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A B S T R A C T

Deliberate emotion regulation, the ability to willfully modulate emotional experiences, is shaped through in-
terpersonal scaffolding and forecasts later functioning in multiple domains. However, nascent deliberate emo-
tion regulation in early childhood is poorly understood due to a paucity of studies that simulate interpersonal
scaffolding of this skill and measure its occurrence in multiple modalities. Our goal was to identify neural and
behavioral components of early deliberate emotion regulation to identify patterns of competent and deficient
responses. A novel probe was developed to assess deliberate emotion regulation in young children. Sixty children
(age 4–6 years) were randomly assigned to deliberate emotion regulation or control conditions. Children com-
pleted a frustration task while lateral prefrontal cortex (LPFC) activation was recorded via functional near-
infrared spectroscopy (fNIRS). Facial expressions were video recorded and children self-rated their emotions.
Parents rated their child’s temperamental emotion regulation. Deliberate emotion regulation interpersonal
scaffolding predicted a significant increase in frustration-related LPFC activation not seen in controls. Better
temperamental emotion regulation predicted larger LPFC activation increases post- scaffolding among children
who engaged in deliberate emotion regulation interpersonal scaffolding. A capacity to increase LPFC activation
in response to interpersonal scaffolding may be a crucial neural correlate of early deliberate emotion regulation.

1. Introduction

Emotion regulation, the ability to modulate the parameters of an
emotional experience (Gross, 2013), is hypothesized to comprise two
non-mutually exclusive response types. Automatic emotion regulation
is an immediate, reactive response at the onset of an emotional chal-
lenge, while deliberate emotion regulation is a distinct, longer-un-
folding, effortful response (Gross, 2013). The ability to implement de-
liberate emotion regulation, to hold in mind and willfully control
emotions, is a crucial skill hypothesized to emerge in early childhood
(Kopp, 1989; Zelazo and Cunningham, 2007) that forecasts later func-
tioning across academic, behavioral, and social domains (Eisenberg
et al., 2014). In particular, the capacity to regulate negative emotions

such as irritability has a longstanding impact on mental health, func-
tioning, and human capital (Campbell et al., 2014; Wakschlag et al.,
2019). The field has also seen a dramatic increase in clinic- (Kovacs
et al., 2006), school- (Domitrovich et al., 2005), and home-based
(Rasmussen et al., 2018) programs designed to scaffold and strengthen
deliberate emotion regulation in young children. However, there have
been surprisingly few empirical investigations of deliberate emotion
regulation in the early childhood period and thus major gaps in un-
derstanding the key features of this skill when it emerges, particularly
its neural basis. Our goal was to understand the immediate, in-vivo,
neural and behavioral changes that occur with implementation of de-
liberate emotion regulation in young children in order to understand
the early development of this skill and identify patterns of competent
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vs. deficient responses.
Between the ages of 3 and 6 years, dramatic changes in the volume,

thickness, and white matter diffusion of the prefrontal cortex support
rapid advances in myriad executive functions, such as inhibitory con-
trol, attentional shifting, and working memory (Giedd et al., 1999).
These executive functions are postulated to form the basis for young
children’s earliest deliberate emotion regulation strategies (e.g., con-
sidering other things to play with when a peer won’t share a desired
toy) (Kopp, 1989). As intentional capacities increase in early childhood,
the emerging deliberate emotion regulation skillset becomes amenable
to scaffolding from adults. This interpersonal scaffolding involves two-
way caregiver, teacher, therapist, etc., conversations with children in
which adults probe children’s broader understanding of the causes,
consequences, and social function of emotions and provide information
designed to shape this understanding (Thompson, 2014). Longitudinal
work by Kochanska and colleagues showed that how mothers in-
tervened to assist their child during a negative emotion challenge
predicted the child’s ability to tolerate the same negative challenge by
themselves one year later (Kochanska et al., 2001). This hypothesized
interaction between plastic neural systems supporting application of
executive functions to emotional challenges, and amenability to direct
instruction, suggests interpersonal scaffolding-based techniques may
similarly strengthen deliberate emotion regulation in early childhood.
Advancing this theoretical framework requires directly testing the un-
ique effect of interpersonal scaffolding on young children’s neural ac-
tivation during emotional challenges.

