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Abstract

For a graph G, a vertex-edge alternating sequence v, e1, v1, €2, -,
ex_1,Vk—1,€k,Vx such that all the e;’s are distinct and e; = v;_1v;
for all 7 is called a trail. For u,v € V(G), a (u,v)-trail of G is a trail
in G whose origin is » and whose terminus is v. A (u,v) trail is called
a close trail if v = v. A trail H is called a spanning trail of a graph
GIfVH)=V(G). Let X CE(G) and Y C E(G) with X NY = 0.
In this paper, we study the minimum edge-connectivity of a graph G
such that for any u,v € V(G) (including » = v), G has a spanning
(u,v)-trail H such that X C E(H) and Y N E(H) =0.

1. Introduction

We follow the notation of Bondy and Murty [1], except that graphs
have no loops. For a graph G, a trail is a vertex-edge alternating sequence
Vg, €1,V1,€2, -+, €k—1,Vk—1, €k, Vg Such that all the e;’s are distinct and e; =
viyw; for all ¢ (1 < i< k). Let ¢/, ¢’ € E(G). A trail in G is called an
(&', e")-trail if its first edge is ¢’ and its last edge is e”. For u,v € V(G),
a (u,v)-trail of G is a trail in G whose origin is » and whose terminus is
v. A trail H is called a spanning trail if V(H) = V(G). If v = v, then a
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(u,v)-trail in G is a closed trail, which is also calied a Bulerian subgraph of
G. A graph is called supereulerian if it has a spanning Fulerian subgraph.

Many researches have been done for the existence of spanning Eulerian
trails in a graph under various conditions (see [5] and [6]). In this paper,
we study the following problem.

For a graph G and an integer r > 0, let X and Y be two
edge disjoint subsets of E(G) with |X| + |Y| < r. Find the
minimum edge-connectivity for G such that for any u,v € V(&)
(or &', e” € E(G)), G has a spanning (u, v)-trail (or {¢/, &”)-trail)
H such that X C E(H) and Y N E(H) = 0.

There are many 3-edge-connected graphs such as the Petersen graph,
and any 3-connected cubic graph that does not have a proper 3-edge-
coloring is not supereulerian, Then the minimum edge-connectivity for
a graph to assure the existence of a spanning Eulerian subgraph is at least
four. Some special cases of the problem above were studied by several
researchers (2], {7], 18], [10], [12]).

Theorem 1.1 {Catlin {2]). If G is 4-edge-connected, then for any u,v €
V(G there is a spanning Eulerian (u,v) trail in G.

Zhan [12] proved the following.
Theorem 1.2 (Zhan [12]). If 7 is a 4-edge-connected graph, then for any
edges e1, e2 € E((G) there is a spanning (e, eg)-trail in G.

For the case when Y = @, Lai [10] proved the following result.
Theorem 1.3 (Lai {10]). Let » > 0 be an integer. For a graph G, let
X € E(G) with |X| < r. Then & has a spanning Fulerian subgraph H
such that X € F(H) if and only if & is f{r)-edge-connected, where f(r} is
defined by

4, 0<r <2,
firy=4 r+1, r>3andrisodd,

T 7 2 4 and r is even.

b

In [7], the authors extended the results in [10} and solved the problem
for the case when ¥ = 0. Following closely the method of (7], we extend
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that result for ¥ # §. In the next section, we will present Catlin’s reduction
method and some preliminary results. Qur main resulis are in Sections 3
and 4.

2. Catlin’s reduction method and Preliminary results

In [2], Catlin defined collapsible graphs. For a graph G, let O{G) be
the set of odd degree vertices of G. A graph G is collapsible if for every
even subset R C V(&),  has a spanning connected subgraph Hr such
that O(Hp) = R. We regard an empty set as an even subset and K as
a collapsible graph. Therefore, if G is a collapsible graph, then G has &
spannihg eulerian subgraph Hg as R =, and G has a spanning (u, v)-trail
Hp, for any v and v in V{G) as Ry = {u,v}. In [2], Catlin proved the
following. ’
Collapsible Partition Theorem {Catlin [2)). Fvery graph G has a unique
collection of verter disjoint mazimal collapsible subgraphs Hy, Ha, ---, H,
such that V(G) = V(H ) UV (Hy) U ---UV(H,).

