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Temporal analysis of Acinetobacter calcoaceticus-baumannii 
complex isolates in a large, US healthcare system demonstrated 
decreased occurrence of antibiotic-susceptible isolates between 
November and May, while resistant isolate occurrence was tem-
porally stable. This resulted in 50%–100% seasonal increases of 
resistance rates. This work offers insight into the phenomenon 
of Gram-negative pathogen seasonality.

Key words.  Acinetobacter baumannii; multidrug resistance; 
seasonality.

INTRODUCTION

Acinetobacter calcoaceticus-baumannii complex (Abc) is a major 
global health threat due to its ability to survive in multiple 
environments and its association with high levels of antibiotic 
resistance. Though most notorious for their role in hospital-
acquired infections, multiple studies report that 25%–65% of 
Abc clinical isolates are obtained in ambulatory settings or within 
48–72 hours of hospital admission [1–3]. Further understanding 
Abc epidemiology is essential for developing interventions to curb 
the growing impact of multidrug-resistant (MDR) Abc infections.

Many Gram-negative pathogens, including Abc, increase 
in incidence during warmer, summer months, a phenomenon 
commonly referred as seasonality [4]. Accurate characteri-
zation of these seasonal trends is important for effective sur-
veillance and infection control efforts. However, reports from 
single center studies conflict on Abc seasonality. For example, a 
9-year Korean study of 3520 unique Abc isolates demonstrated 

that community-acquired isolates (n = 922), but not hospital-
acquired isolates (n = 2598), had higher rates of incidence during 
warmer months [2]. An 11-year Pennsylvania study of 1476 
isolates reported that non-MDR isolates (n  =  692) exhibited 
seasonality, but contemporaneous MDR Abc isolates (n = 784) 
lacked seasonality [5]. In contrast, a 7-year study performed in 
Baltimore reported that all Abc isolates (n  =  1444) exhibited 
seasonality independent of duration of hospital admission and 
antibiotic resistance [1]. We performed a retrospective anal-
ysis of Abc clinical isolates identified in and around St. Louis, 
Missouri, over a decade. Our aim was to analyze this cohort, of 
which over 45% of isolates were MDR, to investigate Abc sea-
sonality in different epidemiological subgroups.

METHODS

Our retrospective analysis will be described elsewhere (unpub-
lished data). Briefly, we compiled clinical and microbiology data 
on 1948 Abc isolation events from January 1, 2007, through 
December 31, 2016, in 11 BJC HealthCare System (BJC) hospitals 
located in and around Saint Louis. Only the first isolation event 
(index culture) per patient age >18  years was included. Similar 
to prior studies [1, 2], isolates were labelled as hospital-acquired 
(HA) if the index culture was obtained ≥48 hours after hospital 
admission, and all other isolates were labelled as nonhospital-
acquired (nHA). Isolates were also grouped according to spec-
imen source as respiratory, skin and soft tissue or musculoskeletal 
(SST/MSK), urinary, endovascular, or other. For antibiotic suscep-
tibility analysis, isolates were classified as resistant if they were re-
ported as resistant or intermediate per the Clinical and Laboratory 
Standards Institute’s guidelines [6]. The following antibiotics 
were grouped into classes: meropenem and imipenem (MEM/
IPM) as carbapenems; ciprofloxacin and levofloxacin (CIP/LVX) 
as fluoroquinolones; piperacillin-tazobactam and ticarcillin-
clavulanic acid (TZP/TIM) as antipseudomonal penicillins plus 
β-lactamase inhibitor; and tetracycline and doxycycline (TET/
DOX) as tetracyclines. If an isolate was nonsusceptible to any an-
tibiotic in a class, it was labelled resistant for that class.

Seasonality Analysis

According to the month an index culture was obtained, isolates 
were grouped into quarters as follows: December (from prior 
year) through February as Quarter 1 (Q1); March through 
May as Quarter 2 (Q2); June through August as Quarter 3 
(Q3); and September through November as Quarter 4 (Q4). 
The number of isolates per quarter was plotted, starting with 
Q2 in 2007 (“07Q2”). To normalize isolate occurrence across 
multiple years for comparative analysis, we converted quarterly 
occurrence to a percentage of annual isolates (ie, [# of isolates 
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in a quarter]/[# of isolates in all 4 quarters in the corresponding 
year]  ×  100  =  “normalized occurrence”). Using this method 
we expect 25% of annual isolates, on average, to occur in each 
quarter, in the absence of seasonal variation. We also deter-
mined the resistance rates exhibited by isolates in each quarter. 
Normalized occurrence and resistance rates were averaged for 
all Q1–Q4 in the study period. Pairwise comparisons between 
quarters (eg, Q1 vs Q2, Q1 vs Q3, etc.) were performed using 
2-sample independent t test analysis with SPSS v25 (IBM, USA). 
To compare our cohort to those from prior analyses [1, 2, 5], we 
performed subgroup seasonality analysis according to whether 
isolates were HA or nHA, whether they were susceptible or re-
sistant to an antibiotic, and according to isolate tissue source.

