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Abstract 

Virtualization technologies have proven to be important drivers for the fast and cost-efficient development and deployment of 

services. While the benefits are tremendous, there are many challenges to be faced when developing or porting services to 

virtualized infrastructure. Especially critical applications like Virtualized Network Functions must meet high requirements in terms 

of reliability and resilience. An important tool when meeting such requirements is detecting anomalous system components and 

recovering the anomaly before it turns into a fault and subsequently into a failure visible to the client. 

Anomaly detection for virtualized services relies on collecting system metrics that represent the normal operation state of every 

component and allow the usage of machine learning algorithms to automatically build models representing such state. This paper 

presents an approach for collecting service-layer metrics while treating services as black-boxes. This allows service providers to 

implement anomaly detection on the application layer without the need to modify third-party software. Deep Packet Inspection is 

used to analyse the traffic of virtual machines on the hypervisor layer, producing both generic and protocol-specific 

communication metrics. An evaluation shows that the resulting metrics represent the normal operation state of an example 

Virtualized Network Function and are therefore a valuable contribution to automatic anomaly detection in virtualized services. 
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1. Introduction 

As the number of services running on virtualized infrastructure continues to increase, even critical applications 

from the telecommunication sector are ported from traditional appliances onto cloud deployments.  

Driven by high customer expectations, such critical services have an especially high demand for reliability and 

continuous service delivery. 
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Traditional reactive fault management is not sufficient to guarantee a constantly high service availability. Cost 

effective private and public clouds rely on commodity hardware which cannot guarantee failover latencies short 

enough to hide faults from clients. 

Since anomalies often precede faults, anomaly detection mechanisms provide an early warning system that enables 

proactive fault management1. Anomaly detection can operate across all layers of the cloud system by collecting 

various operative time series metrics. Unsupervised machine learning techniques analyse the collected data to detect 

abnormal patterns and outliers. 

The anomaly detection accuracy mainly depends on the input data used to build the underlying machine learning 

models. In the context of virtualized services, many indicators for normal operation can be found in resource usage 

data like the utilization of CPU, memory, network and disk. This data is available on all system layers and does not 

require specific knowledge about the monitored service. Treating services as black boxes makes this anomaly 

detection approach easily usable in arbitrary productive environments. Furthermore, it allows Infrastructure-as-a-

Service (IaaS) providers to offer an anomaly detection service to customers while maintaining minimal interference 

with customer machines. 

However, mere resource usage fails to accurately reflect the communication patterns of the observed services and 

therefore does not cover all potential anomalies. This paper presents a mechanism for collecting service 

communication metrics while still remaining largely service agnostic, as long as the services rely on standardized 

application layer protocols. Deep Packet Inspection (DPI) on the hypervisor level allows real-time analysis of the 

inter-service communication with low interference. Services do not need to be customized or extended to obtain this 

information, but knowledge about the used protocols can reduce the performance overhead of packet inspection. The 

second contribution of this paper is an evaluation of the presented data collection mechanism. We show that a 

number of simulated anomalies manifest themselves in the resulting metrics. 

The remainder of the paper is organized as follows. The following section presents related research in the field of 

deep package inspection and anomaly detection. Section 3 describes the presented approach in detail, while section 4 

presents an evaluation thereof. 

2. Related Work 

Much related work has been conducted in the field of deep package inspection and automated protocol analysis. 

M. Danelutto et al. show in their work2 how package inspection is possible on commodity server hardware using a 

skeleton-based parallel programming library targeting efficient streaming on multi-core architectures. Using their 

framework the authors show that package inspection for packets with 60 byte payloads can be performed with a 

commodity Intel 10 Gbit network card. 

Anat Bremler-Barr et al. identify DPI as a common task for middleboxes that inspect application layer packets 

many times during their route from sender to the final destination3. Since most middleboxes perform similar 

analyses to implement traffic control and QoS measurements, the authors propose a DPI-as-a-service infrastructure 

to reduce the total overhead of repeated packet inspection. The proposed infrastructure can lead to improved 

performance, scalability and robustness, showing that DPI has become mature and fast enough to be executed even 

as a standalone service. 

Further research shows that the application layer protocol used by packets can be identified in real-time using 

DPI4,5,6. 

