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Abstract

Histamine (HA) is a pleiotropic biogenic amine synthesized exclusively by histidine decarboxylase (HDC) in most mammalian tissues. 
The literature on the role of HA within the male gonad has expanded over the last years, attracting attention to potential unexpected 
side-effects of anti-histamines on testicular function. In this regard, HA receptors (HRH1, HRH2 and HRH4) have been described in 
Leydig cells of different species, including human. Via these receptors, HA has been reported to trigger positive or negative 
interactions with the LH/hCG signaling pathway depending upon its concentration, thereby contributing to the local control of 
testicular androgen levels. It should then be considered that anti-histamines may affect testicular homeostasis by increasing or 
decreasing steroid production. Additionally, HRH1 and HRH2 receptors are present in peritubular and germ cells, and HRH2 
antagonists have been found to negatively affect peritubular cells and reduce sperm viability. The potential negative impact of 
anti-histamines on male reproduction becomes even more dramatic if we consider that HA has also been associated with human 
sexual behavior and penile erection. What is more, although testicular mast cells are the major source of locally produced HA, recent 
studies have described HDC expression in macrophages, Leydig cells and germ cells, revealing the existence of multiple sources of 
HA within the testis. Undoubtedly, the more we learn about the testicular histaminergic system, the more opportunities there will be 
for rational design of drugs aimed at treating HA-related pathologies, with minimum or nule negative impact on fertility.
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Introduction

Undeniably, histamine (HA) is a biogenic amine with 
great significance in medicine and biology. It is produced 
by α-decarboxylation of l-histidine, and this reaction is 
catalyzed exclusively by histidine decarboxylase (HDC) 
in most mammalian tissues (Ohtsu 2010). Since its 
discovery in 1910, HA has been shown to mediate a 
plethora of physiological and pathological actions via 
its four G protein-coupled receptors, named H1, H2, H3 
and H4 (histamine receptor H1 (HRH1)–HRH4), which 
are differentially expressed in numerous cell types 
(Akdis & Simons 2006, Parsons & Ganellin 2006). In 
particular, the literature on the relation between HA and 
male reproduction has greatly expanded over the past 
years, resulting in the identification of novel functions 
for HA within the male reproductive system of several 
species, including human. This review summarizes 
what is presently known regarding the effects of HA on 
the different cell types of the testis, with special focus 
on Leydig cells. Potential local sources of HA other 
than testicular mast cells are also described, as well 
as adverse effects of anti-histamines on normal testis 
function. The rising prevalence of allergic diseases in 

the industrialized world underscores the significance of 
this topic.

Histamine and Leydig cell steroidogenesis

Evidence accumulated so far indicates the presence 
of functional HRH1 and HRH2 in Leydig cells of 
mouse, rat, human and the ectothermic vertebrate 
Hemidactylus flaviviridis (Mayerhofer et  al. 1989, 
Albrecht et  al. 2005, Mondillo et  al. 2005, 2007, 
2009, Khan & Rai 2007). In line with these findings, 
HA has been reported to exert a biphasic effect on 
steroidogenesis in the MA-10 mouse Leydig tumor 
cell line and in rat Leydig cells in primary culture, 
depending upon its concentration: while nanomolar 
HA stimulates basal steroid production and enhances 
the steroidogenic response to luteinizing homone (LH)/
human chorionic gonadotropin (hCG), micromolar 
concentrations display a potent anti-steroidogenic effect 
(Mondillo et al. 2005). Accordingly, in the wall lizard 
H. flaviviridis, although HA does not affect testosterone 
production from unstimulated Leydig cells, it has dual 
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concentration-related effects on follicle-stimulating 
hormone (FSH)-induced testosterone production: 
stimulatory at a low concentration of 10−10 M while 
inhibitory at a high concentration of 10−5 M (Khan & 
Rai 2007). Based on these and subsequent publications 
(Mondillo et al. 2005, 2007, 2009, Khan & Rai 2007), 
HA-induced stimulation of steroidogenesis would 
primarily be mediated via HRH2 activation, which 
signals by Gs protein coupling and increased cAMP 
production (Fig. 1), whereas reduction of steroid levels 
by micromolar HA would involve HRH1 activation, 
Gq protein coupling, stimulation of the phospholipase 
C (PLC)/inositol 1,4,5-triphosphate (IP3) pathway and 
increased nitric oxide synthase (NOS) activity (Fig.  2) 
(Mondillo et al. 2009). Very recently, HRH4 has been 
identified in mouse and rat Leydig cells, in agreement 
with a previous report by O’Reilly et al. (2002), which 
indicated HRH4 expression in the human testis (Abiuso 
et  al. 2014). Considering that activation of HRH4 on 
Leydig cells with specific agonists leads to a decreased 
steroidogenic response to LH/hCG, it is tempting to 
speculate that HRH4 may also participate in the aforesaid 
inhibitory effect of HA on steroid synthesis (Fig.  2). 
Indeed, synergistic effects between HRH1 and HRH4 
have been described in other cell types, in which HRH1 
colocalizes with HRH4 (Thurmond et al. 2008, Deiteren 
et al. 2014). Having opposing effects on steroidogenesis 
by triggering positive or negative interactions with the 
LH/hCG signaling pathway, HA can control androgen 
levels, thereby contributing to testicular homeostasis. 
This new role for HA in the physiological regulation 

