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Abstract

Expressions for the thermodynamic factor matrix Γ of quaternary mixtures are

derived in terms of Kirkwood-Buff integrals and implemented into the massively-

parallel simulation tool ms2. To assess these expressions, a liquid-like supercritical

quaternary Lennard-Jones mixture is sampled throughout its entire composition

range, employing molecular dynamics in the canonical ensemble. Good agreement

is found between numerical chemical potential derivatives and the results from the

present Kirkwood-Buff integral expressions. Moreover, the limits of the thermody-

namic factor matrix for pure, binary and ternary subsystems are discussed.
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1. Introduction

Accurate thermophysical data are essential for understanding natural processes and

for designing technical applications [1]. Despite longstanding efforts in experimental

thermodynamics, the available database is surprisingly sparse, particularly when it

comes to higher order mixtures [2]. Utilizing suitable computational methods and

high-performance computing, adequate prediction methods rapidly gain importance

to overcome the insufficient thermodynamic data supply [3].

Equilibrium methods are prevalent for the design and optimization of separation

processes, although they are not in equilibrium by definition. Addressing this concep-

tional shortcoming, rate-based methods that explicitly cover non-equilibrium dynamics
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are under strong development [4]. For their parametrization, however, not only equilib-

rium properties, but also transport coefficients are required, making thermodynamic

data supply an even more pressing issue.

To describe mass transport in liquid mixtures, the thermodynamic factor Γ is impor-

tant because it connects the Fick diffusion coefficient D with the Maxwell-Stefan (MS)

diffusion coefficient D. In case of a binary mixture, their relation is simply D = Γ11 ·D.

The definition of this factor for a multi-component mixture is given by

Γij =
xi
kT

(
∂µi
∂xj

)
T,p,Σ

, (1)

where µi is the chemical potential of component i, xj the mole fraction of compo-

nent j, T the temperature and k the Boltzmann constant. This equation applies at

T, p = const., while the symbol Σ indicates that
∑n

i=1 xi = 1 must be maintained

during differentiation. Following the standard procedure, the partial differentiation of

µi with respect to xj is carried out at constant mole fraction of all other components,

except for the last [5].

In case of multi-component mixtures, this relation is given by D = B−1Γ, where

matrix B is determined by the MS diffusion coefficient matrix D [5]. Matrices D,

Γ and D are of dimension (n − 1) × (n − 1) and only the latter one is symmetric.

As a consequence, Γ connects four Fick with three MS diffusion coefficient elements

for ternary mixtures, and nine Fick with six MS diffusion coefficient elements for

quaternary mixtures. To characterize mass transport in higher order mixtures, matrix

D asymptotically requires about twice as many parameter elements than matrix D.

This aspect is an important advantage of MS theory, which, however, rests on chemical

potentials that are not accessible experimentally. On the contrary, when mass transport

needs to be connected to laboratory work, where composition is treated explicitly, the

Fick approach can be applied directly. To take advantage of both MS theory and Fick’s

law for a given scenario, the thermodynamic factor Γ is thus indispensable.

Due to its nature of being a derivative of the chemical potential µi, the thermo-

dynamic factor cannot be measured experimentally. Instead, this property has to be

extracted from phase equilibrium data with the support of excess Gibbs energy mod-

els or equations of state. An elegant alternative route for sampling Γij is offered by

molecular modeling and simulation combined with Kirkwood-Buff integration [6]. It

should be noted that there are no other standard simulation methods available that

can generally be applied.

Detailed information on the microscopic structure of fluids is provided by radial

distribution functions (RDF) gij sampled with many-body molecular simulations. On

the basis of such data, that are closely related to local compositions, it is straightfor-

ward to analyze liquid solution properties by applying Kirkwood-Buff theory. However,

Kirkwood-Buff integrals (KBI) are defined in the grand canonical (µV T ) ensemble
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only, which is hard to impose in simulations of dense liquid phases [7]. Instead, the

standard procedure is to employ the canonical (NV T ) ensemble, which may lead to

convergence problems. Numerous efforts have been made to counter these [7–13]. It

was found that RDF corrections are crucial [7] and also that the extrapolation to the

thermodynamic limit, where all ensemble types converge, is necessary [9, 10]. These

outcomes were confirmed by our recent study [14].

This work provides expressions for the thermodynamic factor matrix Γ of quater-

nary mixtures. For binary and ternary mixtures, this factor has already been derived

and successfully evaluated [5, 6, 15, 16]. Ben-Naim outlined the general formalism to

determine the particle number derivative of the chemical potential from KBI [15]. This

formalism was employed here to establish expressions of Γ for quaternary mixtures.

They were implemented into the massively-parallel simulation tool ms2 [17–19] and

exemplarily applied to study a non-ideal Lennard-Jones (LJ) mixture. Furthermore,

limits of the thermodynamic factor are discussed, i.e. the quaternary mixture towards

its pure, binary and ternary subsystems.

