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ABSTRACT 

 
Objective. The statistical analysis of Functional Near Infrared Spectroscopy (fNIRS) data based on the General 

Linear Model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic 

response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of 

hemodynamic activations without using any a priori model for the data, by classifying the channels as “active” or 

“not active” with a multivariate classifier based on Linear Discriminant Analysis (LDA). Approach. This work is 

developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which 

simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This 

procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real 

resting-state data, the correlations between classification accuracy and demographic characteristics were 

investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the 

newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor 

task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis. Main Results. 

The results of the simulation study show that the LDA-based method achieves higher classification accuracies than 

the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the 

accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic 

characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation 

study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results. 

Significance. The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of 

theoretical assumptions, and that therefore a data-driven approach such as that provided by the proposed LDA-

based method is to be favored. 



 

Index Terms— fNIRS, GLM, LDA 

 

 

 

1. INTRODUCTION 

 

Functional Near Infrared Spectroscopy (fNIRS) is a non-invasive neuroimaging technique based on the 

measurement of the optical absorption of cerebral blood. Thanks to the different absorption spectra of oxygenated 

and deoxygenated hemoglobin (HbO and HbR, respectively) in the near-infrared region of the electromagnetic 

spectrum (650-900 nm), it is possible to estimate the relative changes of oxygenation and blood perfusion in the 

human head, and therefore the level of oxygenation in the area of interest in response to a specific task [1], [2]. 

 

Although it is a relatively young technique, fNIRS is used in a wide range of fields, including (among many others) 

language studies, social interaction, and motor studies. Some features, such as portability, relative inexpensiveness, 

make fNIRS particularly advantageous over other functional techniques like Functional Magnetic Resonance 

(fMRI) for certain populations of subjects, for example infants and children [3], [4],[5] 

 

In a standard task-related fNIRS experiment, the subject usually performs several trials of one or more experimental 

conditions. After acquisition, data need to be pre-processed to remove cardiac and respiratory-related oscillations 

and possibly artifacts, and then the raw light-intensity data are converted into hemoglobin concentration changes 

through a modified Beer-Lambert law. To assess if a task induced a significant increase in the local neuronal 

activity, typically a general linear model (GLM) is employed to model the hemoglobin data Y (HbO, HbR, or Hb 

total) as Y = Xß + ε, where X is the design matrix obtained by convolving the stimulus design with the expected 

hemodynamic response [6], ß are the regressors representing the effect of each condition on the responses, and ε is 

the measurement error [7]. 

 

An issue that has received substantial attention is that valid estimation of ß requires that ε have zero mean and be 

spherical (i.e., it must be “white noise”) [8]; these assumptions usually are greatly violated by fNIRS data, due to 

physiological noise, temporal and spatial correlations in the measurement data, and presence of artifacts. For these 

reasons, the GLM method is susceptible to yielding high false discovery rates. One strategy to overcome the 

problem is to remove structured noise from the residual term by filtering the data with a whitening filter based on 

the autoregressive model of the data [8], [9]. In contrast, largely unaddressed is the issue of inter- and intra-subject 

variability of the hemodynamic response; if the time course of the “expected” hemodynamic response used to 

generate X is not a good approximation to the one that actually underlies the data Y, then a true condition-induced 

change in neural activity could remain undetected. This is an especially relevant concern when data from very young 



subjects, or from a particular clinical population that under certain circumstances show atypical hemodynamic 

responses [9]. 

 

A strategy for addressing the variability in shape of the real hemodynamic response is incorporation of temporal 

and dispersion derivatives into the model [6]. The rationale for this procedure is that the additional regressors can 

capture the variance arising from small differences in the duration of the response and regress it out of the data. 

However, the method is time consuming and it complicates the interpretation of results, especially in group-level 

analyses [11], [12], [13]. 

 

As an alternative to the model-based approach, we propose to use a multivariate classifier based on Linear 

Discriminant Analysis (LDA) [10] to distinguish two classes of NIRS signals that we will call “active” and “not 

active”. LDA has several features (low computational requirements, good performances, easy to use) that make it 

suitable for Brain Computer Interface (BCI) applications, the field where at present it is most frequently used [11]. 

Here we want to assess if its characteristics make it also a convenient tool for offline statistical analysis in quest of 

interpreting hemodynamic patterns with respect to the experimental conditions that elicited them. 

 

The advantage of using a classifier for this purpose is that no assumptions on the structure of the noise are necessary, 

and that no prior knowledge of the shape of the expected hemodynamic response is needed. Furthermore, while 

GLM is a univariate approach to data analysis, in that time series of HbO, HbR or HbTot are considered 

independently of each other, in LDA information regarding the simultaneous variations of two or more hemoglobin 

components can be combined in a multivariate strategy. In fact, the use of combined features from HbO and HbR 

has been already reported to achieve higher accuracy than the use of separate features [16]. In this way, the analysis 

would yield a single metric for “activation” for each channel, and this would be easier to test than separately testing 

ß coefficient from HbO and HbR, especially at group-level. In addition, comparisons between the results yielded 

by the (data-driven) classifier and (model-based) GLM may be informative in the sense that the classifier might 

identify unpredictable effects that elude the model-based analysis. For example, in a case where GLM analysis 

reports a channel as “not active”, the availability of LDA results could facilitate the process of deciding whether 

activation truly was absent (i.e., because LDA also classified the channel as “not active”) or if the hemodynamic 

model used for GLM was not optimal (i.e., because LDA classified it as “active”). 

