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ABSTRACT 

Molybdenum disulfide (MoS2) films are attractive materials for electronic and optoelectronic 

devices, but the temperatures used in the chemical vapor deposition (CVD) of these materials are 

too high for device integration. Recently, a low temperature atomic layer deposition (ALD) 

process was demonstrated for growth of MoS2 films at 200 °C using MoF6 and H2S. However, the 

as-deposited films were amorphous and required annealing to obtain the desired layered 

structure. The MoS2 films were sulfur-deficient; however, after annealing the crystallinity 

improved. To study the structure of these films and the process by which they crystallize, we 

performed X-ray absorption spectroscopy and high-energy X-ray scattering experiments on both 

as-deposited and annealed MoS2 films. Analysis indicated that molybdenum atoms in the as-

deposited films were well coordinated with sulfur, but not well coordinated with other 

molybdenum atoms when compared to a crystalline reference. Further analysis revealed clusters 

of the sulfur rich phase [Mo3S(S6)2]2-, which decomposed after annealing in H2 and H2S at 400 °C 

and 600 °C. When compared to the sulfur deficient films reported previously for this ALD process, 

the sulfur rich phase found here indicates that nucleation on the substrate plays an important role 

in the resulting film stoichiometry, which could be tuned to produce higher quality films for 

micro-electronic applications. 

  

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ACS Applied Nano Materials, published by American Chemical Society. Copyright restrictions may apply. https://doi.org/10.1021/acsanm.8b00798. The content of this document may vary from the final published version.



3 
 

1 INTRODUCTION 

Transition metal dichalcogenides (TDMCs) are of significant interest for use in semiconductor 

devices and energy storage because of their unique properties.1 In particular, molybdenum 

disulfide (MoS2) is an attractive candidate to replace silicon in field effect transistors (FETs) 

because it exhibits a 1.8 eV direct band gap when isolated as a 2D monolayer.2–4 High quality MoS2 

can be obtained through mechanical exfoliation of natural crystals or chemical vapor deposition 

(CVD) at high temperatures. Atomic layer deposition (ALD) is a variation of CVD where the 

precursors are introduced above the substrate sequentially, and films can often be grown at lower 

temperatures than CVD.5,6 The hallmark of ALD is self-limiting surface chemistries allowing for 

the coating of high aspect ratio structures with sub angstrom thickness control.6–9 Early reports 

of ALD of MoS2 using various Mo and S precursors found that as-deposited MoS2 films were 

amorphous, but annealing the films in an oxygen-free atmosphere at 800 °C produced layered 

films.10–14 Additionally, these reports found that when the ALD cycle number was low, the films 

did not exhibit the characteristic Raman spectra of bulk MoS2.15 Interestingly, after many ALD 

cycles weak Raman peaks appeared, suggesting that a layered structure had formed in low 

concentrations or microcrystalline regions. 

In this work, we aim to understand the local structure and degree of long-range coherence of the 

amorphous ALD MoS2 films in an effort to identify growth conditions to achieve ultrathin, 

crystalline MoS2 directly by ALD at low temperatures. While electron microscopy has been used 

previously to study the structure of ALD MoS2, only a small fraction of the sample volume is 

probed using this method.16 Bulk characterization techniques have also been applied to as-

deposited ALD MoS2 films including X-ray photoelectron spectroscopy (XPS), benchtop X-ray 

diffraction/scattering, and Raman spectroscopy.15 These techniques can give insight into the 

layered structure, but provide limited structural information. Here, we use a combination of 

synchrotron-based X-ray absorption spectroscopy (XAS) and high-energy X-ray diffraction (HE-
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XRD) coupled with atomic pair distribution function (PDF) analysis with reverse Monte Carlo 

(RMC) modeling to understand the short-range and long-range order in as-deposited and 

annealed MoS2 films.  