The assumption that deliberate emotion regulation emerges in early
childhood, and responds to interpersonal scaffolding, has resulted in a
proliferation of education, mental health, and even media-based pro-
grams to target or repair this skill in early childhood (Morris et al.,
2014; Rasmussen et al., 2018). For example, deliberate emotion reg-
ulation classroom curricula, such as the widely used Second Step pro-
gram, provide teachers with materials and lesson outlines, such as role-
playing games, puppets, and socio-emotional stories, to help children
prospectively develop strategies for socio-emotional conflicts and re-
covering from emotional challenges (Frey et al., 2000). A similar ap-
proach is employed in children’s educational television programming
(Rasmussen et al., 2016), and more recently, mobile apps for pre-
schoolers that coach children to use strategies such as counting and
taking deep breaths when they get angry (Rasmussen et al., 2018). A
deficient deliberate emotion regulation skillset in early childhood is
also an etiological factor, and clinical target, for myriad forms of
emerging psychopathology, including anxiety (Kendall and Hedtke,
2006), depression (Kovacs et al., 2006), and aggression (Frey et al.,
2000). Manualized treatments targeting deficient deliberate emotion
regulation have similar therapeutic approaches irrespective of disorder
type. In an initial, psycho-education phase, a therapist may spend
several one hour sessions scaffolding a child’s understanding of the
physiological sensations and cognitions associated with emotions
(probing the child’s understanding of emotions and modifying the ses-
sion based on their responses), and teaching deliberate emotion reg-
ulation strategies (e.g., diaphragmatic breathing, reappraisal). Children
then transition to a training and practice phase where the therapist
coaches the child to implement deliberate emotion regulation during
simulated and real-life negative emotion challenges, for example, a peer
conflict or blocked goal (Leff et al., 2001). However, the dissemination
of these programs has advanced far beyond even a basic empirical
understanding of the fundamental characteristics of deliberate emotion
regulation in early childhood. Moreover, many deliberate emotion
regulation programs and interventions lack or have mixed clinical ef-
ficacy (Morris et al., 2014) and lack a mechanistic foundation, sug-
gesting an urgent need for studies elucidating unique behavioral and
neural changes children exhibit during deliberate emotion regulation.

Neuroimaging studies in adults suggest negative emotional chal-
lenges activate a dynamic interaction between limbic structures, such
as the amygdala, hippocampus, and striatum, that reflect threat- or

reward-response, and prefrontal areas that down-regulate these sub-
cortical regions (Blair, 2012; Coccaro et al., 2011). The dorsolateral and
ventrolateral prefrontal cortices, collectively the lateral prefrontal
cortex (LPFC), may differentiate mature deliberate versus automatic
emotion regulation. In several functional magnetic resonance imaging
(fMRI) studies, healthy adults showed stronger LPFC responses, with
greater amygdala down-regulation, during deliberate emotion regula-
tion compared to automatic emotion regulation (Ochsner et al., 2004).
School-age children (ages 7–13) also showed increased LPFC activation
during reappraisal of negative stimuli, with weaker activation com-
pared to adolescents or adults (Silvers et al., 2016), raising the possi-
bility that deliberate emotion regulation’s emergence in early childhood
depends on a capacity to increase LPFC activation. However, at present,
neuroimaging studies of deliberate emotion regulation, and particularly
studies that simulate interpersonal scaffolding, have not been extended
to children under the age of 6 years.

Our goal was to investigate young children’s neural and behavioral
changes during deliberate emotion regulation, and how parent-rated
temperamental emotion regulation predicted these neural changes,
using a novel paradigm that simulated interpersonal scaffolding. Sixty 4
to 6-year-old children were randomly assigned to a deliberate emotion
regulation interpersonal scaffolding or a control condition. Children
completed a frustration task immediately before and after the inter-
personal scaffolding/control condition while LPFC activation was re-
corded via functional near-infrared spectroscopy (fNIRS). We simulta-
neously recorded facial expressions via video, and prompted children to
self-rate their emotions, during fNIRS recording. Parents rated their
child’s temperamental emotion regulation prior to the experiment.

We expected that children who received interpersonal scaffolding
would be more likely to exert deliberate emotion regulation, and exert
it more effectively, compared to children who did not receive inter-
personal scaffolding. We expected deliberate emotion regulation exer-
tion to manifest as an increase in LPFC activation accompanied by a
decrease in negative facial expressions and improvement in self-rated
emotion. We hypothesized that, across groups, children rated by care-
givers as being better at recovering from emotional challenges in daily
life would show stronger evidence of deliberate emotion regulation in
the lab. Given that deliberate emotion regulation is believed to emerge
in early childhood, we considered that children in either group could
exert deliberate emotion regulation, but expected, at the group level,
this process to be significantly boosted by interpersonal scaffolding. We
therefore hypothesized that children in the interpersonal scaffolding
group would exhibit larger pre-post-increases in frustration-related
LPFC activation, and show stronger associations between change in
activation and affect, self-rated emotion, and caregiver temperamental
emotion regulation, compared to controls. Accordingly, we examined
changes in LPFC activation, and associations between change in acti-
vation and study variables, in the full sample and in separate groups.

2. Methods

2.1. Subjects

Sixty children between 4 and 6 years (M=4.9 years, SD = 0.9)
were recruited from the community via flyers and internet advertise-
ments and randomly assigned to deliberate emotion regulation inter-
personal scaffolding or control groups. Children were identified by their
parents as 50% male, 63% Caucasian, 32% African American, and 5%
Asian. Exclusionary criteria were diagnosis of any mental disorder,
developmental disability or delay, or history of head trauma with loss of
consciousness. Despite random assignment, interpersonal scaffolding
group children were older than controls (t(58) = -2.1, p < .05).
Therefore, we controlled for child age in all analyses. Groups did not
differ by sex, race, income, or receptive vocabulary score on the
Peabody Picture Vocabulary Test, Fourth Edition (Dunn and Dunn,
2012) (all p> .17). Experimental procedures were approved by the
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local Institutional Review Board.

