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ABSTRACT 

Agricultural areas within the western U.S. are undergoing rapid urbanization due 

to population growth. Urban expansion often forces the conversion of adjacent 

agricultural areas altering the landscape vegetation and associated water consumption 

through evapotranspiration (ET). The associated difference in ET may alter the landscape 

water demand complicating water resource management. To investigate these 

differences, we calculated the agricultural and urban seasonal ET rates in a semiarid 

watershed currently undergoing large population growth and rapid urbanization. We used 

high resolution satellite imagery with a GIS computer model to generate basin-wide ET 

estimates over a 204-day irrigation season. Six land type samples (three agriculture and 

three urban) were analyzed to compare individual spatial and temporal variations of ET 

throughout the irrigation season. The agricultural areas exhibited more fluctuation in 

seasonality and magnitude of ET than the urban areas throughout the irrigation season. 

We found the average ET (mm acre-1) of the total urban land was 20% less than the total 

agricultural land within the study area. This is higher than expected due to the urban areas 

having much less average vegetation per acre. Within the land type samples, some urban 

landscapes show upwards of 20% more ET (mm acre-1) than adjacent agricultural land. 

These results indicate the difference in total ET between urban and agricultural areas is 

contingent on the specific vegetation phenology. As urbanization and land development 

continues, we suggest future needs for irrigation water incorporate current and projected 

landscape vegetation type, seasonal phenology, and spatial coverage. 
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INTRODUCTION 

Urbanization impacts the annual water demand and energy balance of a landscape 

due to the large changes in spatial coverage and type of vegetation (Qiu et al., 2013; Stow 

et al., 2003). Population growth has accelerated the rate of urbanization across the U.S. 

over the last half century (Ehrlich and Ehrlich, 1990). One of the main ways land use 

cover change affects the regional water balance is through changes in evapotranspiration 

(ET). ET is the combination of evaporation and transpiration and is controlled by 

temperature, albedo, water availability, wind, humidity, vegetation type and extent. 

Vegetation type and coverage is a significant driver of differences in ET between urban 

and agricultural landscapes (Taha, 1997; Qiu et al., 2013). 

Regional and local urban hydrologic information is essential for the continued 

growth and prosperity of any given city. City planners and decision makers need to know 

how water consumption and availability will change to ensure future water needs are met 

and risks are mitigated (Niemczynowicz, 1999). Without understanding the effects of 

urbanization, cities may find their water needs outgrow their available supply (Barnett, 

Adam, and Lettenmaier, 2005). 

ET is often overlooked or over simplified, in part due to the inherent complexity 

and difficulty in acquiring direct ET measurements (Howell, Schneider, and Jensen, 

1991; Valayamkunnath, Sridhar, Zhao, and Allen, 2018). ET may also be an understudied 

variable within a local urban water balance if the region is not currently under a large 

water supply stress. While it may be self-evident that the ET of a developed area like a 
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parking lot is drastically lower than an alfalfa field, it is less obvious when the urbanized 

area includes large green spaces common in suburban neighborhoods (Grimmond and 

Oke, 1999) (Figure 1). 

ET is measured and calculated with a variety of methods, including both field 

instrumentation and remote sensing products. Directly measuring ET is typically very 

expensive, requires a high level of maintenance and extensibility is spatially limited 

(Alfieri, Kustas, and Anderson, 2018). Additionally, urban microclimates create high 

variability, which degrades the spatial accuracy of ET estimates when point 

measurements are extrapolated (Li and Heap, 2014; Allen, Pereira, Howell, and Jensen, 

2011; Grimmond and Oke, 1999; DiGiovanni-White, Montalto, and Gaffin, 2018; 

Templeton et al, 2018). 

While there are multiple methods and equations to calculate ET (Amatya, Skaggs, 

and Gregory, 1995; Khoob, 2008), the most widely adapted ET equation is the Penman-

Monteith (PM) combination formula (Allen, Jensen, Wright, and Burman, 1989; Allen, 

Pereira, Raes, and Smith, 1998). This formula calculates a reference ET value using 

commonly available climate variables and may be combined with a crop coefficient to 

produce actual ET estimates (ASCE-EWRI, 2005). The now standardized ET equation is 

widely used in ET models and has shown to produce reliable estimates in semiarid areas 

when compared with direct instrument measurements (within 5%) (Allen 2002; López-

Urrea, de Santa Olalla, Fabeiro, and Moratalla, 2006; Gavilan, Berengena, and Allen, 

2007; Allen, Tasumi, and Trezza, 2007). 

Remote sensing-based approaches are used often due to the ability to estimate ET 

over large areas (Glenn, Nagler, and Huete, 2010; Allen et al. 2007; Nouri, Glenn, 
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Beecham, Chavoshi Boroujeni, Sutton, Alaghmand, and Nagler, 2016; Nagler et al. 

2013). Accuracy of remote sensing models are found to be within 10-40% (Allen et al., 

2011) of measured ET values. One of the most widely used methods is the Mapping 

Evapotranspiration at high Resolution with Internalized Calibration (METRIC) method. 

