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METHODOLOGY ARTICLE Open Access

PLAIDOH: a novel method for functional
prediction of long non-coding RNAs
identifies cancer-specific LncRNA activities
Sarah C. Pyfrom, Hong Luo and Jacqueline E. Payton*

Abstract

Background: Long non-coding RNAs (lncRNAs) exhibit remarkable cell-type specificity and disease association.
LncRNA’s functional versatility includes epigenetic modification, nuclear domain organization, transcriptional control,
regulation of RNA splicing and translation, and modulation of protein activity. However, most lncRNAs remain
uncharacterized due to a shortage of predictive tools available to guide functional experiments.

Results: To address this gap for lymphoma-associated lncRNAs identified in our studies, we developed a new
computational method, Predicting LncRNA Activity through Integrative Data-driven ‘Omics and Heuristics
(PLAIDOH), which has several unique features not found in other methods. PLAIDOH integrates transcriptome,
subcellular localization, enhancer landscape, genome architecture, chromatin interaction, and RNA-binding (eCLIP) data
and generates statistically defined output scores. PLAIDOH’s approach identifies and ranks functional connections
between individual lncRNA, coding gene, and protein pairs using enhancer, transcript cis-regulatory, and RNA-binding
protein interactome scores that predict the relative likelihood of these different lncRNA functions. When applied to
‘omics datasets that we collected from lymphoma patients, or to publicly available cancer (TCGA) or ENCODE datasets,
PLAIDOH identified and prioritized well-known lncRNA-target gene regulatory pairs (e.g., HOTAIR and HOX genes, PVT1
and MYC), validated hits in multiple lncRNA-targeted CRISPR screens, and lncRNA-protein binding partners (e.g.,
NEAT1 and NONO). Importantly, PLAIDOH also identified novel putative functional interactions, including one
lymphoma-associated lncRNA based on analysis of data from our human lymphoma study. We validated PLAIDOH’s
predictions for this lncRNA using knock-down and knock-out experiments in lymphoma cell models.

Conclusions: Our study demonstrates that we have developed a new method for the prediction and ranking of
functional connections between individual lncRNA, coding gene, and protein pairs, which were validated by genetic
experiments and comparison to published CRISPR screens. PLAIDOH expedites validation and follow-on mechanistic
studies of lncRNAs in any biological system. It is available at https://github.com/sarahpyfrom/PLAIDOH.

Keywords: Long non-coding RNA, lncRNA, Transcriptional control, cis-regulation, Lymphoma, Interactome, RNA-binding
protein, Epigenetics

Background
Long non-coding RNAs exhibit remarkable cell type spe-
cificity and disease association, yet the vast majority
remain uncharacterized. Transcribed pervasively across
the genome, they are defined by only two characteristics:
length greater than 200 bp and lacking protein coding
potential [1]. The diversity of lncRNAs is therefore

extremely broad: from a few hundred bases to many kilo-
bases in size; single exon to many exons; present in a wide
range of locations ranging from intergenic, intronic, over-
lapping coding exons, and anti-sense to within coding
genes [2]. LncRNAs exhibit much less conservation
between species compared to coding genes and structure-
function relationships have yet to be defined [3]. A major
obstacle to functional discovery is the paucity of estab-
lished rules and algorithms for functional prediction, and
the lack of sequence conservation or homology across
species further limits the potential for in silico screening
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or prioritization for experimental studies [4]. For these
reasons, the study of lncRNAs remains challenging.
Despite these challenges, some lncRNAs have been

shown to play key roles in a broad range of biological pro-
cesses via an impressive variety of mechanisms. Reported
functions range from cis- or trans-regulation of neighboring
or distal genes via recruitment or sequestering of epigenetic
or transcriptional protein complexes [5, 6]; regulation of
chromatin structure and 3D nuclear organization [7–9];
regulation of translation via direct binding to mRNAs
[8, 10–12]; and modulation of cellular signaling via pro-
tein scaffolding [2, 12]. LncRNAs play roles in diverse es-
sential biological processes, including development (e.g.,
XIST, H19) [6, 13–18], immune response (e.g., NRON,
Morrbid), [5, 12, 19], and oncogenesis (MALAT1, MEG3)
[4, 6, 10, 11, 20]. LncRNAs also have potential clinical uti-
lity as disease biomarkers and therapeutic targets, espe-
cially in cancer [10, 11].
In pursuit of novel gene regulatory mechanisms that are

altered in human Non-Hodgkin Lymphoma (NHL) [21],
we identified hundreds of annotated and novel lncRNAs
that are significantly altered in primary NHL compared to
normal control B cell samples sorted from tonsils and
peripheral blood. We next sought to select the most
potentially lymphomagenic lncRNAs for targeted, mech-
anistic experiments. However, prioritization and selection
a small number of lncRNAs proved challenging due to the
aforementioned paucity of information regarding function.
There are a few bioinformatic tools available for lncRNA
analysis and functional prediction [22–25]. However, each
has disadvantages including: being based entirely on motif
predictions; having limited options for customization to
end-user priorities; and no integration of lncRNA-associ-
ated data into a calculated score that can be ranked.
Therefore, we sought to design a new bioinformatic
method that would 1) integrate diverse types of -omics
data in ways relevant to lncRNA function; 2) be flexible to
incorporate user-provided or publicly available datasets in
any combination; 3) generate a statistically ranked output;
4) be robust even for smaller datasets, as these are more
common and more challenging to analyze; 5) enable users
to customize prioritization and ranking metrics to answer
specific questions and for selection of top hits for down-
stream experiments. We named our method PLAIDOH,
for Predicting LncRNA Activity through Integrative Data-
driven ‘Omics and Heuristics.
PLAIDOH is a new method with modular algorithms

that calculate predictive scores based on several different
measures of transcriptional regulatory control, protein
interaction, and subcellular localization. PLAIDOH inte-
grates transcriptome, subcellular localization, enhancer
landscape, genome architecture, chromatin interaction,
and RNA-binding data, generating statistically-defined
output scores to rank functional connections between

individual lncRNA, coding gene, and protein pairs.
When applied to ‘omics datasets that we collected from
Washington University lymphoma patients [21], or to pub-
licly available cancer (TCGA) [26, 27] or ENCODE data-
sets [1, 28], PLAIDOH accurately identified and prioritized
well-known lncRNA-target gene regulatory pairs (e.g.,
HOTAIR and HOX genes, PVT1 and MYC) [29–35], posi-
tive hits in a CRISPRi lncRNA growth screen [28], and
lncRNA-protein binding partners (e.g., NEAT1 and
NONO) [36]. Importantly, PLAIDOH also identified novel
putative functional interactions, including one lymphoma-
associated lncRNA based on analysis of data from our hu-
man Non-Hodgkins Lymphoma study [21, 37]. We vali-
dated PLAIDOH’s predictions for this lncRNA using
knock-down and knock-out experiments in lymphoma cell
models. In summary, we show that PLAIDOH fills an im-
portant void with a facile method to predict the function of
lncRNAs in a variety of systems, and to accelerate valid-
ation and follow-on experimental studies to better
characterize lncRNAs.

Results
Hundreds of LncRNAs are dysregulated in lymphoma and
Normal B cells
We have previously demonstrated that deregulation of B
cell signaling and activation pathways via perturbed en-
hancer activity and transcription factor expression pro-
motes survival and proliferative pathways and may drive
human lymphoma pathogenesis [21, 37]. However, the
mechanisms underlying these changes have not been fully
characterized. To address this knowledge gap, we sought
to identify long non-coding RNAs that may be involved in
lymphoma pathogenesis. We built an RNA-seq analysis
pipeline designed to discover novel (not previously anno-
tated) long non-coding RNAs, and to quantify expression
of all known and novel RNA transcripts in our primary
NHL and normal B cell samples (Fig. 1a-b).
Similar to previous reports [1, 38], we found that puta-

tive novel single exon lncRNA transcripts are abundant,
representing 74% (191,762 of 259,429 unique transcripts
detected) (Additional file 1: Figure S1A). However, these
novel unspliced transcripts exhibit very low expression
(mean FPKM 0.18) compared to novel multi-exon spliced
transcripts (mean FPKM 7.3) or annotated (known) single
or multi-exon lncRNA transcripts (mean FPKM 10.98)
(Additional file 1: Figure S1B). In addition, single exon
transcript expression was inconsistently detected across
samples: only 10% of transcripts were detected in 10% or
more of samples; 80% of novel unspliced transcripts were
detected in only 1 sample. In contrast, 60% of annotated
lncRNA transcripts were detected in more than 10% of
samples, and nearly 90% of protein coding gene transcripts
were detected in at least 10% of samples (Additional file 1:
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Figure S1C). We reasoned that experimental study of
lncRNAs with very low expression levels or those
detected in < 10% of samples would be challenging,
and of questionable relevance to the majority of pa-
tients with lymphoma. Moreover, some studies have
suggested that spliced, multi-exon lncRNAs may be
more likely than unspliced lncRNAs to play defined

roles in cellular homeostasis [39]. For these reasons,
we focused on multi-exon spliced lncRNAs for subse-
quent analyses.
We next sought to identify potentially lymphomagenic

lncRNAs for targeted mechanistic studies in lymphoma
models. Expression in lymphoma compared to normal B
cell samples revealed 1464 significantly altered RNAs (log2

A B

C D

Fig. 1 Hundreds of lncRNAs are dysregulated in NHL compared to normal B cells. a Schematic depicts collection, flow cytometry purification, and
‘omics profiling of malignant and normal B lymphocytes from NHL patients and healthy volunteers [21]. b Diagram of NHL lncRNA discovery pipeline.
RNA-seq data was analyzed using a de novo processing pipeline to enable identification of novel transcripts (Cufflinks). Novel RNA transcripts were
merged with annotated transcripts (Cuffmerge). c Volcano plot highlights lncRNA transcripts with significantly different expression in NHL tumor
samples compared to normal B cells (red). Relative expression of lncRNA transcripts shown in log2 fold change expression (FPKM) versus –log10
adjusted p value (FDR, Benjamini&Hochberg) for NHL:normal B cells. d Data as in C, with different types of lncRNAs highlighted in
different colors (red: annotated lncRNAs, blue: intergenic lincRNAs, green: novel (not annotated) lncRNAs
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fold change > 1, FDR < 0.05). These were distributed among
coding mRNA, annotated lncRNA, and novel spliced
lncRNA (Fig. 1c).The novel spliced lncRNAs exhibited
a larger difference in mean fold change and higher
average expression level (Fig. 1d and Additional file 1:
Figure S1B). These significantly altered coding genes
were enriched in immune response and immune sig-
naling, transcriptional regulation, and cell cycle path-
ways, consistent with our previous analyses of Follicular
Lymphoma [21]. The same enrichment analysis cannot be
performed for lncRNAs because databases of lncRNA
functions and pathways do not yet exist in standardized
forms, and therefore lncRNA gene symbols are generally
not included in the output from ontology and pathway
annotation tools.