2.2. Questionnaires

Parents completed the Falling Reactivity/Soothability subscale of the
Child Behavior Questionnaire (CBQ) (Rothbart et al., 2001) as an as-
sessment of their child’s emotion regulation from a temperamental
perspective. This subscale assesses the child’s rate of recovery from a
peak distress, excitement, or general arousal (e.g., “changes from being
upset to feeling better within a few minutes”). Items were rated on a 7-
point scale (1 = Extremely Untrue, 7 = Extremely True). Reliability of
the scale was acceptable (α= .72).

2.3. Frustration task

All children first completed a novel frustration task called
“Incredible Cake Kids”. An animated movie introduced children to a
fictional town with a bakery run by “Gus” the baker. Gus explained to
children that they had to run the bakery while he ran an errand. The
experimenter told children to select the “most delicious cake” to bake
for each customer from an array of similar cakes, that selecting cor-
rectly was an objective skill, upon which they would be evaluated, and
that some children were better at than others. Children completed a
practice version of the game to ensure they understood the rules. Next,
children completed 30 trials of the Incredible Cake Kids task. For each
trial, children saw a cartoon avatar (“the customer”) on the screen and
three cartoon cakes (See Fig. 1). For each trial, children had two sec-
onds to choose the most delicious cake by touching it, followed by two
seconds of “anticipation”, and two seconds of positive (“happy”) or
negative (“grumpy”) feedback, which, unbeknownst to the child, was
predetermined. If children didn’t choose a cake during the two second
window, they were shown a “warning” image of an empty cake tray
(signifying the customer did not receive a cake) for 2 s and the ex-
perimenter prompted the child to choose more quickly. The task

comprised 18 negative feedback trials and 12 positive feedback trials.
The task was constructed to be an event-related design with choice,
anticipation, and feedback comprising positive and negative events
separated by a 2–12 second jittered rest period. The task was designed
to induce feelings of frustration in young children through repeated,
unavoidable negative feedback, similar to frustration paradigms com-
monly used in older children and adolescents (Deveney et al., 2019,
2013; Perlman and Pelphrey, 2010, 2011). The task used no repeating
customers or cakes in order to measure frustration related to negative
evaluation as opposed to error response following expectancy violation.
Every 10 trials the child was prompted to self-rate their current emotion
by choosing from seven cartoon faces ranging from negative to positive
affect (Perlman et al., 2015, 2014). The first two emotion self-ratings
occurred immediately after a negative trials, and the third emotion-self-
rating occurred immediately after a positive trial. Emotion self-rating
scores ranged from 1 (most negative) to 7 (most positive) with a score
of 4 representing no/neutral affect.

2.4. Deliberate emotion regulation interpersonal scaffolding

2.4.1. Interpersonal scaffolding group
After the Incredible Cake Kids task, interpersonal scaffolding group

children completed a novel coloring activity created by the research
team designed to simulate highly structured emotion-related psycho-
education (See Fig. 1), such as modules from the “Coping Cat” ther-
apeutic manual and “Second Step” curriculum (Frey et al., 2000;
Kendall and Hedtke, 2006). The purpose of the coloring activity was to
prime children to think about emotions, and build a common emotion
vocabulary across children, so that all participants would understand
the prompt to deliberately regulate negative affect (described below).
The use of cartoons and coloring provided a developmentally appro-
priate venue for helping children describe bodily sensations and cog-
nitions associated with emotion with an unfamiliar adult. Children in-
teracted with a post-doctoral clinical psychology trainee with expertise

Fig. 1. Top: Depiction of the Incredible Cake Kids Task. Bottom: A child assigned to deliberate emotion regulation therapeutic scaffolding (male, age 5) colors in
physiological sensations, and generates cognitions, associated with anger (left) and relaxation (right) during the cartoon game. Children in the control group were
given the same cartoons with non-emotion instructions.
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treating early childhood psychopathology. Children were shown a
cartoon of a child (gender matched, race indeterminate) who saw a
grumpy customer in the Incredible Cake Kids game that made them
“really angry”. Children were coached to color inside the cartoon’s body
for 5min to indicate where the cartoon child felt the emotion (“Use the
markers to show where the boy/girl feels the anger in his/her body”).
Next, children were coached to generate ideas about what the cartoon
was thinking when they felt angry (“What is the boy/girl thinking when
s/he feels angry?”). Children were then given a picture of the same
child floating in a swimming pool who is “really relaxed”. For 5min,
children were, again, instructed to color the picture to indicate where
the child felt emotion in his/her body and articulate what the child
might have been thinking.

2.4.2. Control group
The control condition was designed to mimic interaction with an

experimenter through the same child-friendly coloring activity, with no
emotion-related discussion. Children assigned to the control condition
were given identical cartoons and timing parameters but provided non-
emotional instructions (e.g., “Here’s a cartoon but its black and white.
You can use these markers to add some color however you’d like”).

2.5. Deliberate emotion regulation measurement

After completing the interpersonal scaffolding/control portion of
the study, children were told they would replay the Incredible Cake
Kids game again, but with different customers and cakes. Interpersonal
scaffolding group children were instructed to deliberately regulate ne-
gative affect using vocabulary generated by the child (e.g., “Kids try
different things so that the grumpy customers won’t bother them. Some
kids try to keep their bodies calm. When they feel anger in their belly
(points to child’s anger drawing), they try relaxing their belly, arms,
and legs like they’re floating in an inner tube (points to child’s re-
laxation drawing)”; “Instead of thinking, ‘why don’t they like my cake?’
some kids try thinking ‘I’m calm’”). (See Appendix for full deliberate
emotion regulation instructions.) Control children were re-told the
original instructions to choose the most delicious cake for each cus-
tomer. The two Incredible Cake Kids tasks had the same number of
positive/negative trials and were counter-balanced across subjects.

