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ANIMAL MODELS
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Preterm birth is a serious global health problem and the leading cause of infant death before 5 years of
age. At least 40% of cases are associated with infection. The most common way for pathogens to access
the uterine cavity is by ascending from the vagina. Bioluminescent pathogens have revolutionized the
understanding of infectious diseases. We hypothesized that bioluminescent Escherichia coli can be used
to track and monitor ascending vaginal infections. Two bioluminescent strains were studied: E. coli K12
MG1655-lux, a nonpathogenic laboratory strain, and E. coli K1 A192PP-lux2, a pathogenic strain capable
of causing neonatal meningitis and sepsis in neonatal rats. On embryonic day 16, mice received
intravaginal E. coli K12, E. coli K1, or phosphate-buffered saline followed by whole-body bioluminescent
imaging. In both cases, intravaginal delivery of E. coli K12 or E. coli K1 led to bacterial ascension into
the uterine cavity, but only E. coli K1 induced preterm parturition. Intravaginal administration of E. coli
K1 significantly reduced the proportion of pups born alive compared with E. coli K12 and phosphate-
buffered saline controls. However, in both groups of viable pups born after bacterial inoculation,
there was evidence of comparable brain inflammation by postnatal day 6. This study ascribes specific
mechanisms by which exposure to intrauterine bacteria leads to premature delivery and neurologic
inflammation in neonates. (Am J Pathol 2018, 188: 2164e2176; https://doi.org/10.1016/
j.ajpath.2018.06.016)

Preterm birth is a serious obstetric and global health
problem. It is defined as delivery before 37 weeks’
gestation and it is known to affect approximately 11% of
pregnancies worldwide.1 It is the leading cause of death in
infants younger than 5 years of age and it is associated
with serious morbidity in the surviving infants.2,3 The
rates of preterm birth have remained stable over the years
and this is largely because of a lack of understanding of
the mechanisms behind preterm birth as well as the
paucity of effective preventive treatments. Improving our
understanding may help the development of novel
therapies.

Infection and inflammation have been linked commonly
to preterm birth and are estimated to be associated with up
to 40% of preterm deliveries.4 In clinical studies, the
presence of certain intrauterine bacteria is associated with
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preterm prelabor rupture of membranes and spontaneous
preterm birth.5 Evidence from animal models also has
confirmed this link by showing that inoculation of the in-
trauterine cavity with live bacteria, or bacterial toxins such
as lipopolysaccharide (LPS), can lead to preterm birth.6e8

Ascending vaginal infection is thought to be the most
common route by which bacteria gain access into the uterine
cavity.9 The main supporting evidence for this is based on
the association between the bacterial species identified in the
fetal membranes and placenta and those normally found in
the lower genital tract.5

Animal models of infection-related preterm birth provide
useful insight into the mechanisms that regulate infection,
inflammation, and preterm parturition. Animal models of
ascending vaginal infection are important in providing mech-
anistic data on infection-related preterm birth and in validating
novel preventative treatments that could be clinically translat-
able. Murine models of intravaginal group B Streptococcus,
Escherichia coli, and Ureaplasma urealyticum ascending
infection have recapitulated the process of ascending vaginal
infection.8,10e12 They have provided insight into the patho-
genesis of preterm birth, such as the protective role of cervical
hyaluronan in preventing ascending infection.8

There now are several studies that support an association
between intrauterine inflammation, preterm birth, and cere-
bral palsy.13e15 The relative contribution of prematurity and
inflammation to preterm brain injury has yet to be fully
elucidated. In the long-term follow-up data from the Over-
view of the Role of Antibiotics in Curtailing Labor and
Early Delivery (ORACLE) II trial, there was a higher
incidence of cerebral palsy in children whose mothers had
received antibiotics after spontaneous preterm birth.16 This
could suggest that antibiotic use in preterm birth may help to
delay delivery, but may lead to prolonged exposure of the
fetal brain to a detrimental intrauterine inflammatory envi-
ronment. Rodent studies have shown that low-dose LPS,
insufficient to cause premature delivery, still can lead to
significant brain injury.17 Preterm birth often is associated
with bacteria of low pathogenicity, with the Ureaplasma
species being the most common bacteria isolated from the
amniotic cavity of patients with preterm chorioamnionitis.18

The use of engineered bioluminescent pathogens to
model infectious processes has become increasingly com-
mon. The bacterial lux operon encodes enzymes that are
involved in a light-emitting reaction; this is catalyzed by a
bacterial luciferase that is encoded by the luxA and luxB
genes and a multienzyme complex (encoded by the luxC,
luxD, and luxE genes), which is responsible for the regen-
eration of the aldehyde substrate from the fatty acid pro-
duced in the initial luciferase reaction. The main advantage
of the lux operon system is the ability to express the
enzymes that synthesize the substrate, rendering addition of
an exogenous substrate unnecessary.19 The lux operon from
bacteria such as Photorhabdus luminescens have been used
to genetically modify other bacteria to confer them with
bioluminescence.