Let I be a connected subgraph of G. The contraction G/H is obtained
from G by contracting each edge of H and deleting the resulting loops. Let
iy, Hy, -+, H;; be the set of vertex disjoint maximal collapsible subgraphs
of G. The reduction of G is obtained from G by contracting each H; into
a vertex v; for all 7 (1 <1 < ¢), and is denoted by &'. Each H; is called a
preimage of v; in &, and v; is called the contraction image of H; in G'. A
vertex v in G’ is called a trivial contraction if its preimage in G is Ky. A
graph G is reduced if 7 is the reduction of some graph. Let F(G) be the
minimum number of edges that must be added to G so that the resulting
graph has two edge-disjoint spanning trees.

Theorem 2.1 (Catlin [2]}. Let G be a graph, and let G’ be the reduction
of G. Kach of the following holds.

(a) G is supereulerian if and only if ¢ is supereulerian.

(b) G is collapsible if and only if ' = K, '

It is well known that a 2k-edge-connected graph has k edge-disioint
spanning trees {(Kundu [9], and Polesskii [11]). Catlin [2] proved that if &
has two edge-disjoint spanning trees, then G is collapsible. Thus, if G is
4-edge-connected, then G is collapsible.
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In (3], Catlin proved the following.

Theorem 2.2 (Catlin [3]). Let G be a graph and let » > 1 be an integer.
Then G is r-edge-connected if and only if for any ¥ C E(G) with [Y] < -

[(r+1)/2], G- Y has |r/2] edge-disjoint spanning trees.

The following theorems will be needed in our proofs.

Theorem 2.3 (Catlin et al. [4]). Let G be a connected graph. If PGy <2,

then either & is collapsible, or the reduction of G is in 1Ko, Ko} (£ 2 1),

Let e be an edge in G. Edge e is subdivided when it is replaced by a
path of length 2 whose internal vertex, denoted by v(e), has degree 2 in

the resulting graph. The process of taking an edge e and replacing it by
that path of length 2 is called subdividing e. Let G be a graph and let
X C E{(G). Let Gx be the graph obtained from & by subdividing each
edge in X. Then V(Gx) = VIG)U {v(e)] ec X}. For a graph G, let
X C E(G) and Y C E(G) with XNY = . Define (G —Y)x 25 a graph
obtained from G by removing all the edges in ¥ and subdividing each edge
in X.

We need the following lemma, which was proved in (7).
Lemma 2.4 (Chen et al. [7]). Let & be a connected graph. Then each of
the following holds:
{a} Let k > 2 be an integer. If G has k& edge-disjoint spanning trees, then
for any X C E(G) with | X| < 2k — 2, FlGx) <2
(b) Let X = X3 UX5 with X;n Xy = 0. Then F(Gx) S F{(G—X1)x,).
Combining Theorem 2.2 and Lemma 2.4 we have the following,.
Lemma 2.5. Let (7 he a connected graph and let » > 1 be an integer.
Let X and ¥ be two disjoint subsets of E{G}. ¥ G is r-edge-connected,
YI<(r+1)/2] and |X| < 2[r/2] — 2, then F(G-Y)x) <2
Proof. By Theorem 2.2, G — Y has I7/2] edge-disjoint spanning trees.
Then by Lemma 2.4, F((G — Y)x) < 2. The lemma. is proved. 0.

3. A Main Result on (G -Y)x

Let # > 2 be an integer. For a graph G, let X and ¥ be two disjoint
subsets of E(() such that

Y| < [(r+1)/2) and IXUY|{<r+|r/2] -2 (1)
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I[XUY]<2[r/2][-2, define Xg = X and Yy = Y. If|XUY|>2)r/2] -2,
then since [Y{ < {(r+1)/2], we can choose ¥; in such a way that Y5 contains
all the edges in Y and some edges in X (if |Y] < [{r - 1)/2]), such that
[Yo| = |(r +1)/2]. Then define X = (XUY)—Yy. Andso Xy C X and
ol = IXUY| = Yol < v +r/2) ~ 2~ {(r + 1)/2] = 2|r/2] — 2. Thus,
for any disjoint subsets X and ¥ satisfying {1) above, we have X, and Y5
of E{GY such that

XoS XY CYo, XaNYo =0, Yl < [(r+1)/2) and | Xo| < 2[r/2] — 2.