 

The present work comprises two steps: the first is a comparison of the proposed LDA-based method with canonical 

GLM analysis. In order to do this, an extensive volume of simulated data is used to characterize the two algorithms 

in terms of receiver operator curves (ROC) when no systemic oscillation is present (i.e., simulated hemodynamic 

responses were added to simulated resting-state data) or when a considerable amount of systemic oscillation is 



present (i.e., simulated hemodynamic responses were added to experimental resting-state data); the real-data results 

also were used to characterize the impact of inter-subject variability on the outcomes of the classification analyses. 

Second, the two algorithms were used to analyze and classify the task-induced activations in a set of experimental 

data. 

 

2. METHODS 

In order to compare the performances of the LDA-based and GLM-based methods under controlled conditions, 

sensitivity and specificity were quantified by recovering a known synthetic hemodynamic response added to either 

synthetic or real resting-state data. This approach has been used in several reports [8],[9],[17],[18] and its 

particularly suited for studies that make use of ROC analysis, because it permits an exact quantification of true and 

false discovery rates. In a second step, the two analysis pipelines were applied to real experimental data and channel-

wise statistical assessments of each subject were compared. 

 

Figure 1 reports a summary description of the whole procedure followed in this work. Figure 2 shows how known 

hemodynamic responses were added over resting state time traces.  

 

 

Figure 1: In each iteration, data are simulated, based on either synthetic or real resting-state data; HbO and HbR (red and blue 

time traces in the “Synthetic dataset” panel, respectively) were analyzed with GLM or LDA, and ROC analysis was performed 

to compare the classification accuracies. The simulated HRFs vary in shape and size, and 30% of them are characterized by a 

“double bump” as a simplified model of stimulus-locked Mayer waves. 

 



 

Figure 2: (A) Example of how simulated HRFs are created (black line) and added to a real resting-state time trace (dark grey 

line). The top trace is a simple HRF while the bottom trace contains a double bump. (B) The red time trace represents the HbO 

signal before the hemodynamic activations are added; the grey and blue ones are, respectively, the time traces after a simple 

HRF or a double-bump HRF have been added. 

 

 

 
2.1 THEORETICAL FORMULATION 

 

2.1.1 Generation of the synthetic dataset  

5000 datasets of NIRS data were iteratively simulated by combining temporally correlated (“colored”) noise and 

synthetic hemodynamic response functions (HRFs). 

 

Baseline noise was produced by first generating white noise, then imposing temporal correlation on it by employing 

an autoregressive model of order 30, via tools in the fNIRS toolbox. [8] 

 

Each dataset contained 20 channels, and synthetic HRFs were added to the resting state for half of them (i.e., 

Channels 1-10). Channels that include synthetic HRFs in their HbO and HbR data called “active” and the others are 

“not active”. For the “active” channels, ‘Start’ and ‘Stop’ markers were created according to an experimental 

paradigm with 3 episodes, each of 10 seconds duration. The position of the ‘Start’ markers was randomized, with 

the constraint that successive ones were separated in time by at least 35 seconds. The total duration of each time 

series was 4 minutes, at a sampling frequency of 7.81 Hz. 

 

To model the inter- and intra-subject variability of real hemodynamic responses, synthetic evoked HRFs had 

variable size and shape across subjects and channels. While each HRF had the mathematical form of a canonical 



HRF [6], their peak amplitudes ranged from 0.01 to 0.1 µM [18], while, based on experience and existing literature 

on the variability of the hemodynamic response [19], the onset-to-peak times ranged from 2 to 8 seconds and the 

onset-to-undershoot times ranged from 14 to 18 seconds..  

 

Positive-going synthetic HRFs (see Fig. 1A) were added to the resting-state data for the HbO time series. The 

synthetic HRFs added to the corresponding HbR resting-state data had the same form as those for HbO, but were 

50% reduced in magnitude and reversed in algebraic sign (i.e., they were negative-going). In addition, for 30% of 

the “active” channels in each dataset the synthetic HRF included a “double bump” (see Fig. 1A), as an elementary 

model of systemic hemodynamic activity time-locked with the experimental condition. An example of this sort of 

additional activity that frequently is present in experimental data is so-called “Mayer waves,” which are systemic 

oscillations originating in the superficial tissue layers [20], and which occur, more or less prominently, at ~0.1 Hz 

frequencies. Such oscillations are particularly difficult to treat in a GLM-analysis framework, owing to their 

extensive spectral overlap with typical event-related activity (i.e., they cannot be eliminated via straightforward 

frequency filtering) [21]. 

 

The use of synthetic baseline noise has the clear benefit that a large volume of data can be created, and it allows us 

to benchmark our methodology against recent literature on the topic [8], [9]. However, synthetic data might not 

capture all the properties of real physiological data. Therefore we complemented the synthetic-data analysis by 

using experimental resting-state data as baseline noise. For this purpose, 15 young adults (mean age  SD: 28.1 ± 

4.0 years old; age range: 23-38; 11 women, 4 men) participated in the collection of 4 minutes of resting-state data. 

For a subset of the participants, this measurement was followed by the motor-task study that was used in a later 

stage of this analysis (see §2.2.1 for descriptions of the experimental setup and data collection). 

 

Experimental resting-state recordings were used as a source of real physiological and correlated data, and were 

employed in the same manner as described above for the synthetic resting-state data, namely by performing 5000 

randomizations of the positions of the ‘Start’ markers and adding simulated HRFs of variable shapes and amplitudes 

to only Channels 1-10 (left hemisphere), and labeling those channels as “active”. 

