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Chapter 1

Introduction

Imaging technology is at an advanced level of development nowadays and the pro-
cessing of large amounts of image data raises many image processing and image
analysis problems. In this dissertation, we address the various problems of image
analysis in areas of medical imaging based diagnostics, microscopy in biology and
localization of visual codes. In cases when the structure of the object is well defined
it can be expected that an image analysis method provides acceptable results auto-
matically such as for processing visual codes. In other cases, e.g., the interpretation
of medical images can be uncertain even for human experts, thus here we aim to give
only assistance that the doctors can use in diagnosis. Classical image processing ap-
proaches are well applicable for various detection and segmentation tasks and these
do not require a large set of image data which was not available during our work.
Besides, in recent years deep neural networks became widespread in image process-
ing. These try to provide more general solutions in many areas. Their disadvantage
is that the methods require a large amount of labeled data for training. The methods
presented in the dissertation are based on classical image processing operations, but
we also applied a deep learning approach to one of the retina analysis tasks.

The human eye is the sense organ of vision in the human body that reacts to the
rays of light emanating from environmental objects and maps their shape, spatial
position and color. Incoming rays of light pass through the vitreous and focus on
the retina. The retina is the sensory membrane and composed of several layers, in-
cluding photoreceptors which take light focused by the cornea and lens. The small
central area of the retina called the macula. This region of the retina is responsible
for central vision. Various diseases can affect the eye. Several imaging techniques are
available to investigate the retina. Age-related macular degeneration (AMD) is one of
the most frequent reasons of acquired blindness in economically advanced countries.
Previously, no medical treatment was possible, but today, certain types of disease
have the potential to prevent severe visual impairment. In the last decade, optical
coherence tomography (OCT) has become a basic imaging technique in diagnosing
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2 Introduction

and following neovascular AMD and its response to treatment, since it provides high-
resolution cross-sectional images of the retina. With OCT we can detect not only the
layers of the retina, but we are also capable of identifying the detailed morphology
and the effects of the disease, the so-called OCT biomarkers, and AMD has many
biomarkers that can be used to describe the condition of the patient. We present the
automatic localization and quantitative characterization of these biomarkers. Two
solutions are introduced to delimitate the retina ROI on images and determine the
position of the disease-induced distortion. There are a large number of publications
in the scientific literature that provide an approach to localize the subretinal fluid and
cyst that we have also investigated. Besides, we also discuss methods for pigmentep-
ithelial detachment, subretinal hyperreflective material and outer retinal tubulation
in Chapter 2.

Radiotherapy is one of the most common methods of treating various cancers,
although, unfortunately, its adverse effects on healthy tissues are known. Zebrafish
are excellent model for experimental human cancer research. Embryo development
is extremely rapid during the first few days post-fertilization while the embryos and
larvae are transparent, giving the possibility to study the in vivo organ development.
Morphological changes in embryos can be observed in a dose-dependent manner
after radiation treatment. In Chapter 3 we present a method that is capable of ob-
taining the various shape characteristics of zebrafish in order to give a quicker picture
of the response of fish to irradiation. The statistical analysis shows that there is no
significant difference between manual annotation and the values computed by the
automatic algorithm.

Visual codes play an important role in automatic identification, which became an
inseparable part of industrial processes. Thanks to the revolution of smartphones
and telecommunication, it also becomes more and more popular in everyday life,
containing embedded web addresses or other small informative texts. While barcode
reading is straightforward in images having optimal parameters (focus, illumination,
code orientation, and position), localization of code regions is still challenging in
many scenarios. Every setup has its own characteristics, therefore many approaches
are justifiable. Industrial applications are likely to have more fixed parameters like
illumination, camera type and code size, and processing speed and accuracy are
the most important requirements. In everyday use, like with smartphone cameras,
a wide variety of code types, sizes, noise levels and blurring can be observed, but
the processing speed is often not crucial, and the image acquisition process can be
repeated in order for successful detection. In Chapter 4 algorithms developed for
the automatic detection of visual codes are discussed. We present two methods that
localizes barcodes based on mathematical morphology. Both 1D traditional barcodes
and QR codes have a specific structure, so template matching is a possible way for
detection. We present a method to segment classical barcodes and another one to
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localize QR codes. An extensive comparative analysis of code localization methods
was performed on publicly available and on our databases. In Section 4 we also
present a possible hybrid visual code in which a well-defined artificial identifier (a
QR code) and an artificial pattern (formed by dispersed glitters) appear in common
image space. New identifiers can be defined using a combination of artificial and
natural feature patterns. We can consider it as a kind of “hybrid” visual code which
in itself carries the well-defined structure of artificial identifiers and the singularity
of natural identifiers. We introduce a method that detects the location of glitters
on a specific region of the label and supports the identification of labeled objects on
images taken with mobile devices.





Chapter 2

Retinal Image Analysis

The human eye is the sense organ of vision in the human body that reacts to the rays
of light emanating from environmental objects and maps their shape, spatial position
and color. Incoming rays of light pass through the vitreous body and focus on the
retina. The retina is the sensory membrane and is composed of several layers, includ-
ing photoreceptors which take light focused by the cornea and lens. The small central
area of the retina is called the macula, and this region is responsible for central vi-
sion. Various diseases can affect the eye. Several imaging techniques are available
to investigate the retina and help diagnosis. A modern tool for age-related macular
degeneration (AMD) examination is optical coherence tomography (OCT). AMD is a
common eye condition among people above 50 years worldwide, currently affecting
170 million people globally. Existing OCT systems show many features about AMD,
such as measurable indicators of some biological state or condition that are so-called
OCT biomarkers. To improve the treatment procedure, there is a need for more pre-
cise measurements, hence our aim was to create automatic methods for quantitative
assessment of biomarkers.

Our aim was to segment those biomarkers that are more relevant in diagnosis of
AMD or during the treatment. The execution time of the approaches was negligible
for our medical doctors because the accuracy was the most important aspect. We
introduce retinal imaging in Section 2.1. Details of the used dataset and metrics are
discussed in Section 2.2. In Section 2.3 we introduce how to extract outer bound-
aries and other information that can be used to segment various biomarkares more
precisely [87, 92]. We deal with the localization of subretinal and intraretinal fluid
in Section 2.4 [87, 89]. The biomarkers and the extension of the pigment epithel de-
tachment (PED) and subretinal hyperreflective material (SHRM) regions also occur as
a consequence of other diseases for which we propose solutions in Section 2.5 [92].
In recent years, it has been reported in the medical literature that ORT can also be a
descriptive of AMD disease, so this area has been addressed in Section 2.6 [56, 90].
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6 Retinal Image Analysis

2.1 Introduction to OCT retinal imaging

The appearance of optical coherence tomography dates back to the early 90s. First,
Huang et al. [38] accomplished successful measurements in 1991. The developed
technology is based on the Michelson interferometer which enables accurate distance
estimation. The first in vivo clinical trials began in 1993 [24] and the technology was
patented the following year.

The appearance of the device consituted a suppletory technology in ophthalmic
diagnostics so it is no wonder that it is one of the main diagnostic tools in this field.
The speciality of OCT is the use of a light source to produce high-resolution, cross-
sectional images in non-invasive manner that distinguishes different optical density
areas. Other advantages of the device include low cost and robust recording.

The first generation of OCTs was called time-domain OCT (TD-OCT). The initial
systems were only capable of 2D imaging. These devices produce a few hundred
depth profiles called A-scans per second which assemble the 2D OCT image.

As technology advanced, the spectral domain OCT (SD-OCT) has been released.
SD-OCT is based on the principle of low coherence interferometry. During this, the
light reflected from the eye interferes with another beam whose path is unknown
(Michelson interferometer). The position of the reference mirror does not change,
the interference pattern is distributed by a grid system to frequency components
and each component is simultaneously sensed by the detector. The detector is a
charged-coupled device (CCD) that is sensitive to a certain wavelength range. All
sensed frequencies from the signal after Fourier transformation correspond to the
given tissue depth [98]. The method largely increases the sampling rate because
each point of each A-scan can be detected simultaneously. By collecting adjacent
A-scans for consecutive pixels along a transversal coordinate, a cross-section image
is obtained called B-scan. The schematic diagram of a SD-OCT device is shown in
Figure 2.1.

As mentioned, early devices were only capable of 2D imaging, but as technology
advanced, nowadays, they can be used for 3D imaging. However, the two most
commonly used acquisition types in the clinical routine are the 2D scan which is a
linear scan through the macula or a circular scan around the optic nerve head (ONH).
The path of the scan is drawn on the scanning laser ophthalmoscope (SLO) image.
The SLO images are acquired during the same process as the OCT recording. The
latter shows very clearly the layered structure of the retina. Figure 2.2 illustrates a
SLO image on the left side of the figure and on the right it is an OCT B-scan and the
structure of visible layers.

We note that fundus photography is similar to OCT and there are automatic image
processing tools to recognize diseases causing specific distortions based on fundus
images [9, 35, 67].
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Figure 2.1: Schematic diagram of a spectral domain OCT system. The light from the
source is split into a sample and reference arm using a fiber coupler. The beam is
reflected by a moving mirror and interfering light is focused on a detector. Lens and
objectives also concentrate the beam.
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Figure 2.2: Sample SD-OCT image from a normal retina. (a) Scanning Laser Oph-
thalmoscope (SLO) image. Green, bold line denotes the actual scan path (b) OCT
B-scan with denominations of the retinal layers. Abbreviations from top to bottom:
internal limiting membrane (ILM), retinal nerve fiber layer (RNFL), ganglion cell
layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform
layer (OPL), outer nuclear layer (ONL), ellipsoid zone (EZ), interdigitation zone (IZ),
retinal pigment epithelium (RPE).

2.1.1 Age-related macular degeneration

Age-related macular degeneration is one of the most frequent reasons of acquired
blindness in economically advanced countries. The constant growing of AMD patient
population is more and more challenging. AMD means degeneration of the macula
which is the region of the retina responsible for central vision. Since AMD affects
only this specific part of the retina, unattended patients lose their fine shape- and
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face recognition, reading ability, and central vision [37].
Basically, AMD has two forms: dry and wet form. In the case of dry AMD, drusen,

small fatty deposits accumulate at the central part of the retina in the tissues beneath
the macula, leading to drying. The extent of vision loss is related to the location and
this type of AMD typically has three stages: early, intermediate and advanced.

Wet forn causes rapid and serious visual impairment in 10% of the AMD cases [51].
In this more acute, neovascular type of the disease, abnormal angiogenesis causes
fluid and blood leakage into the retinal layers thus resulting in photoreceptor lesion.
Albeit the exact pathomechanism of the disease is still unclear, it is known that the
vascular endothelial growth factor(VEGF) plays crucial role in the pathogenesis [96].
The first choice of treatment in neovascular AMD is anti-VEGF intravitreal injection, a
periodic injection into the eye. To follow up the progresion of the disease, the Amsler
grid will help at an early, treatable stage. Figure 2.3 presents the dry form of AMD in
top row, and wet AMD where Amsler grid test also available.

In the last decade, Optical Coherence Tomography has been widely used in the
diagnosis of AMD and follow-up therapy. Spectral domain OCT produces 3D volumes
of data, which have been useful in clinical practice. Existing OCT systems are par-
tially suited to monitoring the progress of the disease, but OCT shows many features
about AMD such as hyperreflective foci (HF), subretinal fluid (SRF), intraretinal fluid
(IRF), outer retinal tubulation (ORT), pigment epithelial detachment (PED), subreti-
nal hyperreflective material (SHRM). Figure 2.4 illustrates an SD-OCT B-scan with

Figure 2.3: Dry (top row) and wet (bottom row) form of Age Related Macular Degen-
eration on fundus images. The Amsler grid (bottom right) used to test the condition
of the eye. (Image source: http://www.areds2.org.uk/macular-degeneration)
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Figure 2.4: Various types of biomarkers of AMD. Subretinal fluid (SRF), intraretinal
fluid (IRF), hyperreflective foci (HF), subretinal hyperreflective material (SHRM),
pigment epithelial detachment (PED), outer retinal tubulation (ORT).

Table 2.1: Dependencies between the automatically detected abnormalities and
biomarkers. For features in the table rows ’X’ denotes which biomarker and/or ab-
normality information is used.

BV D ILM/RPE PED/SHRM SRF/IRF ORT
blood vessel (BV) x x

distortion (D) x x x
ILM/RPE x x x x

PED/SHRM
SRF/IRF x x

ORT

biomarkers of AMD. Dependencies between the introduced abnormalities and our
approaches are shown in Table 2.1.

2.2 SD-OCT image dataset and metrics

SD-OCT images created by ophthalmologists were used to develop and evaluate the
automated methods. The OCT images were acquired using Heidelberg Spectralis
OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany) on wet age-related
macular degeneration patients. They were either treatment naive or with anti-VEGF
intravitreal injections. Medical experts annotated 35 sequences for validation. The
images contained several biomarkers including subretinal fluid, IRF, PED, SHRM,
ORT and ILM/RPE boundaries.
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These sequences consisted of 49 or 25 slices (ophthalmologists use 25 slices pro-
tocol in daily routine). In the case of 49 slices, the pattern size was of 6×6 and
the slice distance was 122µm. Slices had a resolution of 512×496 pixels with pixel
sizes 11.45 and 3.87µm in x and z directions and a quality score above 16dB. The
recordings consisting of 25 slices were taken with a 6×6 pattern size and the distance
between slices was 251µm. The resolution was the same as in the above case with
pixel sizes 11.74 and 3.87µm in x and z directions, and a quality score above 23 dB.

In most algorithms the task is to detect a specific biomarker as accurately as possi-
ble to determine the extent, but in some cases the cardinality also provides sufficient
information for the doctor. For this reason, we have applied such metrics where we
can determine the merit of overlapping between annotation and segmented objects.

We used Dice coefficients to measure the ratio of overlap.

Dice coefficient =
2 · |X ∩ Y|
|X|+ |Y|

, (2.1)

where |X| and |Y | are the numbers of pixels representing the segmented regions,
while |X ∩ Y | are the size of overlapping regions in pixels.

In addition, for the further characterization of some procedures, the sensitivity
was also calculated.

Sensitivity =
TP

TP + FP
, (2.2)

where TP (True Positive) denotes the numbers of overlapping pixels, FP (False Posi-
tive) represents the numbers of segmented, but not overlapping pixels.

In some cases, we also measured the recall of the objects.

Recall =
TP

TP + FN
, (2.3)

where FN (False Negative) represents the numbers of objects which is present on the
annotation but is not overlapping with any segmented object.

2.3 Delineation of boundary layers

The location and thickness measurement of retinal layers provides useful information
for detecting pathological changes and diagnosing different type of retinal diseases.
In the last decade, numerous approaches have been described about detecting retinal
layers based on various techniques.

In the field of image processing, graph theory is used in many fields to solve sev-
eral problems [2, 16, 29]. In these approaches, the graph nodes usually relate to
image pixels, the graph edges are assigned to pairs of pixels, and the edge weights
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depend on the intensity differences between the node pixels, and also may depend
on spatial distance between the pixels. Image segmentation can then lead to a graph
cutting problem, which can be solved using dynamic programming. These proce-
dures are less tolerant to noise, which is a disadvantage, because images are often
very noisy, but may give more reliable result than a simple clustering algorithm.

Another basic idea relies on the well-known energy-minimizing active contour
method which, unfortunately, also has problems with low contrast and noise. Yaz-
danpanah et al. [106] suggested a multi-phase framework with a circular shape prior
in order to model the boundaries of retinal layers and estimate the shape parame-
ters. They used a contextual scheme to balance the weight of different terms in the
energy functional. Hassan et al. [36] used a structure tensor approach combined
with nonlinear diffusion process for layer detection. A structure tensor is a second-
moment matrix that shows similarities and prominent orientations of the image gra-
dient. Some other approaches use optimized boundary tracking [27] or polynomial
smoothing [53].

Machine learning has been widely used in recent years, also for retinal image
analysis. Lang et al. [47] used random forest classifier to segment retinal layers.
The random forest classifier learns the boundary pixels between layers and produces
an accurate probability map for each boundary, which is further processed to finalize
boundaries. Ngo [59] et al. nominated a feature-learning regression network without
human bias to segment layers. Methods based on active contour or machine learning
provide effective solution, but these methods are too time-consuming.

In this section, we introduce two methods to delinate boundary layers of the
retina. In the first case, we use information about where the anomalies are in the
image due to the shadow of the blood vessels. Second, layer information can be used
to determine the start and end points as well as the extent of layer distortion.

2.3.1 Blood vessel segmentation

Major vessels cause more shadowing effect on the OCT slices than the minor cap-
illaries. We do not aim at a perfect segmentation of the whole vessel tree. The
segmentation output will be used to identify those positions (bars) on the OCT slices
where shadowing may be considerable, since this can invalidate our underlying as-
sumption about large intensity steps indicating layer boundaries. Once we localize
these less reliable parts of the image, we can specially treat (or even exclude) these
parts from the layer boundary detection and handle it as “missing data” rather than
using false information.

Many published methods in the literature [26] deal with the retina vessel seg-
mentation problem and try to reach the most accurate segmentation possible. For
our purposes, a rough estimate is sufficient, since the vessels are not the objective of
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our studies. It can be seen in Figure 2.5(a), that the central region (the macula and
its surrounding) is significantly darker than other parts of the image, therefore, the
contrast between blood vessels and their surrounding background differs in the cen-
tral and the peripherical parts of the image. Our aim is to localize these regions and
homogenize. For this, we use a Gaussian-pyramid technique [14] with 4 levels. Fig-
ure 2.5(b) depicts one level of the pyramid. Intensity homogenization is performed
as a pixel operator according to the following equation:

I(x,y) = C · IB(x, y)
IO(x, y)

(2.4)

for each pixel (x, y) in the image, where IO is the original image, IB is the blurred
image, and C is the maximal intensity in IO.

Intensity homogenization is followed by a contrast enhancement step, using an
adaptive fuzzy contrast stretching method, that is more effective than a commonly
used contrast stretching procedure because it suppresses the noise better. Let I de-
note the input image, Imax the maximum and Imin the minimum intensity of the
image. The linear membership function µi,j is defined as

µi,j =
Ii,j − Imin
Imax − Imin

, (2.5)

i.e., the membership value for pixel (i, j) corresponds to the degree of brightness
possessed by the gray level intensity of that pixel with respect to the intensity range
of the whole image. This is a simple way of fuzzification, i.e., assigning fuzzy mem-
bership values to elements of a set (to the pixels, in our case). In a fuzzy processing
approach, memberships are manipulated, instead of original values. We achieve con-
trast enhancement by using the INT fuzzy operator [54]:

µ′i,j =

{
2 · (µi,j)2, if 0 ≤ µi,j ≤ T ,

1− 2 · (1− µi,j)2, otherwise ,
(2.6)

where T is an adaptively calculated threshold value. We use statistical mean of the
intensities in each window for calculation of T value. Equation (2.6) transforms
membership values that are above the threshold to much higher values and mem-
bership values that are lower than the threshold to much lower values in a nonlinear
manner. The last step here is defuzzification, i.e., generating properties in the original
dimensions from the resulted memberships. I ′i,j denotes the calculated new intensity
for pixel (i, j), and is obtained by applying the inverse of the transformation used for
fuzzification:

I ′i,j = Imin + µ′i,j · (Imax − Imin) . (2.7)

Figure 2.5(d) illustrates the contrast enhanced image. The contrast enhanced image
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: Main steps of retinal blood vessel segmentation: (a) original image, (b)
one level of the Gaussian-pyramid, (c) homogenization, (d) fuzzy contrast stretching
(in complementer image), (e) binarization, (f) output image (after removal of false
objects).

is binarized to extract possible blood vessel regions, using adaptive thresholding in
a sliding window of size 15×15 pixels. In the final step, we eliminate false positive
objects, because vessels form a connected object, so smaller segments possibly come
from noise. We use morphological closing with rectangle shaped structure element.
The size of the element was determined based on empirical observations. After that,
we reject all regions whose area is less than 10 pixels and whose bounding box is not
rectangle-like. Once we have the vessel mask on the fundus image, we can project
this information onto the OCT cross-sections.

