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We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such
a generalization introduces two different nonnegative functions, 𝜔

1
(|𝜙|) and 𝜔(|𝜙|), which split the kinetic term of the Higgs field,

|𝐷
𝜇
𝜙|
2
→ 𝜔
1
(|𝜙|)|𝐷

0
𝜙|
2
−𝜔(|𝜙|)|𝐷

𝑘
𝜙|
2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of

the Bogomolnyi procedure only can be implemented whether 𝜔(|𝜙|) ∝ 𝛽|𝜙|
2𝛽−2 with 𝛽 ≥ 1.The self-dual or Bogomolnyi equations

produce an infinity number of soliton solutions by choosing conveniently the generalizing function 𝜔
1
(|𝜙|) which must be able to

provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce
the Bogomolnyi equations of the AbelianMaxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual |𝜙|6-vortex
solutions have been analyzed from both theoretical and numerical point of view.

1. Introduction

A time ago it was shown that (1+2)-dimensional matter field
interacting with gauge fields whose dynamics is governed
by a Chern-Simons term supports soliton solutions [1, 2]
(for a review see [3–7]). These models have the particularity
to become self-dual when the self-interactions are suitably
chosen [8–11]. When self-duality occurs the model presents
interesting mathematical and physical properties; for exam-
ple the second order Euler-Lagrange equations can be solved
by a set of first-order differential equations [12, 13] and the
model admits a supersymmetric extension [14]. The Chern-
Simons gauge field dynamic remains the same when coupled
with matter fields either relativistic [8, 9] or nonrelativistic
[10, 11]. In addition the nature of the soliton solutions can be
topological and/or nontopological [15].

The inclusion of nonlinear terms to the kinetic part of
the Lagrangian has interesting consequences, as, for example,
the existence of topological defects without a symmetry-
breaking potential term [16]. In the recent years, theories

with nonstandard kinetic term, named 𝑘-field models, have
received much attention. The 𝑘-field models are mainly in
connection with effective cosmological models [17–23], as
well as the tachyon matter [24] and the ghost condensates
[25–29]. The strong gravitational waves [30] and dark matter
[31] are also examples of noncanonical fields in cosmology.
The investigations concerning the topological structure of
the 𝑘-field theories have shown that they support topological
soliton solutions both in pure matter models and in gauged
field models [32–49]. These solitons have certain features
which are not necessarily shared with those of the standard
models [50–52].

The aim of this paper is to study a Chern-Simons-Higgs
model with a generalized dynamics which breaks Lorentz
covariance; that is,
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The nonstandard dynamics is introduced by the functions
𝜔
1

and 𝜔, depending on the Higgs field. During the
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implementation of Bogomolnyi trick it is demonstrated that
self-dual configurations exist if the function𝜔 is proportional
to |𝜙|
2𝛽−2 with 𝛽 ≥ 1. On the other hand, the function 𝜔

1

remains arbitrary but near the origin should behave as |𝜙|2𝛿
with 𝛿 ≥ −1 in order to have a well behavior for the magnetic
field. In particular we have chosen the functions 𝜔
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where 𝑀 ≥ −1 and 𝑁 ≥ 0. This way, the Bogomolnyi
equations produce an infinite number of soliton solutions,
one for each value of the pair (𝑁,𝑀). It is possible to show
that, for particular values of𝑁,𝑀, the Bogomolnyi equations
of the Maxwell-Higgs or Chern-Simons Higgs models can
be recuperated. Finally, we have constructed, analytically and
numerically, novel soliton solutions for some values of𝑁 and
𝑀.

2. The Theoretical Framework

Following the same ideas introduced in [32–49], we start by
considering a generalized (2+1)-dimensional Chern-Simons-
Higgs (CSH) model where the complex scalar field possesses
a modified dynamic. Such a model is described by the
following action:
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where 𝑆cs represents the Chern-Simons action given by

𝑆cs = ∫𝑑
3
𝑥

𝜅
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with 𝜇 = 0, 1, 2. The metric tensor is 𝑔
𝜇] = (1, −1, −1) and
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= 1) is the totally antisymmetric Levi-Civita tensor.
In action (3) we notice the usual Higgs kinetic term,
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the Lorentz covariance. The dimensionless functions 𝜔
1
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and 𝜔(|𝜙|) are nonnegative and, in principle, arbitrary func-
tions of the complex scalar field 𝜙. The function 𝑉(|𝜙|) is a
self-interacting scalar potential.

