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Abstract: Enzymes are essential components of biological reactions and play important roles in the
scaling and optimization of many industrial processes. Due to the growing commercial demand
for new and more efficient enzymes to help further optimize these processes, many studies are
now focusing their attention on more renewable and environmentally sustainable sources for the
production of these enzymes. Microalgae are very promising from this perspective since they can
be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient
manner. This is reflected in the increased number of publications in this area, especially in the use of
microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different
industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have
been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid
production has resulted in promising results. However, the entire biosynthetic pathways/systems
leading to synthesis of potentially important bioactive compounds have in many cases yet to be
fully characterized (e.g., for the synthesis of polyketides). Nonetheless, with recent advances in
microalgal genomics and transcriptomic approaches, it is becoming easier to identify sequences
encoding targeted enzymes, increasing the likelihood of the identification, heterologous expression,
and characterization of these enzymes of interest. This review provides an overview of the state of
the art in marine and freshwater microalgal enzymes with potential biotechnological applications
and provides future perspectives for this field.

Keywords: microalgae; enzymes; marine biotechnology; -omics technologies; heterologous
expression; homologous expression

1. Introduction

Water covers around 71% of the Earth’s surface, with salt water responsible for 96.5% of this
percentage [1]. Due to its molecular structure and chemical properties, water includes (and often
participates in) every chemical reaction that is biologically relevant [2]. In such reactions, enzymes
cover a fundamental role: They are organic macromolecules that catalyze biological reactions (so-called
“biocatalysts” [3]). Due to their substrate-specificity, enzymes are commonly used in several sectors
(such as food processing, detergent, pharmaceuticals, biofuel, and paper production) to improve, scale,
and optimize industrial production. For example, hydrolases, which are enzymes that catalyze the
hydrolysis of chemical bonds, have applications in several fields. Examples of industrially relevant
hydrolases are cellulases for biofuel production [4], amylases for syrup production [5], papain, phytases
and galactosidases for food processing [6], and other hydrolases which have various pharmaceutical
applications [7]. The demand for new enzymes is growing every year, and many financial reports
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expect the global enzyme market value to surpass the $10 billion mark by 2024 (Allied Market
Research, 2018, https://www.alliedmarketresearch.com/enzymes-market;ResearchandMarket.com,
2018, https://www.researchandmarkets.com/research/6zpvw9/industrial?w=4), of which $7 billion
alone will be for industrial applications (BCC Research, 2018, https://www.bccresearch.com/market-
research/biotechnology/global-markets-for-enzymes-in-industrial-applications.html).

Microalgae are photosynthetic unicellular organisms that can be massively cultivated
under controlled conditions in photobioreactors with relatively small quantities of micro- and
macro-nutrients [8], and can thus fit perfectly into this market sector. Microalgae continue to
be used in a number of biotechnological applications. Searching the available literature in the PubMed
database, this trend is clearly visible (search filters used were the word “microalgae” in the Title/Abstract
field and the word “biotechnolog*” in the Text Word field, using the asterisk wildcard to expand the
term selection; Figure 1). Considering the full 20-year interval between “1999–2018”, it is clear that as
of 2012, there has been a rapid increase in the number of publications involving both “microalgae” and
“biotechnology”, reaching a peak in the years 2015–2016.
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Figure 1. Microalgae Biotechnology PubMed Search Results 1999–2018. Using PubMed database search
in the 20-years interval 1999–2018, the following search filters were set: The word “microalgae” in
the [Title/Abstract] field and the word “biotechnolog*” in the [Text Word] field, using the asterisk (*)
wildcard to expand the term selection (such as biotechnology, biotechnological, and biotechnologies).

The literature regarding the biotechnological applications of microalgae is dominated by four
main research sectors: (1) Direct use of microalgal cells, for bioremediation applications and as food
supplements [9]; (2) Extraction of bioactives for different applications (e.g., cosmeceutical, nutraceutical,
and pharmaceutical applications, and for biofuel production [10,11]); (3) Use of microalgae as
platforms for heterologous expression or endogenous gene editing and overexpression [12]; (4) Use of
microalgae as sources of enzymes for industrial applications [13]. The latter field appears to be less
well-studied compared to the others, due to the high costs currently involved in enzyme extraction
and characterization, as well as the scarcity of annotated microalgal genomes.

