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The goal of this work was to demonstrate the utility of Bayesian probability theory-based model selection for
choosing the optimal mathematical model from among 4 competing models of renal dynamic contrast-en-
hanced magnetic resonance imaging (DCE-MRI) data. DCE-MRI data were collected on 21 mice with high
(n � 7), low (n � 7), or normal (n � 7) renal blood flow (RBF). Model parameters and posterior probabili-
ties of 4 renal DCE-MRI models were estimated using Bayesian-based methods. Models investigated included
(1) an empirical model that contained a monoexponential decay (washout) term and a constant offset, (2) an
empirical model with a biexponential decay term (empirical/biexponential model), (3) the Patlak–Rutland
model, and (4) the 2-compartment kidney model. Joint Bayesian model selection/parameter estimation dem-
onstrated that the empirical/biexponential model was strongly favored for all 3 cohorts, the modeled DCE
signals that characterized each of the 3 cohorts were distinctly different, and individual empirical/biexpo-
nential model parameter values clearly distinguished cohorts of low and high RBF from one another. The
Bayesian methods can be readily extended to a variety of model analyses, making it a versatile and valu-
able tool for model selection and parameter estimation.

INTRODUCTION
Renal dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is a powerful technique that can noninvasively
quantify and map empirical and physiological parameters that
provide information on renal function. For example, DCE-MRI
can quantify and map renal blood flow (RBF) and the glomerular
filtration rate (GFR) (1-6), important clinical determinants of
renal function that are otherwise traditionally measured based
on filtering para-aminohippuric acid and inulin into the urine
(measures that report on the combined RBF and GFR of both
kidneys). By mapping function parameters, renal DCE-MRI can
potentially yield information on spatially heterogeneous renal
diseases such as focal and segmental glomerular sclerosis and
thus may be preferable to traditional plasma- and urine-based
measures. When applied in humans, renal DCE-MRI can poten-
tially provide noninvasive, quantitative insight into a patient’s
renal health, as well as inform on basic human renal physiology.
In rodents, renal DCE-MRI permits quantitative, serial measures
of kidney structure and function in support of drug discovery
(nephrotoxicity) and characterization of renal function in ge-
netically manipulated animals.

Renal DCE-MRI involves serial imaging of the kidney using
a T1-weighted MRI sequence to observe the passage of a bolus of

gadolinium-containing contrast agent (CA) through the kidney.
From these data, dynamic parameters can be quantified by
fitting descriptive mathematical models—those that provide an
approximate representation of a complex system—to the MRI
data. Renal DCE-MRI mathematical models can loosely be cat-
egorized as either pharmacokinetic compartmental or empirical
models. Pharmacokinetic compartmental models are derived
based on approximations of the known physiological processes
that underlie the MRI signal. Many of these models aim to
measure fundamental physiological parameters such as RBF and
GFR (1-6). Pharmacokinetic models typically require knowledge
of the arterial input function (AIF), which describes the passage
of the CA bolus through the vasculature. The input function is
often measured distal from the tissue of interest and thus may
not accurately describe bolus dynamics in voxels of interest.
Furthermore, errors in AIF measurements (delay of bolus arrival,
dispersion of bolus in tissues, partial volume effects, flow arti-
facts) can markedly influence model parameter estimates (7).
AIF measurements are particularly difficult in small-animal
models of disease. As a consequence, it can be challenging to
make accurate physiological measurements with pharmacoki-
netic models. Alternatively, empirical models can be used to
characterize DCE-MRI data using simple, logically chosen math-
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ematical functions that may qualitatively reflect underlying
physiology. Although empirical models typically do not require
a direct theoretical connection to the underlying physiology,
appropriately selecting mathematical functions can yield useful
descriptions of that physiology.

Ideally, a library of models would be compared against one
another to determine which model best represents a dataset.
Selecting the “best” mathematical model for a dataset requires
accounting not only for goodness of fit, reflected in the model
versus data residuals, but also the complexity of the model
(8-10), that is, the number of variable parameters in the model.
This idea is generally expressed as a statement of Occam’s razor
or the law of parsimony—that all other things being equal, a
simpler model, with fewer parameters, is favored over a more
complex, highly parameterized model. However, more complex
models will often better fit the experimental data. To avoid
overparameterization, a best-fit model must balance goodness
of fit versus complexity.

