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Riding the Rhythm of Melatonin
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Pregnancy is influenced by the circadian (“circa” or approximately; diēm or day)

system, which coordinates physiology and behavior with predictable daily changes

in the environment such as light/dark cycles. For example, most species deliver

around a particular time of day. In mammals, circadian rhythms are controlled by

the master circadian pacemaker, the suprachiasmatic nucleus. One key way that the

suprachiasmatic nucleus coordinates circadian rhythms throughout the body is by

regulating production of the sleep-promoting hormone melatonin. Serum melatonin

concentration, which peaks at night and is suppressed during the day, is one of the

best biological indicators of circadian timing. Circadian misalignment causes maternal

disturbances in the temporal organization of many physiological processes including

melatonin synthesis, and these disturbances of the circadian system have been linked to

an increased risk for pregnancy complications. Here, we review evidence that melatonin

helps regulate the maternal and fetal circadian systems and the timing of birth. Finally,

we discuss the potential for melatonin-based therapeutic strategies to alleviate poor

pregnancy outcomes such as preeclampsia and preterm birth.

Keywords: melatonin, pregnancy, gestation, parturition, circadian, chronodisruption, fetal outcomes

INTRODUCTION

Pregnancy requires coordination of numerous physiological systems, including metabolic,
endocrine, and circadian (1). This review focuses on a key component of the circadian system,
the sleep-promoting hormone melatonin. However, to appreciate the role of melatonin in
pregnancy, it is essential to understand a few facts about circadian rhythms, which coordinate
physiological functions with daily environmental cues (e.g., 24-h light/dark cycle, temperature, and
food availability).

At a molecular level, circadian rhythms are controlled by a group of core clock genes working
together in a transcriptional/translational feedback loop. In the dark phase, the transcription factors
CLOCK and BMAL1 reach a high concentration (2, 3), heterodimerize, and activate expression of
the Period (PER1, PER2, PER3) and Cryptochrome (CRY1, CRY2) genes. PER and CRY proteins
accumulate in the cytoplasm, reach their highest concentration in the light period, dimerize,
translocate to the nucleus, and interfere with BMAL1-CLOCK to prevent their own transcription.
Once transcription/translation of CRY and PER are prevented and the accumulated proteins
degrade, CLOCK/BMAL1 dimers are again able to bind, allowing transcription and translation
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of CRY and PER proteins. Additionally, the BMAL1-CLOCK
dimers activate transcription of the retinoic acid-related
orphan nuclear receptors REV-ERBA and RoRα, which inhibits
BMAL1 transcription. Conversely, the CRY1 protein inhibits
transcription of REV-ERBA, allowing RoR to activate BMAL1
transcription. These evolutionarily well-conserved positive and
negative feedback loops regulate circadian rhythms in nearly
every cell in the body.

In mammals, the clocks throughout the body (termed
peripheral oscillators) are controlled by the master circadian
pacemaker, the suprachiasmatic nucleus (SCN), which
synchronizes to external light/dark cycles via signals received
from the melanopsin-containing retinal ganglion cells (1, 4–6).
The SCN neurons, which have a high firing rate during the light
period and a low firing rate during the dark period, synchronize
the peripheral oscillators via a multisynaptic pathway. The
SCN projects to the paraventricular nucleus, which connects
to the intermediolateral cell column of the T1-T3 segment
of the spinal cord. This cell column connects to the superior
cervical ganglion, which connects to the pineal gland (7). The
pineal gland synthesizes and secretes melatonin (N-acetyl-
5-methoxytriptamine (7). Melatonin functions with other
neurotransmitters, such as vasoactive intestinal polypeptide, to
synchronize circadian rhythms throughout the body.

MELATONIN SYNTHESIS AND
MECHANISMS OF ACTION

Melatonin is synthesized most highly in the dark phase as
a result of the following pathway. First, the precursor L-
tryptophan is converted to 5-hydroxytryptophan by tryptophan
hydroxylase, an enzyme whose expression is highest during the
dark phase (8–10). Aromatic amino decarboxylase then converts
5-hydroxytryptophan to serotonin (5-hydroxytryptamine) (11,
12). At night, the neurotransmitter norepinephrine activates
the pineal gland β-adrenergic receptors, leading to increased
cellular cAMP and increased expression of serotonin N-acetyl
transferase, which converts serotonin to N-acetyl-serotonin
(13). N-acetyl-serotonin is then methylated by hydroxyindole-
o-methyl transferase to become melatonin (14–16), which is
released into the circulatory system and cerebrospinal fluid (11,
17). Although melatonin is primarily secreted by the pineal gland
(18–20), the enzymes that convert serotonin to melatonin are
also expressed in other tissues/cell types including the brain (21),
retinal photoreceptor cells (22, 23), immune system (24–26), skin
(27), gastrointestinal tract (28, 29), and reproductive tract (20).
In addition to being regulated by the SCN, melatonin in rats
regulates the SCN by inducing expression of Per1 and Per2 genes
to help reset the master clock (30).