 

2.1.2 Data analysis 

Pre-processing 

Both simulated and real data underwent the same pre-processing steps. Hemoglobin concentration changes were 

calculated using the modified Beer-Lambert law (Differential Pathlength Factor (DPF): 6 , absorption coefficients 

(µa, cm-1-M-1) for HbO: µa(760 nm) = 1349 and µa(850 nm) = 2436, for HbR: µa(760 nm) = 3565 and µa(850 nm) = 

1592). 



Data was bandpass filtered in the range [0.01 – 0.2] Hz, with a zero-phase distortion digital FIR filter designed and 

implemented, respectively, with the MATLAB commands firls and filtfilt. 

 

For the subsequent statistical analysis, filtered data was used for the LDA analysis, in accordance with most fNIRS-

based BCI literature [22], while unfiltered data was used for the GLM computations because it has been reported 

that frequency filtering can produce biased estimates of the regressors [8]. In this way, both methods were used at 

their optimal settings. 

 

Analysis with GLM 

GLM was applied using the autoregressive iteratively reweighted least squares algorithm available in the fNIRS 

toolbox. This algorithm is reported to efficiently remove serial correlations from data, thereby achieving an 

acceptable false discovery rate [9]. HbO and HbR time traces were analyzed independently. 

 

After the regressors ß are estimated, the null hypothesis that there was no hemodynamic response (H0: β =0) is 

tested by defining a contrast vector (c) and calculating the channel-wise t-statistic via the formula [7]: 

 

𝑡 =  
𝐜Tß

√𝐜 T cov(ß)  𝐜
.                (Eq.1) 

 

In this case, with only one experimental condition to be tested, the contrast vector would be [1 0], with the second 

column referring to the constant column added to the GLM design matrix. The p-values corresponding to the t-

statistics from Eq. 1 were computed via two-tailed t-tests. 

 

Analysis with LDA 

For each HbO and HbR time series, trials were defined as the signal in the 15-second time interval following each 

‘Start’ marker. Each trial was baseline-corrected by removing the mean value of the signal over the 3-second interval 

prior to stimulus onset. Channel-wise block averages were obtained by averaging across all trials within each 

channel. 

 

Features were extracted from the channel-wise block averages (Figure 3A). To do this, a 3-seconds-wide window 

was moved through the block-average time series in 1-second steps and the mean value and mean slope (computed 

as the change in signal amplitude over the time window divided by its size in number of samples) were computed 

within each window, yielding a 30-features vector (2 features x 15 windows) for each of HbO and HbR. Each  

 



 

 

feature vector was normalized to zero mean value and unit variance. Then the HbO and HbR feature vectors were 

concatenated, resulting in a 60-features vector that was used for the classification (Figure 3B). 

 

Channels were classified as “active” or “not active” with Regularized Linear Discriminant Analysis, via tools 

available in the Berlin Brain-Computer interfacing (BBCI) toolbox [23], [24]. Ten repetitions of 4-fold cross 

validation was performed: 20 trials (10 “active” channels and 10  “not active” channels) were separated into 4 folds, 

with three folds used for training and the remaining fold as the test dataset. The procedure was repeated 10 times. 

Each feature vector 𝐱 ∈  ℝ𝑁  is assigned an output by the application of the formula of the separating hyperplane 

characterizing the LDA classifier [23]: 

 

𝐰T𝐱 + 𝑏 = 0                   (Eq.2) 

 

where w is the projection vector characterizing the classifier and b is a bias term. The projection vector w is 

calculated based on the difference between the estimated mean values of the two classes and the common covariance 

Figure 3: A: Block averages of HbO (left) and HbR (right) signal used for feature extraction; dashed lines represent the 1s 

steps used for the moving-window computation of amplitude and slope. B: Features vectors are obtained from the block 

averages by computing mean and slope of the signal over a sliding window of 3 s duration with 1 s steps, resulting in a 30-

features vectors that were then normalized and concatenated to produce the 60-features multivariate (HbO + HbR) classifier. 

Grey lines represent individual trials, black lines highlight the mean value of the feature vectors corresponding to “active” 

channels, and blue lines highlight the mean value of the feature vectors corresponding to the “not active” channels. Values of 

the y axis are normalized values. 



matrix (for further details about binary linear classifiers, see [25] [26]). The bias term b is chosen such that the 

separating threshold between the two classes is 0; therefore the classification function assigns each vector x a class 

label according to the algebraic sign of the output, sign(𝐰T𝐱 + 𝑏). In this implementation, the class “not active” 

was assigned to negative or zero outputs and class “active” was assigned to positive outputs. 

 

Evaluation of performance 

The performances of the GLM analysis and the LDA-based method were evaluated by computing receiver operating 

characteristic (ROC) curves. ROC curves for the GLM results were computed by varying the significance threshold 

for the t-test p-values, from 0 to 1 in increments of 0.001, and computing the corresponding false positive rate and 

true positive rate for each threshold. ROC curves for the LDA results were computed by comparing the distributions 

of output values of “active” and “not active” channels. We defined a significance threshold, varying from 0 to 1 in 

increments of 0.001, in the following manner: On the distribution of “not active” outputs, we defined a reference 

value as the percentile corresponding to the considered threshold. We defined as True Negatives (TN) the samples 

of the “not active” distribution that were smaller than the reference value, False Positive (FP) the samples of the 

“not active” distribution that were equal or greater than reference value, True Positives (TP) the samples of the 

“active” distribution that were equal or greater than the reference value and False Negative (FN) the samples of the 

“active” distribution that were smaller than the reference value. We repeated the procedure by sliding the reference 

value until 100% of the “not active” distribution was covered (i.e., significance threshold = 1). For example, by 

setting the threshold at 0.05, we computed the reference value on the distribution of “not active” outputs 

corresponding to its 5% percentile, and based on this reference value we computed TP, TN, FP, FN at p = 0.05. 

