in the opposite direction: 

𝛿𝑚𝑖𝑛 ≤
𝑣2(𝑛)

𝑣1(𝑛)
≤ 𝛿𝑚𝑎𝑥   →   {

𝑣1(𝑛)[𝑣2(𝑛) − 𝛿𝑚𝑖𝑛𝑣1(𝑛)] ≥ 0

𝑣1(𝑛)[𝑣2(𝑛) − 𝛿𝑚𝑎𝑥𝑣1(𝑛)] ≤ 0
,

𝑡 ≤ 𝑛 ≤ 𝑡 + 𝑁𝑐 

(64) 

where 𝛿𝑚𝑖𝑛 < 𝛿𝑚𝑎𝑥 < 0. 

 

At each sampling time step, the coordinated control problem is solved to yield 𝒗(𝑛), 𝑡 ≤

𝑛 ≤ 𝑡 + 𝑁𝑐  that minimizes (63) subject to the dynamics (62) with the dose-response 

model parameters 𝒂𝒒̂ and 𝒂𝒓̂ adapted in the previous sampling time step as well as the 

constraints (59), (60), and (64). Then, 𝒗(𝑡) is applied to the system to adjust the reference 

targets, which are tracked by the semi-adaptive controller while the subject’s dose-

response model parameters are adapted. This process is repeated at each sampling time 

step to guide the subject outputs to the (recursively adjusted) reference targets. 

 

To prevent the drift in 𝑟1 and 𝑟2, we employed a dead-zone scheme to the coordinated 

controller, so that the adjustment of the reference targets are made only when 𝑣1 and 𝑣2 

are sufficiently large: 



 

 75 

 

𝑟𝑖(𝑛 + 1) = {
𝑟𝑖(𝑛) + 𝑇𝑠𝛾𝑟𝑖

𝑣𝑖(𝑛), |𝑣1(𝑛)| > 𝜖𝑣1
 or |𝑣2(𝑛)| > 𝜖𝑣2

𝑟𝑖(𝑛),                                  otherwise                                      
 (65) 

which, together with the dead-zone scheme employed in the adaptation law (41), helps to 

avoid unnecessary drift in the reference targets. 

 

6.3.  In-Silico Implementation and Simulation 

To examine the performance of the coordinated semi-adaptive controller, we utilized the 

same settings in Chapter 4.3. 20 in-silico subjects which cannot achieve the initial targets 

are selected for simulation. 

 

The weights in the cost function (63) were selected based on the in-silico simulation 

result in an average in-silico subject, so that (1) the cost associated with the discrepancy 

between the original versus adjusted reference targets is 1,000 times larger than the cost 

associated with the total medication use; (2) the costs associated with the two reference 

targets are equal; and (3) the costs associated with the two medications are equal. 

 

In summary, the parameters associated with the coordinated semi-adaptive control were 

as follows:  𝑨𝒎 = [
0.8 0
0 0.8

] = −𝑩𝒎 , 𝜼 = [
5 0
0 5

], 𝚪𝜽 = 𝑰4×4 , 𝜖𝑒1
= 0.01, 𝜖𝑒2

= 0.01, 

𝚪𝒓 = [
60 0
0 60

] , 𝑁𝑐 = 2 , 𝑁𝑝 = 20 , 𝜌1 = 1000 , 𝜌2 = 825.5 , 𝜌3 = 1 , 𝜌4 = 40 , 𝑢1̌ =

0.8mg/kg/min, 𝑢2̌ = 0.07 mcg/kg/min, 𝜖𝑟1 = 0.3, 𝜖𝑟2 = 0.3, 𝛿𝑚𝑖𝑛 = −2, 𝛿𝑚𝑎𝑥 = −0.5, 

𝜖𝑣1
= 0.02, 𝜖𝑣2

= 0.02. 
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2 key aspects related to the performance of the coordinated semi-adaptive control were 

tested. First, we examined the performance of coordinated semi-adaptive control 

compared with the same semi-adaptive control without reference target adjustment. For 

this purpose, we conducted in-silico evaluation of coordinated versus non-coordinated 

semi-adaptive controllers using the 20 in-silico subjects with unachievable reference 

target. Second, we examined the detailed behavior of the coordinated controller, 

especially the way it reconciles the constraints on (1) the infusion rate limits and total 

medication use versus (2) the degree of discrepancy between the original versus adjusted 

reference targets, as the values of the weights in the cost function (63) vary. 

 

Fig. 19 presents a representative example of the evolution of adjusted reference targets 

and system outputs associated with the coordinated semi-adaptive control in an in-silico 

subject with unachievable reference targets. The result demonstrates that the initially 

specified unachievable reference targets are adjusted towards the optimal regime (shown 

in Fig. 18), and the semi-adaptive control guides the in-silico subject to these new 

achievable reference targets as time evolves.  In contrast, the system outputs converges to 

a point on the parallelogram in case the coordination control is not employed, meaning at 

least one input is saturated with large steady-state error(s).  This desired behavior was 

consistently observed in all in-silico subjects. 
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Figure 19: The evolution of adjusted reference targets and system outputs associated with 

the coordinated semi-adaptive control in a in-silico subject with unachievable reference 

targets.  (a) Time plots.  (b) Phase plot. 
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Overall, the coordinated controller could largely reduce the overall reference tracking 

errors associated with cardiac output (60%) and respiratory rate (96%) over the entire in-

silico simulation ( 0 ≤ 𝑡 ≤ 30  min) as well as steady-state error associated with 

respiratory rate (99%; in the absolute sense), compared with when the coordinated 

controller was not employed to adjust the reference targets (Fig. 20). In addition, the 

coordinated controller could also decrease propofol use while increasing remifentanil use, 

by adjusting the reference targets so that inter-medication synergy can be exploited more 

effectively (Fig. 16). The steady-state error associated with cardiac output was relatively 

large with the coordinated controller. This was due to the dead zone implemented for the 

parameter adaptation law in (41). In the absence of coordinated controller, the adaptation 

law was persistently enabled to drive cardiac output error to zero, because the tracking 

error associated with respiratory rate was large (since its reference target could not be 

reached) and the dead zone was never activated. On the other hand, the coordinated 

controller activated the dead zone by adjusting the reference targets, thereby allowing the 

tracking errors to become small. Noting that the dead zone for cardiac output in (41) was 

0.03 lpm and that the steady-state cardiac output error was consistently smaller than 0.03 

lpm, these errors were deemed appropriate. 