Cox’s theorem (11) and its further elaboration by Jaynes
(12-14) states that Bayesian probability theory is the optimal
method for making inferences about data (ie, it optimally bal-
ances goodness of fit vs complexity). Bayesian probability the-
ory answers the following question: given the data, and all prior
information, what is the probability that a given hypothesis is
true? Bayesian probability theory incorporates prior knowledge
(in the form of prior probabilities) that informs the calculation
and effectively provides a goodness-of-fit penalty for each pa-
rameter added to a data model. Based upon the data and all prior
information, Bayesian calculations generate marginalized pos-
terior probability distributions. These probability distributions
provide information regarding model selection and estimated
parameter values, including provision of the uncertainties asso-
ciated with the derived results (quantified by the widths of the
probability distributions). Thus, Bayesian probability theory can
provide optimal estimates of the parameters that characterize a
model and a probabilistic ranking of members of a library of
competing data models.

We apply Bayesian probability theory jointly on cohort
datasets herein to select the optimal (most probable) model
among 4 renal DCE-MRI models. We then apply this methodol-
ogy to differentiate 3 cohorts of mice with different blood flow
rates.

METHODS
Animal Preparation and Imaging
All animal experiments were approved by the Washington Uni-
versity Division of Comparative Medicine. This study aimed to
modulate renal dynamics by modulating RBF using a nitric
oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-
NAME), to reduce RBF and an angiotensin receptor antagonist,
losartan, to increase RBF. To confirm the effects of L-NAME and
losartan on RBF before DCE-MRI experiments, mice were anes-
thetized with 1.5% isoflurane, and their left jugular vein and
right carotid arteries were catheterized for drug delivery and
arterial blood pressure measurement, respectively. The left kid-
ney was accessed via the retroperitoneal cavity. Kidney regional
blood flow was continuously monitored by means of 2 laser
Doppler flow probes (Advanced Laser Doppler Flowmeter 21,

ADVANCE, Tokyo, Japan), 1 placed on the surface of the left
pole and the other, the size of a 23-gauge needle, inserted 7 mm
into the kidney to measure renal cortical and medullary blood
fluxes (CBFs and MBFs), respectively. Mice were stabilized under
anesthesia for 15 minutes after surgical procedures. One group
of mice (n � 3) received 30 mg/kg L-NAME intravenously, a
second group of mice (n � 3) received 20 mg/kg losartan
intravenously, and a third group (n � 3) served as the control.
Mean arterial blood pressure (MAP), CBF, and MBF were con-
tinuously monitored before and after each injection. At the end
of the experiment, the kidney was fixed in 10% formalin, and
medullary probe placement was verified by visually inspecting
the probe track under light microscopy. The acute effects of
L-NAME and losartan on blood pressure and kidney regional
blood flow were determined by computing the percentage
change relative to baseline values.

Renal DCE-MRI experiments were performed on a small-
animal scanner equipped with an Agilent DirectDrive console
(Agilent Technologies, Santa Clara, CA) and built around a 4.7-T
horizontal bore magnet (Oxford Instruments, Abingdon, UK).
Mice were anesthetized with 1% isoflurane, and their left jugular
veins were catheterized. To vary RBF, mice received 30 mg/kg
L-NAME (n � 7) intravenously to reduce RBF, 20 mg/kg losartan
(n � 7) intravenously to increase RBF, or remained naive as
controls (n � 7). Mice were imaged supine using a laboratory-
built, actively decoupled volume transmitting/surface receiving
coil pair, with the receiving coil placed directly under the left
kidney. DCE-MRI data were collected using a gradient-recalled
echo (GRE) pulse sequence with the following parameters: echo
time, 2.7 milliseconds; repetition time, 30 milliseconds; flip
angle, 30°; matrix, 64 � 64; slice thickness, 1 mm; field of
vision, 30 mm2; temporal resolution, 5.12 seconds; and total
scan time, 17 minutes and 3 seconds. At 123 seconds after the
start of the DCE-MRI series (frame 24 of the time series), a bolus
of 100 �L of 16 mM gadobenate dimeglumine contrast agent
(MultiHance, Bracco Imaging, Monroe Township, NJ) was ad-
ministered for 3 seconds via a jugular vein catheter using a
syringe pump (Harvard Clinical Technology, Natick, MA). Care
was taken to eliminate saline from the catheter line before the
DCE-MRI experiments to ensure that the entire 100 �L of con-
trast agent was administered. To calculate the baseline longitu-
dinal relaxation rate constant (R1) of the kidney cortex, 8 GRE
images with flip angles of 2, 5, 7, 9, 15, 20, 25, and 35° (variable
flip-angle experiment) were collected before the DCE-MRI ex-
periment (15).