2. Methodology

ms2 samples RDF gij(r) for the molecules’ center of mass, which are the essential

input for KBI. Our recent study [14], which is in good agreement with others [7, 12],

has confirmed that RDF corrections are required in this context. The RDF correction

proposed by Ganguly and van der Vegt [20] was found to be most adequate and takes

into account that molecules may underlie excess or depletion phenomena so that it

was applied in this work throughout.

As mentioned above, it is challenging to impose the µV T ensemble for dense liquid

phase simulations. Facing this issue, Krüger et al. [13] developed an integral trunca-

tion and correction, in order to apply KBI to NV T ensemble simulation data. Their

mathematical procedure considers that finite simulation volumes, as sampled by the

NV T ensemble, are embedded in a larger reservoir. In this way, the exchange of mass

and energy of the explicitly sampled volume with its surrounding is accounted for.

This KBI truncation and correction [13] was employed here because of its success [14].

Moreover, it was found that the extrapolation to the thermodynamic limit V →∞ [13]

is essential [9, 10, 14]. Therefore, a recently proposed KBI approximation for the ther-

modynamic limit [9] was used here throughout due to its faster convergence than the

standard analytical form [13].

Expressions for Γ calculated from KBI for binary and ternary mixtures are provided

in the literature [5, 6, 15, 16]. In case of a binary mixture, it is simply the scalar

Γ11 = 1− x1ρ2∆12

1 + x1ρ2∆12
, (2)
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where ρ2 = x2ρ with mixture density ρ, ∆12 = G11 +G22−2G12 and Gij are KBI with

component indices i and j. In the ternary case, Γ is a (2 × 2) matrix [5], cf. Appendix

B.

The general formalism for obtaining chemical potential derivatives from KBI was

outlined by Ben-Naim [15]. The derivative of the chemical potential µi with respect

to the particle number Nj is given by

(
∂µi
∂Nj

)
T,p,N ′

j

=
kT

V |B|

n∑
a=1

n∑
b=1

ρaρb(B
ijBab −BaiBbj)

n∑
a=1

n∑
b=1

ρaρbBab

, (3)

with volume V , component indices i, j, a, b and total number of components in the

mixture n. Note that N ′j indicates that all particle numbers Ni are kept constant,

except for Nj . Eq. (3) gives evidence that KBI are defined for open systems, like

the µV T ensemble, because the total number of molecules is not constant. The (n ×
n) matrix B consists of the elements Bij = ρiρjGij + ρiδij , where δij denotes the

Kronecker delta. In eq. (3), Bij are derivatives of the determinant |B| with respect to

Bij , i.e. Bij = ∂|B|/∂Bij [15]. Note that matrix B is symmetric because gij = gji and

thus Gij = Gji.

The asymmetric (3 × 3) thermodynamic factor matrix Γ can be determined for

quaternary mixtures based on eq. (3). Such a mixture has four mole fractions x1,

x2, x3 and x4, where the first three were considered to be independent. The matrix

elements are defined by eq. (1) so that the relation between eqs. (1) and (3) needs to

be written out, which is presented for a quaternary mixture in Appendix C.

3. Molecular model

Expressions for Γ were assessed for a quaternary LJ mixture under liquid-like su-

percritical conditions. The LJ size parameter of all four components was specified to

be identical σ1 = σ2 = σ3 = σ4 to ensure statistically sound chemical potential µi

sampling with Widom’s test particle insertion [21]. In order to truly distinguish the

components, the LJ energy parameters were assumed to be ε2/ε1 = 5/6, ε3/ε1 = 25/36

and ε4/ε1 = 125/216. Due to these moderate intermolecular interaction energy dif-

ferences, a significant non-ideality had to be introduced by the modified Berthelot

combination rule [22] εij = ξ
√
εiεj with all six binary parameters set to ξ = 1.5.

By defining the value of ξ to be far above unity, a mixture with a maximum boiling

azeotrope for all of its binary subsystems is compounded.

This quaternary mixture was studied at constant temperature kT/ε1 = 2.2 and

pressure pσ3
1/ε1 = 4. Because of kTc/εi = 1.32 [23], the chosen temperature is su-

percritical for all four components and the specified very high pressure led to pure
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Figure 1. Studied compositions of the quaternary LJ mixture are indicated by black circles, while the grey
planes are guides to the eye.

fluid densities ρ larger than their critical one ρcσ
3
i = 0.31 [23], i.e. ρ1σ

3
1 = 0.721,

ρ2σ
3
2 = 0.703, ρ3σ

3
3 = 0.688 and ρ4σ

3
4 = 0.678. In this way, it was ensured that the

mixture was liquid-like supercritical throughout the entire studied composition range,

which is illustrated in figure 1.