Here, we show that two bioluminescent strains of E. coli,
E. coli K12 MG1655-lux (E. coli K12) and E. coli K1
A192PP-lux2 (E. coli K1), can cause ascending infection in
pregnant mice. E. coli K12 is a noninvasive, nonpathogenic
strain of E. coli commonly used in molecular biology.20,21

E. coli K1 is a pathogenic strain of E. coli that, similar to
group B streptococcus, is responsible for causing neonatal
meningitis and sepsis in humans by vertical transmission
from the mother. Using these different strains of biolumi-
nescent E. coli, we have explored the mechanisms of pre-
term parturition, as well as the effects of exposure to
intrauterine inflammation on neonatal brain development.

Materials and Methods

Animals and Treatments

All animal studies were conducted under UK Home Office
license 70/8030 and were approved by the University Col-
lege London ethical review committee.

C57BL/6 Tyrc-2J mice were obtained from the Jackson
laboratory (Bar Harbor, ME) and adult mice (age, 6 to 12
wk) were time mated. The following morning (when a
vaginal plug was noted) was designated as embryonic day 0.
The ascending vaginal infection model was developed using
E. coli K12 MG1655-lux22 and E. coli K1 A192PP-lux223

modified to contain the lux operon from P. luminescens.
Twenty microliters of midlogarithmic-phase E. coli
(1 � 109 E. coli K12 or 1 � 102 E. coli K1 resuspended in
10 mmol/L phosphate buffer) or phosphate-buffered saline
(PBS) was delivered into the vagina of mice anesthetized
with isoflurane using a 200-mL pipette tip. This study used
the E. coli 018:K1 A192PP strain with the luxCDABE
transposon integrated by mini-Tn5 mutagenesis.23 After
bacterial administration, mice were placed in individual
cages and monitored continuously with individual closed-
circuit television cameras and a digital video recorder. The
time to delivery was recorded and defined as the number of
hours from the time of bacterial administration to delivery of
the first pup. The number of live and dead pups was
recorded. Living pups were weighed daily and were sacri-
ficed if a 10% daily increase in body weight was not
maintained.

Whole-Body Bioluminescence Imaging

Adult mice were anesthetized with isoflurane (Abbott Lab-
oratories, Lake Bluff, IL). Neonatal mice (up to postnatal
day 6) remained conscious during imaging.24 Mice were
imaged using a cooled charged-coupled device camera
(IVIS Machine; Perkin Elmer, Coventry, UK) for between 1
second and 5 minutes. The regions of interest were
measured using Living Image software version 4.5 (Perkin
Elmer) and expressed as photons per second per centimeter
squared per steradian.
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Tissue Collection

For tissue collection,micewere anesthetized using isoflurane.
The right atrium was incised and PBS was injected into the
left ventricle. Pregnant mice were sacrificed 18 hours after
intravaginal infection. Placental tissue was stored in 4%
paraformaldehyde. Embryos were stored in 10% neutral-
buffered formalin. In a separate cohort of pregnant mice, the
uterus, placenta, and fetal membranes were collected and
stored in RNAlater (Thermo Fisher Scientific, Paisley, UK) at
�80�C for quantitative PCR analysis. Separate cohorts of
neonatal pups were sacrificed at postnatal day 6. The brains
were either stored at�20�C for protein analysis or fixed in 4%
paraformaldehyde.

RNA Synthesis, cDNA Synthesis, and Quantitative PCR

Total RNA was extracted from the uterus, fetal membranes,
and placental tissue, which was collected 18 hours after intra-
vaginal infection using the RNeasy mini kit (Qiagen, Man-
chester, UK), as per the manufacturer’s guidelines. Total RNA
was reverse-transcribed with the High Capacity cDNAReverse
Transcription kit (Applied Biosystems, Cheshire, UK). Primer
sets were obtained from Life Technologies (Paisley, UK) and
quantitative PCR was performed in the presence of SYBR
green (Applied Biosystems) (Table 1). Target gene expression
was normalized for RNA loading by using GAPDH, and the
expression in each samplewas calculated relative to a calibrator
sample (uninfected D17 uterus, fetal membranes, or placenta),
using the 2�DDCt method of analysis.25 All quantitative PCR
analyses were performed on an Applied Biosystems Quant-
Studio 3 instrument (Applied Biosystems).

