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First published August 5, 2016; doi:10.1152/ajpheart.00096.2016.—Galec-
tin-3 (Gal-3), a member of the �-galactoside lectin family, has an
important role in immune regulation. In hypertensive rats and heart
failure patients, Gal-3 is considered a marker for an unfavorable
prognosis. Nevertheless, the role and mechanism of Gal-3 action in
hypertension-induced target organ damage are unknown. We hypoth-
esized that, in angiotensin II (ANG II)-induced hypertension, genetic
deletion of Gal-3 prevents left ventricular (LV) adverse remodeling
and LV dysfunction by reducing the innate immune responses and
myocardial fibrosis. To induce hypertension, male C57BL/6J and
Gal-3 knockout (KO) mice were infused with ANG II (3
�g·min�1·kg�1 sc) for 8 wk. We assessed: 1) systolic blood pressure
by plethysmography, 2) LV function and remodeling by echocardi-
ography, 3) myocardial fibrosis by histology, 4) cardiac CD68�

macrophage infiltration by histology, 5) ICAM-1 and VCAM-1 ex-
pression by Western blotting, 6) plasma cytokines, including interleu-
kin-6 (IL-6), by enzyme-linked immunosorbent assay, and 7) regula-
tory T (Treg) cells by flow cytometry as detected by their combined
expression of CD4, CD25, and FOXP3. Systolic blood pressure and
cardiac hypertrophy increased similarly in both mouse strains when
infused with ANG II. However, hypertensive C57BL/6J mice suffered
impaired ejection and shortening fractions. In these mice, the extent of
myocardial fibrosis and macrophage infiltration was greater in histo-
logical sections, and cardiac ICAM-1, as well as plasma IL-6, expres-
sion was higher as assessed by Western blotting. However, all these
parameters were blunted in Gal-3 KO mice. Hypertensive Gal-3 KO
mice also had a higher number of splenic Treg lymphocytes. In
conclusion, in ANG II-induced hypertension, genetic deletion of
Gal-3 prevented LV dysfunction without affecting blood pressure or
LV hypertrophy. This study indicates that the ANG II effects are, in
part, mediated or triggered by Gal-3 together with the related inter-
cellular signaling (ICAM-1 and IL-6), leading to cardiac inflammation
and fibrosis.

angiotensin II; hypertension; inflammation; galectin-3; interleukin-6;
fibrosis; macrophages

NEW & NOTEWORTHY

Our study suggests that galectin-3 should be considered not
merely a marker for heart failure, but also a direct mediator of
cardiac inflammation, fibrosis, and dysfunction. Thus, antago-
nistic strategies targeting galectin-3 may be a novel therapeu-
tic approach in providing cardiac protection in hypertension
and heart failure.

GALECTINS ARE SOLUBLE LECTINS with intra- and extracellular
functions. Extracellularly, secreted galectins modulate immu-
nity and inflammation by binding a preferred set of cell surface
glycol conjugates, such as membrane glycolipids and trans-
membrane glycoproteins (38).

Galectin-3 (Gal-3) is a �30-kDa �-galactoside-binding pro-
tein predominantly and widely expressed in the immune sys-
tem. Previous findings indicate that Gal-3 is differentially
expressed in various mouse organs (22). Macrophages and
fibroblasts have been considered the main source of Gal-3 (10).
This immunomodulatory lectin regulates apoptosis, as well as
cell proliferation and growth, likely by orchestrating cell-cell
and cell-extracellular matrix interactions. However, Gal-3 has
a stimulatory effect on inflammation and components of innate
immunity. For example, Gal-3 stimulates production of proin-
flammatory mediators and reactive oxygen species in mast
cells, neutrophils, and macrophages (8), and these cells migrate
to and infiltrate the sites of injury by binding to adhesion
molecules such as ICAM-1 and VCAM-1 on endothelial cells.
In an experimental model of cardiac disease, Gal-3 was shown
to be expressed in inflammatory cells infiltrating the heart;
Gal-3 also induced fibroblast proliferation, cyclin D1 expres-
sion, and collagen production by cardiac fibroblasts (43). In
hypertensive rats and patients with heart failure, Gal-3 is a marker
for poor prognosis (30, 43). Additionally, Gal-3 is a pathogenic
factor in heart failure, because we have shown that infusion of
exogenous Gal-3 into the pericardial sac causes myocardial in-
flammation and fibrosis and also impairs left ventricular (LV)
contractility without affecting blood pressure (26), whereas Yu et
al. (51) showed that Gal-3 actively contributed to cardiac remod-
eling, myocardial fibrogenesis, and heart failure. Furthermore, we
recently showed that genetic deletion of Gal-3 reduced myocar-
dial macrophage infiltration and fibrosis during the healing phase
in myocardial infarction in mice (14). Furthermore, myocardial
hypertrophy and ventricular dysfunction induced by aortic con-
striction or angiotensin II (ANG II) were blunted in Gal-3 knock-
out (KO) mice, as well as in mice with pharmacological inhibition
of Gal-3 (51). However, the role of Gal-3 in chronic hypertensive
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heart remodeling and cardiac inflammation and dysfunction is far
from being elucidated.