NV T ensemble molecular dynamics (MD) simulations were carried out with N =

8000 particles that were equilibrated by 100 Monte Carlo cycles and 8 · 105 MD time

steps. To sample KBI and thus Γ, production runs were always performed for a period

of 4 · 107 time steps. Beforehand, isobaric-isothermal (NpT ) ensemble MD simula-

tions were conducted to determine the mixture density. Newton’s equations of motion

were solved numerically by applying the Gear predictor-corrector integrator [24] with

a time step of ∆t/(σ1

√
m1/ε1) = 0.0003 for all simulations. Velocities were isokinet-

ically rescaled to maintain the specified temperature. The cutoff radius was set to

4σ1 and the long-range interactions were corrected with the usual analytic mean-field

equations. Sampled state points are shown in figure 1, where the vertices indicate

the pure components, the edges are the binary subsystems and the pyramid surfaces

are the ternary subsystems. Only state points inside the pyramid are truly quater-

nary mixtures so that the plane at x4 = 0.25 mol mol−1 was studied with a finer

discretization.

4. Results

Two quaternary state points were selected to validate the present Γ expression in de-

tail. For this purpose, Γ was calculated from approximative chemical potential deriva-
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Figure 2. Thermodynamic factor Γ at two quaternary state points; black circles: Γ based on numerical

chemical potential derivatives sampled with Widom’s test particle insertion [21]; red circles/triangles: Γ cal-
culated with the present expressions for quaternary mixtures based on extrapolated KBI [9]/non-extrapolated

KBI [13] (statistical uncertainties are within symbol size); left: x1 = 0.25 mol mol−1, x2 = 0.125 mol mol−1

and x3 = 0.375 mol mol−1; right: x1 = 0.375 mol mol−1, x2 = 0.25 mol mol−1 and x3 = 0.125 mol mol−1.

tives and compared with Γ from KBI. For the former, the chemical potential µi was

sampled with Widom’s test particle insertion [21] using NV T ensemble MD simula-

tions which were performed over 2 · 107 time steps.

To obtain the thermodynamic factor by numerical derivation, µi data were cal-

culated at two different mole fractions near the target one x1, x2 and x3, i.e.

xi = xi ± 0.01 mol mol−1, respectively, while x4 ensured
∑

i xi = 1. Figure 2 shows

a comparison for two quaternary state points. Because of the mixtures’ strong non-

ideality, the main elements of Γ are considerably larger than unity. From the agreement

of the nine matrix elements, that is almost throughout within the small statistical un-

certainties, it can be concluded that the present Γ expressions based on extrapolated

KBI [9] are appropriate. Numerical data for Γ from extrapolated and non-extrapolated

KBI for the entire composition range can be found in the Supporting Information.

5. Graphical overview

The liquid-like supercritical LJ mixture introduced above was studied over the entire

composition range to get an impression of Γ. The ternary plane at x4 = 0 was evaluated

with a discretization of ∆x = 0.25 mol mol−1, cf. figure 1. This plane contains three

pure component systems at the vertices, nine binary state points along the edges

and three ternary state points inside the plane. To determine the matrix elements

of Γ for the entire plane at x4 = 0, it is crucial to investigate the limits, i.e. the

ternary mixture towards its pure or binary subsystems. These limits are discussed in

Appendix B, where it is shown that some elements of Γ cannot be sampled with KBI
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in a statistically sound way because of uncertain RDF gij data at infinite dilution.

A composition slice of the quaternary LJ mixture was studied for x4 =

0.25 mol mol−1 with ∆x = 0.125 mol mol−1, cf. figure 1. Its three vertices are bi-

nary subsystems, the three edges are ternaries, only state points inside the plane are

truly quaternary mixtures. Like the ternary case, some limits of Γ cannot be sampled

in a statistically sound way with KBI, cf. Appendix C.

To obtain a smooth visual representation, the Wilson model [25] was fitted to the

present Γ simulation data based on extrapolated KBI [9]. Its parameters are listed in

the Supporting Information and a satisfying agreement between Γ from the Wilson

model and Γ from KBI was found. Utilizing the Wilson model, an analysis of the

ternary and quaternary limits was feasible.

Figure 3 shows Γ based on the Wilson model for the ternary subsystem at x4 = 0.

Therein, the surfaces depict the matrix elements of Γ. The main elements Γ11 and

Γ22 reach values from unity to around 1.7, whereas the cross elements Γ12 and Γ21

attain values between around ± 0.5. Main and cross elements clearly differ from each

other due to their numerical range and curvature. Moreover, this figure confirms the

limits of Γ which are given in Appendix B for the ternary case. The first limit, i.e.

ternary mixture towards its pure fluids is Γ11 = Γ22 = 1 and Γ12 = Γ21 = 0 at the

three vertices. The second limit, i.e. ternary mixture towards its binary subsystems,

is shown at the edges. Exemplarily, for x1 → 0, the main element Γ11 = 1 and Γ22 is

the binary thermodynamic factor of the subsystem 2 + 3. The cross element Γ12 = 0,

whereas Γ21 is neither zero nor unity. Sampling Γ21 in a statistically sound way with

KBI becomes challenging due to uncertain RDF g12 and g13 at infinite dilution of

component 1, cf. Appendix B.