 

For both GLM and LDA, classification accuracy was computed as the rate of correct classifications, 

(TP + TN)/(TP + TN + FP + FN), at p = 0.05. In order to investigate the impact of double-bump HRFs on 

classification accuracy, we conducted two separate analyses on the two subsets of data characterized by, 

respectively, only HRFs with no-double bumps and only HRFs coupled with double-bumps. 

 

Analysis of the correlation between subject demographics and classification accuracy 

Subject demographics such as gender, age and chronobiology have been reported to play a role in the cerebral 

metabolism [27],[28],[24],[25], and therefore we tested for correlations between the individual-subject 

classification accuracies and each subject’s characteristics. To do so,  a linear mixed effects (LME) model was fitted 

in Matlab 2017, with a random intercept for each participant and fixed effects for age, gender, hair color (two levels: 

Blond, Brown), and time-of-day of the measurement (three levels: 10 AM – 1 PM, 1 PM – 3 PM, 3 PM – 6 PM): 

 

Accuracy ~ Age + HairColor + Gender + TimeMeasurement + (1|Participant) 



This analysis was carried out for LDA (HbO+HbR), GLM (HbO) and GLM (HbR) separately. Analysis of variance 

(ANOVA) was performed on each model to test the significance of the effects (error DF = 10 (15 observations 

minus 5 modelled effects)). 

 

2.2 APPLICATION OF THE ALGORITHMS TO EXPERIMENTAL DATA 

To provide a practical example of use of the proposed algorithm and compare it with the GLM analysis in the 

framework of a real experiment, a paradigm was chosen—finger tapping—that has a well-known effect on the 

motor cortex. In particular, it is expected to elicit a recognizable and significant response in the primary motor 

cortex (M1, Brodmann area 4, likely to underlie the C3/C4 positions of the EEG 10-20 system) and the premotor 

cortex (PMC, Brodmann area 6, likely to underlie the FC3/FC4 positions) [31]. 

 

2.2.1 Experimental setup and data collection 

Seven healthy young adults (a subset of the 15 participants in the preceding study; meanSD age 26.0±2.3 yr, age 

range 23-30 yr; 5 female, 2 male) participated in this study. The experiment consisted of 16 episodes of finger 

tapping (8 left, 8 right, alternating), each of 10 s duration, with 20 s rest periods between successive episodes. Before 

the experiment began, the subject was required to sit quietly for the collection of 4 minutes of resting-state data. 

 

NIRS recordings were conducted with a NIRSport system (NIRx GmbH, Berlin, Germany), with sampling 

frequency 7.81 Hz, at wavelengths 760 nm and 850 nm, with 8 sources and 8 detectors. Sources and detectors were 

placed into a cap (EASYCAP, Herrsching, Germany), arranged according to the International 10-20 system. The 

source-detector distance was 2.5-3 cm, to form 20 channels evenly distributed between the hemispheres. A spatial 

sensitivity profile was calculated based on the Monte Carlo photon migration modeling available in the AtlasViewer 

software [32], to prove that the probe design was selective for the regions relevant to the finger tapping task 

(underlying the 10-20 positions FC3/FC4 and C3/C4). The Monte Carlo modeling was performed with 106 photons. 

Figure 4 shows the probe arrangement and the resulting sensitivity profile. Additional details about the probe 

arrangement are available in the Supplementary Material. 



 

Figure 4: (A) Probe setup. The arrangement of optodes follows the 10-20 standard and the placement is analogous in the other 

hemisphere. Red dots indicate the sources, blue dots indicate the detectors, and yellow lines indicate the formed channels. (B) 

Sensitivity profile of the probe setup.  

 

2.2.2 Data Analysis 

The data analysis aims at identifying which channels are significantly activated by the motor task and can therefore 

be labeled “active”, as opposed to the “not active” channels that are not significantly activated by the task. For this 

reason, no distinction was made between left and right-hand finger tapping. The data was analyzed with the GLM 

analysis and the LDA-based method described in the previous section. 

 

Analysis with GLM 

For the GLM analysis, the stimulus times of the task were convolved with a canonical hemodynamic response 

function (peakTime = 6s) to produce the single column (“Task” condition) of the design matrix. A GLM was applied 

using the autoregressive iteratively reweighted least squares algorithm available in the fNIRS toolbox [8]. 

 

Analysis with LDA 

For the LDA analysis, amplitudes and slopes were computed for each  episode of finger tapping. For the “Rest” 

condition, an equal number (n = 16) of time intervals were produced by randomly sampling the initial 4 minutes of 

resting-state data of each measurement, and features were extracted. The sampling of “Rest” trials and the 

classification Task vs. Rest was iterated 2000 times for each channel and for each subject, to ensure robustness of 

the analysis. Ten repetitions of 4-fold cross validation were conducted and each of the 32 trials (16 task and 16 rest) 

was assigned a classifier output via Eq. 2. 