Overview of PLAIDOH pipeline and modular algorithms
An overview of the PLAIDOH pipeline and selected
example output graphs are shown in Fig. 2. LncRNAs have
been categorized in many ways: including by function,
localization, size, and site of transcription [2, 39]. Func-
tionally, a simple separation can be made between
lncRNAs that impact gene transcription, those that act
post-transcriptionally to alter protein expression, and
those that act in other cellular pathways (Fig. 2a). Our goal
was to develop a method robust enough for smaller data-
sets such as those generated by a single lab, rather than a
large consortium (e.g., TCGA). Thus, we focused our pipe-
line and algorithms on experimental data, rather than on
motifs or binding predictions. We first focused on modu-
lation of gene expression (cis-regulatory), because these
are generally thought to be the largest group of
lncRNAs [2, 39], and because publicly available RNA-
seq datasets provide gene regulatory input and output
data (i.e., expression) upon which to train a predictive
method. We reasoned that a predictive tool could be
further improved by the inclusion of transcriptional
control mechanisms, such as data from epigenetic pro-
files, enhancer and super-enhancer landscapes, and
genome architecture. For trans-regulatory lncRNAs, we
incorporated RNA-binding protein interactome and
subcellular localization data. We incorporated these
normalized and statistical data with regression analyses
to generate predictive scores for each potential function
and protein or gene partner (Fig. 2b, Additional file 2:
Table S1). These statistically ranked output scores can
be tailored for prioritization of top hits based on user
preference. Thus, PLAIDOH is a simple, user-friendly
informatic pipeline and set of algorithms that integrates
genome, transcriptome, and interactome datasets and
calculates three predictive scores based on several dif-
ferent measures of transcriptional regulatory control,
protein interaction, and cellular pathway.

Expression correlation identifies potential regulatory
relationships
We posited that an initial measure of a lncRNA’s effect
on a coding gene’s expression is correlation of expres-
sion between the two transcripts, which may be positive
or negative. We sought to calculate the most statistically
robust associations given that most experimental -omics
datasets, including our NHL/normal B cell data, are rela-
tively small and/or heterogeneous (e.g., derived from
outbred humans). Therefore, we focused on local coding
genes, defined as those within 400 kb flanking a lncRNA.
We chose this total distance (800 kb) because it is the
size of an average topologically associated domain
(TAD) [40]. Each lncRNA had a median of six coding
genes within 400 kb flanks (range: 0–68), though these
numbers varied by reference annotation used for each
dataset and the number of lncRNAs defined therein. There
was no significant association of lncRNA expression level
with distance to coding genes (Fig. 3a, Additional file 3:
Figure S2A). Moreover, separating lncRNAs into groups
defined by location relative to coding genes (overlapping,
anti-sense, or distal) revealed that overlapping and anti-
sense lncRNAs did not have higher expression than distal
lncRNAs (Additional file 3: Figure S2B).
Next, we calculated the Spearman correlation coefficient

and adjusted p value for each lncRNA-coding gene pair
(LCP) within 400 kb on either side of each lncRNA across
all samples. We observed that a greater number of LCPs
located close together (< 5 kb) had significant expression
correlation (adj p < 0.05) compared to those located fur-
ther apart (Fig. 3b, Additional file 3: Figure S2C). As
expected, the expression correlation of LCPs containing
antisense or coding-gene overlapping lncRNAs had more
significant p values as compared to distal, though a subset
of these distal LCPs showed a highly significant cor-
relation, suggesting they may have a regulatory role
(Additional file 3: Figure S2D).

Enhancer activity, proximity, and chromatin interaction
associate with higher LCP correlations
A large proportion of lncRNAs are known to overlap
with enhancer elements and some have been shown to
be involved with enhancer-mediated transcriptional con-
trol [1, 2, 5]. Location of a lncRNA gene within 1 kb of a
FANTOM enhancer has recently been shown to be sig-
nificantly associated with lncRNAs that modified cell
growth upon CRISPRi targeting [28]. Consistent with
these and other reports, we observed an increase in the
average expression level of lncRNAs located close to
FANTOM enhancers, for both positively and negatively
correlated LCPs (Fig. 3c). We also observed that a
greater number of LCPs located close to FANTOM
enhancers (< 100 kb) had significant expression
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correlation (adj p < 0.05) compared to those located fur-
ther away from enhancers (Fig. 3d).
Super-enhancers (SE) are dense clusters of very active

enhancers that drive the transcription of genes involved
in cell identity [41]. LncRNAs associated with SE have
been linked to key developmental processes and master
transcription factors in hematopoietic, cardiac, and
embryonic stem cells [42–46]. Therefore, we reasoned
that lncRNA expression level may be correlated with
co-localization with SEs. However, we found no enrich-
ment of lncRNAs located within SEs compared to

conventional enhancers. In fact, conventional enhancers
harbored significantly more lncRNAs per kb than SEs
(Additional file 4: Figure S3A). Moreover, we found no
difference in expression between lncRNAs within SEs
compared to those in conventional enhancers, but those
not in enhancers had significantly higher expression
(Additional file 4: Figure S3B). We next separated
lncRNAs into those that are intergenic (do not overlap a
coding gene) and those that are intragenic (at least 1
base pair overlap with a coding gene). This separation
demonstrates that lncRNAs that are not located within
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any enhancer, but do overlap a coding gene, exhibited
significantly higher expression levels compared to any
other group. This group of intragenic, non-enhancer
lncRNAs includes lncRNAs entirely encompassed within
introns as well as anti-sense lncRNAs (Additional file 4:
Figure S3C).
We next reasoned that quantitative measurement of

regulatory activity would provide additional metrics by
which to rank lncRNAs by transcriptional control cap-
acity. To discriminate transcriptional regulation by
enhancers overlapping lncRNA gene loci from regulation
mediated by lncRNA transcripts themselves, we incorpo-
rated chromatin landscape and genome architecture
metrics for the region surrounding each lncRNA locus

(400 kb). For enhancer activity, we included chromatin
immunoprecipitation sequencing data (ChIP-seq) for
H3K4me1 and H3K27ac, which are histone modifica-
tions associated with all enhancers or active enhancers,
respectively, and for H3K4Me3, which marks active pro-
moters. The p values (−log10) for ChIP-seq peaks over-
lapping lncRNA genes were used as a measure of
normalized enhancer activity [47, 48]. As expected, for
the activating H3K4me3 and H3K27ac marks, higher
activity was associated with increased lncRNA expres-
sion, especially for H3K4me3, while little effect on ex-
pression was observed for the H3K4me1 modification,
which marks both active and inactive enhancers
(Additional file 4: Figure S3D). In contrast, there was
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little to no effect of epigenetic activity on the expression
correlation between LCPs (Additional file 4: Figure S3E).
Taken together, these results suggest that enhancer acti-
vity, as well as proximity to enhancers and coding genes,
contribute to lncRNA expression level but do not provide
sufficient information to predict lncRNA function, and
therefore additional information was needed.
Enhancers often regulate gene expression by direct phy-

sical interaction with target gene promoters via transcrip-
tional control proteins (activators, repressors, transcription
factors, epigenetic modifiers). This interactive conformation
is referred to as chromatin looping or genome architecture
and can be measured by Chromatin Interaction Analysis by
Paired-End Tag Sequencing (ChIA-PET) [40, 49–52].
ChIA-PET interaction scores [49, 52] reflect the relative
frequency of the interaction between two genomic frag-
ments, bound by an immunoprecipitated protein. As
shown in Additional file 5: Figure S4A and B, there is a
relative enrichment of POL2RA ChIA-positive LCPs with
higher ChIA scores among those that are located more
closely in genomic space, as would be expected. In addition,
there are a greater number of LCPs with significant ex-
pression correlations (Spearman adjusted p-values < 0.05)
located close together Additional file 5: Figure S4C).
To modulate transcription of another gene, a lncRNA

must be located in the nucleus. On the other hand,
post-transcriptional regulation or functions unrelated to
gene expression (e.g., regulation of mRNA translation,
modulation of protein signaling activity, etc.) require
cytoplasmic localization. Therefore, PLAIDOH incorpo-
rates data from subcellular fractionation RNA-seq [1] to
calculate nuclear:cytoplasmic ratios of total RNA tran-
script for each lncRNA. We selected this data source
because it provided subcellular localization for a larger
number of lncRNAs than another database [53] and
because the data is derived from the same cell types
used in our analyses (ENCODE cell lines, B cells). We
observed a trend toward higher correlation coefficient
values with higher nuclear:cytoplasmic ratios, though again
only for the positively correlated LCPs (Additional file 5:
Figure S4D). These results underscore that multiple mecha-
nisms contribute to transcriptional control, and therefore
PLAIDOH integrates data from each of them to make
functional predictions for individual lncRNAs.