Figure 4 depicts Γ from the Wilson model for the quaternary LJ mixture at

x4 = 0.25 mol mol−1. Again, the main elements are distinctly different from the cross

elements because Γ11, Γ22 and Γ33 attain values between unity and around 1.5, whereas

the cross elements are around ± 0.2. Furthermore, main element and cross element

surfaces have different curvatures. The first limit, i.e. quaternary mixture towards the

pure fluids, cannot be seen in this figure, but the second limit, i.e. quaternary mix-

ture towards its binary subsystems is shown at the vertices. For instance, in case of

x1 +x2 → 0, the quaternary system converges towards the binary subsystem 3 + 4. In

this case, the main elements are Γ11 = 1, Γ22 = 1 and Γ33 is the binary thermodynamic

factor. The cross elements Γ31 6= 0 and Γ32 6= 0 cannot be sampled in a statistically

sound way because of uncertain RDF g13, g14 for the former and g23, g24 for the latter

at infinite dilution of components 1 and 2. All other cross elements of Γ are zero. The

third limit, i.e. the quaternary mixture towards its ternary subsystems is visible at the

edges of the plane at x4 = 0.25 mol mol−1. Exemplarily, for x1 → 0, the quaternary

mixture converges towards the ternary subsystem 2 + 3 + 4. Consequently, Γ11 = 1,

Γ12 = Γ13 = 0, Γ21 6= 0, Γ31 6= 0 and the remaining matrix elements of Γ correspond

to the ternary (2 × 2) Γ matrix. Again, the elements Γ21 6= 0 and Γ31 6= 0 cannot be

7
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Figure 3. Thermodynamic factor Γ of the ternary subsystem at x4 = 0 based on the Wilson model [25] fitted
to Γ data determined from extrapolated KBI [9]; red surface: Γ11; yellow surface: Γ22; blue surface: Γ12; green

surface: Γ21; the cross elements of Γ were shifted for visibility reasons, while zeros at the vertical axes indicate

their limiting values.
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sampled in a statistically sound way with KBI. Details on these limits are given in

Appendix C.

6. Conclusion

Describing mass transport coefficients of liquid mixtures is an important topic in

modern process engineering, however, the limited data supply poses a serious challenge,

particularly when it comes to higher order mixtures. To connect the Fick and Maxwell-

Stefan diffusion formalisms, the thermodynamic factor Γ is crucial. However, this

factor cannot be measured experimentally because it is a derivative of the chemical

potential µi. Kirkwood-Buff integration [6] offers an elegant access to sample this

property by molecular simulation.

Up to now, only Γ expressions for binary and ternary mixtures were available [5, 6,

15, 16]. Extending these works, expressions for Γ of quaternary mixtures were derived

in this work. For this purpose, Ben-Naim’s [15] general form of the chemical potential

derivative in terms of KBI was applied. The equations for matrix Γ given in Appendix

C were implemented into the massively-parallel simulation tool ms2 [17–19].

A liquid-like supercritical quaternary non-ideal LJ mixture was simulated over the

entire composition range to study the present Γ expressions. Extrapolated KBI [9]

were sampled by NV T ensemble MD simulations based on the RDF correction by

Ganguly and van der Vegt [20]. A detailed comparison based on numerical chemical

potential derivatives and extrapolated KBI showed a good agreement. Limits of Γ for

binary, ternary and quaternary mixtures were discussed.

Instead of sampling chemical potentials, KBI provides an elegant avenue to deter-

mine Γ for quaternary mixtures that can efficiently be implemented and parallelized.

The thermodynamic factor Γ of mixtures with more than four components are im-

portant too, but the length of according expressions would escalate further. For their

derivation and implementation, automatic procedures may be required for higher order

mixtures.
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Appendix A. Thermodynamic factor of binary mixtures

For a binary mixture, the thermodynamic factor matrix Γ is simply a scalar [6, 15]

Γ11 = 1− x1ρ2∆12

1 + x1ρ2∆12
, (A1)

where ρ2 = x2ρ with the mixture density ρ, ∆12 = G11 +G22− 2G12 and Gij are KBI

with component indices i and j.