 

 

 



2.2.3 Statistical Analysis 

The results of the GLM analysis were statistically assessed by computing the channel-wise t-statistics (Eq.1) from 

the resulting ß values, then testing them via two-tailed t-tests. The outputs of the LDA analysis were divided into 

“Task” and “Rest”, then averaged over folds and over repetitions, and tested by comparing the two distributions 

(Task and Rest). The rationale of this procedure is that, if the task elicited a hemodynamic response and the classifier 

had a good discrimination between “Task” and “Rest”, then the distributions of the outputs should be well separated 

and the channel will be labeled as “active”. If, on the contrary, the two distributions are not well separated, it means 

that for that channel the execution of the task did not elicit a response substantially different from the resting state, 

and the channel will be labeled as “not active”. As explained in Section 2.1.2, the class label “active” is assigned to 

positive outputs, while “not active” to the negative outputs. Therefore, the channel-wise p-value in this case was 

computed as the fraction of “Rest” outputs equal or greater than the mean value of the distribution of the “Task” 

outputs [33]. 

 

3. RESULTS 

THEORETICAL FORMULATION 

Performance of the algorithms: overall classification accuracies 

Our first goal was to theoretically compare the two algorithms in terms of overall classification accuracy, both on 

synthetic and on real data. The other important objective was to evaluate whether, with real data, the achieved 

results are consistent across subjects, and to evaluate the impact of inter-subject variability on the performance of 

each algorithm. 

  

Figure 5A shows the ROC curves obtained using synthetic and real resting-state data. In both cases the LDA 

classifier based on HbO+HbR features outperforms GLM applied to either HbO or HbR, with results tabulated in 

Figure 5B. A difference between GLM results for synthetic and real resting-state data is also seen, in that 

GLM(HbO) is more accurate than GLM(HbR) in the former case, while GLM(HbR) is more accurate than 

GLM(HBO) in the latter. We speculate that this difference indicates that the synthetic data do not entirely represent 

the properties of the real physiological data. For example, it certainly does not reflect the frequency structure of the 

resting-state signal, or its spatial dependence across the different channel positions. In addition, the temporal 

correlation in the synthetic data was imposed by using an autoregressive model of fixed order (N = 30) [8], which 

doesn’t account for the variability that can be found in real data from different subjects. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: A) ROC curves for GLM and LDA, using HbO, HbR and HbO+HbR features (only for LDA). The curves for 

the real resting-state data (solid lines) are obtained by averaging the individual curves across subjects, while dotted lines 

refer to the completely synthetic dataset. B) The table reports the mean classification accuracies, over all iterations, of 

the three algorithms applied to synthetic and real resting-state data. The classification accuracy is computed from the 

ROC curves at the false positive rate of 0.05.  

 

Overall mean classification accuracy at p = 0.05 

 
Synthetic 

resting state 

Real resting 

state 

LDA(HbO+HbR) 85.25 % 78.76% 

GLM(HbO) 79.08 % 65.76% 

GLM(HbR) 67.75 % 70.29% 

 

Figure 6: A) Individual classification accuracies for the real-resting-state datasets, for LDA(HbO+HbR), GLM(HbO), and 

GLM(HbR) (left, middle, right). The red line indicates the mean accuracy reached by each algorithm over all the subjects. 

The errorbars represent the standard error of the mean for each individual subject, over all the iterations performed. The 

individual mean accuracies achieved by the LDA method is significantly higher than those achieved by the GLM(HbO) 

(p = 0.0002) and GLM(HbR) (p = 0.01), but no significant difference was found between GLM(HbO) and GLM(HbR) 

(p = 0.24, Repeated Measures ANOVA 1-way with Fixed Effect: “Analysis Method”). Also, the individual standard errors 

of the mean yielded by the LDA are significantly lower than those achieved by the GLM(HbO) and GLM(HbR) (p=0.021 

and p=0.022, respectively), but no difference was found between those yielded by GLM(HbO) and GLM(HbR) (p=0.97). 

B) Classification accuracies computed on two subsets of the real-resting-state datasets, one completely free from Mayer-

wave oscillations and the other one with all the HRFs tainted by double-bumps. For the LDA, there is no significant 

difference between the accuracies reached in presence and absence of Mayer waves (paired t-test, p = 0.44), while for the 

GLM the difference was statistically significant (GLM(HbO), p <0.001, GLM(HbR), p <0.001). 



 

To further investigate the performances of the three methods, we computed the classification accuracies for each 

subject individually (Figure 6A). The barplots indicate the classification accuracy as computed from the individual 

subjects’ ROC curves at p = 0.05, and the red line indicates the mean accuracy over all subjects, respectively 

(meanSD) 78.76±5.1% for LDA(HbO+HbR), 65.76±10.2% for GLM(HbO) and 70.29± 8.9% for GLM(HbR), the 

standard deviation being computed across the 15 subjects. The individual errorbars represent the standard error of  

the mean across the 5000 repetitions. Finally Figure 6B shows the classification accuracies computed on two 

separate sets of data: data for all the channels that did not have Mayer waves modeled (i.e., no “double bumps” 

[Fig. 1A]) and data for all the channels that did have them. In this case, for the data without Mayer waves we found 

that LDA achieves an accuracy of 79.1±6%, GLM(HbO) 77.8±9.3% and GLM(HbR) 82.4±8.2%, while for data 

with Mayer waves, the accuracy decreases to 77.0±11% for LDA, 62.4±7.5% for GLM(HbO) and 64.8±6.8% for 

GLM(HbR). 