Galectins, including Gal-3, are known for their negative
effects on T cell proliferation and survival. Previous studies
showed that Gal-3 deficiency increases the peripheral regula-
tory T (Treg) cell frequency in leshmaniasis (13) and in mouse
experimental autoimmune myocarditis (21), indicating that,
under pathological conditions, Gal-3 regulates T cells. How-
ever, the role of Gal-3 in Treg cells during hypertension has not
been examined. Therefore, we hypothesize that, in chronic
ANG II-induced hypertension, Gal-3 decreases the number of
Treg lymphocytes by increasing circulating inflammatory cyto-
kine concentrations and adhesion molecule expression, thus
contributing to cardiac inflammation, fibrosis, and dysfunction.
To dissect the role of Gal-3 in ANG II-induced hypertension,
as well as cardiac remodeling and function, we infused ANG II
or its vehicle into Gal-3 KO mice and their wild-type counter-
parts and then analyzed plasma proinflammatory cytokine
concentrations, adhesion molecule expression, and circulating
lymphocyte populations.

METHODS

Mice and Experimental Design

We used male C57BL/6J and Gal-3 KO mice (13–15 wk old).
C57BL/6J mice (Jackson Laboratories) were used as controls. Gal-3
KO mice, originally developed by Hsu et al. (20), were bred on a
C57BL/6J background at the Henry Ford Hospital bioresources facil-
ities. Mice were anesthetized with pentobarbital sodium (50 mg/kg
ip), and osmotic minipumps (Alzet 2004, Durect, Cupertino, CA)
were implanted subcutaneously under aseptic conditions, as previ-
ously described (37), to deliver ANG II (3 �g·min�1·kg�1) (4, 15) or
its vehicle (0.01 N acetic acid) (15). Mice were divided into four
experimental groups as follows: 1) C57BL/6J vehicle, 2) Gal-3 KO
vehicle, 3) C57BL/6J ANG II, and 4) Gal-3 KO. Treatment continued
for 8 wk. This protocol was approved by the Henry Ford Hospital
Institutional Animal Care and Use Committee and followed the
National Institutes of Health Guide for the Care and Use of Labora-
tory Animals.

Systolic Blood Pressure

A noninvasive computerized tail-cuff system (model BP-2000,
Visitech, Apex, NC) was used to measure systolic blood pressure
(SBP) in conscious mice at baseline and then three times weekly. Each
SBP consisted of 3 sets of 10 measurements, with each set of 10
measurements including �6 successful measurements. Weekly SBP
readings were averaged, as previously described (45).

Echocardiography

Echocardiographic recording. Before beginning the studies, the
mice were trained as follows. The animals were picked up by the nape
of the neck and held firmly in the palm of the examiner’s hand in the
supine position with the tail held tightly between the last two fingers.
The left hemithorax was carefully shaved, and prewarmed ultrasound
transmission gel (Parker Laboratory, Orange, NJ) was applied. The
transducer probe was gently applied to the left chest, and images
obtained during the training sessions were not recorded. We previ-
ously reported that, with repeated training, mice remain calm and their
heart rate stabilizes at 600–700 beats/min, which is comparable to the
heart rate of conscious mice subjected to the tail-cuff or telemetry
method (15, 50). After the mice were well trained, transthoracic
echocardiographic studies were performed using an ultrasound ma-
chine (model 256, Acuson) equipped with a 15-MHz linear transducer
(model 15L8, Acuson). Generally, the heart was first imaged in the

two-dimensional (2-D) mode in the parasternal long-axis view. From
this view, an M-mode cursor was positioned perpendicular to the
interventricular septum and posterior wall of the LV at the level of the
papillary muscles, and M-mode images were obtained for measure-
ment of wall thickness and chamber dimensions. Then a 2-D short-
axis view of the mid-LV was obtained at the chordal level. Images
from this view were used to measure LV chamber area. Images were
stored in digital format on a magnetic optical disk for review and
analysis.