2.5.1. fNIRS instrument and analysis
Non-invasive optical imaging was performed using a CW6 fNIRS

system (Techen, Inc, Milford, MA) with a probe comprising 4 light-
source emitter positions containing 690 nm (12mW) and 830 nm
(8mW) laser light, and 8 detectors. The average inter-optode distance
was 3 cm. As in our previous work (Grabell et al., 2017; Li et al., 2016;
Perlman et al., 2015), the probe was positioned per international 10–20
coordinates with the interior medial corner of the probe aligned with
FpZ and extended over Brodmann areas 10 (ventrolateral prefrontal
cortex) and 46 (dorsolateral prefrontal cortex) on each hemisphere,
comprising 10 channels reduced into 4 regions of interest (see Fig. 2).
Children sat in front of a touch-screen computer that recorded their
responses. Analysis was conducted using the NIRS Brain AnalyzIR
Toolbox (Santosa et al., 2018). Data were collected at 20 Hz and re-
sampled to 1 Hz. fNIRS data is recorded as changes in the light from a
source position incident on a detector position as a function of time.
Signals were converted to optical density, and then to oxy- and deoxy-
hemoglobin concentration estimates, via the modified Beer-Lambert
law with a partial pathlength correction of 0.1. A general linear model
was then used to assess task activation. Since the shape of the hemo-
dynamic response was not assumed, a finite impulse response (FIR)
model was used to model activation at each second for the 20 s fol-
lowing stimulus onset for each condition in order to visualize when the
HRF peak occurred. Coefficient estimates were obtained using the au-
toregressive iteratively-reweighted least squares (AR-IRLS) approach,
as it accounts for serial correlations in the data, including those from

systemic physiological and motion artifacts (Barker et al., 2013).
Group-level mixed-effects models were used to assess task activation at
each time point, and the peak of the HRF response was then identified
via visual inspection. Subject-level task effects were then quantified by
averaging across this window. All subsequent analyses used these beta
values that were time-averaged across the peak of the HRF window.
These channel-wise time-averaged coefficients were then averaged
across channels within each of the 4 regions of interest.

2.5.2. Facial coding
Throughout the paradigm facial expressions were recorded using a

high definition camcorder mounted above the touchscreen computer.
Facial codes comprised a subset of facial movements, or Action Units
(AUs), from the Facial Actions Coding System (FACS), an anatomically-
based facial coding system (Ekman and Friesen, 1977). Coders were
three FACS-trained laboratory members who passed the FACS certifi-
cation test and a child FACS test custom-designed by our laboratory.
Pre- and post-interpersonal scaffolding/control condition videos were
separated into distinct files, assigned to coders in a random order, and
coded on mute blind whether epochs were win or frustration trials.
Coders had no knowledge of the task or the study’s hypotheses and were
only assigned subjects with whom they had no previous interaction.
Coders denoted the presence or absence of FACS codes for each 2-
second feedback window using ELAN software (Brugman et al., 2004).
Based on our hypotheses and prior literature on child facial expression
(Grabell et al., 2018), the following facial movements were coded and
aggregated across negative feedback trials for each Incredible Cake Kids
game: brow raiser (AU 1 and 2 combined into a single code), brow
lowerer (AU 4), eye constriction (AU 6), nose wrinkler and upper lip
raiser (AU 9 and 10 combined into a single code), lip corner depressor
(AU 15), lip tightening or pressing (AU 23 and 24 combined into a
single code), and jaw drop and mouth stretch (AU 26 and 27 combined
into a single code). Videos were double coded by two independent
coders. Reliability was calculated as agreement between coders using
the formula described in the FACS manual: (Number agreed upon
codes) *2/(total number of codes). If agreement for a given video was
below 40%, a FACS certified supervisor reviewed the codes to assess for
coder drift, retrain coder teams if needed, and reassign the video to the
third coder if needed. This process occurred for 5 videos. Fifty-six
subjects had codeable videos. One additional subject was removed from
facial expression analyses due to low reliability. Overall inter-coder
reliability was acceptable (70%).

2.5.3. Analysis strategy
We first examined descriptive statistics of study variables across the

entire sample. Next, 2 (time: pre-, post-) by 2 (group: control, manip-
ulation) mixed ANCOVA models, controlling for age, were used to test