The primary functions of melatonin are to relay information
to the body regarding the length of the light and dark cycles
(photoperiod) and to signal the body about seasonal changes in
the photoperiod. As the dark period becomes longer in winter,
melatonin is secreted for a longer period of time. The daily
rhythm of melatonin synthesis allows the body to respond to the
changing seasons by altering many physiological functions, such

as sleep duration, weight, temperature, blood pressure, and in
general, control of mammalian reproduction (17, 31–34).

Melatonin functions via several mechanisms. First, it activates
the G-protein-coupled receptors MTNR1A andMTNR1B, which
are expressed in the SCN, brain, and numerous peripheral
organs including the retina, pars tuberalis, cerebral and
peripheral arteries, kidney, pancreas, adrenal cortex, testes,
immune system, uterus, and placenta (35). Second, melatonin
can bind members of the retinoid related orphan nuclear
hormone receptor subfamily RZR/ROR, which regulate many
processes including immunity, metabolic pathways, embryonic
development, and circadian rhythms (36). Melatonin is thought
to bind RZR/RORβ, which is primarily expressed in the retina,
brain, and pineal gland, and RZR/RORα, which is highly
expressed in the brain, liver, skeletal muscle, skin, lung, kidney,
thymus, adipose tissue, and placenta (37–40). Third, melatonin
can modulate intracellular calcium by binding calmodulin
(41). Finally, melatonin and its metabolites, including cyclic-3-
hydroxymelatonin, can scavenge reactive oxygen species (e.g.,
superoxide radical, hydroxyl radical, and hydrogen peroxide)
(42–45) and thereby protect tissues from oxidative damage. Some
or all of these mechanisms may explain the many roles of
melatonin in reproduction, as described in the rest of this review.

ROLES OF CIRCADIAN RHYTHMS AND
MELATONIN IN TIMING PREGNANCY

In many species, reproduction is limited to particular seasons,
indicating that the circadian system controls some aspects of the
timing of pregnancy. For example, hamsters are more fertile and
have a more regular 4-day estrous cycle in summer (long light
period) than in other seasons. The proestrus stage is characterized
by an afternoon surge in luteinizing hormone (LH) and follicle-
stimulating hormone (FSH), whereas in diestrus, LH and FSH
concentrations are low or virtually absent.When female hamsters
were exposed to winter-like (long dark period) conditions, they
became acyclic, anovulatory, and showed a daily afternoon surge
of LH and a small increase in FSH, suggesting they were in
prolonged proestrus (46, 47). When the female hamsters were
maintained in a long light period and injected with melatonin
for several days, their estrus cycle became acyclic, and secretion
of LH and FSH had a pattern similar to that found during a
long dark period (48). Although it is likely that melatonin helps
control seasonal reproduction in other species, few experiments
have been done to test this idea.

ROLES OF CIRCADIAN REGULATION AND
MELATONIN DURING PREGNANCY:
HORMONES, METABOLISM, BODY
TEMPERATURE, AND MATERNAL
ACTIVITY

During pregnancy, females undergo numerous physiological
changes to support fetal development and adapt to the stresses
imposed on their bodies. The circadian and melatonin systems
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play important roles in some of the most notable changes,
which occur in the endocrine system, metabolism, core body
temperature, and maternal activity (49).

In the endocrine system, circadian rhythms control
production of the glucocorticoid stress hormone cortisol.
In humans, serum cortisol concentration peaks between 0600
and 1000 h and declines to its lowest point between 1800 and
0200 h (50). Plasma cortisol concentration is also controlled by
feedback mechanisms of the hypothalamic-pituitary-adrenal
(HPA) axis. During pregnancy, plasma cortisol concentration
increases significantly, but circadian regulation of the timing of
production is unchanged, suggesting that HPA-axis regulation
is altered (51). The increase in maternal cortisol may play a role
in fetal lung maturation and brain development (52) and help
dampen maternal stress signals to protect the fetus. Support for
this idea comes from a study in which non-pregnant women
produced elevated cortisol after immersion in ice-cold water, but
third-trimester pregnant women did not (53).

