
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 110 (2017) 510–515

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2017.06.137

10.1016/j.procs.2017.06.137

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

1877-0509

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

* Marcel Wallschläger. Tel.: +49-30-314-78592 ; fax: +0-000-000-0000 .

E-mail address: marcel.wallschlaeger@tu-berlin.de

1877-0509 © 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

2nd International Workshop on Applications of Software-Defined Networking in Cloud

Computing (SDNCC)

Automated Anomaly Detection in Virtualized Services

Using Deep Packet Inspection

Marcel Wallschlägera, Anton Gulenkoa, Florian Schmidta, Odej Kaoa, Feng Liub

aTechnische Universität Berlin (TU Berlin, Complex and Distributed IT Systems (CIT)), 10587 Berlin, Germany
bHuawei European Research Center, Huawei Technologies Co., Ltd., 80992 Munich, Germany

Abstract

Virtualization technologies have proven to be important drivers for the fast and cost-efficient development and deployment of

services. While the benefits are tremendous, there are many challenges to be faced when developing or porting services to

virtualized infrastructure. Especially critical applications like Virtualized Network Functions must meet high requirements in terms

of reliability and resilience. An important tool when meeting such requirements is detecting anomalous system components and

recovering the anomaly before it turns into a fault and subsequently into a failure visible to the client.

Anomaly detection for virtualized services relies on collecting system metrics that represent the normal operation state of every

component and allow the usage of machine learning algorithms to automatically build models representing such state. This paper

presents an approach for collecting service-layer metrics while treating services as black-boxes. This allows service providers to

implement anomaly detection on the application layer without the need to modify third-party software. Deep Packet Inspection is

used to analyse the traffic of virtual machines on the hypervisor layer, producing both generic and protocol-specific

communication metrics. An evaluation shows that the resulting metrics represent the normal operation state of an example

Virtualized Network Function and are therefore a valuable contribution to automatic anomaly detection in virtualized services.

© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Cloud, Network, Deep Packet Inspection, Network Function Virtualization, Anomaly Detection

1. Introduction

As the number of services running on virtualized infrastructure continues to increase, even critical applications

from the telecommunication sector are ported from traditional appliances onto cloud deployments.

Driven by high customer expectations, such critical services have an especially high demand for reliability and

continuous service delivery.

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

* Marcel Wallschläger. Tel.: +49-30-314-78592 ; fax: +0-000-000-0000 .

E-mail address: marcel.wallschlaeger@tu-berlin.de

1877-0509 © 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

2nd International Workshop on Applications of Software-Defined Networking in Cloud

Computing (SDNCC)

Automated Anomaly Detection in Virtualized Services

Using Deep Packet Inspection

Marcel Wallschlägera, Anton Gulenkoa, Florian Schmidta, Odej Kaoa, Feng Liub

aTechnische Universität Berlin (TU Berlin, Complex and Distributed IT Systems (CIT)), 10587 Berlin, Germany
bHuawei European Research Center, Huawei Technologies Co., Ltd., 80992 Munich, Germany

Abstract

Virtualization technologies have proven to be important drivers for the fast and cost-efficient development and deployment of

services. While the benefits are tremendous, there are many challenges to be faced when developing or porting services to

virtualized infrastructure. Especially critical applications like Virtualized Network Functions must meet high requirements in terms

of reliability and resilience. An important tool when meeting such requirements is detecting anomalous system components and

recovering the anomaly before it turns into a fault and subsequently into a failure visible to the client.

Anomaly detection for virtualized services relies on collecting system metrics that represent the normal operation state of every

component and allow the usage of machine learning algorithms to automatically build models representing such state. This paper

presents an approach for collecting service-layer metrics while treating services as black-boxes. This allows service providers to

implement anomaly detection on the application layer without the need to modify third-party software. Deep Packet Inspection is

used to analyse the traffic of virtual machines on the hypervisor layer, producing both generic and protocol-specific

communication metrics. An evaluation shows that the resulting metrics represent the normal operation state of an example

Virtualized Network Function and are therefore a valuable contribution to automatic anomaly detection in virtualized services.

© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Cloud, Network, Deep Packet Inspection, Network Function Virtualization, Anomaly Detection

1. Introduction

As the number of services running on virtualized infrastructure continues to increase, even critical applications

from the telecommunication sector are ported from traditional appliances onto cloud deployments.

Driven by high customer expectations, such critical services have an especially high demand for reliability and

continuous service delivery.

 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 2

Traditional reactive fault management is not sufficient to guarantee a constantly high service availability. Cost

effective private and public clouds rely on commodity hardware which cannot guarantee failover latencies short

enough to hide faults from clients.

Since anomalies often precede faults, anomaly detection mechanisms provide an early warning system that enables

proactive fault management1. Anomaly detection can operate across all layers of the cloud system by collecting

various operative time series metrics. Unsupervised machine learning techniques analyse the collected data to detect

abnormal patterns and outliers.

The anomaly detection accuracy mainly depends on the input data used to build the underlying machine learning

models. In the context of virtualized services, many indicators for normal operation can be found in resource usage

data like the utilization of CPU, memory, network and disk. This data is available on all system layers and does not

require specific knowledge about the monitored service. Treating services as black boxes makes this anomaly

detection approach easily usable in arbitrary productive environments. Furthermore, it allows Infrastructure-as-a-

Service (IaaS) providers to offer an anomaly detection service to customers while maintaining minimal interference

with customer machines.

However, mere resource usage fails to accurately reflect the communication patterns of the observed services and

therefore does not cover all potential anomalies. This paper presents a mechanism for collecting service

communication metrics while still remaining largely service agnostic, as long as the services rely on standardized

application layer protocols. Deep Packet Inspection (DPI) on the hypervisor level allows real-time analysis of the

inter-service communication with low interference. Services do not need to be customized or extended to obtain this

information, but knowledge about the used protocols can reduce the performance overhead of packet inspection. The

second contribution of this paper is an evaluation of the presented data collection mechanism. We show that a

number of simulated anomalies manifest themselves in the resulting metrics.

The remainder of the paper is organized as follows. The following section presents related research in the field of

deep package inspection and anomaly detection. Section 3 describes the presented approach in detail, while section 4

presents an evaluation thereof.

2. Related Work

Much related work has been conducted in the field of deep package inspection and automated protocol analysis.

M. Danelutto et al. show in their work2 how package inspection is possible on commodity server hardware using a

skeleton-based parallel programming library targeting efficient streaming on multi-core architectures. Using their

framework the authors show that package inspection for packets with 60 byte payloads can be performed with a

commodity Intel 10 Gbit network card.

Anat Bremler-Barr et al. identify DPI as a common task for middleboxes that inspect application layer packets

many times during their route from sender to the final destination3. Since most middleboxes perform similar

analyses to implement traffic control and QoS measurements, the authors propose a DPI-as-a-service infrastructure

to reduce the total overhead of repeated packet inspection. The proposed infrastructure can lead to improved

performance, scalability and robustness, showing that DPI has become mature and fast enough to be executed even

as a standalone service.

Further research shows that the application layer protocol used by packets can be identified in real-time using

DPI4,5,6.

3. Approach

An exemplary infrastructure illustrates the proposed data collection approach and follows a typical cloud deployment

used both by IaaS providers and in private clouds hosting Virtualized Network Function services. The services run on

virtualized hardware and network resources provided by the cloud operating system OpenStack7 and complementary

Software Defined Networking (SDN) components. Open vSwitch8 manages the virtual network connecting all VMs.

Figure 1 shows the basic structure of the network architecture inside a physical compute node managed by

OpenStack. It illustrates two virtual machines within one hypervisor connected to various Open vSwitch bridges. A

dedicated monitoring agent implements the data collection by sniffing packets on the tap interface of every relevant

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/231814478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.06.137&domain=pdf

 Marcel Wallschläger et al. / Procedia Computer Science 110 (2017) 510–515 511

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

* Marcel Wallschläger. Tel.: +49-30-314-78592 ; fax: +0-000-000-0000 .