Fig. 2. fNIRS probe superimposed on 3D mesh brain, denoting 10 channels
grouped into 4 regions of interest (ROIs), and right and left hemispheres.
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whether changes in negative feedback-related LPFC activation, self-
ratings of emotion, and facial expressions, depended on interpersonal
scaffolding. In order to test whether the deliberate emotion regulation
condition interacted with negative affect specifically, we also examined
pre-post changes in LPFC activation during positive feedback. Finally,
Pearson partial correlations controlling for age and scatterplots were
used to examine how changes in feedback-related LPFC activation re-
lated to changes in child self-rated emotion, facial expressions, and
parent-rated emotion regulation competence. We first ran brain-beha-
vior correlations on the entire group, and then performed post-hoc
correlations to investigate differences between the manipulation and
control group. Hypotheses related to group*time effects were a priori to
data collection, probed only the LPFC and censored the rest of the
cortex, and specified group differences in only one direction. Therefore
ANCOVA results are presented with uncorrected p-values and accom-
panying effect sizes. Hypotheses related to how magnitude of change in
LPFC activation was associated with individual differences in behavior
and parent ratings of emotion regulation were a priori to data analysis
but not data collection and allowed for bi-directional effects. We
therefore controlled for multiple comparisons using the FDR correction
for these tests. Prior to correlations, we tested for multivariate outliers
by calculating Mahalanobis distance and identified subjects with χ2

values of p < .001 (Tabachnick and Fidell, 2007) using SPSS software
(IBM, Inc.). We report correlational results with and without multi-
variate outliers removed.

3. Results

One hundred percent of children completed the entire paradigm and
yielded analyzable fNIRS and self-rated emotion data. The number of
missed trials across groups and games was very low (M=1.3 missed
trials, SD=1.9). Descriptive statistics revealed that, on average and
across the entire sample, children produced a negative facial expression
on 54% of negative feedback trials the first time they played the
Incredible Cake Kids game, and 45% of the negative feedback trials the
second time they played, suggesting the game induced negative affect.
Self-ratings of emotion revealed, on average, children rated their mood
as mildly positive both times they played the game (M= 5.0, SD= 1.5,
range= 2–7). Frequency counts showed this mean was driven by a
subset of children (33.3% during the initial game, and 43.3% during the
second game) who picked the happiest face every time, even when the
rating followed a frustration trial, a pattern common to studies in early
childhood (Chambers and Johnston, 2002; Grabell et al., 2017). Within
each game, the three emotion self-ratings were moderately to highly
positively correlated with each other (smallest correlation: r = .32,
p= .013; largest correlation: r = .77, p< .001; see supplemental Table
A in Appendix), and a repeated measures ANOVA revealed ratings were
not significantly different from each other (p= .88). Change in facial
expression and change in self-rated emotion were unrelated across or
within groups (all p’s> .54). Based on manual visualization of the HRF
peak between and across groups (see Supplementary Fig. A1), we
averaged between 3 and 14 s for each subject. An independent-sample t-
test revealed that control and manipulation groups were not sig-
nificantly different in their LPFC activation during negative and posi-
tive feedback, self-ratings of emotion, or frequency of facial expres-
sions, the first time they played the Incredible Cake Kids game
(p’s> .16).

3.1. Deliberate emotion regulation interpersonal scaffolding and neural
activation changes

Mixed ANCOVAs revealed no main effect of group or time at any
ROI for positive or negative feedback (p’s> .06) but a significant
group*time interaction for negative feedback (F (1, 60)= 5.54, p=
.02) and positive feedback (F (1, 60)= 4.33, p= .04) in the middle left
LPFC (see Fig. 3). Thus, subsequent analyses focused solely on

activation in the middle left LPFC ROI. Paired-sample t-tests revealed
that interpersonal scaffolding group children showed a significant pre-
post increase in negative feedback-related LPFC activation in the
middle left LPFC (t(115)= 2.68, p = .008) whereas control children
showed no change in activation (p = .49). Interpersonal scaffolding
group children also showed a significant pre-post increase in positive
feedback-related LPFC activation in the middle left LPFC (t
(115)= 2.17, p = .03) whereas control children showed no change in
activation (p= .44). Pre-post interpersonal scaffolding/control changes
in feedback-related LPFC activation were significantly different be-
tween groups for negative (t(115)= 2.38, p = .02) and positive (t
(115)= 2.08, p = .04) feedback.

3.2. Deliberate emotion regulation interpersonal scaffolding and behavior
changes

3.2.1. Emotion self-rating
The three emotion ratings within each Incredible Cake Kids game

were averaged. A 2-way repeated measures ANCOVA, with group as a
between-subjects factor, showed no main effect of group (p= .60),
time (p= .11), or group*time interaction (p= .59).

3.2.2. Facial expression
A 2 (positive, negative feedback) by 2 (pre-post) repeated measures

ANCOVA, with group as a between-subjects factor, revealed no main
effect of feedback (p = .39), and a marginal effect of time (F
(1,52)= 2.99, p= .09), such that children showed a non-significant
trend of displaying less negative affect the second time they played the
Incredible Cake Kids game than the first time. There was a significant
feedback*time (F(1,52)= 4.68, p= .035) interaction. Post-hoc paired
sample t-tests revealed, across the entire sample, that children pro-
duced significantly more frequent negative affect during negative
feedback than positive feedback the first (t(54)= 4.65, p< .001) and
second (t(54)= 5.45, p< .001) time they played the Incredible Cake
Kids game and showed a significant decrease in negative expressions
during negative feedback (t(54)= 2.05, p= .045), but not positive
feedback (p = .09) between games. There was also a significant feed-
back by time by group interaction (F(1,52)= 4.62, p= .036).

