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We study the spreading of cooperative infections in an empirical temporal network of

contacts between people, including health care workers and patients, in a hospital.

The system exhibits a phase transition leading to one or several endemic branches,

depending on the connectivity pattern and the temporal correlations. There are two

endemic branches in the original setting and the non-cooperative case. However, the

cooperative interaction between infections reinforces the upper branch, leading to a

smaller epidemic threshold and a higher probability for having a big outbreak. We show

the microscopic mechanisms leading to these differences, characterize three different

risks, and use the influenza features as an example for this dynamics.

Keywords: co-infection, hospital contact networks, temporal networks, endemic bistability, temporal correlations,

influenza

INTRODUCTION

Infectious diseases have been a serious problem across the whole history of humankind. Nowadays,
200,000 hospitalizations are directly associated with influenza every year in the United States [1, 2],
and a potential pandemic could kill between 50 and 80 million people through a virulence strain
similar to the 1918 influenza [3, 4]. However, the complexity of this dynamics is even higher, as
infections can interact between themselves in several ways, inducing higher susceptibility or cross-
immunity [5–8]. Hospitals, where different diseases are more likely to meet, are risky places for
coinfection, that is the concurrent infection of a host with multiple pathogens. Moreover, diseases
in hospitals are probably in their most virulent stages, weakening their hosts’ immune system
such that secondary infections are very likely to occur. Indeed, hospital acquired infections affect,
on average, to 10% of the admitted patients [9], while the network defined by the transfer of
patients across hospitals may explain the spread of bacterial infections [10]. Coinfection in hospitals
has been reported, like the association between Clostridium difficile and vancomycin-resistant
Enterococcus [11]. Some studies show thatmultiple pathogen infections were present in the children
hospitalized [12–14]. Pérez-García et al. also reported that co-infection was significantly associated
with nosocomial acquisition [15]. This is translated not only in health issues, but also economic
costs [16].

In this work, we address the study of contagion processes following the temporal interactions
pattern within a hospital. This can help determining the main drivers of this complex interacting
spreading process and then preventing these cases. Thus, we are motivated to calculate risks of
coinfection outbreaks in a hospital.

Recently, a model for cooperation between two infections has been proposed,
with both infections following a dynamics that is an extension of the usual SIR
(Susceptible-Infected-Recovered) model [17], but considering that individuals that previously

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/231814369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2017.00046
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2017.00046&domain=pdf&date_stamp=2017-10-06
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fakhteh.ghanbarnejad@gmail.com
mailto:victor@ifisc.uib-csic.es
https://doi.org/10.3389/fphy.2017.00046
https://www.frontiersin.org/articles/10.3389/fphy.2017.00046/abstract
http://loop.frontiersin.org/people/450069/overview
http://loop.frontiersin.org/people/465800/overview
http://loop.frontiersin.org/people/73494/overview


Rodríguez et al. Coinfection Outbreaks in Temporal Networks

suffered from one infection are more likely to get a second
infection than susceptible ones, in a process that is called
coinfection [18]. In contrast with usual SIR model applied to a
single disease spreading along a network, this dynamics leads
to abrupt transitions in several topologies [19, 20]. We study
this dynamics in an empirical temporal network, to assess the
differences that cooperation between infections can induce in real
world. In fact, several studies have shown the differences between
temporal and static approaches when dynamical processes occur
in networks, changing the characteristic time scales of the
processes [21–24]. The temporal correlations have a remarkable
effect on cooperation in evolutionary dynamics [25], and the
interplay of them with the structure strongly affects the diffusion
processes [26]. Nowadays, empirical temporal contact networks
in hospital are becoming available for scientific analysis. For
instance, Jarynowski and Liljeros made a dataset based on the
registry of visits in the hospital, and it was used to specify
the interactions between hosts [27]. Also contact networks
for disease spreading in hospitals have been studied [28],
where the sequence of contacts was aggregated in a daily
scale.

Considering these motivations, we apply our cooperative
spreading model to an empirical network built from hospital
contacts. Then we make another step further and calculate
risks of coinfection outbreaks on this hospital contact network,
for a general case and the specific case of influenza. The
body of the paper is structured in 4 sections, including the
description of the empirical network, the definition of the
dynamics describing the spreading process, the introduction
of the risks that will be assessed and, finally, the results and
discussions.

NETWORK DESCRIPTION

The empirical network we study here includes the contacts
between N = 75 people in a hospital (46 health care workers
and 29 patients) [29]. Contacts are reported by tracking devices
when two individuals are located within a distance of 1–1.5 m,
and are agreggated in time windows of 1t = 20 s. Specifically,
32,424 contacts were recorded along 17,375 intervals, tmax =

96.53 h, which gives an average degree per unit time 8.96 h−1.
This network is described with a temporal adjacency matrix
Aij(t), where Aij(t) = 1 if individuals i and j are connected at
time t and Aij(t) = 0 otherwise. Note that Aij(t) = Aji(t) due to
the symmetry of interactions.

