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Batten disease, or juvenile NCL, is a fatal neurodegenerative disorder that occurs

due to mutations in the CLN3 gene. Because the function of CLN3 remains unclear,

experimental therapies for JNCL have largely concentrated upon the targeting of

downstream pathomechanisms. Neuron loss is preceded by localized glial activation, and

in this proof-of-concept study we have investigated whether targeting this innate immune

response with ibuprofen in combination with the neuroprotective agent lamotrigine

improves the previously documented beneficial effects of immunosuppressants alone.

Drugs were administered daily to symptomatic Cln3−/− mice over a 3 month period,

starting at 6 months of age, and their impact was assessed using both behavioral and

neuropathological outcome measures. During the treatment period, the combination of

ibuprofen and lamotrigine significantly improved the performance of Cln3−/− mice on

the vertical pole test, slowing the disease-associated decline, but had less of an impact

upon their rotarod performance. There were also moderate and regionally dependent

effects upon astrocyte activation that were most pronounced for ibuprofen alone, but

there was no overt effect upon microglial activation. Administering such treatments for

longer periods will enable testing for any impact upon the neuron loss that occurs later

in disease progression. Given the partial efficacy of these treatments, it will be important

to test further drugs of this type in order to find more effective combinations.

Keywords: Batten disease, CLN3 disease, inflammation, ibuprofen, lamotrigine, glial activation,

neurodegeneration

INTRODUCTION

The neuronal ceroid lipofuscinoses (NCLs; Batten disease) are a group of fatal, autosomal
recessively inherited storage disorders (1). Most forms affect children and young adults, and
are collectively the most common cause of childhood dementia. Juvenile NCL (JNCL, or CLN3
disease), is caused by mutations in the CLN3 gene (2), and is the most common of these disease
subtypes. The clinical manifestations of JNCL usually begin with visual impairment between 4
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and 7 years of age, declining rapidly to blindness at 5–10 years,
proceeded by mental and intellectual deterioration, epilepsy, and
motor deficits, ending in premature death at a mean age of 24
years (1).

Because the normal function of the transmembrane CLN3
protein still remains unclear (3), it has not yet been possible
to devise an effective mechanistically-based therapy for this
disorder. Nevertheless, important clues about the downstream
effects of Cln3 deficiency have come from analyzing mouse
models of JNCL. Such studies have revealed a range of
pathological hallmarks (4), including selective loss of inhibitory
interneurons (5), a vulnerability of thalamic relay neurons (5, 6)
and deep cerebellar and Purkinje neurons (7), early activation of
glia that occurs before neuron loss (5, 8, 9), and the presence
of a low-level infiltration of the brain by T-lymphocytes (10,
11). Although disease progression occurs more slowly than
in other forms of NCL, Cln3 disease mice exhibit impaired
performance on tests of motor ability and coordination early in
disease progression (6). Together with pathological landmarks,
these tests have been used to judge the efficacy of a variety
of small molecule interventions aimed at blocking or reducing
the severity of the effects of Cln3 deficiency. These include a
series of different glutamate receptor antagonists (12–14), which
have shown only moderate efficacy, suggesting that glutamate-
mediated excitotoxicity is not central to the mechanisms that
operate in Cln3 disease.

There is growing evidence for a range of neuroimmune
responses occurring during JNCL pathogenesis (4, 15), and
therapeutic strategies to target these events are increasingly
being tested (16). Both Cln3 deficient mice (Cln3−/−) and JNCL
patients raise autoantibodies against glutamate decarboxylase
(GAD65), and other brain autoantigens (17–19). These can be
found in the CSF and within the CNS due to compromised
integrity of the blood brain barrier (10). Genetically blocking
this autoantibody production, or immunosuppression
with mycophenolate mofetil (MMF; CellCept), results in
improvements in motor function, decreased neuroinflammation,
and partial protection of vulnerable neuron populations in
Cln3−/− mice (20). A subsequent phase II clinical trial of MMF
in JNCL patients showed this drug to be well-tolerated (21), but
no evidence for efficacy has been reported.