Lemma 3.0. Let G be a graph and let X, Y, Xy and Y; be subsets of
E(G) defined in (1) and (2). Then

F{G-Y)x) S F((G-Yo)x,). ' (3)

Proof. Let Xy = X — X,. Then Yo=YUX, Xo=X — X3 and =0
XoNX, =0. Let Gy =G—Y. Since XNY = #, X1 and X are subsets of
E(G-Y) = E(G1). By Lemma 2.4, F{(G-Y)x) < F((G-Y) —X1)x,)-
Since Yo = YUX, G-V, = (G ~Y)~ X;. Hence, F(G-Y)x) <
F((G~Yy)x,)- The lemma is proved, O

Theorem 3.1. Let r > 4 be an integer. Let G be an r-edge-connected
graph and let X C E{G)and Y C EG)with XNY =0, |YV] < Hr+1)/2]
and | X|+ Y] <7+ |r/2] — 2. Then one of the following holds.

(8) {G~Y)x is collapsible, or

(b) #'(G) < |X|+ V]| and (G — Y)x can be contracted to Koy, ie the
reduction of (G~ ¥y is K+, and

(b1) (G -Y} <t <|X[H(G-Y)>30rr>6:
(b2) (G ~Y} <t <|X|+|Y]if £ (@ = Y) =2 (then r = 4 or 5).

Proof. Let X, and Yj be the two edge subsets of E(G) defined above.
By Lemma 3.0, F((G ~ Y)x) < F((G - Y3)x,). Since Yol < [(r+1)/2],
by Theorem 2.2, (G — Yp) has lr/2|-edge-disjointed spanning trees, By
the definition of X, and Yo, 1 Xo] < 2[7/2| — 2. Then by Lemma 3.0 and
Lemma 2.5, F((G - V)x) < F{{G -Y)x,) < 2. By Theorem 2.3, either
(G —Y)x is collapsible or (G — Y)x € {K2 Ky, }. Assume that (G-Y)x
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is not collapsible. Then (G — Y)y € {Ka, Kz,}. We will show that the '

staternent (b) holds.

Since G is r-edge-conmecied, r > 4 and {Y] < [ (v + 1)/2],

G-V 2 R(C) ¥ 2r—|r+1)/2 2 /2] 22 (4)

Thus, (G — Y)Y is 2-edge-connected. Therefore, (G — Y)Yy = Kz (t > 2). |

Let BE((G —-Y)y) = E(Kay) = {uw),uwy,- - -, Uy, vws, vy, - -+, vy
where w; (1 < ¢ < t) is a degree two vertex in (G —Y)y. Let E/ =
{vwy,vws, -+, vw}. Then E' is an edge-cut of (G — Y.

If &(G —Y) = 3, then each wy is a vertex obtained by subdividing an
edge in X. Therefore, |E'| < |X|. Let Ex be the edge subset of X in which
the edges are subdivided to obtain the edges in E’. Since £’ is an edge-cut
of (G-Y)y, Ex is an edge-cut of (G—Y), and so X is an edge-cut of G—Y".
Hence, | X| > |Ex| = |E'| =1t > &'(G—Y). Therefore X UY is an edge-cut
of G and so k(@) < | X UY|. The statement holds if &' (G-Y) > 3. If
r = 6, since G is r-edge-connected and |Y| £ [(r + 1)/2], 6" (G- Y) > 3.
Thus the statement (b1) holds if » > 6.

Next we consider the case if &' (G -Y )= 2.
Claim 1. If w; is not a vertex obtained by subdividing an edge in X, then
there are at least r —2 edges in Y adjacent to some vertices in the preimage
of w;.
Proof of Claim 1: It follows from that & is r-edge-connected and » > 4.

Claim 2. At most one edge in E’ is not from subdividing the edges in X.
Proof of Claim 2: Since s'(G—Y) = 2, the equalities in {4) hold. Sor =4
or 5 and [Y| = |(r +1)/2] = 2 or 3. Thus we have

2<|Y]<3. (5)

Since G is either 4 or § edge-connected, by Claim 1 after removing 2 or
3 edges in Y from G, at most one vertex in {w;} (L €4 < ¢) is not from
subdividing edges in - X. Claim 2 is proved.

