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Abstract

We introduce a new discretization of the Gaussian curvature on
piecewise flat surfaces. As the prime new feature the curvature is
scaled by the factor 1/r2 upon scaling the metric globally with the
factor r. We develop a variational principle to tackle the correspond-
ing discrete uniformisation theorem – we show that each piecewise flat
surface is discrete conformally equivalent to one with constant dis-
crete Gaussian curvature. This surface is in general not unique. We
demonstrate uniqueness for particular cases and disprove it in general
by providing explicit counterexamples. Special attention is paid to
dealing with change of combinatorics.

1 Introduction

The celebrated Poincaré-Koebe uniformisation theorem states that any (closed,
oriented) Riemannian surface is conformally equivalent to one with constant
Gaussian curvature K ∈ {−1, 0, 1}. This surface is unique if K = −1, unique
up to global scale factor if K = 0, and unique up to Möbius transformations
if K = 1.

In order to discretize the uniformisation theorem, reasonable definitions of
discrete surface and metric, conformal equivalence and Gaussian curvature
need to be established. In the past decades, various definitions of these no-
tions have been developed. We briefly mention the work of William Thurston [14]
and Bennet Chow and Feng Luo [5] on circle packing metrics.

We discretize the uniformisation theorem in the realm of piecewise flat sur-
faces. A piecewise flat surface is a (closed) oriented topological surface S,
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together with a finite set V ⊆ S of marked points, and a metric d on S such
that a neigbourhood of every point p ∈ S is isometric to the Euclidean plane
if p /∈ V , and isometric to the tip of a Euclidean cone, with cone angle αp > 0,
possibly being equal to 2π, if p ∈ V . Such a metric d is called a PL-metric.

The angle defect is the map

W : V → R, p 7→ Wp := 2π − αp.

The angle defect is widely used as the discretization of the Gaussian curva-
ture. However, it does not mirror the following property of its continuous
counterpart: if a Riemannian metric is globally scaled by a factor r, the
Gaussian curvature is scaled by the factor 1/r2. Upon global rescaling of a
PL-metric, the angle defect stays the same. We introduce a new discretiza-
tion of the Gaussian curvature, that mirrors this property.

Definition 1.1. The discrete Gaussian curvature at vertex i ∈ V is the
quotient of the angle defect Wi and the area Ai of the Voronoi cell Vi:

K : V → R, i 7→ Ki :=
Wi

Ai
.

With the definition of conformal equivalence pioneered by Luo [10], and devel-
oped by Bobenko, Pinkall, Springborn [3], we obtain the following theorem.

Theorem 1.2 (Discrete uniformisation theorem). For every PL-metric d on
a marked surface (S, V ), there exists a conformally equivalent PL-metric d̃
such that the surface (S, V, d̃) has constant discrete Gaussian curvature. The
PL-metric d̃ is, in general, not unique.

Proof. The existence of metrics with constant discrete Gaussian curvature in
every conformal class for surfaces of genus g = 0 and g > 2 follows from the
variational principle Theorem 4.13 and Corollary 5.2. For surfaces of genus
one, metrics with constant discrete Gaussian curvature are critical points
of the function E (see Definition 4.3 and Theorem 4.6) without constraints.
Existence of critical points of the function E was demonstrated by Springborn
in [13], Theorem 11.2.

Remark. The metric d̃ is unique up to global scaling in the following three
cases:
(1) S is of genus zero and |V | = 3,
(2) S is of genus one,
(3) S is of genus larger than one and |V | = 1.
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Uniqueness of metrics with constant discrete Gaussian curvature for surfaces
of type (1) follows from [9], Theorem 7.2.1. For surfaces of type (2), unique-
ness follows from the local convexity of the function E. For an explicit proof
see Proposition 7.12 in [13]. The same results were also shown in [7] and [6].
Uniqueness of PL-metrics for surfaces of type (3) follows from the fact that,
in this case, two PL-metrics are discrete conformally equivalent only if they
differ by global scaling. See also [9], Chapter 7 and 9.1.

Counterexamples for uniqueness are presented in Section 3.

2 Preliminaries

The majority of the notions in this chapter is well-known and thus the proofs
are omitted. An excellent summary can be found in [13], Chapters 4 and 10.
Delaunay triangulations are also described in [2].

2.1 Special triangulations

Let (S, V ) be a marked surface. A triangulation of (S, V ) is any triangulation
of S with the vertex set equal to V . We denote it by ∆. The set of edges and
faces of ∆ is denoted by E∆ and F∆, respectively. Let d be a PL-metric, or a
complete finite area hyperbolic metric on S\V , with cusps in V . A geodesic
triangulation of (S, V, d) is any triangulation of (S, V ) where the edges are
geodesics with respect to the metric d.

Every piecewise flat surface (S, V, d) posesses a unique Voronoi tessellation.
Let p ∈ S and let d(p, V ) := mini∈V d(p, i). Consider the set ΓV (p) of all
geodesics realizing the distance between the point p and the set V . The
(open) 2-cells of the Voronoi tessellation of (S, V, d) are the connected com-
ponents of

C2 = {p ∈ S | |ΓV (p)| = 1}.
The 1-cells and 0-cells of the Voronoi tessellation are the connected compo-
nents of

C1 = {p ∈ S | |ΓV (p)| = 2} and C0 = {p ∈ S | |ΓV (p)| ≥ 3},

respectively.

For a point i ∈ V , the (closed) Voronoi cell Vi is the closure of the 2-cell of
the Voronoi tessellation containing i. We denote the area of Vi by Ai.
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Delaunay triangulation of piecewise flat surfaces A Delaunay trian-
gulation of a piecewise flat surface (S, V, d) arises from the Delaunay tessel-
lation by adding edges to triangulate the non-triangular faces.

Let d be a PL-metric on (S, V ), and let ∆ be any geodesic triangulation
of (S, V, d). Let ijk, ijl be two triangles in F∆. The edge ij ∈ E∆ is called a
Delaunay edge if it satisfies the empty circumcircle property : the vertex l is
not contained in the interior of the circumcircle of ijk.

Fact 2.1. Let αk, αl be the angles opposite of the edge ij in the triangles ijk
and ijl, respectively. The edge ij is Delaunay if one of the following equiva-
lent Delaunay conditions hold:
a) cotαk + cotαl ≥ 0,
b) αk + αl ≤ π,
c) cosαk + cosαl ≥ 0.

Proposition 2.2. A geodesic triangulation of a piecewise flat surface is De-
launay if and only if each of its edges is Delaunay.

Ideal Delaunay triangulation Consider an ideal hyperbolic polyhedron
(S, V, dhyp), decorated with a horocycle at each cusp, small enough such that
the horocycles bound disjoint cusp neighbourhoods.

Definition 2.3. An ideal Delaunay decomposition of (S, V, dhyp) is an
ideal cell decomposition of (S, V, dhyp), such that for each face f of the lift
of (S, V, dhyp) to the hyperbolic plane H2 via an isometry of the universal
cover, the following condition is satisfied: there exists a circle that touches
all lifted horocycles centred at the vertices of f externally and does not meet
any other lifted horocycles.

An ideal Delaunay triangulation is any refinement of an ideal Delaunay
decomposition by decomposing the non-triangular faces into ideal triangles by
adding geodesic edges.

Theorem 2.4. For each decorated ideal hyperbolic polyhedron with at least
one cusp, there exists a unique ideal Delaunay decomposition.

Definition 2.5. Let (S, V, dhyp) be a decorated ideal hyperbolic polyhedron
with a geodesic triangulation ∆. Consider an edge ij ∈ E∆ and its neig-
bouring two triangles ijk, ijl ∈ F∆. The edge ij is called Delaunay if the
two circles touching the horocycles at vertices i, j, k and i, j, l are externally
disjoint or externally tangent (see Figure 2.1).
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(a) The two orange circles are
disjoint, the edge ij is Delaunay.

i

k j

l

(b) The two orange circles inter-
sect, the edge ij is not Delaunay.