XAS is a powerful tool for understanding local chemical environments and is used here to probe 

the oxidation state and coordination environment of Mo in ALD MoS2 films. However, structural 

information from XAS is limited to the first coordination sphere of the probed element. We 

complement XAS with HE-XRD measurements, coupled with PDF analysis to provide longer-

range structural information.17 PDF analysis considers both the diffuse and Bragg components to 

provide detailed structural information even in the absence of long-range structural 

coherence.18,19 PDF is especially useful for studying the atomic structure of amorphous and 

nanoscale materials, which inherently lack long-range order. Here, analysis of the X-ray 

absorption fine structure (XAFS) data helped determine the coordination around Mo-S and Mo-

Mo pair peaks, while PDF measurements and RMC modeling provided key insights into the bond 

pairs of all atoms. In addition to examining the as-deposited films, ALD MoS2 films were 

examined following annealing in reducing (H2) and sulfurizing (H2S) environments to understand 

the impact of these treatments on the MoS2 structural evolution. 
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2 EXPERIMENT 

2.1 ATOMIC LAYER DEPOSITION 

MoS2 films were grown by ALD in a custom viscous flow tube reactor as reported previously.20 

Molybdenum hexafluoride (MoF6, Advanced Research Chemicals Inc.) and hydrogen sulfide 

(H2S, 99.5%, Sigma Aldrich) were used to grow MoS2. The delivery pressures for both precursors 

were controlled by regulators and 100 µm orifices. In our reactor configuration, the partial 

pressure for the MoF6 was 60 mTorr, while the H2S pressure was 400 mTorr. Both chemicals are 

extremely hazardous and great care must be taken when working with them. Vented gas 

cabinets, contained pump exhaust, and cross purge assemblies must be used to ensure safety. To 

deposit films by ALD, MoF6 was pulsed for 20 s and purged for 90 s and H2S was pulsed for 20 s 

and purged for 90 s. For the XAS experiments, aluminum oxide powder (Al2O3, Sigma Aldrich) 

was coated using 200 cycles to ensure a bulk film was grown. Following this deposition, portions 

of this powder were loaded on a hot stage, evacuated for > 30 minutes, and then heated to 400 °C 

and 600 °C in a H2 environment for 30 minutes. During annealing the H2 partial pressure was 

approximately 2 Torr. 

For the HE-XRD measurements, OH-terminated carbon nanotubes (CNT-OH, Nanostructured & 

Amorphous Materials, Inc.) were coated with 50 cycles of MoF6 and H2S using the same pulsing 

scheme as described above. Again, portions of the powder were annealed at 400 °C and 600 °C 

separately on a hot stage in both H2 and H2S environments. A 2 Torr H2 partial pressure was again 

used, while the H2S was kept at 1 Torr. CNT-OH samples were used for XRD measurements to 

reduce the background signal introduced by the substrate and thereby limit subtraction artefacts 

during analysis.  
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2.2 CHARACTERIZATION 

X-ray photoelectron spectroscopy (XPS) was performed on a Thermo Fischer k-Alpha+. The XPS 

data were analyzed using Thermo Avantage software, and all spectra were referenced to the C1s 

peak (284.8 eV). Fitting of the 2p and 3d peaks was constrained according to the spin-orbit split 

doublet peak areas and full-width half-maximum (FWHM) according to the relevant core level 

using a 30% mixed Gaussian-Lorentzian peak shape. Raman spectroscopy was performed at room 

temperature on a Renishaw inVia confocal microscope system calibrated to a Si standard using 

20x objective and a 10 % neutral density filter with a 633 nm laser. Powder samples were imaged 

in a field emission JEOL 2100 transmission electron microscope (TEM) at 200 keV. Small 

amounts of the powder were dropped onto carbon support grids after being dispersed in 

approximately 2 mL of methanol and sonicated for 20 – 30 seconds to help break up any 

agglomeration. 