This temporal network of contacts has a non-uniform activity
on time, having peaks separated by 24 h (Figure 1A). In fact,
there are valleys of low activity, associated with night, such
that dynamics starting here is very likely to die out due to
the low number of contacts. This motivates our choice of the
recovery probability according to the characteristic time scale for
those valleys of 1,000 time intervals (≈5.5h). Specifically, in a
SI (Susceptible-Infected) process with transmission probability
equal to 1, where one disease is transmitted in every contact
between an infected individual and a susceptible one, starting
from one initially infected individual, the low activity periods

FIGURE 1 | Temporal features of the network. (A) Number of contacts

C(t) =
∑

i,j>i
Aij (t) happening at time t, aggregated for time intervals of 80 s. The

low activity periods are valleys associated with night. (B) Number of infected

individuals NI in a SI process with transmission probability equal to 1. Each

curve starts from a different initially infected individual, assigning red color to

trajectories whose initial infected individual is the first having a contact in the

sequence, progressively changing to blue (last).

have a constant number of infected individuals, until themorning
arrives and new infections occur (Figure 1B).

DYNAMICS

We consider a model where two infections, A and B, both
experiencing SIR dynamics, spread along the temporal contact
network (Figure 2). This leads to 9 different states for individuals:

Active states

• A: singly infected withA

• B: singly infected with B

• AB: doubly infected with bothA and B

• aB: recovered fromA, infected with B

• Ab: infected withA, recovered from B

Inactive states

• S: susceptible
• a: recovered fromA

• b: recovered from B

• ab: recovered from bothA anf B

Individuals can get infected by their active neighbors. The states
are updated synchronously according to the following rules:

1. Individuals that are active for A infect their susceptible
neighbors with probability p (analogous for individuals that
are active for B).

2. Secondary infections will occur when an individual with
an active state is connected with an individual which has
previously suffered from the other infection, happening with
probability q.

3. Recovery from each infection in active individuals will happen
independently with probability r.
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FIGURE 2 | Scheme of the coinfection dynamics. Probabilities of transition, under the exposure to the suitable active states, between different states are depicted in

the center of the arrows connecting states. Primary infections, i.e., when a state S gets infected, happen with probability p, secondary infections, which are those from

active/recovered for/from one infection to active for the other, happen with probability q, and recovery, from active to inactive states, happens with probability r. Filling

colors indicate active states, while stroke colors stand for recovered states (red for infection A, blue for infection B, magenta for both).

The case q > p is representative for cooperation between
infections, while q = p means two independent spreading
processes and q < p would represent cross-immunity.

As several individuals may remain active after the tmax

time steps of the empirical network, we repeat the observed
interaction pattern until there are no remaining individuals
in active states. This means that, for time step t, we will
consider the network of interactions Aij(t mod tmax). Taking
into account the analysis performed in Figure 1, we set r =

0.001, such that infections can survive the low activity night
period.

ESTIMATION OF RISKS

We consider three estimators for the risk. First of all, the presence
of an outbreak: classical studies of disease spreading show a
phase transition from non-endemic to endemic regime, when
the transmission probability p is changed; there is a threshold
pc, the critical point, such that for p < pc there are no
outbreaks, while for p > pc the probability of having an
outbreak grows. This epidemic threshold pc is calculated as the
maximum of the susceptibility. Secondly, we will estimate the
fraction of the population affected by the outbreak: given a
value for p, we compute the period prevalence [30], defined
in our study as the fraction of people ρab which has been
coinfected in independent realizations in a statistical ensemble.
Finally, we analyze the distribution of ρab, i.e., the probability
5p(ρab) of having an outbreak of size ρab for a given p,
that is useful to characterize the probability of having big

outbreaks, considering that a realization is a big outbreak
when it is in the upper endemic branch on the ρab-p diagram.
5p(ρab) = 0 for p < pc and ρab > 1

N (one initially
doubly infected individual), and it will grow for values higher
than pc.

RESULTS

We compare two cases: (a) independent spreading (p = q), and
(b) strong coinfection (p < q = 1). Both cases lead to similar

qualitative results. Interestingly, there are two endemic branches:
one growing continuously and another appearing after an
abrupt jump (Figures 3A,B). However, a quantitative assessment
reveals the differences between the independent (Figure 3A)
and cooperative (Figure 3B) cases. First of all, cooperation
makes epidemic threshold smaller, such that outbreaks appear
for lower values of p when diseases cooperate, meaning that
the risk for the presence of an outbreak is higher, as pc is
smaller. Secondly, outbreaks lead to fractions of doubly infected
individuals that are almost a 10% higher. Finally, for a given value
of p, the probability of having big outbreaks is higher for the
cooperating case, as the highest endemic branch includes a higher
density in the cooperative case than in the independent case
(Figure 4).