Figure 2.1: Delaunay and non-Delaunay edge, in the Poincaré disc
model of hyperbolic geometry.

Proposition 2.6. An ideal geodesic triangulation of a decorated ideal hyper-
bolic polyhedron is Delaunay if and only if each of its edges is Delaunay.

2.2 Discrete metric and Penner coordinates

Let ∆ be a triangulation of a marked surface (S, V ).

Definition 2.7. A discrete metric on (S, V,∆) is a function

` : E∆ → R>0, `(ij) = `ij,

such that for every triangle ijk ∈ F∆, the (sharp) triangle inequalities are
satisfied, that is,

`ij + `jk > `ki, `jk + `ki > `ij, `ki + `ij > `jk.

The logarithm of this function,

λij = 2 log `ij, (1)

is called the logarithmic lengths.

Fact 2.8. Let d be a PL-metric on a marked surface (S, V ), and let ∆ be
a geodesic triangulation of (S, V, d). Then d induces a discrete metric `d
on (S, V,∆) by measuring the lengths of the edges in E∆.

Vice versa, each discrete metric ` on a marked triangulated surface (S, V,∆)
induces a PL-metric on (S, V ), which we denote by d`.
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Indeed, ` imposes a Euclidean metric on each triangle ijk ∈ F∆ by trans-
forming it into a Euclidean triangle with edge lengths `ij, `jk, `ki. The metrics
fit isometrically along the edges of the triangulation. Thus, by patching up
the triangles along the edges we equip the marked surface with a PL-metric.

Penner coordinates were introduced by Robert Penner in [12] to study the
Decorated Teichmüller space.

Definition 2.9. Let i and j be two ideal points of the hyperbolic plane. Let Hi

and Hj be two horocycles, anchored at the points i and j, respectively. Let `
be the hyperbolic line connecting i and j, and let pi = ` ∩Hi, and pj = ` ∩
Hj. The signed horocycle distance between Hi and Hj is the hyperbolic
distance between the points pi and pj, taken negative if Hi and Hj intersect.

Definition 2.10. Penner coordinates is a pair consisting of a triangula-
tion ∆ of (S, V ) and a map

λ : E∆ → R, ij 7→ λij.

Fact 2.11. Penner coordinates (∆, λ) define a complete area hyperbolic met-
ric with cusps on (S, V ), together with a decoration of horocycle at each cusp,
such that the signed distance between the horocycles Hi and Hj, with ij ∈ E∆,

is λij. We denote it by dhypλ .

Vice versa, let ∆ be a geodesic triangulation of a decorated ideal hyperbolic
polyhedron (S, V, dhyp). Then (S, V, dhyp) induces Penner coordinates (∆, λ)
by measuring the signed horocycle distance between horocycles Hi and Hj,
with ij ∈ E∆.

Penner coordinates are illustrated in Figure 2.2. The coordinate λij is nega-
tive, whereas the coordinates λjk and λki are positive.

Proposition 2.12. Let (S, V, d) be a surface with a PL-metric, let ∆ be a
Delaunay triangulation of (S, V, d) and let `d be the discrete metric induced
by d. Let λ : E∆ → R be defined via Equation (1). Then the hyperbolic met-
ric dhypλ , induced by the Penner coordinates (∆, λ) as described in Fact 2.11,
is isometric to the hyperbolic metric dhyp induced by the PL-metric d via the
formula (2).

The following theorem links the Euclidean Delaunay and ideal Delaunay
triangulations.

Theorem 2.13. Let (S, V ) be a marked surface with a triangulation ∆.
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i

j

k

λki

λjk

λij

Figure 2.2: Penner coordinates of a decorated ideal hyperbolic trian-
gle ijk, in the Poincaré disc model of hyperbolic geometry.

a) Let ` : E∆ → R≥0 be a discrete metric, such that ∆ is a Delaunay trian-
gulation of the piecewise flat surface (S, V, d`). Let λ be the logarithmic
lengths of ` (see Equation (1)). Then ∆ is an ideal Delaunay trian-
gulation of the decorated ideal hyperbolic polyhedron defined by Penner
coordinates (∆, λ).

b) Vice versa, let (∆, λ) be Penner coordinates on (S, V ), such that ∆ is an
ideal Delaunay triangulation of the decorated ideal hyperbolic polyhedron
defined by (∆, λ). Then the map ` : E∆ → R≥0, defined by Equation (1),
is a discrete metric on (S, V,∆), and ∆ is a Delaunay triangulation of
the piecewise flat surface (S, V, d`).

2.3 Discrete conformal classes

The Delaunay tessellation of (S, V, d) is the dual of the Voronoi tessellation.
It possesses the empty (immersed) disc property: Let C ⊆ S be a closed
2-cell of the Delaunay tessellation. Then there exists an open disc DC ⊆ R2

and a local isometry ϕC : D̄C → S such that ϕ−1
C (C) is a cyclic polygon with

circumcircle ∂DC and vertices ϕ−1
C (C ∩ V ).

a ϕ−1
C (x)

ϕ−1
C (y)

b

Figure 2.3

The PL-metric d on a marked surface (S, V )
induces a hyperbolic metric dhyp on the
set S\V . Indeed, for x, y ∈ C, let a, b ∈
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DC be the intersection points of the line
through ϕ−1

C (x) and ϕ−1
C (y) and the circum-

circle ∂DC , as illustrated in Figure 2.3. The
formula

dhyp(x, y) =
1

2
log

(
‖ϕ−1

C (x)− b‖‖ϕ−1
C (y)− a‖

‖a− ϕ−1
C (x)‖‖b− ϕ−1

C (y)‖

)
(2)

induces a hyperbolic metric with cusps on each Delaunay cell C. These
metrics fit along the edges. The triple (S, V, dhyp) is a complete finite area
hyperbolic surface with |V | punctures. We call it an ideal hyperbolic polyhe-
dron.

Definition 2.14. Two PL-metrics d, d̃ on a marked surface (S, V ) are dis-
crete conformally equivalent if the induced hyperbolic metrics dhyp and d̃hyp
are isometric. This notion induces an equivalence relation, splitting the
space of all PL-metrics on (S, V ) into equivalence classes called conformal
classes.

The notion of discrete conformal equivalence for PL-metrics with prescribed
fixed combinatorics was introduced by Feng Luo in [10]. The equivalence
of Luo’s and our definition for surfaces with prescribed fixed combinatorics
has been demonstrated by Boris Springborn, Ulrich Pinkall and Alexander
Bobenko in [3], Proposition 5.1.2. Luo’s definition has been generalized by
Xianfeng Gu, Feng Luo, Jian Sun and Tianqui Wu in [7], [6], with the aim of
comparing metrics with varying combinatorics. Springborn proved that this
generalization is also equivalent to Definition 2.14, see [13], Chapter 10.

Definition 2.15. Let d and d̃ be two conformally equivalent PL-metrics
on (S, V ). Let ∆ and ∆̃ be Delaunay triangulations of the piecewise flat sur-
faces (S, V, d) and (S, V, d̃), and let (∆, λ) and (∆̃, λ̃) be the induced Penner
coordinates. Let i ∈ V . Denote by Hi the horocycle anchored at i of (∆, λ),
and by H̃i the horocycle anchored at i of (∆̃, λ̃). Let ui be the signed dis-
tance from the horocycle Hi to the horocycle H̃i, measured in the direction
of the cusp. The map u : V → R is called a conformal change, or a
conformal factor. The PL-metric d̃ and Penner coordinates (∆̃, λ̃), in de-
pendence of the PL-metric d and the conformal change u, are denoted by d(u),
and (∆(u), λ(u)), respectively.