Immunoperoxidase Immunohistochemistry

Individual brain sections were mounted and dried on chrome
gelatin-coated Superfrost-plus slides (VWR, Lutterworth,
UK). To visualize CD68 immunoreactivity, sections were
treated with 30% H2O2 in Tris-buffered saline (TBS) for 30
minutes. They were blocked with 15% rabbit serum in TBS-
Tween 20 for 30 minutes. This was followed by the addition
of primary antibody, rat anti-mouse CD68 (1:100; Bio-Rad,
Watford, UK) in 10% serum, and TBS-Tween 20 and left
overnight at 4�C. The following day the sections were treated
with secondary biotinylated rabbit anti-mouse antibody
(1:1000; Vector Laboratories, Burlingame, CA) and goat anti-
rat (1:1000 dilution; Vector Laboratories) in 10% serum in
TBS-Tween 20 for 2 hours. The sections were incubated for a
further 2 hours with Vectastain ABC solution (Vector Labo-
ratories). A total of 0.05%of 3,30-diaminobenzidinewas added
and left for 2 minutes. Sections were transferred to ice-cold
TBS. The slides were dehydrated in 100% ethanol and
placed in Histoclear (National Diagnostics, Nottingham, UK)
for 30 minutes before adding a coverslip with DPX mounting
medium (Sigma-Aldrich, Dorset, UK).

Terminal Deoxynucleotidyl Transferase-Mediated dUTP
Nick-End Labeling Assay

Brain sections were mounted on chrome gelatin-coated Super-
frost-plus slides and dried overnight before fixation in 4%
paraformaldehyde. Slides were transferred to a methanol and
10% H2O2 solution for 15 minutes at room temperature. Slides
were transferred to 0.1 mol/L phosphate buffer solution. Ter-
minal deoxynucleotidyl transferase-mediated dUTP nick-end
labeling (TUNEL) staining solution (13 mL terminal deoxy-
nucleotidyl transferase, 19.5 mL biotinylated deoxyuridine
triphosphate, 1.3 mL cacodylate buffer, and 11.67 mL dH2O)
was prepared on ice and slides were incubated for 2 hours.
TUNEL stop solution (300 mmol/L sodium chloride, 30 mmol/
L sodium citrate) was prepared and applied for 10 minutes.
Sections were incubated for 1 hour with Vectastain ABC so-
lution. A solution (3,30-diaminobenzidine cobalt-nickel) was
added and left for approximately 5 minutes. The sections were
left to dry and then were dehydrated for 10 minutes in 100%
ethanol and placed in Histoclear for 30 minutes before adding a
coverslip with DPX mounting medium.

Fluorescence Immunohistochemistry

Paraffin-embedded slides were dewaxed in Histoclear and
rehydrated in ethanol. H2O2 treatment was omitted. To block
nonspecific binding, slides were incubated in 15% goat serum
for 30 minutes. Rabbit antieE. coli primary antibody (1:1000;
Abcam, Cambridge, UK) was added and slides were left
overnight at 4�C. Sections were incubated for 2 hours with a
fluorescent goat anti-rabbit secondary antibody (1:1000, Alexa
Fluor 488; Invitrogen, Carlsbad, CA). The sections were
treated with DAPI (5 mg/mL) in the dark for 2 minutes and

Table 1 Quantitative PCR Primer Sets

Primer Sequence

Gapdh
F 50-ACTCCACTCACGGCAAATTC-30

R 50-TCTCCATGGTGGTGAAGACA-30

Il1b
F 50-CAGGCAGGCAGTATCACTCA-30

R 50-AGCTCATATGGGTCCGACAG-30

Tnfa
F 50-TATGGCTCAGGGTCCAACTC-30

R 50-CTCCCTTTGCAGAACTCAGG-30

Il6
F 50-AGTTGCCTTCTTGGGACTGA-30

R 50-TCCACGATTTCCCAGAGAAC-30

Cxcl-1
F 50-GCCTATCGCCAATGAGCTG-30

R 50-AAGGGAGCTTCAGGGTCAAG-30

Cxcl2
F 50-CAGTGCCTCCAACAAGCTTC-30

R 50-CATTGACAGCGCAGTTCACT-30

Cxcr2
F 50-TTCTGCTACGGGTTCACACT-30

R 50-TTAAGGCAGCTGTGGAGGAA-30

F, forward; R, reverse.