XAS experiments were carried out at the Advanced Photon Source (APS) at Argonne National 

Laboratory on beamline 10-BM.21 Molybdenum foil was referenced, and a MoS2 bulk powder (< 2 

µm, 99%, Sigma Aldrich) was also used to help determine the amplitude reduction factor, SO2, 

parameter.22 Powder was applied to Kapton tape and placed in the beam path. XAFS fitting was 

performed using the Demeter suite to view (Athena) and fit structural models (Artemis and 

Feff).23 HE-XRD measurements were carried out at the APS using beamline 11-ID-C with a 

PerkinElmer area detector and beam energy of 105.7 keV. PDF analysis was performed using 

GSAS-II.24 Calibrations on beam center, sample-to-detector distance and detector tilting were 

performed with a NIST standard: CeO2, SRM674b. Full integration of the images was performed 

from 0.7 to 32 Q (Å-1, where Q =4π sin(θ)/λ). The data from blank CNT-OH samples were 

subtracted to remove any container and substrate effects. FullRMC, a reverse Monte Carlo 

calculation suite, was used to fit the PDF models to two starting atomic structures.25 Using built-

in packages, an amorphous S-Mo-S “molecule” was distributed in a 50 Å3 cube filling the volume 
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with 1410 molecular units. The second model used the MoS2 2-H structure consisting of 10 layers 

of MoS2 (5 unit cells in the c direction). Each layer was extended to include 16 unit cells in a and 

b crystallographic directions. Periodic boundary conditions were enforced for both models. Bond 

length distributions were extracted from the atomic models generated by the fullrmc fitting 

procedure using the I.S.A.A.C.S. software package.26 
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3 RESULTS AND DISCUSSION 

A schematic illustration of the ALD process for MoS2 and its subsequent structural 

transformation is shown in Figure 1. As-deposited films grown at 200 °C are shown to consist of 

polysulfide ion clusters and small amounts of tetragonally coordinated MoS2, as discussed below. 

Upon annealing at 400 °C, the films develop a layered structure and evidence of ion clusters is 

gone by 600 °C. Films annealed at 600 °C are found to exhibit a layered 2-H phase of MoS2, but 

are expected to be polycrystalline with a grain size of 4-10 nm.  

 

 
Figure 1.  Scheme depicting the synthesis and structure of as-deposited and annealed MoS2. 
(a) Schematic of the cycles for ALD of MoS2 using MoF6 and H2S at 200 °C. (b) As-deposited 
films are found to consist of polysulfide ion clusters and small amounts of tetragonally 
coordinated MoS2. (b) Annealing at 600 °C in H2 or H2S environments results in the layered 
2-H phase of MoS2. 
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Figure 2 shows Raman spectra acquired from the as-deposited MoS2 coated onto CNT-OH 

powders using 50 ALD MoS2 cycles and after annealing treatments at 400 °C and 600 °C in H2 

and H2S environments. The as-deposited MoS2 did not show the characteristic spectra for layered 

MoS2, indicating that the sample was amorphous. However, the samples annealed at 400 °C in 

either H2 and H2S showed small peaks associated with the in-plane and out-of-plane modes. These 

peaks grew in magnitude when the samples were annealed at 600 °C. These results are consistent 

with previous reports of MoS2 ALD using other precursor combinations reported in the 

literature.10,11 

Next, the MoS2 coated CNT-OH samples were dispersed onto a carbon grid and imaged in a TEM 

to determine the MoS2 film thickness and to investigate the morphological changes caused by 

annealing. Figure 3 shows TEM images recorded for the as-deposited film (Figure 3a) and after 

annealing at 400 °C (Figure 3b) and 600°C (Figure 3c) in H2S. Little to no difference was observed 

by TEM between the films annealed in H2 and in H2S annealing. 

  

 
Figure 2. Raman spectra of as-deposited and annealed MoS2 films grown on CNT-OH 
powders. The as-deposited film lacks the characteristic Raman signals for layered MoS2, but 
these signals appear after annealing for 30 min. at 400 °C and 600 °C in either H2 or H2S, 
indicating crystallization of the films.  
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Figure 3.  TEM images of 50 ALD cycles of MoS2 on CNT-OH: (a) as-deposited, (b) following 
400 °C 30 min anneal in H2S, and (c) following 600 °C 30 min anneal in H2S. The as-
deposited film appears amorphous, but a layered structure is observed for the annealed films. 
Approximately 20 layers were formed on the CNT-OH substrates after a 600 °C anneal in 
H2S. Each image is 50 nm x 50 nm. 
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The as-deposited films in Figure 3a appear amorphous and conform well to the surface of the 