This model and others like it, utilize the Landsat satellite imagery to model and map a 

region’s annual ET at a 30-meter resolution, producing estimates within 10% of 

measured values in agricultural fields and rangelands (Allen et al., 2007; Trezza, Allen, 

and Tasumi, 2013; Paco et al., 2014). However, an urban ET analysis requires a finer 

spatial and temporal resolution to precisely separate nonpermeable and vegetated 

surfaces. 

Other remote sensing applications utilize vegetation indices to produce ET 

estimates each pixel of the satellite image. Previous studies have used vegetation index 

models to accurately model regional ET using a lower resolution MODIS satellite image 

data set (Nagler et al., 2005; Nouri et al., 2016). These vegetation index methods require 

less specific band information, which enables the use of a broader range of newer 

satellites. Although newer satellite programs often have limited available band 

information, they have much higher spatial and temporal resolutions. These very high-

resolution satellite images have been used with ET models to produce precise (within 

10% of instrument data) local ET estimates (Nouri, Beecham, Anderson, and Nagler, 

2014). 

Understanding ET in urban environments is critical for future water resource 

planning in regions undergoing urbanization that may be susceptible to drought. 

However, a reliable network of instrumentation throughout an urban environment is 
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expensive, spatially limited, and prone to biased measurements given urban 

microclimates. Here we use satellite imagery that features higher spatial and temporal 

resolution than both Landsat and MODIS to model and estimate changes in ET following 

urbanization. The higher spatial resolution imagery allows better separation of urban and 

agricultural landscapes. The higher temporal resolution enables differentiation between 

agricultural and urban vegetation phenology throughout the irrigation season. The 

resulting ET estimates are then used to calculate current and future irrigation water 

demand based under different growth scenarios. 
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METHODS 

Site Description 

This study was conducted on the Lower Boise River Basin which is commonly 

referred to as the Treasure Valley. The Lower Boise River Basin is in the semiarid 

portion of southwestern Idaho, within the Pacific Northwest of the United States (Figure 

2). The total basin area is approximately 1,300 square miles and it receives 11 inches of 

precipitation annually (Thornton, Thornton, Mayer, Wilhelmi, Wei, Devarakonda, and 

Cook, 2014). Water demand in the lower basin is met by a complex network of 

reservoirs, rivers, canals, and drains. This system is largely responsible for sustaining 

commercial and domestic life in the basin. 

The 2015 Idaho Department of Water Resources (IDWR) land classification data 

for the Treasure Valley shows the divide between urban and agricultural use (semi-

irrigated and irrigated, Figure 2). There are 160,000 acres of urban area and 220,000 

acres of agriculture. The agricultural land in the lower basin is primarily occupied (more 

than 70%) by alfalfa, corn, wheat crops (USDA, 2017). The urban area has areas of high 

and low-density coverages of predominantly turf grass and tree varieties. The basin’s 

annual irrigation water demand through ET is estimated to be between 600,000 and 

750,000 acre-feet using a water balance approach (Treasure Valley Water Atlas, 2018). 

ET Modeling Methods 

We used high resolution satellite imagery and local climate data to model and 

calculate daily ET (Figure 4). The remote sensing model approach calculates ET at each 
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pixel by using a reference ET and a crop coefficient (Figure 5). This method provides a 

robust solution to the more spatially limited alternatives of direct ET measurement. 

The high-resolution imagery comes from the Sentinel-2 satellite program. 

Sentinel-2 is a satellite system supporting Copernicus Land Monitoring studies, including 

monitoring vegetation, soil, and water cover. The satellites offer 10 m resolution 

multispectral images with up to a 5-day temporal resolution. A total of 22 cloud free 

images were used covering the irrigation season from April 4th to October 24th, 2017. 

Each image was processed to convert from Sentinel Level-2A Top-of-Atmosphere (TOA) 

reflectance values to Sentinel Level-2C Bottom-of-Atmosphere (BOA) surface 

reflectance values (Appendix 1). The BOA values are required to run near surface 

calculations and correct for atmospheric interference. The Enhanced Vegetation Index 

(EVI) was calculated for each image using the red (RED), blue (BLUE), and near-

infrared (NIR) bands (Eq. 1). 

2.5 ·  
𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁 + (6 ·  𝑁𝑁𝑅𝑅𝑅𝑅)  −  (7.5 ·  𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅)  +  1
 (𝑅𝑅𝐸𝐸. 1) 

To address temporal gaps within the EVI time series, new images were created 

between satellite image dates. This created daily EVI values for each image to correspond 

with daily climate values within the model. A minimum of 5 days exists between each 

image given the timing and pathing of the Sentinel satellites and larger gaps may exist 

due to interreference from cloud cover. A weighted linear interpolation was used to create 

each new based on the EVI data between two original Sentinel images (Eq.2) 

Imagen  =  [(Image1 · W1) + (Image2 · W2)];  when 

⎣
⎢
⎢
⎡W1  =  

#Days −  Day𝑖𝑖
#Days

W2  =  
Day𝑖𝑖

#Days ⎦
⎥
⎥
⎤
 (𝑅𝑅𝐸𝐸. 2) 
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Where Imagen is the new interpolated EVI image, Image1 is the starting satellite image, 

Image2 is the ending satellite image, #Days is the total number of days between Image1 

and Image2, Dayi is the interpolation day index number, W1 is the weighted EVI value 

based on the number of days from Image1, and W2 is the weighted EVI value based on 

the number of days from Image2. Interpolating between the EVI images, allowed us to 

use daily climate variables. 