The gauge field equation obtained from the action (3) is
given by
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From (6), the Gauss law reads

𝜅𝐵 = 𝑒𝜔
1
𝐽
0
, (8)

and we observe the Gauss law of Chern-Simons dynamics is
modified by the function𝜔

1
(|𝜙|) such that now the conserved

charge associated with the 𝑈(1) global symmetry is given by
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however as it happens in usual CSHmodel, the electric charge
is nonnull and proportional to the magnetic flux:
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Therefore, independently of the functional form of the gener-
alizing functions 𝜔
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be electrically charged.
Likewise, the Ampère law reads
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Along the remaining of the paper, we are interested in
time-independent soliton solutions that ensure the finiteness
of action (3).These are the stationary points of the energy for
which the static
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which when substituted in (12) leads to the following expres-
sion for the energy:
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We observe that the function 𝜔(|𝜙|) in the term 𝜔𝜖
𝑖𝑘
𝜕
𝑖
𝐽
𝑘

precludes us from implementing the BPS procedure; that is,
the integrand must be expressed like a sum of squared terms
plus a total derivative plus a term proportional to the mag-
netic field.Therefore, the key question is about the functional
form of 𝜔(|𝜙|) allowing a well defined implementation of the
BPS formalism. We start the searching of the function 𝜔(|𝜙|)
from the following expression:
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By substituting in (25), we have
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𝑘
)

± 𝐵(

𝜅

𝑒
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

√

𝑉

𝜔
1

+

1

𝛽

𝑒𝜔
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2

)] .

(27)

To finish the BPS procedure, we observe that if in the third
row the termmultiplying to the magnetic field is equal to 𝑒V2,
it allows defining explicitly the form of the potential 𝑉(|𝜙|),

𝑉 (
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
) =

𝑒
4V4

𝜅
2
𝜔
1

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2

(1 −

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝛽

V2𝛽
)

2

, (28)

where we have substituted the explicit form of 𝜔(|𝜙|) given
by (22) with 𝐶 = 𝛽V2−2𝛽 in order for the vacuum expectation
value of the Higgs field to be |𝜙| = V.The function𝜔

1
(|𝜙|) still

remains arbitrary. Hence, the energy (27) reads

𝐸 = ∫𝑑
2
𝑥

{

{

{

±𝑒V2𝐵 ±
1

2𝛽

𝜖
𝑖𝑘
𝜕
𝑖
(𝜔𝐽
𝑘
) + 𝜔

󵄨
󵄨
󵄨
󵄨
𝐷
±
𝜙
󵄨
󵄨
󵄨
󵄨

2

+

𝜅
2

4𝑒
2 󵄨󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2

𝜔
1

[𝐵

∓

2𝑒
3V2

𝜅
2

𝜔
1

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2

(1 −

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝛽

V2𝛽
)]

2

}

}

}

.

(29)

We see that under appropriated boundary conditions the total
derivative gives null contribution to the energy. Then, the
energy is bounded below by a multiple of the magnetic flux
magnitude (for positive flux we choose the upper signs, and
for negative flux we choose the lower signs):

𝐸 ≥ ±𝑒V2 ∫𝑑
2
𝑥𝐵 = 𝑒V2 |Φ| . (30)

This bound is saturated by fields satisfying the Bogomolnyi or
self-dual equations [12]

𝐷
±
𝜙 = 0, (31)

𝐵 = ±

2𝑒
3V2

𝜅
2

𝜔
1

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2

(1 −

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝛽

V2𝛽
) . (32)
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If we require that the magnetic field be nonsingular at origin,
the function 𝜔

1
(|𝜙|) should behave like |𝜙|2𝛿 with 𝛿 ≥ −1.

On the other hand, positivity and finiteness of the BPS energy
density require 𝛽 ≥ 1.

Below we study interesting models by given a specific
form of the functions 𝜔 and 𝜔

1
.

3. Some Simple Models

In the following we analyze some interesting but simple
models by setting

𝜔 (
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
) = (𝑁 + 1)

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝑁

V2𝑁
,

𝜔
1
(
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
) =

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝑀

V2𝑀
.

(33)

The BPS potential (28) reads

𝑉 (
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
) =

𝑒
4V6

𝜅
2

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝑀+2

V2𝑀+2
(1 −

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝑁+2

V2𝑁+2
)

2

, (34)

and the BPS equation (32) becomes

𝐵 = ±

2𝑒
3V4

𝜅
2

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝑀+2

V2𝑀+2
(1 −

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝑁+2

V2𝑁+2
) . (35)

Here, it interesting to note that for𝑁 = 0 and𝑀 = 0 the
self-duality equations (31) and (35) become the well known
Bogomolnyi equations of the Chern-Simons-Higgs theory [8,
9]:

𝐷
±
𝜙 = 0,

𝐵 = ±

2𝑒
3

𝜅
2

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2

(V2 − 󵄨󵄨󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2

) .

(36)

In the case where𝑁 = 0 and𝑀 = −1, we have

𝐷
±
𝜙 = 0,

𝐵 = ±

2𝑒
3V2

𝜅
2

(V2 − 󵄨󵄨󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2

) .