 

It is worthwhile to scrutinize the behavior of the system inputs and outputs pertinent to 

the particular in-silico simulation conducted in this section to glean more insights on the 

coordinated controller. From our in-silico simulation, a large decrease in the respiratory 

rate error and a large increase in the remifentanil use were consistently observed.  
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However, the changes associated with the cardiac output error and propofol were 

relatively small.  We speculate that these observations may be interpreted as follows.   

 

First, the dose-response model parameters we employed in the in-silico simulation dictate 

that cardiac output is primarily influenced by propofol while respiratory rate is influenced 

by both propofol and remifentanil. Second, the propofol infusion rate required to achieve 

the original cardiac output target (𝑟1(0)=2.0 lpm) in the steady state leads to steady-state 

respiratory rate lower than the original respiratory rate target (𝑟2(0)=15 bpm) on the 

average. Hence, the coordinated controller increases the reference target for cardiac 

output (as realized by a decrease in 𝑟1; Fig. 19) and decreases the reference target for 

respiratory rate (as realized by an increase in 𝑟2; Fig. 19) in order to decrease the required 

propofol infusion rate and increase the required remifentanil infusion rate while 

exploiting the synergy between the two. In this way, the coordinated controller fulfills the 

desired objectives of driving unachievable reference targets to achievable ones, and at the 

same time, minimizing the total medication use. It is noted that the proposed control 

approach exhibited consistent performance regardless of the location of the original 

reference targets in our in-silico simulation testing. 

 

For the dependence of coordinated semi-adaptive control on cost function weights, the 

coordinated controller exhibited intuitively relevant behaviors as the weights in the cost 

function (63) were varied on the average, as described below (Fig. 20). 
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Figure 20: Distribution of overall reference tracking and steady-state errors as well as 

total medication use associated with semi-adaptive control in the presence/absence of 

coordination control. 
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Figure 21: Dependence of the behavior of coordinated semi-adaptive control on cost 

function weights. The left and right axes apply to squares and circles, respectively. 
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First, when the penalty on the control energy terms is increased relative to the 

discrepancy between the original versus adjusted reference targets (by simultaneously 

altering 𝜌3  and 𝜌4 ; Fig. 21(a)), the coordinated controller decreases propofol and 

remifentanil uses. This leads to a decrease in 𝑟1 and 𝑟2 via an increase in the reference 

targets for cardiac output and respiratory rate (note that 𝑟1 and 𝑟2 are specified in terms of 

𝑞1 and 𝑞2). Then, noting that 𝑟1 < 𝑟1(0) and 𝑟2 > 𝑟2(0) under the nominal weights in our 

in-silico simulation testing (see “A” and “B” in Fig. 5), |𝑟1 − 𝑟1(0)| increases while 

|𝑟2 − 𝑟2(0)| decreases. 

 

Second, when the penalty on the discrepancy between the original versus adjusted cardiac 

output reference target is increased relative to other penalties (by altering 𝜌1; Fig. 21(b)), 

the coordinated controller decreases |𝑟1 − 𝑟1(0)| . To still drive the reference targets 

towards the optimal regime (Fig. 3) while limiting |𝑟1 − 𝑟1(0)|, it increases |𝑟2 − 𝑟2(0)|. 

Since 𝑟1 < 𝑟1(0) and 𝑟2 > 𝑟2(0) under the nominal weights in our in-silico simulation 

testing, this leads to a decrease in cardiac output and respiratory rate reference targets, 

and accordingly, an increase in propofol and remifentanil uses. The opposite behavior is 

observed when 𝜌2 is altered instead (not shown). 

 

Third, when the penalty on the propofol use is increased relative to the other penalties (by 

altering 𝜌3; Fig. 21(c)), the coordinated controller decreases propofol use while increases 

remifentanil use. This leads to a decrease in 𝑟1 , and since 𝑟1 < 𝑟1(0), an increase in 

|𝑟1 − 𝑟1(0)|.  In addition, a decrease propofol use, which is relatively large compared 

with the increase in remifentanil use, results in the corresponding decrease in 𝑟2  and 
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(since 𝑟2 > 𝑟2(0)) |𝑟2 − 𝑟2(0)|. The opposite behavior is observed when 𝜌4  is altered 

instead, though the extent is relatively small (not shown). 

 

The abovementioned intuitive behaviors of the proposed coordinated semi-adaptive 

control approach may be useful in tuning the weights in the cost function (63) to 

customize its performance when applied to other medication infusion problems. 
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Chapter 7: Pilot Animal Experiments and Further Improvements for 

the Controller Design 

To verify the proposed controller, the experiment of SISO controller in Chapter 3 was 

performed. However, the performance was not as good as the simulation results. After 

carefully examination of the experiment results, we observed that transport delay existed 

in the dose-response relationship, which was not considered in the controller design and 

led to the deterioration of controller performance. Therefore, a semi-adaptive controller 

which incorporates transport delay is developed in this chapter. 

 

In this chapter, the experiment results are first presented and discussed. Then a novel 

dynamic dose-response model for control design is presented. Moreover, parametric 

sensitivity analysis of the dynamic dose-response model is performed to assess the 

influence of transport delay on the model output in comparison with the other dose-

response model parameters. Then the indirect APPC design for medication infusion 

problems based on the Padé approximation of transport delay is developed. In the end, 

the results are presented and discussed. 

 

7.1.  Pilot Animal Experiment 

To examine the performance of the semi-adaptive controller, we first performed 

experiments on 5 pigs. Because estimation of controller parameters were very large for 

some pigs, we augmented parametric projection and dead zone in the controller to avoid 

this. Based on input-output data of 5 pigs, we performed system identification and 

created in-silico pigs of them. Then we simulated our proposed controllers on the 5 in-
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silico pigs with different controller gains. Based on the best controller gains from 

simulations, we performed the semi-adaptive control experiments in another 4 pigs. 

 

In the experiments, CO was derived from the aortic flow waveform measurement (14 

PAU and T402, Transonic Systems, Ithaca, NY) by first low-pass filtering the aortic flow 

waveform and then computing its average over 5-second window. Computed CO was 

then transmitted to a laptop equipped with the semi-adaptive controller with parametric 

projection and dead zone algorithms through an A/D converter (NI-USB6002, National 

Instruments, Austin, TX). The infusion rate computed by the controller was transmitted 

to a digital infusion pump (Fusion 100, Chemyx, Stafford, TX) via serial communication. 

Then, the pump delivered the commanded infusion rate to the pig. A sampling rate of 100 

Hz was used in all the computations, while the control command was updated every 5 

seconds. 