2.3.2 Algorithm based on vertical projected data

The quality of the OCT images are usually low, so often requires pre-processing to
improve contrast and normalize intensity levels. The B-scans are noisy thus we used
noise filtering and contrast enhancement using a fuzzy operator [22]. This operation
can highlight major retinal layers. We analyze vertical profiles of the filtered image
and large intensity steps in pixel density are assumed to correspond to change of
tissue. The function is described by the expression

κ∗ν =
1

1 + 1−ν
ν

(
1−x
x

ν
1−ν

)λ , (2.8)
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where ν is the threshold, x is pixel intensity and λ denotes sharpness of the filtering.
The κ∗ν function can highlight boundary layers and suppress noise. We determine
dynamically the input parameter ν. For this, we use sample intensities from the
upper quarter of the image and calculate average value. The λ parameter value is set
to 3. Figure 2.6 shows an example of applying the κ∗ν function.

To define the top and bottom layers, we divided the image into subregions with
fixed width size of 10 and we calculate horizontal projections of each bar to deter-
mine boundaries.

We observed that the maximal width of the detected blood vessel shadows (Sec-
tion 2.3.1) in our images is 10 pixels, thus this value does not affect our projection
calculation. One of the major steps of our proposed method is to analyze the calcu-
lated vertical profiles. This signal is noisy, so there is a need to filter the data and
remove outliers. There are many approaches available to filter 1D signals, we used
the Savitzky-Golay filter [69] which is a smoothing digital filter. This filter is effec-
tive at preserving the pertinent high frequency components of the signal, which is
an important aspect for our detection method. Figure 2.7 shows an example of a
projection and its filtered version.

The determination of the outer layer boundary is a harder problem than that of
the internal boundary, because Choriocapillaris and Chorodoidal vessels are located
under the RPE layer. Intensity in these regions vary, so several peaks appear in the
projections. Fortunately, in most cases, the noise points are not prominent thus do
not cause problem in choosing the right locations. The algorithm chooses the most
salient local minimum from the projected data to identify the possible internal and
outer layer.

(a) (b)

Figure 2.6: Sample OCT image before (a) and after (b) applying the κ∗ν function. The
filter highlighted boundary layers and suppressed the noise.
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Figure 2.7: Calculated horizontal projection for vertical profile analysis. (a) original
data, (b) sample bar, (c) Savitzky-Golay filtered data (polynomial order: 3, frame
length: 25)

2.3.3 Graph-cut based approach

The presented method in Section 2.3.2 showed many inadequate results in RPE layer
detection hence we developed a new approach. As was discussed in Section 2.3, in
the literature, a number of procedures are based on graph cut [21] since it is a more
robust method than other techniques. As a result, no preprocessing of the input data
has been performed, although in many cases the image is very noisy.

Graph cut is a semi-automatic method that requires seed points. There are several
existing approaches to automatically assigning them. We used kernel k-means to
automatically determine these points. We map data points in the input space onto a
high-dimensional feature space using a Gaussian radial basis kernel function.

The number of clusters is determined by how noisy the image is. So, we measure
the image quality using Naturalness Image Quality Evaluator (NIQE) [57] score. This
model assess the quality without knowledge of distortion. It is expressed as a distance
metric between a trained model statistics and the distorted image. In higher quality
images, 5 clusters were isolated empirically, while in the other cases this number was
increased. In a cluster image, value 0 represents the darkest region and k − 1 is the
brightest, where k is the number of clusters. We used graph cut [68] to optimize
partitioning. This gives a better classification. We have a priori information about
location of PED and SHRM which are near the RPE layer. Figure 2.8 presents a
clustered image example.

The ILM elevation can be determined using a simple Otsu thresholding [62] be-
cause the foreground and background can be clearly distinguished from that part of
the retina in the clustered image. The RPE layer has higher reflectivity in the original
image, so it has also higher cluster number in the clustered image. Similarly to the
previous method, we calculate vertical projection in every 10th column to determine
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(a) (b)

Figure 2.8: Sample clustered B-scan using graph cut with k=5. (a) original image,
(b) clustered image.

boundary and we choose the local minimum from the projected data.
To determine all pixels which can produce the layer, we fit a curve to the resam-

pled points. Our data may include outliers. The distribution of the points is not
normal, due to the distortions, therefore outliers are defined as elements more than
1.5 interquartile ranges above the upper quartile (75%) or below the lower quartile
(25%). For fitting, we use shape-preserving piecewise cubic spline interpolation to
determine RPE layer.

2.3.4 Evaluation and results

To evaluate and validate our methods, we used 7 annotated sequences from a database
which consisted of 49 slices. We evaluated our retinal layer detection algorithm in
two different ways. On one hand, to compare the results of our algorithm against
the manual delineations, we calculated the mean, maximum and standard deviation
of boundary errors for each surface. The 7 curves shown in Figure 2.9 depict the er-
ror histogram for those OCT volumes where manual annotation was available. Each
curve aggregates the boundary errors in the 49 scans (slices) of a study. It shows
that the highest error measure is between 1 and 4 pixels in most cases and Table 2.2
confirms this statement.

As shown in Table 2.2, the maximal distance between manually segmented and
automatically detected layer boundaries is 19 pixels (ca. 73.5µm). This deflection
comes from two sources: substantial jumping between B-scans and layer distortions
due to the disease. Unfortunately, we could not exploit 3D information directly to
segment layers, because there are some anomalies among slices of the OCT volume,
due to the image acquisition and registration processes within the device’s software
that was out of our control.

On the other hand, as it can be seen in the third sample image in Figure 2.10,
there is a large difference between the manually annotated and the automatically
segmented outer layer, because our algorithm follows the distorted layers. However,
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Figure 2.9: Error histogram of ILM and RPE delination for 7 image sequences. Colors
represent different recordings. The horizontal axis denotes the error for a sequence
(in pixels) and vertical axis their frequencies.

Table 2.2: Summary of mean, standard deviation, and maximum error (in pixels)
between manually segmented and automatically detected layers in 7 annotated OCT
image sequences.

Mean Standard deviation Maximum
Seq 02 2.01 1.56 17
Seq 03 2.10 0.69 15
Seq 04 1.44 0.65 15
Seq 05 1.96 0.80 19
Seq 06 2.39 1.63 18
Seq 07 2.17 0.64 15
Seq 08 1.83 0.65 17

All 1.98 0.94 16.57

the recommended possible normal boundary aligns well with the manual annotation,
so it avoids the false detection. Nevertheless, in most cases, the mean errors are
under 2 pixels and deviations are small between layers delineated by medical experts
and the boundaries determined automatically, so the difference is negligible.

The most important advantage of the proposed method is its simpleness, that it
uses simple image processing operations that can be highly parallelized, and does
not rely on many parameters that are difficult to tune to the application, contrary to,
e.g., an energy minimization approach.



18 Retinal Image Analysis

Figure 2.10: Visual comparison of expert annotated (in red) and automatically de-
tected (in yellow) boundary layers.

2.3.5 Measurement of retina distortion

The dysfunction of RPE cells contributes to a series of pathological processes and
this layer can locally detach from the underlying Bruch’s membrane and fluid can
accumulate underneath the RPE and/or within the retina. The detection and de-
termination of start and end points of distorted regions can be useful as a priori
information to localize biomarkers of the disease.

The B-scans clearly show that in the vast majority of cases the highest point of
the distortion is in the middle of the region. Figure 2.11 summarizes our approach.
From previously defined ILM layer points we select the smallest y coordinate. The
(0,0) coordinate is at the top left of the image.

The image is split into two parts using this point. Furthermore, the method does

not use
1

4
of either side of the image. This is necessary because the sides are deformed

in most cases due to the image registration process during image acquiring image and
layer information is not reliable. We also determine the highest y coordinates from
the ILM points in the right and left retinal segment to define starting and end point

x

x x
maxyr

maxyl

minyc

1/4 1/4

x
x

x

distorted region

Figure 2.11: Schematic view of the determination of distortion. minyc denotes the
smallest y coordinate from ILM points. A line is fitted to this point (Red line). maxyr
and maxyl are the highest y coordinates in the right and left retinal segments.
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Figure 2.12: Illustration of detected boundaries. Red curve indicates the detected
boundaries and green denotes the fitted possible layer. The distorted region can be
seen between the fitted layer and detected boundary.

of the distortion. A line is fitted to the assigned minimal y point and we investigate

the distance of the ILM layer points and the line. If the distance is smaller than
1

5
of

the actual average retinal thickness, the layer is not distorted.
In addition to the unambiguously specified biomarkers in the case of AMD, the

measure of the distortion is also a useful descriptor for medical doctors in diagnosis.
Additionally, it is feasible to determine the possible normal layer boundary if we
delineate the RPE layer earlier. To define the normal RPE line, a quadratic curve was
fitted to data that was assembled as follows:

• The points of RPE layer are considered for each 10 columns.

• Since it cannot be assumed that the retina is visible on the whole image thus
we neglect the first two detected points.

• Take the points until the previously detected starting point of the distortion is
reached in both sides and fit a curve to these data.

Considering RPE, we know the maximum point of the distorted zone and the
inherent minimum point of potential normal layer, so their distance can be defined
as height, and the extent can be calculated to the enclosure region. Figure 2.12
shows an example.

2.4 Detection of subretinal and intraretinal fluid

We described in Section 2.3 that in the case of AMD, the RPE layer can locally detach
from the Bruch’s membrane and in many cases fluid can accumulate underneath
the retina. This symptom is also observable in diabetic macular edema (DME). The
extent of these markers is an important measure of drug efficiency.
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Many research focus on automatic detection of subretinal fluid in OCT images.
One of the most popular approaches is based on the Split-Bregman optimization
technique [31]. This method is used to segment dark regions between layers1. These
localized regions are considered as possible fluid candidates.

Novosel et al. [60] recommended a locally-adaptive loosely-coupled level set
method. The approach exploits the local attenuation coefficient differences of layers
around an interface to delineate the fluid. This concept can handle abrupt attenu-
ation coefficient variations and topology-disrupting anomalies. SEAD (symptomatic
exudate-associated derangements) segmentation in 3D volumes plays and important
role in the treatment of neovascular AMD. The accurate detection is challenging be-
cause of the large diversity of SEAD size, location and shape. Xu et al. [104] pro-
posed a voxel classification based approach using a layer-dependent stratified sam-
pling strategy to address the class imbalance problem in SEAD detection. A fuzzy
level set method was introduced by Wang et al. [99] for identifying fluid-filled re-
gions. They use the combination of three types of scans (two types of B-scans and
a C-scan) to generate a comprehensive volumetric segmentation of the retinal fluid.
The remaining artifacts are removed by identifying morphological characteristics and
vascular shadowing.

Popular machine learning methods also appeared in this field of the research.
In [20, 110] a random forest classifier was trained to distinguish true fluid regions
from false segments. Lee et al. [49] and Roy et al. [66] also presented a CNN-based
method for detecting SRF and IRF. The Roy’s neural network model became known
as ReLayNet and is freely accessible and usable by anyone.

In this section, we present algorithms that use different approaches to determine
intraretinal and/or subretinal fluid. We briefly describe two existing methods that we
re-implemented according to the original papers for comparison. It can be observed
that literature methods define boundary layers before the segmentation of specific
biomarkers.

Wieclawek’s [101] normalized the intensities of the input image to the [0, 1] in-
terval, because images can be acquired with different settings, so that their intensity
range may vary. The authors used a non-linear filtering to reduce noise effect on
images. Besides, they applied a spatial averaging filtering technique which is based
on the real product of complex diffusion. The tools of mathematical morphology
were used to delineate specific intraretinal fluid areas, based on the observation that
IRF appear as darker segments in the images. Among other operations, they used
H-minima transform to suppress local minima to denoise areas of almost constant
gradient and highlight IRF like black segments on relatively light background. The
transform has a single control parameter that value has been fixed experimentally

1We note that in clinical routine, our medical experts use that image acquisition settings where
the retinal layers are brighter than the vitreous body.
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to 30% of the maximum brightness in the image. One of the last steps was the bi-
narization of the obtained image with a given threshold value. Since the result may
still contain false regions, they filtered all objects that are above ILM and below RPE
layers, however, their determination is not detailed.

By contrast, Wilkins et al. [102] investigated the problem from another point of
view. They also determined the major layer boundaries and improved the image
quality and filtered noise using the combination of a median filtering and a bilateral
filtering during preprocessing. Since the final expected result is a binary image with
segmented objects, the image was binarized and determined the boundaries of the
remaining possible IRF segments and they defined three conditions based on empiri-
cal studies. They examined the extent of the objects, the degree of scattering between
the intensity of the pixels in the segment, and whether the object is located between
the ILM and RPE layers.

In this section, we introduce an approach to detect subretinal fluid using vertical
intensity profiles and another one to localize subretinal and intraretinal fluid areas
simultaneously.

2.4.1 Segmentation based on projected data

It can be observed that subretinal fluid regions appear as spots with brighter intensity
in the image. The zones of the disease and the intensity of the vitreous body of the
eye are almost within the same range if distortions are not considered. Firstly, the
region of the interest (ROI) of retina was delineated for processing using the method
described in Section 2.3.2.

Sampled points of ILM and RPE layers are used to detect biomarkers which was
applied for calculation of mean retinal thickness. This value serves as threshold in a
further step of the algorithm.

Observations showed that SRF regions are close to the RPE layer and near/in the
distorted area. We investigate the vertical stripes, and based on the above assump-
tions, we look for minimum locations on the horizontal projections that are closest
(and the second closest) to the RPE layer. We consider only the profile between ILM
and RPE points.

Using the average layer thickness and vessel shadow information, we can filter
out the stripes which are less reliable than the others, and fit a smooth curve to the
reliably detected minimum locations, thus approximating the fluid surface in the less
reliable positions. In Section 2.3.5, we recommended a possible normal outer layer
boundary. This can help us to define the degree of creasing of the layers and also
supports outlier filtering. These conditions reduce the dataset to a sufficient point,
so after this step, we can fit a curve to the detected points and obtain the subretinal
fluid region. We summarize our detection method in Algorithm 1.
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Algorithm 1 Pseudocode of subretinal fluid segmentation.
1: function SRFLOCALIZATION(PILM , PRPE, N , P ) . ILM points PILM, RPE points

PRPE, all sampled x coordinates N
2: CSRF ← [] . empty list of candidate SRF points

3: thick← 1

N

∑N
i=1 | PILMi - PRPEi | . thickness of retinal layer

4: for i in N do
5: ILMact ← PILMi

6: RPEact ← PRPEi
7: P← calculate peaks between ILMact and RPEact
8: Let P1 the minimal and Pm the maximal y coord of a peak
9: if P length ≥ 2 then

10: SRFbot ← Pm−1
11: SRFtop ← Pm−2
12: if SRFtop < thick · 0.75 then
13: add to CSRF points
14: end if
15: end if
16: end for
17: Investigate CSRF candidates and remove isolated data (in this case isolated means a

point without neighbor(s))
18: Fit a curve to top and bottom data
19: end function

2.4.2 Detection and separation using active contour

The reflectivity of the IRF biomarker is similar to the subretinal fluid and appears as
smaller oval object that are located near RPE layer. Based on this a priori informa-
tion, we have developed a method that can simultaneously segment and differentiate
subretinal/intraretinal fluid areas.

We used the method presented in Section 2.3.3 to highlight ILM and RPE layers.
An edge-preserving anisotropic diffusion filter [63] was used to eliminate various
effects of artifacts. The image noise is reduced using the filter and we quantize the
grayscale image into five intensity levels. Our observations showed that each layer
of the retina has similar intensity, so this operation facilitates the separation of the
major retinal layers. During binarization, we keep the brightest points, because we
know that the reflectivity of the IRF is similar to that of the vitreous body. In this step,
we create a mask for edge-based active contour process. To achieve the appropriate
segmentation result, the input parameters of the model were determined based on
empirical studies. The intermediate steps of the method is presented in Figure 2.13.

So far we have identified possible important segments and we need to separate
intraretinal, subretinal fluid and false segments from each other. This step may be
omitted in some cases, when there is no object in the image that could be detected
as a pathological mutation. We developed a condition set for filtering fluid regions.
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(a) (b) (c) (d)

Figure 2.13: Intermediate stages of the active contour based algorithm to detect
subretinal and intraretinal fluid. (a) anisotropic diffusion, (b) quantization, (c) bina-
rization, (d) result of active contour.

We test the fulfillment of the three criteria for classification at the object level:

• where the object is located within the retina,

• what is the extent and the shape of the object,

• whether the layer is distorted or not.

In the case of higher distortion of the retina, they may also appear on the left or right
hand side. When determining fluid regions, it is also important to examine the cases
where there is no creasing in the layer. In the case of IRF, we need to find objects with
oval shapes and the observations show that these segments are in the creased zone.
Contrary to fluid regions, IRF can be found in higher layers. We distinguish between
the symptoms based on these characteristics. False segments may also appear in the
image, but these are usually small objects, so we can remove them easily with an
area-based filtering.

2.4.3 Evaluation and results

As mentioned in Section 2.4, annotations were not yet available at this stage of the
research so we only did visual comparison of the re-implemented methods. However,
since the first step of these methods provides ILM and RPE localization it is possible
to quantify and compare the results. We used the database that was described in
Section 2.3.4.

Firstly, we consider the result of localization of major layers. We calculated the
mean, maximum and standard deviation of boundary errors for every surface. It
can be observed that the largest error is between 1 and 4 pixels in most cases and
Figure 2.9 confirms this statement. Table 2.3 shows the mean error of our algorithm
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Table 2.3: Summary of mean, standard deviation and maximum error (in pixels)
between manually segmented and automatically detected layers in 7 annotated OCT
image sequence. The minimum error of mean, standard deviation and maximum
value is highligted in bold.

Seq 02 Seq 03 Seq 04 Seq 05 Seq 06 Seq 07 Seq 08 All

Mean
Wilkins 1.90 1.86 2.90 1.88 9.00 1.22 10.91 4.24

Wieclawek 6.86 10.34 11.20 17.82 6.88 5.42 7.11 9.38
Proposed 2.01 2.10 1.44 1.96 2.39 2.17 1.83 1.98

Std. dev.
Wilkins 3.34 2.05 2.67 1.62 2.73 0.18 2.93 2.28

Wieclawek 7.92 5.59 5.92 6.31 5.97 4.78 5.39 5.98
Proposed 1.56 0.69 0.65 0.80 1.63 0.64 0.65 0.94

Maximum
Wilkins 26 19 17 17 25 11 25 20

Wieclawek 35 31 24 22 21 20 19 24.57
Proposed 17 15 15 19 18 15 17 16.57

is less than 3 pixels in all cases that shows this approach is more stable than the
re-implemented methods.