In addition to cortisol, two important hormones in human
pregnancy are progesterone and estrogen, both of which are
secreted in a circadian manner. During gestation, progesterone
peaks during the dark hours, whereas estrogen concentration
is lowest at night and peaks during the day (54, 55). During
early gestation, progesterone and estrogen are synthesized and
secreted by the ovaries. By mid-gestation, the placenta takes
over production of these two hormones, and estrogen is also
produced by the uterus. Both progesterone and estrogen,
acting via their respective receptors, play vital roles in
initiating and regulating uterine decidualization to allow
for embryo attachment and placental development (56, 57).
Estrogen promotes progesterone synthesis, helping to gradually
increase progesterone throughout gestation (58). Progesterone’s
immunosuppressive properties (59) help prevent rejection of
the fetus. Additionally, progesterone helps maintain uterine
quiescence by interacting with progesterone receptor B (PR-B).
Parturition is triggered when progesterone is functionally
withdrawn, PR-B expression decreases, and progesterone
receptor A (PR-A) expression increases. This switch causes an
increase in procytokine release and initiation of myometrial
contractions (60, 61). Later in this review, we further discuss the
roles of melatonin in promoting parturition.

Metabolism, which is circadian regulated, is altered during
pregnancy to meet the needs of the growing fetus. For example,
glucose and fatty acid mobilization in the liver in the non-
pregnant state are under circadian regulation. Given that the fetus
depends on glucose and fatty acids, Wharfe et al. hypothesized
that liver expression of clock genes might be altered during
pregnancy. They tested this idea in mice and found that circadian
rhythmicity of several clock genes was reduced during pregnancy.
Additionally, expression of several glucoregulatory genes (62)
and genes involved in liver metabolism were altered (63). For
example, the genes encoding the lipolytic enzymes hormone–
sensitive lipase and adipocyte triglyceride lipase showed clear
rhythmic expression before pregnancy but lost rhythmicity at
the onset of pregnancy. This metabolic adaptation is thought
to allow continuous mobilization of fatty acids in response
to fetal growth demands. Whether melatonin influences these

changes beyond its roles in the circadian system is not
yet known.

Core body temperature fluctuates in a circadian fashion in
response to signals from the SCN. In humans, body temperature
is highest around 1800 h and lowest around 0500 h, fluctuating
by about 0.5◦C around a 37.0◦C median, or mesor. These
changes in temperature, which must be small to permit activity
of thousands of enzymes in the body (64), help entrain the
peripheral oscillators (65). However, pregnancy appears to alter
temperature regulation. In a study of 15 pregnant women, core
body temperature measured at mid-day was highest during the
first trimester (37.1◦C) then decreased gradually throughout
gestation, reaching its nadir (36.4◦C) at 12 weeks postpartum,
then increased and stabilized at 36.7◦C by 24 weeks postpartum
(66). A similar effect was observed in pregnantmice and rats. This
lowered maternal body temperature is thought to facilitate heat
transfer from the highly metabolically active placenta and fetus
(49, 63, 67). The role ofmelatonin in regulating body temperature
during pregnancy has not been investigated.

The final maternal adaptation to pregnancy addressed here
is circadian regulation of activity. We found that, in mice, the
daily time of onset of activity (monitored on a running wheel)
shifted earlier at the beginning of pregnancy, then returned to the
pre-pregnancy time by the end of gestation. Similarly, by using
activity watches to measure women’s daily activity, we found
that the time of sleep onset shifted earlier during the first and
second trimesters and then returned to the pre-pregnancy time
during the third trimester. Additionally, we found that pregnant
women had longer sleep duration and more activity during their
inactive (sleep) phase than they did before or after pregnancy
(68). Our results were consistent with other publications showing
that pregnancy significantly reduced total daily activity in mice
and humans (69, 70). For instance, Gamo et al. found that
energy intake and body mass increased while body temperature
and physical activity decreased in pregnant MF1 outbred
mice (70). Additionally, Rousham et al. used accelerometers
and self-reported interviews to show that human physical
activity significantly decreased as pregnancy progressed from the
second to third trimesters (69). How these circadian changes
in maternal activity and sleep timing are controlled remains
to be determined.