of Leydig cell function is further supported by studies 
showing that, in HA-deprived HDC-knockout (KO) 
mice, the steroidogenic efficiency of Leydig cells is 
significantly lower in comparison with wild-type (WT) 
mice (Mondillo et al. 2005). In this regard, it has been 
shown that HDC KO Leydig cells do not respond to LH/
hCG as effectively as WT Leydig cells (Mondillo et al. 
2007) and that LH/hCG stimulus induces Hrh1 and 
Hrh2 expression in WT Leydig cells, while this does not 
occur in KO mice (Mondillo et al. 2005).

Histamine and Leydig cell proliferation

Pap and coworkers (2002) have reported serious 
alterations in Leydig cell ultrastructure in adult HDC KO 
mice, and a significant reduction in testicular weight in 
litters as early as 7 days of age (Pap et al. 2002). Notably, 
the distribution and morphology of gonadotropin-
releasing hormone (GnRH) neurons is normal in these 
mice, as well as hypothalamic Gnrh1 mRNA expression 
(Pap et  al. 2002). Hence, even when the major role 
of LH as a modulator of Leydig cell morphology and 
function is undisputable (Lejeune et al. 1996), the lack 
of endogenous HA production in HDC KO mice may 
presumably result in changes during the course of 
embryonic testicular ontogenesis, leading to deficient 
adult Leydig cell function. This theory is reinforced by 
former scientific evidence showing that testicular HDC 
expression and HA concentration are significantly 
elevated in the neonatal testis compared to the adult 
gonad (Zieher et al. 1971, Pagotto et al. 2012), implying 

Figure 1 Proposed mechanism for HA-mediated enhancing effect on LH-induced testosterone synthesis in Leydig cells via HRH2. AC, Adenylate 
cyclase; ATP, Adenosine triphosphate; cAMP, cyclic adenosine monophosphate; LH, luteinizing hormone; LHR, luteinizing hormone receptor; 
PKA, Protein kinase A.
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that important HA-dependent events may occur during 
the development of the testis. Consistently, Gaytan et al. 
(1992) have observed that proliferation and differentiation 
of mast cells and Leydig cells happen at the same time 
in the rat testis, suggesting the existence of a dynamic 
relationship between the two cell types via their secretory 
products (Gaytan et al. 1992). It is tempting to speculate, 
in view of the aforementioned observations in HDC KO 
mice and the fact that HA is a well-known regulator of 
cell proliferation (Falus et al. 2010), that HA could be 
one of the mast cell-derived local factors influencing 
Leydig cell number in the neonatal testis. This would not 
be the case in the adult gonad. In this regard, HA fails to 
affect FSH-stimulated adult Leydig cell proliferation in 
the wall lizard (H. flaviviridis) (Khan & Rai 2007). Also, 
it has been demonstrated that immature and progenitor 
Leydig cells, isolated from 21- and 35-day-old rats, 
respectively, do not exhibit a proliferative response 
upon stimulation with HA, whereas they proliferate 
when stimulated with insulin-like growth factor type 
1 (IGF1) (Pagotto et  al. 2012). Interestingly, HA can 
stimulate the proliferation of MA-10 Leydig tumor cells 
via activation of HRH2, transient elevation of cAMP 
production and increased extracellular signal–regulated 
kinase (ERK) phosphorylation (Pagotto et  al. 2012). 
Indeed, MA-10 cells show significantly heightened 
HDC expression compared to normal immature Leydig 
cells or whole testicular lysate, and inhibition of HDC 
activity decreases MA-10 cell proliferation. These results 
suggest that autocrine overproduction of HA might be 
somewhat linked to abnormally increased proliferation 
in Leydig cells, as occurs in numerous cell types (Adams 
et  al. 1994, Ai  et  al. 2006, Falus et  al. 2010). Thus, 
although the possibility that HA may influence Leydig 
cell numbers in the normal fetal and/or neonatal testis 
certainly deserves further research, a putative role for 
HA as an autocrine/paracrine modulator of Leydig cell 