Image analysis. LV end-diastolic dimension (LVDd), end-systolic
dimension (LVDs), interventricular septum thickness (IVST), and
posterior wall thickness (PWT) were measured from the M-mode
traces. During diastole, LV dimension and wall thickness were mea-
sured from the maximum chamber cavity; during systole, the same
parameters were measured during the maximum anterior motion of
the posterior wall, according to the American Society of Echocardi-
ography guidelines (40). Shortening fraction (SF), a measure of LV
systolic function, was calculated from the M-mode LV internal
dimensions using the following equation: SF (%) � [(LVDd �
LVDs)/LVDd] 	 100. Ejection fraction (EF) was calculated from the
LV cross-sectional area (2-D short-axis view) using the following
equation: EF (%) � [(LVAd � LVAs)/LVAd] 	 100, where LVAd
is LV diastolic area and LVAs is LV systolic area. All primary
measurements, such as LV wall thickness, dimensions, and cross-
sectional areas, were traced manually and digitized by goal-directed,
diagnostically driven software installed on the echocardiograph. Three
beats were averaged for each measurement.

Organ Harvest

At the end of the protocol, animals were anesthetized with pento-
barbital sodium (50 mg/kg ip), and blood was collected for cytokine
analysis. The heart was stopped at diastole by 15% KCl injection, then
the heart, lung, and spleen were rapidly excised. The lungs and the LV
(including the septum) were weighed, and the LV was sectioned
transversely into two slices. A pool of LVs were embedded in
Tissue-Tek OCT (Sakura Finetek, Torrance, CA), dipped in isopen-
tane that was precooled in liquid nitrogen for rapid freezing, and
stored at �70°C until further processing. Tissue slices were later cut
into 6-�m-thick sections and then analyzed by histopathology and
immunohistochemistry (29). The other pool of LVs was saved in a dry
tube and snap-frozen in liquid nitrogen for Western blot analysis (25).
The right limb was excised, and the tibia length (TL) was measured to
normalize heart weight and LV weight.

Histopathological Studies

Frozen sections were double-stained with fluorescein-labeled pea-
nut agglutinin [to outline the myocyte cross-sectional area (MCSA)
and the interstitial space] and rhodamine-labeled Griffonia simplici-
folia lectin I [to outline the microvessels such as small arteries (20
�m), normal capillaries (3–6 �m), and venous capillaries (6–9 �m)]
(17, 18, 39). This labeling allows identification of both myocytes and
capillaries, as previously described (49). Radially oriented micro-
scopic fields from each section were photographed at 	400 magnifi-
cation on a microscope (model IX81, Olympus America, Center
Valley, PA) equipped with a digital camera (model DP70, Olympus
America) and analyzed with a computerized image analysis system
(MicroSuite Biological, Olympus America). MCSA was measured by
computer-based planimetry in 140–240 myocytes per animal, and
data obtained from the same tissue of the same animal were averaged.
Capillary density is expressed as the number of capillaries per square
millimeter of myocardial area (49). Additional slices were stained
with PicroSirius red to determine myocardial fibrosis. The collagen
volume fraction was assessed by an operator blind to the samples in
10–35 (mean 17.6) random images and calculated as the ratio of the
collagen area to the entire area of an individual section, which is the
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sum of the areas representing the myocyte and interstitial space (18,
29, 39).

Immunohistochemistry

Frozen sections were immunostained with anti-rat CD68 antibody
(specific for a macrophage marker, 1:200 dilution; AbD Serotec,
Raleigh, NC) and then incubated with a horse anti-mouse biotinylated
secondary antibody (1:200 dilution; AbD Serotec). Vectastain Elite
avidin-biotin complex-peroxidase kits (Vector Laboratories, Burlin-
game, CA) and 3-amino-9-ethylcarbazole substrate (Life Technolo-
gies, Grand Island, NY) were used to detect signals. Negative controls
were processed in the same fashion, except for the step where the
primary antibody was omitted. Positive cells (reddish-brown staining)
were counted at 	400 magnification in 10–15 randomly chosen fields
per section and expressed as number of cells per square millimeter.

Cytokine Measurements With Cytometric Bead Array

Six inflammatory cytokines and a chemokine [IL-6, IL-10, IFN-
,
monocyte chemoattractant protein-1 (MCP-1), IL-10, IL-12, and
TNF-�] were analyzed using cytometric bead array (Mouse Inflam-
mation Kit, BD Biosciences, San Jose, CA) according to the manu-
facturer’s protocol. Cytokine concentrations are expressed as pico-
grams per milliliter of plasma.