For visual comparison of detected biomarkers, Figure 2.14 illustrates segmenta-
tion results of the algorithms in some slices. The method developed by Wieclawek
detected fewer possible IRF regions, which may be due to the fact that the given
threshold only keeps the actual bright points. The disadvantage of this is that im-
portant areas may be lost during processing. The other method from literature by
Wilkins yields almost the same segmentation results, but in many cases it keeps false
objects, because the thresholds are not dynamically defined. In contrary, our method
uses dynamic requirements based on a priori information.

We tested the re-implemented methods on images in which subretinal and in-
traretinal fluid regions may also appear. These approaches can also detect IRF beca-
suse its reflectivity similarly to the fluid object. Our algorithm can also distinguish
these two types of structures from each other as it can be seen in Figure 2.14.

Automatically calculated quantitative descriptors can be visually presented to the
medical doctor to aid interpretation of data. The first type of visualization is the tradi-
tional slice-by-slice display which provides a good depth context within slice, but no
spatial context between slices. In case of colored overlay, anatomical display provides
regional context and color encodes quantitative parameters. The masks containing
the fluid segments were summarized in each slice and we created a new image with
this information whose size was the same as the area examined in the SLO image.
Color information was assigned to the values that helps examine the thickness and
extent of the subretinal fluid. Figure 2.15 represents restricted subretinal fluid area
which results were verified by ophthalmologists and they found the segmentation,
quantification and also the visualization technique useful.
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Figure 2.14: Illustration of detected intraretinal (red curve) and subretinal fluid (blue
curve) regions by the described algorithms. Rows (from top to bottom): Wilkins et.
al, Wieclawek, our proposed method. The first two columns contain only IRF, while
the last two scan also have SRF areas.

2.5 Determination of PED and SHRM

Automatic detection of abnormal retinal structures remains a challenging task. The
retinal morphology and intensity may change acutely resulting from the abnormal
structures and the prior knowledge about morphological and optical features clues
that are used for normal retinal image segmentation may not be valid. Subretinal
Hyperreflective Material, as its name suggests, is likely composed of many compo-
nents, including fluid, fibrin, blood, etc., and its composition changes over time. So,
the reflectivity of SHRM is heterogeneous. In contrast, Pigment Epithelial Detach-
ment has lower intensity, so these can be separated from each other. Nevertheless,
in many cases, due to the above introduced reasons, their location and presence are
unclear. In some cases, abnormalities are so inseparable that they are managed as
one structure.

Significantly fewer literature methods are available to solve this problem and
most of them are using a deep neural network. As in retinal layers detection, most
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Figure 2.15: Color overlay of the subretinal fluid volume thickness. Left: Red bound-
aries indicate the subretinal fluid in each slice. Right: The color/hue relates to sub-
retinal fluid thickness.

approaches apply convolutional neural network. Lee et al. [50] constructed a U-net
consisting of a contracting and an expanding path. These perform different tasks
to help the network to recover detailed spatial information. Xu et al. [105] demon-
strated an algorithm that relies on convolutional neural networks (CNN) and deep
neural network (DNN) feature extractor network.

However, there are approaches from a completely different aspect for the prob-
lem. Ahlers et al. [4] detected the location and measured the volume of PED region
using the high-definition OCT tool. Shi et al. [70] introduced a shape-constrained
graph cut algorithm that uses foreground and background seed points. They applied
AdaBoost method to help remove false segmented regions in the initial segmentation
results and mathematical morphology to refine segmentation result.

Our method is also based on graph cut, but the definition of specific segments is
determined by different conditions.

2.5.1 Abnormality detection around the RPE layer

To localize abnormalities we use the cluster image which was presented in Sec-
tion 2.3.3. The pixels of the PED and the SHRM regions are roughly in the same
intensity range but in some cases the results of a proper clustering can form a sep-
arate region. If these regions are not separable, the medical literature distinguish
PED+SHRM label for this cases.

These biomarkers are usually located around the RPE layer, along or near the
distortion, so clusters are sampled from these areas. To reduce the clusters to abnor-
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mal segments only, we use some a priori information about the position and extent
of possible fluid area. To determine the location of distortion and to detect other
biomarkers such as intraretinal and subretinal fluid areas the method introduced in
Section 2.4.2 is used. So, we only investigate in a specific range over the RPE layer.
For this, the threshold was determined as follows:

T =

{
max(CF(x,max(y))), if max(CF(x,max(y))) > 0

RTx · 0.2, otherwise
, (2.9)

where CF represents the binary image with detected intraretinal and subretinal fluid,
x is the actual x position, max(y) is the actual maximum y position and RT denotes
the calculated retinal thickness (from ILM and RPE layers).

All clusters that are above the RPE will be SHRM regions. They may also have
amorphous shapes because they are made up of different sub-areas, so their convex
shapes is computed to accomplish the final result. The method is summarized in
Algorithm 2.

Algorithm 2 Detection and separation of PED and SHRM.
1: function PEDSHRM(GCimg, CF , PRPE, DR, RT ) . cluster image GCimg, fluid

objects CF, RPE points PRPE,
distorted region DR, retinal thickness RT

2: AR← []
3: PED← []
4: SHRM← []
5: Cposs ← get GCimg clusters near PRPE within DR
6: T← threshold value
7: if max(CF(x,maxy)) > 0 then . maximum (x, y) coordinates of objects
8: T = max(CF(x,maxy))
9: else

10: T = RTx · 0.2 . RT value in x position
11: end if
12: Add all clusters to AR that satisfies the condition or below PRPE
13: for i in ARCH do
14: if ARCH above PRPE then
15: add to SHRM
16: else
17: add to PED
18: end if
19: end for
20: end function
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Figure 2.16: Box plots representing the Dice coefficients of PED and SHRM generated
by proposed method. In both cases, the mean Dice coefficients were greater than
0.7. Black cross = mean Dice coefficient; empty circles = outliers; PED = pigment
epithelial detachment; SHRM = subretinal hyperreflective material.

2.5.2 Evaluation and results

In this case 21 recordings were available for evaluation. The dataset consisted of
sequences with 25 and 49 slices. The annotation produced by opthalmologists were
compared with segmented results to characterize the effectiveness. We used the Dice
coefficent (Equation 2.1) and Sensitivity (Equation 2.2) metrics.

The location of the possible SHRM has played an important role in determining
PED. In many cases, SHRM is not clearly detectable. In spite of all this, as can be
seen in Figure 2.16, in both cases, the average Dice coefficients are above 0.75 and
the sensitivity is 0.93 for PED and 0.77 for SHRM.

In Figure 2.17 some examples are shown of automatic results and also the manual
annotation for a visual comparison.

2.6 Segmentation of outer retinal tubulation

Outer retinal tubulation (ORT) was first described by Zweifel et al. [111] as “hypore-
flective tubular structures with hyperreflective borders within the nuclear layer of
the retina” and appear in many retinal diseases (see, e.g. Figure 2.4). Nowadays, in
many cases, it is not sufficient for a medical doctor to decide what illness may affect
the patient’s eyes, but also the extent, cardinality, etc. of the biomarkers. We did not
find any automatic method for ORT segmentation during the literature review.
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Figure 2.17: Illustration of annotated (in middle row) and detected (bottom row)
PED and SHRM. Red regions show PED yellow represents SHRM.

2.6.1 Detection using classical image processing operators

The ORT has hyperreflective contour and contains hyper- or hyporeflective points.
Our procedure is based on finding hyperreflective points. The effect of image noise
is reduced using Wiener filter with a 3×5 pixel kernel. The input image size is
509×496, so a smaller kernel is sufficient. This filter size does not smooth the reflec-
tive dots but reduces noise. Reflective points are localized using a Hessian detector.
Hessian

H(x, σ) =

[
Ixx(x, σ) Ixy(x, σ)

Ixy(x, σ) Iyy(x, σ)

]
(2.10)

is a matrix, where Ixx(x, σ) and Iyy(x, σ) are second partial derivates in the x or y
direction and Ixy(x, σ) is the mixed partial second derivative in the x, y directions. σ
denotes standard deviation. After that, the determinant is computed:

det(H) = IxxIyy − I2xy. (2.11)

For filtering out the false points, we use some prior information about the biomark-
ers. Firstly, we calculate the retina thickness and we keep only those points which
are located in the lower third of the retina. Since we know that ORT is close to
the RPE layer within the distorted retina region or neighborhood, by estimating the
start and end of the distortion on the slices, additional points can be removed. The
method uses information about the extent and location of the distortion and the
position of intraretinal and subretinal fluid areas applying algorithms described in
Sections 2.3.5 and 2.4.2. Limiting the specific extent of the ORT in many cases is
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(a) (b) (c)

Figure 2.18: Intermediate stages of the simple image processing operations based
algorithm to determine ORT structures. (a) Wiener filter, (b) Hessian detector, (c)
segmented ORT.

very difficult, because there is no clear distinction between the hyperreflective wall
and its surroundings. We perform adaptive histogram equalization in the image so
that at least a part of the possible contours become separable by hysteresis threshold-
ing. The two threshold values are given as the lower and upper third of the maximum
intensity value in the image. After the last filtering, we keep only those points which
are part of an object in the thresholded image. Since we assume that ORT contains
hyperreflective points, we compute distance map [18] for the points, which gives
how far another point is to a given point. The map is thresholded using a constant
value which was determined empirically and finally the convex hull of the objects is
computed. Figure 2.18 illustrates some steps of the algorithm.

2.6.2 Localization with neural network

The method presented in the previous section is not robust against more diverse
images thus we have developed a more general approach. Nowadays, deep learning
based methods are very popular and are widely used solutions for different tasks.
These differ from conventional networks in that these may have several hidden layers
between the input and output layer. Nowadays, in most areas of research, a variant
of a deep neural network is used to solve a problem such as in image processing or
language processing. For semantic segmentation tasks the state of the art solution
is using convolutional neural networks (CNN). This is a constantly evolving area so
new solutions are arising day by day.

It is well-known that deep neural networks need as much training data as possible
to achieve better results. In our case 9 sequences of 25 or 49 slices were available
which were annotated by two medical experts, overall 16 sequences. We did not use
annotated images for training that were not marked with ORT because our aim was
that the network learn ORT object-like segments, since their precise localization is
less important. For images which have annotations from two experts, the masks were
combined using logical OR operator. Hence the masks contain the union of the these
marked images. Here the available amount of training data is extremely small, 132
examples, but machine learning techniques profit from more training data and more
data can help reduce overfitting thus we use real time augmentation technique during
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training. The details of transformations used for data augmentation is described in
Table 2.4.

To save computation time, the images were resized to have height and width of
220×256 pixels, respectively. The intensities were normalized to be in range [0, 1]

and then standardized to have zero mean and unit variance. The mean and the
standard deviation were estimated using the training corresponding set only.

Since our dataset contains sequences from only nine patients, we use nested cross-
validation for hyperparameter tuning and measuring the test error. The outer K-fold
validation, where K = 9, estimates the generalization error and the inner one used
for finding the best model settings using K = 8. For evaluating one modell requires
9·8 = 72 training and evaluation. Note that in this scenario one fold contains the
images of one patient.

Here, we consider a sligthly modified version of the original U-Net architec-
ture [65] for detecting ORT. There are three differences:

• we reduce the number of layers to speed up training time,

• we double the number of filters in each layer to give larger capacity to the
model, since the amount of data augmentation and retorsion in the orignal im-
ages are high, hence we expect the model to be invariant to this transformation,

• to prevent overfitting, we use Dropout [73] between all convolutional layers
except the last two ones.

The input is the whole OCT image, hence the images are not splitted into patches
with size 32×32 and trained on these subareas as in the basis U-Net architecture.
We use stochastic gradient descent (SGD) for optimizing the loss function with one
sample per update. The objective function that SGD minimize the Dice loss is

DiceLoss(p, y) = 1− DiceCoefficient(p, y), (2.12)

where p is the prediction and y denotes the mask label.

Table 2.4: Transformation details used for real time data augmentation to raise train-
ing data.

Type Range
rotation [− 10◦, 10◦]
horizontal mirroring [yes, no]
shearing [0, 0.1]
vertical and horizontal shifting [− 0.1, 0.1]
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We use this because our dataset is very unbalanced and previous work [23] shows
that the Dice loss in Equation 2.12 performs better in such cases than weighted binary
cross entropy which is the most used loss function in a binary classification problem.
The exact model architecture is presented in Figure 2.19.

In order to decrease the generalization error, the amount of Dropout is tuned. The
average Dice loss for the validation sets can be seen in Table 2.5 for varying dropping
rates. The implementation was done in Keras2 and the training were running in
parallel on four GPUs.

The results in Table 2.5 show that there is no unique parametrization which per-
form well on every fold. Probably a larger dataset would give a more stable solution.
However in most of the cases the 0.4 Dropout rate gives the highest validation Dice
coefficient.

Note that the estimation of the test error in every outer fold was done always with
the settings that has the highest mean Dice coefficient in the inner cross validation
folds and it was retrained with the corresponding hyperparameters on the whole
inner dataset for all 8 fold. The used Dropout rates which gave the best results in the
inner folds are higlighted in Table 2.5.

1

Input
image

Output
image

1128 128 128 128128128384

256 256 768 256 256256

512 512 512

conv 3x3, ReLU

max pool 2x2

up-conv 2x2

copy

Dropout

Figure 2.19: Fully convolutional U-Net based architecture. To speed up training
time, the number of layer are reduced, filters are doubled, Dropout is used between
all layers except the last two ones.

2https://github.com/keras-team/keras
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Table 2.5: Average Dice coefficients on validation set. K is fold number, r is the
droping rate for Dropout. The best average Dice values are highlighted in bold.

r 0 0.1 0.2 0.3 0.4 0.5
K=0 0.566 0.570 0.597 0.605 0.614 0.586
K=1 0.620 0.599 0.590 0.605 0.612 0.607
K=2 0.519 0.510 0.530 0.515 0.554 0.529
K=3 0.544 0.555 0.583 0.576 0.581 0.517
K=4 0.531 0.553 0.564 0.549 0.589 0.578
K=5 0.546 0.563 0.569 0.564 0.582 0.536
K=6 0.600 0.617 0.627 0.626 0.612 0.594
K=7 0.545 0.556 0.571 0.585 0.553 0.559
K=8 0.547 0.554 0.586 0.553 0.584 0.559

2.6.3 Evaluation and results

In order to achieve widespread validation, we calculated various metrics both for au-
tomatic and for manual segmentations. ORT biomarkers appear in variable numbers
in images and in many cases only in small size. The marked segments make up only
0.3% of the the whole dataset.

We also measured the average Dice coefficient in object level since there are im-
ages with multiple ORTs. When we calculate global and object level Dice coefficient,
we considered only those images which contain segmentation.

Dice coefficient measures well how precise a segmentation is, however our main
goal is not a perfect segmentation of ORT, only the cardinality of the objects. Since
variation of the Dice value among the doctors was moderate, there were cases when
either doctor annotated the actual area as ORT. To fulfill this goal, in addition to the
Dice coefficient we measured the recall of the ORT objects. These metric describes
how many annotated ORT objects were found in the segmentation.

Table 2.6 shows the achieved Dice and Recall values on K-fold validation, the
rows are the results of the medical doctors against each other, segmentation result.
In case of MD 1 versus MD 2 and our modified U-Net architecture against the union
of the masks of MD 1 and MD 2. The results of the selected models can be seen in
Table 2.7. The average of the global Dice coefficients on the outer folds is close to
the validation scores described in Table 2.5. Hence our model does not overfit the
data and performs similarly on unseen examples.

The object level Dice coefficient comparing to the union is better than the global
one, which means that where ORT objects were present the model can segment them
well. The object level Recall score also supports this statement. In average, our
object level Recall reaches the performance of doctors with 0.847 as it can be seen in



34 Retinal Image Analysis

Table 2.6: The evaluated performance of the doctors and the proposed convolutional
network on K-fold validation.

Recall (object) Dice (global) Dice (object)
MD 1 0.908 0.682 0.665
MD 2 0.812 0.625 0.590

modified U-Net 0.847 0.579 0.583

Table 2.7: Recall and Dice object level and global scores for each sequences.

Patient ID Recall (object) Dice (global) Dice (object)
Seq 1 0.714 0.420 0.412
Seq 2 0.642 0.347 0.390
Seq 3 0.900 0.715 0.707
Seq 4 1.000 0.720 0.742
Seq 5 1.000 0.552 0.626
Seq 6 0.931 0.602 0.627
Seq 7 0.500 0.353 0.361
Seq 8 0.933 0.751 0.664
Seq 9 0.925 0.579 0.633

All 0.847 0.579 0.583

Table 2.6. That means, our model is capable of helping the doctors to identify ORT
in OCT images. In Table 2.7 the average scores can be found for each patient. In
some cases the model found every annotated objects, and even in the worst case at
least half of the objects.

Some example segmentation can be seen in Figure 2.20. The images show that in
average cases the model perform quite well both in precise localization and finding
every objects. However there are some cases when the Dice coefficient is lower. We
can experience this for one patient that has elongated objects which made the Dice
coefficients worse. Besides the model segments multiple subregions of the original
objects so a professional could easily improve it. Note that the most of the patients
have other biomarkers like IRF and SRF. In some cases we experienced that the
model segmented the IRF as ORT. The reason behind could be that these markers’
reflectivity and shape is very similar in most cases. Training a model to recognize
these markers as well probably would improve the capability to distinguish these
objects.
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Figure 2.20: Illustration of annotated (in the middle row) and detected (bottom
row) ORT biomarkers. The first row contains the original input images. The columns
belong to patients Seq 6 (average), Seq 8 (best), Seq 2 (worst), Seq 2 (worst), re-
spectively.

2.7 Concluding remarks

In this chapter numerous approaches are presented to detect biomarkers in AMD and
possibly other eye diseases in OCT scans. Two methods were developed to highlight
ILM and RPE layers. We have introduced a method that can simultaneously locate
and separate the SRF and the IRF and another one to detect and distinguish the
PED and SHRM segments from each other. Besides, we segmented ORT using a fully
convolutional U-net based architecture.

We computed measures to quantify features of OCT in point of wet AMD patients.
This automated localization method can help the quantitative assessment of the OCT
biomarkers by providing automatic tools to detect abnormalities and to describe by
objective metrics the current state and longitudinal changes during disease evolution
and treatment.





Chapter 3

Quantitative Analysis of Irradiated
Zebrafish Embryos

Research is ongoing in many areas of life sciences and one of the most important
questions is how to treat cancer more effectively. Radiotherapy is one of the most
common methods to treat different cancer cells in clinical application despite having
harmful effects on healthy tissues. Radiobiological experiments are very important
to determine the irradiation-caused acute and chronic effects to define the exact
consequences of different irradiation sources. Photon irradiation has been used on
zebrafish embryos, a very new in vivo and appropriate model system in radiobiol-
ogy. After irradiation, dose-dependent morphological changes are observable in the
embryos.