(37)

These equations are essentially the Bogomolnyi equations
of the Maxwell-Higgs model, whose solutions are the well
known Nielsen-Olesen vortices [53]. The difference lies in
the fact that, here, our self-dual solitons carry not only
magnetic flux, as in the Higgs model, but also 𝑈(1) charge.
This is a consequence that in our theory the dynamics of
gauge field is dictated by a Chern-Simons term instead of
a Maxwell term as in Maxwell-Higgs theory. So, for 𝑁 =

0 and 𝑀 = −1, we obtain self-dual configurations which
are mathematically identical to the Nielsen-Olesen ones but
differently our solutions have electric charge.

3.1. Vortex Configurations. Specifically, we look for axially
symmetric solutions using the standard static vortex Ansatz

𝜙 = V𝑔 (𝑟) 𝑒𝑖𝑛𝜃,

𝐴
𝜃
= −

𝑎 (𝑟) − 𝑛

𝑒𝑟

.

(38)

The Ansatz allows expressing the magnetic field as

𝐵 = −

𝑎
󸀠

𝑒𝑟

, (39)

where 󸀠 denotes a derivative in relation to the coordinate 𝑟.
Likewise, the BPS equations (31) and (35) are written as

𝑔
󸀠
= ±

𝑎𝑔

𝑟

, (40)

𝐵 = −

𝑎
󸀠

𝑒𝑟

= ±

2𝑒
3V4

𝜅
2

𝑔
2𝑀+2

(1 − 𝑔
2𝑁+2

) . (41)

These equations are solved considering the profiles 𝑔 and 𝑎

are well behaved functions satisfying the following boundary
conditions:

𝑔 (0) = 0,

𝑎 (0) = 𝑛,

(42)

𝑔 (∞) = 1,

𝑎 (∞) = 0.

(43)

The BPS energy density of the model reading from

𝐸BPS = 2𝜋∫𝑑𝑟𝑟𝜀BPS (44)

is given by

𝜀BPS =
2𝑒
4V6

𝜅
2

𝑔
2𝑀+2

(1 − 𝑔
2𝑁+2

)

2

+ 2V2 (𝑁 + 1) 𝑔
2𝑁

(

𝑎𝑔

𝑟

)

2

,

(45)

and the requirement of finite energy density, for all values of
the winding number 𝑛, imposes𝑁 ≥ 0 and𝑀 ≥ −1.

3.2. Checking the Boundary Conditions. Weobtain the behav-
ior of the solutions of (40) and (41) in the neighborhood of
𝑟 → 0 using power series method:

𝑔 (𝑟) = 𝐺
𝑛
𝑟
𝑛
−

𝑒
4V4 (𝐺

𝑛
)
2𝑀+3

𝑟
𝑛(2𝑀+3)+2

2𝜅
2
(𝑛𝑀 + 𝑛 + 1)

2
+ ⋅ ⋅ ⋅

𝑎 (𝑟) = 𝑛 −

𝑒
4V4 (𝐺

𝑛
)
2𝑀+2

𝑟
𝑛(2𝑀+2)+2

𝜅
2
(𝑛𝑀 + 𝑛 + 1)

+ ⋅ ⋅ ⋅ .

(46)

It verifies the boundary conditions given in (42).
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For 𝑟 → +∞, the behavior of the soliton solutions
becomes similar to the Nielsen-Olesen vortices,

𝑔 (𝑟) ∼ 1 − 𝐺
∞

𝑒
−𝑚
𝑠
𝑟

√𝑟

𝑎 (𝑟) ∼ 𝐺
∞
𝑚
𝑠
√𝑟𝑒
−𝑚
𝑠
𝑟
,

(47)

where 𝐺
∞

is a numerical constant determined numerically
and𝑚

𝑠
, the self-dual mass of the bosonic fields, is given by

𝑚
𝑠
=

2𝑒
2V2

𝜅

√𝑁 + 1. (48)

It is verified that, for𝑁 = 0, the mass scale is exactly the one
of the Chern-Simons-Higgs model:

𝑉 (
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
) =

𝑒
4V6

𝜅
2

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝑀+2

V2𝑀+2
(1 −

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝑁+2

V2𝑁+2
)

2

. (49)

3.3. Numerical Analysis. Below, without loss of generality we
set 𝑒 = 1, V = 1, 𝜅 = 1.

Before performing the numerical solution of the self-dual
equations (40) and (41) we do the following observations in
relation to the BPS potential (34). First, it provides a |𝜙|

4

potential for𝑀 = −1 and𝑁 = 0,

𝑉 (
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
) = (1 −

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2

)

2

. (50)

Second, the BPS potential also provides a family of |𝜙|6
potentials when the condition𝑀 = −2𝑁 is satisfied and𝑁 is
restricted to the interval 0 ≤ 𝑁 ≤ 1/2,

𝑉 (
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
) =

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

−4𝑁+2

(1 −
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

2𝑁+2

)

2

. (51)

Below, our numerical analysis considers only these two
potentials to solve the BPS equations (40) and (41). In par-
ticular, we solve the Bogomolnyi equations only for winding
number 𝑛 = 1.