Western Blotting

Cardiac ICAM-1 and VCAM-1 expression was measured by West-
ern blotting. Briefly, �25 mg of LV tissue were homogenized in 300
�l of CelLytic (Sigma Aldrich, St. Louis, MO) on ice and centrifuged
at 4,000 g for 10 min. Protein (10 �g) from the LV extracts was
loaded onto a 10% SDS-polyacrylamide gel under nonreducing con-
ditions, electrophoresed, and then electrotransferred to a nitrocellulose
membrane. Membranes were incubated with anti-ICAM-1 and anti-
VCAM-1 rabbit polyclonal antibodies (1:3,000 dilution in 5% BSA; R
& D Systems, Minneapolis, MN) at room temperature for 1 h and then
with rabbit polyclonal anti-GAPDH antibody (1:5,000 dilution; Cell
Signaling Technology, Danvers, MA) for 1 h. Bound antibodies were
detected with secondary antibodies conjugated to horseradish perox-
idase (Cell Signaling Technology); then an ECL Plus chemilumines-

cence detection system reagent (Amersham Biosciences, Piscataway,
NJ) was used to visualize the bands. Membrane-exposed X-ray films
were scanned (Perfection 3200 scanner, Epson America, Long Beach,
CA), and band density was quantified with densitometry software.
Expression of VCAM-1 and ICAM-1 was normalized to GAPDH.

Flow Cytometry

Spleens were homogenized, and splenocytes were separated and
harvested. Samples from each group were analyzed for total CD4�

and CD4�/CD25�/FOXP3� (Treg) lymphocytes by staining with
FITC anti-rat CD4 antibody (Biolegend, San Diego, CA) and allo-
phycocyanin-anti-rat CD25 antibody (eBioscience, San Diego, CA),
as well as with their respective isotype-matched controls. Labeled
splenocytes were fixed, permeabilized using eBioscience 1	 permea-
bilization wash buffer, blocked with purified anti-mouse CD16/CD32
antibody (which blocks low-affinity Fc
 receptors), and stained with
a species cross-reactive anti-FOXP3 antibody conjugated to phyco-
erythrin (BioLegend). Finally, cells were resuspended in 1% parafor-
maldehyde and stored at 4°C until analysis. Stained cells were
acquired with a flow cytometer (model LSR, BD Biosciences). Flu-
orescence-event data were collected and analyzed using CellQuest Pro
software (BD Biosciences) to determine the percentage of CD4�/
CD25�/FOXP3� among total CD4� cells.

Statistics

Values are means � SE. For all four groups, the Kruskal-Wallis
test was followed by two-sample Wilcoxon tests. We compared
differences between C57BL/6J ANG II and Gal-3 KO ANG II vs.
C57BL/6J vehicle and C57BL/6J ANG II vs. Gal-3 KO ANG II. To
determine significance, Hochberg’s method was used on the two
contrasts. P 
 0.05 was considered statistically significant.

RESULTS

SBP and Body, Heart, and Lung Weight

At baseline, SBP was similar among the four groups of
animals (Fig. 1). In animals infused with vehicle, SBP re-
mained at the baseline values for the duration of follow-up,
with no difference between C57BL/6J and Gal-3 KO mice.
Infusion of ANG II caused an increase in SBP that was not
prevented by the absence of Gal-3 in Gal-3 KO mice. Within
the group of normotensive mice, body weight, heart weight,
and lung weight were similar, whereas the mice infused with
ANG II displayed cardiac hypertrophy, which was similar in
C57BL/6J and Gal-3 KO mice (Table 1).

LV Remodeling and Function

At baseline, IVST and PWT were similar among groups in
both systole and diastole. Compared with vehicle control, ANG
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Fig. 1. Systolic blood pressure (SBP) in C57BL/6J and galectin 3 (Gal-3)
knockout (KO) mice infused with angiotensin II (ANG II) or vehicle for 8 wk
as measured by a computerized tail-cuff system. At baseline, SBP was similar
among genotypes. ANG II increased blood pressure similarly in C57BL/6J and
Gal-3 KO mice. Deletion of Gal-3 did not attenuate ANG II-induced hyper-
tension in mice. *P 
 0.05, C57BL/6J ANG II vs. C57BL/6J vehicle.
#P 
 0.05, Gal-3 KO ANG II vs. C57BL/6J vehicle.