REGULATION AND FUNCTIONS OF
MELATONIN DURING PREGNANCY

Given the many ways in which physiology and circadian-
regulated functions are altered by pregnancy, it is perhaps not
surprising that melatonin secretion changes during pregnancy.
In humans, the night-time peak serum melatonin concentration
decreases slightly between the first and second trimesters,
begins to increase after 24 weeks, reaches maximum by the
end of pregnancy, and returns to the pre-pregnancy value by
the second day post-partum (71) (see Figure 1). Although the
precise mechanisms regulating the increase in melatonin are
not fully known, one important factor may be the neuropeptide
vasoactive intestinal polypeptide (VIP). Although VIP in the
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FIGURE 1 | Schematic of melatonin circadian regulation and action during pregnancy. The suprachiasmatic nucleus (SCN) synchronizes to the external light/dark

cycles via signals received from the melanopsin-containing retinal ganglion cells. The SCN neurons have a high firing rate during the light period and a slow firing rate

during the dark period. The SCN projects to the paraventricular nucleus (PVN), which connects to the intermediolateral cell column (IML). The IML signals to the

superior cervical ganglion (SCG), which signals to the pineal gland to synthesize and secrete melatonin into circulation. Melatonin, along with other neurotransmitters,

synchronizes circadian rhythms throughout the body. During pregnancy, night time peak serum melatonin concentration decreases slightly between 1st and 2nd

trimester, then begins to increase after 24 weeks of gestation until it reaches maximum concentration at the end of pregnancy. Serum melatonin acts synergistically

with oxytocin via melatonin receptor on the uterus to activate membrane-bound phospholipase C and protein kinase C pathways. These pathways promote

expression of the gap junction protein connexin-43 and increase uterine sensitivity to oxytocin, increasing uterine contractility. In addition, melatonin passes unaltered

through the placenta and appears to be important for entraining fetal circadian rhythms.

pineal gland likely controls melatonin synthesis (72), other VIP
sources such as the fetus and placenta may be involved in
regulating melatonin synthesis in pregnancy (72–74). To test
the idea that placental-derived factors affect maternal melatonin
production, Tamura et al. injected conditioned medium from
cultured rat placenta into pregnant female rats, resulting in an
increase in serum melatonin. The rat placenta cannot produce
melatonin because it lacks the synthesizing enzymes, so the
serum melatonin was produced by the mother (75), possibly
in response to placental VIP. In humans, the placenta may
directly contribute to increasing maternal plasma melatonin by
synthesizing the hormone, which is amphiphilic and can thus
cross into the maternal bloodstream. This mechanism may be

especially important during the late third trimester, when peak
melatonin is highest (71).

Just as placental melatonin can pass into the maternal
bloodstream, maternal plasma melatonin can pass unaltered into
the placenta. In the placenta, melatonin is thought to protect
mononuclear villous cytotrophoblasts from apoptosis so they
are able to continuously regenerate to fuse with and maintain a
healthy syncytiotrophoblast layer (76, 77). This layer is in direct
contact with maternal blood and mediates exchange of gases,
nutrients, and wastes. One possible explanation for the initial
decrease in serummelatonin in the first trimester is that placental
mitochondria and polymorphonuclear leukocytes generate an
abundance of superoxide free radicals (78, 79). The increase of
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ROS in the placenta may cause a temporary decline in maternal
serum melatonin levels in order to protect the developing tissues
from oxidative stress.

Failure to protect the placenta from oxidative stress can
contribute to pregnancy complications. One common [2–8%
of all pregnancies (80)] complication that involves oxidative
stress is preeclampsia, which results in maternal high blood
pressure and significant proteinuria. Preeclampsia arises due to
a poorly developing placenta causing spiral arteries to form
abnormally. This produces a decrease in the intervillous space
volume and an increase in placental blood flow velocity, leading
to placental hypoxia, oxidative stress, andmechanical injury (81).
During preeclampsia, the concentrations of serum and placental
melatonin are lower than in healthy pregnancies (71, 77). This
may indicate that melatonin, acting as a free radical scavenger,
is rapidly used up in the preeclamptic placenta. Given that
melatonin can act as a strong antioxidant agent, is non-toxic,
and can easily be administered, melatonin is being explored as
an adjunct therapy in women with preeclampsia (82).