More recently, the immunomodulatory compounds
fingolimod and teriflunomide have also been shown to
have significant positive effects upon pathology in both Cln1
and Cln3 deficient mice (11). Similarly, 3 phosphodiesterase-4
(PDE4) inhibitors were found to improve motor function, and
attenuate glial activation and lysosomal pathology in a mouse
model of Cln3 disease (22), providing further evidence for
beneficial effects of an anti-inflammatory and neuroprotective
strategy in murine JNCL. Taken together, these data provide
evidence that appropriately targeting pathogenically relevant
neuroinflammation while potentially reducing neuron loss via
neuroprotective agents may be of therapeutic benefit in multiple
forms of NCL (16).

Anti-inflammatory and neuroprotective compounds have
been tested in a several models of injury and disease (23, 24),
including lysosomal storage disorders (25–27). Such compounds
do not have an adverse impact on wild type mice (28, 29),

but it cannot be ruled out that that prolonged exposure
to immunosuppression may have adverse effects in Cln3−/−

mice. Therefore, in this study, we took the practical approach
of investigating whether drugs which are already commonly
used by patients with neurological problems, including JNCL,
and have a good safety profile in both wild type mice and
children would have any beneficial effects in Cln3−/− mice.
Among these commonly used drugs are anti-inflammatories (i.e.,
ibuprofen) and anticonvulsants (i.e., lamotrigine), which treat
seizures during disease progression. Although anticonvulsants
can be neuroprotective by preventing seizures, lamotrigine has
also been shown to exert neuroprotective roles in models
of injury and disease, likely via mechanisms independent
of their anticonvulsant properties. Following ischemic stroke,
administration of lamotrigine attenuated hippocampal neuron
loss (23), and in an MPTP model of Parkinson disease,
lamotrigine was shown to limit neuronal death (24). Therefore,
we identified these compounds as good initial candidates for
testing whether such commonly used drugs may have therapeutic
potential in Cln3−/− mice. Since this JNCL mouse model shows
early motor deficits and glial activation, but no appreciable
neuron loss until late in the disease, we selected behavioral tests
and brain inflammation as more sensitive measures to determine
the effects of the drugs.

Our data show evidence that combined treatment with
ibuprofen and lamotrigine results in improvements of certain
motor skills in Cln3−/− mice, and moderate effects upon
astrocyte activation that were most pronounced for ibuprofen
alone, but no overt effect upon microglial activation. These
data provide proof of principle for this approach, but it will be
important to test further drugs of these types in order to find
more effective combinations.

MATERIALS AND METHODS

Mice
In this study male and female C57BL/6J wild type (WT) and
homozygous Cln3-knockout (Cln3−/−) mice inbred on the same
background were used. Cln3−/− mice have a normal lifespan
and delayed onset of neurodegeneration, but display early glial
activation and motor deficits. To mimic the potential clinical
application of treated affected children shortly after diagnosis,
drugs were administered to symptomatic mice at 6 months of
age. Mice were bred and housed under non-sterile conditions,
with food and water available ad libitum, and were genotyped as
described previously (30). All animal procedures were performed
in accordance with the principles of the Basel declaration and
the UK Animals (Scientific Procedures) Act 1986, under Home
Office Project License PPL 70/7364. This protocol was approved
by King’s College London’s DenmarkHill Campus Committee for
Animal Ethics and Welfare.

Drug Treatments
All drugs were supplemented as a dry mixture to powdered RM1
mouse chow (SDS, UK). Ibuprofen (Sigma) was administered
at a dose of 100 mg/kg/day, Lamotrigine (Glaxo-Smith-Kline)
at 40 mg/kg/day in powdered chow using glass inkwells as
food containers. This allowed us to monitor the amount of
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food consumed per day, and minimized food loss due to mice
digging in these containers. UntreatedWT (n= 12) and Cln3−/−

(n= 7) mice were fed on powdered chow alone (placebo treated).
Cln3−/− treatment groups were made up of approximately equal
numbers of randomly assigned males and females and received
ibuprofen (n = 7), or ibuprofen and lamotrigine (n = 6).
Mice were randomly allocated to treatment groups until all
groups were filled, with all treatment groups run in parallel in
two separate batches, each containing every treatment group.
Mice in different treatment groups were kept in separate cages,
but experimenters conducting either behavioral or histological
analyses were kept blind to treatment status and genotype, until
the study was complete and all data collected. When conducting
behavioral testing, the apparatus was cleaned between each
mouse to minimize any odors left by previous mice.