The signed distance from the horocycle Hi to the horocycle H̃i is illustrated
in Figure 2.4. The following proposition provides a direct link between the
conformal change and the discrete metrics of two discrete conformally equiv-
alent PL-metrics.
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Hi
H̃i

i

ui

ui

ui

ui

Figure 2.4: The distance between two horocycles.

Proposition 2.16. Let d and d̃ be two conformally equivalent PL-metrics
on a marked surface (S, V ), related by the conformal factor u : V → R,
and let ∆ be a geodesic triangulation of the surface (S, V, d), as well as the
surface (S, V, d̃). Then the induced discrete metrics `d and `d̃ satisfy

`d̃(jk) = `d(jk)e
uj+uk

2

for every edge jk ∈ E∆.

Remark. Proposition 2.16 is the original definition of discrete conformal
equivalence, due to Luo [10].

Proposition 2.17. Let (S, V, d) be a piecewise flat surface. The conformal
class of the PL-metric d is parametrised by the vector space

RV := {u : V → R} ∼= R|V |.

Proof. Definition 2.15 implies, that the conformal class of the PL-metric d
can be parametrised by a subset of the space RV . Let (∆, λ) be Penner
coordinates of the decorated ideal hyperbolic polyhedron induced by d. We
show that every conformal factor u ∈ RV defines a PL-metric d(u), discrete
conformally equivalent to d.

Let u ∈ RV be a conformal factor. Let Hi(u) be the horocycle anchored at
the cusp i, at the distance ui from the horocycle at i of (∆, λ), and let λij(u)
measure the distance between the horocycles Hi(u) and Hj(u). Let ∆(u) be
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an ideal Delaunay triangulation of the ideal hyperbolic polyhedron (∆, λ),
decorated by Hi(u). This exists due to Theorem 2.4. Then the map

λ(u) : E∆(u) → R, ij 7→ λij(u)

defines Penner coordinates (∆(u), λ(u)). This induces a PL-metric d(u), due
to Theorem 2.13.

Furthermore, the vector space RV can be partitioned as follows.

Definition 2.18. Let (S, V, d) be a piecewise flat surface, and let T(S, V ) de-
note the set of all triangulations of (S, V ). For a triangulation ∆ ∈ T(S, V ),
define the Penner cell of (S, V, d) as

A∆ = {u ∈ RV | ∆ is a Delaunay triangulation of (S, V, d(u))}.

Theorem 2.19. Let (S, V, d) be a piecewise flat surface and let D(S, V ) ⊆
T(S, V ) be the set of all triangulations ∆ ∈ T(S, V ), such that the Penner
cell A∆ is non-empty. Then the set D(S, V ) is finite.

This theorem was proved by Hirotaka Akiyoshi [1]. In particular,

RV =
⋃

∆∈D(S,V )

A∆,

and the Penner cells A∆ are closed top-dimensional cells in RV .

Definition 2.20. Let (∆, λ) define a decorated ideal hyperbolic polyhedron.
Let ij ∈ E∆, and consider the quadrilateral built by the neighbouring ideal
triangles ijk, ijl ∈ F∆. The Ptolemy flip of ij consists of replacing the
diagonal ij of the quadrilateral by the hyperbolic line connecting k to l.

The Ptolemy flip has the following properties:
• Any edge can be Ptolemy-flipped.
• ([13], Proposition 3.6) Let λa, . . . , λd, λe, λf be the Penner coordinates

of the four edges and two diagonals, respectively, of an ideal hyperbolic
quadrilateral. If `x := e

λx
2 , then the lengths `x satisfy the Ptolemy relation

`e`f = `a`c + `b`d.

• If the original edge is not Delaunay, the flipped edge is.

The following theorem suggests that the Ptolemy flip can be used to compute
ideal Delaunay triangulations.
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Theorem 2.21. [Jeffrey Weeks [15]] Let (S, V, dhyp) be a decorated ideal hy-
perbolic polyhedron, and let ∆ be a geodesic triangulation on (S, V, dhyp). Flip
a non-Delaunay edge in E∆ using the Ptolemy flip and update the triangu-
lation. Repeat until all edges are Delaunay. This algorithm terminates after
finitely many flips.

Fact 2.22. If a pair of Penner cells has non-empty intersection, u ∈ A∆ ∩
A∆̃, there exists a sequence ∆0, . . . ,∆m of ideal triangulations such that
• u ∈ A∆0 ∩ · · · ∩ A∆m ,
• ∆0 = ∆,∆m = ∆̃, and
• ∆i differs from ∆i+1 by a Ptolemy flip of one edge.

3 Counterexamples

There exist piecewise flat surfaces whose conformal classes contain more than
one metric with constant discrete Gaussian curvature. To demonstrate this,
we first construct a so-called symmetric piecewise flat surface – a surface
where all faces are congruent triangles. Due to the symmetry, this surface
has constant discrete Gaussian curvature. Then we investigate a particular
one-parameter family of PL-metrics in the conformal class of this surface to
find another PL-metric with constant discrete Gaussian curvature.

A tetrahedron is a sphere with four marked points (S, V ), a triangulation ∆
of (S, V ) that has the combinatorics of a tetrahedron, and a discrete metric `
on (S, V,∆). The pairs of edges that are not adjacent one to another are
called the opposite edges. We call a surface of genus two a double torus.

Definition 3.1. An almost symmetric tetrahedron is a tetrahedron
with two pairs of opposite edges of equal length. Its faces are two copies
of a triangle with edge lengths a, b, c, and two copies of a triangle with edge
lengths ā, b, c.

Let S be a double torus, and let V ⊆ S consist of two points, which we denote
by w for white, and b for black. An almost symmetric double torus is
a piecewise flat surface (S, V, d) with a triangulation ∆, that consists of four
copies of two triangles, with edge lengths a, b, c and ā, b, c, respectively. The
edges are glued together according to the scheme represented in Figure 3.1.

In both cases, we use the notation introduced in Figure 3.1 to label the angles.
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ā

b

b

c
c

1

23

4

4

4

α

α

ᾱ
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Figure 3.1: An almost symmetric tetrahedron (left) and an almost
symmetric double torus (right).

Proposition 3.2. The discrete Gaussian curvature of an almost symmetric
tetrahedron with Delaunay edges satisfies

K1 = K2, and K3 = K4.

Proof. Follows from the fact that W1 = W2,W3 = W4, K1 = K2 and K3 =
K4.

Definition 3.3. An almost symmetric tetrahedron or double torus is called
symmetric if all its faces are congruent. We call this face the defining
triangle of the tetrahedron.

Fact 3.4. A symmetric tetrahedron or double torus
• is defined by the edge lengths a, b, c of the defining triangle. This definition

is unique up to the relabeling of the edges.
• has constant discrete Gaussian curvature.
• has Delaunay edges if and only if the defining triangle is acute.
An almost symmetric tetrahedron or double torus with edges a, b, c, ā, b, c is
symmetric if and only if a = ā.

***
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Consider the symmetric tetrahedron or double torus t with defining triangle
with edges a0, b0, c0, satisfying the triangle inequalities, such that the edge
lengths satisfy

a0 = 1, a0 ≤ b0 ≤ c0.

Then t has Delaunay edges if and only if

c2
0 ≤ a2

0 + b2
0 = 1 + b2

0. (3)

We apply the following conformal change to the discrete metric ` of t.

Lemma 3.5. Let

S(b0,c0) :=
[
− log(b2

0 + c2
0), log(b2

0 + c2
0)
]
.

Let further

u(v) = (u1, u2, u3, u4)(v) := (0, 0, v, v), v ∈ R.