Recent projects, such as those funded under the European Union Seventh Framework 2007–2017
(EU FP-7), e.g., BIOFAT (https://cordis.europa.eu/project/rcn/100477/factsheet/en) and GIAVAP
(https://cordis.europa.eu/project/rcn/97420/factsheet/en), together with Horizon 2020 programs, e.g.,
ALGAE4A-B (http://www.algae4ab.eu/project.html) and VALUEMAG (https://www.valuemag.eu/),
have resulted in an increase in –omics data (i.e., genomics, transcriptomics, proteomics and
metabolomics data) available for microalgae, improving the possibility of finding new enzymes
from both marine and freshwater species [14]. Mogharabi and Faramarzi recently reported the isolation
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of some enzymes from algae and highlighted their potential as cell factories [15]. This review aims to
provide a summary of the current literature on microalgal enzymes with potential biotechnological
applications with a particular focus on enzymes involved in the production of high-value added lipids
and biodiesel, healthcare applications, and bioremediation.

2. Enzymes from Microalgae

2.1. Enzymes for High-Value Added Lipids and Biodiesel Production

Microalgae are known to accumulate large amounts of lipids [16], with triglycerides (TAGs)
and poly-unsaturated fatty acids (PUFA) being the most studied from a biotechnological application
standpoint, particularly for the production of biodiesel and nutraceuticals [9,16–18]. TAGs, esters
derived from glycerol and three chained fatty acids (FA) which are usually stored in cytosol-located
lipid droplets [19], can be used to produce biodiesel following acid- or base-catalyzed transesterification
reactions [20]. PUFAs, for their part, have well-proven beneficial health effects [21,22], especially Ω-3
fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) (Figure 2).
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Figure 2. Examples of fatty acids of biotechnological interest. (a) Through various reactions of elongation
and formation of double C-C bonds, poly-unsaturated fatty acids (PUFA) can be synthetized, such as
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with nutraceutical or food applications;
(b) Accumulation in triglycerides (TAGs) and biodiesel formation via chemical transesterification.

The most frequently studied enzyme involved in lipid synthesis is acyl-CoA diacylglycerol
acyltransferase (DGAT), involved in the final reaction of the TAG biosynthetic pathway [23,24]. Three
independent groups of enzymes, referred to as acyl-CoA diacylglycerol acyltransferases type 1, 2,
and 3 (DGATs 1-2-3), take part in the acyl-CoA-dependent formation of TAGs from its precursor
sn-1,2-diacylglycerol (DAG) [25]. The individual contribution of each DGAT isoenzyme to the fatty
acid profile of TAG differs between species [24,26].
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A gene encoding DGAT1 was initially discovered in the green alga Chlorella ellipsoidea by Guo et
al. [27], and an experiment involving overexpression of DGAT1 was subsequently performed in the
oleaginous microalgae Nannochloropsis oceanica [28]. The first DGAT2 sequence was obtained from
the green alga Ostreococcus tauri [29], and different studies involving overexpression of DGAT2 were
performed. In particular, DGAT2 overexpression led to an increase in TAG production in the diatoms
Phaeodactylum tricornutum [30] and Thalassiosira pseudonana [31], and in the oleaginous microalgae
Neochloris oleoabundans [32] and N. oceanica [33]. Different isoforms of DGAT2 (NoDGAT2A, 2C, 2D)
have successively been identified in N. oceanica and different combinations of either overexpression
or under-expression have been analyzed. These combinations gave different fatty acid-production
profiles, with some optimized for nutritional applications and others for biofuel purposes [34]. Even
if the green alga Chlamydomonas reinhardtii is considered a common biofuel feedstock, it showed no
clear trends following overexpression of different DGAT2 isoforms, with increased levels of TAG in
some reports [35], while levels were not increased in others [36]. Recently, Cui and coworkers [37]
characterized a dual-function wax ester synthase (WS)/DGAT enzyme in P. tricornutum, whose
overexpression led to an accumulation of both TAGs and wax esters. This was the first report of this
particular enzyme in a microalga, and a patent involving the enzyme was subsequently filed (Patent
Code: CN107299090A, 2017).

In addition to DGAT, other genes have been targeted in order to increase high-value
added lipid production, including glucose-6-phosphate dehydrogenase (G6PD), ∆6-desaturase,
6-phosphogluconate dehydrogenase (6PGD), glycerol-3-phosphate acyltransferase (GPAT1-GPAT2),
and acetyl-CoA synthetase 2 (ACS2). Overexpression of these enzymes resulted in increased lipid
contents [38–42]. In particular, two patents for desaturases have been filed. One covers a ∆6-desaturase
from Nannochloropsis spp., which converts linoleic acid to γ-linolenic acid (GLA) and α-linolenic acid
(ALA) to stearidnoic acid (Patent Code: CN101289659A, 2010). The other covers a Ω6-desaturase
from Arctic chlamydomonas sp. ArF0006, which converts oleic acid to linoleic acid (Patent Code:
KR101829048B1, 2018).