Thus, by Claim 2, |E'| — 1 < |X{, and so by (3),

2=r(G-Y)<t=|E|<|X]|+1<|X|+]Y]. (6)
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To complete the proof of staternent (b2}, we still need to show | X[+ ¥} >
&(G)=r.

By way of contradiction, suppose that |[X|+ |[Yi < r. By (6),2 <t=
B < | X+ Y| <r. Thus, t =|E|=2ifr=4and2<t=|E]<3
if r = 5. Therefore, (G — YY)y = Ky € {Ka0,K33}, and B = {vw;}
(1 <4 < t) is corresponding to an edge-cut with size ¢ in & — Y that
separates the pre images of w and v in G-V

If r = 4, then G is 4-edge-connected, (G-Y )y = Ks 2. Since [ X|+(Y]| <
r=4,|X|<4-|Y} <2 ByClaim 2, |X|>1,and so [X|=1and |¥Y|= 2.
Therefore, at least one vertex in {w;, wa}, say wy, is not a vertex obtained
by subdividing an edge in X. Therefore, by Claim 1, the two edges in ¥V
must be adjacent to some vertices in the preimage of w,. Therefore, at
least one of the preimage of u or v in G is connected by at most three
edges to the rest of the graph G. Thus, «'{G) < 3, contrary to thas G is
4—edge—con.¥1ected.

I r = 5, then G is 5-edge-connected. Since X1+ Y| < r =25 and by
Claim 2 and (5), |[X]| =2 1, 2 < || £ 3. Note that (¢ -Y)s = Ky: €
{Ka2,Kz3}. By Claim 2, at least one vertex in {wy,..,w} (£ = 2 or 3),
say wp, is not a vertex obtained by subdividing an edge in X. By Claim 1
and r —2 = 3 and [¥| < 3, Y should have 3 edges and the 3 edges in ¥
are adjacent to some vertices in the preimage of wy. Therefore, no matter
(G =YYy = Koy or Kyg, at least one of the preimage of w or v in G is
connected by at most four edges to the rest of the graph &. Thus, G is
at most 4-edge-connected, contrary to that G is 5-edge-connected. Thus
| X+ ¥} = r = & (G}, Theorem 3.1 is proved. O

From the proof of Theorem 3.1, we have
Corollary 3.2. Let r > 4 be an integer. Let & be an r-edge-connected
graph and let X € E(G) and Y C E(G) with X NY =0, Y| < [{r+1)/2]
and [X|+ Y| <r+ r/2] - 2. f &/{G—Y) > 3, then one of the following
holds:
(i) (G —Y)x is collapsible, or
(i) (G—Y)x can be contracted to Ky, in such a way that each degree two
vertex in K. is a trivial contraction obtained in (G — Y} by subdividing
the edges in X, and (r — Y|} <t < |X].
Proof. Corollary 3.2 follows from the proof of Theorem 3.1 and the fact
that (G —-Y) > k' (G) = Y| = r-|Y]. O
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Let G be the 4d-edge-connected graph shown in Figure 1 where s > 5.
Let X = {z1,29} and ¥} = {21, 22}. Then the reduction of (G — ¥;)x is
Ko = Ky 4. This shows that £ < |[X| 4 [Y| = r = 4 is the best possible in
Theorem 3.1. Let X = {z,,z2} and ¥5 = {y1,392}. Then #'(G — Y2} = 2.
The reduction of (G — Y3)x is Kz 3 in which one degree two vertex is not
a trivial contraction. Thus, #'(G — ¥2) > 3 is necessary in Corollary 3.2,
This graph G has no spanning Fulerian subgraph H with X C E(H) and

4. Spanning Eulerian Trails

Let Gbeagraphandlet X C F(G) and ¥ C F{G) with XNY = and
1 X|+|Y| <. In this section, we present the result on the minimum edge-
connectivity of G such that G has a spanning Eulerian subgraph or spanning
(u,v) -trail {or {e1, ez)-trail) H for any u,v € V(&) {or any e;,e: € E{(G))
such that X C B(H) and Y N E(H) = .