Data Analysis
Regions of interest (ROIs) outlining only the renal cortex were
manually defined from high-resolution, T2*-weighted GRE im-
ages of the kidney. Raw arterial input functions for each mouse
were defined as the mean measured signal in the renal artery.
DCE-MRI signal versus time datasets were converted to apparent
CA concentration using the baseline R1 estimates and standard
procedures (1). Bayesian probability theory-based methods, im-
plemented using a Markov-chain Monte Carlo simulation (de-
tails below in “Bayesian-Based Model Selection”), were applied
on both an ROI- and voxel-wise basis to estimate both model
probability and model parameter values. The posterior probabil-
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ities of each model and its parameters were computed using
laboratory-developed software (further algorithm details and
software are available for free download at http://bayesianan-
alysis.wustl.edu). Four competing signal models were evaluated
on both an ROI and voxel-wise basis: (1) an empirical model
containing a monoexponential signal decay (washout) term and
a constant offset (empirical/monoexponential � C model), (2) an
empirical model with a biexponential signal decay term (empir-
ical/biexponential model), (3) the Patlak– Rutland model (2-4,
16), and (4) the 2-compartment kidney model (4, 16). All models
are detailed in the sections that follow.

Joint Bayesian analysis, in which model selection and pa-
rameter estimates are calculated jointly for the entirety of each
cohort (ie, a single posterior probability distribution function
[PDF] is produced for each parameter in each cohort), was
performed on ROI data. As will be described, the empirical/
biexponential model was heavily favored for all 3 cohorts. To
determine whether Bayesian analysis of the kidney DCE-MRI
data could distinguish the 3 cohorts of animals (normal, high,
and low RBF), a series of empirical/biexponential models was
devised to determine whether the 3 cohorts were the same,
different, or both. In practical terms, Bayesian model selection
made these determinations by comparing 1 empirical/biexpo-
nential model in which all cohorts shared the same model
parameters, 1 empirical/biexponential model in which all co-
horts had unique model parameters, and 3 empirical/biexponen-
tial models in which 2 cohorts shared the same parameters and
the other cohort had unique parameters.

Having established that the 3 cohorts were different from
one another (vide infra, see “Results: ROI Parameter Estimation
and Model Selection”), the PDFs for each empirical/biexponen-
tial model parameter were compared across cohorts to determine
which parameters were most responsible for the observed dif-
ference between cohorts. Differences between PDFs were calcu-
lated, and parameters were considered different between cohorts
if the 95% confidence interval of the difference in the PDFs did
not overlap with 0 (17). Unless otherwise noted, data are pre-
sented as mean � SD.

Pharmacokinetic (Physiologic) Models
Two pharmacokinetic models were considered: the Patlak–Rut-
land model (2-4, 16) and the 2-compartment kidney model. The
Patlak–Rutland model is given by

K�t� � �pAp�t� �
GFR

V �0

t
Ap�u�du , (1)

where K(t) is the MRI signal amplitude, vp is the apparent
vascular volume fraction, Ap(t) is the apparent CA plasma
concentration, t is time (measured from the start of the MRI
scan), GFR is the glomerular filtration rate, and V is the renal
cortical tissue volume. The 2-compartment kidney model is
given by

K�t� � �pAp�t� �
GFR

V �0

t
Ap�u�exp��kout�t � u��du , (2)

where kout is the rate constant that governs the outflow of CA
from tubules.