Other approaches to increase lipid production and/or alter lipid profiles via gene disruption have
been employed. Examples include the knock-out of a phospholipase A2 (PLA2) gene via CRISPR/Cas9
ribonucleoproteins in C. reinhardtii [43], microRNA silencing of the stearoyl-ACP desaturase (that forms
oleic acid via addition of a double-bond in a lipid chain [44]) in C. reinhardtii [45], and meganuclease
and TALE nuclease genome modification in P. tricornutum [46]. This last approach involved modifying
the expression of seven genes, potentially affecting the lipid content (UDP-glucose pyrophosphorylase,
glycerol-3-phosphate dehydrogenase, and enoyl-ACP reductase), the acyl chain length (long chain
acyl-CoA elongase and a putative palmitoyl-protein thioesterase), and the degree of fatty acid
saturation (Ω-3 fatty acid desaturase and ∆-12-fatty acid desaturase). In particular, a mutant for
UDP-glucose pyrophosphorylase showed a 45-fold increase in TAG accumulation under nitrogen
starvation conditions. Figure 3 provides an overview of the subcellular localization of metabolic
pathways and engineered enzymes in the aforementioned examples.

Finally, Sorigué and coworkers [47] reported, for the first time, the presence of a photoenzyme
named fatty acid photodecarboxylase (FAP) in Chlorella variabilis str microalgae. NC64A. FAP converts
fatty acids to hydrocarbons and may be useful in light-driven production of hydrocarbons. It is worth
mentioning that Misra et al. [48] have developed a database to catalogue the enzymes which have been
identified as being responsible for lipid synthesis from available microalgal genomes (e.g., C. reinhardtii,
P. tricornutum, Volvox carteri), called dEMBF (website: http://bbprof.immt.res.in/embf/). To date, the
database has collected 316 entries from 16 organisms, while providing different browsing options
(Search by: “Enzyme Classification”, “Organism”, and “Enzyme Class”) and different web-based tools
(NCBI’s Blast software integrated, sequence comparison, Motif prediction via the MEME software).
The enzymes discussed in this section are reported in Table 1.

http://bbprof.immt.res.in/embf/
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Table 1. Enzymes from Microalgae for Lipid and Biodiesel Production. Marine and freshwater ecological
strain sources are abbreviated as M or F, respectively. Algal classes of Bacillariophyceae, Chlorophyceae,
Trebouxiophyceae, Eustigmatophyceae, Mamiellophyceae, Coscinodiscophyceae, and Cyanidiophyceae are
abbreviated as BA, CH, TR, EU, MA, CO, and CY, respectively.

Ref. Enzymes Microalgae Strain
Source

Microalgal
Class Main Results

[39] ∆6-Desaturase Phaeodactylum
tricornutum M BA

Neutral lipid
production enhanced
and increase of EPA

content

[41] acetyl-CoA
synthetase

Chlamydomonas
reinhardtii F CH Increase in neutral

lipid production

[27]
acyl-CoA

diacylglycerol
acyltransferase 1

Chlorella
ellipsoidea F TR

Sequence identification
and function of TAG

accumultation
characterized

[28]
acyl-CoA

diacylglycerol
acyltransferase 1A

Nannochloropsis
oceanica M EU

Increase in TAGs
production both in

nitrogen-replete and
-deplete conditions

[36]
acyl-CoA

diacylglycerol
acyltransferase 2

Chlamydomonas
reinhardtii F CH No TAGs

overproduction

[35]
acyl-CoA

diacylglycerol
acyltransferase 2

Chlamydomonas
reinhardtii F CH

Five DGAT2
homologous genes

identification and the
overexpression of
CrDGAT2-1 and

CrDGAT2-5 resulting
in a significant increase

in lipid production

[33]
acyl-CoA

diacylglycerol
acyltransferase 2

Nannochloropsis
oceanica M EU Increase in neutral

lipid production

[32]
acyl-CoA

diacylglycerol
acyltransferase 2

Neochloris
oleoabundans F CH Change of lipid profile

[29]
acyl-CoA

diacylglycerol
acyltransferase 2

Ostreococcus
tauri M MA

Gene identification
and enzyme

characterization in
heterologous systems

[30]
acyl-CoA

diacylglycerol
acyltransferase 2

Phaeodactylum
tricornutum M BA

Increase in neutral
lipid production with

enrichment
EPA-PUFAs content

[31]
acyl-CoA

diacylglycerol
acyltransferase 2

Thalassiosira
pseudonana M CO

Increase in TAGs
production with focus

on the intracellular
enzyme localization

[34]

acyl-CoA
diacylglycerol

acyltransferase 2A,
2C, 2D

Nannochloropsis
oceanica M EU

Differential DGAT2
isoforms expression in

different engineered
strains with individual

specialized lipid
profiles
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Table 1. Cont.