The advantage of using zebrafish vertebrate model is the biological endpoint as-
sessment on large number of embryos, enabling high power statistical analysis. How-
ever, the more sophisticated morphological measurements — beyond the simple sur-
vival detection — are extremely time- and labor-intensive. The evaluation process for
one study containing hudreds of images might take several weeks for the biologists
to complete, taking into account that one image measurement takes ca. 15 minutes.
Besides the analysis of the morphological changes, other tasks also occur during pro-
cessing including the sorting out images of too low quality or not containing a living
fish, and improving image quality.

In this section, we introduce a framework to reduce human effort for faster ex-
perimentation. The various shape characteristics of zebrafish is obtained in order to
give a quicker picture of the response of fish to irradiation. A procedure is presented
that is capable of delimiting the area of the zebrafish, localizing the eye or the eyes,
determining their diameter, the distance between the head and tail of the fish, and
giving the position of the fish. The results are compared with manually annotated
data by biologists [91].

37
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3.1 Introduction

Ionizing radiation (IR) is successfully used in both adult and paediatric patients with
various primary and metastatic tumours [42, 48]. Approximately 50% of all cancer
patients are subject to radiotherapy during the course of their illness with an estima-
tion that radiotherapy contributes to approximately 40% towards curative treatment.
Although photon beam therapy is frequently used in the locoregional treatment of
cancer, it has also detrimental effects, since radiotherapy induces DNA damage and
cell death in tumor cells, but can also induce carcinogenezis in the surrounding
healthy tissue of the tumor. Ionizing radiation interacts with matter by excitation
and ionization of molecules, producing free radicals and subsequently reactive oxy-
gen and nitrogen species which can attack cell membranes or break chemical bonds
in biological molecules, leading to oxidative stress or DNA damage [40].

Zebrafish (Danio rerio) embryos have recently been introduced as a novel ver-
tebrate research model for various human diseases and treatments [74]. Zebrafish
are excellent model for experimental human cancer research, as they have many key
genes involved in cell cycle, oncogenesis, tumor suppression, and DNA repair [55].
Embryo development is extremely rapid during the first few days post-fertilization
while the embryos and larvae are transparent, giving the possibility to study the in
vivo organ development [5]. These features make this animal model appropriate to
investigate the effects of ionizing radiation on zebrafish development [30], and this
model provides an interim step between the in vitro cell culture and rodent systems.

Typically, wild-type adult zebrafish is mated in embryo collection tanks and vi-
able embryos are sorted by microscopic observation (1 embryo/well of standard
polystyrene microplates) and maintain under normoxic conditions during the ex-
periments. Figure 3.1 shows an observation setup where the monitoring phase of
the embryos is started after 24 hours post fertilization (hpf). Embryos are irradiated
with a kind of radiation (e.g., photon) in the specified dose range as determined by
the study. After irradiation, changes in the embryos are monitored and acquired in
specific intervals for later evaluation. Imaging is supported by the fact that the plate
has a known geometry, but there are several problems that can affect the quality of
captured microscopic images.

During the imaging, the plate is illuminated from below and each well can be
positioned using a stepper motor to take microscopic images. Due to the imprecision
of the stepper motor, parts of the nearby well may also be visible, and distortions as
a result of uneven illumination may also be observed. Subject distance may vary in
different examinations, or even minor variations may appear within a sequence, thus
calibration is required for pixel→mm conversion.

Irradiation-caused DNA damage causes observable morphological changes in the
zebrafish embryos, such as spinal curvature, shortening of the body length, yolk
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24 hpf 1 embryo / well IR

Observation, analysis

plate

light source

camera

Figure 3.1: Experimental protocol of a zebrafish irradiation study. The 24 hpf ze-
brafish embryos are sorted in wells and radiated with a type of beam. The morpho-
logical changes are monitored daily using a microscope. Representative photomicro-
graphs are taken with a camera.

sac or pericardial edema, abnormality of the eyes (microphthalmia) or abnormal
development of the head (microcephaly). The severity of these abnormalities are
dose-dependent (see Figure 3.2).

Approaches in the literature mainly aim the detection of zebrafish. Wu et al. [103]
used a hybrid active contour model to localize fish. The algorithm of Zhao et al. [109]
is based on graph representation. They viewed a graph as a collection of histograms
and the main process is similar to “bag-of-words” model. Other publications exist
about tracking or detecting zebrafish on videos. Wang et al. [100] used a Gaussian
mixture model to tracking multiple zebrafish. Pylatiuk et al. [64] detected heartbeat
by digital motion analysis. Ishaq et al. [39] dealt with the deformation of zebrafish
tail for drug screening. This process is based on a redefined medial axis generation.
However, our literature survey did not reveal any systems that supported biological
research by automatically extracting quantitative characteristics and providing mor-
phological analysis.

3.2 Quantitative analysis of morphological changes

The morphological deteriorations introduced in Section 3.1 were measured by biol-
ogist researchers taking three weeks of manual work, which was an extremely time
demanding process.

The automated framework to monitor irradiated zebrafish embyros involves many
tasks to be solved. Due to the varying quality of the images and uneven lightning,
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Figure 3.2: Dose-dependent morphological changes after 3 days (top row) and 4
days (bottom row) of (left to right) 0 Gy, 5 Gy, 10 Gy, 15 Gy, and 20 Gy photon ir-
radiation. Significant morphological changes are observable regarding the microph-
thalmia, pericardial edema, yolk sac edema, microcephaly, spine cord curvature.

preprocessing is required. The acquired images may contain the embryo and in most
cases partial regions of the circular well area. To delimit the search region and to be
able to make metric measures, the perimeter of the well area must be determined. In
order to obtain different morphological features from deformed fish, it is also neces-
sary to segment them and to detect the different anatomical areas to be observed.

In this section, we present a method to detect the abnormal development of ze-
brafish embryos, to save time for researchers while keeping the consistency and ac-
curacy.

3.2.1 Preprocessing and delimitation of the well

At least some part of the wall of the well is expected to appear in the zebrafish images
so in the preprocessing phase, the ROI needs to be limited to the region where the
fish might be located. This is important as it makes it easier to distinguish the fish
from the segmented false objects and reducing the size of the original input image to
the well area that also reduces runtime. The shape of the well is circular, so Hough
transformation1 is applied to the input grayscale images in order to locate wells. We
have some a priori information about the size of the image and the possible size of
the well appearing, so we can only look for circular objects within a specified radius
range. Figure 3.3 shows highlighted well contours in red.

1As implemented in OpenCV4.
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Figure 3.3: Illustration of delineated well wall using Hough-transformation. Red arcs
denotes the determined perimeter of the well. The images can contain many circular
objects of different intensity levels around the wall making detection of the wall more
difficult.

Meniscus effect appears close to the surface of the well due to the curve in the
upper surface of the liquid. Thus, illumination correction is applied to reduce this
effect [58]. Besides, to improve image quality, the enhancement method from [25]
is used.

3.2.2 Segmentation of zebrafish embryo

During the automated segmentation process, we continuously refine the region where
the fish could be found. The fish is located within the well area, which may even con-
tain the shell parts of the embryo or other debris present in the fluid. A range filter is
used for edge enhancement as a further preprocessing step where each output pixel
contains the difference of maximum and minimum value in a 3-by-3 neighborhood
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around the corresponding pixel. A binary image is produced using adaptive thresh-
olding after this step.

The embryos are often located close to the perimeter of the well so that their
regions can merge during segmentation. Thus, the image is divided into 2×2 equal
parts and the average width of the components is computed in each window. To
refine the well mask, we dilate each ROI with a structure element of circular shape
where its size depends on the previously calculated average value. This mask is used
to seperate fish and well wall objects from each other. After masking the perimeter
of the well and the morphological opening, these areas are reduced in size.

This may segment more objects, thus morphological opening is used to remove
the smaller, unnecessary parts. If there are more than two objects in the image, the
two having largest areas are kept for further processing. We attempt to filter out false
objects from the image by using the following conditions:

• if the eccentricity of object is greater than 0.7 (0 means circle, 1 is a line seg-
ment),

• all segments whose area was smaller than 10% of the detected well circle area,

• the major axis length of the object is greater than
1

5
of the image width.

The intensity of the embryo and other parts of the well zone may be similar, thus
before the detection of different parts of the embryo, the bounding box of the object
is computed to extend the potential fish region. We used unsharp masking to enhance
edges and adaptive thresholding for binarization. Only the largest segment is kept
for the post-processing step. At least one eye of the fish is expected to be visible in
the images, so the final filter step is to determine whether the object has an eye-like
region. We introduce the method in Section 3.2.3. Figure 3.4 illustrates the major
steps of the proposed localization method.

(a) (b) (c) (d)

Figure 3.4: Major steps of the zebrafish embryo localization. (a) filtered image, (b)
adaptive thresholding, (c) removed possible well zone, (d) segmented fish-like object
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3.2.3 Extraction of morphological deterioriations

The morphological changes relevant to radiobiological studies (see on Figure 3.2 in
red) are determined after localization of fish. For uniform handling and conditions,
all images were rotated by 90◦, when the height of bounding box of the fish region
is larger than its width. Thus, all examined ROIs are in the same position for further
investigation. To determine the tail and head part of the embryo, we divide the
embryo ROI vertically and the

w

16
region of image sides were not taken into account.

For the remaining right and left hand side of the ROI, we calculate the mean distance
as

MeanDist =
1

n

n∑
i=1

|zi − yi|, (3.1)

where n denotes all columns between
w

16
and

w

2
, z and y denotes object points of

the fish. Figure 3.5 represents the detailed determination of the head and tail of the
embryo. It is also clear from the figure that the calculated average distance of the
ROI part containing the head will be larger, so in each case this side is tagged as head
part.

Defining the head of a potential fish makes it easier to locate potential eye regions.
The purpose of the previous localization step was to delineate the fish region. The
average intensity of the eye region is lower than that of other parts of the the embryo
intensity due to the transparent and lit body of the fish. Therefore, we further refine
the head part segment at this stage looking for eye-like objects. The information
about the intensity of eye regions is used for the adaptive thresholding step. The
segmented objects are characterized by circumference and distance from the contour
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Figure 3.5: Illustration of measures of head, tail determination. w denotes the width
of the ROI. Plots represent the distance between contour points for each column.
Blue curve denotes the measured values and the orange one the average distance.
Higher average value belong to the head part of the embryo.
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of the head. If eccentricity of an object is greater than 0.1 and the distance is greater
than a threshold, then it is eliminated. Usually we obtain one or two remaining
objects, but if there were more, the two largest areas are retained. At higher doses
of radiation the fish tend to be oriented its side upwards. This makes the eye regions
partially or fully overlap in the microscopic image. Partial overlap must be taken care
of to be able to get the correct eye diameter value. Since the eye is a circular object,
Hough transformation is used for detection. The part of the detected eye region that
is outside of the Hough circle is discarded. Besides, this eye related information also
can be used to predict the orientation of the fish.

If the fish is located too close to the wall of the well, the eyes of the fish might not
be localized successfully at this stage. Observations showed that in cases of higher
doses of radiation the fish head is more likely located towards the wall, so the task is
not straightforward considering the dark eye regions and the darker appearance of
the fluid due to the Meniscus effect. For this reason, if the results does not contain
at least one eye region, the width and height of fish ROI is extended using the object
and well wall distance and the fish localization method is run again. The detailed
eye detection pseudocode is shown in Algorithm 3.

Extraction of various shape features are obtained by determination of the head
and tail parts and the eye region. As next step, the two endpoints of the embryo is
determined. The skeleton of the fish object is computed using a thinning method [46]
to determine the length of the total body and the endpoints of the embryo. The
skeleton may contain spurs that are removed using an iterative method. In every
iteration, the shortest spur is removed until the skeleton has only two endpoints. To
measure the total body length, the half distance pixel between the eyes or the eye
and contour of the fish is used as a skeleton point. A spline is fitted to this point and
the previously defined data. The endpoints of the fish are defined as the intersection
point of the fish contour and the skeleton.

3.3 Evaluation and results

Investigators irradiated 24 hpf zebrafish embryos with 5 Gy (n=35), 10 Gy (n=35),
15 Gy (n=35) and 20 Gy (n=35) doses using photon beam. Embryos in the control
group (n=35) had the same treatment without irradiation. Embryos were irradiated
with 6 MV photons, generated by a clinical linear accelerator. The embryos were
placed in a well within a 96-well plates with 200 µl embryo medium, the plates were
inserted into a water filled phantom and homogeneously irradiated. The doses were
delivered with horizontal beams. Representative photomicrographs were taken with
AxioCam MRm at a Zeiss Axiovert 40 CFL (Zeiss, Germany) microscope on the third
and fourth day after irradiation to determine the embryos’ morphological changes
and to measure the eye and spine cord perturbations. According to a pilot study [5],
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Algorithm 3 Pseudocode of eye scanning method.
1: function EYEEXAMINATION(F , M , B) . grayscale image F, mean intensity of possible

eye object M, possible eye mask B
2: Px,y ← the nearest horizontal perimeter point of well
3: Cx,y ← centroid of pre-segmented eye object
4: dist = | Px,y - Cx,y |
5: Finc ← increased image size with dist value both in horizontal and vertical direction
6: Fdiff = |Finc - M|
7: Fdist ← distance map of B
8: Fbin ← [] . empty logical image
9: for i, j in all pixels do

10: if Fdiff (i,j) < tho or Fdist(i, j) < thw then . tho, thw: threshold values
11: Fbin(i, j)← 1
12: end if
13: end for
14: Hough transformation on Fbin image
15: if detected circles = 1 then
16: Hmask ← dilated mask of detected circle
17: if Hmask ∩ Fbin < th then . tha: threshold
18: separate Fbin objects from each other along Hmask

19: end if
20: else if detected circles = 2 then
21: continue
22: else
23: Keep two largest objects
24: Hmask ← dilated mask of detected circle
25: separate Fbin objects from each other along Hmask

26: end if
27: end function

these days are the most relevant time-points in the present experimental setup to
determine the abnormal morphological deterioriations. In this study, 393 images
were selected from the 525 manually discarding images of poor quality, containing
empty well regions or perished embryos.

Embryos were observed without any manipulation in place in the microplates.
Morphology was assessed visually and photo documented. The size and shape of the
embryo, the spine and the eyes were monitored continuously in the proportion of the
living embryos.

Biologists measured manually the morphological changes after three and four
days of irradiation to define numerically the dose-dependent changes using ImageJ
(Image Processing and Analysis in Java) Software2. This application is considered as
one of the most appropriate program for different morphological evaluations in cells

2https://imagej.nih.gov/ij/index.html
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or in zebrafish model. The measured distance is the straight line length in pixels from
the head tip to the end of the spine. During the manual measurements, researchers
marked the two endpoints of the embryos as a parameter of the body shortening
and the furthermore spinal curvature and the diameter of the eyes, what refers to
the microphthalmia. Five researchers independently determined the morphological
changes, the whole manual processing took 3 weeks.

Data analysis was performed using SigmaStat for Windows statistical software
package3. The differences between the manual and the automatically detected mea-
sures were analysed applying paired t-test. Mean (M) values and standard deviation
(SD) values are given in all reported figures and tables. The statistical analysis shows
that there is no significant difference between manual annotations and the values
computed by the proposed automatic algorithm. Biologists found significant mor-
phological deteriorations after delivery of dose ≥10 Gy, 15 Gy and 20 Gy including
a reduction in the distance between the two endpoints of the embryo (Figure 3.6),
microphthalmia (Figure 3.7). Table 3.1 presents the measured values.

Figure 3.6: Parameter of the length and spinal curvature after three and four days of
irradiation.

3Jandel Scientific, Erkrath, Germany
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Figure 3.7: Microphthalmia after three and four days of irradiation.

Table 3.1: Results of manual and automatic measurements (mean ± standard devia-
tion, in pixels).

Head-to-tail distance Eye diameter
3 days 4 days 3 days 4 days

Control
Manual 739.6±16.9 774.3±25.7 61.7± 7.1 64.5± 4.7

Proposed 744.7±22.9 773.4±28.6 60.6±10.3 62.2±10.0

5 Gy
Manual 736.3±27.0 782.6±23.0 58.9± 6.2 63.6± 4.0

Proposed 737.6±31.3 785.8±34.0 56.7± 6.3 60.9± 8.0

10 Gy
Manual 723.7±24.1 764.8±23.4 53.7± 5.3 56.9± 5.6

Proposed 722.6±21.1 760.1±25.1 52.4± 6.0 55.5± 6.3

15 Gy
Manual 637.3±32.6 645.9±31.6 41.7± 5.8 42.5± 5.0

Proposed 641.0±34.0 647.8±34.9 44.7± 6.0 45.0±10.3

20 Gy
Manual 563.8±45.5 572.2±43.8 33.3± 5.0 32.8± 5.6

Proposed 562.0±46.6 573.6±48.2 33.8± 8.6 34.1±11.7
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Table 3.2: Execution time of stages of the algorithm for all images expressed in
seconds (mean values ± standard deviation).

Well Zebrafish Feature
All steps

localization detection extraction
Execution time 2.8 ± 0.54 2.06 ± 0.42 0.57 ± 0.48 4.92 ± 1.08

The automatic method can save a tremendous amount of time for biologist re-
searchers while providing comparable results. The average execution time of our
reference implementation takes about 5 seconds per image. Table 3.2 shows execu-
tion times of the stages of the algorithm.

The well area detection using the Hough transformation was successful for almost
all the cases. Only 7 of the 393 cases exhibited larger distances between the detection
and the real contour. The bottom row of Figure 3.3 illustrates the cases with the
largest errors and Figure 3.8 shows segmentation results of the algorithm for some
selected cases.

Top row shows correctly localized zebrafish embryos and their extracted features.
The automated method might perform poorly in cases where the body of the embryo

Figure 3.8: Illustration of detected zebrafish embryos with their eye/eyes and end
points.
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is very bright thus becoming too similar to its surroundings, and when the embyro is
located near the well thus becomes difficult to localize because of the dark Meniscus
effect. Some incorrect detections are shown in the bottom row of the figure.

3.4 Concluding remarks

In this chapter, a reliable quantitative morphological analysis of dose-dependent or-
gan malformations using an in vivo vertebrate system has been presented. The
zebrafish embryo model proved to be appropriate for complex evaluation of the
irradiation-caused damages, and the most relevant morphological parameters could
be defined for later radiobiological experiments.

It is doubtlessly necessary to develop automatic evaluation algorithms which can
make the measurements fast and accurate, consequently saving time for the re-
searchers.





Chapter 4

Localization of Visual Codes

Visual codes play an important role in automatic identification, which became an
inseparable part of industrial processes. Thanks to the revolution of smartphones
and telecommunication, it also becomes more and more popular in everyday life,
containing embedded web addresses or other small informative texts.

While barcode reading is straightforward in images having optimal parameters
(focus, illumination, code orientation, and position), localization of code regions is
still challenging in many scenarios. Every setup has its own characteristics, therefore
many approaches are justifiable. Industrial applications are likely to have more fixed
parameters like illumination, camera type and code size, and processing speed and
accuracy are the most important requirements. In everyday use, like with smart-
phone cameras, a wide variety of code types, sizes, noise levels and blurring can be
observed, but the processing speed is often not crucial, and the image acquisition
process can be repeated in order for successful detection.