Suff et al

2166 ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


were transferred to ice-cold TBS. The slides then were left to
dry followed by application of a coverslip with Fluromount G
(Southern Biotech, Birmingham, AL).

Cytokine Enzyme-Linked Immunosorbent Assays

Tissue lysateswere prepared by homogenization in protein lysis
buffer. Total protein concentration was quantified using the
Pierce BCA Protein Assay kit (Thermo Fisher Scientific,
Glasgow, UK) as per the manufacturer’s guidelines.

Enzyme-linked immunosorbent assay kits for mouse IL-1b,
tumor necrosis factor-a, and IL-6 (R&DSystems,Minneapolis,
MN) were used to quantify cytokine levels according to the
manufacturer’s guidelines.

Statistics

Data are expressed as means � SEM. Time-to-delivery data
were log-transformed before analysis, and the proportion of
live born pups was arc-sin transformed before analysis. Data
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Figure 1 Nonpathogenic Escherichia coli K12 and pathogenic E. coli K1 can ascend into the pregnant uterine cavity, leading to premature delivery in the E. coli K1
group. A: Nonpregnant mice received intravaginal E. coli K12 bacteria and the time course of bacterial ascent was visualized in the nonpregnant reproductive tract.
Bacteria traversed the cervix and ascended into the uterine horns by 18 hours and reached the top of the uterine horns by 24 hours. B: In pregnant mice, E. coli K12
bacteria ascended into the pregnant uterine cavity by 24 hours. C: After E. coli K1 administration, bacteria ascended into the pregnant uterine cavity over 24 hours.
DeF: Time to delivery (D), the proportion of pups born alive (E), and litter size (F) were determined in dams who received intravaginal phosphate-buffered saline (PBS)
or intravaginal E. coli K12.GeI: Time to delivery (G), the proportion of pups born alive (H), and litter size (I) were determined in dams who received intravaginal PBS or
intravaginal E. coli K1. Data are expressed as means � SEM (F and I). n Z 5 (AeD); n Z 8 (EeI). **P < 0.01, ***P < 0.001.
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were analyzed by unpaired t-tests and one-way analysis of
variance (with post hoc Bonferroni tests). All statistical
analyses were performed with GraphPad Prism software
version 7.0 (GraphPad Software, La Jolla, CA). P < 0.05
was considered statistically significant.

Results

Ascending Vaginal Infection and Preterm Birth Using
Bioluminescent Strains of E. coli

It first was assessed whether a nonpathogenic strain of E.
coli K12 MG1655 (E. coli K12) was capable of ascending
into the nonpregnant and embryonic day 16.5 pregnant
uterine cavity after intravaginal infection. In nonpregnant
mice, E. coli K12 traversed the cervical barrier by 6 hours
and ascended into the nonpregnant uterine cavity by 18
hours, reaching the top of the uterine horns by 24 hours
(Figure 1A). By 48 hours there was diminution of the
bacterial signal. In the pregnant cohort, E. coli K12
ascended into the uterine cavity but neither caused prema-
ture delivery nor affected pup survival (Figure 1, B and
DeF).

The consequence of an intravaginal infection with path-
ogenic E. coli K1 bacteria then was studied. The bacteria
ascended into the top of the uterine cavity (Figure 1C) and
subsequently induced delivery significantly earlier than
mice receiving intravaginal PBS (mean time to delivery,
48.81 � 3.51 versus 65.59 � 2.22 h for E. coli K1 and
control groups, respectively; n Z 8; P < 0.001)
(Figure 1G). Intravaginal administration of E. coli K1 also
led to a significant reduction in the proportion of pups born
alive compared with intravaginal PBS controls (mean pro-
portion of live pups born, 0.64 � 0.14 versus 0.98 � 0.02;
mean litter size, 6.8 � 1.29 versus 2.98 � 1.02 for E. coli
K1 and control groups, respectively; n Z 8; P < 0.01)
(Figure 1, H and I).

E. coli K1 Is Detected in the Uteroplacental Tissues and
Fetus

After intravaginal administration of E. coli K12, bacteria
were detected only in the placenta (Figure 2, A, C, and E).
E. coli K1 administration led to a more diffuse spread of
bacteria in the uteroplacental tissues (Figure 2B). Bacteria
were detected in the fetal membranes, placenta, and amni-
otic fluid 18 hours after administration (Figure 2D). E. coli
K1 and E. coli K12 were seen on both maternal and fetal
sides of the placenta (Figure 2, E and F), with minimal
bacteria detected within the central labyrinth layer
(Figure 2F).