CNT-OH. Using the film thickness measured by TEM in Figure 3a, the growth per cycle (GPC) of 

the as-deposited films was determined to be 3.4 Å/cycle. This is significantly higher than our 

previous estimate of 0.42 Å/cycle based on QCM and ellipsometry measurements of films on 

planar samples.27 This discrepancy may result from insufficient purging of the high surface area 

carbon powder or from thermal decomposition of the MoF6 precursor.28 Samples annealed at 400 

°C showed a decrease in thickness, measured by TEM, which was expected because of the 

crystallization of the film. Layered structures appear for samples annealed at 400 °C (Figure 3b), 

and samples annealed at 600 °C (Figure 3c) exhibit clear long-range crystallinity, with a clear 

interface between the CNT-OH surface and the MoS2. Counting the dark intensity regions of the 

film annealed at 600 °C, approximately 20 layers were observed with a total thickness of 12.6 nm, 

which is consistent with a layer thickness of 0.6 nm.29 Additionally, we observe gaps between the 

layers of the MoS2 films annealed at 600 °C. These gaps may arise because (1) the films are under 

stress as-deposited and this stress is relieved upon annealing leading to a separation of the layers 

or (2) the CNT-OH restructures or pyrolyzes and shrinks away from the MoS2 during annealing. 

Even after annealing at 600 °C defects are still observed. Analyzing the FFTs of the TEM micrographs, 

as pictured in Figure S1a-d, domains ranged from 4 to 10 nm in extent. The TEM results confirm our 

previous finding that at relatively low annealing temperatures, a layered structure is obtainable 

using MoF6 and H2S.27 

To further characterize the as-deposited films, XAFS data from the Mo K absorption edge (20 

keV) were obtained for 200 cycle MoS2 films grown on Al2O3 powder. Measurements were carried 

out in fluorescence mode with an energy dispersive Vortex detector with an energy out to 11.8 Å-

1. Figure 4 shows XAS spectra for three measured conditions, including a MoS2 powder reference 

sample. Our previous report of MoS2 ALD using MoF6 and H2S found ~16% oxygen in the films, 

which was thought to arise from reaction with ambient moisture when the samples were removed 
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from the reactor at the 200 °C growth temperature.27 To reduce this effect, we cooled the ALD 

reactor down to ~40 °C before removing the samples into the air. XPS of the as-deposited films 

(Figure S2a) indeed revealed oxygen peaks consistent with MoOx species. However, given the 

extreme surface sensitivity of the XPS, we attribute this primarily to surface oxidation, which 

would be enhanced on a high surface area powder. If the ALD-grown MoS2 films contained MoO2 

and MoO3, we would expect to see signature features of these phases in the X-ray absorption near 

edge (XANES) region (Figure 4).30,31 However, we found that the ALD-grown MoS2 lacked the pre-

edge feature of MoO3 and lacked white-line features that would indicate MoO2.30,31 The absence 

of these features and the good agreement with the MoS2 reference indicate that our films had 

minimal oxygen content.  

 

 
Figure 4. X-ray absorption spectra of the Mo K edge for each as-deposited MoS2 on alumina 
powder and for annealed films. The spectrum of a MoS2 reference powder is included for 
comparison. The data indicate a lack of molybdenum oxide species. 

 

As outlined in the introduction, many of the as-deposited ALD MoS2 films lack or have very weak 

2D Raman peaks. This suggests that the as-deposited ALD films lack a layered structure. The XAS 

measurements can give information about the atomic coordination spheres smaller than the basal 

planes of MoS2 (~6 Å). To examine the coordination spheres of Mo, the XAS spectra were 
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transformed to yield real space (|X(R)|) radial distribution plots (Figure 5a) and k-space plots of 

the scattering amplitudes (Figure 5b). Two features are clearly visible in the real space scattering 

intensity (Figure 5a) for the as-deposited and annealed films and the MoS2 powder reference. 