Paired sample t-tests examining pre-post scaffolding or control
condition changes, run separately by group, revealed that control
children showed a marginal decrease in negative expressions during
negative feedback (t(54)= 1.79, p= .08) not seen in the manipulation
group (p= .30). In contrast, manipulation group children showed a
marginal decrease in negative expressions during positive feedback (t
(54) = 1.98, p= .056) not seen in the control group (p= .63).
However, independent sample t-tests revealed no significant group
difference in negative expression at either time point or for either type
of feedback (p’s> .29). In other words, the three way interaction was
driven by control and manipulation group children exhibiting decreases
in negative affect for different types of feedback, but these decreases
were marginal, and did not result in group differences in facial ex-
pression frequency (see Supplemental Figure B in Appendix).

3.3. Association between change in feedback-related LPFC activation and
change in behavior

3.3.1. Self-rated emotion
Prior to performing Pearson partial correlations controlling for age,

two subjects, one control and one manipulation, were identified as
multivariate outliers. When the outliers were included, Pearson partial
correlations showed negative feedback-related middle left LPFC acti-
vation was unrelated to change in self-rated emotion for the entire
sample (p= .38), or either group (p’s> .63). Associations remained
non-significant when outliers were excluded. Changes in middle left
LPFC activation during positive feedback were unrelated to self-rated
emotion for the entire sample, or either group, regardless of whether
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outliers were included or excluded (p’s> .18).

3.3.2. Facial expression
Prior to performing Pearson partial correlations, one control subject

was identified as a multivariate outlier. When the outlier was included,
Pearson partial correlations for the entire sample showed that pre-post
changes in middle left LPFC activation during negative feedback were
marginally inversely related to changes in facial expression, such that
increases in activation predicted decreases in negative affect at the
p= .055 level (r = -.26). When split by group, controls showed a sig-
nificant inverse partial correlation (r = -.43, p= .012) that manip-
ulation children did not (p= .30), though this was not significant at
q< .05 after correcting for multiple comparisons. However, when the
multivariate outlier was excluded, neither the entire sample (r = -.02,
p= .45), nor the control group (r = -.19, p= .33), showed a sig-
nificant partial correlation between change in activation and change in
facial expression. A scatterplot revealed the multivariate outlier ex-
hibited both the highest increase in activation and largest decrease in

negative expression in the control group, thus exerting inordinate
leverage over the slope. Changes in middle left LPFC activation during
positive feedback were unrelated to change in negative expression for
the entire sample, or either group, regardless of whether outliers were
included or excluded (p’s> .53).

3.4. Caregiver-rated temperamental emotion regulation and negative
feedback-related LPFC activation

Prior to performing Pearson correlations, one control subject was
identified as a multivariate outlier. When the outlier was included,
Pearson partial correlations showed, for the full sample, a positive as-
sociation between caregiver-rated temperamental emotion regulation
and change in middle left LPFC activation, with medium effect size
(r= .34) significant at p = .005 but not q< .05 after correcting for the
total number of correlation tests performed. The association was such
that children rated by caregivers as having an easier time recovering
from an emotional challenge relative to peers tended to have larger pre-
post increases in left LPFC activation. Post-hoc correlations revealed,
for the manipulation group, caregiver-rated temperamental emotion
regulation was also significantly positively associated with pre-post
change in middle left LPFC activation, with medium effect size (r= .35)
at the p= .03 but not q< .05 level after correcting for the total number
of correlation tests performed (see Fig. 4). In contrast, there was no
association between caregiver-rated emotion regulation and change in
left LPFC activation within the control group (r= .15, p= .21). This
pattern of results held regardless of whether the multivariate outlier
was excluded or included. Changes in middle left LPFC activation
during positive feedback were unrelated to parent-rated temperamental
emotion regulation for the entire sample, or either group, regardless of
whether outliers were included or excluded (p’s> .16).

4. Discussion

Deliberate emotion regulation is a skill necessary for successful so-
cial, academic, and behavioral functioning across the lifespan
(Eisenberg et al., 2014) and is hypothesized to emerge and develop
rapidly during the early childhood period (Kopp, 1989; Zelazo and

Fig. 3. Results of mixed ANCOVAs testing effects of group assignment, time, and group by time interaction on changes in LPFC oxygenated hemoglobin during
positive and negative feedback, controlling for child age. Source detector pairs comprise regions of interest superimposed on a 3D mesh brain with solid lines
indicating significant effects.