Rotarod Test
An accelerating rotarod (Rotamex-5 Rota Rod, Columbus
Instruments, OH, USA) was used to measure the motor skill of
mice by assessing their ability to maintain balance on a motor-
driven, rotating rod. Due to the repeated, multiple test trials used
in our rotarod protocol, motor learning also contributes to the
rotarod performance of mice. During the training period, mice
were placed on the rotarod starting at zero rpm to 48 rpm in
240 s (0.2 rpm/s acceleration). Mice were trained on the rotarod
for three consecutive runs. Following training, mice rested for
1.5 h and then were tested for three test trials each consisting of
three consecutive runs, with 15min of rest between the trials. The
average latencies to fall from the rotating rod during the testing
periods were calculated for each mouse.

Vertical Pole Test
This test measures the balance, motor coordination, and vertical
orientation capability of mice. It was performed as previously
described, with minor modifications (31). The mouse is placed,
head downward, on top of a vertical, all-thread plated metal rod
(diameter: 1.27 cm; height: 60 cm), and the time until the mouse
climbs down to the base of the rod is measured in 5 consecutive
trials. Each climbing down trial is terminated after 60 s (to avoid
exhaustion). If the mouse falls the score is 60 s. The time to climb
down (average of the 5 trials in seconds) were calculated for
each mouse.

Histological Processing
At the end of the 3-month drug treatment, 9-month-old
Cln3−/− mice were perfusion-fixed with 4% paraformaldehyde
(in phosphate-buffered saline (PBS), pH 7.4). Nine-month-old
untreated wild type (WT) andCln3−/− mice were also perfusion-
fixed. The brains were carefully removed and immersion fixed for
at least 24 h in 4% paraformaldehyde, followed by cryoprotection
at 4◦C in a solution of 30% sucrose in PBS containing 0.05%
sodium azide. Subsequently, 40µm coronal sections were cut
on a Leitz 1321 freezing microtome (Microm HM 430; Carl
Zeiss Ltd., Cambridge, UK) and stored at 4◦C in 96 well plates
containing cryoprotectant solution [30% ethylene glycol, 15%
sucrose, and 0.05% sodium azide in Tris buffered saline (TBS:
50mM Tris, 150mM NaCl, pH 7.6)].

Quantification of GFAP and CD68
Immunoreactivity
To assess the degree of astrocytic and microglial activation,
a 1 in 6 series of 40µm sections from each brain (n = 3,
untreated WT mice n = 6, and Ibuprofen treated Cln3−/− mice
n = 4) was immunohistochemically stained for the astrocytic
marker glial fibrillary acidic protein (GFAP) or the microglial
marker CD68. Briefly, sections were incubated in 1% H2O2

in TBS for 30min to quench endogenous peroxidase activity
and rinsed three times in TBS. Sections were then blocked in
15% normal serum (from the host species of the secondary
antibody) in TBS-T (TBS containing 0.3% w/v Triton X-100)
for 30min. Sections were then incubated overnight at 4◦C
with either a rabbit anti-GFAP (1:8,000, Dako) or a rat anti-
CD68 (1:2,000, AbD Serotec) diluted in TBS-T containing 10%
appropriate normal serum. After rinsing, sections were incubated
for 2 h at room temperature with the appropriate biotinylated
secondary antibody (for GFAP: swine anti-rabbit, 1:1,000, Dako;
for CD68: rabbit anti-rat, 1:1,000, Vector Laboratories) diluted
in TBS-T containing 10% normal serum. After rinsing, sections
were incubated for 2 h at room temperature in ABC reagent
diluted 1:1,000 in TBS (Vectastatin Elite ABC kit, Vector
Laboratories). After rinsing, sections were incubated in 0.05%
DAB (3,3′-diaminobenzidine; Sigma-Aldrich, Dorset, UK) and
0.001% H2O2 in TBS to visualize immunoreactivity. Afterwards
sections were mounted on Superfrost microscope slides, air dried
overnight, cleared in xylene and coverslipped with DPX (VWR).