In addition to affecting the placenta, maternal melatonin
appears to pass into the fetus (see Figure 1). This idea is
supported by a study showing that changes in melatonin
concentrations in umbilical cord artery and vein blood
matched those in maternal plasma. Additionally, melatonin
concentrations in maternal plasma and cord blood correlated
significantly with administration of a single oral dose of
melatonin to pregnant women undergoing cesarean section (83).
In the fetus, maternal melatonin appears to be an important
factor for entraining circadian rhythms. For instance, Torres-
Farfan et al. suppressedmaternalmelatonin in capuchinmonkeys
and found that the timing of expression of the clock genes
BMAL-1 and PER2 shifted in the fetal SCN. This shift was
reversed when the authors delivered exogenous melatonin to
the maternal circulation (84). Moreover, when the SCN was
excised from hamsters, injection of melatonin into the mother
was able to entrainment the pups (85). In another study, pregnant
capuchin monkeys that were exposed to constant light had
suppressed serum melatonin and an altered phase relationship
between activity and temperature rhythm (86). Additionally,
the newborns’ temperature rhythms were desynchronized and
had lower mesor. Maternal administration of supplemental
melatonin restored synchrony and mesor to fetal temperature
rhythms (86). In addition to helping entrain fetal circadian
rhythms, melatonin likely also influences neurodevelopment
and protects the fetus against oxidative stress. More detailed
information regarding the effects of maternal melatonin on fetal
rhythms is reviewed in other articles of this edition.

CIRCADIAN REGULATION OF
PARTURITION

Several lines of evidence reveal the importance of circadian
rhythms in parturition. In most animals studied, parturition
occurs just before or during the sleep/resting phase. For example,
rats and hamsters, which are nocturnal, give birth during the
daylight (87, 88). Mice, which are also nocturnal, give birth in the

early morning just before the light period (89). In rats, complete
ablation of the SCN changed the distribution of birth timing
so that the animals delivered randomly throughout the day,
including the dark phase (90). In addition to the SCN, peripheral
clocks appear to participate in parturition timing, as mice in
which Bmal1 was knocked out in the uterine smooth muscle
(myometrium) had 28%more deliveries during the daytime than
the control mice, of which 92% delivered in the dark (91).

As in rodents, delivery is under circadian control in diurnal
non-human primates, which tend to deliver during the early
morning hours. For example, when rhesus monkeys were
maintained in a normal photoperiod (lights off between 1900
and 0700 h), their uterine contractions reached maximum
at 2300 h and they delivered at a mean time of 0115 h.
To explore circadian regulation of parturition in baboons,
Morgan et al. measured intraamniotic pressure and myometrial
electrical activity. They found that contractures, which produced
small intraamniotic pressure increases, occurred throughout
pregnancy, but contractions, which caused larger intraamniotic
pressure increases, always began at the onset of darkness (92).

In humans, delivery occurs at all hours but appears to be most
common between 0200 and 0500 h (93, 94), and labor onset in
both term and preterm birth most commonly occurs during the
late night or earlymorning hours (between 2100 and 0600 h) (95–
98) Additionally, after 24 weeks of gestation, uterine contractile
activity develops a diurnal pattern with 67% of contractions
occurring during the nighttime (99). This circadian regulation of
delivery is likely controlled, in part, by melatonin (87, 100), as
discussed next.

THE ROLE AND MECHANISM OF
MELATONIN IN REGULATING
PARTURITION

Late in human pregnancy, uterine contractions are strongest
during the night, when peak melatonin concentrations are at
their highest (71, 101), and the increase in peak melatonin at
the end of pregnancy is thought to promote uterine contractions
necessary for labor. Several animal studies supply evidence that
melatonin has a strong influence on birth timing. For example,
Takayama et al. reported that rats in which the pineal gland was
removed, thereby eliminating melatonin production, delivered
during the night instead of during the resting period of the
day. However, when the authors injected the pinealectomized
pregnant rats with melatonin at the beginning of the dark period,
the rats delivered at a similar time as control rats (102).