Fig. 4. Scatterplot showing association between change in middle left LPFC
activation during negative feedback and caregiver-ratings on the CBQ Falling
Reactivity scale.
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Cunningham, 2007). This study begins to provide a mechanistic science
base for the widely disseminated home- and school-based programs
designed to improve young children’s deliberate emotion regulation
(Morris et al., 2014; Rasmussen et al., 2018), important for further
tailoring and specification of effects. Therefore, our goal was to eluci-
date the characteristics of emerging deliberate emotion regulation in
early childhood, particularly its neural basis, using a novel task de-
signed to replicate the interpersonal scaffolding a child would receive
from an adult (e.g., parent, teacher). Deliberate emotion regulation
interpersonal scaffolding was associated with a significantly larger in-
crease in LPFC activation during negative feedback relative to the
control condition, suggesting even brief interpersonal scaffolding may
elicit changes in neural activation in young children. Children who
were rated by caregivers as having better temperamental emotion
regulation compared to peers showed the largest increase in LPFC ac-
tivation during negative feedback following interpersonal scaffolding.
Deliberate emotion regulation interpersonal scaffolding was also linked
with increases in LPFC activation during positive feedback, but the
effect size was smaller relative to negative feedback, and this activation
did not predict any study variable. Counter to our hypotheses, delib-
erate emotion regulation scaffolding was not associated with changes in
children’s self-ratings of emotion (which, as described below, may re-
late to the utility of these ratings in very young children). We detected a
feedback type by time by group interaction suggesting deliberate
emotion regulation interpersonal scaffolding related to changes in fre-
quency of affective expression, although no single post-hoc independent
sample or paired sample t-test reached significance, suggesting these
changes may not have been particularly robust. Given the present study
is, to our knowledge, the first to examine in-vivo neural and behavioral
changes of deliberate emotion regulation in children this young, both
the significant and null findings advance an understanding of this skill
needed for the field to build a core knowledge base.

The present findings suggest both continuity and discontinuity with
reports of deliberate emotion regulation in older children and adults,
advancing a template of deliberate emotion regulation “competence”
during the developmental window when this nascent skill is hypothe-
sized to emerge. The first investigations into the neural basis of delib-
erate emotion regulation employed fMRI in adults presented with ne-
gative emotion-inducing images (Ochsner and Gross, 2008). These
studies found that adults prompted to exert a deliberate emotion reg-
ulation strategy, such as reappraisal, showed significantly greater LPFC
activation, and reduced amygdala activation, compared to subjects
prompted to view images naturally (Ochsner and Gross, 2005). McRae
and colleagues subsequently found evidence that deliberate emotion
regulation related to significantly greater LPFC activation in a sample
ranging from 10 to 22 years (McRae et al., 2012). However, LPFC ac-
tivation had a negative linear relation with age, such that children
showed significantly smaller activation than adults, raising the possi-
bility that, if the negative linear trend continued into early childhood,
deliberate emotion regulation-specific neural activation could be absent
or unmeasurable. The present study is, to our knowledge, the first direct
evidence that a capacity to increase LPFC activation following delib-
erate emotion regulation prompting is present in the early childhood
years and relates to individual differences in temperamental emotion
regulation. The preschool and kindergarten years are characterized by a
transition to more complex classroom environments and peer interac-
tions (Ramey and Ramey, 2010) that present new emotion regulation
demands (Cowan and Heming, 2005) and portend later social and
academic functioning (Entwisle and Alexander, 1993; Zulauf et al.,
2018). Early deliberate emotion regulation competence may depend on
unique, measurable, prefrontal activation related to formulating and
executing an emotion regulation strategy, while delays or weaknesses
in the emergence of this activation may signal impairment. Further, the
early childhood years are a period of neural plasticity, and specifically,
substantial growth and myelination of the LPFC (Giedd et al., 1999),
suggesting early childhood may be a window when the systems

underlying deliberate emotion regulation are more amenable to input
from the environment.

However, fMRI studies of deliberate emotion regulation in older
children and adults also found significant group differences in self-
ratings of emotion, such that deliberate emotion regulation was asso-
ciated with improved self-reported mood (Ochsner and Gross, 2005).
This self-rated emotion finding did not replicate in our sample of
4–6 year olds, and thus we must carefully consider the meaning of
observed changes in LPFC activation given the role of this region in
myriad self-regulatory functions (Miller and Cohen, 2001). Pediatric
assessment researchers have long found that children under the age of
6 years are unable to reliably monitor their own emotions (Zeman et al.,
2007), and tend to provide extreme responses when presented with
Likert choices of emotional states (Chambers and Johnston, 2002),
consistent with self-rating data reported here and in our previous work
(Grabell et al., 2017). Notably, we found that children produced fre-
quent negative facial expressions the first and second time they played
the Incredible Cake Kids game, and these negative expressions occurred
more during negative feedback than positive feedback, suggesting the
task elicited negative emotion as designed. We contend, then, that
changes in LPFC activation most likely reflect emotion regulation pro-
cesses. For example, a scenario in which children, despite receiving
explicit instructions to exert deliberate emotion regulation, sponta-
neously chose to engage in a completely non-emotional cognitive
function instead (e.g., sorting, working memory), while also producing
negative facial expressions, seems improbable. Moreover, we found a
feedback type by time by group interaction, suggesting that changes in
negative facial expressions were dependent on whether children re-
ceived interpersonal scaffolding. However, unpacking this interaction
did not clearly support our hypotheses, as control and manipulation
children appeared to decrease frequency of negative facial expressions
at different rates for different feedback types, yet post-hoc t-tests did
not exceed the alpha threshold for significance. One possibility is that
the facial expression data were too noisy to detect more nuanced ef-
fects, as evidenced by the fact that changes in facial expressions were
uncorrelated with change in neural activation, self-ratings of emotion,
or parent-rated temperamental emotion regulation. Given the present
study had a relatively modest sample size, it may have been under-
powered to detect facial expression group differences and associations
with other variables. Across levels of analyses, the present findings raise
the possibility that, in laboratory settings, emerging deliberate emotion
regulation may be measurable at the neural level before it becomes
reliably measureable at the behavioral level.