The tetrahedron given by the discrete metric `(u(v)) is almost symmetric. It
has Delaunay edges if v ∈ S(b0,c0).

Let
u(v) = (uw, ub)(v) := (0, v), v ∈ R.

The double torus given by the discrete metric `(u(v)) is almost symmetric.
It has Delaunay edges if v ∈ S(b0,c0).

Proof. For each v ∈ R, the tetrahedron or double torus with discrete met-
ric `(u(v)) has edge lengths

a = 1, b = b0e
v/2, c = c0e

v/2, ā = ev,

and is thus almost symmetric. The minimal and maximal value of the param-
eter v follow from Equation (3) and the Delaunay properties (Fact 2.1).

Corollary 3.6. The symmetric tetrahedron or double torus with the defining
triangle with edge lengths a0, b0, c0 is given by the discrete metric `(u(0)).

Remark. The conformal class of a symmetric double torus contains only
almost symmetric double tori.
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ā
b

Fa
Fa

Fb

Fb

Fc

FcFā
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Fb̄
Fb̄
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Figure 3.2

Let A and Ā denote the
area of the triangles with side
lengths a, b, c and ā, b, c, respec-
tively, and let Fa, . . . , Fc̄ denote
the area components as in Fig-
ure 3.2.

Lemma 3.7. Let u be defined as in Lemma 3.5. A tetrahedron given by
the discrete metric `(u(v)), with v ∈ S(b0,c0), has constant discrete Gaussian
curvature if and only if v is a zero of the map

g(b0,c0) : S(b0,c0) → R, v 7→ 2π(Fā − Fa) + (α− ᾱ)(A+ Ā).

A double torus with discrete metric `(u(v)), with v ∈ S(b0,c0) has constant
discrete Gaussian curvature if and only if v is a zero of the map

h(b0,c0) : S(b0,c0) → R, u 7→ π(Fā − Fa) + (ᾱ− α)(A+ Ā).

Proof. From Lemma 3.5 and Proposition 3.2 we know that the discrete Gaus-
sian curvature satisfies K1 = K2 and K3 = K4. The equality of the values
of the discrete Gaussian curvature at vertices 1 and 3 is equivalent to the
expression:

W1A3 = W3A1 ⇐⇒ 2π(Fā − Fa) = (ᾱ− α)(A+ Ā).

The discrete Gaussian curvatures at vertices b and w are equal if and only if

WwAb = WbAw ⇐⇒ π(Fā − Fa) = (α− ᾱ)(A+ Ā).

The number of critical points of g and h varies depending on the choice
of (b0, c0). Figure 3.3 illustrates the graphs of g and h for various values
of (b0, c0). The red and green curves correspond to conformal classes with
more than one metric with constant discrete Gaussian curvature.

The structure of conformal classes of the sphere with four marked points,
and the double torus are studied more thoroughly in [9], Chapters 8 and 9.
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Figure 3.3: Graphs of the functions g (left) and h (right) for various
values of b0 and c0.

4 Variational principles

4.1 Two essential building blocks

The function E, which we will introduce shortly, was defined by Bobenko,
Pinkall and Springborn in [3]. Its building block is a peculiar function f .

Definition 4.1. Consider a Euclidean triangle with edge lengths a, b, c and
angles α, β, γ, opposite to edges a, b, c, respectively. Let

x = log a, y = log b, z = log c,

as illustrated in Figure 4.1a. Let A be the set of all triples (x, y, z) ∈ R3,
such that (a, b, c) satisfy the triangle inequalities:

A = {(x, y, z) ∈ R3 | a+ b− c > 0, a− b+ c > 0,−a+ b+ c > 0}.

The function f is defined as follows:

f : A→ R, f(x, y, z) = αx+ βy + γz + L(α) + L(β) + L(γ),

where

L(α) = −
∫ α

0

log |2 sin(t)| dt

is Milnor’s Lobachevsky function, introduced by Milnor in [11].

Fact 4.2. Milnor’s Lobachevsky function L(x) is odd, 2π-periodic, and smooth
except at x ∈ πZ.
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α
β

γ

c = ez

b
=
e
y

a
=
e x

(a) Logarithmic edge lengths of a
triangle.

(b) Graph of Milnor’s Lobachevsky func-
tion, y = L(x).

Figure 4.1

We first define the function E on the Penner cells.

Definition 4.3. Let (S, V, d) be a piecewise flat surface, and let ∆ ∈ D(S, V ).
On the Penner cell A∆, the function E∆ is defined as follows:

E∆ : A∆ → R,

E∆(u) =
∑

ijk∈F∆

(
2f

(
λ̃ij
2
,
λ̃jk
2
,
λ̃ki
2

)
− π

2
(λ̃ij + λ̃jk + λ̃ki)

)
+ 2π

∑
i∈V

ui,

where λ̃ij are the logarithmic lengths of the discrete metric induced by the
PL-metric d(u).

Lemma 4.4. The partial derivatives of the function E∆ satisfy the equation

∂E∆

∂ui
= Wi, (4)

where Wi is the angle defect at vertex i of the piecewise flat surface (S, V, d(u)).

Proof. Follows from Proposition 4.1.2. in [3].

The functions f and E∆ have the following properties:

Proposition 4.5 (Properties of f and E∆). The functions f and E∆ are
analytic and locally convex on A and A∆, respectively. Their second deriva-
tives are positive semidefinite quadratic forms with one-dimensional kernels,
spanned by (1, 1, 1) ∈ A, (1, . . . , 1) ∈ A∆, respectively. Further,

f(x+ t, y + t, z + t) = f(x, y, z) + πt for all (x, y, z) ∈ A,

E(u+ t(1, . . . , 1)) = E(u) + 2πχ(S)t for all u ∈ A∆,

where χ(S) denotes the Euler characteristic of the surface S.
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Proof. See [3], Equation (4-5) or [13], Propositions 7.2 and 7.7.

Theorem 4.6 (Extension). For a conformal factor u ∈ RV , let ∆(u) be a
Delaunay triangulation of the surface (S, V, d(u)). The map

E : RV → R, u 7→ E∆(u)(u),

is well-defined and twice continuously differentiable. Its second derivative is
a positive semidefinite quadratic form with one-dimensional kernel, spanned
by (1, . . . , 1) ∈ RV . Explicitly,

d2E =
1

4

∑
ij∈E

(cotαijk + cotαijl )(dui − duj)2.

Proof. Follows from [3], Proposition 4.1.6, and [13], Section 7 and 8.

***

Definition 4.7. Let (S, V, d) be a piecewise flat surface, and let ∆ ∈ D(S, V ).
On the Penner cell A∆, the function A∆

tot is defined as follows:

A∆
tot : A∆ → R, A∆

tot(u) =
∑

ijk∈F∆

Aijk(u),

where Aijk(u) is the area of the triangle with vertices i, j, k ∈ V on the
piecewise flat surface (S, V, d(u)).

Notation 4.8. Consider a triangle ijk, with edges and angles labeled as in
Figure 4.2. Let Aijk denote half of the area of the isosceles triangle with base
length `jk and legs of length Rijk. Then

Aijk =
`2
jk

8
cotαjki .

The area of the Voronoi cell Vi of a piecewise flat surface (S, V, d) satisfies
the equation

Ai =
∑

jk|ijk∈F∆

2Ajki + 2Akij.

Lemma 4.9. The function A∆
tot is analytic on each non-empty Penner cell A∆.

Its partial derivatives satisfy the equation

∂A∆
tot

∂ui
= 2Ai. (5)
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i

j

k

αjki αkij

αijk

Aijk
`jk

`ij

`ki

Rijk

Figure 4.2

Proof. Deploying Notation 4.8,

∂Aijk
∂ui

= 2Ajki + 2Akij −R2
ijk

∂

∂ui
(αjki + αkij + αijk︸ ︷︷ ︸

=π

) = 2Ajki + 2Akij.