Sections stained for either GFAP or CD68 were scanned on
a Zeiss AxioImager.M2 using a x20 objective and brightfield
illumination using StereoInvestigator (MBF Biosciences,
Williston, VT). Images were exported as TIFF files and imported
into Image Pro Premier (Media Cybernetics, Rockville, MD)
and the relative proportion of each structure positive for each
antigen was determined using smart segmentation to apply a
threshold that discriminated specific immunoreactivity from
background staining.

Statistical Analysis
Statistical analysis of all behavioral data was done using
repeated measures two-way ANOVAs with Bonferroni’s test
using GraphPad Prism 7. Histological data were analyzed by one-
way ANOVAwith Bonferroni’s post-test. Results were considered
statistically significant when P < 0.05. Our sample sizes were
calculated using PS Power Sample Size software to provide
sufficient power (95%) to detect a 10% difference between the
means of the groups, which was considered the minimum
indication of efficacy.

RESULTS

Moderate Impact of Drug Treatments Upon
Rotarod and Vertical Pole Testing
Performance
Like mouse models of other forms of NCL, Cln3 deficient
mice show a progressive decline in their performance upon the
accelerating rotarod (7), which is detectable relatively early in
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disease progression depending on the precise protocol used. The
latency to fall from the rotarod is a commonly used readout of
efficacy for potential therapeutic compounds in these mice (20).
Another test of motor performance is the time taken to descend
from the top of a vertical metal pole, a task in which Cln3−/−

mice perform progressively worse with age (31). We used both
tests as outcome measures to compare the impact in Cln3−/−

mice of chow-administered ibuprofen (100 mg/kg/day), either
given alone or in combination with lamotrigine (40 mg/kg/day).
Since ibuprofen and lamotrigine (alone and in combination) have
previously been studied in wild type (WT) mice, and data from
our group (not shown here) also showed no effect of these drugs
on healthy mice, the treated Cln3−/− mice were only compared
to untreated/placebo Cln3−/− or wild type (WT) control mice.
These treatments began when the mice were 6 months of
age and continued for 3 months, with rotarod performance
(Figure 1) and vertical pole test performance (Figure 2) tested at
monthly intervals.

Over the treatment period, untreated WT mice were better
able to stay on the accelerating rotarod, whereas the performance
of untreated Cln3−/− mice was worse, resulting in a significantly
shorter latency to fall at 9 months of age. In contrast, Cln3−/−

mice treated with ibuprofen displayed a progressively longer

FIGURE 1 | A 3-month treatment with Ibuprofen induces moderate

improvement of motor skills in 6–9-month old Cln3−/− mice. An

accelerating rotarod (from 0 to 24 rpm in 240 s) was used to measure the

motor skills of 6–9-month-old Cln3−/− and wild type (WT) (n = 12) mice. Mice

were given either powdered diet with Ibuprofen, Ibuprofen and Lamotrigine, or

powdered diet with no drugs (Untreated) (n = 6–7) for 3 months. Data bars

represent mean ± S.E.M. of the time (s) mice were able to stay on the rotating

rod at 6–9 months of age (0–3 months of treatment). Repeated measures

two-way ANOVA was applied with Bonferroni’s post-test (*p < 0.05 and ***p

< 0.001).

latency to fall, a performance that was significantly better than
untreated Cln3−/− mice after 2 months of treatment. Combined
treatment with ibuprofen and lamotrigine did not produce the
same beneficial effects, although the rotarod performance of these
combination treated Cln3−/− mice was not as impaired as in
untreated mutants.