proliferation in testicular pathological states should also 
be considered.

Testicular histamine targets other than Leydig cells

Aside from Leydig cells, germ cells, peritubular cells and 
macrophages of different species express HRH1 and/or 
HRH2 receptors and are therefore potential targets for 
locally produced HA (Albrecht et al. 2005, Khan & Rai 
2007). In this respect, as observed in Leydig cells, in 
the wall lizard (H. flaviviridis), HA-regulated testicular 
macrophage immune responses in a dual concentration-
dependent manner (Khan & Rai 2007). It inhibited 
phagocytosis and superoxide production at a high 
concentration (10−5 M), while stimulated superoxide 
production and could not affect phagocytosis at a 
low concentration (10−10 M) (Khan & Rai 2007). With 
regard to peritubular cells, it was not until very recently 
that they were found to be regulated by mast cell and 
macrophage products, and in response, produce factors 
that can fuel inflammatory changes. Also, recent studies 
have revealed that peritubular cells transport immotile 
sperm – a function important for male fertility, produce 
extracellular matrix components and contribute to the 
spermatogonial stem cell niche via secreted factors 
(Mayerhofer 2013). The fact that these cells bare HRH1 
receptors opens the question whether HA may directly 
influence the aforementioned functions. This possibility 
has not been explored yet. No studies have been done 
on isolated Sertoli cells or endothelial cells, but it is 
tempting to speculate, in view of indirect evidence in 
cells derived from the testicular germinal region and 
the fact that vascular cells are known to respond to HA, 
that such cells are also targets of HA. With regard to the 
latter point, the action of HA on most of the endothelial 
cells and tissue barriers has been recently demonstrated 
(Adderley et al. 2015, Ashina et al. 2015). Additionally, 

Figure 2 Proposed mechanism by which HA down-regulates LH/hCG-induced testosterone production via HRH1 and HRH4 activation in Leydig 
cells. NOS, nitric oxide synthase; PDE, phosphodiesterase E; PLC, phospholipase C.
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a very old publication has documented blood–testis 
barrier impairment by administration of the HA releaser 
48/80 to guinea pigs (Nemetallah et al. 1985).

Multiple sources of histamine within the testis

Although testicular mast cells are the major source of 
local HA, recent studies have revealed the existence 
of multiple potential sources of HA within the testis. 
In this regard, HDC expression has been detected in 
macrophages, Leydig cells (as indicated in a previous 
section of this manuscript) and germ cells (Safina 
et al. 2002, Albrecht et al. 2005, Pagotto et al. 2012). 
Interestingly, a similar scenario has been described in 
the female uterus and mammary gland. In both organs, 
mast cell-derived HA and epithelial cell-derived HA 
regulate physiological functions (Paria et  al. 1998, 
Wagner et al. 2003). Whether non-mast cell-related HA 
has a crucial role in testicular physiology is yet unclear. 
However, the presence of multiple HA-synthesizing 
cells in the different compartments of the testis highlights 
the significance of local HA production and should 
definitely arouse interest in the potential deleterious 
effects of long-term anti-histamine therapy on both 
the endocrine and reproductive functions of the male 
gonad. Figure 3 and Table 1 show the different cellular 
targets of HA within the testis, as well as potential non-
mast cell HA sources.