Due to the linearity of the area function,

∂A∆
tot

∂ui
=

∑
jk|ijk∈F∆

2Ajki + 2Akij = 2Ai.

Theorem 4.10 (Extension). For a conformal factor u ∈ RV , let ∆(u) be a
Delaunay triangulation of the surface (S, V, d(u)). The map

Atot : RV → R, u 7→ A
∆(u)
tot (u),

is well-defined and twice continuously differentiable. Its second derivative is

d2Atot =
∑
ij∈E

2Aij(dui + duj)
2 − 1

2

∑
ij∈E

(R2
ijk cotαijk +R2

ijl cotαijl )(dui − duj)2,

where the vertices k, l ∈ V are such that the triangles ijk, ijl lie in F∆(u),
and Aij = Akij + Alij.

Proof. The function Atot is well-defined and analytic in the interior of every
Penner cell, since the area of each triangle ijk ∈ F∆, Aijk, is an analytic
function with respect to the conformal factors. If A∆ ∩A∆̃ 6= ∅, the triangu-
lations ∆ and ∆̃ differ by finitely many Ptolemy flips, and the functions A∆

tot

and A∆̃
tot agree on A∆∩A∆̃ up to second derivative. Due to Fact 2.22, we may

assume that ∆ and ∆̃ differ only by one Ptolemy flip, flipping edge ij ∈ E∆
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to the edge kl ∈ E∆̃. Thus, it suffices to prove that the functions Aijk +Aijl
and Aikl +Ajkl agree up to second derivative on A∆ ∩A∆̃. The proof of this
consists of a largely technical unilluminating calculation which can be found
in [9], Chapter 10.

In the upcoming calculations we use the following formula, which was proved
in [3], Equation (4-8).

Lemma. Let a, b, c be edge lengths of a triangle, α, β, γ angles opposite of
a, b, c, respectively, and let λa, λb, λc be the logarithmic lengths. Then

2dα = (cot β + cot γ)dλa − cot γdλb − cot βdλc.

We use Notation 4.8. Since

∂Ajki
∂ui

= Ajki −
1

2
R2
ijk

∂αkij
∂ui

= Ajki −
1

4
R2
ijk cotαijk ,

we obtain

∂2Atot
∂u2

i

= 2Ai −
1

2

∑
jk|ijk∈F∆

R2
ijk(cotαijk + cotαkij ).

Let i, j ∈ V be two vertices. If j is not adjacent to i,

∂2Atot
∂ui∂uj

= 0.

If j is adjacent to i, let k, l ∈ V be the two vertices such that ijk, ijl ∈ F∆.
Since

∂Aijk
∂ui

= −1

2
R2
ijk

∂αjki
∂ui

=
1

4
R2
ijk(cotαkij + cotαijk ),

the mixed partial derivative equals

∂2Atot
∂ui∂uj

= 2Akij + 2Alij︸ ︷︷ ︸
=2Aij

+
1

2
(R2

ijk cotαijk +R2
ijl cotαijl ).

Thus,

d2Atot =
∑
ij∈E∆

2Aij(dui + duj)
2 − 1

2

∑
ij∈E∆

(R2
ijk cotαijk +R2

ijl cotαijl )(dui − duj)2.
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4.2 The variational principles

Theorem 4.11 (Variational principle with equality constraints). Let (S, V, d)
be a piecewise flat surface. The PL-metrics in the conformal class of the met-
ric d are in one-to-one correspondence with the critical points of the function

E : RV → R, u 7→ E(u),

under the constraint
Atot(u) = 1.

Proof. We use the method of Lagrange multipliers. A conformal factor u ∈
RV is a critical point of the function E under the constraint Atot = 1 if and
only if there exists a Lagrange multiplier λ ∈ R, such that

0 =
∂(E− λAtot)

∂ui

(4),(5)
= Wi − 2λAi.

This holds if and only if

Ki :=
Wi

Ai
= 2λ = const.

Proposition 4.12. Let (S, V, d) be a piecewise flat surface with constant
discrete Gaussian curvature Kav at every vertex. Denote the total area of the
surface by Atot, and the Euler characteristics of S by χ(S). Then,

Kav =
2πχ(S)

Atot
.

Proof. The claim follows from the discrete Gauss–Bonnet theorem. Let ∆
be a geodesic triangulation of the surface (S, V, d). Then:

2πχ(S) = 2π|V | − π|F∆| =
∑
i∈V

2π −
∑

jk|ijk∈F∆

αjki

 =
∑
i∈V

Wi =
∑
i∈V

AiKi.

Theorem 4.13 (Variational principle with inequality constraints). Let (S, V, d)
be a piecewise flat surface. The existence of PL-metrics in the conformal class
of the metric d follows from the existence of minima of the function E under
the following inequality constraints:
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• if the Euler characteristic of S satisfies χ(S) = 2, the inequality constraint
is

Atot ≥ 1,

• if the Euler characteristic of S satisfies χ(S) < 0, the inequality constraint
is

Atot ≤ 1.

Proof. Proposition 4.15 shows that, if u ∈ RV is a minimum of the function E
under one of these constraints, then Atot(u) = 1. Since a minimum is a critical
point, the claim follows from Theorem 4.11.

Proposition 4.14. Let

A+ = {u ∈ RV | Atot(u) ≥ 1}, A− = {u ∈ RV | Atot(u) ≤ 1},

be two sets in the vector space RV . The sets A+ and A− have the following
properties:
a) The sets A+ and A− are closed subsets of RV .
b) Let I = (1, . . . , 1) ∈ RV , and let u ∈ RV be a conformal factor. Then the

rays

R+
u =

{
u+ c I | c ≥ −1

2
logAtot(u)

}
, R−u =

{
u+ c I | c ≤ −1

2
logAtot(u)

}
are completely contained in the sets A+ and A−, respectively.

c) The sets A+ and A− are unbounded.

Proof. a) The proof follows from the fact that the sets A+ and A− satisfy
the equation

A+ = A−1
tot([1,∞)), A− = A−1

tot([0, 1]).

b) The statement follows from the fact that

Atot(u+ c I)) = Atot(u) exp(2c).

c) The statement follows from claim b).

Proposition 4.15. Let (S, V, d) be a piecewise flat surface. If
• the Euler characteristic of S satisfies χ(S) = 2 and the function E attains

a minimum in the set A+, or
• the Euler characteristic of S satisfies χ(S) < 0 and the function E attains

a minimum in the set A−,
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the minimum lies at the boundary of the sets,

∂A+ = ∂A− =
{
u ∈ RV | Atot(u) = 1

}
.

Proof. Let χ(S) = 2, let u ∈ A+ be a minimum of the function E in A+ and
let u+ c : I ∈ R+

u . Then

E(u) ≤ E(u+ c I) = E(u) + 4πc,

with equality if and only if −1
2

logAtot(u) = c = 0.

For surfaces with χ(S) < 0 the proof is analogous.

5 Existence

We show, that the function E possesses minima in the sets A+ and A−. The
following theorem is a classical theorem from calculus. We omit the proof.

Theorem 5.1. Let A ⊆ Rm be a closed set and let f : A → R a con-
tinuous function. If every unbounded sequence (xn)n∈N in A has a subse-
quence (xnk)k∈N such that

lim
k→∞

f(xnk) = +∞,

then f attains a minimum in A.

To obtain minima in the sets A+ and A−, it suffices to apply the aforemen-
tioned Theorem 5.1 and to prove the following Proposition:

Proposition (Proposition 5.15). a) Let χ(S) < 0 and let (un)n∈N be an un-
bounded sequence in A−. Then there exists a subsequence (unk)k∈N of
(un)n∈N such that

lim
k→∞

E(unk) = +∞.

b) Let χ(S) = 2 and let (un)n∈N be an unbounded sequence in A+. Then
there exists a subsequence (unk)k∈N of (un)n∈N such that

lim
k→∞

E(unk) = +∞.