Twenty-four hours after E. coli K1 administration, bac-
teria were detected in the fetus (Figure 2G) and could be
seen in the fetal respiratory and gastrointestinal tracts
(Figure 2H). No bacteria were detected in the pups from E.
coli K12einfected dams (data not shown).

Both E. coli K1 and K12 Ascending Vaginal Infection
Induces an Inflammatory Response in the
Uteroplacental Tissues

To investigate the mechanisms behind preterm parturition
after intravaginal E. coli K1 administration, uteroplacental
inflammatory cytokine expression was compared in dams
infected with E. coli K1 and K12 (which does not lead to
premature delivery) and PBS-injected controls. Samples
collected 18 hours after intravaginal administration were
analyzed by quantitative PCR for inflammatory cytokine
gene expression associated with preterm birth and the onset
of parturition.
There was significant up-regulation of Il1b and Cxcl2

expression in the E. coli K1 and K12 uteri compared with
uninfected PBS controls (K1, P < 0.0001 and P < 0.0001;
K12, P Z 0.0007 and P Z 0.004, respectively)
(Figure 3A). There also was up-regulation of Cxcr2
expression in the E. coli K1 uteri compared with uninfected
PBS controls (P Z 0.0003). In the fetal membranes, there
was an up-regulation of Il1b and Cxcl2 expression in the E.
coli K1 fetal membranes compared with uninfected PBS
controls (P < 0.0001 and P Z 0.014, respectively)
(Figure 3B). In the placenta, there was up-regulation of Il6
and Cxcl1 expression in the E. coli K1 and K12 placentas
compared with uninfected PBS controls (K1, P Z 0.02 and
PZ 0.0006; K12, PZ 0.02 and PZ 0.0079, respectively).
There was up-regulation of Il1b in E. coli K1 dams whereas
there was an increase in Tnfa in E. coli K12 placentas
compared with uninfected PBS controls (P < 0.0001 and
P Z 0.03, respectively) (Figure 3C).
Comparison of the fold changes in inflammatory cytokine

gene expression between the E. coli K1 and K12 uteropla-
cental tissues showed that uterine Cxcl1 and Cxcl2 was
increased significantly in the E. coli K1 dams compared
with the K12 dams (32.8-fold higher for Cxcl1, P Z 0.008;
16.4-fold higher for Cxcl2, P Z 0.017) (Table 2). In the
placenta and fetal membranes, Il1b was significantly higher
in the E. coli K1 group (16.5-fold higher in the fetal
membranes, P Z 0.006; 13.9-fold higher in the placenta,
P Z 0.04).

Brain Inflammation Is Evident in Surviving Pups

To specifically assess brain inflammation, brains were
collected on the day of birth to determine the protein levels
of proinflammatory cytokines (Figure 4). There was a sig-
nificant increase in IL-1b in the brains of pups from E. coli
K1einfected dams compared with E. coli K12 pups and
uninfected controls (P < 0.001 and P < 0.001, respectively)
(Figure 4A), with an increased trend in IL-6 and tumor
necrosis factor-a levels in the brains of E. coli K1 pups
(Figure 4, B and C).
Pups born to E. coli K1einfected, E. coli K12einfected,

and PBS control dams were monitored. More than 60% of
pups were born alive to E. coli K1einfected dams
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(Figure 1H). Of these surviving pups, approximately 50%
survived to postnatal day 6 compared with 100% of pups in
the E. coliK12 and uninfected control groups (mean survival,
48.5% versus 100%; log-rank test P < 0.0001) (Figure 5A).
Whole-body bioluminescent imaging of the surviving E. coli

K1 pups showed a decline in bioluminescent signal over time
(data not shown). There was no difference in the crown-rump
length of the E. coli K1, E. coli K12, and uninfected control
pups on the day of birth, or on postpartum day 6 (P Z 0.74
and P Z 0.21, respectively) (Figure 5B). To determine
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detection of E. coli in the fetus shows that bacteria are specifically present in the gastrointestinal and respiratory tracts (H). Scale bars: 25 mm.
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neuroinflammatory changes in the brains of the pups,
neonatal brains were collected on postnatal day 6 for immu-
nohistochemical analysis of CD68 (a marker for microglial
cells) and TUNEL (a marker for cellular apoptosis). There
was an increase in CD68-positive cells in the cortex of pups
from E. coli K1e and K12einfected dams compared with
uninfected controls (P Z 0.01 and P Z 0.006, respectively)
(Figure 5, D and E). Interestingly, pups from E. coli
K12einfected dams showed increased CD68-positive cells in

the hippocampus and striatum (P < 0.0001 and P Z 0.01,
respectively). There was a significant increase in TUNEL-
positive cells in the cortex and striatum in the pups from E.
coliK1e and K12einfected dams compared with uninfected
controls (cortex, P < 0.0001 and P Z 0.0007; striatum,
P < 0.0001 and P < 0.0001, respectively) (Figure 5C).