3. Approach 

An exemplary infrastructure illustrates the proposed data collection approach and follows a typical cloud deployment 

used both by IaaS providers and in private clouds hosting Virtualized Network Function services. The services run on 

virtualized hardware and network resources provided by the cloud operating system OpenStack7 and complementary 

Software Defined Networking (SDN) components. Open vSwitch8 manages the virtual network connecting all VMs.  

Figure 1 shows the basic structure of the network architecture inside a physical compute node managed by 

OpenStack. It illustrates two virtual machines within one hypervisor connected to various Open vSwitch bridges. A 

dedicated monitoring agent implements the data collection by sniffing packets on the tap interface of every relevant 
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Traditional reactive fault management is not sufficient to guarantee a constantly high service availability. Cost 

effective private and public clouds rely on commodity hardware which cannot guarantee failover latencies short 

enough to hide faults from clients. 

Since anomalies often precede faults, anomaly detection mechanisms provide an early warning system that enables 

proactive fault management1. Anomaly detection can operate across all layers of the cloud system by collecting 

various operative time series metrics. Unsupervised machine learning techniques analyse the collected data to detect 

abnormal patterns and outliers. 

The anomaly detection accuracy mainly depends on the input data used to build the underlying machine learning 

models. In the context of virtualized services, many indicators for normal operation can be found in resource usage 

data like the utilization of CPU, memory, network and disk. This data is available on all system layers and does not 

require specific knowledge about the monitored service. Treating services as black boxes makes this anomaly 

detection approach easily usable in arbitrary productive environments. Furthermore, it allows Infrastructure-as-a-

Service (IaaS) providers to offer an anomaly detection service to customers while maintaining minimal interference 

with customer machines. 

However, mere resource usage fails to accurately reflect the communication patterns of the observed services and 

therefore does not cover all potential anomalies. This paper presents a mechanism for collecting service 

communication metrics while still remaining largely service agnostic, as long as the services rely on standardized 

application layer protocols. Deep Packet Inspection (DPI) on the hypervisor level allows real-time analysis of the 

inter-service communication with low interference. Services do not need to be customized or extended to obtain this 

information, but knowledge about the used protocols can reduce the performance overhead of packet inspection. The 

second contribution of this paper is an evaluation of the presented data collection mechanism. We show that a 

number of simulated anomalies manifest themselves in the resulting metrics. 

The remainder of the paper is organized as follows. The following section presents related research in the field of 

deep package inspection and anomaly detection. Section 3 describes the presented approach in detail, while section 4 

presents an evaluation thereof. 

2. Related Work 

Much related work has been conducted in the field of deep package inspection and automated protocol analysis. 

M. Danelutto et al. show in their work2 how package inspection is possible on commodity server hardware using a 

skeleton-based parallel programming library targeting efficient streaming on multi-core architectures. Using their 

framework the authors show that package inspection for packets with 60 byte payloads can be performed with a 

commodity Intel 10 Gbit network card. 

Anat Bremler-Barr et al. identify DPI as a common task for middleboxes that inspect application layer packets 

many times during their route from sender to the final destination3. Since most middleboxes perform similar 

analyses to implement traffic control and QoS measurements, the authors propose a DPI-as-a-service infrastructure 

to reduce the total overhead of repeated packet inspection. The proposed infrastructure can lead to improved 

performance, scalability and robustness, showing that DPI has become mature and fast enough to be executed even 

as a standalone service. 

Further research shows that the application layer protocol used by packets can be identified in real-time using 

DPI4,5,6. 

3. Approach 

An exemplary infrastructure illustrates the proposed data collection approach and follows a typical cloud deployment 

used both by IaaS providers and in private clouds hosting Virtualized Network Function services. The services run on 

virtualized hardware and network resources provided by the cloud operating system OpenStack7 and complementary 

Software Defined Networking (SDN) components. Open vSwitch8 manages the virtual network connecting all VMs.  

Figure 1 shows the basic structure of the network architecture inside a physical compute node managed by 

OpenStack. It illustrates two virtual machines within one hypervisor connected to various Open vSwitch bridges. A 

dedicated monitoring agent implements the data collection by sniffing packets on the tap interface of every relevant 
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virtual machine. The tap interface transfers every packet received and sent by the virtual machine, after being filtered 

by the Security Groups mechanism of OpenStack. Security Groups implement a simple rule-based firewall managed 

by the owner of the virtual machine. Malicious or unintended packets are dropped at this point, resulting in increased 

anomaly detection precision when analysing packets on the tap interface. Detecting malicious activities is not the 

focus of application-layer anomaly detection, and is left for dedicated Intrusion Detection Systems (IDS). 