Table 1. Body, heart, and lung weight at 8 wk of follow-up

Vehicle ANG II

C57BL/6J Gal-3 KO C57BL/6J Gal-3 KO

Body wt, g 30 � 0.4 35 � 0.8 30 � 0.8 32 � 0.9
Heart wt, mg 118 � 11 124 � 3 150 � 5** 165 � 11***
LV wt, mg 96 � 11 99 � 3 127 � 4** 137 � 11***
Heart wt/TL, mg/cm 64 � 6 67 � 2 82 � 3** 88 � 6***
LV wt/TL, mg/cm 52 � 6 53 � 1 70 � 2** 73 � 6***
Lung wet wt/lung

dry wt, mg/mg 5 � 0.5 4 � 0.2 5 � 0.6 4 � 0.2

Values are means � SE. ANG II, angiotensin II; Gal-3, galectin-3; KO,
knockout; LV, left ventricle; TL, tibia length. **P 
 0.01 vs. C57BL/6J
vehicle. ***P 
 0.001 vs. Gal-3 KO vehicle.
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II infusion significantly increased IVST. Specifically, in
C57BL/6J mice, IVST increased from 1.4 � 0.1 to 1.9 � 0.1
mm in systole and from 0.9 � 0.04 to 1.2 � 0.1 mm in
diastole. PWT was also significantly increased in systole and
diastole in the C57BL/6J ANG II group, i.e., from 1.3 � 0.05
to 2.1 � 0.1 mm and from 1.0 � 0.04 to 1.5 � 0.1 mm,
respectively; deletion of Gal-3 did not attenuate this increase
(Table 2). In ANG II-infused C57BL/6J mice, systolic LV area
was increased from 0.8 � 0.1 to 1.7 � 0.1 mm (P 
 0.05 vs.
control), but this effect was blunted in Gal-3 KO mice
(1.0 � 0.2 mm, P 
 0.05 vs. C57BL/6J � ANG II; Fig. 2). As
evaluated by EF (%) and SF (%), LV systolic function at
baseline showed no differences among groups. However, after
8 wk of ANG II infusion, LV systolic function decreased in
C57BL/6J mice from 84 � 1 to 61 � 3% and from 71 � 0.3
to 57 � 2% for EF and SF, respectively, but was well
preserved in Gal-3 KO mice (77 � 2 and 65 � 2% for EF and
SF, respectively; Fig. 2).

Myocardial Fibrosis, MCSA, and Capillary Density

Normotensive mice showed similar myocardial collagen
volume fraction (1.6 � 0.5% for C57BL/6J and 2.4 � 0.4%
for Gal-3 KO mice). ANG II infusion caused significant
myocardial fibrosis in C57BL/6J mice (9.3 � 1.3%), but this
effect was diminished in Gal-3 KO mice (3.4 � 0.8%; Fig.
3, A and B).

Under normal conditions, MCSA was similar among the two
mouse strains; C57BL/6J and Gal-3 KO animals chronically
infused with ANG II showed significant myocyte hypertrophy

(229 � 12 and 200 � 12 �m2, respectively, P � 0.03)
compared with the respective vehicle-infused mice (Fig. 3C).
When infused with vehicle, capillary density was slightly,
although not significantly, higher in Gal-3 KO than C57BL/6J
mice. When infused with ANG II, Gal-3 KO mice also showed
slightly higher capillary density than C57BL/6J mice, but the
difference did not reach statistical significance (Fig. 3D).

Myocardial Macrophage Infiltration

Few myocardial CD68� inflammatory cells were observed
in C57BL/6J and Gal-3 KO mice infused with vehicle (34 � 13
and 36 � 7 cells/mm2, respectively). However, infusion with
ANG II significantly increased the numbers of infiltrating
CD68� macrophages in the myocardium of C57BL/6J mice
(118 � 6 cells/mm2), and this effect was almost completely
abolished in Gal-3 KO mice (51 � 10 cells/mm2; Fig. 4).

Cardiac ICAM-1 and VCAM-1 Expression

Western blot analysis showed similar amounts of cardiac
ICAM-1 protein expression in normotensive mice (Fig. 5).
However, ANG II infusion resulted in a significantly higher
level of cardiac ICAM-1 expression in C57BL/6J, but not
Gal-3 KO, mice. No differences were found in cardiac
VCAM-1 expression among groups.