E-mail address: marcel.wallschlaeger@tu-berlin.de

1877-0509 © 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

2nd International Workshop on Applications of Software-Defined Networking in Cloud

Computing (SDNCC)

Automated Anomaly Detection in Virtualized Services

Using Deep Packet Inspection

Marcel Wallschlägera, Anton Gulenkoa, Florian Schmidta, Odej Kaoa, Feng Liub

aTechnische Universität Berlin (TU Berlin, Complex and Distributed IT Systems (CIT)), 10587 Berlin, Germany
bHuawei European Research Center, Huawei Technologies Co., Ltd., 80992 Munich, Germany

Abstract

Virtualization technologies have proven to be important drivers for the fast and cost-efficient development and deployment of

services. While the benefits are tremendous, there are many challenges to be faced when developing or porting services to

virtualized infrastructure. Especially critical applications like Virtualized Network Functions must meet high requirements in terms

of reliability and resilience. An important tool when meeting such requirements is detecting anomalous system components and

recovering the anomaly before it turns into a fault and subsequently into a failure visible to the client.

Anomaly detection for virtualized services relies on collecting system metrics that represent the normal operation state of every

component and allow the usage of machine learning algorithms to automatically build models representing such state. This paper

presents an approach for collecting service-layer metrics while treating services as black-boxes. This allows service providers to

implement anomaly detection on the application layer without the need to modify third-party software. Deep Packet Inspection is

used to analyse the traffic of virtual machines on the hypervisor layer, producing both generic and protocol-specific

communication metrics. An evaluation shows that the resulting metrics represent the normal operation state of an example

Virtualized Network Function and are therefore a valuable contribution to automatic anomaly detection in virtualized services.

© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Cloud, Network, Deep Packet Inspection, Network Function Virtualization, Anomaly Detection

1. Introduction

As the number of services running on virtualized infrastructure continues to increase, even critical applications

from the telecommunication sector are ported from traditional appliances onto cloud deployments.

Driven by high customer expectations, such critical services have an especially high demand for reliability and

continuous service delivery.

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

* Marcel Wallschläger. Tel.: +49-30-314-78592 ; fax: +0-000-000-0000 .

E-mail address: marcel.wallschlaeger@tu-berlin.de

1877-0509 © 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

2nd International Workshop on Applications of Software-Defined Networking in Cloud

Computing (SDNCC)

Automated Anomaly Detection in Virtualized Services

Using Deep Packet Inspection

Marcel Wallschlägera, Anton Gulenkoa, Florian Schmidta, Odej Kaoa, Feng Liub

aTechnische Universität Berlin (TU Berlin, Complex and Distributed IT Systems (CIT)), 10587 Berlin, Germany
bHuawei European Research Center, Huawei Technologies Co., Ltd., 80992 Munich, Germany

Abstract

Virtualization technologies have proven to be important drivers for the fast and cost-efficient development and deployment of

services. While the benefits are tremendous, there are many challenges to be faced when developing or porting services to

virtualized infrastructure. Especially critical applications like Virtualized Network Functions must meet high requirements in terms

of reliability and resilience. An important tool when meeting such requirements is detecting anomalous system components and

recovering the anomaly before it turns into a fault and subsequently into a failure visible to the client.

Anomaly detection for virtualized services relies on collecting system metrics that represent the normal operation state of every

component and allow the usage of machine learning algorithms to automatically build models representing such state. This paper

presents an approach for collecting service-layer metrics while treating services as black-boxes. This allows service providers to

implement anomaly detection on the application layer without the need to modify third-party software. Deep Packet Inspection is

used to analyse the traffic of virtual machines on the hypervisor layer, producing both generic and protocol-specific

communication metrics. An evaluation shows that the resulting metrics represent the normal operation state of an example

Virtualized Network Function and are therefore a valuable contribution to automatic anomaly detection in virtualized services.

© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Cloud, Network, Deep Packet Inspection, Network Function Virtualization, Anomaly Detection

1. Introduction

As the number of services running on virtualized infrastructure continues to increase, even critical applications

from the telecommunication sector are ported from traditional appliances onto cloud deployments.

Driven by high customer expectations, such critical services have an especially high demand for reliability and

continuous service delivery.

 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 2

Traditional reactive fault management is not sufficient to guarantee a constantly high service availability. Cost

effective private and public clouds rely on commodity hardware which cannot guarantee failover latencies short

enough to hide faults from clients.

Since anomalies often precede faults, anomaly detection mechanisms provide an early warning system that enables

proactive fault management1. Anomaly detection can operate across all layers of the cloud system by collecting

various operative time series metrics. Unsupervised machine learning techniques analyse the collected data to detect

abnormal patterns and outliers.

The anomaly detection accuracy mainly depends on the input data used to build the underlying machine learning

models. In the context of virtualized services, many indicators for normal operation can be found in resource usage

data like the utilization of CPU, memory, network and disk. This data is available on all system layers and does not

require specific knowledge about the monitored service. Treating services as black boxes makes this anomaly

detection approach easily usable in arbitrary productive environments. Furthermore, it allows Infrastructure-as-a-

Service (IaaS) providers to offer an anomaly detection service to customers while maintaining minimal interference

with customer machines.

However, mere resource usage fails to accurately reflect the communication patterns of the observed services and

therefore does not cover all potential anomalies. This paper presents a mechanism for collecting service

communication metrics while still remaining largely service agnostic, as long as the services rely on standardized

application layer protocols. Deep Packet Inspection (DPI) on the hypervisor level allows real-time analysis of the

inter-service communication with low interference. Services do not need to be customized or extended to obtain this

information, but knowledge about the used protocols can reduce the performance overhead of packet inspection. The

second contribution of this paper is an evaluation of the presented data collection mechanism. We show that a

number of simulated anomalies manifest themselves in the resulting metrics.

The remainder of the paper is organized as follows. The following section presents related research in the field of

deep package inspection and anomaly detection. Section 3 describes the presented approach in detail, while section 4

presents an evaluation thereof.

2. Related Work

Much related work has been conducted in the field of deep package inspection and automated protocol analysis.

M. Danelutto et al. show in their work2 how package inspection is possible on commodity server hardware using a

skeleton-based parallel programming library targeting efficient streaming on multi-core architectures. Using their

framework the authors show that package inspection for packets with 60 byte payloads can be performed with a

commodity Intel 10 Gbit network card.

Anat Bremler-Barr et al. identify DPI as a common task for middleboxes that inspect application layer packets

many times during their route from sender to the final destination3. Since most middleboxes perform similar

analyses to implement traffic control and QoS measurements, the authors propose a DPI-as-a-service infrastructure

to reduce the total overhead of repeated packet inspection. The proposed infrastructure can lead to improved

performance, scalability and robustness, showing that DPI has become mature and fast enough to be executed even

as a standalone service.

Further research shows that the application layer protocol used by packets can be identified in real-time using

DPI4,5,6.

3. Approach

An exemplary infrastructure illustrates the proposed data collection approach and follows a typical cloud deployment

used both by IaaS providers and in private clouds hosting Virtualized Network Function services. The services run on

virtualized hardware and network resources provided by the cloud operating system OpenStack7 and complementary

Software Defined Networking (SDN) components. Open vSwitch8 manages the virtual network connecting all VMs.