The pure fluid limits are straightforward

lim
x1→0

Γ11 = lim
x2→0

Γ11 = 1 . (A2)

Appendix B. Thermodynamic factor of ternary mixtures

The thermodynamic factor Γ of a ternary mixture is a (2 × 2) matrix. To lighten

notation, the following auxiliary expressions were defined [5, 15, 16]

∆ij = Gii +Gjj − 2Gij , i 6= j , (B1)

η = ρ1 + ρ2 + ρ3 + ρ1ρ2∆12 + ρ1ρ3∆13 + ρ2ρ3∆23

− 1

4
ρ1ρ2ρ3(∆2

12 + ∆2
13 + ∆2

23 − 2[∆13∆23 + ∆12∆13 + ∆12∆23]) ,
(B2)

with ρi = xiρ and mixture density ρ. The elements of Γ are [5, 15, 16]

Γ11 =
1

η
(ρ1 + ρ2 + ρ3 + ρ1ρ2[G22 −G12 +G13 −G23] + ρ2ρ3∆23) , (B3)
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Γ12 =
ρ1

η
(ρ2[G22 −G12 +G13 −G23]− ρ3[G33 −G13 +G12 −G23]) , (B4)

Γ21 =
ρ2

η
(ρ1[G11 −G12 +G23 −G13]− ρ3[G33 −G13 +G12 −G23]) , (B5)

Γ22 =
1

η
(ρ1 + ρ2 + ρ3 + ρ1ρ2[G11 −G12 −G13 +G23] + ρ1ρ3∆13) . (B6)

The pure fluid limits are equivalent to the binary case, except for their dimension

lim
x1→0
x2→0

Γ = lim
x1→0
x3→0

Γ = lim
x2→0
x3→0

Γ =

(
1 0

0 1

)
. (B7)

The second limit, i.e. the ternary mixture towards its binary subsystem, is

lim
x1→0

Γ =

(
1 0

Γ21 ΓB

)
, (B8)

lim
x2→0

Γ =

(
ΓB Γ12

0 1

)
, (B9)

lim
x3→0

Γ =

(
ΓB + Γ12 Γ12

Γ21 ΓB + Γ21

)
. (B10)

Looking at eq. (B8) for x1 → 0, the main elements are Γ11 = 1 and ΓB, where the latter

is the thermodynamic factor of the binary subsystem 2 + 3 given by eq. (A1). The cross

element Γ12 is zero, whereas Γ21 is neither zero nor unity. Due to x1 → 0, parts of eq.

(B5) vanish, but a statistically sound sampling of Γ21 with KBI is not straightforward

because of RDF g12 and g13 are needed at infinite dilution of component 1. The other

cases, x2 → 0 and x3 → 0, are analogous.
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Appendix C. Thermodynamic factor of quaternary mixtures

A quaternary mixture has four mole fractions x1, x2, x3 and x4. Here, the first three

were taken as independent. The (3× 3) thermodynamic factor matrix of a quaternary

mixture Γ is not symmetric and its elements are defined by eq. (1). To calculate its

elements, the relation between (∂µi/∂xj)T,p,Σ and (∂µi/∂Nj)T,p,N ′
j

is needed, cf. eqs.

(1) and (3). The latter derivative was presented in the context of KBI for mixtures

with an arbitrary number of components by Ben-Naim [15]. Based on the work of

Jonah and Cochran [26], the relation for the quaternary case is

(
∂µ1

∂x1

)
T,p,Σ

= N ·

[(
∂µ1

∂N1

)
T,p,N ′

1

−
(
∂µ1

∂N4

)
T,p,N ′

4

]
, (C1)

(
∂µ2

∂x1

)
T,p,Σ

= N ·

[(
∂µ2

∂N1

)
T,p,N ′

1

−
(
∂µ2

∂N4

)
T,p,N ′

4

]
, (C2)

(
∂µ3

∂x1

)
T,p,Σ

= N ·

[(
∂µ3

∂N1

)
T,p,N ′

1

−
(
∂µ3

∂N4

)
T,p,N ′

4

]
, (C3)

(
∂µ1

∂x2

)
T,p,Σ

= N ·

[(
∂µ1

∂N2

)
T,p,N ′

2

−
(
∂µ1

∂N4

)
T,p,N ′

4

]
, (C4)

(
∂µ2

∂x2

)
T,p,Σ

= N ·

[(
∂µ2

∂N2

)
T,p,N ′

2

−
(
∂µ2

∂N4

)
T,p,N ′

4

]
, (C5)

(
∂µ3

∂x2

)
T,p,Σ

= N ·

[(
∂µ3

∂N2

)
T,p,N ′

2

−
(
∂µ3

∂N4

)
T,p,N ′

4

]
, (C6)

(
∂µ1

∂x3

)
T,p,Σ

= N ·

[(
∂µ1

∂N3

)
T,p,N ′

3

−
(
∂µ1

∂N4

)
T,p,N ′

4

]
, (C7)
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(
∂µ2

∂x3

)
T,p,Σ

= N ·

[(
∂µ2

∂N3

)
T,p,N ′

3

−
(
∂µ2

∂N4

)
T,p,N ′

4

]
, (C8)

(
∂µ3

∂x3

)
T,p,Σ

= N ·

[(
∂µ3

∂N3

)
T,p,N ′

3

−
(
∂µ3

∂N4

)
T,p,N ′

4

]
. (C9)

For the derivative (∂µi/∂Nj)T,p,N ′
j
, several auxiliary expressions were defined [16]

∆ijk = GiiGjj +GiiGkk +GjjGkk + 2(GijGik +GijGjk +GikGjk)