Discussion

Ascending Vaginal Infection and Preterm Birth

Here, we report the use of bioluminescent strains of E. coli
for tracking and monitoring ascending vaginal infection and
preterm birth in the pregnant mouse. Several preterm birth
mouse models have been established by using local delivery
of bacteria, bacterial products, or inflammatory mediators.
These models have provided insight into the pathogenesis of
preterm birth, for example, by identifying the importance of
activator terminator-1 protein in mediating infection-related
preterm birth.26 They have also recapitulated the process of
ascending vaginal infection,8,11,12 mimicking the route of
infection believed to occur in human preterm birth.5,27

E. coli was selected because their associated LPS toxins
are the most commonly used isolates in mouse models of
inflammation-associated prematurity. In addition, E. coli
vaginal colonization has been clinically associated with
preterm birth.28,29 The use of bioluminescent pathogens
confers several advantages: the ability to track pathogens
longitudinally within the same cohort of mice, which
decreases the number of mice needed and increases the
fidelity of the data collected; the ability to improve our
understanding of how pathogens infiltrate the uterine cavity;
and the ability to use bioluminescence imaging to test re-
sponses to novel therapies in vivo and in real time. These
support two of the three Rs of animal research (replacement,
reduction, refinement; https://www.nc3rs.org.uk/the-3rs, last
accessed November 28, 2017), by reducing the number of
animals required and by refining animal welfare as a
result of the minimally invasive nature of the bacterial
administration.
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Table 2 Fold Change in Gene Expression between the Utero-
placental Tissues of the E. coli K1 and E. coli K12 Dams

Gene Uterine tissues Fetal membranes Placental tissue

Il1b 2.2 16.5y 13.9y

Tnfa 2.3 �2.2 �2.6
Il6 3.6 �2.5 2
Cxcl1 32.8y �1.9 �1.39
Cxcl2 16.4* 2.4 1.26
Cxcr2 9.6 �5.6 1.11

Data are shown as fold change in mRNA expression (2�DDCT), analysis
was performed on 2�DCT data. Bold text denotes statistically significant
results.
*P < 0.05.
yP < 0.01.
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The Impact of E. coli Ascending Infection on Maternal
and Fetal Outcomes

These data show that E. coli K12 does not induce premature
delivery or reduce litter size, whereas E. coli K1 causes
preterm delivery in approximately 60% of dams within 48
hours. Clinically, the K1 strain of E. coli is the leading cause
of neonatal sepsis and meningitis.30 These data are consis-
tent with that from other preterm birth models using intra-
vaginal live bacteria administration of the following: E. coli
055:B5, 50% of dams deliver within 48 hours8; group B
Streptococcus, 25% to 50% of dams deliver within 72
hours.10,12

Bacterial Movement into the Uterine Cavity

How bacteria ascend into the uterine cavity from the vagina
is a matter of debate. Bacteria may gain direct access to the
amniotic cavity from a supracervical decidual region,31,32 or
may spread in the choriodecidual space before traversing the
amniotic membrane.18,33 Clinical data supporting direct
amniotic cavity invasion has shown that 16S rRNA gene
copy number in the amnion was significantly greater than in
the chorion.32 In addition, in cases of chorioamnionitis,
bacteria have been identified in the amniotic cavity but not
in the chorioamniotic membranes. In contrast, a quarter of
women with preterm chorioamnionitis showed no evidence
of intraamniotic bacterial invasion or inflammation.18

Although the reproductive anatomy of the mouse and
humans differ, bioluminescent bacteria can illuminate,
practically and metaphorically, the route of bacterial vaginal
infection. Here, we infer that bacteria first spread within the
choriodecidual space and then to the placenta and fetal
membranes. This was supported by numerous E. coli on the
decidual side of the placenta 18 hours after E. coli K1
administration and within the uteroplacental tissues and
amniotic fluid, before fetal colonization by 24 hours. Bac-
teria in the fetal gastrointestinal and respiratory tracts likely
are caused by ingestion and inhalation of amniotic fluid,
respectively.34 E. coli K1 A192PP-lux2 has previously been
shown to preferentially colonize the gastrointestinal tract of
2-dayeold rats after oral ingestion, causing bacteremia and
blood-brain barrier invasion within 48 hours.23 The neonatal
mucus barrier of the gastrointestinal tract may not provide a
sufficient barrier to invasion, increasing susceptibility to
infection.35 This would fit with the fetal gastrointestinal

colonization described in this study and the subsequent fetal
outcomes seen.