Ref. Enzymes Microalgae Strain
Source

Microalgal
Class Main Results

[47] fatty acid
photodecarboxylase

Chlorella
variabilis F TR

Enzyme identification
and alkane synthase

activity tested

[38] glucose-6-phosphate
dehydrogenase

Phaeodactylum
tricornutum M BA

Modest increase in
neutral lipid

production with a lipid
composition switch

from polyunsaturated
to monounsaturated

[42]

glucose-6-phosphate
dehydrogenase;

phosphogluconate
dehydrogenase

Fistulifera solaris M BA Slight increase in TAGs
production

[40] glycerol-3-phosphate
acyltransferase 1, 2

Cyanidioschyzon
merolae F CY Significant increase in

TAGs production

[43] phospholipase A2 Chlamydomonas
reinhardtii F CH Increase in TAGs

production

[45] stearoyl-ACP
desaturase

Chlamydomonas
reinhardtii F CH Production of TAGs

enriched in stearic acid

[46]

UDP-glucose
pyrophosphorylase,
glycerol-3-phosphate

dehydrogenase,
enoyl-ACP

reductase, long
chain acyl-CoA

elongase, putative
palmitoyl-protein
thioesterase, Ω-3

fatty acid
desaturase and
∆-12-fatty acid

desaturase

Phaeodactylum
tricornutum M BA

Significant increase in
TAGs production

(45-fold increase for
UDP-glucose

pyrophosphorylase
mutant)

[37]

wax esther
synthase/acyl-CoA

diacylglycerol
acyltransferase

Phaeodactylum
tricornutum M BA

Increase in neutral
lipids and wax esters

production

Patent Code
(Year) Enzymes Microalgae Strain

Source
Microalgal

Class Notes

CN107299090A
(2017)

wax esther
synthase/acyl-CoA

diacylglycerol
acyltransferase

Phaeodactylum
tricornutum M BA

Neutral lipids and wax
esters production

enhanced

CN101289659A
(2010) ∆6-Desaturase Nannochloropsis

spp. M EU

The enzyme sequence
was identified and the
enzyme characterized

in bacterial systems

KR101829048B1
(2018) Ω6-Desaturase

Arctic
Chlamydomonas

sp. ArF0006
F CH

The enzyme sequence
was identified and the
enzyme characterized

in bacterial systems
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Figure 3. Main studied and engineered enzymes for TAGs and PUFAs in microalgae for the
production of high value-added lipids. Enzymes are roughly divided in subcellular compartments.
A single lipid droplet where TAGs are accumulated is added. Abbreviations: DGAT: Acyl-CoA
diacylglycerol acyltransferase; G6PD: Glucose-6-phosphate dehydrogenase; 6PGD: 6-phosphogluconate
dehydrogenase; GPAT: Glycerol-3-phosphate acyltransferase; ACS2: acetyl-CoA synthetase 2; PLA2:
Phospholipase A2; ∆-6/∆-12-Desaturase: delta-6/delta-12 fatty acid desaturase; Ω-3/Ω-6-desaturase:
omega-2/omega-6 fatty acid desaturase; ENR: Enoyl-acyl carrier protein reductase; UGPase:
UDP-glucose pyrophosphorylase; TAG: Triglyceride.

2.2. Enzymes for Healthcare Application

Enzymes for healthcare applications can include: (1) Enzymes used directly as “drugs”, or (2)
enzymes involved in the biosynthetic pathway of bioactive compounds (Figure 4). Regarding the first
group, the most studied enzyme is l-asparaginase. l-asparaginase is an l-asparagine amidohydrolase
enzyme used for the treatment of acute lymphoblastic leukemia, acute myeloid leukemia, and
non-Hodgkin’s lymphoma [49]. Its hydrolytic effect reduces asparagine availability for cancer cells
that are unable to synthesize l-asparaginase autonomously [50] l-asparaginase was historically first
discovered and then produced in bacteria (e.g., Escherichia coli, Erwinia aroideae, Bacillus cereus) [51–53].
However, in order to overcome some of the economical and safety limits associated with marketing
the enzyme [54,55], increased efforts began to focus on the identification and characterization of the
enzyme in microalgae strains.
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decarboxylase (PDS) and zeaxanthin epoxidase (ZEP). For the synthesis of oxylipins the studied
enzymes are lipoic acid hydrolases (LAH) and PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin)/LH2
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Paul [56] first purified an l-asparaginase in Chlamidomonas spp. with limited anticancer activity, and
tested it in an in vivo anti-lymphoma assay. Ebrahiminezhad and coworkers screened 40 microalgal
isolates via activity assays and reported on Chlorella vulgaris as a novel potential feedstock for
l-asparaginase production [57].