Plasma Cytokine Levels

Circulating levels of IL-6 were similar in normotensive
C57BL/6J and Gal-3 KO mice (4.5 � 1.5 and 4.4 � 0.4 pg/ml,
respectively). However, infusion with ANG II resulted in a
significant increase in plasma IL-6 levels in C57BL/6J
(19 � 5 pg/ml, P � 0.028), but not Gal-3 KO (2.6 � 0.3
pg/ml), mice (Fig. 6). No differences were found in plasma
levels of IL-10, MCP-1, or TNF-� among the groups. IL-12
and IFN-
 levels were below the assay detection limits.

Splenic T Lymphocytes

No differences were found in numbers of splenic CD4�

lymphocytes among the groups (Fig. 7A). Normotensive
mice showed similar percentages of splenic Treg cells
(CD4�/CD25�/FOXP3� lymphocytes). Interestingly, the
percentages of Treg cells were unaffected by ANG II infu-
sion in C57BL/6J mice but were increased significantly in
Gal-3 KO mice (Fig. 7B).

Table 2. Echocardiographic parameters at 8 wk of follow-up

Vehicle ANG II

C57BL/6J Gal-3 KO C57BL/6J Gal-3 KO

HR, beats/min 682 � 16 640 � 10 664 � 11 660 � 10
IVSTs, mm 1.4 � 0.1 1.4 � 0.1 1.9 � 0.1*** 1.7 � 0.1
LV PWTs, mm 1.3 � 0.05 1.4 � 0.04 2.1 � 0.1*** 1.9 � 0.1**
LVDs, mm 0.8 � 0.1 0.9 � 0.1 0.9 � 0.1 0.9 � 0.1
LVAs, mm2 0.8 � 0.1 0.9 � 0.2 1.7 � 0.1*** 1.0 � 0.2##
IVSTd, mm 0.9 � 0.04 0.8 � 0.02 1.2 � 0.1*** 1.1 � 0.1*
LV PWTd, mm 1.0 � 0.04 1.0 � 0.04 1.5 � 0.1*** 1.4 � 0.1**
LVDd, mm 2.4 � 0.1 2.8 � 0.1 2.2 � 0.1# 2.5 � 0.2
LVAd, mm2 3.8 � 0.1 4.6 � 0.7 4.5 � 0.3 4.2 � 0.4

Values are means � SE. s, Systole; d, diastole; HR, heart rate; IVST,
interventricular septum thickness; PWT, posterior wall thickness; LVA, LV
area; LVD, LV dimension. *P 
 0.05 vs. Gal-3 KO vehicle. **P 
 0.01 vs.
Gal-3 KO vehicle. ***P 
 0.001 vs. C57BL/6J vehicle. #P � 0.05 vs. Gal-3
KO ANG II. ##P 
 0.01 vs. C57BL/6J ANG II.
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Fig. 2. Left ventricular (LV) ejection fraction
(EF; A) and shortening fraction (SF, B) in mice
infused with ANG II or vehicle. EF and SF were
similar among groups at baseline. ANG II se-
verely decreased EF and SF at 8 wk in
C57BL/6J mice, but this decrease was attenu-
ated in Gal-3 KO mice, suggesting that LV
dysfunction was prevented by genetic deletion
of Gal-3. *P 
 0.05, C57BL/6J ANG II vs.
C57BL/6J vehicle; ##P 
 0.05, C57BL/6J
ANG II vs. Gal-3 KO ANG II.
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DISCUSSION

In ANG II-induced hypertension, we found that genetic
Gal-3 deletion prevented myocardial macrophage infiltration
and fibrosis. Gal-3 deficiency also preserved systolic function.
Also, we provide evidence that this protective effect is accom-
panied by lower cardiac ICAM-1 expression and a decrease in
plasma levels of IL-6, as well as an increase in the number of
splenic Treg lymphocytes. Together, these results strongly sug-
gest a modulatory role of Gal-3 in cardiac inflammation,
fibrosis, and dysfunction induced by ANG II. Interestingly,
genetic Gal-3 deletion affected neither hypertension nor myo-
cardial hypertrophy. This observation suggests that myocardial
hypertrophy is a direct mechanical consequence of hyperten-
sion and is not inflammation-dependent. Our results identify
Gal-3 as a new and interesting therapeutic target for preventing
the end-organ damage in ANG II-induced hypertension.

Previous studies showed that Gal-3 is involved in target
organ damage (TOD) in human and experimental hyperten-
sion, as well as in nonhypertensive mice, independently of
blood pressure and human cardiovascular disease (3, 11, 12,
26, 31, 47, 48). Here, to thoroughly delineate the role of Gal-3

in the pathogenesis of cardiac damage and dysfunction, we
used a mouse model of ANG II-induced hypertension.