PLAIDOH distinguishes poly- versus mono-genic
regulatory patterns
In evaluating the potential of lncRNAs for transcrip-
tional regulatory control, we observed that some
lncRNAs demonstrated distinct patterns of correlative
expression relative to the coding genes within their local
genomic environment. We sought to differentiate
lncRNAs that correlate with all, some, or only one gene

within 400 kb up- or down-stream, since these patterns
may indicate different transcriptional control mecha-
nisms: generalized contribution to transcriptional acti-
vity in a locus versus regulation of a specific gene. To
segregate these distinct patterns, we devised two new data
visualizations and applied them to data from acute
myeloid leukemia (AML) from TCGA [26]. First, we cre-
ated a 3-dimensional frequency matrix surface plot to
show the frequency of LCPs for a specific number of
significantly correlated coding genes versus the total cod-
ing genes within 400 kb flanking the lncRNA. This con-
tour plot effectively segregates lncRNAs that are
significantly correlated with large numbers and high pro-
portions of neighboring coding genes (Fig. 4a). We high-
light two such lncRNA pairs that are correlated with large
clusters of coding genes (Fig. 4b). The expression of
AC004076.2 is significantly and positively correlated with
a large cluster of zinc finger KRAB repressor domain-
#containing proteins. This correlation is in contrast to the
other lncRNA genes in this locus, suggesting a specific
transcriptional control relationship between this lncRNA
and this cluster of zinc-finger transcriptional repressors.
The second example is lncRNA U91328, whose expression
is significantly and negatively correlated with a cluster of
Histone H1 genes. Histone H1 linker histone proteins
interact with DNA between nucleosomes and are involved
in chromatin condensation, nucleosome remodeling,
regulation of transcription, and DNA replication. Histone
H1 genes are mutated in some hematopoietic cancers;
they exhibit altered and heterogeneous expression
within tumors; and silencing of these genes is associ-
ated with maintenance of self-renewal capacity in
tumor cells [54–57]. These two lncRNAs exemplify
the ability of PLAIDOH analysis and the 3-D fre-
quency matrix plot to visually highlight lncRNAs that
correlate with and may contribute to the transcrip-
tional control of a large number and/or large propor-
tion of coding genes.
Next, we sought to identify individual lncRNAs that

are significantly more correlated with a single coding
gene compared to all others in the 400 kb flanking
regions. We identified such “outliers” by calculating
the Z-scores of the Spearman correlation of each LCP
for a given lncRNA, to identify those with the correl-
ation that most deviates from the rest of the LCPs.
Plotting these by genomic distance from the lncRNA
visually highlights those with the highest Z-scores
(Fig. 4c); two examples are shown in Fig. 4d. Among
many coding genes in its 400 kb neighborhood,
LINC01431 is significantly correlated only with nearby
NXT1. The two genes are transcribed from the op-
posite strands such that their 3′ ends are within 2 kb,
but they do not overlap or share a promoter/TSS.
NXT1 codes for an essential nuclear transport factor
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involved in the export of mRNA and small RNA mole-
cules from the nucleus [58, 59]. Strong correlation with
a single coding gene is not limited to those located
close together, however. Another lncRNA,
RP11-420A23.1, is significantly correlated only with PLK4,
which is located 391 kb away. PLK4 codes for Polo-like
Kinase 4, one of a family of serine-threonine kinases
that regulates centriole duplication during mitosis and
is a target of inhibitors currently in Phase III clinical
trials for AML [60, 61]. Thus, this feature of PLAI-
DOH analysis can identify highly specific and differen-
tial correlative relationships between lncRNAs and
coding genes that may indicate transcriptional control
of a single coding gene.

PLAIDOH identifies Cancer-type specific and recurrent
LCPs
Thus far, we have only applied PLAIDOH to monotypic
datasets (all one cell or one tumor type) or to small
datasets from a few cell lines. We next sought to eva-
luate whether similar regulatory patterns were observed
for lncRNAs across diverse human cell types and from
large sample sets. In terms of number of primary human
samples, the largest and most diverse -omics study to
date is The Cancer Genome Atlas (TCGA) [26, 27]. We
compared five different cancer types from TCGA,
including epithelial and hematopoietic lineage (acute
myeloid leukemia, AML; breast cancer, BRCA; cervical
cancer, CESC; diffuse large B cell lymphoma, DLBC; and

A

C

D

B

Fig. 4 PLAIDOH ranks lncRNAs by number and fraction of correlated coding genes. a Contour plot shows the frequency of significant LCPs
numbers as a function of the number of all possible coding gene pairs for each lncRNA. Color indicates increasing log10 frequency of LCPs at
each x,y data point (white-blue-green). Highlighted in red are two LCPs in which single lncRNAs are each highly-correlated with large clusters of
coding genes. b Genomic maps of the two LCPs shown in a. c Z-Scores of LCP correlation coefficients plotted by distance between each lncRNA
and coding gene pair; positively correlated LCPs are plotted in the left panel and negatively correlated LCPs are in the right panel. Highlighted in
red are LCPs in which single lncRNAs are correlated with only one coding gene. d Genomic maps of the LCPs shown in c
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lung adenocarcinoma, LUAD). The Venn diagram and
heatmap in Fig. 5a-b show that these cancers have com-
mon and distinct sets of significant positively or negatively
correlated lncRNA-coding gene pairs. The majority of
these (56%) are significant in only one cancer type (can-
cer-specific) and less than 2 % (1.8%) are significant in all
five cancer types (cancer-recurrent). Negatively correlated,
significant LCPs comprise a much smaller subset that is
almost exclusively cancer-type specific (Additional file 6:
Figure S5A-B). These results likely reflect the known
cell-type specificity of lncRNA expression patterns, and
may indicate that the observed specificity is due to the role
of lncRNAs in transcriptional regulation.
In Fig. 5c-h, we highlight examples of cancer-specific

and cancer-recurrent LCPs. The cancer-specific pattern
is exemplified in the STAG1 locus, in which three of four
genes within the 800 kb window are significantly corre-
lated with AC096992.2 in AML (Fig. 5c). STAG1 is a
ubiquitously expressed component of the cohesin com-
plex that stabilizes topologically associating domain
(TAD) boundaries with CTCF [62]. Mutations in STAG1
and other cohesin complex genes are recurrent in AML
[63]; cohesin dysfunction leads to alterations in gene
regulation that contribute to leukemogenesis [64]. NCK1
is adaptor protein that is downstream of receptor tyro-
sine kinase and STAT3 signaling; both NCK1 and the
other correlated gene, SLC35G2, may be involved in
colorectal cancer pathogenesis [65, 66]. AC096992.2
exhibits much higher expression in AML (Fig. 5d) and is
more highly correlated with neighboring genes in AML
compared to the other cancer types (Fig. 5e). This effect
was not due to generally higher expression of all of the
neighboring genes in AML compared to the other can-
cer types (Additional file 6: Figure S5C), and levels of
nearby active and enhancer-associated histone marks
H3K27ac and H3K4me1 were not consistently higher in
AML compared to the other tumors (Additional file 6:
Figure S5D). These results suggest that lncRNA
AC096992.2 itself may play a cis-regulatory role in the
transcription of multiple neighboring genes.
The cancer-recurrent pattern for an LCP is exempli-

fied in the EVI2/ADAP2 17q11.2 locus (Fig. 5f-h), which
is associated with Neurofibromatosis type 1 microdele-
tion syndrome, a severe phenotype with overgrowth and
increased neurofibromas [67, 68]. Of the 9 coding genes
and one other lncRNA in this locus, expression of
AC138207.5 is significantly correlated with ADAP2 in all
five cancer types, and with EVI2A/B in most of the five
cancer types (Fig. 5f-g). ADAP2 is a ubiquitously
expressed GTPase activating protein for ARF6 that acts as
a scaffold in innate immune and membrane inositol phos-
phate signaling pathways [69–71]. EVI2A and EVI2B are
named for being ecotropic viral integration sites; EVI2B
expression is altered in some types of AML and is a

regulator of hematopoietic stem/progenitor cell and mye-
loid differentiation [72]. These results suggest that
lncRNA AC138207.5, which exhibits robust expression
across the five cancer types (Fig. 5h), may play a cis-regu-
latory role in the transcription of multiple neighboring
genes in diverse cancer types. We note that this feature of
PLAIDOH could also be used for customized compari-
sons between user-provided experimental groups (e.g.,
tumor:normal, treated:control, developmental stages, or
time points).

PLAIDOH segregates LncRNAs by putative transcriptional
control mechanism using enhancer and LncRNA transcript
Cis-regulatory scores
Up to this point, we have evaluated the contribution of
discrete transcriptional regulatory mechanisms that may be
part of lncRNA function. Our next step was to integrate
these distinct measures into a unified predictive model.
Therefore, we devised two scores designed to reflect the
relative evidence of enhancer- or lncRNA transcript-medi-
ated (“cis”) transcriptional control. The Enhancer score in-
corporates data from measures of transcriptional control
by enhancer regulatory elements: overlapping
enhancer-associated H3K4me1 and active enhancer-associ-
ated H3K27ac levels for each lncRNA, and the presence
and relative strength of chromatin looping between the
lncRNA and the coding gene pair as measured by
ChIA-PET [49, 52] (see Methods). The lncRNA transcript
cis-regulatory score gives greater weight to data associated
with the lncRNA transcript itself. This score is calculated
from the adjusted p-value of the Spearman LCP corre-
lation, the level of overlapping promoter-associated
H3K4me3 activity, and the fraction of lncRNA transcript
localized in the nucleus (see Methods).
To validate the enhancer and lncRNA transcript cis-re-

gulatory predictive scores, we calculated these scores for
all LCPs across several different ENCODE cell lines
(K562, HeLa, U87, MCF7, MDA-MB-231) and in five can-
cer types from TCGA (AML, BRCA, CESC, DLBC,
LUAD). Ranking the LCPs from least to greatest for each
score revealed an inflection point in the distribution of
scores. We geometrically defined the inflection point as
the cut-off for high predictive scores (see Methods).
Ranked plots from ENCODE and TCGA datasets show
several lncRNAs and their known coding gene cis-regula-
tory targets among the highest lncRNA transcript and
enhancer cis-regulatory scores (Fig. 6 and Additional file 7:
Figure S6, red points), including HOTAIR and HOTAIRM1
and HOX genes [29–34], XIST/FTX/JPX and CHIC1
[73–76], lincRNA-p21(PANDAR) and CDKN1A(p21,
77]. Also ranked highly by PLAIDOH’s enhancer
cis-regulatory score are LINC00263 and its paired coding
gene SCD (Fig. 6b). LINC00263 was a validated hit in a
CRISPRi cell growth screen in ENCODE cell lines using
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dCas9-KRAB to epigenetically repress lncRNAs [28].
Similarly, PVT1 has a very highly ranked enhancer cis-re-
gulatory score, was also a CRISPRi hit in ENCODE breast
cancer cell lines [28], and demonstrated to inhibit MYC
expression in cis via promoter competition for common
enhancer elements [35]. Many of these LCPs were also
ranked highly by enhancer cis-regulatory score in multiple
TCGA cancer types (Fig. 6e and Additional file 7: Figure
S6). The role of lncRNAs in the pathogenesis of
Non-Hodgkin B cell Lymphoma (NHL) has not been

extensively evaluated. In samples from TCGA DLBCL,
which are a type of NHL, we identified several lymphoma
oncogenes within LCPs with high enhancer or transcript
cis-regulatory scores, including anti-apoptotic factors
BCL2L2 (BCL-W) and BCL2L1 (BCL-XL), BCL6, and
BCL7A, suggesting that the paired lncRNAs may play a
role in the transcription of these lymphoma-associated
genes (Fig. 6d-f, green points). These and other
top-scoring LCPs in cancer cell lines and other TCGA
cancer types have not been previously reported, and may
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Fig. 5 LncRNAs demonstrate common or cancer-type specific correlation profiles. a Venn diagram shows the number of significant LCPs shared
or unique among five TCGA cancer types. Significant = Spearman correlation adj p < 0.05 for LCP expression. b Binary heatmap shows the pattern
of correlation significance for LCPs across TCGA cancer types. Spearman adj p < 0.05 (purple); p > 0.01 (white). c Heatmap of LCP Spearman
correlation p-values for expression of AC096992.2 and each of the genes within 400 kb. Spearman adj p < 0.01 (purple); p < 0.05 (blue); p≥ 0.05
(white). d Bar graph shows expression of AC096992.2 in TCGA cancer types. e Box plot shows Spearman correlation coefficients (rho) for
expression of AC096992.2 and all genes within 400 kb flanking. f Heatmap of LCP Spearman correlation p-values for expression of AC138207.5 and
each of the genes within 400 kb flanking. Colors as in C. g Bar graph shows expression of AC138207.5 in TCGA cancer types. h Box plot shows
Spearman correlation coefficients (rho) for expression of AC138207.5 and all genes within 400 kb flanking
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A B C