Host Response Mechanisms against Invading Bacteria

Host response mechanisms to ascending vaginal bacteria are
important in preventing ascending infection and subsequent
preterm birth. The pregnant cervical mucus plug is thought
to limit infection by containing mucins, which sterically
inhibit the diffusion of bacteria, as well as produce antimi-
crobial peptides.36e38 The amniotic cavity is also known to
contain leukocytes, antimicrobial peptides, and cyto-
kines.39,40 Recent evidence has shown that both fetal and
maternal neutrophils invade the amniotic cavity, trapping
and killing bacteria.41,42 Furthermore, mutations in innate
immunity and host defense genes in neonates are associated
with an increased risk of preterm rupture of membranes.43

The Effect of Different E. coli Strains on Uterine
Inflammatory Pathways and Preterm Birth

Intravaginal E. coli K1 leads to an up-regulation of several
inflammatory genes in the uteroplacental tissues commonly
associated with preterm parturition.6,7,44,45 IL-1b appears to
be an important mediator of labor in all of the uteroplacental
tissues infected by E. coli K1 and this was supported by
studies using IL-1b to induce premature delivery in
mice.46,47 The different concentrations of E. coli strains
used in the pregnant dams in this study may have had
differing effects on the inflammatory response. In support of
this, recent data have found that bacterial DNA itself can
significantly augment the inflammatory response of the host
antimicrobial peptides via Toll-like receptor-9.48 Therefore,
the ascending infection caused by these two different E. coli
strains was not directly comparable, but can help to inves-
tigate the mechanisms of premature birth by reflecting two
separate models of ascending vaginal infection: one with no
effect on parturition and one resulting in preterm delivery.
In the E. coli K12 strain, lack of the O-antigen in mature
LPS renders this strain nonpathogenic, and thus less resis-
tant to hostile environments and less likely to colonize the
host and cause disease.49 E. coli is detected by the host
through interaction of its LPS with the host’s Toll-like
receptor-4, and there is evidence that the O-antigen may
interfere with Toll-like receptor-4 recognition, making the
bacteria more likely to evade the host.50,51 Different LPS
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serotypes can induce preterm birth in pregnant mice, and
these elicit differing Toll-like receptor-4emediated inflam-
matory responses supporting this hypothesis.6

The main differences identified in the uterine myometrial
tissues were an increase in the chemokines Cxcl1 and Cxcl2,
and the chemokine receptor Cxcr2 in the E. coli K1 group
compared with the K12 group. The expression of chemokines
Cxcl1, Cxcl2, Cxcl5, and Cxcl8 are up-regulated in the human
myometrium during labor.52 The cysteine-X-cysteine (CXC)
chemokines, via their interaction with the neutrophil-expressed
CXC receptor 1 and CXC receptor 2, mediate extravasation of
neutrophils into themyometrium. This is supported by the large
neutrophil influx in the decidua of E. coli K1 dams 24 hours
after administration of intravaginal bacteria (unpublished data).
Neutrophil influx into gestational tissue has been associated
with term and preterm labor.53,54 Administration of a broad-
spectrum chemokine inhibitor delayed LPS-induced preterm
labor by reducing neutrophil influx and LPS-induced up-
regulation of IL-1b, IL-6, IL-12, CXC ligand 1, and CXC
ligand 2.55 However, depletion of neutrophils in an intrauterine
LPS preterm birth mouse model did not delay premature labor,
yet reduced the local IL-1b response in the uteroplacental
tissues.56