Corollary 5.2. If χ(S) < 0, the function E possesses a minimum in the
set A−. If χ(S) = 2, the function E possesses a minimum in the set A+.

Proof. Follows from Proposition 5.15, Proposition 4.14 and Theorem 5.1.
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The goal is to extract a suitable subsequence from any given unbounded se-
quence in the sets A+ and A−.

In Section 5.1 we study the behaviour of triangulations under sequences of
conformal factors. We show that, up to a global scaling, a Delaunay tri-
angulation of a closed, piecewise flat surface can exhibit only two types of
behaviour. In Section 5.2 we investigate the behaviour of the function E
under the sequences of conformal factors.

We use the following standard definition from calculus.

Definition 5.3. A sequence of real numbers (xn)n∈N is called properly di-
vergent to +∞ if, for each M ∈ R, there exists an N ∈ N, such that xn > M
for all n > N .

A sequence of real numbers (xn)n∈N is called properly divergent to −∞
if, for each M ∈ R, there exists an N ∈ N, such that xn < M for all n > N .

5.1 Sequences of conformal factors

Definition 5.4. A sequence of conformal factors (un)n∈N in RV is called
consistently ordered convergent if
a) it lies in a Penner cell A∆ of RV ,
b) there exists a vertex i∗ ∈ V such that, for all j ∈ V and n ∈ N, ui∗,n ≤ uj,n,

and the sequence (ui∗,n)n∈N either converges, diverges properly to +∞ or
diverges properly to −∞,

c) for every triangle t ∈ F∆, there exists a labeling of the vertices i, j, l of t
such that

i) for all n ∈ N, ui,n ≥ uj,n ≥ ul,n,

ii) the sequences (uj,n− ui∗,n)n∈N and (ul,n− ui∗,n)n∈N converge, and the
sequence (ui,n−ui∗,n)n∈N either converges or diverges properly to +∞.

Let (S, V, d) be a piecewise flat surface, let A∆ be a non-empty Penner cell,
and let (un)n∈N be a sequence in A∆. Denote the evolution of the discrete
metric `d : E∆ → R along (un)n∈N by

`nij := `ij exp

(
ui,n + uj,n

2

)
. (6)

This, in particular, implies that the edge lengths of every triangle of the
surface (S, V,∆) with the discrete metric `n satisfy the triangle inequalities.
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Proposition 5.5. Each sequence of conformal factors in RV possesses a
consistently ordered convergent subsequence.

Corollary 5.6. Let (un)n∈N be an unbounded sequence in RV .

a) If there exists a vertex i ∈ V , such that the sequence (ui,n)n∈N is not
bounded from below, the sequence (un)n∈N possesses a consistently ordered
convergent subsequence (unk)k∈N, such that the sequence (ui∗,nk)k∈N di-
verges properly to −∞.

b) If, for all vertices i ∈ V , the sequences (ui,n)n∈N are bounded from below,
the sequence (un)n∈N possesses a consistently ordered convergent subse-
quence (unk)k∈N with at least one vertex j ∈ V , such that the sequence (uj,nk)k∈N
diverges properly to +∞.

Proof of Proposition 5.5. Let (un)n∈N be a sequence of conformal factors
in RV . The existence of a subsequence of (un)n∈N, satisfying the condition a)
of Definition 5.4 follows from Akiyoshi’s Theorem 2.19. The existence of a
further subsequence, satisfying the conditions b) and c) i) follows from the
fact, that the number of vertices |V | is finite.

Assume that the sequence (un)n∈N already satisfies properties a)− c) i) from
Definition 5.4. Let t0 ∈ F∆ be any triangle with vertex i∗. Label the vertices
of t0 by i, j, l, as in Definition 5.4 c) i). Due to Definition 5.4 b), ul,n−ui∗,n = 0
for all n ∈ N, and the sequences (ui,n − ui∗,n)n∈N and (uj,n − ui∗,n)n∈N are
bounded from below by zero. If the sequence (ui,n−ui∗,n)n∈N is bounded, then
so is the sequence (uj,n − ui∗,n)n∈N, and there exists a subsequence (unk)k∈N
of (un)n∈N, such that the sequences (ui,nk − ui∗,nk)k∈N and (uj,nk − ui∗,nk)k∈N
converge. If the sequence (ui,n−ui∗,n)n∈N is unbounded, there exists a subse-
quence (unk)k∈N of (un)n∈N, such that the sequence (ui,nk−ui∗,nk)k∈N diverges
properly to +∞. The sequence (uj,nk − ui∗,nk)k∈N must be bounded due to
the following lemma:

Lemma 5.7. Let `12, `23, `31 be edge lengths of a Euclidean triangle and
let (un)n∈N = (u1,n, u2,n, u3,n)n∈N be a sequence of conformal factors in R3. If
• the sequence (u1,n)n∈N diverges properly to +∞,
• the sequence (u2,n)n∈N is not bounded from above and
• the sequence (u3,n)n∈N is bounded,
there exists an n ∈ N such that the triangle inequalities do not hold for `n12, `

n
23, `

n
31.

There exists a further subsequence of the sequence (unk)k∈N, along which the
sequence (uj,nk − ui∗,nk)k∈N converges.
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Assume the sequence (un)n∈N already satisfies properties a) − c) i), and
the property c) ii) on triangle t0. Let t1 ∈ F∆\{t0} be a triangle shar-
ing an edge e = vw with the triangle t0, and label the vertex in the tri-
angle t1 and not in the triangle t0 by m. If the sequences (uv,n − ui∗,n)n∈N
and (uw,n−ui∗,n)n∈N converge, there exists a subsequence (unk)k∈N of (un)n∈N,
such that the sequence (um,nk−ui∗,nk)k∈N either converges (if (um,n−ui∗,n)n∈N
is bounded) or diverges properly to +∞ (if (um,n − ui∗,n)n∈N is unbounded).
If one of the sequences (uv,n − ui∗,n)n∈N, (uw,n − ui∗,n)n∈N diverges properly
to +∞, the sequence (um,n−ui∗,n)n∈N is bounded due to Lemma 5.7, and there
exists a subsequence (unk)k∈N of (un)n∈N, such that the sequence (um,nk −
ui∗,nk)k∈N converges.

Proof of Lemma 5.7. Without loss of generality we may assume, that both (u1,n)n∈N
and (u2,n)n∈N diverge properly to +∞, and that u1,n ≤ u2,n for all n ∈ N.
Assume that, for all n ∈ N, the triangle inequality

`n12 ≤ `n23 + `n31

holds. Then

0 < `12 = exp

(
−u1,n − u2,n

2

)
`n12

≤ exp

(
−u1,n − u2,n

2

)
(`n23 + `n31)

= exp

(
u3,n − u1,n

2

)`23 + `31 exp

(
u1,n − u2,n

2

)
︸ ︷︷ ︸

≤1


≤ exp

(
u3,n − u1,n

2

)
(`23 + `31)

n→∞−−−→ 0.

This is a contradiction.

Behaviour around a vertex star Let (un)n∈N be a consistently ordered
convergent sequence of conformal factors in A∆ and let i ∈ V be a vertex
such that the sequence (ui,n−ui∗,n)n∈N diverges properly to +∞. We explore
the behaviour of the triangles around i.

Definition 5.8. Let i ∈ V be a vertex. A vertex star around vertex i
is the subset of the triangles F i

∆ ⊆ F∆ that contain the vertex i. At a vertex
star we use the following labeling: Let s = deg i. We label the vertex i by 0
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and the vertices adjacent to i by 1, . . . , s, such that, for each j ∈ {1, . . . , s},
the vertices 0, j and j + 1 belong to a triangle. Whenever necessary, we use
the convention 1− 1 = s.

