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2Department of Physics, University of Pavia, 27100 Pavia, Italy

(Received 26 June 2018; accepted 3 September 2018; published online 14 September 2018)

Grating couplers are widely used optical interfaces in integrated photonics, espe-
cially on the Silicon-On-Insulator (SOI) platform. Their design has been optimized
for coupling light between a Photonic Integrated Circuit (PIC) and a single-mode
fiber, a µlens for free space transport, or even a second PIC in the same SOI platform.
In this work, we co-design matching pairs of grating-couplers on distinct SOI and
InP photonic platforms for optimized PIC-to-PIC coupling. By matching the scat-
tering strengths of the two grating-couplers, we show that a PIC-to-PIC insertion
loss of 3dB can be achieved. We also investigate how the design parameters impact
the coupling efficiency and the bandwidth, ending up with a tolerance analysis. The
proposed coupling approach between two different waveguide materials has prospec-
tive applications for the hybrid-integration of SOI and InP photonic platforms for
communication technologies. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5046164

I. INTRODUCTION

Optimizing Fiber-to-PIC coupling has been a major research topic in the photonics community
during the last two decades. Various approaches have been investigated including edge-coupling,
evanescent-coupling, and grating-based coupling. The latter option offers relaxed alignment toler-
ances that allow for low-cost Fiber-to-PIC packaging with multi-channel fiber arrays for high-capacity
datacom and telecom devices.1 Grating-couplers on the SOI platform benefit from a high index-
contrast that offers a strong light-matter interaction over the 10 µm mode-field diameter (MFD) of
a standard single-mode fiber — see Fig. 1(a). Many different grating-coupler designs have been
proposed to optimize Fiber-to-PIC coupling performance for specific applications.2–7 Recently,
grating-couplers have found applications beyond Fiber-to-PIC coupling, such as for vertical PIC-
to-PIC coupling between stacked SOI-PICs — see Fig. 1(b) — or for inter-layer coupling within the
same PIC.8,9 While PIC-to-PIC coupling between an identical pair of grating-couplers on matching
SOI-PICs has already been demonstrated, design of efficient PIC-to-PIC coupling between InP and
SOI is a much more complex problem that is tackled in this work by co-designing the two different
gratings, see sketch in Fig. 1(c). A grating-coupler approach for the hybrid integration of these two
key photonic platforms brings advantages over competing technologies like wafer-to-wafer bond-
ing10 (which can suffer from low-yield, and significant material wastage) and transfer-printing11

(which requires sub-µm alignment tolerances). The approach proposed here can be used to integrate
III-V lasers and semiconductor optical amplifiers (SOAs) on the indirect band-gap SOI-platform,
in order to reach increased photonic functionality and compensation of interface and transmission
losses.12,13
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FIG. 1. Two known applications of grating-couplers: fiber-to-chip (a), and chip-to-chip (SOI) (b). Our proposed application,
SOI chip to InP chip, and related insertion loss for the best structure with grating length 150 µm (c).

The index-contrast of the SOI-platform is high (n=3.48 for Si, and n=1.44 for SiO2 at
1550 nm), therefore even partially etched SOI grating-couplers have a scattering-strength that can
be well-matched to the 10.4 µm MFD of a standard SMF28 single-mode fiber. However, the index-
contrast of the InP-platform is significantly lower, because the waveguide (n=3.36) and cladding layers
(n=3.17) are both based on InP and differ only by Fe-doping. As a result, the scattering-strength of
even a fully-etched InP grating-coupler — see Fig. 2 — is approximately one order-of-magnitude
less than that of SOI grating-couplers, resulting in a relatively low Fiber-to-PIC coupling to SMF28
because of the poor modal overlap. Nonetheless, InP grating-couplers can still achieve significant
vertical (upward) emission, provided their length is increased sufficiently — see Fig. 3 — to increase
the number of scattering sites, i.e., the number of grating periods. After suitable co-design of both
InP and SOI (linearly-chirped) grating-couplers, to best match their scattering-strengths and lengths,

FIG. 2. Sketch of the two platforms under consideration. When a number is provided the parameter is considered fixed,
otherwise it is varied in the calculations of this work. Moreover, etching in the InP platform can be performed at a specified
(blaze) angle β.

FIG. 3. Analysis of the scattering power of the InP grating. The graph shows how light entering the grating from the waveguide
is split in each of the relevant output channels (forward, backward, downward and upward emission) as a function of grating
length.
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we show — see Fig. 1(c) — that a PIC-to-PIC insertion loss of 2.8 dB (52%), with a 1dB spectral
bandwidth of 28 nm, is achievable.