−G2
ij −G2

ik −G2
jk − 2(GiiGjk +GjjGik +GkkGij), i 6= j 6= k ,

(C10)

Fij = GiiGjj −G2
ij , i 6= j , (C11)

Fijk = GiiGjjGkk + 2GijGikGjk −GiiG
2
jk −GjjG

2
ik −GkkG

2
ij , i 6= j 6= k , (C12)

while the following three were defined in this work

η = ρ1 + ρ2 + ρ3 + ρ4 + ρ1ρ2∆12 + ρ1ρ3∆13 + ρ1ρ4∆14 + ρ2ρ3∆23

+ ρ2ρ4∆24 + ρ3ρ4∆34 + ρ1ρ2ρ3∆123 + ρ1ρ2ρ4∆124

+ ρ1ρ3ρ4∆134 + ρ2ρ3ρ4∆234 + ρ1ρ2ρ3ρ4∆1234 ,

(C13)

Fii,jk,km = GiiGjkGkm −GijGikGkm, i 6= j 6= k 6= m, (C14)

where it is important to note that matrix G is symmetric. The last auxiliary expression

is

∆1234 = F123 + F124 + F134 + F234

− 2(G34F12 +G24F13 +G23F14 +G14F23 +G13F24 +G12F34)

+ 2(F11,23,34 + F11,24,34 + F11,23,24 + F22,14,34 + F22,13,34 + F22,13,14

+ F33,14,24 + F33,12,24 + F33,12,14 + F44,12,13 + F44,12,23 + F44,13,23) .

(C15)
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The derivatives (∂µi/∂Nj)T,p,N ′
j

based on KBI were determined from eq. (3) [15] for

quaternary mixtures

(
∂µ1

∂N1

)
T,p,N ′

1

=
kT (ρ2 + ρ3 + ρ4 + ρ2ρ3∆23 + ρ2ρ4∆24 + ρ3ρ4∆34 + ρ2ρ3ρ4∆234)

V ρ1η
,

(C16)

(
∂µ1

∂N2

)
T,p,N ′

2

= −kT
V η
· (1 + ρ3[G33 −G23 +G12 −G13] + ρ4[G44 −G14 +G12 −G24]

+ ρ3ρ4[F34 +G12∆34 −G33(G14 +G24)−G44(G13 +G23)

+G23(G14 −G13 +G34) +G24(G13 −G14 +G34) +G34(G13 +G14)]),

(C17)

(
∂µ1

∂N3

)
T,p,N ′

3

= −kT
V η
· (1 + ρ2[G22 −G12 +G13 −G23] + ρ4[G44 −G14 +G13 −G34]

+ ρ2ρ4[F24 +G13∆24 −G22(G14 +G34)−G44(G12 +G23)

+G12(G34 −G23) +G14(G23 −G34) +G24(G12 +G14 +G23 +G34)]),

(C18)

(
∂µ1

∂N4

)
T,p,N ′

4

= −kT
V η
· (1 + ρ2[G22 −G12 +G14 −G24] + ρ3[G33 −G13 +G14 −G34]

+ ρ2ρ3[F23 +G14∆23 −G22(G13 +G34)−G33(G12 +G24)

+G12(G23 −G24 +G34) +G13(G23 +G24 −G34) +G23(G24 +G34)]),

(C19)

(
∂µ2

∂N2

)
T,p,N ′

2

=
kT (ρ1 + ρ3 + ρ4 + ρ1ρ3∆13 + ρ1ρ4∆14 + ρ3ρ4∆34 + ρ1ρ3ρ4∆134)

V ρ2η
,

(C20)
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(
∂µ2

∂N3

)
T,p,N ′

3

= −kT
V η
· (1 + ρ1[G11 −G12 +G23 −G13] + ρ4[G44 −G24 +G23 −G34]

+ ρ1ρ4[F14 +G23∆14 −G11(G24 +G34)−G44(G12 +G13)

+G12(G14 −G13 +G34) +G14(G13 +G24 +G34) +G24(G13 −G34)]),

(C21)

(
∂µ2

∂N4

)
T,p,N ′

4

= −kT
V η
· (1 + ρ1[G11 −G12 +G24 −G14] + ρ3[G33 −G23 +G24 −G34]

+ ρ1ρ3[F13 +G24∆13 −G11(G23 +G34)−G33(G12 +G14)

+G12(G13 −G14 +G34) +G13(G14 +G23 +G34) +G23(G14 −G34)]),

(C22)

(
∂µ3

∂N3

)
T,p,N ′

3

=
kT (ρ1 + ρ2 + ρ4 + ρ1ρ2∆12 + ρ1ρ4∆14 + ρ2ρ4∆24 + ρ1ρ2ρ4∆124)

V ρ3η
,

(C23)

(
∂µ3

∂N4

)
T,p,N ′

4

= −kT
V η
· (1 + ρ1[G11 −G13 +G34 −G14] + ρ2[G22 −G23 +G34 −G24]

+ ρ1ρ2[F12 +G34∆12 −G11(G23 +G24)−G22(G13 +G14)

+G12(G13 +G23 +G14 +G24) +G13(G24 −G14) +G23(G14 −G24)]).