Climate data was acquired from Bureau of Reclamation’s AgriMet stations. Each 

station measures daily climate data variables, including an ASCE tall grass reference ET 

rate, which is used directly in calculating an actual ET estimate. Three stations were 

available to use within the study area. They are each located in separate parts of the basin 

which represent different land cover types including both urban and agriculture (Figure 

2). The daily data used within the model is an average of all the stations. Since the 

stations are in different locations across the study area, using any single station would 

produce ET calculations biased for that environment. By averaging all available station 

data, it provides a better representation of climate values across the basin. 

Calculating actual ET first requires a reference ET value. This is the ET rate from 

a reference surface for a specific crop that is not under water stress under current climate 

conditions. Alfalfa is the most common reference surface used across hydrologic studies, 

but a short grass reference may also be used. Both variations, described in the FAO-56 

formulation (Appendix 2), have been shown to model accurate reference ET estimates 

(Kite and Droogers, 2000). We used a tall grass reference ET (ETrs) that was 

standardized from the American Society of Civil Engineers (ASCE) in 2005: 

𝑅𝑅𝑇𝑇𝑟𝑟𝑟𝑟  =  
0.408 ·  𝛥𝛥 ·  (𝑁𝑁𝑛𝑛  −  𝐺𝐺)  +  𝛾𝛾 +  1600

𝑇𝑇 +  273  ·  𝐵𝐵2  ·  (𝑒𝑒𝑟𝑟  −  𝑒𝑒𝑎𝑎)

𝛥𝛥 +  𝛾𝛾 ·  (1 +  0.38 ·  𝐵𝐵2)  (𝑅𝑅𝐸𝐸. 3) 
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Where ∆ is the slope of the saturation vapor pressure-temperature gradient, Rn is the net 

solar radiation at the crop surface, G is the soil heat flux density at the crop surface, T is 

the mean air temperature 2 meters above the crop surface, es is the saturated vapor 

pressure 2 meters above the crop surface, ea is the actual vapor pressure 2 meters above 

the crop surface, 𝛾𝛾 is the psychrometric constant, and U2 is the wind profile factor. 

The type of crop coefficient (Kc), or the value representing a crop type and 

developmental stage, used in the ET model is a single crop coefficient. The single Kc 

averages the measurable effects of crop transpiration and soil evaporation into a single 

term (Allen et al., 1998). Single Kc coefficients used in past evapotranspiration projects 

were found to produce values within 5% of dual Kc during sensitivity analysis of the two 

coefficient types (Allen et al., 2005b). A satellite derived vegetation index value can 

replace a standard crop coefficient to produce an ET estimate based on current crop 

(Glenn et al., 2010). Remote sensing derived crop coefficients have a strong relationship 

with directly measured crop coefficients (r2 = 0.90, Kamble, Kilic, and Hubbard, 2013). 

This approach results in a unique crop coefficient for each pixel of an image. 

The EVI was used to calculate crop coefficients, which are combined with a local 

reference ET to calculate an actual ET rate (Glenn et al., 2010). Previous applications of 

these EVI methods resulted in modeled ET values within 2-9% of direct instrument 

measurements (Nouri et al., 2016). The crop coefficient algorithm used was: 

𝐾𝐾𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒  =  1.48 ·  (1 −  𝑒𝑒−2.95 · 𝐸𝐸𝐸𝐸𝐸𝐸) −  0.49 (𝑅𝑅𝐸𝐸. 4) 

Where Kcevi is the derived pixel crop coefficient, and EVI is the EVI value at each pixel. 

The daily observed ET estimates from the AgriMet stations were used to calibrate 

the model (Eq. 4) using a minimizing gradient search method to provide the best fit. 
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Linear regressions were used to evaluate the modeled ET versus the observed ET 

estimates at the Boise and Parma AgriMet stations (Montgomery, Peck, and Vining, 

2012).  

The daily actual ET (ETa) estimates are the product of the daily reference ET 

(ETrs) and a crop coefficient (Kc) (Allen et al., 2005a). We substituted the traditional Kc 

value from a table with an EVI based crop coefficient (Kcevi) and applied Eq 5 to every 

pixel of each image: 

𝑅𝑅𝑇𝑇𝑎𝑎  =  𝑅𝑅𝑇𝑇𝑟𝑟𝑟𝑟  ·  𝐾𝐾𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒  (𝑅𝑅𝐸𝐸. 5) 

where ETrs is the daily basin averaged reference ET, and ETa is the actual ET of each 

pixel. 