II. SCATTERING-STRENGTH ANALYSIS

In order to co-design the paired grating-coupler system for efficient PIC-to-PIC transfer, a careful
analysis of the scattering power of the InP grating is required. We first identify the design parameters
for the uniform InP grating that give the maximum scattering strength at 1550 nm. We impose the
boundary conditions in terms of layer-composition, -thickness, and -ordering that are available from
the multi-project wafer (MPW) integrated-photonic foundry service offered by HHI14 — see Fig. 2.
The largest scattering-strength for a uniform InP grating is achieved with a fill-factor F (the ratio
between the etched part and the period) of 0.45, and a blaze-angle β of 50◦. Figure 3 shows how light
incident from the waveguide on this grating-coupler is distributed across its “Forward”, “Backward”,
“Downward”, and “Upward” output channels, as a function of the grating-coupler length L from 10
to 200 µm. As expected for a weakly-scattering system, the fraction of power emitted “Forward”
(i.e., across the grating-coupler) exhibits an exponentially decay as a function of distance, with an
attenuation loss of 0.06 dB/µm. The fraction of power emitted “Backward” (i.e., reflected back into
the waveguide) is less than 30 dB, indicating that feedback effects into integrated gain-components,
such as integrated SOAs and lasers, would be manageable.13 The fraction of power emitted “Upward”,
where it is available for vertical-coupling purposes, reaches 1.7dB for InP grating-coupler designs
with L = 150-200 µm.

The fraction of power emitted “Downward” is still appreciable, since the vertical InP structure
is not specifically optimized for upward emission. The directionality, namely the fraction of power
emitted upward over the total emitted power, increases with length up to a maximum of 72%, leaving
margins for further improvement.

III. GRATING-COUPLERS DESIGN

We optimize both SOI and InP grating-couplers with varying lengths. Beyond the standard
15 µm length used for fiber coupling, we analyze the additional lengths 25, 50, 100, and 150 µm.
Greater lengths are not explored since the computational effort in terms of FDTD simulation time
becomes prohibitive, while is not expected to lead to appreciable performance gain.

The gratings are placed one above the other, with an air gap of 25 µm between them. This
distance is compatible with standard flip-chip technology and ensures the actual coupling mechanism
to be waveguide to free-space to waveguide coupling, instead of direct grating-to-grating adiabatic
coupling. Notice that for such large distances, beam divergence is an important effect that is taken
into account by the FDTD simulations.

A full (brute-force) optimization of the composite grating-coupler system could be interesting,
however it has two main drawbacks. The first is due to its intrinsic difficulty, as both grating-couplers
have to be tuned to emit/absorb light at the same angle. Moreover, it may not allow to clarify the
underlying physics. Our strategy is to separately optimize the grating-couplers, and then to build
the composite system using the already developed designs. To ensure good performance when both
grating-couplers are brought together, we optimize them as in-coupler devices employing the same
input profile, namely a gaussian mode incident from air at an angle θ = 14.5◦, at λ=1550 nm and with
a Mode Field Diameter (MFD) equal to L — see Fig. 4.

The optimization procedure resorts to a variation of the design rule developed by Marchetti
el al.7 for apodized SOI grating-couplers. This approach is able to provide a compact representation
of a linearly-chirped grating-coupler depending only on two parameters, namely the initial fill-factor
F0 and the apodization coefficient R. The numerical optimization is then carried out with a standard
Particle Swarm Optimization (PSO) algorithm,15 run with 10 agents and 150 iterations for each
configuration. Simulations are performed with the 2D FDTD method using the commercial software
Lumerical FDTD Solutions (from Lumerical Inc.).

Nevertheless, we make two modifications to the design rule: first, we establish a maximum fill-
factor Fmax, and second, we introduce a corrective coefficient a in setting the period. The maximum
fill-factor is simply introduced for numerical reasons: it forbids the fill-factor F(x) to become greater
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FIG. 4. Upper panels: graphical illustration of our strategy to build the PIC to PIC configuration. Both SOI (a) and InP
(b) gratings are separately optimized as in-couplers with an appropriate gaussian excitation, then joined together (c). Lower
panels: examples of coupling spectra for the 100 µm long gratings.

than one, allowing a smooth functioning of the PSO algorithm for arbitrarily long gratings. The
evolution of the fill-factor with the position x along the chirped grating is given by:

F(x)=min(F0 + Rx, Fmax). (1)

The local period Λ is then adjusted with the Bragg condition, to make sure that each section of the
grating is precisely tuned in both wavelength λ and angle θ:

Λ(x)= a
λ

ne(x) − sin(θ)
. (2)

The a parameter is here inserted to compensate for the mismatch in the Bragg-condition introduced
by the approximate estimation of ne,7 and selected with an iterative tuning procedure.

The optimization parameters of the InP grating-coupler are thus F0, Fmax, R, and β. The vertical
structure is fixed and full etch of the Fe-doped InP layer is chosen in order to maximize the scattering
strength. The equivalent parameters for the SOI grating are F0, Fmax, and R, and in addition E, T,
and B, which are the etching depth and the thicknesses of the TOX and BOX layers, respectively.
We consider a variable etching depth E in the SOI grating, because reducing its value is the most
straightforward way to decrease the scattering power.16 See Fig. 2 for the complete definitions of
parameters.

A performance summary of the PIC-to-PIC configurations for the optimized gratings is shown in
Fig. 5, where the insertion loss and the 1dB-bandwidth are reported as a function of grating length. We
observe an improvement in insertion loss on increasing the grating length. Moreover, the bandwidth
decreases on increasing length,16 although its absolute value remains greater than or comparable to
the typical bandwidth of a fiber-to-PIC scheme. A total insertion loss of 2.8 dB can be reached using

FIG. 5. Performances as a function of grating length for the optimized PIC-to-PIC configuration. The trade-off between
insertion loss and bandwidth of the structure is clearly apparent.
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TABLE I. Parameters of the SOI grating.