Theoretical ab initio scattering calculations performed with FEFF,32 using the MoS2 2-H structure, 

indicate that the first feature is associated with the Mo-S pair peak (1.4 to 2.3 Å) while the second 

feature arises from the Mo-Mo pair peak (2.3 to 3.3 Å).32,33 The k-space plots of the scattering 

amplitudes in Figure 5b show that much of the difference between the samples occurs in the 

higher k range, which is where the Mo-Mo contribution is the largest. 

 

  
Figure 5. Analyzed XAS data showing the (a) radial distribution of the scattering intensity 
around molybdenum and (b) the reciprocal space scattering amplitudes.  

 

Qualitative observations from the XAS data indicate that the Mo-S and Mo-Mo coordination 

increases dramatically for the samples annealed at 400 and 600 °C when compared to the as-

deposited film, but the difference between the two annealing conditions is minimal. At higher 

wavenumbers in Figure 5b, we see an increase in peak intensity for the annealed MoS2 films, 

which indicates an increase in crystallinity. However, none of the ALD films approach the 

scattering intensity of the reference, suggesting that the MoS2 films still contain disorder. A lack 

of splitting of the Mo-Mo peak suggests that the primary phase of the annealed samples is 

tetragonally coordinated (2-H) rather than octahedrally coordinated (1-T).34,35 
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To quantify the atomic structural changes during annealing, we fitted the XAFS data using the 

first two coordination shells of Mo. This fit was carried out using the Artemis software package.23 

Using the bulk MoS2 and the 2-H MoS2 structure, we determined the amplitude reduction factor, 

S02, to be 0.8. This value was use for the as-deposited and annealed samples. Fitting the first two 

single scattering peaks in Figure 5, which correspond to Mo–S and Mo–Mo, we can start to 

understand the atomic structural changes during annealing. A summary of the scattering 

distances is provided in Table S1, and Figure 6 is a plot of the coordination numbers determined 

from XAFS modeling for the as-deposited and annealed MoS2 films. The Mo–S coordination 

numbers of the samples annealed at 400 °C and 600 °C are very similar to the standard, while the 

Mo–Mo coordination number of the ALD samples is significantly lower than the bulk MoS2 

reference. We found that the Mo coordination is as small as 2.8 for as-deposited ALD MoS2 and 

when annealed in H2, the Mo-Mo coordination number increased to approximately 4.3. This is 

still quite low when compared to the theoretical value of six; however, the reference is also lower 

than this theoretical value. An explanation could be a consequence of the small grain sizes of the 

samples and scattering contributions from edge defects. Interestingly, we observe only a small 

increase in the Mo-Mo coordination number when increasing the annealing temperature from 

400 to 600 °C. Based on the low Mo-Mo coordination, we predict that the in-plane structure is 

disordered. This is most likely causing the asymmetry in the Raman spectra (Figure 2), which is 

similarly found in ion damaged films.36 Scattering from phonon modes in disordered films also 

leads to asymmetry in the Raman E2g peaks for ALD films.12 Disorder is visible in Figure 3c as 

many of the MoS2 layers are discontinuous. Improvements, either by surface nucleation control, 

longer annealing times, or higher temperatures, will need to be explored if the ALD MoS2 is to 

exhibit the high carrier mobilities observed for CVD grown films since defects in layered MoS2 

strongly impact its properties.37,38 
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Figure 6. Coordination numbers of the Mo-S and Mo-Mo single scattering lengths for the as-
deposted and annealed MoS2 films, as well as a bulk MoS2 reference. Low Mo-Mo 
coordination is observed for the as-deposited film, but anneling to 600 °C only increased the 
coordination to ~4. Mo-S coordination was observed to be close to the ideal value of 6 for all 
growth conditions.   