In our work, our main goal was to detect different types of codes using classical
approaches. We introduce visual codes and their types and also demonstrate related
works in Section 4.1. Details of the used dataset and metrics are discussed in Sec-
tion 4.2. In Section 4.3 we present methods based on morphological operations to
localize traditional barcodes [81, 82]. Using the specificity of the barcode structure,
we suggest pattern matching algorithms in Section 4.4 [88]. A possible industrial
application is described in Section 4.5 [85].

4.1 Introduction to barcodes

Item identification using visual codes is popular in our everyday life, and there are
several methods available for the process to be fast and reliable. The retrieval of the
embedded data takes place in two steps. First, we have to find the visual code object
within the acquired sensor data or image (localization step), then we have to use the
symbology of the code and recognize the embedded data (decoding step). Decoding

51
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is widely studied, so we can use many approaches from the literature or public APIs
like the ZBar library1.

It should be emphasized that decoding is far more straightforward, while the
issue of localization is similar to object recognition and is still not fully solved. For
localization of the code object, most algorithms use segmentation techniques using
different features. Several industrial applications simply ignore the localization step
by adding a fast rotating laser that scans in many directions. Also, false positives are
not acceptable, but the checksum digit (barcode) and the error correction (QR code)
make false positives very unlikely in practice.

The use of visual codes has a reputation of more than 50 years, however, in the
past, the localization process required many conditions to fulfill. The first barcodes
were in a fixed position on railway trucks and were read by a fixed sensor gate. As
technology progressed, PoS terminals appeared, still requiring human intervention to
perform code reading. In the ’70s, new algorithms have been developed that could
localize codes having various orientation and position within the image. The first ap-
proaches were very simplistic, they imitated the laser scanners of the barcode reading
device. From the ’90s, machine learning provided some more sophisticated solutions
for the issue. Methods providing automatic code localization are usually slower, but
more accurate than their predecessors. Accuracy and processing speed are condi-
tions that can hardly be fulfilled simultaneously, and most approaches aim to find a
balance between these. Some machine learning algorithms make an exception, and
they are capable of a quick evaluation after a significantly slower learning process,
provided that the features can be computed efficiently and there is sufficient amount
of training data available.

In industrial applications, accuracy is more crucial, since missed codes may lead
to loss of profit and in those cases, speed is a second desired attribute. Contrary,
in smartphone applications accuracy is not as critical, because the user handles the
device interactively, and repetition of the image acquisition is possible and relatively
easy. In addition, these classical visual codes can also be produced in a way that they
become unique and thus can be used to validate originality or authenticity.

Barcode formats

Visual codes are not meant to be readable for humans, they are decoded by specific
devices and GS1 manages several types of barcode2. The most popular 1D barcode
subtypes are the EAN-13 and UPC standards. These are widely used in commerce,
e.g., on wrapping of products, and they help quickly obtaining the information on,
e.g., the producing country, types of entities of products. The flow of information is

1Publicly available at http://zbar.sourceforge.net/
2https://www.gs1.org/standards/barcodes
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Figure 4.1: Popular barcode types (from left to right). Top row (1D codes): Code39,
Codabar, Code128, UPC-A; Bottom row (1D codes, 2D code): UPC-E, EAN-8, I2of5,
QR code.

greatly boosted using visual codes, which provide decoding of the embedded data by
electronic devices. Some types include features that also help their localization. The
traditional 1D barcode structure is simple: a sequence of parallel bright and dark
bars of varying thickness represent information.

The literature sometimes refers to 2D codes as “barcodes”, however, they do not
necessarily consist of “bars”. They carry the embedded data along two axes, and
their most popular types are QR code and Data Matrix. Some 1D and 2D codes are
presented in Figure 4.1.

Related works

There are numerous methods for the localization of visual codes in digital images.
Some approaches imitate the classical laser scanner. Adelmann et al. [3] introduced
such a barcode recognition and information system to detect and read EAN-13 bar-
codes. This system works as a mobile application and localizes localization tradi-
tional and widely used barcodes. After preprocessing steps, Ohbuchi et al. [61] used
a scanline based procedure to detect QR and EAN codes.

Mathematical morphology has been used in many approaches in the literature.
Bodnár et al. [11] proposed using simple detectors such as combination of differ-
ent morphological operators and distance map to detect barcodes efficiently. Texture
analysis [10] can also achieve great efficiency. Lin et al. [52] demonstrated a fast and
effective method that can simultaneously detect 1D and 2D barcodes. Their method
is based on a modified run length smearing algorithm. Kong [44] defined regions of
interests that may contain QR codes in synthetic images with the mix of Harris corner
detector and convex hull. In addition, they recommended a solution to correct for
geometric distortion. Belussi et al. [8] introduced a machine learning method that
is based on the locator pattern of the QR code. They proposed a cascade of weak
classifiers using features from the Haar wavelet family. Although it is fast, it provides
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a noticeable amount of false positive code candidates. Bodnár et al. [13] proposed
an improvement on that, using visual descriptors such as local binary pattern (LBP)
and histogram of oriented gradients (HoG) features as an extension of the training
step on the full code object. Sörös et al. [71] aimed to localize 1D and 2D codes us-
ing edge and corner maps, even considering the saturation channel in HSV images.
Their algorithm is optimized for images suffering from heavy directional smooth-
ing [72]. The method has high accuracy, in cases, however, where the code object is
surrounded by text, their approach provides oversized bounding boxes. Text filtering
can help get rid of this problem, considering the availability of surrounding text as a
priori information. Szentandrási et al. [75] also worked with edge and corner maps
and HoG features. Their method works locally on square image cells, similarly to
convolution. This approach enables parallel execution and it is also highly accurate.

Yun et al. [107] introduced an orientation histogram-based method. They used
a histogram to separate the principal orientation components from the entire image
and calculate the local entropy of the orientation to generate a saliency map. Bodnár
et al. [12] presented a method based on distance transformation. The algorithm
also considers local image blocks and evaluates the distance map of the edge map.
It takes into account the mean and standard deviation of the distance values within
each block, then makes a binary decision whether or not the block contains a barcode
part. While this feature can be computed efficiently, it has weak classification power,
therefore it is not sufficient for use alone for the localization step. In their work, the
authors tried to overcome this attribute using morphological operations.

Many recent papers use machine learning methods to solve various image pro-
cessing problems. Hansen et al. [34] used a deep learning object detection algo-
rithm, namely You Look Only Once (YOLO) model. Their network is based on a
pre-trained Darknet19 model with 6000 epochs. The most common architecture for
semantic segmentation is the U-Net that has different variants for each task. Ventsov
et al. [97] divided the input image into 128×128 blocks, extracted statistical char-
acteristics for each block and trained a convolution neural network. A Region-based
Convolutional Neural Network (R-CNN) model was proposed by Ban et al. [93] for
detecting diversified barcodes under complex scenes. For experiments, they used two
pre-trained models, ImageNet and VGG16.

Our proposed approaches can effectively detect barcodes using classical image
processing operations. Similarly, some of the introduced methods in the literature
use classical methods, they also take advantage of the specificity of the barcode. In
some cases, the basis idea is similar to ours but major steps of these algorithms are
different. The efficiency of the described neural network methods may be higher
than the classical ones, but these requires a large amount of training data, which is a
disadvantage.
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4.2 Image data and metric

For evaluation and comparison, we used datatsets of real and synthetic images that
contain one or more barcodes. Several research groups [17, 28, 34, 71, 76, 97, 107,
108] evaluated their algorithms on the WWU Muenster dataset, therefore we also
decided to use that set for evaluation.

We have created an artificial test set from the barcode examples presented in
Figure 4.2. Various distortions and levels of noise were applied. The generated
images were rotated from 0◦ to 180◦ by 15◦ steps. Gaussian smoothing was applied
with 3×3 kernel and 11 different σ values in range [0, 5] with step of 0.5. Also,
Gaussian noise was added with variance of 0.01 and [0, 0.5] mean with step of 0.1.
In total, we created 12 orientations from 8 types of barcodes, using 12 different
smoothing and 6 different noise levels, with perspective distortions, counting as cca.
15 000 images. We also collected 100 real-life example images. Figure 4.2 illustrates
some examples from our artificial and real-life datasets.

For the test set of QR codes, we used the database of Sörös et al. [71] consisting
of 1400 real images. Besides, we used our synthetic database containing 10 000 test
images. The latter set was generated similarly to the 1D barcode set. Figure 4.3
shows some samples from that data set.

An other public database by Dubská et al. contained two similar sets of QR code
images, surrounded with text in a scene having low saturation in general. The first
set contains 410 high-resolution (2560 × 1440 px) images with uneven lighting con-
ditions, high grades of geometry or intensity distortion and blur. The second test
set has 400 low-resolution (604 × 402 px) images with smaller grades of distortion
and more even illumination, but having less light in general, thus producing darker
images.

To measure the efficiency of the proposed and reimplemented literature algo-

Figure 4.2: 1D barcode samples with different distortions, synthetic (top row) and
real images (bottom row).
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Figure 4.3: Synthetic (top) and real images (bottom) with QR code.

rithms, the overlap of the segmented codes is more important than the number of
founded barcodes, so we evaluated this at pixel level for each object using the Jac-
card similarity measure, defined as

J =
TP

TP + FP + FN
, (4.1)

where TP (true positive) denotes the correctly detected pixels, FP (false positive)
is the number of not valid code pixels and FN (false negative) is the number of not
localized code pixels. Note that, ground truth regions have a tight fitting bounding
polygon highlighting the code object without numbers and “quiet zones” as a border.
A successful detection is where J > 0.5, according to the work of Szentandrási et
al. [75].

4.3 Mathematical morphology based algorithms

As described in Section 4.1, the traditional barcodes have a specific structure that
can be used to localize them with simple and effective approaches. Mathematical
morphology is useful for the analysis and processing of geometrical structures in
images. The basic morphological operators are erosion and dilation.

We compare the effectiveness of the proposed method with the following ap-
proaches from the literature. The algorithm of Tuinstra’s [94] relies on that the
intensity difference between the stripes is hight within barcode region. Sobel kernel
was used to estimate the gradient in the x and y directions and they selected pixels
with high gradient and performed various morphological operations on the binary
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image and in the last phase solidity test was used to remove false barcode segments.
The procedure of Tekin et al. [77] was designed for visually impaired or blind

people to facilitate their everyday lives. The approach can be splitted into two main
phases: preprocessing and detection. They used Gaussian smoothing to reduce noise
level and also calculated gradient magnitude image. The image was scanned in four
directions (horizontally, vertically, and in direction of the diagonals (±45◦)) in the
detection phase in the last step. They calculated entropy that characterize the texture
of the image within a given neighborhood around each pixel.

Juett et at. [41] introduced a method based on bottom-hat filtering. The bottom-
hat transform is defined as the difference between the original image and its closing.
Closing operation is a dilation followed by an erosion, using the same structuring ele-
ment for both operations [7]. The non-ideal image was improved by simple contrast
stretching. They used morphological operations to find the possible barcode regions
in the image and eliminated false candidate objects using area based thresholding.
Our algorithm also relies on bottom-hat filtering and use morphological operations,
but the processing steps build up a dissimilar system for detecting.

4.3.1 Algorithm based on bottom-hat transform

Similarly to the previously described methods [41, 77, 94], our algorithm also con-
sists of two main phases. The input image is converted to grayscale in the preprocess-
ing phase, because although barcodes may be printed in various colors, the pattern
of dark bars on a light background is equivalent.

To reduce the image noise, we used Gaussian smoothing. Most of the barcode
localization methods calculate gradient image to highlight edges. Instead of this,
we used bottom-hat filtering that is also based on intensity differences. Although
bottom-hat filtering is slower than other non-direction edge enhancement operations,
its accuracy is higher. In order to detect possible barcode regions, the edge-enhanced
image is binarized with global thresholding using 95% of the maximal instensity as
threshold value.

The binarized image is suitable for finding possible barcode segments, but so far
may contain false regions. We take advantage of the structure of the barcode, the
fact that it consists of parallel lines at about the same distance. The entire image is
analyzed using a horizontal scan whether the white pixels are located at appropriate
distances at the given direction. The maximal distance parameter depends on the
image resolution. This value is 5 pixels in the case of 800×600 images.

There might be small connected components which satisfy the criteria but are not
barcode regions. These false regions are eliminated using an area threshold. We set
the threshold to half the size of the largest component. A too high threshold value
could remove small barcodes from high-resolution images, therefore in this step we
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(a) (b) (c) (d) (e)

Figure 4.4: Intermediate steps of the algorithm based on bottom-hat transform at
key phases: (a) original image, (b) binarization, (c) scanning, (d) morphological
operations, (e) final output.

only remove the smaller false regions.
Our observations showed that for the final detection steps mostly dense text re-

gions might remain along with the supposedly barcode areas. Since a barcode con-
sists of a sequence of parallel bars and the bars are located at varying distance from
each other, they do not compose a connected component. Therefore in this phase we
use dilation to merge these patterns. The size of the square shaped structure element
was defined as

S = max(40,width of the widest bar · 3). (4.2)

For calculation of the size of the structure element, we used a constant that depends
on the size of the image. In this case, this value was chosen empirically for the
used dataset. Nevertheless, this dilation may also thicken and merge unwanted non-
barcode regions as well. To cope with this problem, we also use the dual operation,
i.e., erosion. Here, the structure element is also square shaped, and size is chosen
less than (cca. 1/3 of) the one used for dilation, that is matching the width of the
widest bar. Of course, there still may be false-positive objects which are removed in
the last step on the basis of their size. Similarly to the previous step, objects smaller
than half the size of the largest object are dropped. The pseudocode of the method
is shown in Algorithm 4 and Figure 4.4 illustrates the key steps.

4.3.2 Extending the bottom-hat approach

In order to improve the method introduced in Section 4.3.1, we use another aspect
to localize barcode regions after binarization since we observed worse results under
poor lighting.

The preprocessing steps are retained thus we use bottom-hat filtering to highlight
the bars of barcode(s) and a simple global thresholding operation to binarize the
grayscale image.

Also we take the advantage of the structure of the barcode, the fact that it consists
of approximately regularly spaced parallel stripes. Here, for each pixel, we calculate
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Algorithm 4 Pseudocode of simple operations based 1D code localization algorithm.
1: function BARCODELOCALIZATION(Igray) . input grayscale image Igray
2: C← ( Igray• Se1) - Igray . • : morphological closing, Se1: structure element
3: B← [] . empty image
4: Bresult ← [] . empty image for output
5: for i, j in all pixels do
6: if Ci,j > th then . th: threshold value
7: if Ci,j < maxd then . maxd: maximum distance
8: Bi,j ← 1
9: else

10: Bi,j ← 0 . no edge seen within specified maximum distance
11: end if
12: else
13: Bi,j ← 0
14: end if
15: end for
16: Bdil ← B ⊕ Se2 . ⊕: morphological dilation, Se2: structure element
17: Ber ← Bdil 	 Se3 . 	: morphological erosion, Se3: structure element
18: for all components do
19: if actual Ber object area > mina then . mina: minimum area
20: Record this object as a barcode segment to Bresult
21: else
22: Discard this object
23: end if
24: end for
25: end function

the Euclidean distance of the pixel from the nearest nonzero pixel. Using the distance
map, objects that are far from other objects can be easily dropped, and only nearby
objects (sort of a cluster of bar segments) will be kept. We calculate the average
distance value for each row and use the minimum as the threshold value of the
distance map. Regardless of the orientation of the barcode, where code segments are
present, the distance values may be smaller than in other cases thus possible code
segments can be found using threshold by average value.

Since a barcode consists of a sequence of parallel bars that are located at varying
distance from each other, they do not compose a connected component. Therefore,
we used dilation with a square structuring element whose size is defined as in Equa-
tion 4.2 to merge fragmented objects.

To remove unwanted objects, we used the same steps as in the original procedure,
but with different structure elements and thresholds. We used a linear structure
consistent with the size of the 1D barcodes. The size was less than the one used for
dilation, i.e., it matches the width of the widest bar. Relying on the size of the objects,
we remove false positive objects. If the image size was higher than 800×800, objects
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smaller than half the size of the largest object was removed, otherwise objects smaller

than
1

4
of the size of the largest object was rejected. We summarize the algorithm in

Algorithm 5 and intermediate key stages in Figure 4.5.

Algorithm 5 Improved barcode detection method based on simple operations.
1: function IMPBARCODELOCALIZATION(Igray) . input grayscale image Igray
2: C← ( Igray• Se1) - Igray . • : morphological closing, Se1: structure element
3: davgs ← []
4: B← []
5: Bresult ← []
6: for i, j in all pixels do
7: if Ci,j > th then . th: threshold value
8: Ci,j ← 1
9: else

10: Ci,j ← 0
11: end if
12: end for
13: Dmap ← euclidean distance map of Ci,j
14: dmin ← minimum of row averages on Dmap
15: for i, j in all pixels do
16: if Dmapi,j > dmin then
17: Bi,j ← 0
18: end if
19: end for
20: Bdil ← B ⊕ Se2 . ⊕: morphological dilation, Se2: structure element
21: Ber ← Bdil 	 Se3 . 	: morphological erosion, Se3: structure element
22: for all components do
23: if actual Ber object area > mina then . mina: minimum area
24: Record this object as a barcode segment to Bresult
25: else
26: Discard this object
27: end if
28: end for
29: end function

4.3.3 Evaluation and results

In Section 4.3 we introduced approaches from the literature. Here, we compare our
methods described in Section 4.3.1 (Proposed431) and Section 4.3.2 (Proposed432)
with these methods.

The performance of the algorithms do not seem to depend on the applied stretch-
ing in the test images and also seem to be insensitive to rotation as well. We used
our synthetic 1D dataset and 100 real-life examples for evaluating algorithms.
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(a) (b) (c) (d) (e)

Figure 4.5: Intermediate steps of the improved barcode localization method based on
simple operations at key phases: (a) original image, (b) binarization, (c) Euclidean
distance, (d) morphological operations, (e) final output.

We can conclude that all five algorithms are capable of effectively localizing bar-
codes. The method of Tekin [77] is fast, but it loses efficiency when there are several
barcodes in the image and noise is also present. The algorithm of Juett et al. [41]
is slower than the others, because in the detection phase the image is scanned in
16 different orientations. However, this brings better accuracy to the process at the
expense of more computation.

Our proposed algorithms are also very fast. In most cases, faster procedures locate
barcodes less accurately or not at all, as if loss of accuracy were the price for the speed
gain. However, in our case, speed is not coupled with a significant cost in accuracy.
From the evaluation output we can conclude that the proposed procedures have
second best running efficiency for all test images and in many cases it also shows
best accuracy. The weakness of the method appears when the image is very noisy or
when there are such image areas which are similar to a barcode.

Table 4.1 presents the execution time of the detection methods for images con-
taining 1 or 3 barcodes. Here, one can easily discover the significant differences
between the different approaches.

Subsequent tables show how the algorithms operate on images which contain
either one or three code pieces of various 1D and 2D barcodes types. The structure
of barcode types varies, which also has an effect on how well the algorithms can
perform. Accuracy of the detection methods for images containing a single or 3
pieces of codes for various code types is presented in Table 4.2. Tuinstra et al.,
Tekin, and Juett et al. reached quite low performance for Code128, however our

Table 4.1: Execution time of the code localization algorithms. Mean values (± stan-
dard deviation) (expressed in seconds) for all test images of a certain class.