RESULTS

We plotted the 10-year cumulative total of isolates obtained in 
each month, grouped according to susceptibility to gentamicin 
(GM), carbapenems (MEM/IPM), fluoroquinolones (CIP/LVX), 
or trimethoprim-sulfamethoxazole (SMX). As seen in Figure 
1A, there was a peak in susceptible isolates between June and 
November without a corresponding peak for resistant isolates. 
These diverging epidemiological behaviors resulted in net an-
tibiotic resistance rates being lowest in September or October 
and highest in February. Similar observations were made when 
examining isolate occurrence and resistance rates by quarter: 
there were annual peaks of Abc in Q3 and Q4, while resistance 
rates peaked during Q1 and Q2 (Supplementary Figure S1).

130

Susceptible isolatesA

B

D E

C

Resistant isolates Antibiotic resistance rate

65

0
1 3 5 7 9 11

180

Is
ol

at
es

 p
er

 m
on

th
 (n

)
[s

ol
id

 li
ne

s]

R
esistance rate (%

)
[dotted line]

M
E

M
/IPM

R
esistance rate (%

)
[dotted line]

45%

30%

15%

50

25

0

70%

50%

30%

90Total

HA

nHA

100

50

0

60

30

0

60

30

0

HA isolates nHA isolates Respiratory SST/MSK Urinary
50

25

0

50

25

0Total R S Total R S Total

*
*

*
*

*

#
##

#
# ##

##
##

#

R S Total R STotal R S

50

10
100

50

0
80

40

0

17Q
2

16Q
4

16Q
2

15Q
4

15Q
2

14Q
4

14Q
2

13Q
4

13Q
2

12Q
4

12Q
2

11Q
4

11Q
2

10Q
4

10Q
2

09Q
4

09Q
2

08Q
4

08Q
2

07Q
4

07Q
2

70%

45%

20%

80%

60%

40%

90

GM MEM/IPM CIP/LVX SMX
0

140

70

0
1 3 5 7

Month Month

1 3 5 7 9 11

Month

Q1

##
##

Q2

Total HA nHA

Q3 Q4

1 3 5 7 9 11
Month

All isolates

Pr
op

or
tio

n 
of

an
nu

al
 is

ol
at

es
 (%

)

Is
ol

at
es

 p
er

 q
ua

rt
er

 (n
)

[s
ol

id
 li

ne
]

Pr
op

or
tio

n 
of

an
nu

al
 is

ol
at

es
 (%

)

Pr
op

or
tio

n 
of

an
nu

al
 is

ol
at

es
 (%

)

50

25

0

9 11

Figure 1.  Seasonality among antibiotic-susceptible, but not -resistant, Abc isolates. A, The cumulative total (solid lines, left axis) and antibiotic resistance rates (dotted 
lines, right axis) of isolates obtained in each month (1–12, January through December) over the study period. Graphs depict numbers of isolates that are susceptible (gray line) 
or resistant (black line) to each antibiotic or antibiotic class (GM, gentamicin; MEM/IPM, meropenem/imipenem; CIP/LVX, ciprofloxacin/levofloxacin; SMX, trimethoprim/sul-
famethoxazole); B, Total, hospital-acquired (HA), and nonhospital-acquired (nHA) Abc cases per quarter (YY–QQ) are plotted with solid lines. Corresponding quarterly MEM/
IPM resistance rates are plotted with dotted lines. Shaded areas highlight peaks in seasonal occurrence in Q3 and Q4. C,D,E, Average proportion of annual isolates occurring 
in each quarter, according to Abc subgroups. In panel C, isolates were grouped into total, HA, and nHA cases. In panels D and E, HA and nHA isolates (panel D) and isolates 
from each anatomical source (panel E), were grouped into total (all isolates with susceptibility data), MEM/IPM resistant (R) and susceptible (S) isolates. Color key for panels 
C–E is located in panel C. Error bars represent standard deviations. Multi-year averages for each quarter were compared to corresponding Q1 average by independent t test. 
*, P < 0 .05; #, P ≤ 0 .001.
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We next tested whether Abc seasonality was exhibited in 
different populations. Both total isolates (n  =  1948) and nHA 
isolates (n  =  1202, 61.7%) exhibited annual peaks during Q3 
and Q4 (Figure 1B), resulting in a higher proportion of isolates 
during Q3 and Q4 compared to Q1 and Q2 (Figure 1C). Though 
the occurrence of HA isolates (n  =  746, 38.3%) was indistin-
guishable between quarters (Figure 1C), MEM/IPM resistance 
rates among both nHA and HA isolates repeatedly peaked 
during Q1 and Q2 (Figure 1B). When HA and nHA isolates 
were grouped according to carbapenem susceptibility, a higher 
proportion of susceptible HA and nHA isolates occurred in 
Q3 and Q4, while carbapenem-resistant HA and nHA isolates 
lacked seasonal variation (Figure 1D). Similarly, when Abc cases 
were grouped according to anatomic site of isolation, only sus-
ceptible isolates exhibited increased occurrence during Q3 and 
Q4 (Figure 1E). The association between antibiotic susceptibility 
and increased Q3 and Q4 occurrence was observed regardless of 
antibiotic class (Supplementary Figure S2). The only exception 
was ceftriaxone (CRO), where both CRO-resistant and CRO-
susceptible isolates displayed higher incidence during Q3 and 
Q4 compared to Q1 and Q2, though seasonal changes were of 
lower magnitude among CRO-resistant isolates (Supplementary 
Figure S2). Lastly, antibiotic resistance rates were lower during 
Q3 and Q4 compared to Q1 and Q2, regardless of tested antibi-
otic (Supplementary Figure S3A), classification as HA or nHA, 
and tissue source (Supplementary Figure S3B).