Figure 1 shows the basic structure of the network architecture inside a physical compute node managed by

OpenStack. It illustrates two virtual machines within one hypervisor connected to various Open vSwitch bridges. A

dedicated monitoring agent implements the data collection by sniffing packets on the tap interface of every relevant

512 Marcel Wallschläger et al. / Procedia Computer Science 110 (2017) 510–515
 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 3

virtual machine. The tap interface transfers every packet received and sent by the virtual machine, after being filtered

by the Security Groups mechanism of OpenStack. Security Groups implement a simple rule-based firewall managed

by the owner of the virtual machine. Malicious or unintended packets are dropped at this point, resulting in increased

anomaly detection precision when analysing packets on the tap interface. Detecting malicious activities is not the

focus of application-layer anomaly detection, and is left for dedicated Intrusion Detection Systems (IDS).

Figure 1: Hypervisor Structure

The data collection agent analyses the observed traffic and extracts metrics that are specific to different Layer 7

protocols. The used protocols can be inferred in real-time4,5,6, but the performance overhead can optionally be reduced

when this information is provided by the user. This knowledge allows an additional optimization which is to only

analyse traffic on specified ports that belong to relevant application layer protocols. In a well-configured OpenStack

environment, such information can be obtained by analysing all security groups, since they explicitly whitelist all

connections expected between service instances.

For every relevant application layer protocol, the data collection agent counts the occurrence of specific messages

and reports how often each class of messages is observed in a configurable time interval. The message classes

depend on the specific protocol and in order to maintain an appropriate number of metrics, some message classes

have to be grouped into one. HTTP communication, for example, consists of requests and responses, where the

response can contain one of dozens standardized status codes. Instead of counting every code individually, the codes

are grouped by their first digit: 1xx, 2xx, 3xx, and so on. This results in 5 metrics that provide a good approximation

of the operation of an HTTP server. A simliar grouping mechanism is used to track the Session Initiation Protocol

(SIP)9. In addition to protocol specific metrics, the data collection agent provides generic information for every

observed port, like the number of transmitted packets and bytes.

Table 1 gives an overview over the metrics obtained from the SIP protocol. The SIP-protocol is use commonly in

IP-telephony such as VoIP. SIP controls the multimedia sessions and handles creation, termination and modification

of media streams such as voice-connections. It is a text-based protocol using elements of Hypertext Transfer

Protocol (HTTP). The data collection agent is written in Python using the scapy library*. The collected statistics are

recorded every 500 milliseconds.

* https://github.com/phaethon/scapy

 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 4

Table 1: abstracted features from SIP protocol handler

Feature Names Description

Overall packets

Registrations

Return code 1xx

Number of Packets

Registration requests

Indicates the request was valid and is being processed

Return code 2xx Indicates successful completion

Return code 3xx

Return code 4xx

Return code 5xx

Return code 6xx

Indicates a redirection is needed

Indicates bad syntax or cannot be fulfilled

Indicates server failure in processing request

Indicates global failure

4. Evaluation

An evaluation inside a dedicated private cloud testbed demonstrates that a selected set of anomalies can be observed

in the metrics produced by the proposed data collection approach. The testbed is based on OpenStack Kilo and runs

Open vSwitch in version 2.41. The setup simulates an IaaS provider hosting customer services on five hypervisors

and one OpenStack controller node, which is also running the OpenStack networking service.

The client service is Project Clearwater10, an open source implementation of the IP Multimedia Subsystem (IMS).

An IMS service uses the SIP protocol to establish sessions between clients. Figure 2 shows the architecture of Project

Clearwater. The red box highlights the SIP communication channel between the two core components called Bono

and Sprout. The data collection agent monitors the SIP communication on this connection. The Bono node acts as a

client-facing SIP proxy, while Sprout implements the core IMS functionality. To fulfill its role, Sprout needs a working

connection to Homestead to obtain information about registered clients.†

The SIP benchmarking client sip-stress‡ continuously exchanges SIP messages with the Bono node, which also leads

to traffic on the Sprout and Homestead components.