Impact of Ascending Infection on Neonatal Brain
Inflammation

Although some of the neurologic complications of preterm
infants relate to immaturity, there is substantial evidence

that perinatal exposure to infection and inflammation dam-
ages the developing brain.6,17,57,58 The data in Figure 5
show that there is evidence of neuroinflammation (micro-
glial activation and apoptosis) in brains of week-old pups
after infection of both E. coli K1 and nonpathogenic E. coli
K12. This is surprising because one would expect E. coli K1
to induce more significant neuroinflammation than K12. It is
likely that the pups analyzed from the E. coli K1 dams
represented the healthier cohort because 50% of the pups
that were born alive, died within the first week of life. This
suggests that in these brains, inflammation was caused by
bacterial presence in the uterus, regardless of whether the
bacteria were pathogenic, rather than direct systemic or
central nervous system bacterial infection (because E. coli
K12 does not infect the pup). It is known that systemic
inflammation can cause rapid detrimental effects on the
central nervous system before any peripheral organ
dysfunction, and even in the absence of direct bacterial in-
vasion.59 Placental inflammation, as mentioned previously,
is a strong predictor for subsequent brain injury.60 Of in-
terest, the Extremely Low Gestational Age Neonate
(ELGAN) study showed that even when low-virulence mi-
croorganisms were isolated from the placenta, it could
predict subsequent neonatal brain lesions and long-term
diparetic cerebral palsy.60 The precise mechanisms of how
intrauterine inflammation leads to fetal brain injury is un-
clear, but many animal studies have shown that, regardless
of the type of pathogen used, inflammatory cytokines are
likely to be the link between preterm birth and brain
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injury.47,61,62 Dysregulation in the normal cytokine response
of the developing brain may perturb neurodevelopmental
processes.63e66 This may occur through transplacental
passage of cytokines produced in the mother, by placental
cytokines, or by cytokines produced in the fetus. IL-6, a
proinflammatory cytokine expressed by leukocytes, is
known to transfer freely across the placenta in an ex vivo
human model and increased serum levels in the fetus is the
hallmark of fetal inflammatory response syndrome.67,68

Maternal IL-6 is thought to be a potential mediator of
brain injury in offspring.69e71 Although maternal serum
cytokine levels were not determined, the placentas in both
E. coli groups had a significant up-regulation of inflamma-
tory cytokine genes, including Il6. This is consistent with
data from a low-dose intrauterine LPS mouse model that
was insufficient to cause preterm birth but showed an up-
regulation in placental inflammatory cytokines and subse-
quent fetal brain injury.17

Activated microglia in the brains of both E. coli K1e and
E. coli K12eexposed pups show an increased trend of
expression in all four brain regions for both strains, although
they were increased significantly only in the cortex of
the E. coli K1 pups and the hippocampus and striatum of the
E. coli K12 pups. There was evidence of cellular apoptosis
in all regions of the brain assessed in E. coli K1e and
K12einfected brains. This is consistent with increased
apoptosis in the cortex and periventricular regions of
neonatal rats exposed to intracervical LPS in utero.61

Inflammation-associated brain injury may be caused by a
combination of direct injury of oligodendrocytes and neu-
rons from proinflammatory cytokines and indirect injury as
a result of microglial activation by proinflammatory cyto-
kines (e.g., Il-1b has been shown to activate hippocampal
microglia in rats ex vivo).72-74 Activated microglia confer
injury by further release of proinflammatory cytokines and
excitatory metabolites such as glutamate, which can be
cytotoxic, or by the release of oxidative free radicals.75e77

Microglial activation has been found to be associated with
autism and is thought to contribute to the high incidence of
autistic spectrum disorder among premature children.77e79

A limitation of this study was that only two markers of
neuroinflammation were investigated in the neonatal brains.
In addition to this, TUNEL staining, a common and widely
used technique for detecting apoptotic cells, cannot always
distinguish apoptotic from necrotic cells, and it also can
falsely identify cells in the process of DNA repair. Future
studies should assess other apoptosis markers, such as
caspase 3 activity, as well as other histochemical markers of
neuroinflammation.

Conclusions

This study described how different strains of bioluminescent
E. coli ascend into the pregnant uterine cavity of mice and
affect the parturition process. It also begins to ascribe the

specific mechanisms by which exposure to inflammation
and infection within the uterus results in neurologic
inflammation in the neonates. Furthermore, biolumines-
cence imaging of ascending vaginal infection in real time
can show dynamic colonization patterns and provide new
insight into infection-related preterm birth. Because the
vaginal microbial environment appears to be associated so
closely with preterm birth outcomes,80 it is critical that we
improve our understanding of the mechanisms of ascending
vaginal infection and its implications for fetal development.
Furthermore, developing a system for tracking and moni-
toring these types of infection enables us to test novel
therapies that can target the vagina or cervix, and to prevent
these infections from occurring in the first place.

Supplemental Data

Supplemental material for this article can be found at
https://doi.org/10.1016/j.ajpath.2018.06.016.
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