
ESTIMATING ERROR AND BIAS OF OFFLINE RECOMMENDER SYSTEM

EVALUATION RESULTS

by

Mucun Tian

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

August 2019

© 2019

Mucun Tian

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Mucun Tian

Thesis Title: Estimating Error and Bias of Offline Recommender System Evaluation
Results

Date of Final Oral Examination: 31 May 2019

The following individuals read and discussed the thesis submitted by student Mucun Tian,
and they evaluated his presentation and response to questions during the final oral
examination. They found that the student passed the final oral examination.

Michael D. Ekstrand, Ph.D. Chair, Supervisory Committee

Maria Soledad Pera, Ph.D. Member, Supervisory Committee

Hoda Mehrpouyan, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Michael D. Ekstrand, Ph.D., Chair
of the Supervisory Committee. The thesis was approved by the Graduate College.

iv

DEDICATION

Dedicated to my advisor, mentor, Dr. Michael D. Ekstrand.

v

ACKNOWLEDGEMENTS

Thanks for all people who helped me. Special thanks to Dr. Michael D. Ekstrand

for his guidance to my thesis work and professional development. I am also grateful to

my committee, Dr. Maria Soledad Pera and Dr. Hoda Mehrpouyan, for the feedback and

encouragement. This thesis also benefits from the excellent teaching of probability theory

and computational statistics by Dr. John Chiasson and Dr. Leming Qu. Thank you to my

fellow students in PIReT for a great research environment.

I would like to extend my gratitude to my wife, parents, and older sister for their

love and support.

This work was facilitated by the R2 cluster provided by Boise State University’s

Research Computing Department [1]. This material is based upon work supported by the

National Science Foundation under Grant No. IIS 17-51278.

vi

ABSTRACT

Recommender systems are software applications deployed on the Internet to help

people find useful items (e.g. movies, books, music, products) by providing

recommendation lists. Before deploying recommender systems online, researchers and

practitioners generally conduct offline evaluations to compare the accuracy of top-𝑁𝑁

recommendation lists among candidate algorithms using users’ history consumption data.

These offline evaluations typically use metrics and methodologies borrowed from

machine learning and information retrieval and have several well-known biases that

affect the validity of their results, including popularity bias and other biases arising from

the missing-not-at-random nature of the data used. The existence of these biases is well-

established, but their extent and impact are not as well-studied. In this work, we employ

controlled simulations with varying assumptions about the distribution and structure of

users’ preferences and the rating process to estimate the distributions of the errors in

recommender experiment outcomes as a result of these biases. We calibrate our simulated

datasets to mimic key statistics of existing public datasets in different domains and use

the simulated data to assess the error in estimating true accuracy with observable rating

data. We find inconsistency of the evaluation metric scores and the order in which they

rank recommendation algorithms in the synthetic true preference and the observation

dataset. Simulation results show that offline evaluations are sometimes fooled by intrinsic

effects in the data generation process into mistakenly ranking algorithms. The extent of

these effects is sensitive to assumptions.