Downward facing vertical pole testing also revealed that with
repeated testing, untreated WT mice took less time to descend
the vertical pole, whereas untreated Cln3−/− mice consistently
took longer to achieve this task and displayed a significantly
worse performance by 9 months of age (Figure 2). Combined
treatment with ibuprofen and lamotrigine shortened the time
that Cln3−/− mice took to descend the vertical pole, with
this effect was significant at 9 months of age. In comparison,
ibuprofen treatment alone also improved performance in the
downward facing pole test, but not to the same extent as
combined treatment. Nevertheless, despite being less effective
than combination therapy, this treatment effect of ibuprofen
alone was also significant at 9 months of age compared to
untreated Cln3−/− mice.

Cell-Type Specific Impact of Drug
Treatments Upon Glial Activation in Cln3
Mice
Compared to earlier onset types of NCL, Cln3−/− mice display
a relatively slowly progressing neurodegenerative phenotype

FIGURE 2 | A 3-month treatment with combination of Ibuprofen and

Lamotrigine induces significant improvement of motor skills in 6–9-month old

Cln3−/− mice. A vertical pole was used to measure the motor skills of

6–9-month-old WT (n = 12) mice and Cln3−/− mice given diet with Ibuprofen,

Ibuprofen and Lamotrigine, or powdered diet with no drugs (Untreated) (n =

6–7). Data points represent mean ± S.E.M. of the time (s) mice took to climb

down a vertical pole at 6–9 months of age (0–3 months of treatment).

Repeated measures two-way ANOVA was applied to compare Control and

drug treated mice (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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(5, 8), and neuron loss does not typically become significant
until later in disease progression. However, this neuron loss is
characteristically preceded by a low-level glial activation with
both astrocyte and microglial activation occurring in brain
regions where neuron loss is subsequently most pronounced
(5, 8). In particular, this includes the thalamic nuclei that
relay somatosensory (ventral posterior, VPM/VPL) and visual
information (dorsolateral geniculate, DLG) to the corresponding
regions of somatosensory barrelfield (S1BF) and primary visual
(V1) cortex, respectively. Immunostaining for glial fibrillary
associated protein (GFAP, astrocyte reactivity) and CD68
(microglial activation) in these nuclei have been used as
pathological readouts in numerous studies in Cln3-deficient mice
(20, 22, 32). We examined these markers in the VPM/VPL, S1BF,
DLG, and V1 of untreated WT and Cln3−/− mice, and mutant
mice treated with ibuprofen and the combination of ibuprofen
and lamotrigine.

Immunostaining for CD68 revealed the typical low level
of microglial activation that was evident in Cln3−/− mice,
with somewhat more darkly stained microglia evident in
both thalamic relay nuclei and cortical regions (Figure 3).
As reported previously (9), these CD68-positive microglia in
untreated Cln3−/− mice exhibited a moderately larger cell soma,
but did not display the hypertrophied morphology typical of
brain macrophages. CD68-stained microglia in Cln3−/− mice
treated with either ibuprofen alone or in combination with
lamotrigine appeared very similar in terms of both staining
intensity and morphology, suggesting very little impact of these
drug treatments upon microglial activation. Thresholding image
analysis of the level of CD68 immunostaining confirmed these
morphological observations, and although ibuprofen treatment
alone appeared to result in marginally less CD68 staining, none
of these treatment effects approached statistical significance.

Consistent with previous reports (5, 8), immunostaining
for the astrocyte marker GFAP revealed more intense and
widespread staining in untreatedCln3−/− mice than in untreated
WT mice in both thalamic relay nuclei and cortical regions
(Figure 4). Although astrocytes in untreated Cln3−/− mice
appeared more intensely stained, they exhibited the morphology
of being only partly activated, as previously reported (9).
In contrast, in Cln3−/− mice treated with ibuprofen alone
there qualitatively appeared to be fewer and less intensely
stained GFAP-positive astrocytes throughout the cortex than in
untreated mutants, but still more than were evident in untreated
WTmice. In combination-treatedCln3−/− mice, the distribution
of GFAP immunoreactivity in the thalamus and across the
cortex more closely resembled that in untreated Cln3−/− mice,
suggesting there was less of an impact of combined treatment
upon astrocyte activation than ibuprofen alone. Quantifying
these changes in GFAP immunoreactivity via thresholding image
analysis in somatosensory and visual pathways largely confirmed
these observations, and revealed that despite qualitative trends in
the data, the effect of ibuprofen treatment upon astrogliosis was
only significant within the VPM/VPL (Figures 4B–E).