 

 

Figure 1: Hypervisor Structure 

The data collection agent analyses the observed traffic and extracts metrics that are specific to different Layer 7 

protocols. The used protocols can be inferred in real-time4,5,6, but the performance overhead can optionally be reduced 

when this information is provided by the user. This knowledge allows an additional optimization which is to only 

analyse traffic on specified ports that belong to relevant application layer protocols. In a well-configured OpenStack 

environment, such information can be obtained by analysing all security groups, since they explicitly whitelist all 

connections expected between service instances. 

For every relevant application layer protocol, the data collection agent counts the occurrence of specific messages 

and reports how often each class of messages is observed in a configurable time interval. The message classes 

depend on the specific protocol and in order to maintain an appropriate number of metrics, some message classes 

have to be grouped into one. HTTP communication, for example, consists of requests and responses, where the 

response can contain one of dozens standardized status codes. Instead of counting every code individually, the codes 

are grouped by their first digit: 1xx, 2xx, 3xx, and so on. This results in 5 metrics that provide a good approximation 

of the operation of an HTTP server. A simliar grouping mechanism is used to track the Session Initiation Protocol 

(SIP)9. In addition to protocol specific metrics, the data collection agent provides generic information for every 

observed port, like the number of transmitted packets and bytes. 

Table 1 gives an overview over the metrics obtained from the SIP protocol. The SIP-protocol is use commonly in 

IP-telephony such as VoIP. SIP controls the multimedia sessions and handles creation, termination and modification 

of media streams such as voice-connections. It is a text-based protocol using elements of Hypertext Transfer 

Protocol (HTTP). The data collection agent is written in Python using the scapy library*. The collected statistics are 

recorded every 500 milliseconds. 

 

 
* https://github.com/phaethon/scapy 
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Table 1: abstracted features from SIP protocol handler 

Feature Names Description 

Overall packets 

Registrations 

Return code 1xx 

Number of Packets 

Registration requests 

Indicates the request was valid and is being processed 

Return code 2xx Indicates successful completion  

Return code 3xx 

Return code 4xx 

Return code 5xx 

Return code 6xx 

Indicates a redirection is needed 

Indicates bad syntax or cannot be fulfilled 

Indicates server failure in processing request 

Indicates global failure 

4. Evaluation 

An evaluation inside a dedicated private cloud testbed demonstrates that a selected set of anomalies can be observed 

in the metrics produced by the proposed data collection approach. The testbed is based on OpenStack Kilo and runs 

Open vSwitch in version 2.41. The setup simulates an IaaS provider hosting customer services on five hypervisors 

and one OpenStack controller node, which is also running the OpenStack networking service. 

The client service is Project Clearwater10, an open source implementation of the IP Multimedia Subsystem (IMS). 

An IMS service uses the SIP protocol to establish sessions between clients. Figure 2 shows the architecture of Project 

Clearwater. The red box highlights the SIP communication channel between the two core components called Bono 

and Sprout. The data collection agent monitors the SIP communication on this connection. The Bono node acts as a 

client-facing SIP proxy, while Sprout implements the core IMS functionality. To fulfill its role, Sprout needs a working 

connection to Homestead to obtain information about registered clients.† 

The SIP benchmarking client sip-stress‡ continuously exchanges SIP messages with the Bono node, which also leads 

to traffic on the Sprout and Homestead components. 

 

 

 

 

 
‡ http://clearwater.readthedocs.io/en/stable/Clearwater_stress_testing.html 

Figure 2: Excerpt of the Project Clearwater Architecture including connection protocols 
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virtual machine. The tap interface transfers every packet received and sent by the virtual machine, after being filtered 

by the Security Groups mechanism of OpenStack. Security Groups implement a simple rule-based firewall managed 

by the owner of the virtual machine. Malicious or unintended packets are dropped at this point, resulting in increased 

anomaly detection precision when analysing packets on the tap interface. Detecting malicious activities is not the 

focus of application-layer anomaly detection, and is left for dedicated Intrusion Detection Systems (IDS). 
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Two anomalies are injected into the running system to test the reaction of the collected metrics: 

1. Increasing the network latency of the virtualized NIC of the Sprout VM by 150ms. This anomaly represents 

a degraded state of a network component which does not result in system crashes but reduces the performance 

of the system. 