Modeled ET was validated against ET values calculated at the AgriMet station 

locations. Each station sits in, or is adjacent to, a uniform crop type, such as turf grass or 

a corn. Each crop type has a locally derived crop coefficient timing curve (Henggeler 

Guinan, and Travlos, 2008). These coefficients were combined with a daily reference ET 

to provide a local ET estimate (Allen et al., 1998; Rick Allen, 2000; Itenfisu, Elliott, 

Allen, and Walter, 2003; Allen et al., 2005a). 

Identification of Unique Land Uses 

Total ET and ET per acre was calculated for eight different land use subsets. 

These include, the 2015 total agriculture and total urban areas for the basin (IDWR, 

2009), three agricultural crop types (alfalfa, corn, and wheat) and three urban types (low 

density, medium density, and high density). The agricultural land use samples were 

created using the 2017 USDA CropScape data (USDA 2017). 
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Housing clusters were identified to classify the urban density land use samples. A 

Maximum Likelihood Classifier (MLC) was used to identify pixel clusters representing 

houses. The layers consist of approximately 3 to 6 houses per acre for each 9-acre sample 

area. Sample areas are identified around subdivisions inside metropolitan boundaries 

(Emrath and Ford, 2016) to generate a low, medium, and high urban density scheme 

(Table 1 and 2). 

Each of the six land uses were characterized with 30 9-acre sampling sites of 

uniform coverage (i.e. the alfalfa layer is comprised of just alfalfa sample sites of uniform 

coverage). Sample locations were randomly selected within each land cover type using a 

random point generator. All sample sets were used to calculate the seasonality and 

magnitude of ET for each land cover type. 

We calculated the future irrigation water demand for the Treasure Valley using 

the calculated ET and a population growth model (Sprague et al., 2017). The model 

assumes a basin population of 1.5 million people by 2100, but three scenarios represent 

different rates of urban expansion, agricultural loss, and population density (Table 2). 

The “Business as Usual” scenario projects the current growth and expansion rate. The 

“Decreased Density” scenario assumes a large increase in the rate of urban expansion and 

agricultural conversion while the “Increased Density” scenario assumes a reduced rate of 

urban expansion and agricultural conversion. 

The ET assigned to the modeled urbanized land is derived from the ET values 

calculated from the various land use samples, while the agricultural land maintained the 

current mean rate. The “Business as Usual” scenario used ET values from the current 

urban average. The “Decreased Density” scenario used ET values from the low-density 
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urban sample ET rate. The “Increased Density” scenario used ET values from the high-

density urban sample ET rate. However, all projected values are estimates using current 

climate conditions and assume no large variations from currently modeled ET rates. Each 

projection also assumes all future developed land is strictly low, medium, or high density, 

respective of the calculated scenario. For example, the Increased Density scenario 

assumes all future urban development represents high-density ET values. 
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RESULTS 

There was a strong relationship between the modeled and observed ET (adjusted 

r2 0.85 at Boise and 0.79 at Parma) and the residuals were normally distributed (Figures 6 

and 7). The data was split into a validation set consisting of 90% training and 10% test 

data. The test data had an adjusted r2 value of 0.83 at Boise AgriMet and 0.77 at Parma. 

The seasonal ET characteristics of agricultural and urban landscapes differed in 

both magnitude and timing. The total irrigation season ET per acre for the total urban 

land is 20% less than the total agricultural land (Figure 8). Total urban and agricultural 

land also feature a minor overlap of their 95% confidence interval (CI) ranges but fails to 

establish a true statistically significant relationship (Knezevic, 2008; Cumming, 2009). 

The total agricultural area had a higher daily average ET at 2.7 mm day-1, producing a 

total seasonal average of 1.83 feet per acre. The total urban area averaged 2.2 mm day-1 

and produced an average of 1.45 feet per acre over the irrigation season (Figure 8). 

The alfalfa sample set had the highest total seasonal ET with 3.1 feet per acre over 

the irrigation season. The timing of the alfalfa crops shows a steady and gradual increase 

in ET from early April to mid-July where the daily consumption peaks, following the 

seasonality of temperature (Figure 9). The total modeled ET and its seasonal pattern is 

consistent with previous studies in nearby Kimberly, ID which calculated alfalfa ET to be 

approximately 3 feet a season on average (Shewmaker, Allen, and Neibling, 2011). 

The corn sample set had a total seasonal ET of 2.3 feet per acre. The seasonality 

and total ET are close to estimates of late season corn of approximately 2.1 feet per acre 
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in a similar climate (Allen and Robison, 2017). The seasonality of ET for this crop type 

reflects very low average ET until mid-July where ET climbs and peaks rapidly which is 

also aligned with temperature trends (Figure 9). 