(C24)

To determine the derivatives (∂µi/∂xj)T,p,Σ, eqs. (C1) to (C9) were combined with

eqs. (C16) to (C24) and the thermodynamic factor elements of Γ for a quaternary

mixture are obtained by applying eq. (1)

Γ11 =
1

η
· (ρ1 + ρ2 + ρ3 + ρ4 + ρ2ρ3∆23 + ρ2ρ4∆24 + ρ3ρ4∆34 + ρ2ρ3ρ4∆234

+ ρ1ρ2[G22 −G12 +G14 −G24] + ρ1ρ3[G33 −G13 +G14 −G34]

+ ρ1ρ2ρ3[F23 +G14∆23 −G22(G13 +G34)−G33(G12 +G24)

+G12(G23 −G24 +G34) +G13(G23 +G24 −G34) +G23(G24 +G34)]) ,

(C25)
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Γ21 =
ρ2

η
· (ρ1[G11 −G12 +G24 −G14] + ρ3[G24 −G34 +G13 −G12]

− ρ4[G44 −G14 +G12 −G24] + ρ1ρ3[F13 +G24∆13 −G11(G23 +G34)

−G33(G12 +G14) +G12(G13 −G14 +G34) +G13(G14 +G23 +G34)

+G23(G14 −G34)]− ρ3ρ4[F34 +G12∆34 −G33(G14 +G24)

−G44(G13 +G23) +G23(G14 −G13 +G34) +G24(G13 −G14 +G34)

+G34(G13 +G14)]) ,

(C26)

Γ31 =
ρ3

η
· (ρ1[G11 −G13 +G34 −G14] + ρ2[G34 −G24 +G12 −G13]

− ρ4[G44 −G14 +G13 −G34] + ρ1ρ2[F12 +G34∆12 −G11(G23 +G24)

−G22(G13 +G14) +G12(G13 +G23 +G14 +G24) +G13(G24 −G14)

+G23(G14 −G24)]− ρ2ρ4[F24 +G13∆24 −G22(G14 +G34)

−G44(G12 +G23) +G12(G34 −G23) +G14(G23 −G34)

+G24(G12 +G14 +G23 +G34)]) ,

(C27)

Γ12 =
ρ1

η
· (ρ2[G22 −G12 +G14 −G24] + ρ3[G14 −G34 +G23 −G12]

− ρ4[G44 −G14 +G12 −G24] + ρ2ρ3[F23 +G14∆23 −G22(G13 +G34)

−G33(G12 +G24) +G12(G23 −G24 +G34) +G13(G23 +G24 −G34)

+G23(G24 +G34)]− ρ3ρ4[F34 +G12∆34 −G33(G14 +G24)

−G44(G13 +G23) +G23(G14 −G13 +G34) +G24(G13 −G14 +G34)

+G34(G13 +G14)]) ,

(C28)

Γ22 =
1

η
· (ρ1 + ρ2 + ρ3 + ρ4 + ρ1ρ3∆13 + ρ1ρ4∆14 + ρ3ρ4∆34 + ρ1ρ3ρ4∆134

+ ρ1ρ2[G11 −G12 +G24 −G14] + ρ2ρ3[G33 −G23 +G24 −G34]

+ ρ1ρ2ρ3[F13 +G24∆13 −G11(G23 +G34)−G33(G12 +G14)

+G12(G13 −G14 +G34) +G13(G14 +G23 +G34) +G23(G14 −G34)]) ,

(C29)
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Γ32 =
ρ3

η
· (ρ1[G34 −G14 +G12 −G23] + ρ2[G22 −G23 +G34 −G24]

− ρ4[G44 −G24 +G23 −G34] + ρ1ρ2[F12 +G34∆12 −G11(G23 +G24)

−G22(G13 +G14) +G12(G13 +G23 +G14 +G24) +G13(G24 −G14)

+G23(G14 −G24)]− ρ1ρ4[F14 +G23∆14 −G11(G24 +G34)

−G44(G12 +G13) +G12(G14 −G13 +G34) +G14(G13 +G24 +G34)

+G24(G13 −G34)]) ,

(C30)

Γ13 =
ρ1

η
· (ρ2[G14 −G24 +G23 −G13] + ρ3[G33 −G13 +G14 −G34]

− ρ4[G44 −G14 +G13 −G34] + ρ2ρ3[F23 +G14∆23 −G22(G13 +G34)

−G33(G12 +G24) +G12(G23 −G24 +G34) +G13(G23 +G24 −G34)

+G23(G24 +G34)]− ρ2ρ4[F24 +G13∆24 −G22(G14 +G34)

−G44(G12 +G23) +G12(G34 −G23) +G14(G23 −G34)