 

The semi-adaptive controller performed well in 3 pigs while it performed marginally in 1 

pig. Our retrospective analysis indicated that dynamic dose-response delay, which is not 

modeled explicitly in the controller design process, may play an important role in 

determining the performance of the controller in each pig. Indeed, the semi-adaptive 

controller showed good performance in pigs with small dose-response delay, but it 

suffers from limited performance in pigs with large dose-response delay (Fig. 22). The 

results illustrate that incorporating dynamic dose-response delay into controller design 

must be pursued. 
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Fig. 22: Experimental results. (a) 3 pigs with small dose-response delay. (b) 1 pig with 

large dose-response delay. 

 

7.2.  Control Design Model: Direct Dynamic Dose-Response Model 

To design the controller for medication infusion problems with non-negligible transport 

delay, a novel dynamic dose-response model is developed. The model consists of a low-

order lumped parameter latency model (66a) and a modified Hill equation model (66b): 

𝐼𝑒̇(𝑡) = −𝑘𝑒𝐼𝑒(𝑡) + 𝑘𝑒𝑢(𝑡 − 𝐿) ≜ 𝐹[𝐼𝑒(𝑡)] (66a) 

𝑦(𝑡) = 𝑦𝑜 (1 −
(
100
𝜎 − 1) 𝐼𝑒

𝛾(𝑡)

𝐼𝜎
𝛾

+ (
100
𝜎 − 1) 𝐼𝑒

𝛾(𝑡)
) = 𝐻[𝐼𝑒(𝑡)] (66b) 

where 𝑢(𝑡) is the intravenous medication infusion rate, 𝐼𝑒(𝑡) is the medication infusion 

rate at the site of action, 𝐿 is the transport delay between medication infusion and the 

onset of the intended clinical effect, 𝑘𝑒  is the rate constant associated with the 

distribution of medication from intravenous site to the site of action, 𝑦(𝑡) and 𝑦𝑜  are 

clinical effect and its nominal (i.e., in the absence of medication infusion) value, 𝜎 is the 
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target percentage depression of 𝑦(𝑡) from 𝑦𝑜 (meaning that target clinical effect 𝑟(𝑡) is 

specified by 𝑟(𝑡) =
100−𝜎

100
𝑦𝑜), 𝐼𝜎 is the infusion rate required to maintain 𝑦(𝑡) = 𝑟(𝑡) in 

the steady state, and 𝛾  is the cooperativity constant.  There are a few advantages 

associated with this dose-response model compared with conventional PKPD models.  

First, intended to primarily capture the direct relationship between dose and the resulting 

clinical effects, its dynamic component is much simpler than multi-compartmental PKPD 

models.  Second, it explicitly incorporates transport delay which can be exploited to 

represent PD and/or subject monitor delays.  Third and most importantly, it facilitates 

sensitivity-based semi-adaptive control design [55], in which model parameters exerting 

high sensitivity on the model’s behavior are adapted while those with low sensitivity are 

fixed at nominal values (see section 7.3 for details). 

 

7.3.  Parametric Sensitivity Analysis 

In this section, analytical and numerical parametric sensitivity analyses are performed to 

demonstrate that (1) the proposed dose-response model allows us to minimize the 

influence of 𝛾 with appropriate choice of 𝜎; and (2) the transport delay L needs to be 

adapted for control efficacy. Details follow. 

 

The proposed dose-response model (1) de-sensitizes the cooperativity constant γ in the 

steady state when 𝑦(𝑡) = 𝑟(𝑡), or equivalently, when 𝐼𝑒(𝑡) = 𝐼𝜎, making it possible to 

fix it at a nominal value in the control design process without compromising controller 

robustness against its uncertainty. To illustrate, regard (1a) and (1b) as the state and 
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output equations for the process dynamics.  Then, the following sensitivity functions can 

be derived: 

𝑆𝐼𝑒
̇ (𝑡) =

𝜕𝐹

𝜕𝐼𝑒(𝑡)
𝑆𝐼𝑒

(𝑡) + [
𝜕𝐹

𝜕𝑘𝑒

𝜕𝐹

𝜕𝛾
 

𝜕𝐹

𝜕𝐼𝜎

𝜕𝐹

𝜕𝐿
] 

= −𝑘𝑒𝑆𝐼𝑒
(𝑡) + [−𝐼𝑒(𝑡) + 𝑢(𝑡 − 𝐿) 0 0 −𝑘𝑒

𝜕𝑢(𝑡 − 𝐿)

𝜕(𝑡 − 𝐿)
] 

𝑆𝑦(𝑡) =
𝜕𝐻

𝜕𝐼𝑒(𝑡)
𝑆𝐼𝑒

(𝑡) + [
𝜕𝐻

𝜕𝑘𝑒

𝜕𝐻

𝜕𝛾

𝜕𝐻

𝜕𝐼𝜎

𝜕𝐻

𝜕𝐿
] 

= −𝑦𝑜

𝛾 (
100
𝜎 − 1) 𝐼𝜎

𝛾
𝐼𝑒
𝛾−1(𝑡)

(𝐼𝜎
𝛾

+ (
100
𝜎 − 1) 𝐼𝑒

𝛾(𝑡))

2 𝑆𝐼𝑒
(𝑡) + [

𝜕𝐻

𝜕𝑘𝑒

𝜕𝐻

𝜕𝛾

𝜕𝐻

𝜕𝐼𝜎

𝜕𝐻

𝜕𝐿
] 

(67) 

where 𝑆𝐼𝑒
(𝑡) ≜ [

𝜕𝐼𝑒(𝑡)

𝜕𝑘𝑒

𝜕𝐼𝑒(𝑡)

𝜕𝛾

𝜕𝐼𝑒(𝑡)

𝜕𝐼𝜎

𝜕𝐼𝑒(𝑡)

𝜕𝐿
] , 𝑆𝑦(𝑡) ≜ [

𝜕𝑦(𝑡)

𝜕𝑘𝑒

𝜕𝑦(𝑡)

𝜕𝛾

𝜕𝑦(𝑡)

𝜕𝐼𝜎

𝜕𝑦(𝑡)

𝜕𝐿
] , and  

[
∂H

∂ke

∂H

∂γ

∂H

∂Iσ

∂H

∂L
] = [0 yo

(
100

σ
−1)Iσ

γ
Ie
γ(t)(log(Iσ)−log(Ie(t)))

(Iσ
γ
+(

100

σ
−1)Ie

γ(t))
2 yo

γ(
100

σ
−1)Iσ

γ−1
Ie
γ(t)

(Iσ
γ
+(

100

σ
−1)Ie

γ(t))
2 0] . 