Correlation between classification accuracies and individual measures 

The goal of this analysis was to quantitatively assess the impact of individual characteristics (hair color, gender, 

age), and of  the measurement time of day, on the individual classification accuracy. Table 1 shows the results of 

the LME analysis. The model shows a significant correlation between Hair Color and individual accuracies for 

GLM(HbR), but not for any of the other fixed effects in the model, and there are no significant correlations for 

either LDA or GLM(HbO). Figure 7 reports distributions of individual accuracies grouped by hair color. More 

plots of accuracy distributions grouped by the other effects used in the model can be found in the supplementary 

material. 

  

 LDA: HbO + HbR GLM: HbO GLM: HbR 

 ß p-value ß p-value ß p-value 

Age 0.0042 0.1762 0.0010 0.8734 0.0068 0.1120 

Hair Color 0.0361 0.1875 -0.0936 0.1020 -0.1408 0.0052 

Gender 0.0038 0.1476 -0.0077 0.1552 -0.0026 0.4904 

Time of 

Measurement 
-0.0187 0.5109 0.0573 0.3308 -0.0072 0.7540 

Table 1: Results of the linear model fitted to the individual classification accuracies, with fixed effects: Age, Hair Color, 

Gender and Time of Measurement 



 

Figure 7: Distribution of individual classification accuracies within the two hair color (six blond and nine brown) subject 

classes. The accuracies reached by the GLM(HbR) are significantly higher for blond-haired subjects than brown-haired. More 

distributions for the other modeled effects can be found in the supplementary material. The central red marks represents the 

median values, the blue boxes extend from the 25th to the 75th percentiles, and the black whiskers extend to the most extreme 

data points not considered outliers (which are marked with red crosses). 

 

EXPERIMENTAL RESULTS 

Results from the experimental-data study are reported in Figure 8, as t-statistic values for GLM(HbO) and 

GLM(HbR), and classifier outputs for LDA, for p <= 0.05 threshold. White cells indicate that the channel did not 

reach statistical significance. 

 

 

Figure 8: Classifier results for the finger-tapping experimental data, for the three different analyses. GLM t-statistic values and 

LDA classifier outputs (the latter derived from application of the separating hyperplane formula) are thresholded at p ≤ 0.05. 

Blank cells indicate non-significant values (i.e., that the corresponding channel was classified as “not active”). The individual 

minimum value for statistical significance for the results of the LDA classifier varied across channels, ranging from 0.12 to 

1.18. The numbers of channels classified as “active” by the three analyses are significantly different (p = 0.01, 1-way repeated 

measures ANOVA). 



To better understand the source of the variability in the results, plots of the block-averaged trials for those channels, 

and topographic images of the channel-wise output values (LDA output values, and s for GLM HbO/HbR), were 

produced for each subject. The images were produced via the visualization tool available in nirsLAB v2017.06 [34] 

Plots for all subjects and corresponding output values are available in the supplementary material, while here only 

the plots for subject 1 and subject 2 are reported.  

 

Subject 1 

Subject 1 results are non-significant at p = 0.05 for every channel according to the GLM(HbO) analysis, and 

significant for channels 1, 4 and 16 in the GLM(HbR) analysis, while the great majority of channels are classified 

as “active” (p < 0.05) by the LDA classifier. 

 

In the plots of Table 2, we observe that the HbO time traces are greatly affected by the double-bump typical of the 

0.1 Hz systemic oscillation, and also that the first peak after stimulus occurs earlier than the onset-to-peak time of 

the theoretical model (6 sec). An enlarged depiction of block-average behavior for Channel 16 is shown in Figure 

9, together with the plots of the HRF model used in the GLM analysis and the block averages of the resting-state 

trials used by the LDA classifier. The resting-state HbO trace also includes a feature that is qualitatively similar to 

a hemodynamic response, but the task response is correctly discriminated from the resting-state time series 

nevertheless (p < 0.001). 

 

Not active for GLM – HbO (p = 0.5326) 

Active for GLM – HbR (p = 0.0006) 
Active for multivariate LDA classifier 

(p < 0.001) 

Figure 9: Block-average data for Subject 1, Channel 16. On the left the plot of the averaged signal is accompanied by the plot 

of the model used by the GLM analysis, namely a canonical HRF with peak time = 6s. On the right, the same plot is 

accompanied by the plot of an example of average of resting state trials against which the task trials are classified. 



Subject 2 

All channels of Subject 2 are classified as “active” (p = 0.05) in the GLM(HbO) analysis, while 6 of 20 are classified 

as “active” by the GLM(HbR) analysis, and 19 of 20 by the LDA classifier (Table 3, Figure 10). A depiction of 

Channel 5 is presented in Figure 10. While the activation is correctly classified by the GLM(HbO) analysis, the 

same doesn’t happen for the HbR. We speculate that the reason may be that the peak of the response is quite delayed 

(around 14 seconds post-stimulus) with respect to the 6 seconds assumed by the model. Nevertheless, the response 

is quite different from the resting state and the LDA picks up this difference, classifying the channel as “active”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding results for all subjects can be found in the supplementary material. For each subject, a table is 

reported with: 

  

- Topographic images of channel-wise GLM  values and LDA classifier outputs. Large positive(negative) 

 values indicate a good fit of the GLM model to the HbO(HbR) data, and a correspondingly better chance 

of that channel having a statistically significant hemodynamic response. LDA outputs are negative if the 

channel is classified as “not active” and positive is the channel is classified as “active”. Therefore, a large 

positive classifier output value indicates a good chance that the channel is labeled as “active”. 