DISCUSSION

Consistent with prior observations [5], we found that Abc sea-
sonality was restricted to antibiotic-susceptible isolates. Seasonal 
cycling of antibiotic-susceptible, but not antibiotic-resistant, Abc 
resulted in seasonal fluctuations in antibiotic resistance rates. 
This phenomenon held true for all tested antibiotics and among 
isolates from different epidemiologic compartments. As reported 
by others [2], no seasonality was detected among HA isolates. 
Subgroup analysis, however, revealed higher Q3 and Q4 occur-
rence of antibiotic-susceptible, but not resistant, HA isolates. It is 
possible that the high proportion of HA resistant isolates masked 
the seasonality of susceptible HA isolates in this and prior studies.

Seasonal variation was first described in Acinetobacter in 
the 1970s, and since then has been described in many other 
Gram-negative and nosocomial infections [4]. The mechanisms 
mediating seasonality remains unclear. It has been argued that 
warmer, humid conditions or summer-associated host behaviors 
lead to a bloom of pathogenic bacteria [1, 2]. However, seasonality 
has been observed in tropical environments where temperature 
remains relatively stable throughout the year [7]. Furthermore, 
climate-dependent models do not explain the lack of season-
ality among resistant Abc isolates. Notably, seasonality analyses 
typically have not controlled for seasonal antibiotic prescribing 
behaviors. A  winter-associated increase in community 

antibiotic prescriptions has been repeatedly demonstrated [8, 9] 
and temporally-linked to seasonal increases in resistance rates 
among common human pathogens [8, 10]. It is possible that the 
higher use of community antibiotics (eg, tetracyclines, macrolides, 
sulfonamides, etc.) during winter months indirectly suppresses 
drug-susceptible organisms, mediating Gram-negative season-
ality. This would explain the observation of decreased overall 
Gram-negative pathogen incidence and increased resistance rates 
during colder months (and vice versa). Furthermore, in Abc, 
where resistance to various antibiotics is frequently genetically 
linked through chromosomal and, to a lesser extent, plasmid-
encoded resistance islands [11], pressure from antibiotic use in 
the community has the potential to select for resistance to mul-
tiple other drugs (eg, aminoglycosides, carbapenems, etc.).

Our findings have potentially large clinical and research 
implications. First, predictable seasonal changes in antibi-
otic resistance rates can help inform antibiotic choice for 
Abc infections while awaiting susceptibility testing results. 
Furthermore, our findings highlight why surveillance studies 
must account for annual fluctuations in resistance rates. For ex-
ample, a study on Abc resistance rates analyzing isolates only 
obtained from June to October may mistakenly underestimate 
annual resistance rates. Finally, the potential link between com-
munity antibiotic practices and multidrug resistance must be 
further investigated, as establishing this association would em-
phasize the urgency to restrict unnecessary antibiotic usage, es-
pecially during late fall and winter months.

Our study is limited by its retrospective, single-regional 
healthcare system design and by examination of a single group 
of Gram-negative pathogens. However, the putative link be-
tween antibiotic resistance and seasonality is consistent with 
prior observations of Abc [2, 5] and other Gram-negative 
pathogens [8, 10]. In this unadjusted analysis, we cannot ex-
clude unmeasured confounders that could influence the sea-
sonality of drug-resistant phenotypes. Future studies should 
directly address whether seasonality in other Gram-negative 
pathogens also is correlated to drug susceptibility and whether 
selective pressure arising from seasonal antibiotic usage is the 
principle factor contributing to seasonal trends in incidence 
and resistance rate. Regardless, our findings suggest that fu-
ture investigations on pathogen seasonality should control for 
fluctuations in local antibiotic usage and susceptibility rates.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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