The wheat sample set had a total seasonal ET of 2.1 feet per acre. The total ET 

per acre is slightly lower than the estimate from Allen and Robison (2017) of 

approximately 2.5 feet per acre. The seasonality of ET from wheat shows a faster rate of 

increasing daily ET when compared to corn and is more in line with alfalfa. From its 

early intensity peak in July, the daily ET is minimal until the end of the season (Figure 9). 

The seasonality of wheat ET matches the wheat trend of previous studies in a similar 

climate (Allen and Robison, 2017). 

ET Projections Under Urbanization Scenarios 

All three urban density sample sets show seasonal patterns in ET that are very 

similar to the alfalfa samples and temperature patterns (Figure 10,11), but with lower 

average ET. The low-density sample set showed the highest total seasonal ET at 2.6 feet 

per acre, followed by the medium-density set at 2.1 feet per acre, and the high-density 

sample set at 1.7 feet per acre (Figure 12). 

Under the “Business as Usual” scenario, the basin will see an increase of 29% in 

irrigation water demand by 2100 (Table 3). This scenario assumes current urban 

expansion and housing density rates don’t change from current conditions. This scenario 

results in a 160% increase in total urban land area and a 50% conversion of current 

agricultural land to urban land (Table 2). 

The “Decreased Density” growth model projects 52% increased irrigation water 

demand by 2100 (Table 3). This scenario features a high rate of urban expansion and 
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decreased housing density. This results in an increase of current urban land by 180% and 

a conversion of 60% of agricultural land (Table 2). 

The “Increased Density” growth model projects 2% increased irrigation water 

demand by 2100 (Table 3). This scenario features the lowest rate of urban expansion and 

highest rate of population density. The total urban area increases by 96% and a 

conversion of 31% of current agricultural land (Table 2).
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DISCUSSION 

Understanding ET and its effect on the local water balance is essential in semiarid 

regions susceptible to annual water stress due to limited water availability. Continued 

urbanization in these areas further complicates the local water balance by altering the 

current landscape ET rate and historic water demand. Tracking and measuring the change 

in water demand through ET alone is difficult, but there are new methods that provide 

greatly improved temporal and spatial ET estimates. Here, we applied a common remote 

sensing ET method to a higher temporally and spatially resolved set of imagery to assess 

how the difference in ET between urban and agricultural land covers. The modeled ET 

data was used to estimate the potential effects of various growth scenarios on irrigation 

water demand in a semiarid metropolitan area. 

We found that the seasonal difference in ET between agricultural and urban land 

uses within the Lower Boise River Basin is relatively small, despite large variation in 

their respective daily ET. While the agricultural area features a higher average ET per 

acre, the seasonal variability is a function of plant phenology. In contrast, the urban area 

has a lower average ET per acre but is more consistent through the irrigation season. 

(Figure 11). Although the urban area might have lower ET on average, the high 

resolution of the ET estimates allowed for analysis of various densities of urban 

development and impact of vegetation phenology. Urban land may actually produce more 

ET per acre than adjacent agricultural lands because of the irrigated lawns and parks in 

low and medium density suburbs. For example, the low-density urban sample set was 
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shown to consume more water per acre than both the corn and wheat samples sets (Figure 

12). 

The overall average consumptive similarities between the agricultural and urban 

areas appear to be a function of not just the total ET but in large part by vegetation 

phenology. While farm crops feature a higher peak ET intensity, they also undergo 

different stages of growth and harvesting, resulting in large fluctuations in ET rates 

through time (Figure 11). This was especially evident in analyzing the corn and wheat 

crop samples. Both crop types exhibit high ET during one half of the season, but then 

have a very low ET rate during the other half. The urban areas, which typically feature a 

sparser vegetation coverage, has a moderate ET that is lower than in the agricultural 

areas, but it is consistent for a longer period. 

As urbanization continues, we will need to assess how much more water is needed 

to support irrigation demands in the basin. The shift in irrigation will be dependent on 

what type of land is being converted (agricultural or currently undeveloped) and 

associated vegetation type. When land is converted from agriculture to urban, there will 

be minimal changes in net ET because both land uses currently use water for irrigation. 

Converting undeveloped land, however, will have significant impacts on lower basin 

water use because these landscapes do not currently have any commercial or residential 

uses. Urbanizing this undeveloped land will result in significant increases in total ET 

across the basin. The conversion of agriculture land to accommodate urban expansion 

rather than converting undeveloped land would thus have a smaller net increase on future 

water demand. The increase in irrigation water demand from urbanization will have 
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impacts on water resources, likely through increased dependence on municipal 

groundwater supply. 

Although the high-resolution remote sensing data used in this study is highly 

valuable, direct measures of ET across the different land uses would provide a better 

validation data set. These instruments would also increase the accuracy and reliability of 

the ET modeling algorithm. Improving the modeling precision would add more reliability 

to future water demand predictions. A thorough landscape conversion analysis between 

agriculture, urban, and undeveloped land would provide a better estimate of future 

irrigation water demand estimates by better constraining the types of future 

developments. 