In the figures, the red line represents the case where
𝑀 = −1 and 𝑁 = 0 providing the Nielsen-Olesen-like
vortices, whereas the blue lines depict the vortex solutions
for the values of 𝑀 and 𝑁 generating some |𝜙|6 potentials.
In particular, we have plotted three solutions in blue lines:

(i) 𝑀 = 0 and 𝑁 = 0, which generates the well known
Chern-Simons-Higgs vortices.

(ii) 𝑀 = −0.5 and 𝑁 = 0.25, associated to the self-dual
potential

𝑉 (
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
) =

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
(1 −

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

5/2

)

2

. (52)

(iii) 𝑀 = −1 and 𝑁 = 0.5, associated to the self-dual
potential

𝑉 (
󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨
) = (1 −

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

3

)

2

. (53)
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Figure 1: The profiles of the Higgs field 𝑔(𝑟) for 𝑛 = 1. The red
lines represent the solutions for a |𝜙|4 potential and blue lines for
|𝜙|
6 potentials.
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Figure 2: The profiles of the gauge field 𝑎(𝑟) for 𝑛 = 1. The red
lines represent the solutions for a |𝜙|4 potential and blue lines for
|𝜙|
6 potentials.

Note that in the cases 𝑀 = −1, 𝑁 = 0 and 𝑀 = −1,
𝑁 = 0.5, that is, the cases associated with the potentials (50)
and (53), there is only one degenerate vacuum at |𝜙| = 1. This
fact leads us to similar solutions, which can be appreciated in
Figures 1, 2, 4, and 3.

For the cases where 𝑀 ̸= −1, the |𝜙|6 potential has two
vacua: |𝜙| = 0 and |𝜙| = 1. In these cases, the profiles of
the magnetic field are rings whose maximum amplitude, for
increasing values of𝑁, approaches the origin (see Figure 4).
Also the profiles of the BPS energy density have a ring-like
format (see Figure 5) and the ring format is explicit for 𝑛 > 1.

On the other hand, for electric field, whenever the values
of𝑀 and𝑁 here are considered, the profiles always are rings
around the origin (see Figure 3).
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Figure 4: The profiles of the magnetic field 𝐵(𝑟) for 𝑛 = 1. The red
lines represent the solutions for a |𝜙|4 potential and blue lines for |𝜙|6
potentials.

4. Remarks and Conclusions

In summary, we have proposed a generalized Abelian
Chern-Simons-Higgsmodelwith explicit breaking of Lorentz
covariance and explored the respective Bogomolnyi frame-
work. During the implementation of the BPS trick it is
shown that the generalized functions should satisfy some
requirements: The function 𝜔(|𝜙|)must be a monomial, that
is, 𝜔 = 𝐶|𝜙|

2𝛽−2 for all 𝛽 ≥ 1, and the function 𝜔
1
(|𝜙|)

must be regular at the origin (𝜔
1
∝ |𝜙|

2𝛿 with 𝛿 ≥ −1).
Under such conditions imposed on the generalized functions,
the existence of self-dual solitonic configurations satisfying
Bogomolnyi equations whose magnetic field and BPS energy
density are well behaved is guaranteed. As we expected, the
infinity family of self-dual configurations have finite energy
which is proportional to the magnitude of the magnetic flux.
In particular, we have studied the self-dual vortices provided
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Figure 5: The profiles of the BPS energy density 𝜀BPS(𝑟) for 𝑛 = 1.
The red lines represent the solutions for a |𝜙|4 potential and blue
lines for |𝜙|6 potentials.

by the choice of𝜔
1
(|𝜙|) = (𝑁+1)|𝜙|

2𝑁 and𝜔
1
(|𝜙|) = |𝜙|

2𝑀. It
was shown the vortex solutions of the Maxwell-Higgs model
and the Chern-Simons-Higgs model can be also obtained.
Besides that, we have constructed two new solitonic solutions
which correspond to Chern-Simons theory coupled to two
types of |𝜙|6 potentials given by (52) and (53), respectively.

Finally, it is worthwhile to point out that existence of
BPS states is linked to the existence of an N = 2-
extended supersymmetric model [54]. We are studying such
a possibility despite the fact that in this model the Lorentz
symmetry is explicitly broken. Advances in this direction will
be reported elsewhere.
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