Chronic infusion with ANG II markedly increased blood
pressure associated with myocardial hypertrophy in control
C57BL/6J and Gal-3 KO mice. These findings are consistent
with previous reports from Sharma et al. (42) and Yu et al.
(51), who demonstrated that neither pharmacological inhibition
nor genetic deletion of Gal-3 attenuated hypertension and
cardiac hypertrophy. Thus our results clearly indicate that
Gal-3 does not participate in development of ANG II-induced
hypertension and cardiac hypertrophy.

Here, we found that Gal-3 deletion attenuated ANG II-
induced cardiac fibrosis, confirming the data from our previous
work demonstrating that exogenous Gal-3 infusion into a
pericardial sac caused fibrosis (27). Moreover, ANG II is one
of the most potent stimulators of aldosterone production, and
this hormone mediates part of the cardiac profibrotic effect
induced by ANG II infusion in mice (28). Interestingly, the
profibrotic effect of aldosterone in the vasculature is mediated
in part by Gal-3 (5, 48). Thus it is possible that the Gal-3
cardiac profibrotic effect represents an important downstream
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signaling event in the ANG II-aldosterone axis. Myocardial
remodeling, inflammation, and fibrosis are considered hall-
marks of hypertensive heart disease and cardiac dysfunction
and indicators of poor prognosis (7, 27, 35, 37). Clinical
evidence showed higher plasma Gal-3 concentrations in pa-
tients with acute and chronic heart failure. During the last few
years, plasma levels of Gal-3 have been proposed as a strong
prognostic marker of cardiac failure (9, 33), and Mayr et al.
recently showed that these levels correlated with myocardial
infarct size in patients (33). Recent studies show that age,
hypertension, and renal function are the main determinants of
Gal-3 concentrations in plasma (1). Therefore, we also ana-
lyzed the effect of Gal-3 deletion on cardiac remodeling and
dysfunction. We observed LV systolic dysfunction in
C57BL/6J mice infused with ANG II, as assessed by decreased
EF and SF, and this LV dysfunction was completely prevented
in Gal-3 KO mice.

The links among cardiac inflammation, subsequent fibrosis,
and cardiac dysfunction are well established (16, 37, 42).
However, Gal-3 participation in this process is incompletely
understood. In a model of progressive renal fibrosis, Gal-3 was
shown to be an important link between inflammation and
fibrosis, such that Gal-3 secreted by macrophages activates
fibroblasts to develop a profibrotic phenotype (19). Consistent
with those observations, we found that both cardiac macro-
phage infiltration and fibrosis were markedly reduced in Gal-3
KO mice, which is consistent with our previous studies of
pericardial infusion of Gal-3, showing increased cardiac fibro-
sis and dysfunction (26). Additionally, Yu et al. reported
decreased cardiac fibrosis in Gal-3 KO mice with aortic band-
ing (51). We previously reported that Gal-3 infusion into the

pericardial sac of healthy Sprague-Dawley rats resulted in a
higher number of infiltrating macrophages and fibrosis in the
myocardium (26). Aside from affecting macrophage pheno-
type, Gal-3 may also affect the migration and tissue infiltration
of these cells, and as demonstrated by Sano et al., Gal-3 could
also contribute to macrophage phagocytosis through an intra-
cellular mechanism (41). Endothelial cell adhesion molecules
such as ICAM-1 and VCAM-1 play an important role in
monocyte recruitment and migration from the circulation to the
sites of injury (44). However, the influence of Gal-3 on cardiac
adhesion molecule expression in ANG II-induced hypertension
has not been examined. To investigate the mechanism by
which Gal-3 deletion decreases macrophage infiltration, we
evaluated myocardial ICAM-1 and VCAM-1 expression. Gal-3
deletion markedly attenuated ANG II-induced cardiac ICAM-1
expression. This observation agrees with the recent demonstra-
tion that Gal-3 can increase ICAM-1 expression in cultured
endothelial cells (6). ANG II was shown to induce VCAM-1
expression in the rat vasculature after 6 days of infusion (46).
However, we found no changes in cardiac VCAM-1 expres-
sion, which may result from the differences in protocol dura-
tion, species, or tissues studied relative to previous studies.
Thus our study indicates that Gal-3 may partly mediate ANG
II-induced monocyte recruitment by increasing ICAM-1 ex-
pression.