‡ http://clearwater.readthedocs.io/en/stable/Clearwater_stress_testing.html

Figure 2: Excerpt of the Project Clearwater Architecture including connection protocols

 Marcel Wallschläger et al. / Procedia Computer Science 110 (2017) 510–515 513
 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 3

virtual machine. The tap interface transfers every packet received and sent by the virtual machine, after being filtered

by the Security Groups mechanism of OpenStack. Security Groups implement a simple rule-based firewall managed

by the owner of the virtual machine. Malicious or unintended packets are dropped at this point, resulting in increased

anomaly detection precision when analysing packets on the tap interface. Detecting malicious activities is not the

focus of application-layer anomaly detection, and is left for dedicated Intrusion Detection Systems (IDS).

Figure 1: Hypervisor Structure

The data collection agent analyses the observed traffic and extracts metrics that are specific to different Layer 7

protocols. The used protocols can be inferred in real-time4,5,6, but the performance overhead can optionally be reduced

when this information is provided by the user. This knowledge allows an additional optimization which is to only

analyse traffic on specified ports that belong to relevant application layer protocols. In a well-configured OpenStack

environment, such information can be obtained by analysing all security groups, since they explicitly whitelist all

connections expected between service instances.

For every relevant application layer protocol, the data collection agent counts the occurrence of specific messages

and reports how often each class of messages is observed in a configurable time interval. The message classes

depend on the specific protocol and in order to maintain an appropriate number of metrics, some message classes

have to be grouped into one. HTTP communication, for example, consists of requests and responses, where the

response can contain one of dozens standardized status codes. Instead of counting every code individually, the codes

are grouped by their first digit: 1xx, 2xx, 3xx, and so on. This results in 5 metrics that provide a good approximation

of the operation of an HTTP server. A simliar grouping mechanism is used to track the Session Initiation Protocol

(SIP)9. In addition to protocol specific metrics, the data collection agent provides generic information for every

observed port, like the number of transmitted packets and bytes.

Table 1 gives an overview over the metrics obtained from the SIP protocol. The SIP-protocol is use commonly in

IP-telephony such as VoIP. SIP controls the multimedia sessions and handles creation, termination and modification

of media streams such as voice-connections. It is a text-based protocol using elements of Hypertext Transfer

Protocol (HTTP). The data collection agent is written in Python using the scapy library*. The collected statistics are

recorded every 500 milliseconds.

* https://github.com/phaethon/scapy

 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 4

Table 1: abstracted features from SIP protocol handler

Feature Names Description

Overall packets

Registrations

Return code 1xx

Number of Packets

Registration requests

Indicates the request was valid and is being processed

Return code 2xx Indicates successful completion

Return code 3xx

Return code 4xx

Return code 5xx

Return code 6xx

Indicates a redirection is needed

Indicates bad syntax or cannot be fulfilled

Indicates server failure in processing request

Indicates global failure

4. Evaluation

An evaluation inside a dedicated private cloud testbed demonstrates that a selected set of anomalies can be observed

in the metrics produced by the proposed data collection approach. The testbed is based on OpenStack Kilo and runs

Open vSwitch in version 2.41. The setup simulates an IaaS provider hosting customer services on five hypervisors

and one OpenStack controller node, which is also running the OpenStack networking service.

The client service is Project Clearwater10, an open source implementation of the IP Multimedia Subsystem (IMS).

An IMS service uses the SIP protocol to establish sessions between clients. Figure 2 shows the architecture of Project

Clearwater. The red box highlights the SIP communication channel between the two core components called Bono

and Sprout. The data collection agent monitors the SIP communication on this connection. The Bono node acts as a

client-facing SIP proxy, while Sprout implements the core IMS functionality. To fulfill its role, Sprout needs a working

connection to Homestead to obtain information about registered clients.†

The SIP benchmarking client sip-stress‡ continuously exchanges SIP messages with the Bono node, which also leads

to traffic on the Sprout and Homestead components.