Empirical Models
Both empirical models take the following general form:

K�t� � f�t� � g�t� , (3)

in which f(t) describes the CA wash-in and g(t) the CA washout;
f(t) is modeled with the following cumulative log-logistic equa-
tion:

f�t� �
A

1 � �t � B��C , (4)

where A is the amplitude of the CA wash-in (interpreted as the
peak CA concentration), t is time (measured from the start of the
MRI scan), B is the inflection time point of the CA wash-in (the
time point of the maximum rate of CA accumulation), and C is
the rate of CA wash-in (the slope) near t � B; g(t), the CA
washout, is modeled as either a monoexponential decay to a
constant offset or a biexponential decay. The former model is
given by

gmono�t� � exp��	�t � 
�� � c , (5)

where a is the decay rate constant (which informs the combined
clearance of CA from the renal cortex via filtration into the
tubules and washout to the venous system), 
 is the time at
which the CA bolus was injected, and C is the constant offset.
The biexponential decay model is given by

gbi�t� � Ffexp��	f�t � 
�� � Fsexp��	s�t � 
�� , (6)

in which Ff and Fs are the fractional amplitudes of the fast and
slow exponential decay terms, respectively, and 	f and 	s are
the corresponding decay-rate constants (which inform the clear-
ance of CA from the renal cortex via washout to the venous
system and filtration into the tubules, respectively). The frac-
tional amplitudes are constrained by Ff � Fs � 1; thus, either
fractional amplitude can be reported equivalently—the frac-
tional amplitude of the slow component (filtration) is reported
herein.

A monoexponential decay without a constant offset and a
biexponential decay that included one were also considered.
However, a Bayesian assessment revealed both of these models
to be highly improbable; for this reason, these models have been
excluded from further discussion.

Bayesian-Based Model Selection
The posterior probability for each of the models previously
defined was calculated using Bayes’ theorem (14):

P�M|DI� �
P�M�I�P�D�MI�

P�D�I�
, (7)

where P�M�DI� is the posterior probability for a model M given
the data D and the prior information I; P�M�I� is the prior
probability for the model given the prior information; P�D�MI� is
the marginal direct probability for the data given the model and
prior information; and P�D�I� is the direct probability for the
data given the prior information. To calculate the posterior
probability of the model given the data and prior information,
one must calculate the direct probability for the data given the
model and the prior information. For example, in the case of the
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Patlak–Rutland pharmacokinetic model and its 2 calculated
kinetic parameters GFR and vp, the expansion of P�D�MI� takes
the following form:

P�D�MI� � � dGFRd�pP�GFR�p�MI�P�D�GFR�pMI� , (8)

where P�GFR�p�MI� is the joint prior probability for GFR and vp

given the model and the prior information and P�D�GFR�pMI� is
the direct probability for the data given the parameters (GFR and
vp), the model, and the prior information. It is critical to note
here that Bayesian probability theory demands accounting for the
entire hypervolume defined by the range of parameter values. Each
hypervolume defined by the parameters contributes directly to the
posterior probability of the model given the data and prior informa-
tion. However, each hypervolume defined by the prior probability for
the parameter is weighted by the likelihood of the data given those
parameters. The posterior probabilities for the parameters and each
model defined previously were calculated using custom-written
Bayesian analysis software that employed a Markov-chain Monte
Carlo simulation, in which the model is merely considered another
discrete parameter to be sampled.

In the Markov-chain Monte Carlo simulation, 50 simula-
tions were run simultaneously in parallel with thermodynamic
integration to sample the posterior probability for the parame-
ters and the model. Thermodynamic integration slowly brought
the 50 simulations to a static equilibrium state. Once the system
was in equilibrium, 50 samples of each of the 50 simulations
were gathered, so 2,500 total parameter samples were used to
characterize the density distribution of the posterior probabili-
ties for the parameters and the models.

All calculations were performed on a Dell Power Edge R900
with 4 6-core (24 central processing units) 2.4 GHz Xeon pro-
cessors with 48 gigabytes of memory. Model selection and
parameter estimation on ROI data took 45 to 75 seconds for each
cohort. Voxel-wise model selection and parameter estimation
took 12 hours for each dataset.