Melatonin acts in concert with two other signaling molecules
to promote contractions. First, it works with noradrenaline,
as the α1 and α2-adrenergic receptors are expressed in the
myometrium and contribute to uterine contractility (103).
Early experiments on rat caudal artery indicated that melatonin
alone could not initiate smooth muscle contractions but that
noradrenaline-induced smooth muscle contractions were
enhanced by melatonin (104, 105). Likewise, Martensson et al.
reported that, in the presence of noradrenaline, melatonin
induced potentiation of human myometrial contractions
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in vitro (106). Together, these data suggest that melatonin
enhances noradrenaline-dependent contractions to help
initiate labor.

Second, melatonin acts in cooperation with the non-
apeptide oxytocin, which stimulates the myometrium by
binding to G protein-coupled oxytocin receptors. The uterus
becomes sensitive to oxytocin as the oxytocin receptors in
the myometrium increase throughout pregnancy and reach
their highest expression at the onset of labor (107). In in vitro
experiments, telomerase-immortalized human myometrial
smooth muscle cells treated with melatonin plus oxytocin
were significantly more contractile than cells treated with
oxytocin alone (108). However, in rats, which are nocturnal,
melatonin appears to suppress rather than promote uterine
contractions, as melatonin was shown to inhibit oxytocin-
induced myometrial contractions in vitro (109). Additionally,
it must be noted that some strains of laboratory mice, including
C57BL/6, have a mutation in a key melatonin synthesis gene
and thus do not produce melatonin but still deliver consistently
in the early morning hours or just before dawn (110, 111).
Thus, melatonin is not universally required to promote
uterine contractions.

To enhance both noradrenaline- and oxytocin-
stimulated contractions, melatonin appears to activate
its receptor MTNR1B in the uterus. Evidence for this
idea comes from the work of Sharkey et al., who treated
immortalized human myometrial cells with melatonin
and oxytocin. When they added an MTNR1B antagonist,
myometrial contractility was reduced to the level observed
in cells treated with oxytocin alone (108). Consistent
with these in vitro data, MTNR1A and MTNR1B are
expressed in myometrium from both non-pregnant and
pregnant women (112, 113), but MTNR1B expression
was higher in samples from pregnant women than
non-pregnant women and was higher in term laboring
myometrial samples than in term non-laboring myometrial
samples (35, 108, 114, 115).

Once it is bound by melatonin, MTNR1B activates
membrane-bound phospholipase-C (PLC) and protein
kinase-C (PKC) (116). This is similar to the mechanism
of action for oxytocin, which binds to oxytocin receptor
and activates the PLC/PKC pathway (117). PKC activation
leads to activation of myosin light chain kinase, resulting in
myometrial contractions (118, 119). Additionally, melatonin
appears to sensitize myometrial cells to oxytocin by leading
to phosphorylation of caldesmon, which then releases its
inhibition of actin-myosin cross-bridging and thus promotes
even stronger uterine contractility (108, 120) (see Figure 1).
In support of this model, treatment of human immortalized
myometrial cells with the PLC inhibitor U73122 completely
abolished contractility in response to oxytocin and melatonin
treatment. Additionally, pretreatment with an MTNR1B
antagonist abolished melatonin-induced increase in myosin
light chain phosphorylation. Taken together, these data suggest
that melatonin acts synergistically with oxytocin via MTNR1B
to activate PLC, thus activating myosin light chain kinase and
increasing sensitivity to oxytocin-mediated signals. Melatonin

also activates PKC and increases expression of the gap junction
protein connexin-43, resulting in increased myometrial coupling
and stronger contractions (108, 120, 121).