Then, the closed-form formula for 𝑆𝑦(𝑡) is given by: 

𝑆𝑦
𝑇(𝑡) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝑦𝑜

𝛾 (
100
𝜎 − 1) 𝐼𝜎

𝛾−1
𝐼𝑒
𝛾(𝑡)

(𝐼𝜎
𝛾
+ (

100
𝜎 − 1) 𝐼𝑒

𝛾(𝑡))

2 ∫ 𝑒−𝑘𝑒𝜏(−𝐼𝑒(𝜏) + 𝑢(𝜏 − 𝐿))𝑑𝜏
𝑡

0

𝑦𝑜

(
100
𝜎 − 1) 𝐼𝜎

𝛾
𝐼𝑒
𝛾(𝑡)(𝑙𝑜𝑔(𝐼𝜎) − 𝑙𝑜𝑔(𝐼𝑒(𝑡)))

(𝐼𝜎
𝛾
+ (

100
𝜎 − 1) 𝐼𝑒

𝛾(𝑡))

2

𝑦𝑜

𝛾 (
100
𝜎 − 1) 𝐼𝜎

𝛾
𝐼𝑒
𝛾−1(𝑡)

(𝐼𝜎
𝛾
+ (

100
𝜎 − 1) 𝐼𝑒

𝛾(𝑡))

2

−𝑦𝑜

𝛾 (
100
𝜎 − 1) 𝐼𝜎

𝛾−1
𝐼𝑒
𝛾(𝑡)

(𝐼𝜎
𝛾

+ (
100
𝜎 − 1) 𝐼𝑒

𝛾(𝑡))

2 ∫ 𝑒−𝑘𝑒𝜏 (−𝑘𝑒

𝜕𝑢(𝜏 − 𝐿)

𝜕(𝜏 − 𝐿)
)𝑑𝜏

𝑡

0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (68) 
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Hence, 
𝜕𝑦(𝑡)

𝜕𝛾
, which is the second element of 𝑆𝑦(𝑡) in (68), becomes zero when 𝐼𝑒(𝑡) =

𝐼𝜎.  The implication of the zero sensitivity of 𝑦(𝑡) on 𝛾 for 𝐼𝑒(𝑡) = 𝐼𝜎 is that the influence 

of 𝛾  on the process behavior can be minimized by setting σ  according to the target 

clinical effect, that is, equal to the percentage difference between 𝑦𝑜 and 𝑟(𝑡), i.e., 𝜎 =

𝑦𝑜−𝑟(𝑡)

𝑦𝑜
× 100. Indeed, with this choice of 𝜎, it can be readily shown that the process 

behavior becomes insensitive to 𝛾 under steady-state target tracking condition (𝑦(𝑡) =

𝑟(𝑡)). 

 

To confirm the above analytical sensitivity analysis as well as to assess the significance 

of transport delay 𝐿  relative to the other parameters in the dose-response model, a 

numerical parametric perturbation analysis was performed using the regulation of a 

cardiovascular variable cardiac output (CO) with a sedative propofol as a case scenario.  

In this analysis, a fine-tuned population-based PID controller was used to regulate CO via 

propofol infusion in 30 randomly created in-silico subjects for nominal closed-loop 

response. Then, the dose-response model parameters (including 𝑘𝑒 , 𝐼𝜎 , 𝛾, and 𝐿) were 

perturbed, one at a time, by ±25% and ±50% (thus, 4 perturbations per each parameter), 

and the perturbed in-silico subjects were simulated with the same PID controller for 

perturbed closed-loop responses. Then, the difference between nominal and perturbed 

responses were quantified in terms of root-mean-squared errors (RMSEs) between the 

two up to the settling time of the desired response. Finally, a total of 120 RMSEs 

associated with each parameter was aggregated to compute mean and standard deviation 

(SD).  We used the following ranges of the dose-response model parameters obtained 

from our prior work [56] and our unpublished in-house experimental data to create 30 in- 
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Fig. 23: Root-mean-squared errors (RMSEs) between nominal versus perturbed clinical 

effect responses to perturbation of dose-response model parameters in 30 in-silico 

subjects in a case study of regulating a cardiovascular variable (cardiac output (CO)) with 

a sedative (propofol). 
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silico subjects: 0.02 ≤ 𝑘𝑒 ≤ 0.10  min-1, 0.2 ≤ 𝐼𝑒 ≤ 0.6  mg/kg/min, 1 ≤ 𝛾 ≤ 5 , and 

50 ≤ 𝐿 ≤ 100  s.  In all in-silico simulations, 𝑦0  was set at 3.0 lpm. A multitude of 

desired responses, in terms of both magnitude and rate, was employed in the analysis: 

2.1, 2.4, 2.7 lpm with the time constants of 5, 2.5, and 1.7 min. For each of these 9 

desired responses, the aggregated RMSEs associated with the dose-response model 

parameters were compared to assess if the perturbation in the transport delay makes a 

large impact on the closed-loop control performance relative to the other dose-response 

model parameters, in order to determine if the adaptation of transport delay is necessary. 

 

Results from the parametric sensitivity analysis indicated that the impact of transport 

delay on the closed-loop clinical effect response (as measured by the RMSE between 

nominal and perturbed responses up to the settling time of the desired response) was 

larger than cooperativity constant but not as large as 𝐼𝜎 and 𝑘𝑒. Figure 23 presents the 

RMSEs between nominal and perturbed responses associated with each model parameter, 

which offers several key observations.  First, all in all 𝐼𝜎 exerted the largest impact on the 

model’s clinical effect response, followed by 𝑘𝑒 , and then 𝐿 , and finally 𝛾 . Second, 

although 𝐿 was not the most crucial parameter in (1) in terms of average sensitivity, it 

exhibited a very large variability in sensitivity relative to its average counterpart (i.e., 

large coefficient of variation) in comparison with the remaining parameters in (1).  This 

is attributed to a large deviation of the closed-loop controlled clinical effect response 

from its nominal counterpart when L assumes very large values, since a large L reduces 

the stability margin associated with the population-based PID control (which does not 

accommodate the increase in 𝐿 ). Hence, it deemed reasonable to investigate the 
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advantage of its adaptation by comparing an adaptive control equipped with the 

capability of adapting 𝐿  versus an adaptive control with 𝐿  fixed at a nominal value.  

Third, although the dose-response model (66) by construction exhibits zero sensitivity to 

𝛾 when 𝐼𝑒(𝑡) = 𝐼𝜎 if 𝜎 is specified in accordance with the target clinical effect (i.e., if 𝜎 

is set equal to the percentage difference between the baseline and target clinical 

responses), its sensitivity to γ is not zero during transients. Hence, the finding that 𝛾 

exerts the smallest influence on the dose-response model’s clinical response even during 

transients suggests that all in all the model’s sensitivity to 𝛾 is the smallest and that 𝛾 

may indeed be fixed at a nominal value, thereby supporting the validity of the 

transformed dose-response (6) under the assumption of a predetermined 𝛾. 