D E F

Fig. 6 PLAIDOH ranks LCPs by likely transcriptional regulatory mechanism, inferred from Enhancer and LncRNA Cis-regulatory Scores. a-f Plots
show LCPs from ENCODE cell lines (a-c) or TCGA DLBC samples (d-f). a & d Plots show LCPs ranked by increasing LncRNA Transcript Cis-regulatory
Scores. Red points are known cis-acting lncRNAs; in green are novel LCPs with the highest scores and/or containing known lymphoma oncogenes. b
& e As in A&D, but ranked by increasing Enhancer Scores. Highlighted in red are known enhancer-associated lncRNAs; in green are novel LCPs with
the highest scores and/or containing known lymphoma oncogenes. c & f XY plots show Enhancer versus LncRNA Transcript Cis-regulatory Scores
segregating LCPs. Dotted lines in a-f reflect score cut-offs based on the geometric inflection points calculated from the data in a, b, d & e. Red and
green data points are from a & b (for c), or d & e (for f)
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represent novel lncRNA cis-regulatory relationships
(Fig. 6 and Additional file 7: Figure S6, green points).
When both scores are plotted together on an XY

graph, the score cutoffs define 4 quadrants, with distinct
potential functional interactions for the LCPs within
them (Fig. 6c & f, and Additional file 7: Figure S6C,F,I,L).
For all datasets, the vast majority of LCPs (84.2–89.5%)
cluster in quadrant one, with low scores for both enhan-
cer and lncRNA transcript cis-regulatory function and
the lowest median expression levels for lncRNA and
coding genes (0.05–0.23 and 1.36–3.36 FPKM, respec-
tively). These results suggest that, for the majority of
potential lncRNA coding gene pairs, the coding gene’s
transcription is not controlled by either the lncRNA or
its overlapping enhancer. Quadrant two contains far
fewer LCPs (3.43–8.01%), and is defined by high enhan-
cer scores, low transcript cis-regulatory scores, and rela-
tively higher median lncRNA and coding gene transcript
levels (0.25–0.65 and 5.02–6.59 FPKM, respectively).
Location of an LCP in quadrant two suggests that tran-
scriptional control of the paired coding gene may be
mediated through the lncRNA’s overlapping enhancer
element, and that lncRNA transcripts here may function
via epigenetic mechanisms, e.g. recruitment of chromatin
modifiers and/or facilitating chromatin looping. Indeed,
several lncRNAs known to act via such epigenetic cis-regu-
latory control of coding gene partners are located in quad-
rant two (LINC00263—SCD, PVT1—MYC, and PANDAR/
lincRNA-p21--CDKN1A Figs. 6c & f) [28, 35, 77]. Quadrant
three is defined by high scores for both enhancer and
lncRNA transcript cis-regulatory control, contains the
fewest LCPs (1.35–3.06%), has the highest median lncRNA
expression and nearly the highest coding gene expression
(0.43–1.34 and 5.26–7.23 FPKM, respectively). Thus, quad-
rant three may represent the strongest regulatory relation-
ships between lncRNAs and the paired coding genes, with
evidence for both enhancer-mediated and transcript-medi-
ated cis-regulatory mechanisms, resulting in relatively
higher expression of both groups (e.g., PTPRG-AS1—
PTPRG, KLHL6-AS1—KLHL6 Figs. 6c & f. Finally,
2.8–6.0% of LCPs are located in quadrant four, which
is defined by a high lncRNA transcript cis-regulatory
score, a low enhancer score, and relatively lower me-
dian expression levels for both lncRNAs and coding
genes (0.3–1.1 and 2.9–4.5 FPKM, respectively). Loca-
tion in this quadrant may indicate that, independent of en-
hancer augmentation, lncRNA cis-regulatory control may
be possible, albeit with relatively lower target coding gene
expression levels. The predictive power of assignment to
quadrant four is validated by lncRNAs known to regulate
expression of coding gene pairs via transcript-mediated cis--
regulatory mechanisms, including HOTAIR—HOX genes
[29–34] and XIST/JPX/FTX--CHIC1 [73–76]. Thus, PLAI-
DOH integrates global measures of transcriptional control

to calculate scores that predict the relative likelihood of
distinct cis-regulatory control mechanisms, which are con-
sistent with published reports for many lncRNAs as
shown here.

PLAIDOH compares favorably to lncRNA CRISPR screens
and other lncRNA analytical tools
To further test how well PLAIDOH’s predictions of tran-
scriptional regulatory function coincide with lncRNAs’
experimentally-defined function, we compared PLAI-
DOH’s Enhancer and lncRNA Transcript cis-regulatory
scores with the results of several published CRISPR
lncRNA screens. Each screen used a different CRISPR
approach: knock-down (CRISPR-KRAB), knock-out, and
activating (CRISPR-CaLR) [28, 78, 79]. The knock-down
and KO screens used readouts of cell proliferation/
growth as readouts, while the activating CRISPR screen
used susceptibility to AraC (alkylating chemotherapeutic
agent). Thus, these screens identified lncRNAs that
affect cell growth (or cell growth in the setting of AraC
treatment), while PLAIDOH identifies lncRNAs that
modulate the expression of other genes (LCPs) or inter-
act with RNA-binding proteins, regardless of their effect
on cell growth. Additional file 8: Figure S7A shows that,
overall, PLAIDOH’s Enhancer and lncRNA Transcript
cis-regulatory scores are significantly higher in hits com-
pared to non-hits for the CRISPR-KRAB screen. The
significant difference in both enhancer and transcript-
#mediated regulatory scores is not surprising given that
the KRAB knock-down is mediated via suppressive epi-
genetic marks targeted to the lncRNA region, and there-
fore would likely suppress both lncRNA transcription
and enhancer activity [28]. Overall, these results suggest
that lncRNAs with higher PLAIDOH scores may be
more likely to have functional cellular effects when
suppressed.
Next, we compared to validated lncRNA hits from the

CRISPR KO [78] and activating screens [79] (Additional
file 8: Figure S7B&C). Of the validated lncRNAs with suf-
ficient data for PLAIDOH analysis, the majority had
PLAIDOH Enhancer or Transcript Cis-Regulatory scores
above the cutoffs: 11/15 (73.3%) from the CRISPRa screen
and 9/14 (64.3%) from the CRISPR KO screen. Further
confirmation of PLAIDOH’s prioritization scores is evi-
denced by several validated anti-sense (AS) lncRNAs in
the CRISPRa screen. For all but one (RERG-AS1), PLAI-
DOH’s scores were above the cutoffs for Enhancer or
Transcript cis-regulation (Quadrant 2 or 4, respectively),
and the highest scores were for the matched coding gene.
The low (Quadrant 1) score for RERG-AS1--RERG was
due to low expression levels in both the lncRNA and the
coding gene (0.0036 and 0.014 FPKM) and lack of over-
lapping active chromatin marks, though there is a high
scoring CHIA interaction. Taken together, these results
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suggest that the lncRNAs’ effects on cell growth may be
mediated through modulation of the expression of nearby
coding genes, which were identified by PLAIDOH.
During PLAIDOH’s development, we compared it to

other available lncRNA analysis methods and tools.
Because lncRNAs are still a relatively new class of genes,
many of the available tools were limited to processing and
analyzing RNA-seq data, identifying and annotating
known and novel lncRNA transcripts [23, 80, 81]. In con-
trast, we designed PLAIDOH to address the functional
knowledge gap for lncRNAs by analyzing transcriptome,
epigenome, 3D-genome interaction, cellular localization,
and RBP-lncRNA interactome data to make functional
predictions for lncRNAs. Thus, here we will compare
PLAIDOH to other informatic tools or methods that
perform similar analyses. One of these, called lncRNA-
screen, comprises a pipeline that processes RNA-seq data
to identify known and novel lncRNAs, and integrates
ChIP-seq and Hi-C data [24]. Like PLAIDOH, lncRNA-
screen outputs a table of data related to each lncRNA.
However, the table contains discrete data only; there is no
integration into a predictive or rankable score as PLAI-
DOH calculates. Also, like PLAIDOH, lncRNA-screen
generates graphical output, but in the form of heatmaps
and genome snapshots, which are useful for a global over-
view or for visualization of a specific locus. Again, these
graphical outputs do not display prioritize lncRNAs by in-
dividual metrics or integrated scores, nor do they compare
potential functions of individual lncRNAs side-by-side. By
contrast, PLAIDOH generates two types of cis-regulatory
score for individual lncRNA-coding gene pairs, as well as
analyzing and integrating RNA-binding protein inter-
actome data (described further below). Direct comparison
of a specific example, lncRNA CTD-2006C1.2, shows that
lncRNA-screen and PLAIDOH both identified ZNF44 and
ZNH439 as potential cis-regulatory targets. However,
PLAIDOH provides individual cis-regulatory scores for
each LCP (18.7 and 26.6, respectively) and also
identifies another coding gene, ZNF20, with a higher
cis-regulatory score (27.7) and stronger expression
correlation (rho = 0.849, adj p < 2.2 × 10^-16).
Another group developed an analytical approach that

combined methods to predict lncRNA regulatory networks
[22]. The Pan-cancer analysis of the tumors in TCGA inte-
grated transcriptome and eCLIP data with transcription
factor and lncRNA binding motifs, to predict lncRNA
regulatory networks and categories of lncRNA function
(transcriptional, post-transcriptional, or both). Unlike
PLAIDOH, the Pan-cancer method does not incorporate
epigenome data, which would provide direct evidence of
regulatory activity near or overlapping lncRNAs. The
Pan-cancer method predicts many regulatory targets for
individual lncRNAs, and these targets can be located any-
where in the genome. PLAIDOH also identifies multiple

targets of individual lncRNAs but focuses on 800 kb
genomic windows for transcriptional regulatory relation-
ships and provides rankable scores for each pair to enable
prioritization. Because of these differences in the outputs
of the Pan-cancer analysis and PLAIDOH, we focused our
comparison on lncRNAs ranked highly by the former, and,
in some cases, validated by siRNA knock-down [22]. Of 43
lncRNAs predicted to regulate gene expression in TCGA
cancers by Pan-cancer, 31 had high PLAIDOH Enhancer
and/or lncRNA transcript cis-regulatory scores (72.1%,
Additional file 8: Figure S7D). These concordant results
demonstrate that, while the Pan-cancer method and PLAI-
DOH incorporate different approaches, there is substantial
overlap in highly ranked lncRNAs.
Taken together, comparison of PLAIDOH to lncRNA

CRISPR screens or to other analytical methods or tools
demonstrates that PLAIDOH’s predictive transcriptional
regulatory scores are corroborated by these orthogonal
approaches. Moreover, PLAIDOH has some unique fea-
tures that provide the user with functionality not yet
found in other tools/methods.