Lemma 5.9. Let (un)n∈N = (u1,n, u2,n, u3,n)n∈N be a sequence of conformal
factors in R3. Assume that, for all n ∈ N, the edge lengths `n12, `

n
23, `

n
31 satisfy

the triangle inequalities. Suppose that the sequence (u1,n)n∈N diverges properly
to +∞, and the sequences (u2,n)n∈N and (u3,n)n∈N converge. Then

`n12

`n31

n→∞−−−→ 1,

and the sequence of angles αn1 , opposite to the edge 23 in the triangle with
edge lengths `n12, `

n
23, `

n
31, satisfies

αn1
n→∞−−−→ 0.

Proof. We use the triangle inequality `n31 ≤ `n23 + `n12. Dividing both sides
by `n31 yields the inequality

1 ≤ `n23

`n31

+
`n12

`n31

=
`23

`31

exp

(
1

2
(u2,n − u1,n)

)
+
`n12

`n31

.

Dividing both sides of the triangle inequality `n12 ≤ `n23 + `n31 by `12 yields the
inequality

1 ≤ `23

`12

exp

(
1

2
(u3,n − u1,n)

)
+
`n31

`n12

.

Since, for i = 2, 3, exp
(

1
2
(ui,n − u1,n)

) n→∞−−−→ 0, we obtain

`n23

`n31

n→∞−−−→ 0,
`n23

`n12

n→∞−−−→ 0.

The convergence of the fraction
`n12

`n31
follows from the inequalities

1 ≤ lim
n→∞

`n12

`n31

≤ 1.

From the cosine rule we obtain the convergence

2 cosαn1 =
`n12

`n31

+
`n31

`n12

− (`n23)2

`n31`
n
12

n→∞−−−→ 2,

and thus αn1
n→∞−−−→ 0.
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In the following we drop the index n labeling the sequences when we talk
about angles. Figure 5.1 illustrates the notation used at a vertex star.

Proposition 5.10. Let i ∈ V be a vertex and let F i
∆ be a vertex star around i.

Label the vertices adjacent to i as in Definition 5.8. Let (un)n∈N be a sequence
of conformal factors in A∆, such that the sequence (u0,n)n∈N diverges properly
to +∞, and, for all j = 1, . . . , s, the sequences (uj,n)n∈N converge. Then the
sequences of angles in the triangles in F i

∆ satisfy

lim
n→∞

αj,j+1
0 = 0, lim

n→∞
αj,0j+1 = lim

n→∞
αj+1,0
j = π/2, j ∈ {1, . . . , s}.

Proof. Denote the limit of a sequence of angles αi,jk along (un)n∈N by ᾱi,jk .
Due to Lemma 5.9,

ᾱj,j+1
0 = 0,

and thus, for all j = 1, . . . , s,

ᾱ0,j+1
j + ᾱ0,j

j+1 = π.

0

1

j
j + 1

2

s

α0,j+1
j

α0,j
j+1

αj,j+1
0

`n0,j

`n0,j+1

Figure 5.1

Since the edges 0j are Delaunay, the Delaunay inequality

ᾱ0,j
j−1 + ᾱ0,j

j+1 ≤ π
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is satisfied for each j ∈ {1, . . . , s}. Summing up the Delaunay inequalities
for edges 01, . . . , 0s, we obtain

πs ≥
s∑
j=1

(ᾱ0,j
j−1 + ᾱ0,j

j+1) =
s∑
j=1

(ᾱ0,j+1
j + ᾱ0,j

j+1) = πs.

We deduce, that each Delaunay inequality is actually an equality. Let ϕ :=
ᾱ0,2

1 . Then

ᾱ0,j
j−1 = ϕ, ᾱ0,j−1

j = π − ϕ,

for all j ∈ {1, . . . , s}.

To show that ϕ = π/2, we apply the following equation:

Consider a triangle with sides a, b, c, and opposite angles α, β, γ. Then

b− a = c
sin
(
α−β

2

)
cos
(
γ
2

) . (7)

Denote the limit of the lengths of edges j, j + 1 by limn→∞ `
n
j,j+1 = ¯̀

j,j+1.
Since, for all n ∈ N, holds

s∑
j=1

(
`n0,j+1 − `n0,j

)
= 0,

in the limit

0 = lim
n→∞

s∑
j=1

(
`n0,j+1 − `n0,j

) (7)
= sin

(
π − 2ϕ

2

) s∑
j=1

¯̀
j,j+1.

Since, for all j = 1, . . . , s, the sequences of conformal factors (uj,n)n∈N con-
verge,

s∑
j=1

¯̀
j,j+1 > 0.

We deduce that

sin

(
π − 2ϕ

2

)
= 0,

and thus ϕ = π/2.

The last property we need to explore is the behaviour of the area of the
triangles under sequences of conformal factors.
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Lemma 5.11. Let (un)n∈N be a consistently ordered convergent sequence
in A∆ and let ijl ∈ F∆ be a triangle, such that ui,n ≥ uj,n ≥ ul,n for all n ∈ N.
Denote by Anijl the area of the triangle with edge lengths `nij, `

n
jk, `

n
ki. Then the

behaviour of the sequence (logAnijl)n∈N is governed by the behaviour of the
sequence (ui∗,n)n∈N.

a) If the sequence (ui,n − ui∗,n)n∈N converges, there exists a convergent se-
quence of real numbers (Cn)n∈N, such that the area of the triangle ijl
satisfies

logAnijl = Cn + 2ui∗,n,

b) if the sequence (ui,n − ui∗,n)n∈N diverges to +∞, there exists a convergent
sequence of real numbers (Cn)n∈N, such that the area of the triangle ijl
satisfies

logAnijl = Cn +
1

2
(ui,n + 3ui∗,n).

Proof. The proof follows from the continuity of the area function and from
the fact, that the sequence (un)n∈N is consistently ordered convergent.

We now have all ingredients to extract the correct subsequence from an un-
bounded sequence in the sets A+ and A−.

Theorem 5.12. a) Let (un)n∈N be an unbounded sequence in A−. Then
there exists a subsequence (unk)k∈N of (un)n∈N, such that (unk)k∈N is con-
sistently ordered convergent and the sequence (ui∗,nk)k∈N diverges properly
to −∞.

b) Let (un)n∈N be an unbounded sequence in A+. Then there exists a sub-
sequence (unk)k∈N of (un)n∈N, such that (unk)k∈N is consistently ordered
convergent and there exists at least one vertex j ∈ V such that the se-
quence (uj,nk)k∈N diverges properly to +∞. If the sequence (ui∗,nk)k∈N
diverges properly to −∞, there exists at least one vertex j ∈ V , such that
the sequence (uj,nk + 3ui∗,nk)k∈N is bounded from below.

Proof. Let (un)n∈N be an unbounded sequence of conformal factors in RV .
Apply Corollary 5.6. If all sequences (ui,n)n∈N are bounded from below, there
exists a consistently ordered convergent subsequence (unk)k∈N of (un)n∈N and
a vertex j ∈ V , such that the sequence (uj,nk)k∈N diverges properly to +∞.
Due to Lemma 5.11, we obtain

lim
k→∞

Atot(unk) =∞.
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Thus, if the sequence (un)n∈N lies inA−, it must be of type a) in Corollary 5.6.

Suppose that the sequence (un)n∈N lies in A+ and is of type a) in Corol-
lary 5.6. Then there exists a consistently ordered convergent subsequence (unk)k∈N
of (un)n∈N, such that the sequence (ui∗,nk)k∈N diverges properly to −∞. The
area of at least one of the triangles of the piecewise flat surface (S, V, d(unk))
has to be bounded away from zero. Due to Lemma 5.11, this is the case only
if there exists a vertex j ∈ V , such that the sequence (uj,nk + 3ui∗,nk)k∈N is
bounded from below.