Taken together these data reveal evidence for a modest and
regionally-dependent efficacy of ibuprofen treatment against
astrogliosis, but not upon microglial activation, in Cln3−/− mice.
In contrast to its moderately positive effects upon rotarod and

vertical pole testing, the combined treatment with ibuprofen and
lamotrigine had no additional impact upon attenuation of glial
activation in Cln3−/− mice.

DISCUSSION

There have been a series of different therapeutic interventions
that have targeted specific parts of the neuroimmune
response in JNCL (16). One of these approaches used the
immunosuppressant MMF in Cln3-deficient mice (20).
Although the impact of MMF was broadly positive upon the
CLN3 disease phenotype of these mice, prolonged exposure to
MMF was associated with a decline in rotarod performance (20).
In order to find a strategy that avoided such adverse effects of
immunosuppression, we conducted a proof of concept study
to test whether a cheap and widely available anti-inflammatory
drug that is already approved for use in children would have
any therapeutic benefit in Cln3−/− mice, when given alone
or in combination with lamotrigine. These compounds have
previously been tested extensively in wild type mice (28, 29),
and in other similar lysosomal storage disorders (25–27).
Additionally, previous data from our group (not shown here),
showed that neither of the drugs alone or in combination had
any effect on wild type mice. Therefore, we adopted a simple
study design directly comparing treated and untreated Cln3−/−

mice to wild type controls. Our data provide proof of concept
that such drugs, which are approved for use in children for other
indications, are capable of partly influencing both behavioral
and certain pathological phenotypes of these Cln3-deficient
mice. These effects are relatively modest, and this may reflect
that we started our treatment in mice that were beginning
to show the behavioral effects of disease, rather than being
completely pre-symptomatic. Indeed, it is plausible that such
treatments may provide additional benefit if given earlier in
disease progression, or together with other therapies. It will be
important to systematically test other compounds of this type to
find more effective drug combinations, as has been done in other
lysosomal storage disorders (25–27).

The discovery that mutations in the CLN3 gene cause JNCL
was made nearly 25 years ago (2), but the precise mechanisms
that cause the devastating impact upon affected individuals
remain unclear. Most experimental therapies for this disorder
have largely focused on blocking the downstream effects of CLN3
mutation (1, 33). This includes the variety of neuroimmune
responses that occur early in disease progression (5, 8), which
now appear to contribute to JNCL pathogenesis. Infiltration of
peripheral immune cells into the CNS in JNCL is relatively
minor (10, 11), but such responses may still influence disease
progression (34). Genetic or pharmacological strategies that
block this infiltration provide some degree of therapeutic benefit
in Cln3-deficient mice (11, 20). Similar strategies have also
been tested in infantile NCL by crossing to Rag1-deficient mice
(34), or immunomodulatory drug treatment (11), both positively
influencing disease progression in both Ppt1 and Cln3-deficient
mice. This suggests that an adaptive immune response plays at
least some part in influencing disease progression in multiple
forms of NCL.
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FIGURE 3 | Effect of Ibuprofen and Lamotrigine treatment on microglial reactivity in 9-month old Cln3−/− mice. (A) Representative images of CD68 immunostaining

in S1BF, VPM/VPL, V1, and LGNd. Scale bars, 200 and 25µm (inserts). (B–E) Quantification of % CD68 immunoreactivity in S1BF, VPM/VPL, V1, and LGNd,

respectively. Data points represent mean ± S.E.M. of the % CD68 immunoreactivity. Ordinary one-way ANOVA was applied with Bonferroni’s post-test (*p < 0.05).
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FIGURE 4 | Moderate effect of Ibuprofen and Lamotrigine treatment on JNCL astrocyte immunoreactivity in 9-month old Cln3−/− mice. (A) Representative images of