PLAIDOH integrates biological metrics to stratify LncRNA-
protein Interactomes
Having defined scores to predict lncRNA cis-regulatory
transcriptional mechanisms, we next turned to incorporat-
ing data measuring of other potential lncRNA functions.
A major category of function not yet addressed by PLAI-
DOH is modulation of protein or pathway activity via dir-
ect binding of proteins or protein complexes [2, 39, 82].
To identify and rank these potential interactions, PLAI-
DOH integrates data from RNA-binding protein (RBP)
immunoprecipitation sequencing studies (eCLIP-seq) in
which the relative strength and significance of the
RBP-lncRNA interaction is given a score based on nor-
malized read depth and specificity controls [82]; for this
analysis PLAIDOH required a maximum interaction score
(see Methods). For corollary confirmatory biological
data, PLAIDOH compares subcellular localization of
the potentially interacting lncRNA and RBP, as deter-
mined by subcellular fraction RNA-seq, Western blot,
and immunofluorescence [1, 82], and outputs a coeffi-
cient of co-localization. Figure 7a shows this interac-
tome localization analysis as an interaction matrix of
lncRNAs and RBPs, in which interaction and co-
localization are color-coded, segregated, and sorted.
Each row represents a lncRNA and each column an
RBP. Grey blocks indicate an eCLIP interaction but the
lncRNA and RBP pair are not co-localized; red, blue, or
purple indicate co-localization of the pair in the cyto-
plasm, nucleus, or in both fractions, respectively. By
sheer number and by percentage of significant binding
interactions, the greatest fractions are comprised of
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lncRNA-RBP pairs with cytoplasmic and/or nuclear
co-localization. By comparing the number of colored
blocks for each, one can appreciate the number of signifi-
cantly interacting RBPs per lncRNA (and vice versa). Most
of the RBPs interact with multiple lncRNAs, which is not
surprising given that the target proteins were selected
based on known RNA-binding function. Many of the
lncRNAs also interact with multiple RBPs, but PLAI-
DOH’s analysis and the interaction matrix shown in Fig. 7a
enable filtering or selection of lncRNA-RBP pairs based
on cellular co-localization and specificity of interaction.
To enable prioritization of lncRNAs, we next inte-

grated additional quantitative data, including lncRNA
and RBP expression levels, number of RBPs bound per

lncRNA (a measure of specificity), and number of RBP
binding sites per kb of spliced lncRNA (a potential
measure of binding strength, normalized for lncRNA
size) for more granular ranking of lncRNA-RBP pairs.
Figure 7b demonstrates how this approach can stratify
lncRNA – RBP pairs by lncRNA and RBP expression,
RBP binding site density, and co-localization in the same
subcellular fraction. The effectiveness of this method is
confirmed by accurate stratification of several lncRNA-
RBP partners, including highly expressed lncRNA
NEAT1 with two different paraspeckle proteins (NONO
and SFPQ) [36, 83], all co-localized in the nucleus; the
moderately expressed telomerase lncRNA TERC with a
relatively high number of RBP sites per kb for the
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telomerase complex-associated protein, dyskerin
(DKC1), which are co-localized in the nucleus [84]; and
the moderately expressed lncRNA HG19, which has
relative few RBP binding sites per kb and acts as a mo-
lecular scaffold to facilitate effective association of K
homology-type splicing regulatory protein (KHSRP) with
labile transcripts [85], both of which co-localize in the
cytoplasm. These results validate PLAIDOH’s approach,
and demonstrate that these integrative analyses enable
filtering and prioritization of lncRNAs based on relevant
biological and experimental data related to lncRNA -
RBP interactomes.
To further validate PLAIDOH’s lncRNA-RBP inter-

actome analyses, we compared to CRISPR screen hits that
had validated growth phenotypes but low PLAIDOH
cis-regulatory scores (Additional file 8: Figure S7B).
RBP-interactome analysis shows that some of these
lncRNAs may function via interactions with RNA-bind-
ing proteins in non-transcriptional pathways (e.g.,
RNAi, ribosome biogenesis, splicing) as indicated by
PLAIDOH analysis of RBP binding, expression levels,
and subcellular localization of these lncRNA-protein
partners (Additional file 9: Figure S8).

Validation of PLAIDOH’s predictions for a lymphoma-
associated lncRNA
We developed PLAIDOH to prioritize and help us to
select a small number of human NHL-associated lncRNAs
to move forward for focused experimental studies. One of
these is highly and recurrently expressed in lymphoma
compared to normal B cells: RP11-960 L18.1 (Fig. 8a). It is
located upstream of the gene that codes for PLCG2, a
phospholipase C family enzyme specific for B lymphocytes
that is activated by B cell receptor (BCR)-associated
kinases upon antigen-mediated BCR stimulation. By con-
verting PIP2 to IP3 and diacylglycerol (DAG), PLCG2
increases intracellular Ca2+ levels and activates B cell sig-
naling pathways, including NF-kB, NFAT, and Ras, and
their downstream gene targets [86]. Located within an
NHL super-enhancer, RP11-960 L18.1 has a high enhancer
cis-regulatory score with PLCG2 (42.1, quadrant two);
while its score with another neighboring gene, CMIP, was
below the cutoff (18.0, quadrant one). The lncRNA tran-
script cis-regulatory scores for both genes are also below
the cutoff (2.9 for PLCG2, 1.5 for CMIP)) (Fig. 8a-b).
These results suggest that transcriptional regulation of
PLCG2 may be through enhancer-mediated mechanisms
rather than via direct activity of the RP11-960 L18.1 tran-
script itself. To test the role of the lncRNA transcript
itself, we used shRNA knock-down and CRISPR knock-
out of RP11-960 L18.1 in lymphoma B cell lines that
highly express RP11-960 L18.1 (HBL1, U2932). Using two
different shRNAs or CRISPR-Cas9 mediated deletion of

the first two exons of RP11-960 L18.1, we successfully
decreased expression of RP11-960 L18.1 by 70–95%. How-
ever, neither mRNA nor protein levels of PLCG2 were
affected (Fig. 8c-d, Additional file 10: Figure S9A-B).
These results suggest that the RP11-960 L18.1 transcript
itself does not substantially modulate the expression of
PLCG2 in B cells, however the overlapping enhancer re-
gion that was left largely intact may have a cis-regulatory
role in control of PLCG2 transcription.
We next sought to determine where RP11-960 L18.1

transcript is localized, given that cytoplasmic localization
is associated with non-transcriptional lncRNA functions.
Subcellular fraction RNA-seq data showed that a greater
fraction of RP11-960 L18.1 transcript was located in the
cytoplasm [1]. Since the RNA-seq data was from normal
B cells, we confirmed it in lymphoma B cell lines (HBL1,
U2932) by subcellular fractionation and qRT-PCR of cyto-
plasmic, nuclear, nucleoplasm, and chromatin-associated
fractions. As shown in Fig. 8e, RP11-960 L18.1 is predom-
inantly localized to the cytoplasm. For comparison, con-
trol mRNA GAPDH is predominantly localized to the
cytoplasm and the CTCF-associated noncoding RNA JPX
is enriched in the nuclear and chromatin-associated frac-
tions [75, 87]. We next evaluated the RBP interactome
of RP11-960 L18.1 using PLAIDOH and our primary
human NHL RNA-seq data integrated with eCLIP-seq
data [21, 82]. This approach revealed that RP11-960
L18.1 interacts with a small number of RBPs, including
ILF3/NF90, KHDRBS1/SAM68, and PUM2, all of
which are highly expressed in the NHL samples (FPKM
14.6–26.4) and also localize to the cytoplasm (Fig. 8f).
Supporting these results, RBP motif scans showed 9
KHDRBS1/SAM68 motifs in the RP11-960 L18.1 tran-
script sequence, all within 300 bp of the 3′ end of the
molecule [88]. The evidence for binding to both SAM68
and PUM2 is intriguing, since interaction with both of
these RBPs was recently reported for NORAD, noncoding
RNA activated by DNA damage, another predominantly
cytoplasmic lncRNA. SAM68 and PUM2 promote gen-
ome stability and cell cycle progression, contributing to
cell proliferation [89–91]. Data from the eCLIP studies
also show that RP11-960 L18.1 has 11 binding sites for
ILF3/NF90, which is highly expressed in the NHL samples
(average 26.4 FPKM). NF90 is a dsRNA binding protein
that forms complexes with several other proteins in dif-
ferent contexts to regulate gene expression, stabilize
mRNAs, and promote cell growth and proliferation in em-
bryonic stem cells as well as cancer cells [92–94]. Taken
together, these results suggest that RP11-960 L18.1 is a
cytoplasmic lncRNA that may function via interactions
with cytoplasmic protein(s) to promote the growth and
proliferation of B lymphocytes.
In summary, our studies describe how our methods

can identify lncRNAs that are significantly dysregulated
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in human lymphoma, as compared to normal B cells. To
predict their function and prioritize these dysregulated
lncRNAs for experimental studies, we developed PLAI-
DOH, an integrative, data-driven approach to accelerate
lncRNA prioritization for functional studies, a heretofore

highly manual process. We demonstrate that PLAIDOH
accurately predicted and prioritized known lncRNA-cod-
ing gene or -RNA binding protein interactions and, im-
portantly, predicted a novel lncRNA function that was
confirmed by experimental studies in lymphoma cell