‡ http://clearwater.readthedocs.io/en/stable/Clearwater_stress_testing.html

Figure 2: Excerpt of the Project Clearwater Architecture including connection protocols

514 Marcel Wallschläger et al. / Procedia Computer Science 110 (2017) 510–515
 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 5

Two anomalies are injected into the running system to test the reaction of the collected metrics:

1. Increasing the network latency of the virtualized NIC of the Sprout VM by 150ms. This anomaly represents

a degraded state of a network component which does not result in system crashes but reduces the performance

of the system.

2. Stopping the Homestead service running on a separate virtual machine. This anomaly affects the entire

Clearwater installation, since client registrations are not possible anymore. Therefore, the anomaly propagates

to the Sprout and Bono component, and finally to the client of the system.

One evaluation experiment consists of two steps. First, the data collection agent records data during normal system

operation for one minute. Afterwards, one of the above anomalies is injected and the system state is observed for

another minute, before reverting the anomaly. This procedure is repeated ten times.

Figure 3a shows two box plots summarizing all measurements of the number of registrations per second with and

without the increased latency anomaly. The amount of registrations per second is reduced while the anomaly is active.

Figure 4a shows the development of the registrations per second metric within one exemplary evaluation run.

Figure 3b shows the number of success return messages during normal operation and after stopping the Homestead

service. Since the Clearwater is unable to correctly process client authentication requests, the number of success

messages rapidly drops to zero. Figure 4b shows the successful return messages during one run of the experiment.

This evaluation suggests that the selected anomalies are manifested in the metrics produced by the proposed data

collection technique. The resulting metrics are therefore valuable input features for anomaly detection mechanisms in

practice.

Figure 3a: Registrations per second, increased latency

Figure 4a: Registrations per second, increased latency (one run) Figure 4b: Success messages per second, Homestead service stopped (one run)

Figure 3b: Success messages per second, Homestead service stopped

 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 6

5. Conclusion

This work presents an approach for collecting metrics about the operation of virtualized services with minimal

interference. This allows IaaS service providers to offer anomaly detection as a service to their clients, as well as

generic anomaly detection mechanisms in private clouds. The presented approach is evaluated by injecting

anomalies in a dedicated cloud testbed.

Future work on this topic includes further evaluations of DPI based metric collection in combination with online

anomaly detection approaches. Handling more application layer protocols will extend the approach to a wider range

of virtualized services. An extended evaluation in a fully loaded 10Gbit network on commodity hardware will

further support the practical application of the presented approach.

References

1. Gulenko, Anton, et al. Evaluating machine learning algorithms for anomaly detection in clouds. In: IEEE International Conference on Big Data

(Big Data). 2016, pp. 2716-2721.

2. Danelutto, M., et al. Deep packet inspection on commodity hardware using fastflow. In: Parallel Computing: Accelerating Computational

Science and Engineering (CSE). 2016, pp. 92-99.

3. Bremler-Barr, Anat, et al. Deep packet inspection as a service. In: Proceedings of the 10th ACM International on Conference on emerging

Networking Experiments and Technologies. ACM, 2014, pp. 271-282.

4. Riccobene, Vincenzo, et al. Automated generation of VNF deployment rules using infrastructure affinity characterization. In: NetSoft Conference

and Workshops (NetSoft). IEEE, 2016, pp. 226-233.

5. Hara, Masaki, et al. Service Identification by Packet Inspection Based on N-grams in Multiple Connections. In: Fourth International Symposium

on Computing and Networking (CANDAR). IEEE, 2016, pp. 686-690.

6. Husák, M., et al. A survey of methods for encrypted traffic classification and analysis. In: International Journal of Network Management, Vol.

25. 2015, pp. 355-374.