 

7.4.  Sensitivity-Based Semi-Adaptive Pole Placement Control Design 

Our sensitivity-based semi-APPC is built upon (1) Padé approximation of transport delay, 

(2) linear model parameterization, (3) recursive model parameter adaptation, and (4) its 

integration into pole placement control.  Figure 24 shows the scheme of the sensitivity-

based semi-APPC.  Details follow. 

 

For the sake of adaptive control design, the transport delay in the dose-response model 

(66) was simplified into the Padé approximation.  It is obvious that the higher the order of 

approximation, the more accurate the approximation is.  But, a high-order approximation 

complicates control design by increasing the order of process dynamics.  Besides, a 

relatively low-order approximation may still be appropriate for adaptive control, because 
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the adaptation of transport delay parameter may mitigate the approximation error and still 

produce correct phase delay [57]. 

 

 

 

Fig. 24: Sensitivity-based semi-adaptive pole placement control (semi-APPC) for closed-

loop control of medication infusion.  The semi-APPC is built upon (1) Padé 

approximation of transport delay, (2) novel linear model parameterization, (3) recursive 

model parameter adaptation, and (4) its integration into pole placement control. 

 

To determine the Padé approximation relevant to the problem at hand, 6 candidate 

approximations in (69) were considered: 

M1: 𝐼𝑒(𝑠) =
𝑘𝑒

𝑠 + 𝑘𝑒
𝑢(𝑠) 

M2: 𝐼𝑒(𝑠) =
𝑘𝑒

𝑠 + 𝑘𝑒

1

1 + 𝑠𝐿
𝑢(𝑠) 

M3: 𝐼𝑒(𝑠) =
𝑘𝑒

𝑠 + 𝑘𝑒

2 − 𝑠𝐿

2 + 𝑠𝐿
𝑢(𝑠) 

M4: 𝐼𝑒(𝑠) =
𝑘𝑒

𝑠 + 𝑘𝑒

6 − 2𝑠𝐿

6 + 4𝑠𝐿 + (𝑠𝐿)2
𝑢(𝑠) 

M5: 𝐼𝑒(𝑠) =
𝑘𝑒

𝑠 + 𝑘𝑒

12 − 6𝑠𝐿 + (𝑠𝐿)2

12 + 6𝑠𝐿 + (𝑠𝐿)2
𝑢(𝑠) 

(69) 
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M6: 𝐼𝑒(𝑠) =
𝑘𝑒

𝑠 + 𝑘𝑒

60 − 24𝑠𝐿 + 3(𝑠𝐿)2

60 + 36𝑠𝐿 + 9(𝑠𝐿)2 + (𝑠𝐿)3
𝑢(𝑠) 

 

Then, the dose-response model (66) with these candidate approximations equipped with 

nominal parameter values (associated with 30 in-silico subjects) used in the parametric 

sensitivity analysis in Chapter 7.3 was in-silico simulated with an escalated propofol dose 

with 5 infusion rate levels designed to elicit a wide range of CO response.  The CO 

responses associated with each of the 6 candidate approximations were then compared 

with the response of the original dose-response model without Padé approximation.  

Specifically, RMSEs between the responses associated with the original and all the Padé-

approximated models were computed, and the optimal order of the Padé approximation 

for the problem was determined based on the trend of the RMSE with respect to the 

order. 

 

Table 6 shows the RMSE between the responses associated with the original (i.e., (66)) 

and all the Padé-approximated (i.e., (66) with the M1~M6) dose-response models.  

Clearly, M1 (which does not account for transport delay) suffers from the largest error, 

whereas the models incorporating the approximation of transport delay can largely reduce 

the error.  The amount of reduction in error becomes trivial beyond M3.  Hence, we used 

M3 for semi-APPC design in this study. 
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Table 6: Root-mean-squared errors (RMSEs) between the responses associated with the 

original and all the Padé-approximated dose-response models (M1~M6). 

 M1 M2 M3 M4 M5 M6 

RMSE [lpm] 

(mean (SD)) 

0.093 

(0.039) 

0.009 

(0.004) 

0.004 

(0.002) 

0.002 

(0.001) 

0.002 

(0.001) 

0.001 

(0.001) 

 

7.5.  Dose-Response Model Parametrization 

For the sake of control design, the dose-response model (66) was parameterized as 

follows.  First, by fixing 𝛾 to a nominal value 𝛾̅, (66b) can be written for 𝐼𝑒(𝑡) as follows: 

𝐼𝑒(𝑡) = 𝐼𝜎 √
𝑦0 − 𝑦(𝑡)

(
100
𝜎 − 1) 𝑦(𝑡)

𝛾̅

≜ 𝐼𝜎𝑞(𝑡) (70) 

where 𝑞(𝑡) = √
𝑦0−𝑦(𝑡)

(
100

𝜎
−1)𝑦(𝑡)

𝛾̅

.  Then, (66a) can be written in terms of 𝑞(𝑡) as follows: 

𝑞̇(𝑡) =
1

𝐼𝜎

𝑑𝐼𝑒(𝑡)

𝑑𝑡
= −

𝑘𝑒

𝐼𝜎
𝑞(𝑡) +

𝑘𝑒

𝐼𝜎
𝑢(𝑡 − 𝐿)   →   𝑞(𝑠) =

1

𝐼𝜎

𝑘𝑒

(𝑠 + 𝑘𝑒)
𝑒−𝐿𝑠𝑢(𝑠) (71) 

 

Using the Padé approximation M3 in (69), 𝑞(𝑠) in (71) can be written as follows: 

𝑞(𝑠) =
𝑍𝑝(𝑠)

𝑅𝑝(𝑠)
𝑢(𝑠) = −

1

𝐼𝜎

𝑘𝑒 (𝑠 −
2
𝐿)

(𝑠 + 𝑘𝑒) (𝑠 +
2
𝐿)

𝑢(𝑠) (72) 

For a given the desired clinical effect 𝑟(𝑠) , the reference model was specified by 

𝑞𝑚(𝑠) =
𝑎𝑚

𝑠+𝑎𝑚
𝑟(𝑠) with 𝑎𝑚 > 0.  Note that 𝑠(𝑠 + 𝑎𝑚)𝑞𝑚 = 0 if 𝑟(𝑠) is constant. 
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7.6.  Semi-Adaptive Pole Placement Control 

We aim to design an adaptive controller for (72).  Since (72) is non-minimum phase, the 

application of direct adaptive control techniques (e.g., direct model reference adaptive 

control) is not trivial [58].  Therefore, we pursued indirect APPC due to its ability to 

handle non-minimum phase plants [58].  Details follow. 