In empirical contact networks, temporal correlations are
highly present due tomobility of agents, such that two individuals
that are close to each other are more likely to interact soon than
when they are in far locations. Moreover, interactions are defined
by a time-evolving spatial network, and spatial networks have
large values of the clustering coefficient [31], meaning that if i
is connected with j and j is connected with k, i is likely to be
connected with k. In order to study the effect of the temporal
structure of our empirical network on coinfection risks, we
randomize the sequence of interactions: for every t, we randomly
choose C(t) =

∑

i,j>i
Aij(t) contacts from the contact list. In this

way, we keep constant both the number of contacts C(t) at every t
and the probability for two specific individuals to interact, but we
break the correlations mentioned above. Comparing the real with
the uncorrelated network for the coinfection and independent
cases, the transition from non-endemic to endemic regime has
an abrupt jump in the empirical network, while the transition is
smooth in the randomized network (Figure 3C). This highlights
the role of temporal correlations as an important factor for the
appearance of highly unexpected risks.

The strong clustering in the high activity periods, which
disappears when we break the temporal correlations, makes both
infections spread together. In fact, the number of doubly active
individuals NAB(t) (i.e., in state AB) is a high fraction of the
total number of active individuals NI(t) = NA(t) + NB(t) +
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FIGURE 3 | Spreading process in a temporal contact network. Prevalence of doubly infected individuals ρab as a function of primary infection probability p. The color

indicates the fraction of realizations taken which reach the value ρab for a given p. (A) Independent spreading, with q = p, (B) coinfection spreading, with q = 1,

(C) independent spreading in uncorrelated temporal networks, with q = p, (D) coinfection spreading in uncorrelated temporal networks, with q = 1.

FIGURE 4 | Difference in the prevalence probability 15p(ρab) between the

cooperative (q = 1) and independent spreading (q = p) cases. In the

cooperative case, outbreaks affect a higher fraction of individuals, and happen

for a smaller value of the primary infection probability p.

NAB(t)+NAb(t)+NaB(t) in our system (Figure 5 and inset): even
if diseases initially spread following different paths, the strong
clustering makes them meet after short paths. However, the low
activity periods (i.e., night) are dominated by stochastic recovery
processes due to the absence of contacts, leading to a decrease
in the number of both active and doubly active individuals.
If both infections are able to survive the night (NI 6= 0),
they may remain active in different individuals (NAB = 0,
blue and orange curves in inset of Figure 5). In next high
activity period, the infections will initially spread independently,
but if they meet (blue curve on Figure 5), they will continue
spreading together, reinforced by the cooperative interaction in

FIGURE 5 | Time evolution of the number of infected individuals NI for three

long-lived realizations with p = 0.06 and q = 1, leading to a final number of

infected of 56 (blue curve), 54 (black) and 52 (orange) individuals, while the

final number of doubly infected is 50 (blue curve), 21 (black) and 14 (orange)

individuals. Inset: time evolution of the fraction doubly active individuals NAB
amongst the total active individuals NI.

the coinfection case (q = 1). As a conclusion, when the spreading
process starts from a doubly infected seed on a temporal cluster
(high activity period) in our empirical network, the temporal
correlations make infections spread together, but in the low
activity periods, due to the stochasticity of the recovering process,
infections can remain active in the same individuals (state AB),
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recover totally (state ab) or partially (states Ab and aB). If they
continue together (i.e., some AB states remain in the system),
or they are able to meet, they can induce similar processes,
leading to a high fraction of doubly recovered individuals at
the end of the dynamics. In the opposite case, they will spread
independently and the fraction of doubly recovered individuals
at the end of the dynamics will be lower, just including those
that were doubly infected in the first activity period, with a
prevalence ρab that will be smaller. Those two cases lead to two
endemic branches: the upper branch, happening when diseases
meet after the low activity period, and the lower branch, growing
more slowly, in the opposite case. The process of infections
spreading together is reinforced with a higher probability of
getting a secondary disease (q > p), explaining why the highest
endemic branch is more probable and appears for a lower value
of the control parameter p in the cooperative case (q = 1,
Figure 3B), in contrast to the non-interacting case (q = p,
Figure 3A).