 

To further understand the structures of the ALD films, transmission high-energy x-ray diffraction 

measurements were obtained. The sample-detector distance and the beam center were set to 

maximize the diffraction angle or Q range by calibrating to a NIST CeO2 powder. In these 

experiments, we changed the growth substrate to a lower atomic number material: hydroxylated 

carbon nanotubes. Not only do they have lower atomic number than the alumina powder, but 

have a small background, which is easily subtracted for data analysis. Because of the increase in 

surface area, we decreased the number of ALD cycles from 200, as used for the XAS 

measurements, to 50 total ALD cycles. In these experiments, we additionally used H2S as a 

reducing agent when annealing the powders. Using the GSASII software package, a full 

integration (360°) was used.24 The beam stop limited our low Q range to ~0.7 Å-1 and integrated 

out to 32 Å-1. Again, GSASII was used to compute pair distribution functions (PDFs) from the 

diffraction data, Fourier transforms were performed and were optimized for the as-deposited 

films, and the optimized parameters were used for all other fits. Figure 7a and b compare 

normalized PDFs for the full distance ranges for both the H2 and H2S annealing conditions, 

respectively. 
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Figure 7. Normalized pair distributions from HE-XRD of MoS2 deposited on CNT-OH 
comparing the as-deposited to annealed conditions in (a) H2 and (b) H2S.  Zoomed in regions 
of the first few pair distances of (c) H2 annealed and (d) H2S annealed. Dotted lines are from a 
crystal file of MoS2 2-H, which was simulated to determine where each contirbution of pair 
distances occur. Curves are offset vertically for clairty. 

 

Our PDF measurements of the as-deposited MoS2 films (Figure 7a and b) are essentially 

featureless at atomic pair distances > 5 Å, and this is consistent with the films being X-ray 

amorphous.27 A clear increase in crystallinity is apparent for the 400 °C anneal in both H2 and 

H2S, as features appear at atomic pair distances > 5Å. Sharper features at larger pair distances for 

the samples annealed at 600°C in Figure 7a and b indicate further crystallization. Figure7c and d 

show expanded views of the PDF data between 1 and 5 Å, where the scattering bonding pairs 

associated with the peaks are labeled and dotted lines indicate the ideal positions from the MoS2 

2-H structure. The as-deposited films seem to show only a Mo-S pair peak as well as an 

unidentified peak at a pair distance of approximately 2.74 Å. This result could be explained by the 
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presence of [Mo3S(S2)6]2- ion clusters (Mo-Mo = 2.72 Å) or MoS3 (Mo-Mo = 2.745 Å), which were 

seen previously in amorphous MoS3 films.39,40 Previously, we proposed that MoS3 might be the 

thermodynamically stable product from MoF6/H2S ALD.27 In both [Mo3S(S2)6]2- and MoS3, Mo 

sits in a 4+ state, making it difficult, from the Mo 3d region in XPS, to determine which phase is 

most likely to cause the 2.74 Å peak in Figure 7c and d. The S 2p XPS scan of the as-deposited 

sample (Figure S2b) showed two distinct sulfur binding states: S2- and S2-2, which would make 

MoS2 less likely as this exhibits only a single sulfur environment.41 Proposed structures of 

amorphous MoS3 from XAFS data have shown two Mo-Mo pair peaks at 2.746 and 3.158 Å.39 The 

lack of this pair distance in the PDF data would support the proposed [Mo3S(S2)6]2- structure as 

the most likely phase present. In addition, Mo has 7-fold coordination to S in these clusters, which 

could explain the Mo-S coordination numbers > 6 measured above in the XAS data. 

Unfortunately, attempts to incorporate this scattering length into the model failed to improve the 

fit of the XAS data. After annealing at 400 °C, the samples show small peaks that match well with 

the MoS2 structure, and a small peak arising from the clusters is still present. After annealing at 

600 °C, the peak at 2.74 Å, which we attribute to [Mo3S(S2)6]2- clusters, disappears, and a well-

formed MoS2 structure is obtained. However, if the under-coordination of Mo-Mo is an indication 

of the [Mo3S(S2)6]2- clusters, then the XAS data in Figure 7 indicates that some clustering is still 

present following annealing at 600 °C. 