 

The adaptive law for on-line parameter estimation was derived from the standard 

recursive gradient algorithm [58]. The input-output model (72) can be re-written as 

𝑅𝑝(𝑠)𝑞(𝑠) = 𝑍𝑝(𝑠)𝑢(𝑠), or equivalently: 

[𝑠2 + (𝑘𝑒 +
2

𝐿
) 𝑠 +

2𝑘𝑒

𝐿
] 𝑞(𝑠) = (−

𝑘𝑒

𝐼𝜎
𝑠 +

2𝑘𝑒

𝐼𝜎𝐿
) 𝑢(𝑠) (73) 

 

Rearranging into linear parametric form: 

𝑠2𝑞(𝑠) = −(𝑘𝑒 +
2

𝐿
) 𝑠𝑞(𝑠) −

2𝑘𝑒

𝐿
𝑞(𝑠) −

𝑘𝑒

𝐼𝜎
𝑠𝑢(𝑠) +

2𝑘𝑒

𝐼𝜎𝐿
𝑢(𝑠) 

= [−
𝑘𝑒

𝐼𝜎

2𝑘𝑒

𝐼𝜎𝐿
(𝑘𝑒 +

2

𝐿
)

2𝑘𝑒

𝐿
]

[
 
 
 

𝑠𝑢(𝑠)

𝑢(𝑠)

−𝑠𝑞(𝑠)

−𝑞(𝑠) ]
 
 
 
 

(74) 

 

Multiplying a stable low-pass filter 
1

(𝑠+𝜆0)2
 with 𝜆0 > 0  to avoid differentiation and 

defining the output as 𝑧(𝑠) =
𝑠2

(𝑠+𝜆0)2
𝑞(𝑠) leads to the following linear parametric model: 

𝑧(𝑠) =
𝑠2

(𝑠 + 𝜆0)2
𝑞(𝑠) = 𝜃𝑇𝜙(𝑠) (75) 
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= [−
𝑘𝑒

𝐼𝜎

2𝑘𝑒

𝐼𝜎𝐿
(𝑘𝑒 +

2

𝐿
)

2𝑘𝑒

𝐿
]

[
 
 
 
 
 
 
 
 

𝑠

(𝑠 + 𝜆0)2
𝑢(𝑠)

1

(𝑠 + 𝜆0)2
𝑢(𝑠)

−
𝑠

(𝑠 + 𝜆0)2
𝑞(𝑠)

−
1

(𝑠 + 𝜆0)2
𝑞(𝑠)

]
 
 
 
 
 
 
 
 

 

where 𝜃 ≜ [𝜃1 𝜃2 𝜃3 𝜃4]
𝑇 = [−

𝑘𝑒

𝐼𝜎

2𝑘𝑒

𝐼𝜎𝐿
(𝑘𝑒 +

2

𝐿
)

2𝑘𝑒

𝐿
]
𝑇

. Then, the following 

adaptive law can be derived from the recursive gradient algorithm [58]: 

𝜃̇(𝑡) = 𝛤𝜙(𝑡)𝜖(𝑡) = 𝛤𝜙(𝑡)
𝑧(𝑡) − 𝜃𝑇(𝑡)𝜙(𝑡)

1 + 𝜙𝑇(𝑡)𝜙(𝑡)
 (76) 

 

To robustify the adaptive law by preventing the drift of the parameter estimates when 

𝜖(𝑡) ≅ 0, (76) was augmented by the following dead zone scheme: 

𝜃̇(𝑡) = {
𝛤𝜙(𝑡)𝜖(𝑡), |𝜖(𝑡)| > 𝜖0     

0,                     |𝜖(𝑡)| ≤ 𝜖0
 (77) 

 

Here, we derive standard pole placement control law for the dose-response model (72) 

incorporating the Padé approximation, and implement the APPC by combining the pole 

placement control law thus derived with the adaptive law (76)-(77) by leveraging the 

certainty equivalence principle. Let 𝑑𝑅𝑝
 and 𝑑𝑄𝑚

 the degrees of 𝑅𝑝(𝑠) (𝑑𝑅𝑝
= 2) and 

𝑄𝑚(𝑠) (𝑑𝑄𝑚
= 2), respectively. The standard pole placement control law is given by 

[58]: 

𝑄𝑚(𝑠)𝐷(𝑠)𝑢(𝑠) = −𝑃(𝑠)[𝑞(𝑠) − 𝑞𝑚(𝑠)] = −𝑃(𝑠)𝑒(𝑠) (78) 

where 𝑄𝑚(𝑠) = 𝑠(𝑠 + 𝑎𝑚) is the internal model associated with 𝑞𝑚(𝑠), 𝐷(𝑠) is a monic 

polynomial of degree 𝑑𝑅𝑝
− 1 , and 𝑃(𝑠)  is a polynomial of degree 𝑑𝑅𝑝

+ 𝑑𝑄𝑚
− 1 .  
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Hence, 𝐷(𝑠) = 𝑠 + 𝑙0 and 𝑃(𝑠) = 𝑝3𝑠
3 + 𝑝2𝑠

2 + 𝑝1𝑠 + 𝑝0, where 𝑙0, 𝑝3, 𝑝2, 𝑝1, and 𝑝0 

are unknown coefficients to be determined via pole placement. Substituting 𝑢(𝑠) in (72) 

by (78) yields the following closed-loop transfer function between 𝑞(𝑠) and 𝑞𝑚(𝑠): 

𝑞(𝑠) =
𝑍𝑝(𝑠)𝑃(𝑠)

𝐷(𝑠)𝑄𝑚(𝑠)𝑅𝑝(𝑠) + 𝑃(𝑠)𝑍𝑝(𝑠)
𝑞𝑚(𝑠) (79) 

 

Hence, the characteristic equation 𝐷(𝑠)𝑄𝑚(𝑠)𝑅𝑝(𝑠) + 𝑃(𝑠)𝑍𝑝(𝑠)  is a 5th-order 

polynomial.  The objective of pole placement control design is to select 𝐷(𝑠) and 𝑃(𝑠) so 

as to design the characteristic equation: 

𝐷(𝑠)𝑄𝑚(𝑠)𝑅𝑝(𝑠) + 𝑃(𝑠)𝑍𝑝(𝑠) = 𝐴∗(𝑠) (80) 

where 𝐴∗(𝑠) is a desired 5th-order polynomial.  Denoting 𝐴∗(𝑠) = 𝑠5 + ∑ 𝛼𝑖
∗𝑠𝑖4

𝑖=0 , the 

solutions 𝐷(𝑠)  and 𝑃(𝑠)  to (70) can be found by solving the following algebraic 

equation: 