Regarding enzymatic pathways involved in the synthesis of bioactive compounds, many studies
have focused on polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). PKS
produce polyketides, while NRPS produce nonribosomal peptides. Both classes of secondary
metabolites are formed by sequential reactions operated by these “megasynthase” enzymes [58,59].
Polyketides and nonribosomal peptides have been reported to have antipredator, allelopathic, anticancer,
and antifungal activities [58,60–62]. PKS can be multi-domain enzymes (Type I PKS), large enzyme
complexes (Type II), or homodimeric complexes (Type III) [63]. Genes potentially encoding these
first two types’ of PKSs have been identified in several microalgae (e.g., Amphidinium carterae,
Azadinium spinosum, Gambierdiscus spp., Karenia brevis [64–67]). Similarly, NRPSs have a modular
organization similar to type I PKSs, and genes potentially encoding NRPSs have been found in
different microalgae [68]. Moreover, metabolites that are likely to derive from hybrid NRPS/PKS gene
clusters have been reported from Karenia brevis [69]. However, to our knowledge, there are no studies
reporting the direct correlation of a PKS or NRPS gene from a microalga with the production of a
bioactive compound.

Other microalgal enzymes which have been widely studied are those involved in the synthesis of
compounds with nutraceutical and cosmeceutical applications, such as those involved in carotenoid
synthesis (e.g., astaxanthin, β-carotene, lutein, and canthaxanthin). Carotenoids are isoprenoid
pigments, which have many cellular protective effects, such as antioxidant effects occurring via the
chemical quenching of O2 and other reactive oxygen species [70–72]. Their antioxidant properties
can potentially protect humans from a compromised immune response, premature aging, arthritis,
cardiovascular diseases, and/or certain cancers [72]. Among microalgae, the most studied for the
industrial production of carotenoids are the halophile microalga Dunaliella salina and the green alga
Haematococcus pluvialis, which naturally produce high amounts of carotenoids [73]. Moreover, D.



Mar. Drugs 2019, 17, 459 9 of 20

salina is a particularly versatile feedstock, and many researchers have focused on obtaining maximum
carotenoid yields without impeding its growth [74–76]. In addition, D. salina has been successfully
transformed via different approaches, such as microparticle bombardment [77] or via Agrobacterium
tumefaciens [78], increasing the feasibility of its use for biotechnological applications.

The most studied enzymes involved in carotenoid synthesis are: β-carotene oxygenase,
lycopene-β-cyclase, phytoene synthase, phytoene desaturase, β-carotene hydroxylase, and zeaxanthin
epoxidase [79]. In order to improve the production of carotenoids, different metabolic engineering
approaches have been employed. The initial method used was to induce random or site directed
mutations in an attempt to improve the activity of enzymes involved in the carotenoid metabolic
pathway. Increased production of carotenoids can also be achieved by changing culturing conditions or
by employing genetic modifications [79]. For example, mRNA levels of β-carotene oxygenase, involved
in the biosynthesis of ketocarotenoids [80], increased in Chlorella zofengiensis under combined nitrogen
starvation and high-light irradiation, and an increase canthaxanthin, zeaxanthin, and astaxanthin
was observed [81]. Couso et al. [82] reported an upregulation in lycopene-β-cyclase, which converts
lycopene to β-carotene [83] in C. reinhardtii under conditions of high light.

Regarding genetic modifications, Cordero [84] transformed the green microalga C. reinhardtii by
overexpressing a phytoene synthase (which converts geranylgeranyl pyrophosphate to phytoene)
isolated from Chlorella zofingiensis, resulting in a 2.0- and 2.2-fold increase in violaxanthin and lutein
production, respectively. A phytoene desaturase, which transforms the colorless phytoene into the
red-colored lycopene [85], was mutated in H. pluvialis by Steinbrenner and Sandmann [86], resulting in
the upregulation of the enzyme and an increase in astaxanthin production. Galarza and colleagues
expressed a nuclear phytoene desaturase in the plastidial genome of H. pluvialis, resulting in a 67%
higher astaxanthin accumulation when the strain was grown under stressful conditions [87]. The
insertion of a β-carotene hydroxylase from C. reinhardtii in Dunaliella salina resulted in a 3-fold increase
of violaxanthin and a 2-fold increase of zeaxanthin [78]. The inhibition of D. salina phytoene desaturase
using RNAi technology [88] resulted in an increase in phytoene content, but also a decrease in
photosynthetic efficiency and growth rate.