Reverse Monte Carlo fitting (fullrmc software25) was used to analyze the PDF data further in order 

to better define the ALD MoS2 structures. We chose two structures as our input: an amorphous 

structure, notated as (a), made up of 1410 MoS2 molecular units in a 50 Å3 volume, and a 

crystalline structure, notated as (c), starting with a 2-H unit cell, which was expanded into a larger 

supercell. The amorphous and crystalline structures are depicted in Figure8a and b, respectively. 
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(a) 

 
(b) 

Figure 8. Images of the starting models used as input structures for fullrmc for the (a) 
amorphous and (b) crystalline (2-H phase) MoS2 films. Both super cells fill a 50 Å3 volume. 
Yellow spheres represent sulfur while the violet spheres are molybdenum. 

 

Using these starting structures, we optimized the atomic positions to fit our experimental PDF 

data using translations, swaps, and removes. Translations used a step size of 0.1 Å and the number 

of accepted moves was set to 2.7 x 107. We compared the coordination numbers, CN, from our 

model fits to the XAS data as a check of the validity of the models as outlined in Table 1. 

 

Table 1. Fitting parameters and coordination numbers from RMC models of both amorphous 
and crystalline MoS2 labeled a and c respectively. 

 As-deposited 400 °C H2 400 °C H2S 600 °C H2 600 °C H2S 
      

 a c a c a c a c a c 
χ2 56.48 61.02 52.34 47.57 67.04 48.84 278.13 71.45 247.09 65.99 

Mo-Mo CN 1.94 3.46 2.23 3.66 2.11 4.18 1.91 4.82 1.95 4.86 
Mo-S CN 2.46 6.00 2.23 5.84 2.25 5.75 2.18 5.08 2.21 5.17 

           

 

The fit parameter, χ2, is an indication of the quality of fit, with lower values indicating a better fit. 

For the as-deposited film, χ2 is lower for the amorphous structure compared to the crystalline 

structure, indicating that the amorphous structure better represents the as-deposited MoS2. In 

contrast, χ2 is lower for the crystalline structure compared to the amorphous structure for all the 
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annealed samples, indicating that the crystalline structure better represents the annealed MoS2. 

We also note that χ2 increases dramatically for the amorphous structure at 600°C, indicating a 

very poor fit.  

 

The resulting fits and models for the PDF data are shown in Figure 9. Figure 9a and b show the 

final structures for the as-deposited and 600 °C H2S films, respectively. Little difference is visible 

between the amorphous input model (Figure 8a) and output model (Figure 9a). This similarity 

was not surprising as only local variations in the atomic structures were observed when fitting the 

experimental data for the as-deposited film with the amorphous structure in Figure 9c.  However, 

 
(a) 

 
(b) 

  
Figure 9. (a) An image of the simulated as-deposted film starting with an amorphous 
structure and (b) the 600 °C H2S annealed model from a crystalline initial structure.  The 
associated normalized pair distributions functions for the models are plotted in (c) for the 
amorphous model and (d) for the crystalline model along with the experimental PDF data for 
the as-deposited and 600 °C samples, respectively. 
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long-range structural coherence can be seen after fitting the experimental data for the annealed 

film with the periodic structure in Figure 9d.  Interestingly, the model of the annealed film (Figure 

9b) exhibits collective movement visible as bending of the layers, which could be an artifact of the 

ALD MoS2 growing on the small multi-walled nano-tubes or defects in the layers. Both bending 

and 2D defects are also visible by TEM in Figure 3c.  