Tuinstra et al. Tekin Juett et al. Proposed431 Proposed432

1 code
1D 0.23±0.13 0.67±0.22 0.81±0.43 0.13±0.10 0.16±0.08
2D 0.21±0.14 0.77±0.47 0.73±0.44 0.12±0.12 0.14±0.09

3 codes
1D 0.54±0.35 1.73±0.66 1.86±0.78 0.18±0.09 0.35±0.12
2D 0.46±0.21 1.70±0.54 1.68±0.71 0.18±0.10 0.28±0.07
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Table 4.2: Accuracy of the algorithms for various types of codes, for images contain-
ing 1 or 3 codes. Mean values (expressed in percent) for all distorted test images
with 1D barcodes (above) and for all test images with 2D codes (below). The highest
efficiency is highlighted in bold.

Codabar Code128 Code39 EAN-13 EAN-8 I2of5 UPC-A UPC-E all
Tuinstra et al. 99.0 50.4 98.7 98.8 98.7 98.6 99.1 82.7 91.8

Tekin 98.9 63.6 94.8 94.7 99.6 84.6 98.2 92.6 86.4
1 code Juett et al. 99.2 70.9 86.3 91.7 84.6 84.4 94.9 76.0 78.9

Proposed431 99.9 95.7 99.4 98.9 99.6 93.1 86.4 99.6 96.6
Proposed432 98.6 93.7 100.0 99.3 98.2 92.5 100.0 100.0 96.8

Tuinstra et al. 83.8 83.6 83.3 83.3 83.3 78.8 74.6 98.7 74.0
Tekin 56.2 95.0 90.5 91.4 97.2 35.5 65.5 77.5 74.7

3 codes Juett et al. 56.2 79.6 67.3 76.6 81.8 93.8 92.6 96.7 77.4
Proposed431 92.8 80.1 94.7 99.3 99.4 99.2 99.9 99.3 95.6
Proposed432 87.5 84.8 90.5 99.2 95.9 84.9 95.4 92.5 89.2

Codablock PDF417 all
Tuinstra et al. 87.0 81.7 85.0

Tekin 99.8 99.6 99.7
1 code Juett et al. 83.3 79.7 82.5

Proposed431 87.7 93.9 90.8
Proposed432 100.0 97.6 99.1

Tuinstra et al. 86.6 83.3 85.0
Tekin 100.0 100.0 100.0

3 codes Juett et al. 80.0 83.9 82.4
Proposed431 90.7 91.7 91.2
Proposed432 94.2 90.8 92.5

Proposed431 and Proposed432 algorithm handle this variable-length code as well as
the fixed-length types. For the 2D codes, Tekin shows exceptionally good accuracy,
but the other methods also perform well on these stacked barcodes. There is more
variance in performance on images with 3 codes, and some methods (Tuinstra et al.,
Proposed431, Proposed432) show a solid performance while the others very much
depend on the type of code present in the image.

The accuracy of the algorithms degrades on distorted images. Next, we analyze
the effect of distortions on efficiency. Table 4.3 shows the methods’ efficiency with
respect to the level of blur applied to the test images. Image smoothing does not
change the performance considerably. Although there is a noticeable inverse relation
between values of σ and accuracy, this is not significant. It is interesting to note that
in some cases the barcode detection accuracy is higher in images with three barcodes
than for images with a single code present. This can be due to the fact that relative
size (w.r.t. image size) of individual codes are smaller in the 3-code examples. Tekin,
Proposed431 and Proposed432 methods show outstanding accuracy in images which
contain 2D barcodes and there are no considerable differences between the precision
values.
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Table 4.3: Accuracy of the algorithms for different blur levels, for images containing
a single code and for those containing 3 codes. Mean values (expressed in percent)
for all distorted test images with 1D barcodes and for all test images with 2D codes.
The highest efficiency is highlighted in bold.

1D 2D
0 1.5 2.5 all 1D 0 1.5 2.5 all 2D

Tuinstra et al. 100.0 90.4 90.4 90.5 100.0 87.7 83.6 87.5
Tekin 100.0 88.5 90.4 89.1 100.0 100.0 100.0 100.0

1 code Juett et al. 100.0 89.4 87.5 89.6 100.0 82.6 82.6 83.3
Proposed431 100.0 96.8 97.1 96.7 100.0 95.7 95.7 95.8
Proposed432 100.0 95.4 93.3 94.3 100.0 100.0 100.0 100.0

Tuinstra et al. 100.0 91.7 82.7 82.7 100.0 86.7 82.0 82.7
Tekin 100.0 86.7 82.0 77.9 100.0 100.0 100.0 100.0

3 codes Juett et al. 100.0 89.1 90.2 90.6 100.0 82.5 74.5 82.9
Proposed431 100.0 97.0 97.0 97.5 100.0 100.0 100.0 100.0
Proposed432 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 4.4: Accuracy of the algorithms for different noise levels, for images containing
a single code and for those containing 3 codes. Mean values (expressed in percent)
for all distorted test images with 1D barcodes (above), and for all test images with
2D codes (below). The highest efficiency is highlighted in bold.

1D 2D
0 30 50 all 1D 0 30 50 all 2D

Tuinstra et al. 100.0 89.4 93.3 90.5 100.0 87.7 77.8 85.8
Tekin 100.0 86.2 84.2 88.6 100.0 100.0 98.6 99.5

1 code Juett et al. 100.0 79.2 69.9 83.5 100.0 79.3 69.6 77.3
Proposed431 100.0 97.4 94.9 96.8 100.0 94.2 92.3 94.8
Proposed432 100.0 92.5 91.6 95.4 100.0 100.0 100.0 100.0

Tuinstra et al. 100.0 84.6 73.8 87.6 100.0 90.4 84.9 86.4
Tekin 100.0 86.3 82.7 87.3 100.0 100.0 100.0 100.0

3 codes Juett et al. 100.0 82.7 64.4 84.7 100.0 73.0 71.4 73.3
Proposed431 100.0 96.7 90.6 95.6 100.0 100.0 85.7 95.6
Proposed432 100.0 95.8 91.6 95.1 100.0 100.0 100.0 100.0

In a similar manner, we analyzed how the algorithms perform on images having
different levels of noise added. We can see from Table 4.4 that each algorithm is
somewhat sensitive to noise. The introduced literature methods lose much of their
accuracy as the noise level increases, however, our methods degrade to a lesser extent
only.

We also tested the methods on a set of 100 real-life images. These images contain
1D barcodes each. The accuracy of the algorithms are 92 % (Tuinstra et al.), 91 %
(Tekin), 92 % (Juett et al.), 94 % (Proposed431) and 96 % (Proposed432).
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Figure 4.6: Examples of detection output by the propsed algorithm for PDF417 (left)
and Codablock (right) code samples.

In Figure 4.6 we show two result images of our algorithm for 2D barcodes.
Stacked barcodes contain data all parts of the barcode so we have to detect the total
code and there is a much smaller visual redundancy contrary to 1D barcodes.

4.4 Detection using template matching

Pattern matching is an approach to find the location of a template image. Since
classical 1D barcodes show similar patterns and in 2D codes we can also observe
specific features, thus pattern matching may be a possible solution for detection.

4.4.1 1D traditional barcode segmentation

During processing, the input images can be of different sizes. We reduce the height
of the image to a fixed size of 500 pixels in order to make them more uniform, easier
to handle, and make processing faster. Empirical experience has shown that this is
the smallest image size where smaller area code regions can still be localized in the
used databases. We did not use color information during the process, so the input
RGB image was converted to grayscale. Input images are often blurry, therefore we
also use sharpening (Figure 4.7(b)).

The detection process is based on binary images, so the image is binarized us-
ing a global threshold. In our case, this value was 4% of the maximum intensity
(Figure 4.7(c)). This threshold was chosen empirically, based on the observation
that white parts of the code more often fall into the gray intensity range because of
dust, cheap quality labels or shapes being present because the packaging does not
necessarily use white color for the bright parts of the code. This is not a robust so-
lution, but selecting valid regions from false regions is easier than finding a missing
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: The proposed method for 1D barcode localization. (a) input image, (b)
deblurring, (c) binarization, (d) filtering by rectangularity, (e) thresholding using the
number of cluster points, (f) result of (d) after dilation, (g) matching objects with
(e) on image (f), (h) opening, (i) code candidate boxes overlaid onto (a) in red

part during a post-processing process. Obviously, a filter step is needed to reduce
the number of false regions where different noise, etc., can occur. The shape of the
bars of a barcode are rectangular, so we examine the shape of each object formed by
connected binary components. If the shape of the object is not approximately rect-
angular, we do not consider it as a candidate region. The input for pattern matching
is illustrated in Figure 4.7(d). As barcodes consist of parallel “bars”, the template
consists of two parallel lines. Traditional barcodes consist of a plurality of parallel
lines, so a similar part of the image may be suitable for template matching. We also
know the maximum and minimum distance between bars for each type of code. The
template image was selected based on this information.

The process of template matching occurs in the frequency domain using Fast
Fourier Transformation. We rotate the template image in every 10◦, up to 170◦,
and compute the sum of the pointwise multiplication of the frequency representation
of the original image and the rotated template images. The 10◦ step was empirically
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found to be sufficient. Thanks to the symmetric nature of the matched template, it
is sufficient to examine only the aforementioned rotations. The summation image
is converted into image space using inverse Fourier transformation and thresholded
with the mean intensity of the inverse image.

Next, we use only the center of the objects that are being obtained. Pixels belong-
ing to a specific cluster are well-separable like the bars of the barcode that are close
to each other. We used the well-known kNN clustering method to separate connected
objects from each other. The set of points from template matching can be well sep-
arated, so we have chosen k=3. To keep valid regions, we use a priori information
that a barcode consists of at least 8 bars, so only those clusters are kept that have at
least 8 points (Figure 4.7(e)).

We apply morphological dilation on the binary version of the original image, us-
ing a 3×3 structuring element (Figure 4.7(f)). We investigate objects between the
dilated image and filtered cluster points and we only keep overlapping regions (Fig-
ure 4.7(g)). In order to determine the whole barcode region, we use morphological
opening with a square-shaped structuring element. The size is defined based on the
maximal distance between the stripes, which provides that every barcode will have
its own connected region (Figure 4.7(h)).

4.4.2 QR code localization

Similarly to the procedure described in Section 4.4.1, we also work with images with
specific size during the localization and convert the images to grayscale. In order
to highlight the barcode areas, we use standard deviation based adaptive filtering
method with 3×3 neighborhood [33]. The resulting image is heterogeneous, so we
calculate the number of object points for every kernel with a fixed 7×7 size and
remove the actual segment from possible barcode regions where this value is under
the half of the kernel size.

In order to remove false small regions and then merge the connected regions, we
apply a morphological opening. The shape of the QR code is ideally a square, so we
use a square shaped structuring element for the morphological operation. Based on
empirical observations, we binarize the image obtained in the previous step with the

threshold value of
7

8
of the maximum intensity. Since global thresholding is not an

overly robust operation, but the bars of the barcode have low-intensity usually, thus
we can eliminate numerous false segments with a low-intensity value when deter-
mining the global threshold value. In the last step, we validate the code segments
by pattern matching. For this, we used a small QR code as a sample. We do the
template matching on the original image and we investigate overlapping with the
opened binary image similarly as described in Section 4.4.1. Valid QR code regions
are available after the validation step. The major steps of the algorithm and also the



4.4 Detection using template matching 67

(a) (b) (c) (d)

template (e) (f) (g)

Figure 4.8: Proposed method for QR code localization. (a) input image, (b) σ fil-
tering, (c) binarization, (d) density calculation, (e) morphological opening, (f) post-
processing, (g) detected QR code

used template are illustrated in Figure 4.8.

4.4.3 Evaluation and results

Our approaches were compared against other algorithms in the literature using the
Muenster database as a benchmark. For the comparison, we selected algorithms
based on various features, like edge and corner maps [71], or deformable tem-
plates [28]. Zamberletti et al. [108] work with the popular localization method that
is also implemented in ZXing barcode reading framework, while Creusot et al. [17]
have an approach that uses MSER. We note that refers to our template matching
based approach PROP-TM. Hansen et al. [34] reported 0.87 Jaccard value to re-
sult in their article, but we did not use this result in our comparison, because there
were some missing information about training parameters, so we were unable to
re-implement and evaluate the procedure.

Most of the presented methods highlighted the bars of the barcode (gradient cal-
culation, bottom-hat filtering, etc.) for further processing in the first main step. The
algorithms that are based on simple image operations and logic are examined on
the synthetic image database under different conditions. We investigated and found
that the procedures are not sensitive to rotation. We also examined the results with
different noise and blur levels. In both cases the generated images had 6 different
levels for those parameters, modifying the σ value of Gaussian smoothing and a γ

weight for weighted addition of uniform noise to the original image. We present the
obtained Jaccard values in Table 4.6. It shows that the efficiency of the procedures is
hardly reduced by increasing the level of noise and smoothing. However, in all cases,
the methods do not behave significantly differently on ideal cases. We used 8 differ-
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Table 4.5: Comparison of various localization algorithms on the Muenster 1D barcode
dataset. (Mean and standard deviation of Jaccard index.) Best performing method
is typeset in bold.

Algorithm J st.dev.
Zamberletti et al. [108] 0.6950 N/A
Creusot et al. [17] 0.7990 N/A
Gallo et al. [28] 0.7089 0.3542
Tekin et al. [76] 0.8122 0.2562
Proposed431 [81] 0.5200 0.2967
Sörös et al. [71] 0.6647 0.2277
Yun et al. [107] 0.4716 0.2240
PROP-TM 0.8430 0.1876

Table 4.6: Accuracy of the methods for different blur (σ value) and noise levels (in
percent) on 1D synthetic images (mean Jaccard index). The highest efficiency is
highlighted in bold.

Blur Noise Gallo Yun Sörös PROP-TM
0 0.74 0.64 0.75 0.82

0 30 0.75 0.66 0.76 0.82
50 0.75 0.65 0.77 0.81
0 0.77 0.64 0.74 0.82

3 30 0.75 0.67 0.76 0.81
50 0.73 0.63 0.76 0.78
0 0.76 0.65 0.74 0.82

5 30 0.74 0.66 0.76 0.81
50 0.73 0.63 0.75 0.78

ent codes to generate the images. The procedures were less successful in localization
task for Code-39, I2of5, UPC-E types as shown in Table 4.7. Results are shown in
Table 4.5. Only the algorithm of Tekin el al. [76] has better mean value, however,
with higher variance. We also present some qualitative results of the aforementioned
approaches on challenging images that are illuminated, geometry distorted and con-
tains several objects similar to a barcode. See Figure 4.9 for details.

Efficiency of our template matching approach is compared with methods intro-
duced by Ohbuchi [61] and Lin [52] in Section 4.4. Our algorithm (PROP-TMQR,
Section 4.4.2) with 2D QR codes performed well on the Dubská datasets, with Jset1 =
0.8315 and Jset2 = 0.8102. Hansen et al. [34] published 0.73 average Jaccard value
on Dubská sets (Table 4.8).
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Table 4.7: Accuracy of the algorithms for various types of code on 1D synthetic im-
ages (mean Jaccard index). The highest efficiency is highlighted in bold.

Gallo Yun Sörös PROP-TM
Codabar 0.81 0.71 0.80 0.87
Code-128 0.82 0.73 0.83 0.92
Code-39 0.57 0.52 0.59 0.72
Ean-13 0.82 0.69 0.81 0.83
EAN-8 0.81 0.70 0.81 0.83
I2of5 0.69 0.60 0.69 0.72
UPC-A 0.78 0.66 0.78 0.80
UPC-E 0.69 0.64 0.74 0.73

Table 4.8: Comparison of various localization algorithms on the QR synthetic
database (mean Jaccard index). The highest efficiency is highlighted in bold.

input Ohbuchi [61] Lin [52] PROP-TMQR
Dubská set1 0.79 0.81 0.83
Dubská set2 0.77 0.79 0.81

We also compared the results on synthetic images along different blur and noise
levels (Table 4.9) and present some results on challengig images in Figure 4.10.

4.5 Validating authenticity of visual codes

One of the most important and widely used technique for automatic identification is
the use of visual codes. Identifiers encoded in various symbols and patterns make
electronic reading possible, that greatly helps and speeds up processing, e.g., at
cashier lines, warehouse transactions, high speed processing places, production lines.
The common codes designed using geometric patterns usually identify types or enti-
ties. However, patterns can be produced that, by their nature, are unique and thus
can be used to validate originality or authenticity.

Natural feature identifiers are closer to biometrical identifiers, such as finger-
prints, iris or retina pictures, that are also unique, basically irreproducible, and in-
separable from the objects that they uniquely identify. Labels with printed identifiers
can be usually easily reproduced and, depending on the technology, removed and
reattached to a different object. Techniques exist for producing non-detachable la-
bels and when combined with natural features, these may become a highly secure



70 Localization of Visual Codes

Figure 4.9: Qualitative results for the compared methods on some challenging 1D
images. From top to bottom: Gallo et al., Yun et al., Sörös et al. and Proposed.

(a) (b) (c)

Figure 4.10: Qualitative results for the compared methods on some challenging QR
images. (a) Ohbuchi, (b) Lin, (c) Proposed

means for identification.

In the topic of identification/recognition of objects, algorithms are needed to au-
tomatically locate and decode the identifiers attached to the objects. Very different
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Table 4.9: Accuracy of the methods for different blur (σ value) and noise levels (in
percent) on QR synthetic images (mean Jaccard index). The highest efficiency is
highlighted in bold.

Blur Noise Ohbuchi Lin PROP-TM
0 0.96 0.50 0.99

0 50 0.96 0.50 0.99
100 0.96 0.50 0.99
0 0.57 0.51 0.77

1.5 50 0.52 0.49 0.78
100 0.49 0.40 0.75

0 0.47 0.42 0.83
3 50 0.48 0.45 0.80

100 0.45 0.37 0.76

techniques are required for natural biometric IDs, such as fingerprints [43], iris [15]
or retina patterns [6]. Decoding the information content is more complex when the
identifier pattern is the result of natural processes and thus can be considered almost
random and continuous as opposed to traditional well-structured graphical codes.

4.5.1 Localization and validation of NFI label

Label identification in this case contains a combination of artificial and natural fea-
ture identifiers. A standard QR code of a given size is in the center of the label area.
This code can encode any content relevant in the application context, e.g. a serial
number or a key into a database. Figure 4.11 shows a schematic drawing of the label
layout and an image of a real piece of a prototype label.

Figure 4.11: A sketch of the NFI label layout (left) and an image of a real prototype
label (right).
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The QR box is surrounded by a random set of particles or glitters in a window
frame of given width and background color. The number, color, size, shape, and
position of the glitters can all be considered random variables. Particles and the pat-
tern can be made of various kinds of material using different technologies. In the
examples shown, glitters are made of metallic flakes and are fixed in thin layer of
transparent glue or under a transparent foil. Even glitters made by the same tech-
nology may reflect light differently which is mostly caused by the small differences
in their surface angle w.r.t. the light source and camera position. In the right hand
side image in Figure 4.11, a couple glitters (in the top-right quadrant) appear very
bright, while most of the others are dark, but there are also a few of faint color.