Conclusion 

Using newly available, high resolution imagery, we spatially modeled ET within 

the Lower Boise River Basin and found a small difference in the average ET per acre 

between the total agricultural and urban areas. However, examining specific land use 

samples show that some urban areas feature higher ET rates than some agricultural areas. 

The differences in the seasonality and total seasonal ET between urban and agricultural 

land is highly variable over a 204-day period and dependent on vegetation type and 

density (Figure 11). When combined with previous studies of population growth 

modeling, our ET estimates indicate a projected increase in future irrigation demand 

upwards of 50% by the year 2100. However, the true increase in irrigation demand is 

dependent on the future population density, urban expansion, land type conversion, 

climate change, and associated impacts on water supply and atmospheric water deficit. 

This study highlights that vegetation phenology and housing density in urban 
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environments is an important factor in assessing differences in ET between agricultural 

and urban environments. 

Data Availability 

ET Image Data available via Boise State Library 

Code Repository: https://github.com/curtiscrandall/Thesis_Research 
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APPENDIX 

Sentinel Image Processing
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The Level-2A processing includes a scene classification and an atmospheric 

correction applied to Top-Of-Atmosphere (TOA) Level-1C orthoimage products. Level-

2A main output is an orthoimage Bottom-Of-Atmosphere (BOA) corrected reflectance 

product. 

Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapor 

(WV) map and a Scene Classification Map (SCM) together with Quality Indicators (QI) 

for cloud and snow probabilities at 60 m resolution. Level-2A output image products will 

be resampled and generated with an equal spatial resolution for all bands (10 m, 20 m or 

60 m). Standard distributed products contain the envelope of all resolutions in three 

distinct folders: 

• 10 m: containing spectral bands 2, 3, 4, 8, a True Color Image (TCI) and 

an AOT and WV maps resampled from 20 m. 

• 20 m: containing spectral bands 2 - 7, the bands 8A, 11 and 12, a True 

Color Image (TCI), a Scene Classification map (SCL) and an AOT and WV map. The 

band B8 is omitted as B8A provides more precise spectral information. 

• 60 m: containing all components of the 20 m product resampled to 60 m 

and additionally the bands 1 and 9. The cirrus band 10 is omitted, as it does not contain 

surface information. 

The Sen2Cor [R1] processor algorithm is a combination of state-of-the-art 

techniques for performing atmospheric corrections which have been tailored to the 

Sentinel-2 environment together with a scene classification module described in [R2]. 

The scene classification algorithm allows detection of clouds, snow and cloud shadows 

and generation of a classification map, which consists of three different classes for clouds 
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(including cirrus), together with six different classifications for shadows, cloud shadows, 

vegetation, not vegetated, water and snow. 

The algorithm is based on a series of threshold tests that use as input TOA 

reflectance as input from the Sentinel-2 spectral bands. In addition, thresholds are applied 

on band ratios and indexes like Normalized Difference Vegetation Index (NDVI) and 

Normalized Difference Snow and Ice Index (NDSI). For each of these threshold tests, a 

level of confidence is associated. It produces at the end of the processing chain a 

probabilistic cloud mask quality indicator and a snow mask quality indicator. The 

algorithm uses the reflective properties of scene features to establish the presence or 

absence of clouds in a scene. Cloud screening is applied to the data to retrieve accurate 

atmospheric and surface parameters, either as input for the further processing steps below 

or for being valuable input for processing steps of higher levels. 

The aerosol type and visibility or optical thickness of the atmosphere is derived 

using the Dense Dark Vegetation (DDV) algorithm [R3]. This algorithm requires that the 

scene contains reference areas of known reflectance behavior, preferably DDV and water 

bodies. The algorithm starts with a user-defined visibility (default: 40 km). If the scene 

contains no dark vegetation or soil pixels, the surface reflectance threshold in the 2 190 

nm band is successively iterated to include medium brightness reference pixels. If the 

scene contains no reference and no water pixels the scene is processed with the start 

visibility instead. 

Water vapor retrieval over land is performed with the Atmospheric Pre-corrected 

Differential Absorption (APDA) algorithm [R4] which is applied to the two Sentinel-2 

bands (B8a, and B9). Band 8a is the reference channel in an atmospheric window region. 
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Band 9 is the measurement channel in the absorption region. The absorption depth is 

evaluated in the way that the radiance is calculated for an atmosphere with no water 

vapor assuming that the surface reflectance for the measurement channel is the same as 

for the reference channel. The absorption depth is then a measure of the water vapor 

column content. 

Atmospheric correction is performed using a set of look-up tables generated via 

libRadtran. Baseline processing is the rural/continental aerosol type. Other look-up tables 

can also be used according to the scene geographic location and climatology. 

[R1]: M. Main-Knorn, B. Pflug, J. Louis, V. Debaecker, U. Müller-Wilm, F. 