The following property of an Eulerian graph will be needed:
Eulerian property. A connected graph G is Eulerian if and only if the
cardinality of every minimum edge-cut of & is even.

Theorem 4.1. Let r > 3. For a graph G, let X C E(G) and ¥ C E(GQ)
which satisfy the following

XnY =0, Y| <|{r+1)/2], | XUY|=|X|+{Yi<r (1)
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Then each of the following holds:

(a) For any X and ¥ satisfying (7) G has a spanning Fulerian subgraph
H such that X C E(H) and Y NE{H} = 0 if and only if G is (r+1)-
edge-connected.

(b) For any X and Y satisfying (7) and for any v and v in V(G) G has
a spanning (u, v)-trail T such that X € E(T) and Y N E(T) = 0 if
and only if G is (r 4 1}-edge-connected,

Proof. We prove the necessary condition first. Suppose that x'(G) =
r. Let By be an edge-cut of G with |Fg| = r. Let Hy and Hs be two
components of G— Ey. If r is even, choose an edge e in Fp and let Y = {e},
and let X = By —Y. Ifris odd, then let ¥ = @ and X = Ep. Then
IX| + Y| = r and |X| is odd. If G has a spanning Bulerian subgraph H
such that-X C E(H) and ¥ N E(H) = ¢, then H has an odd minimum
edge cut X which separates induced subgraphs H[V(H:)] and H{V{H:)]
in H, conﬁrary to the Fulerian property. This shows that G is at least
{r + 1}-edge-connected.

Next, we will prove the sufficient condition.

Since G is (r -+ 1)-edge-connected and r > 3, |{r +1)/2] > 2. Then X
and Y satisfying (7) will have |Y| < {(r+1)/2] < |(r42)/2] and | X|+|V] <
r < (r+1)+ [{r+1)/2] — 2, which satisfies Theorem 3.1. Therefore, since
{G) 2z r+1and {X|+|Y| <7, by Theorem 3.1, (G —Y)x is collapsible.
Since V{G) = V(G —-Y) C V({G — Y)x) and by the collapsibility of
{(G~Y)x, (G—Y)x has a spanning Fulerian subgraph H, and a spauuing
{u,v)-trail T, for any u, v € V{G)}. Then each degree two vertex in (G—Y }x
must be in H and in T;. Obviously, Y N E(H,) = Y N E(T,) = 0. Let
H (or T') be the graph obtained from H; (or T5) by replacing each path of
length two in {G — Y')x by its corresponding edge in X. Therefore, G has
& spanning Eulerian subgraph H and a (u,v) trail T such that X C E(H)
and X C E(T), and Y N E(H) = Y N E(T) = . The theorem is proved. O

If we only consider the existence of spanning Eulerian subgraph, then
when r > 4 and r — [Y] is even, the edge-connectivity of graph G can be
reduced to r instead of r 4 1 in Theorem 4.1(a).

Theorem 4.2. Let r > 4. For a graph &, let X C E(G) and ¥ C E(G)
such that X and Y satisfy (7}, r—|Y| is even and #'(G—Y") > 3. Then  has
a spanuing Eulerian subgraph H such that X C E(H) and Y N E(H) = 0
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for any such X and Y if and only if G is r-edge-connected.
Proof. We prove the necessary condition first. Suppose that & is (r — 1)-

edge connected. Let Ey be an edge-cut of & with [Ey| = r — 1. Let H; and
H3 be the two components of G — Ey. If r > 4 is even, choose ¥ = . Then
K(G-Y)=r(G)2r—-1>3 Ifr >4isodd, then r > 5. Choose an _1

edge e in Ep and let YV = {e}. Then 6'(G-Y) > k' (G)—1=7r—2 > 3.
Let X = By — Y. Then [X]+|Y] =

that X ¢ E(H) and Y N E(H) =

we only need to prove the statement for the case | X |+|Y| = r. By Corollary
3.2, either (G—Y') x is collapsible or the reduction of (G~ ) x is (G— Y =
Koyt where r — Y| < ¢t < |X|. Since [X|+|Y| =17 and r — [Y] is even,

t = |X| =r~[Y|is even. Therefore, K3 is an Eulerian graph. By Theorem .
2.1, G — Y has spanning Eulerian subgraph. Thus, G — ¥ has a spanning ‘:
Eulerian subgraph containing all the vertices of degree two in (G-Y)x, .
and so G —Y has a spanning Eulerian subgraph containing all the edges in