More modern methods which have been used include the use of CRISPR/Cas9 (clustered regularly
interspaced short palindromic repeats/CRISPR-associated protein 9) for precise and highly efficient
“knock-out” of key genes [89]. For example, Baek et al. have used CRISPR/Cas9 to knock-out the
zeaxanthin epoxidase (ZEP) gene in C. reinhardtii [90]. This enzyme is involved in the conversion of
zeaxantin to violaxantin [91], and with its knock-out they obtained a 47-fold increase in zeaxanthin
productivity. The current state-of-art involved in metabolic engineering for carotenoid production in
microalgae is further discussed in other reviews [72,92].

Other studies have focused on enzymes involved in the synthesis of oxylipins, which are secondary
metabolites that have previously been shown to have antipredator and anticancer activities [93–95].
Although oxylipin chemistry and putative biosynthetic pathways have been extensively studied
in both plants and microalgae [96–98], the related enzymes and genes have only recently been
identified and characterized in microalgae. Adelfi and coworkers have studied genes involved in
the biosynthesis of oxylipins in Pseudo-nitzchia multistriata and performed transcriptome analysis on
these genes in Pseudo-nitzchia arenysensis [99]. In diatoms, they characterized, for the first time, two
patatin-like lypolitic acid hydrolases (LAH1) involved in the release of the fatty acid precursors of
oxylipins and tested their galactolipase activity in vitro. Transcriptomic analysis also revealed three
of seven putative patatin genes (g9879, g2582, and g3354) in N. oceanica and demonstrated that they
were u-regulated under nitrogen-starvation conditions [100]. Similarly, Lauritano and coworkers
analyzed the transcriptome of the green alga Tetraselmis suecica and reported three PLAT (Polycystin-1,
Lipoxygenase, Alpha-Toxin)/LH2 (Lipoxygenase homology) domain transcripts [68]. The group also
performed in silico domain assessment and structure predictions. The enzymes discussed in this
section are described in Table 2.
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Table 2. Enzymes from Microalgae for Healthcare Applications. Marine, freshwater, and soil strain
sources are abbreviated as M, F, or S, respectively. Algal classes of Chlorophyceae, Trebouxiophyceae,
Bacillariophyceae, Dinophyceae, and Chlorodendrophyceae, are abbreviated as CH, TR, BA, DY, and
CR respectively.

Reference Enzymes Microalgae Strain Source Microalgal
Class Main Results

[78] β-carotene
hydroxylase Dunaliella salina M CH

Increase in violaxanthin
and zeaxanthin

production

[81] β-carotene
oxygenase

Chlorella
zofingiensis S TR

Increase in
canthaxanthin,
zeaxanthin and

astaxanthin production
under combined

nitrogen starvation and
high light stress

[56] l-asparaginase Chlamidomonas
spp. F CH Enzyme purified and

tested

[57] l-asparaginase Chlorella
vulgaris F, S TR

Screening of 40
microalgal isolates
searching for new

l-asparaginase sources

[82] lycopene-β-cyclase Chlamidomonas
reinhardtii F CH

Increased gene
expression under high

light stress

[99] lypolitic acid
hydrolase 1

Pseudo-nitzschia
multistrata,

Pseudo-nitzschia
arenysensis

M BA

Enzyme finding,
characterization and

retrieval of homologous
sequences in other

diatoms

[69] non-ribosomal
peptide synthase Karenia brevis M DY

Gene cluster
identification and

chloroplastic localization
identification

[68]

polycystin-1,
Lipoxygenase,
Alpha-Toxin/
lipoxygenase
homology 2

Tetraselmis
suecica M CR

Three putative enzyme
sequences identification

and in silico domain
assessment and structure

prediction

[88] phytoene
desaturase Dunaliella salina M CH Increase in phytoene

production

[84] phytoene synthase Chlamidomonas
reinhardtii F CH

Increase in violaxanthin
(2.0 fold) and lutein
(2.2-fold) production

[86] phytoene
desaturase

Haematococcus
pluvialis F CH Increase in astaxanthin

production

[87] phytoene
desaturase

Haematococcus
pluvialis F CH Increase in astaxanthin

production

[64] polyketide
synthase

Amphidinium
carterae M DY

Identification of a
transcript coding for

type I PKS
β-ketosynthase domain
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Table 2. Cont.