Cytokines are soluble factors produced by immune, endo-
thelial, and other cell types and regulate many steps of immune
responses, including those associated with hypertension (36,
52). However, the importance of Gal-3 as a regulator of
inflammatory cytokines in TOD pathogenesis has yet to be
elucidated. Here, we quantified the cytokines IL-6, IL-10,
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IL-12, MCP-1, IFN-
, and TNF-�, because the macrophages
are among the main sources of these cytokines. After 8 wk of
ANG II-induced hypertension, we found no change in circu-
lating IL-10, IL-12, MCP-1, IFN-
, or TNF-� between geno-
types. However, one important finding of our investigation was
that IL-6 was markedly enhanced in the plasma of C57BL/6J
mice, but this increase was blunted in Gal-3 KO mice. IL-6
participates in the development of hypertensive TOD develop-
ment by promoting inflammation and fibrosis in the heart and
kidney (24, 34, 52). We recently demonstrated that genetic
deletion of IL-6 attenuated ANG II-high salt-induced hyper-
tension and cardiac dysfunction (15). Thus our results strongly
suggest that some of the detrimental effects of Gal-3 on the
heart may be mediated by IL-6 and by macrophage infiltration.

Gal-3 has been detected in T cell subsets, including Treg

(CD4�/CD25�/FOXP3�) cells (8). Therefore, we studied
whether genetic deletion of Gal-3 might prevent TOD in part
by modifying the T cell profile. We found no significant
changes in splenic CD4� lymphocytes between the two mouse
strains infused with vehicle or ANG II; however, Gal-3 dele-
tion was associated with an interesting effect on Treg cells:
ANG II had no effect on Treg cells in C57BL/6J mice but nearly
doubled the number of splenic Treg cells in Gal-3 KO mice.
This finding is consistent with previous reports showing a
higher number of Treg cells in Gal-3 KO mice (13, 21).

Moreover, Treg cell transfer has been shown to attenuate ANG
II-induced increases in IL-6 and perivascular macrophage in-
filtration (2, 32). Adoptive transfer of Treg cells was shown to
ameliorate ANG II-induced cardiac damage (23) not only by
marked reduction in CD4�, CD8�, and CD69� cells, but also
by macrophage infiltration. Thus one could speculate that
Gal-3 may act as an endogenous inhibitor of Treg cells, result-
ing in unopposed immune/inflammatory cells and, thereby,
contributing to tissue damage during ANG II-induced hyper-
tension.

In summary, genetic deletion of Gal-3 prevents TOD and
LV systolic dysfunction without altering blood pressure or LV
hypertrophy in ANG II-induced hypertension. Our results in-
dicate that the detrimental effects of ANG II could be, in part,
mediated by Gal-3, which decreases the percentage of Treg

cells and increases the percentage of proinflammatory adhesion
molecules and cytokines, the proportion of myocardial macro-
phages infiltrating the myocardium, and fibrosis.

Study Limitation

Although inflammatory cells and fibroblasts are the main
source of Gal-3, it remains unknown whether the local source
or systemic production of Gal-3 contributes most to the TOD
in ANG II-dependent hypertension.
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The present data show lower proportions of infiltrating
cardiac macrophages in Gal-3 KO mice, indicating that mac-
rophages may be one of the cell types responsible for the
protective effect. The cell type or organ that is the source of
Gal-3 contributing to cardiac damage in ANG II-dependent
hypertension remains to be identified. Further studies are
needed to investigate the underlying mechanism by which
Gal-3 regulates Treg cells. Our results were obtained solely
from a mouse model of hypertension induced by chronic
infusion of ANG II, and the complexity and multiplicity of
mechanisms involved in human cardiac remodeling and dys-
function in hypertension were not addressed. Thus, further

investigations are needed to fully support the translational
relevance of the present study.

Perspectives

Development of cardiac myocyte hypertrophy, inflamma-
tion, and fibrosis is a hallmark of cardiac remodeling and
dysfunction. Progressive cardiac remodeling is the main pre-
dictor of heart failure development. An emerging body of
evidence suggests that the serum level of Gal-3 is an even more
powerful predictor of mortality than the well-known predictor
pro-B-type natriuretic peptide in patients with decompensated
heart failure (9). Our study suggests that Gal-3 is not only a
marker, but also a mediator, of cardiac inflammation, fibrosis,
and dysfunction. Thus, antagonistic strategies targeting Gal-3
may be a novel therapeutic approach in providing the cardiac
protection in hypertension and heart failure.
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