+G24(G12 +G14 +G23 +G34)]) ,

(C31)

Γ23 =
ρ2

η
· (ρ1[G24 −G14 +G13 −G23] + ρ3[G33 −G23 +G24 −G34]

− ρ4[G44 −G24 +G23 −G34] + ρ1ρ3[F13 +G24∆13 −G11(G23 +G34)

−G33(G12 +G14) +G12(G13 −G14 +G34) +G13(G14 +G23 +G34)

+G23(G14 −G34)]− ρ1ρ4[F14 +G23∆14 −G11(G24 +G34)

−G44(G12 +G13) +G12(G14 −G13 +G34) +G14(G13 +G24 +G34)

+G24(G13 −G34)]) ,

(C32)

Γ33 =
1

η
· (ρ1 + ρ2 + ρ3 + ρ4 + ρ1ρ2∆12 + ρ1ρ4∆14 + ρ2ρ4∆24 + ρ1ρ2ρ4∆124

+ ρ1ρ3[G11 −G13 +G34 −G14] + ρ2ρ3[G22 −G23 +G34 −G24]

+ ρ1ρ2ρ3[F12 +G34∆12 −G11(G23 +G24)−G22(G13 +G14)

+G12(G13 +G23 +G14 +G24) +G13(G24 −G14) +G23(G14 −G24)]) .

(C33)

The pure fluid limits are equivalent to the binary and ternary cases, except for their

dimension,
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lim
x1→0
x2→0
x3→0

Γ = lim
x2→0
x3→0
x4→0

Γ = lim
x1→0
x3→0
x4→0

Γ = lim
x1→0
x2→0
x4→0

Γ =

1 0 0

0 1 0

0 0 1

 . (C34)

The second limit, i.e. quaternary mixture towards its binary subsystem, is

lim
x1→0
x2→0

Γ =

 1 0 0

0 1 0

Γ31 Γ32 ΓB

 , (C35)

lim
x1→0
x3→0

Γ =

 1 0 0

Γ21 ΓB Γ23

0 0 1

 , (C36)

lim
x2→0
x3→0

Γ =

ΓB Γ12 Γ13

0 1 0

0 0 1

 , (C37)

lim
x1→0
x4→0

Γ =

 1 0 0

Γ21 ΓB + Γ23 Γ23

Γ31 Γ32 ΓB + Γ32

 , (C38)

lim
x2→0
x4→0

Γ =

ΓB + Γ13 Γ12 Γ13

0 1 0

Γ31 Γ32 ΓB + Γ31

 , (C39)

lim
x3→0
x4→0

Γ =

ΓB + Γ12 Γ12 Γ13

Γ21 ΓB + Γ21 Γ23

0 0 1

 . (C40)

Note that all Γij in eqs. (C35) to (C40) correspond to eqs. (C25) to (C33). For instance,

x1 → 0 and x2 → 0, results in main elements Γ11 = 1 and Γ22 = 1. The other matrix

cross elements of the first two lines are zero. The last matrix line with the cross
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elements Γ3j implies solutions that are neither zero nor unity because of x3 → 1.

These elements Γ31 and Γ32 correspond to eqs. (C27) and (C30) and for x1 → 0,

x2 → 0 parts of those equations vanish, however, a statistically sound sampling with

KBI is not straightforward because RDF g13, g14, g23 and g24 are needed at infinite

dilution of components 1 and 2. The main element ΓB is the binary factor of the

system 3 + 4 given by eq. (A1). The other cases are analogous.

The last limit, i.e. quaternary mixture towards its ternary subsystems, is

lim
x1→0

Γ =

 1 0 0

Γ21 ΓT,11 ΓT,12

Γ31 ΓT,21 ΓT,22

 , (C41)

lim
x2→0

Γ =

ΓT,11 Γ12 ΓT,12

0 1 0

ΓT,21 Γ32 ΓT,22

 , (C42)

lim
x3→0

Γ =

ΓT,11 ΓT,12 Γ13

ΓT,21 ΓT,22 Γ23

0 0 1

 , (C43)

lim
x4→0

Γ =

ΓT,11 + Γ13 ΓT,12 + Γ13 Γ13

ΓT,21 + Γ23 ΓT,22 + Γ23 Γ23

Γ31 Γ32 Γ33

 , (C44)

Looking at eq. (C41), the first matrix line containing the elements Γ1j is clear from

x1 → 0 in eqs. (C25), (C28) and (C31). The elements Γ21 6= 0 and Γ31 6= 0 correspond

to eqs. (C26) and (C27). For x1 → 0, parts of the latter two equations vanish, but

a statistically sound sampling with KBI is not straightforward because RDF g12, g13

and g14 are needed at infinite dilution of component 1. The remaining elements ΓT,ij

constitute the thermodynamic factor of the ternary mixture 2 + 3 + 4, cf. eqs. (B3)

to (B6). The other cases are analogous.
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