Previous results of this coinfection model on static networks
reported the role of dimensionality, such that low-dimensional
lattices, with high local clustering, lead to continuous transitions,
while discontinuous transitions appear in lattices with dimension
higher than three, which have relatively lower values of local
clustering [19, 20]. The topology explained these results, as
diseases spread independently through long paths in the network
and, after infecting a macroscopic fraction of individuals, they
meet, coinfecting those individuals due to the high value of q.
This leads to two possible solutions for ρab in the region above,
but close to the epidemic threshold: if both diseases are not able
to meet, ρab ≈ 0, while if they meet, ρab has a high value. In fact,
finite system size effects may hide the broad jumps, appearing
even in networks with broad degree distributions [32]. In our
case, similar mechanisms, including the influence of the temporal
connectivity pattern, explain how the cooperative interaction
reinforces the upper endemic branch: infections spread together
in the temporal clusters associated with high activity periods,
while the night valley of activity and the stochastic recovery
allow diseases to separate and spread independently, leading to
macroscopic coinfection effects in ρab for the cases in which
diseases meet again.

After describing the effects of cooperation between infections
and temporal correlations on this spreading process, we focus on
a specific example. Given that the basic reproductive number of a
special influenza strain is R0 = 2 [33], we estimate the transition
probability considering that, for a sufficiently big time window,
the network is described by a single giant cluster, and we set a
low recovery probability such that an infected individual is able
to contact most of the individuals in the system before becoming
recovered, leading to p =

R0
N ≈ 0.03. For this value of p, in

the independent infections case the system is below the epidemic
threshold, while it is above it for the coinfection case, where
the outbreaks leads to ρab = 0.69 of the population at most,
with the peak for 5p=0.03(ρab) in the highest endemic branch at
ρab = 0.63. The coinfection case for the uncorrelated network,
for this p, is above the epidemic threshold, but leading to lower
outbreak prevalence (ρab = 0.61 at most, peak for 5p=0.03(ρab)

in ρab = 0.13), as the prevalence grows continuously with p
(Figure 3).

SUMMARY AND CONCLUSION

Mathematical modeling of disease spreading can help
understanding how diseases spread in networks and guide
policy makers for better strategies to avoid large outbreaks. To
bridge the gap, we applied a coinfection model to an empirical
network. Then we estimated the risk of coinfection with three
indicators: (1) the epidemic threshold that determines whether
there is an outbreak or not, (2) the fraction of the population
affected by the outbreak and (3) the probability for having a big
outbreak.

The combination of cooperation with temporal variables for
determining the network of interactions leads to a complex
dynamics. In order to determine the role of each of these features,
we have splitted our analysis in four cases: (a) cooperative
interaction between the infections with temporal correlations,
(b) no interaction between the diseases, keeping temporal
correlations, (c) cooperative interaction between the infections
without temporal correlations, and (d) no interaction between
the infections without temporal correlations. Comparing cases
(a) and (b), we report a higher risk of double infection for
the cooperative case, where the epidemic threshold is smaller,
outbreaks lead to a higher fraction of infected individuals and
they appear more likely (Figure 4). However, the presence of
the abrupt outbreaks both in non-interacting and coinfection
cases suggests that several temporal clusters, separated by low
activity periods, are formed in the empirical network and the
connection of those clusters leads to those abrupt outbreaks. This
is confirmed when breaking the correlations in cases (c) and
(d), where even with coinfection spreading, for which abrupt
outbreaks have been reported under several conditions [18–
20], the randomized temporal network lead to a continuous
transition between disease-free and epidemic states. This means
that the specific sequence and the temporal correlations that the
empirical network contains are responsible for the abrupt jumps
(Figure 3).

Considering the correlated network, looking at values of
p above the epidemic threshold, there is a higher maximum
for the prevalence distribution 5p(ρab), higher bounds for
the prevalence if we compare the cooperative case with the
independent spreading. We find clear differences between the
correlated and uncorrelated cases, as the first experiences a broad
transition, while the second is continuous, leading to higher
values both for the maximum prevalence and the prevalence
at the peak of 5p(ρab). Surprisingly, the uncorrelated case,
that could stand for a static approach, leads to lower values
of final fraction of doubly infected individuals, in contrast
with other works that study similar models for one disease
spreading in empirical temporal networks [34] and references
inside.

Our theoretical study combined with real data can in general
help policy makers to make public health more efficient and
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save more public budget. In summary, in our assessment of
the risks of coinfection, we have shown how the connectivity
pattern and the temporal correlations in the contact network
presented in a hospital contact network can increase the risks
of coinfection outbreaks. Hence, a good policy for avoiding this
risks would consist onminimizing the effect of these correlations,
for example organizing nursing teams in vertical while keeping
horizontal organization for physician, such that the temporal
clusters are disconnected, in contrast with the model in which
both nursing and physician teams are organized horizontally.
Future studies can address how vaccination, length of stays
in hospitals and different recovery probability may alter the
risks.
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