Gascon, "Sen2Cor for Sentinel-2", Proc. SPIE 10427, Image and Signal Processing for 

Remote Sensing XXIII, 1042704 (2017) 

[R2]: J. Louis, A. Charantonis & B. Berthelot, "Cloud Detection for Sentinel-2", 

Proceedings of ESA Living Planet Symposium (2010) 

[R3]: Kaufman, Y., Sendra, C. Algorithm for automatic atmospheric corrections 

to visible and near-IR satellite imagery, International Journal of Remote Sensing, Volume 

9, Issue 8, 1357-1381 (1988) 

[R4]: Schläpfer, D. et al., "Atmospheric precorrected differential absorption 

technique to retrieve columnar water vapor", Remote Sens. Environ., Vol. 65, 353366 

(1998) 

Reference ET 

In 1948, Penman combined the energy balance with the mass transfer method and 

derived an equation to compute the evaporation from an open water surface from 

standard climatological records of sunshine, temperature, humidity and wind speed. This 
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so-called combination method was further developed by many researchers and extended 

to cropped surfaces by introducing resistance factors. The Penman-Monteith form of the 

combination equation is: 

𝜆𝜆𝑅𝑅T =  
𝛥𝛥(𝑁𝑁𝑛𝑛  −  𝐺𝐺) + (pa · 𝑐𝑐𝑐𝑐 ) +  (𝑒𝑒𝑟𝑟  −  𝑒𝑒𝑎𝑎)

𝑟𝑟𝑟𝑟  

𝛥𝛥 +  𝛾𝛾( 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ) 
 

where Rn is the net radiation, G is the soil heat flux, (es - ea) represents the vapor 

pressure deficit of the air, ra is the mean air density at constant pressure, cp is the specific 

heat of the air, Delta represents the slope of the saturation vapor pressure temperature 

relationship, gamma is the psychrometric constant, and rs and ra are the (bulk) surface 

and aerodynamic resistances. 

The Penman-Monteith approach as formulated above includes all parameters that 

govern energy exchange and corresponding latent heat flux (evapotranspiration) from 

uniform expanses of vegetation. Most of the parameters are measured or can be readily 

calculated from weather data. The equation can be utilized for the direct calculation of 

any crop evapotranspiration as the surface and aerodynamic resistances are crop specific. 
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Figure 1. Above are examples of water supply and ET of agricultural and urban 
landscapes. Each landscape receives the same amount of irrigation water (assuming 
both utilize water rights), as water rights within the study area are based on land size. 
The urban landscape also typically receives an additional supply of municipal water 
for mainly indoor water use. 



 
 

 

 

 

  

Figure 2. Above shows the 2015 IDWR land designation map and locations of the AgriMet stations 
(blue stars). 220,000 acres of agricultural area (irrigated land) is shown in red, and the 160,000 acres 
of urban area are colored grey. The Lower Boise River Basin NHD boundary is outlined in black. 31 



 

 

 

 

 

Figure 3. Above shows the mass water balance of the Lower Boise River Basin. The graphic and 
data come from Boise State University’s Treasure Valley Water Atlas. 

32 
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Figure 4. Above is the processing workflow of methods for this study. 
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Convert each image to EVI using band math: 
 

2.5 ·  
𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁 +  (6 ·  𝑁𝑁𝑅𝑅𝑅𝑅)  −  (7.5 ·  𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅)  +  1
 

Interpolate between available Sentinel imagery to fill date gaps: 
 

Imagen  =  [(Image1 · W1) + (Image2 · W2)];  when 

⎣
⎢
⎢
⎡W1  =  

#Days −  Day𝑖𝑖
#Days

W2  =  
Day𝑖𝑖

#Days ⎦
⎥
⎥
⎤
 

For each EVI image: 

Convert EVI image to a 2D array 
using the GDAL Python package 

Download and average the daily tall grass Reference ET (ETrs) from 
nearby AgriMet stations: 

𝑅𝑅𝑇𝑇𝑟𝑟𝑟𝑟  

 
0.408 ·  𝛥𝛥 ·  (𝑁𝑁𝑛𝑛  −  𝐺𝐺)  +  𝛾𝛾 + 1600

𝑇𝑇  273  ·  𝐵𝐵2  ·  (𝑒𝑒𝑟𝑟  −  𝑒𝑒𝑎𝑎)
 

Calculate a crop coefficient (Kcevi) for each pixel of the EVI 
image: 

𝐾𝐾𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒  =  1.48 ·  (1 −  𝑒𝑒−2.95 · 𝐸𝐸𝐸𝐸𝐸𝐸) −  0.49 

Calculate ET for each pixel using the basin average tall grass 
Reference ET (ETrs) and the pixel crop coefficient (Kcevi): 

𝑅𝑅𝑇𝑇𝑎𝑎  =  𝑅𝑅𝑇𝑇𝑟𝑟𝑟𝑟  ·  𝐾𝐾𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 
 

Figure 5. Above is the logic and equations from the model used to generate the 
ET data. 