CIRCADIAN DISRUPTION CAN AFFECT
DELIVERY

Given the importance of circadian rhythms in aligning
physiological processes to environmental cues, it is not surprising
that disruption of circadian rhythms (chronodisruption) has
numerous negative health consequences (122) and may lead
to preterm birth. Chronodisruption can occur in one of two
ways. First, people can have mutations in the core clock genes,
such as polymorphisms causing their sleep/wake cycle to be
misaligned to the normal 24-h day (123). Second, people can
experience environmental factors that force them to sleep or
wake at times different than their body’s biological clock. For
example, 75% of people in the developed world use an alarm
clock to wake up on workdays, causing “social jetlag” that
is equivalent to traveling across multiple time zones (124).
Additionally, many people have jobs that require them to shift
their daily schedule by multiple hours during the week. Such
shiftwork schedules can increase the risk for negative pregnancy
outcomes including miscarriage, low birth weight, and preterm
birth (125–127). For example, in one study of 845 pregnant
women, night-time shift workers had higher rates of preterm
birth [20 vs. 15%, adjusted odds ratio 2.0, 95% confidence interval
(CI) 1.1 to 3.4] and low birth weight (9 vs. 6%, adjusted odds
ratio 2.1, 95%CI 1.1 to 4.1) than women who worked daytime
shifts (128). Similarly, the Pregnancy, Infection, Nutrition study,
which analyzed data from 1,908 pregnant women, noted that
women who worked night shifts during the first trimester had
a 50% increased risk for preterm birth (relative risk 1.5, 95%
confidence interval 1.0–2.0) (129). Furthermore, a report of
the Nurses’ Health study noted an association between night
shift work and increased risk for early preterm birth (<32
weeks) (130). Moreover, a recent meta-analysis suggested that
rotating shiftwork increased the risk for pre-term birth by
13% (odds ratio 1.13, 95% CI 1.00 to 1.28, I2 = 31%), and
fixed night shift work increased the risk by 21% (odds ratio
1.21, 95% CI 1.03 to 1.42, I2 = 36%) (131). However, these
results must be considered cautiously, as other meta-analyses
have found no association between shift work and preterm
birth (132, 133).

An important confounder in these studies is that women
work many patterns of shift work (e.g., working nights or
shifting the work schedule by a few or several hours every
few days) (134). Additionally, studies have not accounted for
other factors that can cause chronodisruption even in the
“control” groups, such as using an alarm clock to wake up
on work days (124) or using sleep aids to fall asleep and
stimulants to stay awake at unusual or inappropriate times (135).
Furthermore, nutrition, physical activity, and stress (134, 136)
can all contribute to chronodisruption. More detailed analyses
are needed to fully assess the effect of chronodisruption on risk
of preterm birth.
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Data from animal studies more strongly support the idea
that chronodisruption has negative reproductive outcomes. For
example, rhesus monkeys maintained on a light/dark cycle in
which lights were off from 1900 to 0700 h delivered at a mean
time of 0115 h. In contrast, those maintained on a shifted
cycle with lights off from 0800 to 2000 h delivered between
1330 and 1715 h (101, 137). Several rodent studies provide
strong evidence that disrupting circadian rhythms can negatively
affect pregnancy outcomes. In one such study, female mice
containing a mutation in the gene Clock had irregular estrous
cycles, increased fetal reabsorption, and an increased number
of dams that carried to full-term but failed to deliver (138).
In another study, Bmal1 mutant female mice had prolonged
estrous cycles and low serum progesterone concentrations,
leading to embryo implantation failure and infertility (139).
A third set of studies used mice homozygous for a null
mutation in the gene VPAC2 receptor (Vipr2−/−), which is
important for photic entrainment of circadian rhythms in
the SCN. Vipr2−/− mice could not sustain normal circadian
rhythms, and the females had abnormally long estrous cycles,
impaired delivery, and poor pup survival (140–142). A fourth
study modeled shiftwork or chronic jetlag by subjecting wild-
type mice to repeated phase delays or phase advances of the
light/dark cycle, revealing that such environmental disturbances
significantly reduced the percentage of mice that carried their
pregnancies to term (143). Finally, in a study in which
wild-type pregnant mice were exposed to a short (22-h)
or long (26-h) light/dark cycle, the fetal reabsorption rate
increased, fetal development was delayed, and fetal weight
was decreased (144). Together, these well-controlled studies
clearly indicate that chronodisruption can impair mammalian
reproductive outcomes.

CONCLUSION AND POTENTIAL FOR
CIRCADIAN-BASED INTERVENTIONS

Given the potential ease of interventions, researchers have
begun exploring options to alter circadian rhythms to control
the timing of birth. For example, investigators found that
treating chronodisrupted capuchin monkeys with supplemental
melatonin partially restored normal maternal and temperature
rhythms (86). Furthermore, Olcese et al. exposed pregnant
women at term to full-spectrum light at night, causing
their serum melatonin concentrations to decrease and their
contractions to diminish. This raises the possibility of using light
exposure to delay the onset of labor by dampening maternal
nighttime melatonin secretion (100). Similarly, white/bright
therapy light has been speculated to treat seasonal affective
disorder and may be beneficial to overcome preterm deliveries by
helping reset or instill stronger circadian rhythms (145). Future
work in this area will hopefully reveal whether or not such light
or melatonin strategies can be used to control the timing of birth
in humans.
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