A

C E

D F

B

Fig. 8 Validation of PLAIDOH’s functional predictions for a lncRNA highly expressed in human NHL. a UCSC Genome browser view of HK4me3
ChIP-seq (NHL) and RNA-seq (NHL, normal B cells) for the RP11-960 L18.1 locus. b XY plot shows Enhancer versus LncRNA Transcript Cis-regulatory
Scores in primary NHL samples, highlighted are RP11-960 L18.1 and the two most proximal coding genes. c Expression of PLCG2 and RP11-960
L18.1 measured by qRT-PCR in HBL1 lymphoma B cell line treated with scramble or one of two RP11-960 L18.1 shRNAs. d Western Blot for PLCG2
or GAPDH in HBL1 cells treated with scramble or one of two RP11-960 L18.1 shRNAs. Triangles indicate relative number of cells loaded on the gel.
e Subcellular localization of RNA transcripts determined by cell-fractionation of control (WT) HBL1 cells followed by qRT-PCR (CP: cytoplasm, NC:
nuclear, NP: nucleoplasm, CA: chromatin-associated). f Plot shows lncRNA expression versus log10 RBP binding-site density per kilobase of RNA
transcript for each lncRNA/RBP interaction, highlighted are RBPs that bind RP11-960 L18.1. Data point size is scaled to RBP expression level and
subcellular localization interactions are colored as in Fig. 7
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models. Thus, PLAIDOH fills an unmet need in the study
of lncRNAs: a flexible, accessible method for prediction
and ranking of functional roles and specific targets of
lncRNAs, expediting the transition to focused experimen-
tal follow-up studies.

Discussion
LncRNAs have emerged as a new frontier of biological
molecules with enormous potential for increasing our
understanding of disease mechanisms and providing new
therapeutic targets. CRISPRi screens and focused mecha-
nistic studies have begun to assign function to a small num-
ber of lncRNAs, but the vast majority remain functionally
uncharacterized. A major obstacle to functional discovery is
the relative lack of established rules or algorithms for func-
tional prediction and prioritization for experimental studies.
After identifying hundreds of lncRNAs significantly altered
in human lymphoma samples, we encountered this obstacle
in attempting to prioritize the lncRNAs for focused experi-
mental studies. Therefore, we developed a bioinformatic
analysis pipeline with modular algorithms that integrates
diverse types of ‘omics datasets (transcriptome, epigenome,
3D-genome, protein interactome) and generates statistically
ranked output scores based on several different measures
of activity level, transcriptional regulatory control, and
protein interaction for selection of top hits for targeted,
mechanistic experiments.
PLAIDOH has several unique features that provide the

user with functionality not yet found in other tools. PLAI-
DOH uses only experimental data in its algorithms, which
is in contrast to other approaches that rely partially or
wholly on binding or motif predictions [22, 95]. We chose
to focus on experimental data because the results of bind-
ing prediction algorithms have not been extensively vali-
dated and their inclusion vastly increases the number of
potential lncRNA interactions, which decreases statistical
power for analyses of smaller and/or heterogeneous data-
sets, such as our NHL patient samples. For transcrip-
tional control analyses, PLAIDOH focuses on coding
genes within 400 kb flanking the lncRNA, though we
would note that this genome window is customizable.
We chose this approach because most lncRNAs with
transcriptional regulatory function characterized to
date act in cis [2, 11, 39]. Unlike most other methods
[23, 24, 80], PLAIDOH integrates multiple measures of
transcriptional control to differentiate enhancer-mediated
and lncRNA transcript-mediated cis-regulatory mecha-
nisms. These measures include ChIP-seq for histone mo-
difications (H3K4me3, H3K27ac, and H3K4me1), which
enable quantitative measurement of regulatory element
activity [48], and ChIA-PET, which quantitatively mea-
sures the genomic interaction of lncRNAs with target
gene loci [49, 52]. By calculating independent scores for
overlapping enhancer activity and lncRNA transcript

cis-regulatory activity, PLAIDOH successfully distinguishes
these distinct mechanisms of transcriptional control, as
demonstrated by identifying known lncRNA-target coding
gene interactions such as PVT1--MYC, HOTAIR--HOX
genes, and lincRNA-p21(PANDAR)—CDKN1A [29–34, 77].
LncRNAs also act in trans in a range of cellular pro-

cesses, including mRNA splicing, protein translation, and
cellular signaling via direct binding to other RNAs or by
acting as scaffolds or guides for proteins and protein
complexes [2, 11, 96]. Prediction of these functional clas-
ses is the most challenging since most ‘omics data (e.g.,
RNA-seq) does not capture these interactions. Indeed,
while binding prediction, co-expression, or network ana-
lysis methods may indicate apparent relationships be-
tween the lncRNA and target RNAs or proteins, these
are indirect measures at best, and their large number of
potential interactions may lead to decreased statistical
power for smaller datasets. We therefore incorporated
eCLIP-seq data for lncRNA – protein interactome ana-
lyses of ENCODE cell lines. These RBP immunoprecipi-
tation studies were extensively validated by shRNA
knockdown and controlled for antibody specificity; RBP
subcellular localization was determined using the vali-
dated antibodies [82]. Integration of eCLIP-seq data with
corollary lncRNA expression and localization data en-
abled prioritization by co-localization, binding specificity,
and expression, identifying both literature-supported and
novel lncRNA-RBP interactions. Using only eCLIP-seq
data for PLAIDOH’s protein interactome input does have
the disadvantage of selection bias: only lncRNAs that
bind to proteins selected for immunoprecipitation will be
assayed, and new lncRNA binding proteins will not be
identified. As new eCLIP-seq (or other RBP-lncRNA
interaction) datasets become available, these can be easily
included in PLAIDOH analyses.
We designed PLAIDOH to be accessible and

customizable for experimental labs with limited compu-
tational resources and time. PLAIDOH’s software and
dependencies are limited to the installation package
(available at GitHub [97]) and R [98], which is free,
available in graphical user interface form (R Studio),
and supported by many online forums and help web-
sites [99]. Because users will have diverse questions to
ask of their datasets, we designed PLAIDOH to be
customizable as to the data sources and types incorpo-
rated, parameters included for ranking, and lncRNA
features or mechanisms of action that are prioritized.
Users have the option to add their own data, or publicly
available data, or a combination, and compare experi-
mental groups. Users may choose to include or exclude
nearly any of PLAIDOH’s parameters for mechanistic
prediction, since there are few required inputs for
PLAIDOH to run successfully. In addition, users can
customize the parameters that are included, or not, in
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the ranking, depending on their experimental design,
scientific question, and/or desired downstream study.
The feature that most distinguishes PLAIDOH from

other lncRNA analysis tools/methods is that it addresses
the most challenging step in ‘omics studies: selecting a
small number of “top hits” for focused mechanistic stu-
dies. This step is particularly challenging in the study of
lncRNAs since there is so little known about their func-
tion and essentially no established ontologies. In other
lncRNA prediction methods, ranking is either unavail-
able or based on only one aspect of lncRNA activity
(e.g., expression, genomic location) [22–24, 100]. In con-
trast, PLAIDOH incorporates several measures of lncRNA
activity, transcriptional control, and protein interaction to
output integrated scores and rankable metrics. This inte-
grated approach is essential for distinguishing among
potential mechanisms of action for a given lncRNA, rather
than merely ranking on individual data types, and is
attainable only when quantitative data is integrated into a
scoring system.
Our goal in developing PLAIDOH was to accelerate

the laborious process of prioritizing and selecting
lymphoma-associated lncRNAs for downstream experi-
mental studies. Here we validated PLAIDOH’s functional
predictions for RP11-960 L18.1, confirming that it is not
a cis-regulatory lncRNA for PLCG2, but rather likely
acts in the cytoplasm by interacting with one or more
RBPs (NF90, KHDRBS1, PUM2) to promote the growth
of lymphoma cells.

Conclusions
In summary, PLAIDOH provides a flexible, accessible
method for the prediction and ranking of functional con-
nections between individual lncRNA, coding gene, and
protein pairs. PLAIDOH fills an important void with a
facile method to facilitate the study of lncRNAs in a variety
of systems, from normal development to cancer. Our
method enables prioritization and ranking based on any
parameter, function, or interaction of interest to the user,
to expedite the transition to focused experimental studies
of lncRNAs. We expect that PLAIDOH will accelerate
validation and follow-on mechanistic studies to better
characterize lncRNAs, which will ultimately provide new
insights into the role of these enigmatic molecules in
normal and pathogenic cellular processes.

Methods
User-generated files and basic PLAIDOH usage
PLAIDOH requires a single user-generated input file, in
addition to the publicly available default annotation files
that come with PALIDOH. The input file must have
columns in the order shown in Table 1 and the first line
must begin with a “#”.

CHR must be the chromosome for the transcript on
that line. The start and stop coordinates may be any
region of the transcripts the user wishes to study (ie.
TSS to end of transcript), but PLAIDOH will only con-
sider within the boundaries provided by the input file.
The NAME category may be either a gene name or an
ENSEMBL identifier. The TYPE category may be any
identifier the user chooses but PLAIDOH will ONLY
provide annotation and predictions for transcripts
labeled “protein_coding, “lncRNA” or antisense_rna” all
other designations will be filtered into the “misc” output
file. The user may include as many samples as they
choose and utilize any calculation for expression (e.g.,
FPKM, CPM, microarray probe count etc.). The input
should be sorted by CHR and START coordinate using
sort -k1,1 -k2,2n.
A detailed overview of the PLAIDOH output file

can be found in Additional file 2: Table S1 and
instructions for running PLAIDOH.pl can be found
at: www.github.com/sarahpyfrom/PLAIDOH.

Visualizing trends in lncRNA concordance and expression
For illustrating trends specific to either positively- or
negatively-correlated pairs of lncRNAs and proteins we
devised plots by the correlation of the lncRNA and pro-
tein coding gene, positive Spearman correlation coeffi-
cients (rho) values are plotted above the central line and
negative Spearman correlation coefficients (rho) values
are plotted below. This approach was used in Fig. 3 and
Additional file 4: Figure S3.