X. The theorem is proved. O

The graph of Figure 1 shows that when ¢ is 4-edge-connected, the con-

dition &'(G—Y) > 3 in Theorem 4.2 is necessary. This theorem also implies
that if G is 4-edge-connected, then for any X C E{G) and Y C E{G) with

XNY =0,¥{ <2, &(G-Y) >3 and |X UY| < 4, G has a spanning '

Eulerian subgraph H such that X € E(H) and YNE(H) =0. Let G be the
graph defined in Figure 2 below with X = {z), 29,25} and ¥ = {y1, 92},

where each H; (i = 1,2,3 or 4) is a complete graph K, (s 2 5). Obvi-

ously, G is 4-edge-connected and G — Y is 3-edge-connected. However, the
reduction of (G — Y)x is not a Ko, graph, and has no spanning Eulerian
subgraph containing all the edges in X. Thus, IX UY| < 4 is the best
possible in Theorem 4.1 and Theorem 4.2 for the case © = 4. We can also
show that |Y| < |{r+1)/2] is necessary for the case r = 4 or 5 in Theorem

3.1 from this graph by adding an edge between H, and Hy (and an edge

between Hz and Hy for case r = 5).
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|Fol = r—1and r— |Y] is even. -
Thus, X and Y are two subsets of E(G) that satisfy all the requirements
in Theorem 4.2. However, if G has a spanning Eulerian subgraph H such -
@, then H has an odd minimum edge cut ‘
X, contrary to the Eulerian property. Thus, G is at least r-edge-connected.

Next, we will show the sufficient condition. Without loss of generality,

& - (G—-YYy

Figure 2

Next we consider the edge-connectivity for spanning (ei, ep)-trails with
prescribed edges.
Lemma 4.3. Let (7 be a graph and let ¢;,e5 € B(C) and let X C E(G).
Let Xy = X U {es,e2}. Let v(e;) and v{ez) be the two vertices subdivid-
ing e; and es, respectively. Then if G X, is collapsible or has a spanning
(v(e1), v(eg))-trail, then G has a spanning (e, ez)-trail containing X.
Proof. It follows from the definitions of collapsibility and Gx,. O

The following lemma was proved in [7].
Lemma 4.4 (Chen et al.[7]). Let G be a 3-edge-connected graph. Let
X CEG) andlet ¢, ¢ € B(G). Let Xy = X U {¢',€"}. Suppose that
%, = Ko where t > 3. If ¢ > |X|, then & has & spanning (¢, ¢’ )-trail H
such that X C F(H).

Using Theorem 3.1, we prove the following result on {e1,e2)-trails anal-
ogous to Theorem 4.1 which extends Theorem 1.3 [12].
Theorem 4.5, Let » > 3. For a graph 7, let X and ¥ be the subsets of
E(G) such that

XY =0, YIS |(r+1)/2), #(G~Y) >3 and |X|+[Y|<r—1 (8)

It G is an (r + 1)-edge-connected graph then ¢ has a spanning (e, eq)-
trail H in @ for any ey, eg € E(G) —~ (X UY) such that X € E{H) and
YNE(H)=
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Proof. Let X1 = X U{ej,ea}. Let (G —Y)x, be the graph obtained from
G —Y by subdividing each edge in X1. Since r > 3, |{r+1)/2] > 2. Then
X, UY| < | XuY|+2<r+1< (r+1)+{(r+1)/2] —2. By Theorem 3.1,
either (G'—Y)x, is collapsible or (G —Y)x, is contractible to Ky, with
t > r. If (G-Y)yx, is collapsible, then by Lemima 4.3, G—Y has a spanning
(e1, eg)-trail containing X. If (G —Y)x, is contractible to Kz ; with ¢ > 4,
since t > r > |{X|, by Lemma 4.4, G — Y has a spanning {e;, ez)-trail H
containing the edges in X, O
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