In the presumed application context each label uniquely identifies a piece of
product/parcel/object. After creating/manufacturing the label, it is supposed to be
tracked through its lifetime and after it has been attached to an object, the uniquely
identified object is tracked as well. Counterfeiting by duplicating the visual appear-
ance of a known valid label would signal the tracking system if an identifier shows
up at a place where it is not supposed to be.

In our envisioned setup, a reference photo is taken of each printed label under
controlled positioning and lighting condition as part of the production process. (In-
stead, a few reference photos could also be taken and their information fused to
provide better reference features for the matching.) Our task is to locate the label in
an image taken by a camera of a mobile phone or tablet, find and decode the QR code
in the label, extract the NFI features (glitters and their properties) from the image,
and match them with the features extracted from the reference image(s) to reliably
identify objects and detect fake labels. The algorithm is expected to work on images
taken by average mobile phone cameras3 (say, e.g. 5 megapixels) under non-perfect
conditions (e.g. uneven lighting, shadows, water drops, frost, or other surface arti-
facts) and feature extraction should also run on a standard mobile phone or tablet. It
is also important to note here, that matching/verification is done purely based on the
features extracted from the images, without any image transfer between the mobile
client and the server infrastructure, neither the reference image nor the one being
checked.

The following steps can be identified in the process:

1. image acquisition,

2. image processing,

3. identification.

Standard tools exist for the image acquisition step. Here, we focus on the image

3This work was done in 2013, so we developed the approach to process images taken by average
cameras at that time.
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processing part and with the last part we only deal to the level necessary to present
the usability of the image processing part.

4.5.2 Image processing steps of recognition

Depending on the label specification, different image processing approaches are re-
quired. If the label specification allows for a good contrast between the glitter back-
ground and the surroundings e.g. a dark background with bright glitters and labels
are applied to white/bright surfaces, the outer frame, the glitter zone can be easily
identified based on color contrast, thresholding, and simple morphology. When the
label specifications do not use dark glitter background (as in our prototype setup),
the bright glitter zone is hard to differentiate from the white surroundings so we de-
cided to indirectly determine its bounds. Thus, our image processing pipeline consists
of the following major steps:

1. locate the QR code (position and orientation),

2. delineate the glitter zone,

3. find the glitters,

4. extract features from the glitter pattern.

The QR code in the middle of the label has a very specific pattern and many
algorithms exist to detect QR codes in an image. In our previous work, we proposed
an algorithm to detect QR code which is described in Section 4.4.2. Besides, other
approaches from the literature are also introduced in Section 4.1. Unfortunately,
most QR reader applications available on the mobile platform work only if the QR
code occupies the major part of the field of view, it is well (centrally) positioned
in the image, and it is properly oriented. Assistance is sometimes provided in the
application to aid the user in finding the position, zoom, and focus and perhaps give
feedback (or even more, actually take the picture without requiring the user to hit
a button) when everything seems appropriate to take the picture for successful QR
code decoding. As we are not only interested in the QR code, but the surrounding
glitter zone is also (even more) important, the algorithm must be more robust to
image acquisition differences and artifacts.

Since we need an algorithm that works on images coming from a wide range
of mobile cameras, we decided to standardize the image size before further image
processing takes place. We rescaled the input image to a given width such that the
aspect ratio is not changed. The purpose of this size normalization is twofold: 1) to
reduce the processing time to allow almost realtime applications, and 2) to design
an algorithm that works with a single parameter setting on a wide range of images
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coming from various mobile cameras. After the initial tests, we settled at 450 pixel
wide images that turned out to be sufficiently detailed but at the same time not too
large, and basically all mobile cameras have at least such a resolution.

The native RGB images (Figure 4.12(a)) are converted to the device-independent
L*a*b* color space, and in further processing we use the L* (luminosity) channel. In
our case L* channel usage turned out to be more effective than other simple weighted
grayscale conversions of the RGB space such as the V channel from HSV.

Since input images are distorted by uneven (or even non-sufficient) lighting, we
enhance the luminance image by contrast stretching (Figure 4.12(b)). This seems a
valid step considering the assumption that the QR code elements show high contrast
w.r.t. the background.

In the following step we exploit the known fact that a QR code is square shaped,
and apply grayscale morphological opening with a square shaped structuring ele-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: Intermediate stages of the QR code localization pipeline. (a) input
image, (b) image after contrast stretching, (c) resulting image after morphological
opening, (d) LoG filtered image, (e) binary image after LoG filtering threshold, (f)
separate unconnected components with morphological erosion, (g) after eccentricity
thresholding, (h) after major axis length thresholding, and (i) overlayed result
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ment (Figure 4.12(c)). This is followed by LoG filtering [32] (Figure 4.12(d)) and
binarization using global thresholding (Figure 4.12(e)). The resulting image so far
may contain many false positive regions, many small connected components which
satisfy the criteria so far but do not belong to barcode region. A morphological ero-
sion with a smaller structuring element helps removing the majority of these artifacts
(Figure 4.12(f)). Further filtering is done by using thresholds on eccentricity (Fig-
ure 4.12(g)) and major axis length (Figure 4.12(h)) and in the result only the QR
code component remains.

There is a quiet zone around the QR pattern but the detected component does
not include this, so we use morphological dilation to increase the object to extend
the detected QR code region to include the quiet zone as well. This helps producing
a square like component with smoother boundaries (without this the detected com-
ponent would have ragged edges) which does not interfere with the NFI label since
the quiet zone separates the QR pattern from the NFI zone.

Once the QR code position is known, orientation can be determined. Remember,
we want a robust algorithm that does not depend on proper alignment of the camera
when taking the picture. Nevertheless, knowing the orientation of the QR code is
required for the QR decoder and also forms the basis for describing the glitter pattern
in a comparable way.

The corner points of the extended QR code region are detected as intersection
points of the lines fitted to the set of contour points of the segmented mask [95]. The
projection transformation is determined based on these corner points assuming that
the original pattern is a square and distortions are due to the varying positioning and
angles of the camera taking the picture. Then the image can be rectified using the
inverse of the found transformation.

In addition to rectification, orientation of the QR code also needs to be deter-
mined. Rectification and proper orientation of the image are required to be able to
define a standard coordinate system for the glitters. Without this, images taken of
the same label by different cameras at different times could not be compared to each
other or to the reference. We should store all extracted features in the reference
database with respect to a QR code with standard orientation (see Figure 4.11).

The square shaped locator marks in the corners of the QR code can be used to
determine proper orientation. To detect the locators we perform the following oper-
ations on the segmented QR zone part of the image. The grayscale QR image (Fig-
ure 4.13(a)) is binarized by adaptive thresholding using 11×11 kernel and the calcu-
lated median as the threshold value (Figure 4.13(b)) and hole filling (Figure 4.13(d))
is applied to the complement (inverted) image (Figure 4.13(c)). A distance map is
calculated (Figure 4.13(e)), grayscale morphological closing is performed on the map
(Figure 4.13(f)) to reduce small and dark regions, and the result is thresholded (Fig-
ure 4.13(g)). In order to determine the direction of the QR code, it is necessary to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.13: Intermediate steps of QR code orientation detection, from (a) initial QR
frame, through (b) binarization, (c) complement, (d) hole filling, (e) distance map,
(f) grayscale morphological closing, (g) thresholding, to (h) the reoriented frame.

localize the locator markers from the binary objects. We assume that the markers are
similar in shape and their distance from the side of the image. The center of each
object is determined and the minimum and maximum x and y coordinates for all ob-
jects are calculated. Using this information, we examine the location of each center
point and filter out possible false regions. In most cases, only the appropriate three
marker objects remain in the image. In case there are more segments in the image,
those three regions are retained that the closest to the image sides, because the code
surrounded by a bright border in original image so there is not any marker in that
zone. Since we now work only on the segmented QR region, several priors can be
used. The centroids of the locator marks shall have minimal or maximal position
with respect to the others, and one of the locators in a pair along a line has minimal
and the other has maximal position.

The above process is based on the assumption that the input image is not distorted
to an extent that would prevent the determination of the locator mark positions.
This, however, is a valid assumption, since in a real application, QR decoding is also
needed and thus a certain level of image quality is required. If the application fails to
detect the locators, it may report it to the user and request a new photo to be taken
after repositioning the camera.

Given the segmented QR code, the NFI zone (containing the glitters) can be easily
determined since the size of the QR code, the quiet zone, as well as the size and shape
of the NFI zone, and even the colors used in the printing process are defined in the
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(a) (b) (c)

Figure 4.14: (a) limited glitter zone, (b) adaptive thresholding result, (c) segmented
glitters which get into identification

specification. Based on these information about the label geometry, we can create a
mask for the glitter zone and restrict glitter detection to this region (Figure 4.14(a)).

The last step of the image processing task is the detection of glitters within the
NFI zone, for which we use adaptive thresholding using the same operation as in the
case of QR code (Figure 4.14(b)). The wrongly detected objects are filtered out using
various morphological features, such as area and circularity (Figure 4.14(c)).

Since input images can be of different resolution, it is absolutely necessary to de-
fine a normalized geometry in which the detected (glitter) features can be compared
between the actual and the reference images. In our prototype setup we defined a
standard coordinate system to be centered at the center of the QR code (and the NFI
zone frame), aligned according to the zone edges (after rectification and standard
QR orientation is applied). The scale is defined so that the glitter zone spans -1.0 to
1.0 both horizontally and vertically. In the later process, the glitter positions, sizes,
and other shape features, geometrical distances are all expressed with respect to this
standard coordinate system.

4.5.3 Label identification

We outline the process of identification or NFI recognition that can be performed
using features extracted in the previous image processing phase which introduced in
Section 4.5.2. Each of the following subtasks can be solved in various simple or more
sophisticated ways:

1. find matching points,

2. calculate similarity measure,

3. decide about acceptance or rejection.

A wide range of features can be extracted from the images and be used in the above
subtasks. Below is a non-exhaustive list of such features:
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• number of detected glitters,

• number of matching (paired) glitters (glitter in the image paired with a glitter
in the reference),

• number of outlier (not paired) glitters,

• distance between glitters (as pixel regions) or their center points,

• glitters’ shape features (area, eccentricity, orientation, shortest axis, longest
axis, . . . ),

• glitters’ appearance features (grayscale/color distribution, histograms, cross-
correlation, . . . ).

Regardless of an established standard orientation and normalized coordinate system,
the extracted features are always overloaded with some noise, due to imaging arti-
facts and segmentation inaccuracies. These must be considered in the algorithms for
identification or recognition.

In our prototype implementation we used only one image-based features, solely
the normalized position of the centroid of the detected glitter. At this stage of the de-
veploment this was enough for an appropriate validation. Regardless of the simplicity
of this setup, the results reported below show the feasibility of such NFI technology
using mobile applications. Also, we only had a small number of images of a couple
of labels for this work. The evaluation is planned to be performed once the label
specification is settled, and a larger number of labels and images will be available.

Similarly, we keep at a very simple matching strategy, using geometric distances
between the glitter centroids. For each detected glitter we find a matching pair in the
reference image such that we consider a glitter matching if it is the nearest glitter in
the reference image and its distance is smaller than a threshold value. We average
the pairwise distances between matched glitters and their pairs and accept an NFI if
this average distance is below a given threshold. This latter threshold is smaller than
the threshold used for matching individual glitters.

Note that here we only consider the task of validating an NFI label, i.e. to check
whether the taken image matches its reference. So, this is not about decoding a
particular glitter pattern and finding it in a large database. No specific information
content is encoded in the glitters, just the pure natural features coming from the la-
bel production. Note also, that validation is done purely using the features extracted
from the images, and the reference image is not used directly. The particular refer-
ence (i.e. the features extracted from the reference image(s)) can be easily selected
for validation using the QR code in the middle of the NFI label.

During the parameter determination phase the input images were compared with
all images in the small reference database and the thresholds were set to maximize
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the true acceptance rate while minimizing false detection. In the end, the first thresh-
old (for paring up individual glitters) were set to 0.025 and the label acceptance
threshold was set to 0.0065 (both with respect to the standard coordinate system).

4.5.4 Evaluation and results

The prototype NFI label specification was the following. In an image there are two
concentric and aligned square areas. The sides of the outer square are 18 mm and
those of the inner square are 12 mm. The inner square is filled with a QR code
in black-and-white. The outer frame is monochrome, but there are 30-60 particles
made from light-reflective material (glitters), with a maximum size of 400 micron
each. The glitter locations are random within the window. (See sample images in
Figure 4.15).

For testing, we had 80 images captured by 6 different cameras, so image quality
(including resolution, color balance, geometric distortions, and lighting conditions)
varied considerably.

Images were taken by an iPhone and a Sony Xperia mobile phone. The reference
images were taken by a Canon camera and the same references were used for both
mobile sets. Table 4.10 shows basic settings of the cameras.

In Table 4.11, the sequential numbers in the column and row labels correspond
to individual NFI labels. Elements in the major axis of tables correspond to true
matches, i.e. comparison of two images taken by different cameras of the same NFI la-
bel. The values shown in the table are the average pairwise distances of the matched
glitters. The values for image pairs that the algorithm accepted are shown in vari-
ous boldface type and for rejected pairs are shown in normal typeface. Those values
marked boldface italic are true positives (real pairs accepted by the algorithm) and
those marked in boldface underlined are false positives (non-pairs accepted by the
algorithm as a valid pair). In this rather small set of images the other type of error

Figure 4.15: Sample images of prototype NFI labels taken under various conditions.
The wavy pattern on one side of the piece is an artifact of the manufacturing has
nothing to do with the NFI. (These prototypes are simply not fully finished and cut
out from the printing sheet.)
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(false negatives, i.e. a true pair that is rejected) did not occur. In this sample the
algorithm indicated only 1 mistaken identities for each camera set and 5 (all) true
matches.

Table 4.12 shows the execution time of the algorithm for all images. The method
is implemented in MATLAB. Execution time is dominated by the image processing
operations and since matching is only to be done to a particular reference image, the
identification time is basically independent of the size of the reference database.

Figure 4.16 shows image pairs and the relative positions of glitters plotted in the
same reference coordinate system.

Table 4.10: Type and image settings of the devices used for the evaluation.

Canon iPhone Xperia
Brand Canon Apple Sony Ericsson
Model PowerShot SX220 HS iPhone 4S LT15i
ISO Speed Ratings 1600 50 800
Flash Flash not fired Flash not fired Flash not fired
Exposure Mode Auto Auto Auto
White Balance Auto Auto Auto
Image size 4000 x 3000 3264 x 2448 1920 x 1080

Table 4.11: Matching scores for 5 labels using the reference images (taken by a Canon
camera) and images taken by two different cameras (iPhone (top table), Xperia (bot-
tom table)). True positive matches are typeset in boldface italic (in the diagonal),
false positives are shown in boldface underlined font, and the rest is correctly con-
sidered non-matches under the used parameter settings.

iPhone 1 iPhone 2 iPhone 3 iPhone 4 iPhone 5
Canon 1 0.0065 0.0073 0.0075 0.0099 0.0066
Canon 2 0.0099 0.0017 0.0066 0.0080 0.0067
Canon 3 0.0093 0.0078 0.0042 0.0077 0.0066
Canon 4 0.0086 0.0057 0.0073 0.0034 0.0067
Canon 5 0.0093 0.0079 0.0072 0.0093 0.0054

Xperia 1 Xperia 2 Xperia 3 Xperia 4 Xperia 5
Canon 1 0.0062 0.0076 0.0069 0.0083 0.0096
Canon 2 0.0112 0.0027 0.0086 0.0096 0.0051
Canon 3 0.0097 0.0069 0.0045 0.0105 0.0072
Canon 4 0.0094 0.0062 0.0087 0.0058 0.0065
Canon 5 0.0100 0.0083 0.0072 0.0097 0.0043
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(a)

(b) (c)

(d) (e)

Figure 4.16: Images of the same labels: (a) sample (Canon), (b) test (iPhone), (c)
test (Xperia). Detected glitter positions in the normalized coordinate system: (d)
Canon & iPhone, (e) Canon & Xperia. Red circle denotes the normalized reference
points and blue crosses are the normalized detected coordinates.
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Table 4.12: Execution time statistics of the full process (mean, 95% confidence inter-
val)

Operation Computing time (sec/image)
Mean 95% CI

Image processing 1.1129 [1.0915, 1.1343]
Verification 3.0× 10−4 [2.24, 3.76]× 10−4

Image processing + verification 1.1133 [1.0918, 1.1347]

4.6 Concluding remarks

In this chapter we introduced an algorithm and its improved version for detection of
traditional 1D barcodes and stacked 2D codes. Barcodes have a specific pattern thus
we proposed an efficient localization method based on pattern matching for 1D codes
and another one approach for QR codes. We also presented an image processing al-
gorithm to implement natural feature identifier recognition. The method is robust
against variations in image quality, resolution, lighting, and positioning. It automat-
ically detects the QR code, determines the transformation to normalize the QR-NFI
label, detects the NFI glitters within the NFI zone and matches with references using
a simple strategy.
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[13] P. Bodnár and L. G. Nyúl. QR Code Localization Using Boosted Cascade of
Weak Classifiers. In Image Analysis and Recognition, pages 338–345. 2014.

[14] P. Burt and E. Adelson. The Laplacian Pyramid as a Compact Image Code.
IEEE Transactions on Communications, 31(4):532–540, 1983.

[15] W.-S. Chen, K.-H. Chih, S.-W. Shih, and C.-M. Hsieh. Personal Identifica-
tion Technique Based on Human Iris Recognition with Wavelet Transform. In
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE
International Conference on, pages 949–952, 2005.

[16] S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu. Automatic
segmentation of seven retinal layers in SDOCT images congruent with expert
manual segmentation. Optics Express, 18(18):19413–19428, 2010.

[17] C. Creusot and A. Munawar. Real-Time Barcode Detection in the Wild. In
2015 IEEE Winter Conference on Applications of Computer Vision, pages 239–
245, 2015.

[18] P.-E. Danielsson. Euclidean distance mapping. Computer Graphics and Image
Processing, 14(3):227–248, 1980.
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Summary

In this dissertation, we deal with the various problems of image analysis in areas of
medical imaging based diagnostics, microscopy in biology and localization of visual
codes using classical image processing approaches, but we also applied a deep learn-
ing approach. The classical methods are well applicable for various detection and
segmentation tasks, do not require a large set of image data which was not available
during our work.

The dissertation consist of three main parts: analysis of retinal images in Chap-
ter 2, detection of morphological changes in zebrafish embryos in Chapter 3, and
localization of visual codes in Chapter 4.

Retinal Image Analysis

In Chapter 2 we dealt with age-related macular degeneration (AMD) which is one of
the leading causes of age-related visual impairment. Optical coherence tomography
(OCT) is a crucial and essential tool to diagnose the disease and to evaluate the
treatment efficiency. It can also render the 3D structure of the retina layer by layer.
OCT shows many features of eye diseases, including AMD. In recent years, many
methods have been developed to detect these features, most of them trying to solve
the current problem using neural networks.

To help segment the specific biomarkers, we proposed two methods for delimiting
the retina area. The first one is based on the analysis of vertical profiles to highlight
boundary layers, because there is an intensity difference between the layers of the
retina. This approach provided many inadequate results in RPE layer detection when
AMD caused highly distorted layers, hence we developed a new approach that relies
on graph cut. Retinal layer detection algorithms were evaluated in two different
ways. Our algorithms were compared against manual delineations from experts and
re-implemented literature methods. We calculated the mean, maximum and standard
deviation of boundary errors for each surface. The mean error of our graph cut based
algorithm is less than 3 pixels in all cases that shows our approach is more stable than
the re-implemented algorithms.