GFAP immunostaining in S1BF, VPM/VPL, V1, and LGNd. Scale bars, 200 and 25µm (inserts). (B–E) Quantification of % GFAP immunoreactivity in S1BF, VPM/VPL,

V1, and LGNd, respectively. Data points represent mean ± S.E.M. of the % GFAP immunoreactivity. Ordinary one-way ANOVA was applied with Bonferroni’s post-test

(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and #1 < p > 0.05).
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There is a close relationship between where glial activation
occurs and the extent of subsequent neuron loss in multiple
forms of NCL (4, 15). There is now mounting evidence that
this innate immune response in JNCL may contribute to
neuronal dysfunction and loss, with Cln3 deficiency impacting
the function of both astrocytes and microglia (9, 35, 36).
Furthermore, in co-culture systems the presence of Cln3-
deficient astrocytes and microglia harms WT neurons, and
promotes the death of Cln3-deficient neurons (9). While the
mechanisms that underlie these events remain unclear, strategies
that suppress or modulate an innate response appear to
have promise. For example, PDE-4 inhibitors provided partial
attenuation of glial activation and behavioral benefits in addition
to neuroprotective effects (22).

Compared to the partial success of these targeted
interventions, the efficacy of our approach to repurpose
commonly used anti-inflammatory drugs is more modest. As
already discussed, starting drug administration earlier in disease
progression may be more effective, or other non-steroidal or
other anti-inflammatory drugs may prove more effective. It
will also be important to test such drugs over a longer time
period when neuron loss becomes evident in this mouse model
(5), to determine if they are capable of neuroprotective effects.
Staining for additional markers of glial activation is likely to be
informative at these more advanced stages of disease progression,
but as we have reported previously microglial activation in Cln3
deficient mice remains at a relatively low level, even at disease
end stage (9). With no direct evidence for astrocyte proliferation
in Cln3 deficient mice (5, 8), it appears these effects are exerted
upon the relative level of astrocyte activation. A consistent
feature of mouse models of NCL is the relative vulnerability of
the thalamus compared to the cortex [reviewed in Cooper et al.
(4)] and this includes mouse models of CLN3 disease (5, 6). The
reasons for this apparent vulnerability are unclear, but we and
others have used proteomic analysis to gain insights into this
issue in other forms of NCL (37–39), revealing concurrent and
early alterations in the expression of a variety of neuronal and
inflammatory markers in the thalamus. These are consistent with
the notion of the thalamus as a focus for disease in multiple forms
of NCL, and further emphasize a potential role for neuroimmune
responses in their pathogenesis.

Nevertheless, regardless of the underlying mechanisms, the
fact that even relatively short term administration of a drug
such as ibuprofen that has an established safety profile, had any
impact at all upon behavior or neuropathological changes is
still encouraging. We are currently testing more drugs of this
type to identify more effective combinations, particularly with
regards to microglial activation. It will also be important to
discern the exact inflammatory profile of wild type and mutant
mice treated with neuroprotectants and anti-inflammatories
in future studies, as morphological and histological changes
of astrocytes and microglia could be indicative of a range
of activation states. Notably, activation of microglia may
indeed favor a neuroprotective role for anti-inflammatory drugs
(40). Additionally, increasing expression of neuroprotective
agents was shown to exert anti-inflammatory effects in INCL
mice, despite having no effect on astrocyte or microglial

reactive morphology (41). Although these immunomodulatory
approaches have shown some efficacy (11, 16), they may only
be targeting more secondary downstream consequences of Cln3
deficiency and are unlikely to be curative. Gene therapy is the
likeliest strategy to succeed in JNCL and has now been shown
to have some promise in JNCL mice (32). Nevertheless, there
still remains scope for neuromodulatory or anti-inflammatory
approaches to be given either before gene therapy can be
administered or as an adjunct to this approach, as we have
done in Cln1 disease mice (42). In this respect drugs which are
inexpensive and have comparative anti-inflammatory effects, but
less immunosuppressive side effects, and an established safety
profile in children may prove to be of clinical utility, if we can
identify more effective drugs or drug combinations of this type.
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