Negative impact of anti-histamines on 
male reproduction

Considering the diversity of syndromes associated with 
HA, in recent years, a wide variety of anti-histamine 
compounds have been introduced in the clinics for 
the treatment of these diseases, particularly HRH1 and 

HRH2 antagonists such as loratadine, desloratadine, 
cimetidine, ranitidine, nizatidine and famotidine, 
among others. Moreover, the discovery of HRH4 
revitalized the interest in HA receptor pharmacology, 
leading to a considerable increase in HRH4-related 
publications and patents (Leurs et  al. 2009, Schreeb 
et al. 2013). Clinicians and patients should be aware, 
though, that the overuse of anti-histamines could have 
long-term side effects on the various target organs of HA, 
at best only reversible. More particularly, concerning 
the male gonad, the new role for HA as a modulator of 
Leydig cell function clearly suggests that anti-histamine 
drugs may affect testicular homeostasis by enhancing 
or decreasing androgen production (Mondillo et  al. 
2005, 2007, 2009, Khan & Rai 2007). In this respect, 
it has been reported that ingesting around 1200 mg/day 
cimetidine can decrease testosterone levels (Elliott 1979, 
Fuentes & Dolinsky 1979, Babb 1980). Additionally, 
cimetidine was found to lower the sperm count in 
humans, especially at doses greater than 1000 mg/day 
(Elliott 1979, Fuentes & Dolinsky 1979, Babb 1980, 
Wang et al. 1982, Buchanan & Davis 1984, Van Thiel 
et al. 1987), while it exerted moderate effects on sperm 
morphology and motility (Wang et  al. 1982, Thomas 

Figure 3 Schematic representation of the adult human testis indicating potential sources of HA as well as HA-target cells. ① spermatozoa, ② 
Sertoli cell, ③ germ cells, ④ peritubular cell, ⑤ Leydig cell, ⑥ mast cell/basophil, ⑦ macrophage, ⑧ fibroblast. HAS, Histamine (HA) source; !, 
Target for locally produced HA and/or histaminergic drugs.

Table 1  Potential sources of HA and HA targets within the testis.

Cell type

Potential 
HA source

Targets for locally 
produced HA

HDC HRH1 HRH2 HRH4
Germ cell + + + ND
Sertoli cell ND ND ND ND
Peritubular cell ND + ND ND
Leydig cell (LC) + + + +
Mast cell/Basophil + ND ND ND
Macrophage + + + ND
Fibroblast ND ND ND ND
LC-derived MA-10 cell line + + + +