Identifying mono- and poly-correlated lncRNAs
Using the PLAIDOH output table generated from
TCGA-AML data, the total number of coding genes
and the number of coding genes significantly corre-
lated (Adjusted p < 0.01) within +/− 400 kb of each
lncRNA was calculated. A frequency matrix was plot-
ted with total protein numbers on the x axis and the
significantly correlated protein numbers on the y axis.
The frequency of each combination of total protein
number/number significantly correlated proteins was
calculated and plotted on the matrix from all lncRNAs
in the dataset. Additionally, a Z-score of all correla-
tions for each lncRNA was calculated and plotted,

Table 1 Example PLAIDOH input table. Example header and
first two lines of the modified bedfile required from the user as
an input file

#CHR START STOP NAME TYPE SAMPLE1 SAMPLEN

chr1 112 256 DHX9 protein_coding 0.675 5.89

chr1 778 4334 AC00896.1 lncRNA 89 4

chr1 334 566 RP9911.3 antisense_rna 8.3 0.33

Pyfrom et al. BMC Genomics          (2019) 20:137 Page 18 of 24

http://www.github.com/sarahpyfrom/PLAIDOH


such that coding genes, which are greater than one
standard deviation more or less correlated with a
given lncRNA, would be colored purple or green in
the resulting graph.

Cross-Cancer Fidelity of LCPs
For pan-cancer analysis, RNA-seq expression data from
TCGA datasets (LUAD, BRCA, CESC, DLBC, AML)
were run through PLAIDOH, which automatically calcu-
lates correlation values for each LCP. Significantly corre-
lated LCPs conserved across one or more TCGA
datasets were identified. Significance was defined as an
adjusted spearman p-value < 0.05.

PLAIDOH enhancer and transcript Cis-regulatory output
scores
The LncRNA Transcript Cis-regulatory score is calcu-
lated as follows:

10�abs − log ADJUSTED SPEARMANþ 0:001ð Þð Þð Þð Þ
� H3K4ME3þ 0:1ð Þ� FRACTIONþ 0:01ð Þð Þ

The Enhancer score is calculated as follows:

H3K4ME1þ 1ð Þð Þ þ H3K27ACþ 1ð Þð Þ
� 1þ ChIA−PET scoreð Þ=100ð Þ

All underlined components of the above calcula-
tions are described in more detail in Additional file 2:
Table S1. The cutoffs for PLAIDOH-calculated En-
hancer and LncRNA Transcript Cis-regulatory scores
were calculated by plotting ranked scores for each
lncRNA/coding gene pair and finding the geometric
inflection point, defined as the point at which the lin-
ear regression line crossed the ranked scores line.
Linear regression lines were calculated using the
geom_smooth command from the R ggplot2 package:
geom_smooth(method = “lm”, se = FALSE, formula =
y~x). Both scores were ranked for graphing output using
the following formula: rank (SCORE, na.last = FALSE, ties.-
method = “random”). All scores were scaled to 100 for
graphing in figures.

RBP binding of lncRNAs
PLAIDOH output was used to create a binding matrix for
each RBP to each lncRNA. An RBP was considered to
bind a lncRNA if both the K562 and HepG2 eCLIP assays
showed binding of the RBP to the lncRNA (score of 1000)
OR if both replicates of either cell line showed binding. If
an RBP does not show evidence of binding a lncRNA, the
overlapping region is given a score of 0 on the matrix.

Sub-cellular localization of lncRNAs and RBPs
Sub-cellular localization of lncRNAs was determined
using GM12878 RNA-seq from ENCODE. Nuclear
and Cytoplasmic protein-coding and non-coding
FPKMs were downloaded from hg38-aligned
RNA-seq. Chromosomal coordinates were then lifted
over to hg19 using UCSC’s liftover tool. The total
number of reads for each transcript was calculated as
the sum of fragments per kb per million reads from
each sub-cellular dataset and the percent of the total
FPKM was calculated for both the Nuclear and Cytoplas-
mic datasets. For later analysis, is determined to be “Nu-
clear” if 70% of the normalized fragments are in the nuclear
RNA-seq compartment, “Cytoplasmic” if 70% of the reads
are in the cytoplasmic compartment and “Nuclear and
cytoplasmic” if between 30 and 70% of the reads are in the
nucleus. RBP sub-cellular localization is determined by Im-
munofluorescence as described in Sundararaman et al.,
2016 [82]. For each possible lncRNA/RBP combination a
“Localization concordance score” was calculated. If there is
no evidence that the lncRNA and RBP interact based on
the ENCODE eCLIP data, the pair is given a score of 0. If
an RBP binds a given lncRNA and the sub-cellular
localization of both the lncRNA and corresponding RBP
are both determined to be Nuclear or both are Cyto-
plasmic, the pair is given a score of 2 or − 2, respectively. If
the lncRNA is primarily Nuclear and the RBP does not
have a Nuclear localization by Immunofluorescence (or vice
versa), the overlapping region is given a score of 1 or − 1. If
both the RBP and lncRNA are considered to be present in
both the nucleus and cytoplasm (as described above) the
pair is given a score of 3.

Cell culture, Knock-out and Knock-down
HBL1 and U2932 cells were cultured in RPMI
complete. CRISPR knock out of RP11-960 L18.1 in
U2932 cells was performed as in [37] using target se-
quences below. HBL1 cells were infected with
RP11-960 L18.1 shRNA in pMLP-GFP lentiviral vector
purchased from transOMIC technologies. Cells were
grown in RPMI complete plus 1μg/ml puro to select
for cells successfully infected with lentivirus. Cells
were harvested after 10 days of selection for western
blot and qPCR. shRNA sequences are as follows
(PASSENGER loop GUIDE):

CRISPR/Cas9 Upstream Target Sequence: GTAC
GAAACCTCCCCGCGG
CRISPR/Cas9 Downstream Target Sequence: AGGT
AGGAGGAACGCGCTC
shRNA #1: 5’ ACAGGTCATTCTTCTGCTC
TAAtagtgaagccacagatgtaTTAGAGCAGAAGAA
TGACCTGG 3’
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shRNA #4: 5’ CCACAGGGAAGAATGACTT
CAAtagtgaagccacagatgtaTTGAAGTCATTCTTCCCTG
TGA 3′

Western blot
Whole cells were lysed in RIPA buffer supplemented with
Roche protease inhibitors, an equal volume of loading dye
was added and lysates were boiled for 10min. The equiva-
lent of 0.13, 0.067 and 0.03 million cells were loaded for
cells infected with a control shRNA and each RP11-960
L18.1-targeted shRNAs. After transfer to nitrocellulose
paper, blots were incubated in primary antibodies for
PLCG2 (Santa Cruz sc-407) and GAPDH (abcam ab9485)
at a concentration of 1:1000 overnight at 4C. Donkey
Anti-rabbit secondary antibody from GE Healthcare UK
Limited (NA9340V) was used at a concentration of
1:10,000 and imaged using Pierce ECL Western Blotting
Substrate (32106).

Cellular fractionation and qRT-PCR
Sub-cellular fractionation of cytoplasm, nuclear total,
nucleoplasm and chromatin for RNA isolation was

performed as described in in [101]. cDNA was made from
whole cells and cell fractions using the High Capacity
RNA-to-cDNA Kit from ThermoFisher (4387406). qRT-
PCR was performed using primers specific for PLCG2,
RP11-960 L18.1, JPX and GAPDH and the SYBR Green
Real-Time PCR Master Mix. Sub-cellular Fraction delta Ct
values were calculated relative to the Ct values of the cyto-
plasmic fraction and whole cell post-shRNA delta-Cts were
calculated relative to GAPDH levels.
PLCG2 For: TCAATCCGTCCATGCCTCAG
PLCG2 Rev.: CCTCGACGTAGTTGGATGGG
RP11-960 L18.1 For: GTCACACAGCCAACTTGCG
RP11-960 L18.1 Rev.: AGCCTCTATCTGCTTACGTGC
JPX For: GACACTGGTGCTTTCCTGGG
JPX Rev.: TTGTACCACCGTCATCAGGC
GAPDH For: ACCCACTCCTCCACCTTTGAC
GAPDH Rev.: TGTTGCTGTAGCCAAATTCGTT

WU NHL and Normal B cell De novo RNA-seq analysis
pipeline
As described in Koues et al., 2015 [21], briefly: RNA-seq
libraries were prepared from rRNA-depleted samples

Table 2 Data sources for each PLAIDOH default file. Data names, sources and descriptions for all of the metrics utilized by PLAIDOH
to annotate lncRNA and gene function

Data source Data Type Description URL

Enhancer
Atlas [104]

Enhancer
boundaries

Chromosomal positions for enhancer boundaries
from all available tissue samples were
downloaded in May 2018.

http://enhanceratlas.org/

Super
Enhancer
Archive [105]

Super-enhancer
boundaries

Chromosomal positions for super enhancer
boundaries from all available tissue samples
were downloaded in May 2018.

http://sea.edbc.org/

ENCODE [106] Histone ChIP-seq
(p-value of peaks)

H3K4ME3, H3K4ME1, and H3K27AC ChIP-seq
experiment bed files for all available cell lines
were downloaded from the ENCODE experiment
database in May 2018. All bed files were modified
to contain the cell line, histone modification and
peak p-value as a column entry.

www.encodeproject.org

ENCODE [1] Cell Fraction Expression
(proportion of total RPKM),

FPKMs for all transcripts in nuclear and cytoplasmic
RNA-seq for GM12878 cells were downloaded in
March 2018. The fraction of total reads in the
nuclear fraction for each transcript was calculated.

www.encodeproject.org

ENCODE [107] RNA-Binding Protein (eCLIP)
(interacting partners, number
RBP bound, number RBP
binding sites),

eCLIP experiment bed files for replicates 01 and
02 from K562 and HepG2 cells for all available
RBPs were downloaded from the ENCODE
experiment database in May 2018. All bed files
were modified to contain the RBP gene name,
replicate number and cell line as column entries.

www.encodeproject.org

ENCODE [49] ChIA-PET (boundaries of
interacting fragments, score)

POL2RA ChIA-PET interactions from K562 and
MCF-7 cells were downloaded in April 2018.

www.encodeproject.org

ENSEMBL
BIOMART [108]

Gene Ontology, Transcript
strand, Transcript Name

A biomart query was performed in May 2018. “Gene
description”, “Strand”, and “Gene name” were selected
and downloaded for all hg19 transcripts.

http://grch37.ensembl.org/
biomart/martview/

Ren Lab Hi-C
Project [40]

Topologically Associating
Domain (TAD) Boundaries

Chromosomal positions were downloaded
from two combined replicates of Human ES Cells.

http://chromosome.sdsc.edu/
mouse/hi-c/download.html

RBP Image
Database [82]

Sub-cellular localization
of RNA Binding Proteins

Localization of all RBPs in HepG2 cells was
downloaded and pruned to show only Nuclear
and Cytoplasmic compartments.

http://rnabiology.ircm.qc.ca/
RBPImage/
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(Ribo-Zero, Epicentre) using TruSeq RNA Sample kits
with indexed adaptors (Illumina), pooled (3 libraries), and
subjected to 100 bp paired-end sequencing using an Illu-
mina HiSeq2000. RNA-Seq data were aligned to the trans
criptome and reference genome (build GRCh37/hg19)
with TopHat [102]. RNA-seq data from were processed
using Cufflinks, a transcript assembling software package,
with settings designed to identify both novel and anno-
tated transcripts. Annotated transcripts were compiled
from several sources (ENCODE, ENSEMBLE, see below).
A master GTF was created to summarize and merge all
transcripts detected across samples. This master GTF was
then used to analyze all samples to quantitate expression
level of each transcript. In this way, transcript isoform, de-
tection (+/−), and normalized expression level (FPKM) was
determined for each sample for all transcripts, to compare
expression patterns across sample types. We used CPAT to
exclude transcripts with coding potential [103].