RESULTS
Effects of L-NAME and Losartan on Blood Pressure and
Regional Blood Flow in the Kidney
The effects of L-NAME and losartan were confirmed using 2 laser
Doppler flow probes before the renal DCE-MRI experiments.
L-NAME administration increased MAP (12% above baseline;
Figure 1A) and decreased CBF (15% relative to baseline; Figure
1B). Conversely, losartan administration decreased MAP (10%
below baseline; Figure 1A) and increased CBF (23% above base-
line; Figure 1B). The effects of L-NAME and losartan on CBF
were sustained (�9 minutes; Figure 1B), whereas their effects on
MBF were transient (�4 minutes; Figure 1C).

ROI Parameter Estimation and Model Selection
ROIs and AIFs were manually defined for each of the 21 DCE-
MRI datasets.

Joint (Cohort) Model Selection and Parameter Estimation
Intracohort datasets were analyzed jointly (7 datasets per co-
hort) using Bayesian probability theory-based methods to (1)
identify the most probable signal model from among the 4
competing models considered, (2) discern cohorts of differing
RBF, and (3) compute optimized model parameters for the most

probable model per cohort (Figure 2). Joint Bayesian model
selection calculated the empirical/biexponential model to be
�847 e-folds or, equivalently, exp(847) times more probable
than the other models for all cohorts combined. Intracohort joint
Bayesian model selection chose the empirical/biexponential
model as the favored model for each cohort individually (�147,
208, and 449 e-folds more probable than the other models for
the control, low RBF, and high RBF cohorts, respectively). Based
upon an evaluation of empirical/biexponential models in which

Figure 1. The effects of acute intravenous admin-
istration of 10 L of saline (n � 3), 30 mg/kg
L-NAME (n � 3), and 20 mg/kg losartan (n � 3)
on MAP (A), renal CBF (B), and renal MBF (C).
Data are expressed as percentage changes from
baseline values determined as the mean values
over 2 minutes before drug or vehicle administra-
tion. All values are mean � SEM. *P � .05 and
**P � .01 versus saline.
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all cohorts were considered all the same, all different, or pairwise
the same (with the third cohort being different), Bayesian model
selection assigns an overwhelming probability to the hypothesis

that the 3 cohorts are all different (�8 e-folds or, equivalently,
3,000 times more probable than all others). From among the
empirical/biexponential model parameters (Table 1), the slow

Figure 2. Representative DCE-
MRI data from a single animal,
together with the Bayesian model-
ing of these data using 2 phar-
macokinetic and 2 empirical
models (left), and residuals
(right). The empirical/biexponen-
tial model was calculated to be
the most probable signal model
from among the 4 compared
models for each of the animal
cohorts.

Table 1. Joint Parameter Values Estimated Using the Empirical/Biexponential Model

Joint Empirical/Biexponential Model Parameter Values

CA amplitude (mM) Inflection Point (s) Slope (�101 mM/s)

Slow Decay-Rate
Constant

(�10�4 s�1)

Fast Decay-Rate
Constant

(�10�2 s�1)

Slow
Fractional

Amplitude (AU)

Control 0.5 � 0.2 7.0 � 0.3 8 � 1 9.4 � 1.0 1.0 � 0.1 0.48 � 0.03

Low flow 0.5 � 0.2 7.4 � 0.2 10 � 3 6.6 � 0.5 1.6 � 0.1 0.42 � 0.01

High flow 0.5 � 0.2 6.9 � 0.2 9 � 1 8.1 � 0.3 1.6 � 0.1 0.49 � 0.01

Renal DCE-MRI Model Selection
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decay-rate constants and the fractional amplitudes of the wash-
out terms differed individually between mouse cohorts of high
and low RBF (ie, the 95% confidence interval of the difference in
the probability distributions did not overlap with 0; Figure 3B,
D). The fast decay-rate constants discerned the control group
from the high and low RBF groups.