 

Active for GLM – HbO (p = 0.0001) 

Not active for GLM – HbR (p = 0.5625) 
Active for multivariate LDA classifier 

(p < 0.001) 

Figure 10: Block-average data for Subject 2, Channel 5. 



- Block averages of the signal in response to the stimulus (read and blue curves for HbO and HbR, 

respectively). The shaded error bars indicate the standard error computed over the experimental trials. The 

GLM plots are accompanied by the canonical basis function used by the model; the LDA plots are 

accompanied by the block averages of the resting-state trials. The block averages are shown only for the 

channels covering the motor cortex. 

 

 

 

 

 



 

 
Table 2: Topographic images and block averages for all the analyses on Subject 1. 
 

 

 

SUBJECT 1 

 GLM - HbO GLM – HbR LDA 

-value 

images 

for 

GLM;  

 

classifier 

outputs 

for LDA 

   
Block 

averages 

for the 

“motor" 

channels: 

3: s1-d3 

5: s2-d3 

8: s3-d3 

9: s4-d3 

 

13: s5-d7 

15: s6-d7 

18: s7-d7 

19: s8-d7 

 

  

p < 0.001 

p < 0.001 

p =0.0051 

p < 0.001 p < 0.001 

p < 0.001 

p < 0.001 

p < 0.001 

not active (GLM - HbO) 

not active (GLM - HbR) 

not active (GLM - HbO) 

not active (GLM - HbR) 

not active (GLM - HbO) 

not active (GLM - HbR) 
not active (GLM - HbO) 

not active (GLM - HbR) 

not active (GLM - HbO) 

not active (GLM - HbR) 

not active (GLM - HbO) 

not active (GLM - HbR) 

not active (GLM - HbO) 

not active (GLM - HbR) 
not active (GLM - HbO) 

not active (GLM - HbR) 



 

 

Table 3: Topographic images and block averages for all the analyses on Subject 2 

 

SUBJECT 2 

 GLM - HbO GLM – HbR LDA 

-value 

images 

for 

GLM; 

 

classifier 

outputs 

for LDA 

   
Block 

averages 

of the 

motor 

channels: 

3: s1-d3 

5: s2-d3 

8: s3-d3 

9: s4-d3 

 

13: s5-d7 

15: s6-d7 

18: s7-d7 

19: s8-d7 

 
    

p (GLM - HbO)=0.0003 

not active (GLM - HbR) 

p (GLM - HbO)=0.0012 

not active (GLM - HbR) 

p (GLM - HbO)=0.0001 

not active (GLM - HbR) 

p (GLM - HbO)=0.0001 

not active (GLM - HbR) 

p (GLM - HbO)=0.0001 

not active (GLM - HbR) 

p (GLM - HbO)=0.0001 

not active (GLM - HbR) 

p (GLM - HbO)<0.001 

not active (GLM - HbR) 
p (GLM - HbO)=0.0057 

not active (GLM - HbR) 

p < 0.001 

p < 0.001 

p <0.001 

p < 0.001 p < 0.001 

p < 0.001 

p < 0.001 

p < 0.001 



4. DISCUSSION 

Statistical analysis of fNIRS data is often complicated by serial correlations, inter-subject variability of the 

hemodynamic response, and the presence of systemic oscillations and possibly motion artifacts. The study presented 

in this paper demonstrates that a data-driven approach (linear discriminant analysis, LDA) to data analysis is more 

robust than the most commonly employed model-based approach (general linear model, GLM) to many of these 

issues, and can therefore improve the detection of the hemodynamic activation. 

 

Advantages of the proposed LDA approach are that no assumptions on the structure of the noise are necessary, and 

that no prior knowledge of the shape of the expected hemodynamic response is assumed. The LDA method 

compares data from different temporal segments of the same recording; namely, it compares, within the same 

subject, time intervals corresponding to the resting state and to execution of the task. Thus it constitutes a self-

referencing approach, and in other fNIRS imaging contexts it has been shown that this data-analysis strategy can 

enhance detectability of effects that are small in comparison to other sources of intra- and inter-subject variance 

[35]. As such, LDA can generate information potentially superior, or at least complementary, to the information 

yielded by a model-based approach. For example, if LDA recognizes activation where the GLM doesn’t, it could 

mean that the GLM model does not accurately represent the real HRF, and it might be worth investigating why this 

is so. 

 

An additional strength of the multivariate LDA classifier proposed in this study is that it combines features from 

the simultaneous variations in HbO and HbR time series, while the GLM approach analyzes them independently. 

This results in the former yielding a univariate channel-wise metric for “activation,” while the latter yields separate 

beta coefficients for HbO and HbR. Performing statistical tests on a single metric is highly desirable, especially for 

group-level studies. 

 

To quantify and compare the classification performances of the three methods, we made use of both synthetic and 

real resting-state data. The use of synthetic data, for which the ground truth is known with certainty, also allowed 

us to benchmark our methodology against recent literature regarding GLM classification accuracy [9]. 