Length (µm) E (nm) F0 Fmax R (m�1) B (µm) T (µm) 100(a � 1)

15 110 0.1 1.0 27500 2.00 0.72 0.007

25 85 0.1 0.59 9925 1.97 0.21 0.417
50 53 0.1 0.57 6552 1.95 0.24 0.052
100 35 0.1 0.53 4276 1.93 0.25 -0.035
150 30 0.1 0.55 2198 1.93 0.25 0.024

TABLE II. Parameters of the InP grating.

Length (µm) F0 Fmax R (m�1) β (deg) 100(a � 1)

15 0.38 1.0 5387 49 -0.741
25 0.37 0.55 5020 51 -0.756
50 0.39 0.44 4753 50 -0.674
100 0.36 0.42 2449 54 -0.725
150 0.36 0.40 1375 57 -0.775

a 150 µm long grating configuration — see Fig. 1(c). Shorter structures may be useful if a small
reduction in coupling efficiency could be accepted in order to have a more compact or broadband
device. Each PIC-to-PIC configuration is simulated considering operation in both directions, showing
no practical difference in the coupling spectrum.

The main sources of loss, up to≈ 2dB, are the losses to both substrates. The most straightforward
way to reduce them is to optimize the layer thicknesses of the InP grating. The present vertical
structure (see Fig. 2), which was kept fixed for compatibility with HHI platform, is indeed sub-optimal
for this kind of application. Thus, a complete optimization of the InP grating, taking into account
also the vertical structure, could improve directionality and ultimately reduce the total insertion
loss.

The parameters of the optimized structures are reported in Table I (SOI) and II (InP). These
parameters have a relatively small variation with the length of the grating, except for the apodization
coefficient R and the etch depth E in the silicon grating. This is quite reasonable since the aim of
the InP grating is to increase the total scattering-power as much as possible, thus the optimization
always converges to the grating configuration yielding the maximum scattering-strength. For the SOI
grating the opposite is true, the total scattering-power is held constant and the scattering-strength
has to be reduced to compensate for the increase in the number of scatterers. Starting from a perfect
vertical overlap between the two gratings, a sweep over horizontal offset values shows that the optimal
configuration for the PIC-to-PIC is achieved when a small shift ( ∼ 3-5 µm) is applied. The tolerance
on this parameter is however very relaxed: the 1dB alignment tolerance is 6 µm in the worst case (for
15 µm long gratings), and much higher for the longer grating-couplers.

IV. FAR-FIELD ANALYSIS

To gain an insight on the physical reasons behind the trends in Fig. 5, we now study the
output profiles of both grating-couplers in the far-field. Since their emission and acceptance
features basically coincide, the far-field profile indicates how well the emission of one grat-
ing is tailored to the acceptance of the other. In Fig. 6 we display the far-field profiles (as a
function of angle and wavelength) of both SOI- and InP-gratings for the two lengths L = 25
and 150 µm. The region in which the two profiles overlap indicates where the coupling takes
place.

The far-field profile related to the shorter gratings has relatively wide peaks: the overlap region
basically spans all the interesting wavelengths, therefore justifying the broadband behavior. On the
contrary, the far-field profile relative to the longer gratings has narrower peaks, the width of the
overlap region is reduced, and so is the bandwidth.



095109-6 Passoni et al. AIP Advances 8, 095109 (2018)

FIG. 6. Graphical representation of the far field projection’s intensity for the 25 (a) and 150 (b) long grating as a function of
the emission angle θ and wavelength λ. Both SOI (red) and InP (blue) are plotted in the same graph, and the overlap region
is enlightened in green. Both profiles are normalized to the same maximum value for better visibility.

Furthermore, the far-field analysis could also provide insight on the fabrication and alignment
tolerances. A variation from the optimal design could give a small shift or tilt in the emission profile.
The wide overlap region of the shorter gratings makes them quite robust with respect to variations,
while its shrinking as the gratings become longer gives an increased sensitivity. From Fig. 5 we
estimate a ±1◦ tolerance on the emission angle for the 150 µm grating-couplers.

V. CONCLUSIONS

In summary, we analyzed the problem of grating-to-grating coupling between SOI- and InP-
based platforms. We showed that by matching the scattering strengths between the two platforms,
an insertion loss lower then 3dB with a useful bandwidth ( ≈ 30 nm) can be reached. We opti-
mized several designs with different lengths, to explore the trade-off between insertion loss and
bandwidth/compactness. We notice that the present SOI- and InP-based structures are considerably
different from previous grating couplers, as the need for optical matching between a high- and a low-
index contrast grating imposes the use of chirped and unusually long gratings. Potential performance
improvements could be achieved by customizing the layer thicknesses of the InP grating, opening
the way to better directionality or greater scattering strength, allowing for lower insertion losses or
more compact devices.
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