7. Openstack Foundation, 2017. URL: https://www.openstack.org.

8. Linux Foundation Collaborative Project, 2016. URL: http://openvswitch.org.

9. Rosenberg, J., et al. SIP: Session Initiation Protocol: RFC Editor, 2002.

10. Metaswitch Networks: Project Clearwater, 2016. URL: www.projectclearwater.org.

 Marcel Wallschläger et al. / Procedia Computer Science 110 (2017) 510–515 515
 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 5

Two anomalies are injected into the running system to test the reaction of the collected metrics:

1. Increasing the network latency of the virtualized NIC of the Sprout VM by 150ms. This anomaly represents

a degraded state of a network component which does not result in system crashes but reduces the performance

of the system.

2. Stopping the Homestead service running on a separate virtual machine. This anomaly affects the entire

Clearwater installation, since client registrations are not possible anymore. Therefore, the anomaly propagates

to the Sprout and Bono component, and finally to the client of the system.

One evaluation experiment consists of two steps. First, the data collection agent records data during normal system

operation for one minute. Afterwards, one of the above anomalies is injected and the system state is observed for

another minute, before reverting the anomaly. This procedure is repeated ten times.

Figure 3a shows two box plots summarizing all measurements of the number of registrations per second with and

without the increased latency anomaly. The amount of registrations per second is reduced while the anomaly is active.

Figure 4a shows the development of the registrations per second metric within one exemplary evaluation run.

Figure 3b shows the number of success return messages during normal operation and after stopping the Homestead

service. Since the Clearwater is unable to correctly process client authentication requests, the number of success

messages rapidly drops to zero. Figure 4b shows the successful return messages during one run of the experiment.

This evaluation suggests that the selected anomalies are manifested in the metrics produced by the proposed data

collection technique. The resulting metrics are therefore valuable input features for anomaly detection mechanisms in

practice.

Figure 3a: Registrations per second, increased latency

Figure 4a: Registrations per second, increased latency (one run) Figure 4b: Success messages per second, Homestead service stopped (one run)

Figure 3b: Success messages per second, Homestead service stopped

 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 6

5. Conclusion

This work presents an approach for collecting metrics about the operation of virtualized services with minimal

interference. This allows IaaS service providers to offer anomaly detection as a service to their clients, as well as

generic anomaly detection mechanisms in private clouds. The presented approach is evaluated by injecting

anomalies in a dedicated cloud testbed.

Future work on this topic includes further evaluations of DPI based metric collection in combination with online

anomaly detection approaches. Handling more application layer protocols will extend the approach to a wider range

of virtualized services. An extended evaluation in a fully loaded 10Gbit network on commodity hardware will

further support the practical application of the presented approach.

References

1. Gulenko, Anton, et al. Evaluating machine learning algorithms for anomaly detection in clouds. In: IEEE International Conference on Big Data

(Big Data). 2016, pp. 2716-2721.

2. Danelutto, M., et al. Deep packet inspection on commodity hardware using fastflow. In: Parallel Computing: Accelerating Computational

Science and Engineering (CSE). 2016, pp. 92-99.

3. Bremler-Barr, Anat, et al. Deep packet inspection as a service. In: Proceedings of the 10th ACM International on Conference on emerging

Networking Experiments and Technologies. ACM, 2014, pp. 271-282.

4. Riccobene, Vincenzo, et al. Automated generation of VNF deployment rules using infrastructure affinity characterization. In: NetSoft Conference

and Workshops (NetSoft). IEEE, 2016, pp. 226-233.

5. Hara, Masaki, et al. Service Identification by Packet Inspection Based on N-grams in Multiple Connections. In: Fourth International Symposium

on Computing and Networking (CANDAR). IEEE, 2016, pp. 686-690.

6. Husák, M., et al. A survey of methods for encrypted traffic classification and analysis. In: International Journal of Network Management, Vol.

25. 2015, pp. 355-374.

7. Openstack Foundation, 2017. URL: https://www.openstack.org.

8. Linux Foundation Collaborative Project, 2016. URL: http://openvswitch.org.

9. Rosenberg, J., et al. SIP: Session Initiation Protocol: RFC Editor, 2002.

10. Metaswitch Networks: Project Clearwater, 2016. URL: www.projectclearwater.org.