Voxel-Wise Analyses When the datasets were analyzed on a
voxel-wise basis, the empirical/biexponential model was the
preferred model for the vast majority of voxels within the renal
cortex and medulla (Figure 4B, yellow). The empirical/monoex-
ponential � C model (green) is preferred in the spleen, shown on

the right edge of these images, and the outermost regions of the
renal pelvis. In this representative dataset, neither the Patlak–
Rutland nor the 2-compartment kidney models were associated
with a particular tissue type, and these models accounted for a
small minority of voxels in the analyses. The analysis excluded
the renal pelvis, where the CA accumulated at high concentra-
tions and thus induced a significant T2* effect that was not
included in the models employed in this study. Empirical/biex-
ponential model parameters and their standard deviations were
mapped (Figure 4C). Interestingly, these parameter maps high-
light a number of anatomic features of the kidney. The CA input
amplitude and inflection time point are highest in the tubule-
bearing medulla of the kidney, where renal dynamics are mostly
diffusion-limited and one would expect the CA to slowly accu-
mulate to high concentrations. The slope of the wash-in is
maximized in the cortex, where dynamics are mostly driven by
intracapillary flow and one would expect both the wash-in and
washout of the CA to be rapid.

DISCUSSION
In this proof-of-principle study, Bayesian probability theory-
based methods are shown to be powerful tools for selecting the
most probable kinetic model for DCE-MRI datasets and for
estimating DCE-MRI model parameters. Joint (cohort) model
selection and parameter estimation revealed the empirical/biex-
ponential model to be the most probable signal model for all 3
cohorts (normal, high, and low RBF) of mice. Bayesian model
selection broadly answered whether these cohorts were the same
or different without needing to compare specific parameter
estimates. The 3 cohorts of mice of varying RBF were readily
discerned in this manner. From among the empirical/biexpo-
nential model parameters, the slow decay-rate constant and the
fractional amplitudes of the washout terms were different be-
tween cohorts of mice with high and low RBF (Figure 3).

Renal DCE-MRI is particularly difficult to perform in
rodents. Many of the challenges associated with DCE-MRI in
rodents stem from the small and often difficult-to-find feed-
ing arteries from which an AIF can be sampled. Although care
was taken to capture the renal artery in the renal DCE-MRI
datasets, these same challenges affected the results of this
study, and it is likely that the empirical models were favored
over the pharmacokinetic models largely because of poor AIF
data in these mouse kidney images. Alternatively, pharma-
cokinetic models may be favored in human studies in which
large feeding vessels are more readily sampled for AIFs. From
this work, we conclude that Bayesian probability theory is a
powerful tool for assessing the fidelity of kinetic models
given DCE-MRI data and that, in general, flexible empirical
models may provide more robust dynamic parameter esti-
mates in preclinical DCE-MRI studies in which quality AIFs
are difficult to reliably sample (at the expense of a direct
report on typical physiological parameters).

Cortical ROI datasets were used in much of this study to
determine the most probable kinetic model and to discern
treated animal groups. However, Bayesian model selection and
parameter estimation can also be applied on a voxel-wise basis.
In this study, we found that the vast majority of cortical and
medullary voxels were best fit by the empirical/biexponential
model (Figure 4B). Still, a small portion of the spleen was

Figure 3. (A, C) Bayesian-estimated posterior
probability densities of the empirical/biexponen-
tial model’s joint fractional amplitudes of the
washout and joint slow decay-rate constants, re-
spectively, for each cohort. The losartan-treated
(high RBF) group is represented by the solid black
line, the L-NAME (low RBF) group by the dashed
black line, and the control group by the dotted
gray line. (B, D) The difference in the posterior
probability distributions for the joint fractional
amplitudes of the washout and joint slow decay-
rate constants, respectively, calculated on the
high and low RBF cohorts. From among the em-
pirical/biexponential model joint parameter es-
timates, the fractional amplitudes of the washout
terms (A) and the slow decay-rate constants (C)
differed between mouse cohorts of high and
low RBF; that is, the 95% confidence interval of
the difference in the probability distributions did
not overlap with 0 (B and D).
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captured in these images and, in the spleen, the empirical/
monoexponential � C model was favored. Again, we speculate
that the absence of Bayes-favored pharmacokinetic models in
these voxel-wise analyses resulted from poorly resolved/sam-
pled AIFs. Bayesian model selection, when applied on a voxel-
wise basis, may thus be useful in mapping the distribution of
favored models—a factor that may supplement model parameter
estimates by yielding information about tissue microstructure
and function.