Usually the images are affected by different distortions during the OCT exami-
nation. Noise and artifacts due to shadows of blood vessels may appear in cross-

95



96 Summary

sectional layers. We introduced a method that detects blood vessels in scanning laser
ophthalmoscope (SLO) images. Then the positions of these blood vessels can be de-
termined in the B-scan image for exlusions from further investigations. The extent
of distortion due to the disease is also important for medical diagnosis and a method
has been suggested to determine this.

Many approaches in literature focus on automatic detection of subretinal (SRF)
and intraretinal (IRF) fluid in OCT images. We proposed a method based on the
analysis of vertical profiles to delineate the boundaries of retina layers. Since the
hyperreflectivity of SRF and IRF are similar to that of the vitreous body, we developed
a method for detecting and separating them simultaneously. The annotations by
opththalmologists were not yet available at this stage of the research so we only did
visual comparison of our proposed and re-implemented methods.

Due to retinal diseases pigment epithelial detachment (PED) and subretinal hy-
perreflective material (SHRM) may occur, thus a method was presented to detect
and separate these biomarkers. We evaluated our method on annotated dataset using
Dice coefficent and Sensitivity metrics. In many cases SHRM is not clearly detectable,
but the average Dice coefficients are above 0.75 and the sensitivity is 0.93 for PED
and 0.77 for SHRM.

Only a few publications deal with the localization of subretinal material, and
none of them is focusing on segmenting outer retinal tubulation, but publications
in the medical field indicate that cardinality of these tubulations is an important
descriptor of the disease for doctors. The problem was investigated in two ways:
using a classical image processing procedure and applying a nowadays popular deep
neural network approach. In order to achieve widespread validation, we calculated
various metrics both for automatic and for manual segmentations. We measured the
global and object level Dice coefficient and Recall. Our method achieves 0.847 object
level Recall and 0.583 Dice coefficient, which is comparable to human professionals.

Quantitative Analysis of Irradiated Zebrafish Embryos

An automated method was presented for the analysis of irradiation treated zebrafish
embryos in Chapter 3. Due to irradiation, dose-dependent morphological changes are
observable in the embryos. The advantage of using the zebrafish vertebrate model
is the biological changes assessment on large number of embryos, enabling reliable
statistical analysis. However, the more sophisticated morphological measurements
— beyond the simple survival detection — are extremely time- and labor-intensive.
We introduced a framework to reduce human effort for faster experimentation. We
assumed that a protocol was followed during the experiments, including the place-
ment and handling of embryos and taking microscopic photos. The automated anal-
ysis consists of several steps. It is expected that at least some part of the circular
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wall of the well containing the fish is observable in the images thus a method was
proposed to delineate the well region. We presented an approach to localize fish
and distinguish head and tail parts from each other. The endpoints of the previously
segmented fish object, the total length of the body, and the location and diameter of
the eyes were also determined. During the evaluation of 393 images, no significant
difference was found between the results of manual measurement and the automatic
method.

Localization of Visual Codes

In Chapter 4, we discussed our proposed methods for detecting different visual codes,
including traditional 1D barcodes and 2D QR, and 2D stacked types. We introduced
two methods based on morphological operations for efficient localization of classi-
cal 1D codes. The results of the algorithms were compared with other literature
methods. From the evaluation outcome we can conclude that the proposed proce-
dures had second best running efficiency for all test images and in many cases it also
showed best accuracy. The weakness of the method appears when the image is very
noisy or when there are such image areas which are similar to a barcode.

The 1D barcodes consists of parallel bars and the bars are located at varying dis-
tance from each other. This structural feature was used in our detection method
based on template matching. We found that the stacked 2D codes have some similar-
ities in pattern with the conventional ones, so that some 2D codes, such as PDF417,
Codablock, can also be localized by the proposed method. Choosing another tem-
plate, such a method can also be adapted to determine the location of QR codes.
Our approaches were compared against other algorithms in the literature using the
Muenster database as a benchmark. We investigated and found that our approaches
are fast and not sensitive to rotation in the case of 1D codes. Efficiency of our QR
template matching approach was compared with methods on the Dubská datasets
and the proposed algorithm performed well.

Codes are designed using commonly used geometric patterns. However, patterns
that are unique in nature and can therefore be used to verify originality or authentic-
ity can be produced. We introduced a possible hybrid visual code construct in which
identification and authentication can be achieved using a combination of artificial
and natural patterns, so that the task can be divided into three main steps: imag-
ing, image processing and identification. We proposed a pipeline to determine the
position and orientation of the QR code, delineate the zone containing the glitters
on the label and detect the glitters. A simple pairing strategy were proposed for
authentication. Image analysis proved to be fast on mobile devices.
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Contributions of the thesis

Contributions in the first group are related to the investigation of various biomark-
ers of age-related macular degeneration on Optical Coherence Tomography (OCT)
images. (Detailed discussion in Chapter 2.)

I/1. I proposed two new approaches to define internal limiting membrane (ILM)
and retinal pigment epithelial (RPE).

I/2. I developed a new method to determine the position and extent of the distortion
which is an important feature in the diagnosis of AMD.

I/3. I proposed two new algorithms to detect subretinal (SRF) and intraretinal fluid
(IRF).

I/4. I developed an approach to determine pigment epithelial detachment (PED)
and subretinal hyperreflective material (SHRM).

I/5. I proposed a new method based on classical operations and another one on re-
lies on convolutional neural network to localize outer retinal tubulation (ORT).

Contributions in the second thesis point are related to automatic detection of
morphological deteriorations of irradiated zebrafish embryos in microscopic images
used in radiobiological research. (Detailed discussion in Chapter 3.)

II. I developed a new algorithm to delimitate the zone of the well and obtain vari-
ous morphological features of zebrafish: I determined the end points and length
of the embryos, the position and diameter of the eyes, and the orientation of
the fish.

Contributions in the third group are related to localization of visual codes in
digital images. (Detailed discussion in Chapter 4.)

III/1. I proposed two new methods based on morphological operations to localize
traditional 1D and stacked 2D barcodes.

III/2. I developed a new approach to detect classical 1D barcodes and another one to
segment QR codes using pattern matching.

III/3. I proposed a method to localize and recognize a hybrid visual code (NFI).

III/4. I performed an extensive comparative analysis of 12 code localization methods
on publicly available and on our databases of tens of thousands of real and
synthetic images depicting 1D and 2D codes.



Összefoglalás

Az értekezésben a képanaĺızis különféle problémáival foglalkoztam az orvosi kép
alapú diagnosztika, biológiai mikroszkópia és a vizuális kódok lokalizálása területén.
A klasszikus képfeldolgozási megközeĺıtések jól alkalmazhatók különféle detektálási
és szegmentálási feladatokra és ezek nem követelik meg a nagy menynyiségű képi
adatot, amely a munkánk során eleve nem volt elérhető.

Az értekezés három főbb témát dolgoz fel: retina felvételek elemzése a 2. fe-
jezetben, zebrahalak embriók morfológiai elváltozásainak detektálása a 3. fejezetben,
valamint vizuális kódok lokalizálása a 4. fejezetben.

Retina felvételek elemzése

A 2. fejezetben az időskori látásromlás egyik fő vezető okával, az időskori makulade-
generációval (AMD) foglalkoztunk. Az optikai koherencia tomográfiának (OCT) a
betegség felismerésében és a kezelés hatékonyságának meǵıtélésében meghatározó
és elengedhetetlen szerepe van. A retina egyes rétegeinek 3D feléṕıtése is leké-
pezhető. Az OCT felvételeken jól láthatóak az egyes betegségek, ı́gy az AMD bio-
markerei is. Az elmúlt években számos eljárás született ezeknek a jellemzőknek a
detektálására, melyek közül a legtöbb már valamilyen neurális hálózat seǵıtségével
igyekszik megoldani az aktuális problémát.

A konkrét biomarkerek szegmentálása előtt a retina behatárolására javasoltunk
kétféle módszert. Az egyik esetében arra támaszkodtunk, hogy a retina egyes rétegei
között intenzitásbeli különbség van és ezáltal a vertikális profilok elemzésével a
határoló rétegek kiemelhetőek. Azokban az esetekben, amikor a betegség követ-
keztében a rétegek nagyon torzultak, kevésbé hatékonyan volt meghatározható az
eljárással a retinális pigment epithel réteg (RPE), ezért kidolgoztunk egy gráf vágáson
alapuló megközeĺıtést. Az eljárásokat kétféleképpen értékeltük ki. Az algoritmu-
sok által elért eredményeket összehasonĺıtottuk a szakértők annotációjával és más,
újraimplementált szakirodalmi módszerekkel. Kiszámı́tottuk az átlagos és maximális
hibát, valamint a szórását is az egyes szekvenciákra. A javasolt módszerek átlagos
hibája minden esetben kevesebb, mint 3 pixel, ami azt mutatja, hogy a megközeĺıté-
seink stabilabbak, mint az újraimplementált algoritmusok.
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Az OCT vizsgálat során készült felvételek különféle torzulásokkal lehetnek ter-
heltek. A keresztmetszeti képeken a zaj mellett megjelennek a vérerek árnyékából
származó artifaktumok. Bemutattunk egy módszert, mely a pásztázó lézer oftal-
moszkópiával (SLO) készült felvételen detektálja a vérereket, melyek pontos poźıciója
a B-scan képen megadható. Ezáltal ismertté válnak azok a területek, melyek fals
információtartalommal b́ırnak, mert a kép ezen a területeken torzult. Az orvosi di-
agnózis szempontjából fontos a betegség miatt bekövetkező rétegfelgyűrődés mértéke
is, ezért javasoltunk egy módszert ennek meghatározására.

A szakirodalomban a biomarkerek közül a legtöbb publikáció a szubretinális (SRF)
és intraretinális folyadék (IRF) detektálásával foglalkozik. Ismertetünk egy eljárást,
mely a határoló rétegek esetében használt vertikális profilok további elemzésén ala-
pul. Mivel az SRF és IRF hiperreflektivitása is hasonló az üvegtestéhez, ı́gy kidol-
goztunk egy módszert ezek egyidejű detektálására, valamint szétválasztására. A ku-
tatás ezen fázisában a szemorvosok által annotált képek nem voltak elérhetőek, ezért
csak vizuális összehasonĺıtást végeztünk más, általunk újraimplementált szakirodal-
mi eljárásokkal.

A betegség esetében bekövetkezhet pigment epithel leválás (PED) szubretinális
hiperreflekt́ıv anyag (SHRM) ḱıséretében, melyek detektálására és megkülönbözteté-
sére prezentáltunk egy módszert. A módszereinket az annotált adatbázison értékeltük
ki a Dice együttható és Sensitivity mutatók seǵıtségével. Sok esetben az SHRM nem
egyértelműen kimutatható, de mindkét biomarker esetében az átlagos Dice értékek
meghaladják 0.75-öt, és a Sensitivity értékek 0.93 és 0.77 a PED és az SHRM esetén.

Csak néhány publikáció foglalkozik a szubretinális anyag lokalizációjával, de egy
sem a külső retinális tubuláció szegmentálásával, ám az orvosi szakterületen meg-
jelenő publikációk azt mutatják, hogy ezeknek a tubulációknak a számossága az or-
vosok számára a betegség egy fontos léırója. A problémát kétféle módon vizsgáltuk:
egy klasszikus képfeldolgozási eljárás alkalmazásával és egy mély neurális hálózaton
alapuló megközeĺıtéssel. A széleskörű kiértékelés érdekében különféle mutatókat
számı́tottunk ki mind az automatikus, mind a kézi szegmentáláshoz. Megmértük a
globális és az objektum szintű Dice együtthatót és a Recall-t. Módszerünk objektum
szintű Recall értéke 0.847 és Dice együtthatója 0.583, amely összehasonĺıtható az
emberi szakemberek eredményeivel.

Zebrahal embriók morfológiai elváltozásainak detektálása

A 3. fejezetben sugárzás által károsodott zebrahal embriók morfológiai elváltozásai-
nak meghatározására kidolgozott automatizált eljárást mutattunk be. Sugárkezelés
után dózisfüggő módon morfológiai elváltozások észlelhetők az embriókban. A ge-
rinces zebrahal-modell alkalmazásának előnye, hogy nagy számú embrió biológiai
változásainak mérésére alkalmas, amely lehetővé teszi a megb́ızható statisztikai elem-
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zést. A kifinomultabb morfológiai mérések – az egyszerű túlélés észlelésén túl –
rendḱıvül idő- és munkaigényesek. Bemutattunk egy keretrendszert az emberi mun-
kaigény csökkentésére a gyorsabb ḱısérletezés elérése érdekében. Feltételezzük, hogy
a ḱısérletek során ugyanazt a protokollt követték, beleértve az embriók elhelyezését
és kezelését, valamint a mikroszkópos képek késźıtését. Az automatizált elemzés több
lépésből áll. Elvárható, hogy a halakat tartalmazó lyuk kör alakú falának legalább egy
része megfigyelhető a képeken, ezért javasoltunk egy módszert a lyuk régiójának kö-
rülhatárolására. Bemutattunk egy eljárást a halak lokalizálására, valamint a fej és a
farok részeinek megkülönböztetésére. Meghatároztuk a korábban már szegmentált
hal végpontjait, a teljes testhosszát, valamint a szem helyét és átmérőjét is. A 393 kép
kiértékelése során nem találtunk szignifikáns különbséget a kézi mérés eredményei
és az automatikus módszer között.

Vizuális kódok lokalizálása

A 4. fejezetben különböző vizuális kódok – beleértve a hagyományos 1D, valamint 2D
QR és 2D halmozott kódokat – detektálására kidolgozott módszereink tárgyalására
kerül sor. Bemutattunk két morfológiai műveleteken alapuló eljárást a klasszikus 1D-
s kódok hatékony lokalizálására. Az algoritmusok eredményeit összehasonĺıtottuk
más szakirodalmi módszerekkel. Az eredményekből azt a következtetést vonhatjuk
le, hogy a javasolt eljárások a második legjobb futási idővel rendelkeznek, és sok eset-
ben a legnagyobb pontosságot mutatják. A módszer gyengesége akkor jelenik meg,
amikor a kép nagyon zajos, vagy ha vannak olyan képterületek, amelyek hasonlóak
a vonalkódhoz.

Az 1D vonalkódok párhuzamos vonalakból állnak, melyek különböző távolságra
vannak egymástól. Ezt a szerkezeti jellemzőt használjuk a mintaillesztésen alapuló
detektálási módszerünkben. Megállaṕıtottuk, hogy a halmozott 2D kódok elegendő
hasonlóságot mutatnak a mintákban a hagyományosakkal, ezért néhány, például a
PDF417 és a Codablock szintén lokalizálható a javasolt módszerrel. Másik minta
használatával a módszer adaptálható a QR kódok helyének meghatározására is. A
megközeĺıtéseinket összehasonĺıtottuk a szakirodalom más algoritmusaival a Muen-
ster adatbázison. Megállaṕıtottuk, hogy az eljárásaink gyorsak és nem érzékenyek a
forgatásra az 1D-s kódok esetében. A QR mintaillesztéses megközeĺıtés hatékonyságát
kiértékeltük a Dubská adathalmazon más szakirodalmi módszerekkel együttesen, és
a javasolt algoritmusunk teljeśıtett a legjobban.

A szokásosan használt kódok geometriailag jól definiált minták szerint tervezettek.
Előálĺıthatók azonban olyan mintázatok, melyek természetüknél fogva egyediek és
ı́gy eredetiség vagy hitelesség ellenőrzésére is alkalmazhatók. Bemutattunk egy olyan
lehetséges hibrid vizuális kód konstrukciót, melyben mesterséges és természetes min-
tázatok együttes alkalmazásával elérhető az azonośıtás és a hiteleśıtés is, ı́gy a fela-
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dat szétbontható három fő lépésre: képalkotás, képfeldolgozás és azonośıtás. Java-
soltunk egy módszert a QR kód helyzetének és orientációjának meghatározására, a
glitterzónában található szemcsék detektálására. Egy egyszerű párośıtási stratégiát is
bemutattunk a hiteleśıtéshez. A képanaĺızis mobil eszközökön is gyorsnak bizonyult.

A disszertáció tézisei

Az első téziscsoport eredményei az időskori makuladegeneráció (AMD) különböző
biomarkereinek optikai koherencia tomográf (OCT) képek elemzésén alapuló vizsgá-
latához kapcsolódnak, beleértve új módszerek kidolgozását és orvosi referencia szeg-
mentálásokkal való összehasonĺıtását. (Részletes tárgyalás a 2. fejezetben.)

I/1. Javasoltam két új megközeĺıtést a retina belső határhártyája (ILM) és a retina
pigment epithel (RPE) réteg lokalizálására.

I/2. Kidolgoztam egy eljárást a rétegfelgyűrődés poźıciójának és mértékének meg-
határozására, mely fontos jellemző az AMD meǵıtélése szempontjából.

I/3. Javasoltam két új algoritmust a szubretinális (SRF) és intraretinális (IRF) fo-
lyadék detektálására.

I/4. Kidolgoztam egy eljárást a pigment epithel leválás (PED) és a szubretinális
hiperreflekt́ıv anyag (SHRM) régiók meghatározására.

I/5. Javasoltam egy új, klasszikus képfeldolgozó műveleteket alkalmazó módszert,
valamint egy konvolúciós neurális hálózatot a külső retinális tubuláció (ORT)
lokalizálására.

A második tézis eredménye a radiobiológiai kutatásokban használt zebrahal emb-
riók sugárzás hatására bekövetkező morfológiai változásainak automatikus detektá-
lása mikroszkópos képeken. (Részletes tárgyalás a 3. fejezetben.)

II. Kidolgoztam egy új eljárást a lyuk zónájának behatárolására és a zebrahalak
különböző alaktani jellemzőinek kinyerésére: meghatároztam az embriók vég-
pontjait és hosszát, az embrió szemeinek poźıcióját és átmérőjét, a hal irányult-
ságát.

A harmadik téziscsoport eredményei vizuális kódok lokalizációjához kapcsolód-
nak digitális képeken. (Részletes tárgyalás a 4. fejezetben.)

III/1. Javasoltam két új, morfológiai műveleteken alapuló algoritmust az 1D-s klasz-
szikus és 2D-s halmozott vonalkódok lokalizálására.
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III/2. Kidolgoztam egy-egy új, mintaillesztésen alapuló eljárást a hagyományos kódok
és a QR kódok helyének meghatározására.

III/3. Javasoltam egy algoritmust egy hibrid vizuális kód (NFI) detektálására és felis-
merésére.

III/4. Elvégeztem 12 kódlokalizációs módszer kiterjedt összehasonĺıtó elemzését 1D
és 2D kódokat ábrázoló, több t́ızezer valós és szintetikus képet tartalmazó pub-
likusan elérhető illetve saját összeálĺıtású adatbázison.
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M. Katona and L. G. Nyúl. Improved 1D and 2D barcode detection with morpho-
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In Új alapokon az egészségügyi informatika : A XXVIII. Neumann Kollokvium konferencia-
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