5.2 Behaviour of the function E along sequences of
conformal factors

Let (S, V, d) be a piecewise flat surface, with a Delaunay triangulation ∆.
Consider a triangle in F∆, with vertices labeled by 1, 2, 3 ∈ V and an initial
discrete metric `12, `23, `31, uniquely determined by d. Define

A123 := {(u1, u2, u3) | u ∈ A∆}.

Recall the function f from Definition 4.1. Let

h : A123 → R, h(u1, u2, u3) := 2f

(
λ̃12

2
,
λ̃23

2
,
λ̃31

2

)
− π

2
(λ̃12 + λ̃23 + λ̃31).

Proposition 5.13. Let (un)n∈N = (u1,n, u2,n, u3,n)n∈N be a sequence of con-
formal factors in A123. Suppose, that the sequence (u1,n)n∈N diverges properly
to +∞, and the sequences (u2,n)n∈N and (u3,n)n∈N converge to u2, u3, respec-
tively. Then

lim
n→∞

h(u1,n, u2,n, u3,n) = −π
(

log `23 +
1

2
(u2 + u3)

)
.

Proof. Consider the notation as in Figure 5.2. Then,

1

2
h(u1,n, u2,n, u3,n) =αnxn + βnyn + γnzn + L(αn) + L(βn) + L(γn)

− π

2
(xn + yn + zn).

In the limit, the sequences (xn)n∈N, (yn)n∈N and (zn)n∈N satisfy

lim
n→∞

xn = log `23 +
1

2
(u2 + u3) =: x, lim

n→∞
yn = +∞, lim

n→∞
zn = +∞,
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1

2

3

αn
βn

γn

`n12 = exp(zn)

`
n

31
=

ex
p(
y n

) ` n23 =
exp(x

n )
Figure 5.2

and, due to Proposition 5.10,

lim
n→∞

(αn, βn, γn) =
(

0,
π

2
,
π

2

)
.

Thus,
lim
n→∞

αnxn = 0,

and, since the Lobachevsky function is continuous and satisfies the equa-
tions L(0) = L

(
π
2

)
= 0, in the limit we obtain

lim
n→∞

(L(αn) + L(βn) + L(γn)) = 0.

In summary,

lim
n→∞

h(u1,n, u2,n, u3,n) = 2 lim
n→∞

[(
βn −

π

2

)
yn +

(
γn −

π

2

)
zn

]
− πx.

We rearrange the expression
(
βn − π

2

)
yn +

(
γn − π

2

)
zn to obtain(

βn −
π

2

)
yn +

(
γn −

π

2

)
zn = −1

2
αn(yn + zn) +

1

2
(βn − γn)(yn − zn).

In the limit, limn→∞(βn − γn) = 0, and

lim
n→∞

(yn − zn) = log `31 − log `12 +
1

2
(u3 − u2).

Thus,

lim
n→∞

1

2
(βn − γn)(yn − zn) = 0.

It is left to determine the limit

lim
n→∞

αn(yn + zn) = lim
n→∞

αn log `n31 + lim
n→∞

αn log `n12.
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We apply the sine rule and the L’Hospital’s rule to obtain the expression

lim
n→∞

αn log `n31 = lim
n→∞

(αnlog `n23 + αnlog sin βn − αn log sinαn)

= − lim
n→∞

αn log sinαn = 0.

Similarly, limn→∞ αn log `n12 = 0.

Altogether, we see that

lim
n→∞

h(u1,n, u2,n, u3,n) = −πx.

Lemma 5.14. For any real number v ∈ R, the function h satisfies the equa-
tion

h((u1, u2, u3) + v(1, 1, 1)) = h(u1, u2, u3)− πv.

Proof. Follows from the property of the function f from Proposition 4.5.

Proposition 5.15. a) Let χ(S) < 0 and let (un)n∈N be an unbounded se-
quence in A−. Then there exists a subsequence (unk)k∈N of (un)n∈N, such
that

lim
k→∞

E(unk) = +∞.

b) Let χ(S) = 2 and let (un)n∈N be an unbounded sequence in A+. Then
there exists a subsequence (unk)k∈N of (un)n∈N, such that

lim
k→∞

E(unk) = +∞.

Proof. Due to the Euler formula, 2|V | − |F∆| = 2χ(S). Let (un)n∈N be a
sequence of conformal factors in RV , and let (unk)k∈N be a consistently or-
dered convergent subsequence of (un)n∈N in a Penner cell A∆. Applying
Lemma 5.14 we obtain the equality

E(unk) =
∑
ijl∈F∆

h(ui,nk , uj,nk , ul,nk) + 2π
∑
j∈V

uj,nk

=
∑
ijl∈F∆

h((ui,nk , uj,nk , ul,nk)− ui∗,nk(1, 1, 1))︸ ︷︷ ︸
=:Cnk

−π|F∆|ui∗,nk + 2π
∑
j∈V

uj,nk

= Cnk + 2π

(
ui∗,nkχ(S) +

∑
j∈V

(uj,nk − ui∗,nk)

)
.
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The sequence (Cnk)k∈N converges due to Proposition 5.13 and due to the
fact that the sequence (unk)k∈N is consistently ordered convergent. Thus, the
convergence of E(unk) is governed by the convergence of the expression

ui∗,nkχ(S) +
∑
j∈V

(uj,nk − ui∗,nk). (8)

The sequence (∑
j∈V

(uj,nk − ui∗,nk)

)
k∈N

is bounded from below by zero and either converges or diverges properly to
+∞.

Proof of a): Let χ(S) < 0 and consider an unbounded sequence (un)n∈N in
A−. Due to Theorem 5.12, there exists a subsequence (unk)k∈N of (un)n∈N
that is consistently ordered convergent, and the sequence (ui∗,nk)k∈N diverges
properly to −∞. Since the Euler characteristic of S is negative, the se-
quence χ(S)(ui∗,nk)k∈N diverges properly to +∞. Thus, the expression (8)
diverges to +∞ and we deduce, that

lim
k→∞

E(unk) = +∞.

Proof of b): Let χ(S) = 2 and consider an unbounded sequence (un)n∈N in
A+. Due to Theorem 5.12, there exists a subsequence (unk)k∈N of (un)n∈N
that is consistently ordered convergent, and there exists at least one ver-
tex j ∈ V , such that the sequence (uj,nk)k∈N diverges properly to +∞.

At first assume, that the sequence (ui∗,n)n∈N is bounded from below. Then
the sequence χ(S)(ui∗,nk)k∈N either converges or diverges properly to +∞.
If it diverges, the expression (8) diverges to +∞. If it converges, the se-
quence (uj,nk − ui∗,nk)k∈N diverges properly to +∞. Thus,

lim
k→∞

E(unk) = +∞.

If the sequence (ui∗,nk)k∈N diverges properly to −∞, there exists a ver-
tex p ∈ V , such that the sequence (up,nk +3ui∗,nk)k∈N is bounded from below.
Rearranging the members of the sum in expression (8) we obtain

2ui∗,nk +
∑
l∈V

(ul,nk − ui∗,nk) = −2ui∗,nk + (up,nk + 3ui∗,nk) +
∑

l∈V,l 6=p

(ul,nk − ui∗,nk).
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Since both sequences( ∑
l∈V,l 6=p

(ul,nk − ui∗,nk)

)
k∈N

and (up,nk + 3ui∗,nk)k∈N

are bounded from below, and the sequence (−2ui∗,nk)k∈N diverges properly
to +∞,

lim
k→∞

E(unk) = +∞.
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