Next, we used the software package I.S.A.A.C.S. to extract bond length distributions from the 

atomic models derived from the fullrmc fitting procedure in Figure 9.26  This process helps 

visualize the individual atom pair distributions that contribute to the overall signals in the PDF 

data.  For instance, the peak at 3.1 Å in Figure 7c and d arises from a combination of Mo-Mo and 

S-S bond pairs. For the as-deposited films, the minimized amorphous model was used as the input 

structure, while for all annealed films the minimized crystalline structure was used. Figure 10a 

shows the distributions of nearest neighbors for the Mo-Mo pairs.  The as-deposited film has a 

large, broad distribution starting at about 2.3 Å to 2.9 Å; however, molybdenum metal has a pair 

distance of 2.7 Å, which would suggest that any value below this is nonsensical and a consequence 

of the fitting procedure (the fullrmc algorithm was set to accept 30% of rejected 

translations/swaps/removes). Ignoring the data below the 2.7 Å, interestingly, the Mo-Mo 

distances are forced to much lower values matching closely to the [Mo3S(S2)6]2- clusters (~2.8 Å) 

proposed above with little to no MoS2.39 

The as-deposited Mo-S pairs (Figure 10b) exhibit two distributions, which we attribute to the 

[Mo3S(S2)6]2- clusters. The values match well with the initial XAFS and proposed models.39,42 

Figure 10c shows the S-S distribution and exhibits two bond distributions for the as-deposited 

films. To our knowledge, no published data has reported the S-S pair distances in amorphous 

MoS2.  In WSe2, NbSe2, and MoSe2, the Se-Se pair distance is approximately 2.4 Å,39 which 

matches well with the broad peaks at 2.4 Å in Figure 10c. Persulfides have been proposed in ion 

clusters and amorphous structure before,39,42 which would have a bond distance of ~ 2.0 Å, as in 
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elemental sulfur.43  XAS measurements using the S k-edge could help determine the distribution, 

however we are most likely observing the two pair distances in the ion clusters.  

From the PDF analysis, we predict an as-deposited structure that is a mixture of MoS2 and 

[Mo3S(S2)6]2-. In both of these species, Mo has a 4+ oxidation, which argues against the existence 

of MoS3. Our previous study of MoS2 ALD found the films to be sulfur deficient,27 which we suspect 

to indicate Mo-Mo bonding, or Mo metal clusters, in the structure. The discrepancy to previous 

work is most likely caused by the long dose times and high surface area substrates used in the 

current study. These results suggest that the deposition rate and composition is strongly 

dependent on by-product formation. This deviation from ideal ALD behavior may allow for 

control of the composition and stoichiometry of the as-deposited films. 

  

 
Figure 10. Bond pair analysis of the minimized structures from fullrmc. The bond length 
distribution of Mo-Mo (a), Mo-S (b), and S-S (c). For the as-deposited sample, the amorphous 
structure was used as the starting model, while the crystalline model was used for all of the 
annealed samples. 
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4 CONCLUSIONS 

ALD MoS2 was deposited on both Al2O3 and CNT-OH powders and analyzed with XAS and HE-

XRD measurements. Complementary TEM and Raman measurements demonstrated that the as-

deposited were amorphous, but after annealing at 600 °C in H2 or H2S, TEM revealed a layered 

structure, and Raman spectroscopy indicated a crystalline film. Analyzing the XAFS data, the Mo-

S and Mo-Mo coordination’s were determined. In the as-deposited films, the Mo-Mo coordination 

was smaller than theoretical models, while the Mo-S coordination number was larger. PDF 

analysis confirmed an amorphous structure and indicated the presence of [Mo3S(S2)6]2- clusters. 

This was supported by XPS and RMC modeling, which indicated polysulfides forming in the 

clusters.  The clusters are close to a MoS3 structure, but our findings agree with Mo being in a 4+ 

oxidation state, as found in our prior work. These cluster structures begin to transform into MoS2 

at 400 °C and disappear after annealing to 600 °C. Our previous work indicated a sulfur deficient 

film, contrasting the results reported here, and we attribute this discrepancy to precursor stability 

and by-product interactions in the high surface area substrates used here. Adjusting dose and 

purge times, a near stoichiometric as-deposited MoS2 film should be attainable, with 

crystallization to a layered structure after annealing at relatively low temperatures. 
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SUPPORTING INFORMATION 

Analysis of TEM image of MoS2 on CNT-OH. Analysis of XPS data for MoS2 on CNT-OH. XAFS 

data analysis. 
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