TCGA
TCGA data [26] was downloaded from https://portal.gdc.
cancer.gov/. Five datasets were used: LUAD (Lung Adeno-
carcinoma), BRCA (Breast Invasive Carcinoma), CESC
(Cervical Squamous Cell Carcinoma and Endocervical
Adenocarcinoma), AML (Acute Myeloid Leukemia) and
DLBC (Lymphoid Neoplasm Diffuse Large B-cell Lym-
phoma). Gene Expression Quantification (RNA-seq)
aligned to hg38 was acquired from all tumor types and
chromosomal positions were converted to hg19 using the
UCSC liftOver tool (http://genome.ucsc.edu/cgi-bin/hgLift
Over). For PLAIDOH analyses, all 48 samples from the
DLBC data were compiled into a single input file, and 48
samples were randomly selected from each of the other
four cancer sets (LUAD, BRCA, CESC and AML) to create
cancer-specific input files with identical transcript
annotations.

Cell line gene expression
Expression of lncRNAs and coding genes from multiple
cell lines (K562, U87, HeLa, HEK293T, MCF7, MDA-
MB-231 and iPSCs) were graciously provided upon re-
quest from [28].
All default input data files were curated from publicly

available resources and modified to fit specific file formats
as outlined in the PLAIDOH documentation (will be sub-
mitted along with the script on github). All default data
sources are outlined in the table below:

Default ‘omics data sources
All default input data files were curated from publicly
available resources and modified to fit specific file for-
mats as outlined in the PLAIDOH documentation
(www.github.com/sarahpyfrom/PLAIDOH). All default
data sources are described in Table 2.

Additional files

Additional file 1: Figure S1. Distribution of RNA types from de novo RNA
analysis pipeline for primary NHL and normal B cell samples. A) Pie chart
displays the percentage of total transcripts for each RNA category identified by
the RNA-seq discovery pipeline. B) Violin plots show the range of expression
(FPKM) in each category (solid dot =mean, vertical inner line = 25th - 75th
interquartile range, tails =min - max values). FPKM= Fragments Per Kilobase of
transcript per Million mapped reads. C) Bar plots show the cumulative percent
of RNA transcripts in each category that were detected in the indicated
percentage of samples. (PDF 1278 kb)

Additional file 2: Table S1. Detailed PLAIDOH output file columns.
Contains descriptions of each column in the default “Output_” table
created by PLAIDOH using either the provided Example input table or
any user-provided input expression table that is properly formatted as
described in Table 1. (XLSX 11 kb)

Additional file 3: Figure S2. LCP correlation, but not lncRNA expression,
demonstrates an inverse relationship with distance for positively correlated
LCPs. A&C) Box plots show lncRNA expression (FPKM, A) or LCP correlation
(−log10 Spearman adjusted p-value, C) binned by distance to individual
coding genes within 400 kb flanking the lncRNA (top panel: positively
correlated LCPs, bottom panel: negatively correlated LCPs). B&D) Box plots
show lncRNA expression (FPKM, B) or LCP correlation (−log10 Spearman
adjusted p-value, D) for four categories of lncRNA. (PDF 1069 kb)

Additional file 4: Figure S3. PLAIDOH reveals a landscape of enhancer
regulatory activity and LCP co-expression. A) Box plots show the number
of lncRNAs overlapping conventional or super enhancers per kb. B) Box
plots show the expression of lncRNAs in conventional or super en-
hancers, or not overlapping any enhancer. C) Box plots show the expres-
sion of lncRNAs that do or do not overlap coding genes (intra- or inter-
genic, pink or purple, respectively), and coincide with conventional or
super enhancers, or no enhancer. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001. D) LncRNA expression (log10 FPKM) or E) LCP correlation
(−log 10 Spearman adjusted p-value) relative to the intensity of activating
and/or enhancer-associated histone marks (−log10 p-value for peaks). Red
lines and grey zones indicate the regression lines and confidence intervals,
respectively. (PDF 995 kb)

Additional file 5: Figure S4. LncRNA--coding gene interaction frequency
and nuclear localization are associated with higher and more significant
correlation coefficients. A) Histograms show the number of LCPs that have
CHIA interactions (positive, blue) or no CHIA interactions (negative, red)
binned by distance to the coding gene. B) Histogram shows the number of
LCPs binned by distance to the coding gene. Regression line traces the CHIA
score for LCPs in each bin. C) Histograms show the number of LCPs binned
by distance to the coding gene that have significant (adjusted p < 0.05, blue)
or non-significant (adjusted p > 0.05, red) Spearman expression correlation
coefficients. D) Box plot shows the absolute Spearman correlation of
negatively (left, black) or positively (right, blue) correlated LCPs, binned by
fraction nuclear localization of the lncRNA. (PDF 2328 kb)

Additional file 6: Figure S5. LncRNAs demonstrate common or
cancer-type specific positive or negative correlation profiles. A) Venn
diagrams show the number of significant LCPs shared or unique
among five TCGA cancer types for positively (left) or negatively (right)
correlated pairs. Significant = Spearman correlation adj p < 0.05 for
LCP expression. B) Binary heatmaps show the pattern of correlation
significance for LCPs across TCGA cancer types for positively (left) or
negatively (right) correlated pairs. Spearman adj p < 0.05 (purple);
p > 0.05 (white). C) Bar graph shows the expression of coding genes
within +/− 400 kb of AC096992.2 in TCGA cancer types. D) Bar graph
shows the levels of the indicated histone marks by ChIP-seq for the
region near AC096992.2. No peaks were detected in BRCA/MCF7 and
DLBC/OCI-LY7. (PDF 1453 kb)

Additional file 7: Figure S6. PLAIDOH ranks LCPs by Enhancer and
LncRNA Cis-regulatory scores to predict likely transcriptional regulatory
mechanism. A-L) Plots show LCPs from TCGA cancers (AML A-C, BRCA D-F,
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CESC G-I, LUAD J-L). Plotted as in Fig. 6. (A,D,G & J) Plots show LCPs ranked
by increasing LncRNA Transcript Cis-regulatory Scores. Highlighted in red
are known cis-acting lncRNAs; in green are novel LCPs with the highest
scores. B,E,H & K) As in A,D,G,J, but ranked by increasing Enhancer Scores.
Red points are known enhancer-associated lncRNAs; in green are novel LCPs
with the highest scores. C,F,I & L) Plots show Enhancer versus LncRNA
Transcript Cis-regulatory Scores segregating LCPs by relative likelihood of
each transcriptional regulatory mechanism. Dotted lines in A-L reflect score
cut-offs based on the geometric inflection points calculated from the data
in A, B, D, E, G, H, J, and K. Red and green data points are from A&B (for C),
D&E (for F), G&H (for I), J&K (for L). (PDF 9087 kb)

Additional file 8: Figure S7. PLAIDOH Compares Favorably to lncRNA
CRISPR Screens and to Other lncRNA Analytical Tools. A) Box plot shows
Enhancer and lncRNA Transcript cis-regulatory scores in hits compared to non-
hits in a CRISPR-KRAB lncRNA screen [28]. B) XY plot shows Enhancer versus
LncRNA Transcript Cis-regulatory Scores segregating LCPs in ENCODE cell
lines, plotted as in Fig. 6C. Red points are validated hits from a lncRNA
knock-out (splice-site targeted) CRISPR screen [78]. C) XY plot shows
Enhancer versus LncRNA Transcript Cis-regulatory Scores segregating LCPs
in AML TCGA samples, plotted as in Fig. S6C. Red points are validated hits
from a lncRNA CRISPR-activating screen [79]. D) XY plot shows Enhancer
versus LncRNA Transcript Cis-regulatory Scores segregating LCPs
ENCODE cell lines, plotted as in Fig. 6C. Colored data points reflect
predicted function of highly ranked lncRNAs from [22]. Red circles
indicate lncRNAs that are predicted to act at the transcriptional level,
orange squares - post-transcriptional, green squares - both transcriptional
and post-transcriptional. (PDF 2263 kb)

Additional file 9: Figure S8. PLAIDOH highly ranks lncRNA-RNA binding
protein interactions from a lncRNA CRISPR Screen. Plot shows lncRNA
expression versus RBP binding-site density per kilobase of RNA transcript
for each lncRNA/RBP interaction, plotted as in Fig. 7B. Data point size is
scaled to RBP expression level and subcellular localization interactions are
colored as in Fig. 7B. Labeled dots highlight 3 validated hits from the
CRISPR-KRAB growth screen [28] that had low PLAIDOH Enhancer and
LncRNA transcript cis-regulatory scores (Fig. S7B). (PDF 2607 kb)

Additional file 10: Figure S9. Validation of PLAIDOH’s functional
predictions for lncRNA RP11-960 L18.1 A) Expression of PLCG2 and RP11-960
L18.1 measured by qRT-PCR in control or in three independent RP11-960
L18.1 KO subclones (U2932 lymphoma B cell line). B) Western Blot of PLCG2
or GAPDH in control (WT) or RP11-960 L18.1 KO U2932 cells. Triangles
indicate relative number of cells loaded on the gel. (PDF 2055 kb)
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