𝑆𝑄𝑚𝑅𝑝,𝑍𝑝

𝑇

[
 
 
 
 
𝑙0
𝑝3

𝑝2

𝑝1

𝑝0]
 
 
 
 

=

[
 
 
 
 

𝛼4
∗ − (𝜃3 + 𝑎𝑚)

𝛼3
∗ − (𝜃4 + 𝑎𝑚𝜃3)

𝛼2
∗ − 𝜃4𝑎𝑚

𝛼1
∗

𝛼0
∗ ]

 
 
 
 

 (81) 

where 𝑆𝑄𝑚𝑅𝑝,𝑍𝑝
 is the Sylvester matrix associated with 𝑄𝑚(𝑠)𝑅𝑝(𝑠) = 𝑠4 +

(𝜃3 + 𝑎𝑚)𝑠3 + (𝜃4 + 𝑎𝑚𝜃3)𝑠
2 + 𝜃4𝑎𝑚𝑠  and 𝑍𝑝(𝑠) = 𝜃1𝑠 + 𝜃2  given by: 

𝑆𝑄𝑚𝑅𝑝,𝑍𝑝
=

[
 
 
 
 
1 (𝜃3 + 𝑎𝑚) (𝜃4 + 𝑎𝑚𝜃3) 𝜃4𝑎𝑚 0
𝜃1 𝜃2 0 0 0
0 𝜃1 𝜃2 0 0
0 0 𝜃1 𝜃2 0
0 0 0 𝜃1 𝜃2]

 
 
 
 

 (82) 
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Since 𝑄𝑚(𝑠) (especially the value of 𝑎𝑚) can be chosen so that 𝑄𝑚(𝑠)𝑅𝑝(𝑠) and 𝑍𝑝(𝑠) 

are coprime (as long as 𝐿 > 0), the Sylvester matrix (72) has full rank.  Therefore, the 

unknown polynomial coefficients of 𝐷(𝑠) and 𝑃(𝑠) in (71) can be determined by: 

[
 
 
 
 
𝑙0
𝑝3

𝑝2

𝑝1

𝑝0]
 
 
 
 

= (𝑆𝑄𝑚𝑅𝑝,𝑍𝑝

𝑇 )
−1

[
 
 
 
 

𝛼4
∗ − (𝜃3 + 𝑎𝑚)

𝛼3
∗ − (𝜃4 + 𝑎𝑚𝜃3)

𝛼2
∗ − 𝜃4𝑎𝑚

𝛼1
∗

𝛼0
∗ ]

 
 
 
 

 (83) 

 

Hence, 𝐷(𝑠) and 𝑃(𝑠) to yield a desired closed-loop characteristic polynomial 𝐴∗(𝑠) can 

be determined if the dose-response model parameters 𝜃𝑖 , 𝑖 = 1,2,3,4  are known. In 

APPC, these parameters are provided by the adaptive law (76)-(77).  In sum, APPC is 

realized by the pole placement control law (78) with 𝐷(𝑠) and 𝑃(𝑠) determined by (83) 

with the aid of the adaptive law (76)-(77).  The stability of the resulting APPC can be 

established using available procedures [58]. 

 

One last consideration is concerned with the stability of control law. Specifically, 𝑢(𝑠) =

−
𝑃(𝑠)𝑒(𝑠)

𝑄𝑚(𝑠)𝐷(𝑠)
 and 𝑄𝑚(𝑠)𝐷(𝑠)  is not guaranteed to be Hurwitz. Noting that 

𝑄𝑚(𝑠)𝐷(𝑠)𝑢(𝑠) + 𝑃(𝑠)𝑒(𝑠) = 0  from (78), an alternative realization of 𝑢(𝑠)  can be 

obtained as follows: 

𝑢(𝑠) = 𝑢(𝑠) −
1

𝛬(𝑠)
[𝑄𝑚(𝑠)𝐷(𝑠)𝑢(𝑠) + 𝑃(𝑠)𝑒(𝑠)] 

=
1

𝛬(𝑠)
[𝛬(𝑠) − 𝑄𝑚(𝑠)𝐷(𝑠)]𝑢(𝑠) −

𝑃(𝑠)

𝛬(𝑠)
𝑒(𝑠) 

(84) 

where 𝛬(𝑠) is a monic Hurwitz polynomial of degree 3 for proper filtering of 𝑢(𝑠) and 

𝑒(𝑠). 
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7.7.  In-Silico Implementation and Simulation 

The controller was in-silico evaluated using a case study of regulating a cardiovascular 

variable (CO) with a sedative (propofol), under a wide range of transport delay and 

pharmacological profiles as well as desired responses. 

 

For the sake of in-silico evaluation, we used the 30 randomly created in-silico subjects in 

Chapter 7.3. In all in-silico subjects, the baseline CO (y0) was set at 3.0 lpm, while a 

multitude of desired responses, in terms of both magnitude and rate, was employed: 2.1, 

2.4, 2.7 lpm with the time constants of 5, 2.5, and 1.7 min. The parameters associated 

with the indirect semi-APPC were chosen empirically as follows: 𝛤 = 𝐼4×4 , 𝐴∗(𝑠) =

(𝑠 + 𝜂)5 with 𝜂 > 0, 𝛬(𝑠) = (𝑠 + 𝜆)3 with 𝜆 = 𝜆0, and 𝜖0 = 0.02. Since the goal of this 

case study was to examine the efficacy of APPC for medication infusion problems with 

transport delay, these parameters were not rigorously optimized.  The values of 𝜆 (and 

thus 𝜆0 as well) and 𝜂 were likewise tuned for each desired response. The semi-APPC 

was then implemented in the discrete-time domain using the zero-order hold method, in 

which a sampling interval of 5 sec was used for control computation. To ensure subject 

safety against over-dosing, a target-dependent (i.e., 𝜎-dependent) upper bound of infusion 

rate was augmented to the control law (0.8 mg/kg/min for 2.7 lpm target, 1.2 mg/kg/min 

for 2.4 lpm target, and 1.6 mg/kg/min for 2.1 lpm target). In this way, a total of 270 in-

silico simulations was performed and analyzed for semi-APPC. 