ND, not determined.
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& Turner 1983, Buchanan & Davis 1984, Bianchi 
Porro et al. 1985). The deleterious effect of cimetidine 
on the number of sperm cells was later confirmed by 
Aprioku et  al. (2014) in Wistar rats. Additionally, a 
previous study carried out by Sinha et  al. (2006) in 
albino rats demonstrated a reduction in sperm count as 
well as a decrease in sperm morphology and motility 
after a 15-day cimetidine treatment. Also, Nayeri and 
Kazerouni (2002) reported that the seminal vesicles of 
male rats treated with this drug at 100 mg/kg for 5 weeks 
had lower weights compared with the seminal vesicles 
of the untreated group. A putative explanation for the 
deleterious impact of cimetidine on sperm quality is that 
it increases intrasperm Ca2+ levels, and Ca2+ elevation 
has also been shown to reduce sperm viability (Gupta 
et  al. 2004). Moreover, cimetidine has been found to 
decrease the height of the germinal epithelium and 
the diameter of seminiferous tubules in the testes of 
mice when applied at 10–100 mg/day for 15 days (Gill 
et al. 1991). Consistent results were observed in male 
albino Wistar rats, which were injected cimetidine 
intraperitoneally at a dose of 50 mg/kg for 52  days 
(Sasso-Cerri & Miraglia 2002). A subsequent study 
conducted by Sasso-Cerri & Cerri (2008) indicated that 
cimetidine may lead to Sertoli cell detachment and 
apoptosis, hence negatively affecting sperm quality. 
In 2009, Sasso-Cerri reinforced his previous results 
by demonstrating that cimetidine enhances oestrogen 
receptor beta expression and apoptosis in germ cells of 
adult male rats (Sasso-Cerri 2009). To date, the effect 
of ranitidine on semen quality is a matter of debate 
(Banihani 2016). Famotidine is the only HRH2 antagonist 
that has been reported to benefit sperm physiology; 
nonetheless, non-clinical experiments indicate that 
its use may have negative effects on some sperm 
parameters (Banihani 2016). Further clinical studies 
will be of great significance to more precisely evaluate 
the effects of famotidine on semen quality. With regard 
to desloratadine and loratadine Kuzminov et al. (2014) 
have reported a cytotoxic action in bull spermatozoa. 
The potential negative impact of anti-histamines on 
male reproduction becomes even more significant if we 
consider that HA has been implicated in penile erection 
and sexual behavior as well as steroidogenesis and 
spermatogenesis (Cara et al. 1995, Par et al. 2003, Sinha 
et  al. 2006). In this regard, it has been reported that 
HA can exert a dose-dependent relaxation of isolated 
human corpus cavernosum smooth muscle, which is 
inhibited by cimetidine and potentiated in the presence 
of the HA HRH1 receptor antagonist mepyramine 
(Penttilae & Vartiainen 1964, Cará et al. 1995, Teixeira 
et  al. 1998). Aside from the erectile function, some 
case studies have also suggested an impact of HA on 
the ejaculatory response of the adult man (Raja 1999, 
Holtmann et  al. 2003, Labbate 2008). In apparent 
contradiction, a more recent report indicates a role for 
HA in the physiological mechanism modifying human 

sexual desire following orgasm/ejaculation, rather than 
an involvement in the maintenance of penile flaccidity 
or rigidity or the termination of erection (Ükert et  al. 
2011). These results then reinforce the idea that HA 
would be a mediator in a neuroendocrine feedback 
system modulating male sexual function.

State of the art

An issue of considerable scientific and clinical interest, 
which certainly deserves further research, is the potential 
role of HA and/or HA-receptor transport via extracellular 
vesicles (EV) secreted by testicular cells. Intercellular 
communication via EV has drawn much attention 
recently, as EV have been shown to carry a number 
of bioactive molecules, surface receptors and genetic 
information that modulate the activities of recipient cells 
both in normal physiology and pathological conditions 
(Pitt et  al. 2016, Simon et  al. 2018). Most, if not all, 
cell types release EV, which then enter the body fluids 
(Robbins & Morelli 2014, Robbins et al. 2016). Within 
the male reproductive system, this modality of cell–cell 
crosstalk has solely been described in the epididymis. 
In this regard, it has been extensively demonstrated that 
small membranous vesicles named epididymosomes, 
which are secreted along the epididymal intraluminal 
compartment, transfer fertility-modulating proteins to 
the sperm surface (Martin-DeLeon et al. 2015, Sullivan 
2016, Simon et al. 2018). Recently, mast cells have been 
shown to be rich sources of secreted EV (Shefler et al. 
2011). These mast cell-derived EV could then influence 
the development of the male gonad during embryogenesis 
or its function later in adulthood. Also, histaminergic 
effects could be provided constantly by EV secreted by 
other testicular cells expressing HA receptors. Clearly, 
this hypothesis deserves further research.

Conclusion

The increasing list of processes relevant to human 
(patho) physiology in which HA has a preponderant 
role has prompted researchers in the discipline to strive 
for the complete elucidation of its functions and the 
properties of its receptors. The data compiled in this 
review collectively indicate the crucial involvement of 
HA in the orchestration of testicular functions during 
development and adulthood. Even so, there is still 
much to learn regarding the complex interplay between 
HA-synthesizing cells and targets for HA within the male 
reproductive system. In view of the evidence reviewed 
herein, the evaluation of potential HA-drug-induced 
effects on reproductive and sexual health should 
definitely be made part of clinical studies, in order 
to develop novel drugs aimed at treating HA-related 
pathologies with minimum or nule negative impact 
on fertility.
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