Although correlating empirical model parameters with
physiology was not an explicit goal of this work, it is inter-
esting to note how the voxel-wise analyses hint at the phys-
iological relevance of the empirical/biexponential model
(Figure 4). The CA wash-in amplitude parameter, interpreted
as the peak CA concentration, suggests that the renal medulla
will experience a higher CA concentration than the cortex.
This makes physiological sense because the CA transits
quickly across the glomerular filtration barrier (in the cortex)
into the tubules (mostly in the medulla), through which the
agent traverses slowly, thus allowing buildup of CA. The CA
wash-in inflection parameter, interpreted as the time point at
which the rate of CA accumulation is greatest, suggests that
the renal cortex and peritubular capillaries accumulate CA
first, followed by the medulla (tubules). This too makes phys-
iological sense because the agent originates in the glomerular
intracapillary space in the cortex and traverses the capillary
wall into the tubule in the medulla. Finally, the CA wash-in
slope parameter, interpreted as the peak rate of CA accumu-
lation, is highest in the renal cortex. This again is physiolog-
ically reasonable because the cortex is where the CA quickly
filters through the glomerular slit diaphragm into the tubule
lumen. The high rate of CA delivery from the vasculature into
tubules, driven by renal perfusion pressure, causes a sharp
increase in CA concentration (large slope parameter) over a

very short period of time. Note that the CA wash-in slope
represents an instantaneous maximum rate of accumulation;
thus, its large value is offset by the very short time period
over which CA accumulates at this rate. The empirical param-
eters that govern the wash-out of the CA combine to account
for the clearance of CA from the cortex via washout through
the venous system or filtration through the glomerular cap-
illary wall and tubules into the urinary space.

This study was not an exhaustive assessment of all possible/
reported pharmacokinetic and empirical models. In addition, we
do not necessarily advocate the use of empirical models over
pharmacokinetic models in all circumstances. Still, it is impor-
tant to note that in this work Bayesian probability theory heav-
ily favored the use of empirical models and that the empirical/
biexponential model was the only model that could discern
cohorts with high blood flow from those with low blood flow.
We speculated previously that the empirical models were fa-
vored in this study because quality AIFs are difficult to obtain in
preclinical models. Similar methods may indeed lead to a pref-
erence of pharmacokinetic models in humans, wherein AIFs are
more easily sampled and of higher fidelity. Furthermore, the
empirical models used in this study were hierarchical and shared
a common wash-in function. In principle, the wash-in parame-
ters for cohort studies could be analyzed jointly across the
hierarchical empirical models regardless of whether monoexpo-
nential or biexponential decay functions were favored. The joint
analysis of common empirical terms could improve the power
and fidelity of intergroup analyses in which mono- and biex-
ponential wash-out terms are favored. Exploring the hierarchi-
cal nature of these empirical models will be the focus of future
efforts.

This study is presented as a proof of principle that Bayesian
probability theory—the optimal method for making inferences
about data (11-14)—can be used to compare multiple renal

Figure 4. (A) Representative gradient-recalled echo image from a DCE-MRI image series. (B) Representative voxel-wise
results of Bayesian model selection, where green, yellow, orange, red, and blue indicate Bayesian probability theory-
preference of the empirical/monoexponential � C model, the empirical/biexponential model, the Patlak–Rutland model,
the 2-compartment kidney model, and no signal, respectively. (C) Maps of derived empirical/biexponential model pa-
rameters (top) and their standard deviations (amplified 5�; bottom).
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DCE-MRI models, select the most probable signal model, broadly
discern test cohorts, and optimally estimate parameter values.
This work also shows that empirical DCE-MRI models, which do
not require difficult-to-sample AIFs, may be more suitable than

pharmacokinetic models in a preclinical setting. This methodol-
ogy can be readily extended to a wide variety of analyses,
making it a versatile and valuable tool for model selection and
parameter estimation.
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