 

To investigate the significance of on-line transport delay adaptation, the semi-APPC was 

compared with controllers without explicit account for transport delay.  First, semi-APPC 
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with transport delay L fixed at nominal (i.e., 75 sec) and worst-case (i.e., 100 sec) values 

were simulated in the same 30 in-silico subjects.  Second, the population-based PID 

controller used in Chapter 7.3 was also simulated in the same 30 in-silico subjects. Then, 

the performance of these controllers was quantitatively compared for transient and 

steady-state behaviors. 

 

7.8.  Results and Discussion 

The objective of this chapter was to investigate adaptive control design for closed-loop 

medication infusion problems with on-line adaptation of transport delay originating from 

PD and subject monitors. We used the Padé approximation and indirect APPC techniques 

to streamline control design. The results provided below suggest that adaptation of 

transport delay may benefit in minimizing the variability in closed-loop response against 

a wide range of dose-response variability. Details follow. 

 

Comparing semi-APPC, semi-APPC with nominal 𝐿, semi-APPC with worst-case 𝐿, and 

population-based PID control, semi-APPC outperformed all the other controllers. Figure 

25 presents RMSE, median absolute percentage error (MDAPE) [59], and wobble [59] 

metrics computed for all four controllers associated with 5 min time constant (i.e., am =

0.2 s-1; results for other time constants (am = 0.4 s-1 and am = 0.6 s-1) exhibited similar 

trends). Figure 26 shows representative examples of the responses of 30 in-silico subjects 

associated with all four controllers under target CO of 2.7 lpm with 5 min time constant. 

Figure 27 shows the variability of steady-state set point tracking errors (as measured by 

the standard deviation of the set point tracking errors between settling time and settling 
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time + 10 min of the desired response) associated with all four controllers. The semi-

APPC was in particular superior to all the other controllers in terms of RMSE (by 16%, 

12%, and 35% against semi-APPC with nominal L, semi-APPC with worst-case L, and 

population-based PID control), MDAPE (by 17%, 18%, and 42% against semi-APPC 

with nominal L, semi-APPC with worst-case L, and population-based PID control), and 

wobble (by 16%, 16%, and 30% against semi-APPC with nominal L, semi-APPC with 

worst-case L, and population-based PID control).  The semi-APPC, semi-APPC with 

nominal L, and semi-APPC with worst-case L exhibited comparable median percentage 

error (MDPE) and divergence performance, which was superior to population-based PID 

control (not shown).  The semi-APPC also outperformed all the other controllers in terms 

of the consistency in steady-state response: semi-APPC consistently exhibited smaller 

steady-state set point tracking error variability than all the other controllers (by 28%, 

30%, and 48% against semi-APPC with nominal L, semi-APPC with worst-case L, and 

population-based PID control) under all desired clinical effect response.  The population-

based PID control suffered from the largest average variability and variability thereof, 

indicating that neglecting transport delay in closed-loop medication infusion may yield 

drastic degradation in performance in case dose-response delay is not negligibly small.  

Although semi-APPC with nominal and worst-case L were superior to population-based 

PID control, they fell short of semi-APPC in both transient and steady-state response 

characteristics, implying that the use of a population-based transport delay is not ideal in 

closed-loop medication infusion control. 
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Fig. 25: Root-mean-squared error (RMSE), median absolute percentage error (MDAPE), 

and wobble metrics computed for semi-APPC, semi-APPC with nominal transport delay, 

semi-APPC with worst-case transport delay, and population-based PID control associated 

with 5 min time constant.  For each target cardiac output (CO), each bar denotes from the 

left semi-APPC, semi-APPC with nominal transport delay, semi-APPC with worst-case 

transport delay, and population-based PID control. 
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Fig. 26: Representative examples of the responses of 30 in-silico subjects to target 

cardiac output (CO) of 2.7 lpm with 5 min time constant associated with semi-APPC, 

semi-APPC with nominal transport delay, semi-APPC with worst-case transport delay, 

and population-based PID control. 

 

All in all, the results suggest that (1) transport delay may need to be accounted for in 

medication infusion control problems, and that (2) transport delay may even need to be 

adapted to secure robustness in control performance despite uncertainty and variability in 

dose-response relationship. 
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Fig. 27: Steady-state error variability of 30 in-silico subjects associated with semi-APPC, 

semi-APPC with nominal transport delay, semi-APPC with worst-case transport delay, 

and population-based PID control. 
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Chapter 8: Conclusions and Future Work 

In the dissertation, model and control of medication infusion are investigated. The unique 

contributions of our work are given as follows: 

 

(1) The classical medication infusion model is very complex which results in the 

difficulty of controller design. We proposed a control-oriented model for multiple 

medication infusion. After comparison of classical model and our proposed model, our 

model showed an improved fitting error and AIC which indicates it has better predictive 

capability and model parsimony. 

 

(2) Due to complexity of traditional medication infusion model, most of the existing work 

of MIMO medication infusion controller are not model-based. Even if for model-based 

controllers, some of them made some unrealistic assumptions such as all parameters of 

model are known. Based on our proposed model, we designed a semi-adaptive controller 

for multiple infusion of interacting medications. To the best of our knowledge, our 

proposed controller is the first work based on rigorous Lyapunov stability proof. The 

validity and performance of the approach was also examined in simulations. 

 

(3) Based on our proposed controller, we further improved its performance by combining 

switching controller. It was shown that the switching control could overall provide added 

benefit to improve command tracking performance via more accurate estimation of 

subject’s dose-response relationship. 
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(4) Furthermore, targets of multiple medication infusion should be coordinated. However, 

it was not considered in other controller design. Our work is first one which designed an 

coordination algorithm to optimize the targets. We also demonstrated that the proposed 

approach could achieve consistent reference target tracking in the presence of large inter-

individual variability in dose-response relationships, and adjust unachievable reference 

targets to achievable ones while minimizing the medication use by exploiting the inter-

medication synergy. 

 

(5) In the end, to verify our proposed controller, pilot pig experiments were performed 

and the results were examined. Because transport delay were observed in the model, so 

we investigated a semi-adaptive indirect pole placement control for infusion of 

medications with large transport delay in dose-response dynamics. The benefits of it were 

shown from comparison with PID controller. 

 

The following work need to be conducted in the future: 

(1) Although we have designed the switching controller, coordination algorithm and 

controller which incorporates transport delay, we need to combine them together. The 

combined controller can deal with the existing chanllenges we found at the same time. 

 

(2) Our proposed controller was based on a two-input two-output model. This is not 

always the case in real clinical scenarios. Therefore, we need expand our proposed 

controller to enable infusion of more than two medications and control of more than two 

endpoints. 
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(3) Because most of my work was focused on controller design and simulations, we only 

implemented our SISO controller in some preliminary experiments. In the future, we 

need to experimentally evaluate our MIMO controller more rigorously. 
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