Reference Enzymes Microalgae Strain Source Microalgal
Class Main Results

[65] polyketide
synthase

Azadinium
spinosum M DY

Identification of type I
PKS domains using a

combination of genomic
and transcriptomic

anayses

[66] polyketide
synthase

Gamberdiscus
polynesiensis,
Gamberdiscus

excentricus

M CH

Identification of
transcripts coding for
type I and type II PKS

domains

[67] polyketide
synthase Karenia brevis M DY

Identification of eight
transcripts, six of which

coding for type I PKS
catalytic domains

[90] zeaxanthin
epoxidase

Chlamydomonas
reinhardtii F CH Increase in zeaxanthin

production of 47-fold

2.3. Enzymes for Bioremediation

Bioremediation is the use of microorganisms and their enzymes for the degradation and/or
transformation of toxic pollutants into less dangerous metabolites/moieties. The potential, which
microalgae possess to proliferate in environments that are rich in nutrients (e.g., eutrophic environments)
and to biosequestrate heavy metal ions, makes them ideal candidate organisms for bioremediation
strategies [101,102]. The optimal goal in this area is to combine bioremediation activities with the
possibility of extracting lipids and other high-value added compounds from the biomass that is
produced [103–106] in order to reduce overall costs and to recycle materials. In this section, the focus
will be on enzymatic bioremediation, which is a novel approach involving the direct use of purified
or partially purified enzymes from microorganisms, and in this case, from microalgae, in order to
detoxify a specific toxicant/pollutant [107]. This method has recently started to demonstrate promising
results through the use of bacterial enzymes [108,109]. Examples are the use of enzymes for the
bioremediation of industrial waste and, in particular, the recent use of chromate reductases found in
chromium resistant bacteria, known to detoxify the highly toxic chromium Cr(VI) to the less-toxic
Cr(III) [110].

In microalgae, a recent study focused on Cr(VI) reduction involving C. vulgaris [111]. This activity
was suggested to involve both a biological route, through the putative enzyme chromium reductase,
and a nonbiological route: Using the scavenger molecule glutathione (GSH). With respect to chromium
removal, several strains of microalgae have been reported to be capable of achieving Cr(IV) removal
from water bodies, including Scenedesmus and Chlorella species [112–114]. In the aforementioned
transcriptome study on the green algae Tetraselmis suecica, a transcript for a putative nitrilase was
reported [68]. Given that nitrilases are enzymes that catalyze the hydrolysis of nitriles to carboxylic
acids and ammonia [115] and that this enzyme has recently been used for cyanide bioremediation
in wastewaters [116], this nitrilase in T. suecica may prove to be useful in the treatment of cyanide
contaminated water bodies.

Other enzymes have been reported to be overexpressed in microalgae when they are exposed
to contaminants, but it is not clear whether or not they are directly involved in their degradation
or whether they are produced as a stress defensive response in the cell in order to help balance
cellular homeostasis (e.g., to detoxify reactive oxygen/nitrogen species produced after exposure to
contaminants). Examples of these enzymes include peroxidases (Px), superoxide dismutase (SOD),
catalase (CAT), and glutathione reductase (GR). SOD, Px, and CAT typically function in helping
detoxify the cell from oxygen reactive species [117,118], while GR replenishes bioavailable glutathione,
catalyzing the reduction of glutathione disulfide (GSSG) to the sulfhydryl form (GSH) [119]. Regarding
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the detoxification of reactive nitrogen species, the most studied enzymes in microalgae are the nitrate
and nitrite reductases. The first enzyme reduces nitrate (NO3

−) to nitrite (NO2
−), while the second

subsequently reduces nitrite to ammonia (NH4
+). NH4

+ is then assimilated into amino acids via the
glutamine synthetase/glutamine-2-oxoglutarate amino-transferase cycle [120] (Figure 5).
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used for the degradation of toxicant compounds to less or non toxic versions (e.g., the hexavalent
Chromium is converted to the less toxic trivalent Chromium due to the activity of Chromium Reductase);
(b) Enzymes involved in cellular stress response mechanisms, such as peroxidases (Px), superoxide
dismutase (SOD), and catalase (CAT) that detoxify reactive oxygen species (ROS), nitrate reductase
(NR), and nitrite reductase (NiR) that detoxify reactive nitrogen species (RNS) in ammonium, and GR,
that catalyzes the reduction of glutathione disulfide (GSSG) to glutathione (GSH).