 

The multivariate LDA classifier yielded greater classification accuracy than GLM, for both the synthetic and real 

resting-state data (78.7% for LDA, 65.76 for GLM(HbO) and 70.3% for GLM (HbR), in the real resting-state data 

case [Figure 5A]). Moreover, we demonstrated that the LDA had less inter-subject variability, as illustrated in 

Figure 6A, where the standard deviation of individual results  was 5.1% about the mean for LDA, as opposed to 

10.2% for GLM(HbO) and 8.9% for GLM(HbR). In addition, the linear mixed model fit of individual-subject 

accuracies to predictors Age, Hair Color, Gender, and Time of Measurement revealed a significant effect only for 



Hair Color and only on the accuracy achieved with GLM(HbR) (blond-hair accuracy > brown-hair accuracy). The 

latter findings show that the observed differences between accuracies of the model-based and data-driven 

approaches is not simply accounted for by obvious (and easily absorbed into the classification model) demographic 

or physical characteristics of either the subject (e.g., gender) or the measurement (e.g., time of day). 

 

The LDA results also are less sensitive than those for GLM to the “double bumps” that were used to approximate 

Mayer waves synchronized with hemodynamic task responses (in the presence of double bumps, classification 

accuracy falls from 79.1±6% to 77.0±11% for LDA, from 77.8±9.3% to 62.4±7.5% for GLM(HbO), and from 

82.4±8.2% to 64.8±6.8% for GLM(HbR) [Figure 6B]). These results confirm that the GLM, at least when used 

with a fixed basis function for all subjects, as was the case here, is less successful than LDA at picking up individual 

variability and atypical activation patterns, and is at risk of false negatives. These results suggest the possibility that 

the model used does not accurately represent the real hemodynamic responses and that therefore a different model 

would need to be designed. In this respect, the results of the one analysis can be used in support of interpreting the 

results of the other.  

 

As a control study, additional simulations were performed to identify the classification performance of the LDA-

based method when applied to data that did not actually contain any task-induced responses (either real or simulated) 

in the “Task” time intervals. The classifier performed at chance level in these cases (results not shown), suggesting 

that the possibility of false-positive results in the analyses of simulated and real task-response data is not an 

important concern. 

 

To further understand and characterize the performance of the two pipelines in a real application, we used the two 

methods to analyze data from a motor experiment. The optode array covered the motor cortex and its vicinity on 

both hemispheres. Eight out of twenty channels were placed over the scalp positions most likely to cover the motor 

area. In this scenario we could verify that the LDA-based classifier is less susceptible to than GLM to 0.1 Hz 

systemic oscillations. This is illustrated for the subject considered in Table 2: due to the systemic oscillations, the 

block-average HbO and HbR traces in the eight channels over the motor cortex differ from the hemodynamic 

response modeled in the GLM computations. Consequently, the GLM recognizes none of these channels as “active”. 

Conversely, by contrasting “Task” temporal segments with “Rest” temporal segments, the LDA classifier finds 

significant differences in all of these channels, regardless of the presence of Mayer waves. 

 

On the other hand, the LDA-based method generally classified more channels as “active” in response to the motor 

task than the canonical GLM analysis did. Because no established ground truth exists in the real data, this 

classification result warrants cautious interpretation. Especially for channels that extend beyond the center of the 



motor cortex, the activations found cannot be unambiguously attributed to neural activation caused by the motor 

task. However, the resting-state data classification results, and inspection of the experimental hemoglobin time 

traces, show that these classification results also are not easily dismissed as false positives. 

 

In fact, as shown in recent literature [36], the fNIRS signal is not composed exclusively of cerebral task-evoked 

signal but also includes cerebral non-evoked signal (“cerebral resting state”), extracerebral task-evoked signal 

(“extracerebral confound”), and extracerebral non-evoked signal. Quantitative characterization of the three latter 

components is still an open research question [37], which is why they could not be modeled separately in our 

simulations. However, they are likely to be present in the motor experiment data and offer a plausible explanation 

for the classification results: when a difference is found between “Task” and “Rest”, not only the cerebral response 

to the task, but also all the systemic hemodynamic changes provoked in the extracerebral compartment by the 

execution the task (e.g., changes in heart rate, blood pressure, respiration rate), is discriminated from the resting 

state. These changes involve the whole extracerebral layer, and therefore their effect extends beyond the probes that 

specifically illuminate the motor cortex [36]. To exclusively associate the found activations with cerebral 

recruitment, a step that would be necessary, but is beyond the scope of the present work, would be to remove from 

the data the physiological component measured in the extracerebral layers before the analysis, for example with 

multi-distance NIRS measurements [38]. 

 

Finally, it is worthy of note that the experimental data, in agreement with the results of the theoretical simulations, 

reveal great inter-subject variability in the comparative sensitivities of GLM(HbO) and GLM(HbR). That is, some 

subjects’ hemodynamic patterns are better interpreted, and hemodynamic task responses more detectable, using 

HbO data, while others’ are better explained using HbR. This is a manifestation of the highly subject-specific 

hemodynamic fingerprint that has been reported [9]. A classifier, such as the one proposed, that takes into account 

simultaneous variations of both hemoglobin components has the potential to overcome this limitation and offer a 

more flexible analysis that adapts to the individual’s own hemodynamic characteristics. In this respect, the proposed 

approach would be of especial application for populations, such as young children, that exhibit “atypical” patterns 

of hemodynamic responses, such as uncoupled HbO and HbR or inverted response direction [39],[40]. 

 

Nevertheless, in the current form the proposed approach only classifies “activations” vs “non-activations.” As a 

future development, a non-parametric framework can be formulated in order to test more complex hypotheses on 

the distributions of classifier outputs, such as the comparison of amplitudes of the responses induced by different 

conditions, within subjects or between groups of subjects. 
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