 
 

  

Figure 6. Above is the resulting linear regression analysis and fit of actual ET pixel values 
at the Boise AgriMet climate station location. The station values are the calculated actual ET 
at the station using a local crop coefficient table. The model values are the modeled actual ET 

using an EVI derived crop coefficient. 
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Figure 7. Above is the resulting linear regression analysis and fit of actual ET pixel values at 
the Parma AgriMet climate station location. The station values are the calculated actual ET at 
the station using a local crop coefficient table. The model values are the modeled actual ET using 
an EVI derived crop coefficient. 
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Figure 8. Shows the urban (as grey bar) and agricultural (as blue bar) area’s total 
average landscape consumption (ET) in units of feet per acre. These values were calculated 

using the daily average ET divided by the daily acreage of active vegetation (EVI values 
greater than 0). The error bars indicate the 95% confidence interval of the 204-day 

population. 
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Figure 9. Above shows the values and timing of the daily average temperatures across 
the Boise River Basin (as the black dashed line) along with the daily average ET values of 
the 3 different agricultural land samples (Alfalfa as the purple line, Corn as the gold line, 
Wheat as the green line). 

Sentinel Image Date Intervals 
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Figure 10. Above shows the values and timing of the daily average temperatures 
across the Boise River Basin (as the black dashed line) along with the daily average ET 
values of the 3 different urban land samples (Low Density Urban as the red line, Medium 
Density Urban as the blue line, and High Density Urban as the grey line). 

Sentinel Image Date Intervals 
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Figure 11. Above shows the values and timing of the daily average temperatures across 
the Boise River Basin (as the black dashed line) along with the daily average ET values of 
the 3 different agricultural land samples (Alfalfa as the purple line, Corn as the gold line, 
Wheat as the green line) and the average urban land sample (as the blue shaded region). 

Sentinel Image Date Intervals 
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Figure 12. Above shows the average total consumption (ET) for each land type sample as feet per 
acre. From left to right, the purple bar represents Alfalfa, gold as Corn, green as Wheat, red as Low 
Density Urban, blue as Medium Density Urban, and grey as High Density Urban. Error is 
represented the 95% confidence interval for each sample of the 204-day population. 
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Figure 13. Above shows three different population growth models of the Treasure Valley from Sprague et al. 
2017. The “Business as Usual” model (left) shows the future urban expansion using the basin’s current growth 
values. The “Decreased Density” model (middle) shows the future urban expansion with a decreased population 
density (less people per acre), and the “Increased Density” (right) model shows the future urban with increased 
population density (more people per acre). 

42 
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Table 1. Land Sample Density Ranking1 

 Low Density Medium Density High Density 

Houses per Acre 3 3.5 4 

Houses per Land 
Sample Site >10 and <21 >20 and <41 <61 and >40 

People per Acre 8.1 9.5 10.8 

People per Land 
Sample Site 25-55 55-110 110-165 

1, The approximate density housing range was guided from the single-family metropolitan housing data 
according to the National Association of Home Builders. The U.S. Census Bureau statistics for the 
study area located in Idaho suggest an average 2.63 people per household. Each land sample set is a 
square 9-acre area. 
    

 

  



44 
 

 

Table 2. Projected Land Use Impact1 

Scenario Urban Gain 
(acres) 

Agricultural Loss 
(acres) 

Population 
in 2100 

Population 
Density 

Business as Usual 220,000 -190,000 1.5 million 4.14 
people/acre 

Low Population 
Density 260,000 -220,000 1.5 million 3.78 

people/acre 

High Population 
Density 140,000 -110,000 1.5 million 5.41 

people/acre 

1, the Sprague et al. 2017 comparison of urban expansion impacts on land use following different 
scenarios of increased population and variation in population density (variable urban expansion). 
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Table 3. Lower Boise River Basin Water Consumption Projections1 

Land Type Growth Population Area 
(acres) 

Mean 
ET 

(feet 
per 

acre) 

Urbanized 
Land ET 
(feet per 

acre) 

Total 
ET 

(acre-
ft) 

Basin ET 
(acre-ft) 

        
Current Lower Boise River Basin Data 
Urban 0 700k 160k 1.45 1.45 230k 630k Agriculture 0 220k 1.83 1.45 400k 
 

2100 “Business as Usual” Projection 
Urban 160% 1,500k 420k 1.45 1.45 610k 810k Agriculture -52% 110k 1.83 1.83 200k 
        

2100 “Low Density” Projection 
Urban 180% 1,500k 450k 1.45 1.95 800k 960k Agriculture -60% 90k 1.83 1.83 160k 
        

2100 “High Density” Projection 
Urban 96% 1,500k 310k 1.45 0.95 370k 640k Agriculture -31% 150k 1.83 1.83 270k 
        
        

1, the current and projected landscape acreage and associated consumption values (ET) through the same 
204-day irrigation season used in this study. The growth values come from the model projections shown in 
Sprague et al. 2017. The ET differences are calculated using the percent difference between high/low 
density urban sample data from this study (i.e. low-density urban is 35% more consumptive than high 
density urban (Figure 12)). The growth ET is calculated using 35% increase/decrease from current mean 
basin values depending on the density of projected urban expansion (Figure 8). 
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