For example, peroxidase activity has been reported in extracts from the green alga Selenastrum
capricornutum (now named Raphidocelis subcapitata [121]), which was highly sensitive to very small
concentrations of copper (Cu) (0.1 mM), and the authors proposed that the enzyme could be employed
as a sensitive bioindicator of copper contamination in fresh waters [122]. Levels of Px, SOD, CAT, and
GR have been reported to be upregulated following Cu contamination in P. tricornutum and following
lead (Pb) contamination in two lichenic microalgal strains from the Trebouxia genus (prov. names, TR1
and TR9) [123,124]. In Morelli’s work, an increase of 200% in CAT activity indicated its important role
in Cu detoxification. In contrast, Alvarez and coworkers reported that Px, SOD, CAT, and GR activity
was higher in TR1 than in TR9 under control conditions (with the exception of CAT), while prolonged
exposure to Pb resulted in the enzymatic activities of the two microalgae changing to similar levels,
reflecting the different physiological and anatomical adaptations of the two organisms. TR1 possesses
a thinner cell wall, thereby requiring it to have a more efficient basal enzymatic defence system, while
TR9 has a thicker cell wall and induces the expression of intracellular defense mechanisms when the
contaminant concentrations are high and physical barriers are no longer effective. Further studies
will be required to assess whether these TR1 enzymes are more efficient than enzymes from other
microalgal sources and the potential applications that these enzymes may have. All of the enzymes
discussed in this section are reported in Table 3.
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Table 3. Enzymes from Microalgae with utility in Bioremediation applications Marine, freshwater, and
lichenic strain sources are abbreviated as M, F, and L respectively. Algal classes of Trebouxiophyceae,
Chlorodendrophyceae, Chlorophyceae, and Bacillariophyceae are abbreviated as TR, CR, CH, and
BA, respectively.

Reference Enzymes Microalgae Strain
Source

Microalgal
Class Main Results

[111] Putative Cr
Reductase

Chlorella
vulgaris F TR

Enzymatic Cr
conversion (from Cr(VI)

to Cr(III)) detected

[68] Nitrilase Tetraselmis
suecica M CR Putative enzyme

sequence identification

[122] Putative ascorbate
peroxidase

Selenastrum
capricornutum F CH High sensitivity to Cu

concentration activity

[123]
superoxide-dismutase,
catalase, glutathione

reductase

Phaeodactylum
tricornutum M BA

Higher detected
enzymatic activity after

Cu accumulation

[124]

superoxide-dismutase,
catalase, glutathione
reductase, ascorbate

peroxidase

Trebouxia 1
(TR1), Trebouxia

9 (TR9)
L TR

Constitutive higher
enzymatic activity

detected in TR1, while
exposed to Pb brings

TR1 and TR9 enzymatic
activities to

comparable levels

3. Conclusions and Future Perspectives

Among aquatic organisms that have recently received attention as potential sources of industrially
relevant enzymes [125,126], microalgae, in particular, stand out as a new sustainable and ecofriendly
source of biological products (e.g., lipids, carotenoids, oxylipins, and polyketides). This review
summarized the available information on enzymes from microalgae with possible biotechnological
applications, with a particular focus on value-added lipid production, together with healthcare and
bioremediation applications.

The promise of microalgae as potential sources of novel enzymes of interest is reflected in the
abundance of recent reports in the literature in this area. However, the biotechnological exploitation of
their enzymes in comparison to other potential sources has only become more feasible quite recently,
primarily due to the implementation of novel isolation and culturing procedures, together with an
increase in the availability of -omics data. This data has facilitated the use of a broader array of
approaches, such as site-specific mutagenesis, bioinformatics-based searches for genes of interest,
and/or the use of genome editing tools (e.g., CRISPR/Cas9 and TILLING), resulting in promising
results particularly with respect to high-performance lipid [46] and carotenoid [89] production in
different microalgae.

The majority of studies to date have focused on enzymes involved in pathways for lipid synthesis in
order to increase their total production or to direct cellular production to lipid classes with applications
as nutraceuticals, cosmeceuticals, or as a feedstock for biodiesel production. For this reason, several
recent studies have focused on the improvement of lipid production in oleaginous microalgae. In
addition, algal biomass is often used for the extraction of both lipids and other value-added products,
such as pigments and proteins, in order to maximize the production of useful products such as these at
the lowest possible cost [127–129].

Future approaches to maximize the enzymatic potential of microalgae are likely to focus on three
different approaches: (1) The use of ever-increasing amounts of available -omics data to optimize
microalgal strains for the production of valuable products, through the overexpression of one or more
enzymes through the use of genome editing tools; (2) identification and subsequent characterization
of metabolic pathways involved in the production of specific bioactives (e.g., polyketides), many of
which are still poorly characterized; (3) the search for genes with direct biotechnological applications
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(e.g., l-asparaginase, chromate reductase, nitrilase) in microalgal genomes and transcriptomes datasets.
A common element in all three approaches is the potential use of next generation sequencing based
approaches (NGS) [130], the price of which is declining rapidly [131].

The feasibility of employing any of the aforementioned three approaches will be directly influenced
by progress in methods to decrease the costs of growth and genetic manipulation of microalgae. The
ultimate aim would be to mimic what has happened in the area of bacterial enzymology, where robust
pipelines for enzyme discovery have been established. If this could be achieved, then it is clear that
microalgae are likely to meet our expectations as a promising source of novel enzymes with utility in a
variety of different biotechnological applications.
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