2. Stopping the Homestead service running on a separate virtual machine. This anomaly affects the entire 

Clearwater installation, since client registrations are not possible anymore. Therefore, the anomaly propagates 

to the Sprout and Bono component, and finally to the client of the system. 

 

One evaluation experiment consists of two steps. First, the data collection agent records data during normal system 

operation for one minute. Afterwards, one of the above anomalies is injected and the system state is observed for 

another minute, before reverting the anomaly. This procedure is repeated ten times. 

Figure 3a shows two box plots summarizing all measurements of the number of registrations per second with and 

without the increased latency anomaly. The amount of registrations per second is reduced while the anomaly is active. 

Figure 4a shows the development of the registrations per second metric within one exemplary evaluation run.  

Figure 3b shows the number of success return messages during normal operation and after stopping the Homestead 

service. Since the Clearwater is unable to correctly process client authentication requests, the number of success 

messages rapidly drops to zero. Figure 4b shows the successful return messages during one run of the experiment. 

This evaluation suggests that the selected anomalies are manifested in the metrics produced by the proposed data 

collection technique. The resulting metrics are therefore valuable input features for anomaly detection mechanisms in 

practice. 

Figure 3a: Registrations per second, increased latency 

Figure 4a: Registrations per second, increased latency (one run) Figure 4b: Success messages per second, Homestead service stopped (one run) 

Figure 3b: Success messages per second, Homestead service stopped 
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5. Conclusion 

This work presents an approach for collecting metrics about the operation of virtualized services with minimal 

interference. This allows IaaS service providers to offer anomaly detection as a service to their clients, as well as 

generic anomaly detection mechanisms in private clouds. The presented approach is evaluated by injecting 

anomalies in a dedicated cloud testbed. 

Future work on this topic includes further evaluations of DPI based metric collection in combination with online 

anomaly detection approaches. Handling more application layer protocols will extend the approach to a wider range 

of virtualized services. An extended evaluation in a fully loaded 10Gbit network on commodity hardware will 

further support the practical application of the presented approach. 
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1. Increasing the network latency of the virtualized NIC of the Sprout VM by 150ms. This anomaly represents 

a degraded state of a network component which does not result in system crashes but reduces the performance 

of the system. 

2. Stopping the Homestead service running on a separate virtual machine. This anomaly affects the entire 

Clearwater installation, since client registrations are not possible anymore. Therefore, the anomaly propagates 

to the Sprout and Bono component, and finally to the client of the system. 

 

One evaluation experiment consists of two steps. First, the data collection agent records data during normal system 

operation for one minute. Afterwards, one of the above anomalies is injected and the system state is observed for 

another minute, before reverting the anomaly. This procedure is repeated ten times. 

Figure 3a shows two box plots summarizing all measurements of the number of registrations per second with and 

without the increased latency anomaly. The amount of registrations per second is reduced while the anomaly is active. 

Figure 4a shows the development of the registrations per second metric within one exemplary evaluation run.  

Figure 3b shows the number of success return messages during normal operation and after stopping the Homestead 

service. Since the Clearwater is unable to correctly process client authentication requests, the number of success 

messages rapidly drops to zero. Figure 4b shows the successful return messages during one run of the experiment. 

This evaluation suggests that the selected anomalies are manifested in the metrics produced by the proposed data 

collection technique. The resulting metrics are therefore valuable input features for anomaly detection mechanisms in 

practice. 

Figure 3a: Registrations per second, increased latency 

Figure 4a: Registrations per second, increased latency (one run) Figure 4b: Success messages per second, Homestead service stopped (one run) 

Figure 3b: Success messages per second, Homestead service stopped 

 Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, Feng Liu / Procedia Computer Science 00 (2015) 000–000 6 

5. Conclusion 

This work presents an approach for collecting metrics about the operation of virtualized services with minimal 

interference. This allows IaaS service providers to offer anomaly detection as a service to their clients, as well as 

generic anomaly detection mechanisms in private clouds. The presented approach is evaluated by injecting 

anomalies in a dedicated cloud testbed. 

Future work on this topic includes further evaluations of DPI based metric collection in combination with online 

anomaly detection approaches. Handling more application layer protocols will extend the approach to a wider range 

of virtualized services. An extended evaluation in a fully loaded 10Gbit network on commodity hardware will 

further support the practical application of the presented approach. 
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