vii

TABLE OF CONTENTS

DEDICATION ... iv

ACKNOWLEDGEMENTS ...v

ABSTRACT ... vi

LIST OF TABLES ...x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS ..xv

CHAPTER ONE: INTRODUCTION ..1

1.1 Thesis Statement ..4

1.2 Research Outline ..4

CHAPTER TWO: RELATED WORK ..6

2.1 Traditional Evaluation Methodologies ..6

2.1.1 Online Evaluation ...7

2.1.2 Offline Evaluation ...8

2.2 Evaluation Problems ..9

2.2.1 Unknown Relevant Items ..10

2.2.2 Popularity Bias ..10

2.2.3 Impact ...10

2.3 Evaluation Protocols ..11

2.3.1 Popularity Treatment ..11

viii

2.3.2 Unknown Relevant Items Treatment ..12

2.4 Unbiased Estimators ..12

2.5 Counterfactual Evaluation ...13

2.6 Simulation ..14

CHAPTER THREE: METHODS ..16

3.1 True Preference Generators ...18

3.1.1 Uniform Model ...18

3.1.2 Popularity Based Model ..18

3.1.3 Correlated Preference Model ..19

3.2 Observation Samplers ..20

3.2.1 Profile Size Controller ..20

3.2.2 Uniform Sampling ..21

3.2.3 Popularity Sampling..21

3.3 Data Sets ..22

3.4 Calibration..23

3.4.1 Item Popularity & User Activity ...23

3.4.2 Pairwise Correlation..24

3.4.3 Parameter Optimization ..24

3.5 Evaluation Experiments ...25

3.5.1 Evaluation Protocols ...25

3.5.2 Recommenders ..25

CHAPTER FOUR: RESULTS ..27

4.1 Calibration Results ...27

ix

4.2 Simulation Results ...49

4.2.1 Recall ..49

4.2.2 Precision ..51

4.2.3 MRR ..52

4.2.4 nDCG ..54

4.2.5 Summary ...55

4.3 Algorithm Ranking ..55

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK ..58

5.1 Summary of Findings ...58

5.2 Implications for Recommender Research ..59

5.3 Limitations and Future Work ...60

REFERENCES ..62

APPENDIX A ..67

A.1 Calibration Results ..67

x

LIST OF TABLES

Table 1: Summary of data sets .. 22

Table 2: Summary of model parameters. .. 28

Table 3: Percentage of runs where Oracle beats Popular. 57

xi

LIST OF FIGURES

Figure 1: An example of evaluation metric computation. .. 2

Figure 2: Simulation architecture. .. 17

Figure 3: Key statistics of Unif-Unif model optimized to ML1M data. 31

Figure 4: Key statistics of Unif-Pop model optimized to ML1M data. 32

Figure 5: Key statistics of IBP-Unif model optimized to ML1M data. 33

Figure 6: Key statistics of IBP-Pop model optimized to ML1M data. 34

Figure 7: Key statistics of LDA-Unif model optimized to ML1M data................... 35

Figure 8: Key statistics of LDA-Pop model optimized to ML1M data. 36

Figure 9: Key statistics of Unif-Unif model optimized to AZM5 data. 37

Figure 10: Key statistics of Unif-Pop model optimized to AZM5 data. 38

Figure 11: Key statistics of IBP-Unif model optimized to AZM5 data. 39

Figure 12: Key statistics of IBP-Pop model optimized to AZM5 data. 40

Figure 13: Key statistics of LDA-Unif model optimized to AZM5 data. 41

Figure 14: Key statistics of LDA-Pop model optimized to AZM5 data. 42

Figure 15: Key statistics of Unif-Unif model optimized to STMV1 data. 43

Figure 16: Key statistics of Unif-Pop model optimized to STMV1 data. 44

Figure 17: Key statistics of IBP-Unif model optimized to STMV1 data. 45

Figure 18: Key statistics of IBP-Pop model optimized to STMV1 data. 46

Figure 19: Key statistics of LDA-Unif model optimized to STMV1 data. 47

Figure 20: Key statistics of LDA-Pop model optimized to STMV1 data. 48

xii

Figure 21: Recall with observable data and true preference data. 50

Figure 22: Error in Recall (Recallobs - Recalltruth). .. 50

Figure 23: Precision with observable data and ground true data................................ 51

Figure 24: Error in Precision (Precisionobs - Precisiontruth). .. 52

Figure 25: MRR with observable data and ground true data...................................... 53