Although our findings may represent a significant advancement in
the study of early deliberate emotion regulation, and offer important
methodological points for future research in this area, they also high-
light long-standing challenges to measuring emotion processes in hu-
mans. While we rejected the null hypothesis that LPFC activation was
unrelated to deliberate emotion regulation interpersonal scaffolding in
early childhood, there are several interpretations of what this neural
activation means. LPFC activation could plausibly reflect myriad ex-
ecutive functions ranging from low to high integration with directly
modulating negative affect, from inhibitory control to suppress negative
emotion-driven impulses, working memory to hold the “don’t get mad”
rule in mind, to changes in self-narration during the task. Consistent
with the broad field of emotion research, various explanations are
possible due to an inherent of a lack of ground truth to unequivocally
know the internal motivations and emotion states of human subjects, a
major topic of discussion in emotion research (Barrett, 2015) that ex-
tends to all methods of acquiring emotion data (self-report, behavioral
observation, psychophysiological, etc.) (Schorr, 2001), and dates to the
earliest psychological investigations of emotion (Lange and James,
1922). Moreover, consciously activating a deliberate emotion strategy
by definition involves higher integration of these executive functions,
relative to automatic emotion regulation (Zelazo and Cunningham,
2007), that may vary significantly from child to child (Kopp, 1989). We

A.S. Grabell, et al. Developmental Cognitive Neuroscience 40 (2019) 100708

7



therefore contend the increased LPFC activation observed after delib-
erate emotion regulation scaffolding likely reflects a heterogeneous
mixture of EF processes that may be proximal to negative emotion, such
as suppressing intense anger, or more distal, such as a reappraisal
strategy to prevent onset of negative emotion to begin with.

Unpacking the heterogeneity of this neural signal is a challenging
and exciting next step for pediatric emotion regulation researchers.
Results of the present study suggest our novel task was tolerable to
young children and produced a neural signal distinct to deliberate
emotion regulation interpersonal scaffolding versus the control condi-
tion. Future studies building off of our paradigm may be able to further
parse the meaning of this signal by measuring concurrent psychophy-
siological changes, such as heart rate and galvanic skin response, that
correspond to limbic system activation (Critchley et al., 2000), and
investigating children’s articulated emotion regulation strategies in
more detail. Future research can also further parse this signal through
additional experimental manipulations, such as comparing children
who received different emotion regulation prompts (e.g., self-narration
vs. relaxed breathing), and including a control group prompted to keep
a non-emotion regulation-related rule in mind. Relatedly, deliberate
emotion regulation interpersonal scaffolding comprises multiple com-
ponents that may differentially contribute to immediate changes in
neural activation and long-term shaping of deliberate emotion regula-
tion. In the present study, similar to disseminated deliberate emotion
regulation programs (Kendall and Hedtke, 2006), children were given
psychoeducation about emotion labels, explored physiological sensa-
tions and cognitions associated with emotions, provided psychoeduca-
tion about myriad deliberate emotion regulation strategies, and
prompted to come up with and exert their own strategy. Which of these
scaffolding components are “active ingredients” to shaping emotion
regulation, how these components work together, and which children
are most likely to benefit from which components, are critical future
research questions that directly relate to more tailored early emotion
regulation interventions.

Finally, the present study provides a framework for future research
to examine in greater detail how emotion regulation is shaped by adults
during early childhood. Here, we detected neural changes in young
children exposed to very brief interpersonal scaffolding following a
short, mild, frustration challenge that was not expected to produce
lasting changes in participants as one would expect from a multi-session
intervention. Children in the present study did not acquire an explicit
emotion regulation skill, such as diaphragmatic breathing or re-
appraisal. Rather, the interpersonal scaffolding with the clinical psy-
chology trainee helped children build an emotion vocabulary and
primed them to receive instructions to deliberately regulate emotion
with whatever strategy they thought would work. A measurable neural
change to brief scaffolding sets the stage to understand how the de-
veloping brain is shaped by sustained scaffolding from caregivers and
teachers on a daily basis (Denham et al., 2012; Taylor et al., 2013), and
by education and mental health professionals through emotion-reg-
ulation based interventions (Domitrovich et al., 2005; Havighurst et al.,
2010; Kovacs et al., 2006). That children rated as having the most
difficulty recovering from emotional challenges also had the weakest
neural response to scaffolding raises the possibility that, in clinical
practice, children with more deficient emotion regulation may benefit
less, initially, from psychotherapy-based scaffolding. More interven-
tion-focused studies are required to investigate potentially important
individual differences in children’s behavioral and neural responses
interpersonal scaffolding that could be used to optimize early inter-
vention. This is particularly relevant and needed given the mixed effi-
cacy of interventions designed to train and strengthen emotion reg-
ulation in preschoolers (Morris et al., 2014). For example, developing
brief response-to-scaffolding assessments capable of measuring baseline
levels of this skill could help clinicians forecast, prior to treatment, the
likelihood a young child might benefit from an emotion regulation
scaffolding treatment, such as CBT, or the dosage required to achieve a

clinically meaningful effect. Future iterations of this line of research
may therefore elucidate how early, abnormal, responses to inter-
personal scaffolding of deliberate emotion regulation, accompanied by
weaker cortical activation, can be repaired.
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