Figure 26: Error in MRR (MRRobs - MRRtruth)... 53

Figure 27: nDCG with observable data and ground true data. 54

Figure 28: Error in nDCG (nDCGobs - nDCGtruth). ... 54

Figure 29: IBP-UNIF optimized for I-I Sim on ML1M. .. 68

Figure 30: IBP-UNIF optimized for U-U Sim on ML1M. ... 69

Figure 31: IBP-UNIF optimized for Item Pop on ML1M. ... 70

Figure 32: IBP-UNIF optimized for User Act on ML1M. ... 71

Figure 33: IBP-Pop optimized for I-I Sim on ML1M. ... 72

Figure 34: IBP-Pop optimized for U-U Sim on ML1M. .. 73

Figure 35: IBP-Pop optimized for Item Pop on ML1M. .. 74

Figure 36: IBP-Pop optimized for User Act on ML1M. .. 75

Figure 37: LDA-Unif optimized for U-U Sim on ML1M. ... 76

Figure 38: LDA-Unif optimized for I-I Sim on ML1M. .. 77

Figure 39: LDA-Unif optimized for Item Pop on ML1M. ... 78

Figure 40: LDA-Unif optimized for User Act on ML1M. ... 79

Figure 41: LDA-Pop optimized for I-I Sim on ML1M. ... 80

Figure 42: LDA-Pop optimized for U-U Sim on ML1M. .. 81

Figure 43: LDA-Pop optimized for Item Pop on ML1M. .. 82

xiii

Figure 44: LDA-Pop optimized for User Act on ML1M. .. 83

Figure 45: IBP-Unif optimized for I-I Sim on AZM5. ... 84

Figure 46: IBP-Unif optimized for U-U Sim on AZM5... 85

Figure 47: IBP-Unif optimized for Item Pop on AZM5... 86

Figure 48: IBP-Unif optimized for User Act on AZM5. .. 87

Figure 49: IBP-Pop optimized for I-I Sim on AZM5. .. 88

Figure 50: IBP-Pop optimized for U-U Sim on AZM5. ... 89

Figure 51: IBP-Pop optimized for Item Pop on AZM5. ... 90

Figure 52: IBP-Pop optimized for User Act on AZM5. ... 91

Figure 53: LDA-Unif optimized for U-U Sim on AZM5... 92

Figure 54: LDA-Unif optimized for I-I Sim on AZM5. ... 93

Figure 55: LDA-Unif optimized for Item Pop on AZM5... 94

Figure 56: LDA-Unif optimized for User Act on AZM5. .. 95

Figure 57: LDA-Pop optimized for I-I Sim on AZM5. .. 96

Figure 58: LDA-Pop optimized for U-U Sim on AZM5. ... 97

Figure 59: LDA-Pop optimized for Item Pop on AZM5. ... 98

Figure 60: LDA-Pop optimized for User Act on AZM5. ... 99

Figure 61: IBP-Unif optimized for I-I Sim on STMV1. .. 100

Figure 62: IBP-Unif optimized for U-U Sim on STMV1. 101

Figure 63: IBP-Unif optimized for Item Pop on STMV1. 102

Figure 64: IBP-Pop optimized for I-I Sim on STMV1... 103

Figure 65: IBP-Pop optimized for U-U Sim on STMV1. .. 104

Figure 66: IBP-Pop optimized for Item Pop on STMV1. .. 105

xiv

Figure 67: IBP-Pop optimized for User Act on STMV1. ... 106

Figure 68: LDA-Unif optimized for U-U Sim on STMV1. 107

Figure 69: LDA-Unif optimized for I-I Sim on STMV1. .. 108

Figure 70: LDA-Unif optimized for Item Pop on STMV1. 109

Figure 71: LDA-Unif optimized for User Act on STMV1....................................... 110

Figure 72: LDA-Pop optimized for I-I Sim on STMV1... 111

Figure 73: LDA-Pop optimized for U-U Sim on STMV1. 112

Figure 74: LDA-Pop optimized for Item Pop on STMV1. 113

Figure 75: LDA-Pop optimized for User Act on STMV1. 114

xv

LIST OF ABBREVIATIONS

IBP Indian Buffet Process

IR Information Retrieval

LDA Latent Dirichlet Allocation

MAP Mean Average Precision

MAR Missing at Random

MNAR Missing not at Random

MRR Mean Reciprocal Rank

nDCG normalized Discounted Cumulative Gain

TREC Text Retrieval Conference

1

CHAPTER ONE: INTRODUCTION

Recommender systems have long been used to reduce information overload

people are facing on the Internet by presenting them with recommendation lists of

interesting items (e.g. movies, books, music, and products). These systems learn overall

or individual user tastes from data sets collected through user-item interactions (e.g.

ratings or purchases). For example, if a user gives a rating of “like” to action movies,

then a system may recommend more action movies to the user.

To evaluate the effectiveness of a proposed new recommender system, the

standard method is to conduct an online evaluation using an A/B test. An A/B test

randomly splits users into two test groups, exposes each group of users to a different

recommender, and monitors users’ response to each recommender; it then compares

metrics that are relevant to the business’s goals such as sales volume. Online evaluation

directly measures business goals and users’ satisfaction about recommended items, but it

is costly and time-consuming: a new recommender may hurt the experience of users who

are used to the old system, and it also takes months to develop and test. Further, for

academic researchers, much research can only be done offline since accessing a large

number of users for online experiments is not always feasible. Even in commercial

settings that perform A/B tests, an offline evaluation is often done before an online

evaluation to first gain confidence with a new algorithm.

However, the data sets collected for offline training and evaluating recommender

systems are very sparse (i.e. relevance information about most items is missing), and the

2

information present is usually not a random sample of user preferences due to the

complexities of user interactions with the system and its products. For example, users

may be more likely to know about popular items and may also be more likely to consume

items they like, so data on items they would like is missing not uniformly at random. This

causes a number of well-known problems for recommender systems in general but has

particular impact on offline evaluations of their effectiveness.

Figure 1 shows an example of how these problems can affect the computation of a

common metric, the precision of a recommendation list. Precision measures the fraction

of recommended items that are relevant to the user. The first column contains two

recommendation lists for a user. In the test data, we can observe relevance information of

movies (green color) the user has rated “like” but not unrated ones (grey color). The

standard assumption is that unrated items are not relevant to the user. Based on this

assumption and the observed relevance information, the evaluation result says that Rec. A

Figure 1: An example of evaluation metric computation.

3

is better than Rec. B. But what if the user would actually like Zootopia, Dumbo, and

Tangled if the user saw them? In this case, Rec. B would be a good recommendation list

since it helps the user not only find movies they would like, but to find novel movies that

they would like and have not seen. Assume the user’s complete true preferences, which

we cannot obtain in the traditional offline evaluation practice, are shown as in the last

column. This “true precision” prefers Rec. B over Rec. A, which contradicts the

evaluation result on observed data. Another evaluation issue shown in Figure 1 is

popularity bias. In Rec. A, all movies are much more popular than ones in Rec. B (as

measured by rating count on MovieLens). Since movies in Rec. A are popular movies

they are more likely to be rated and to appear in the test data. A popular recommender

like Rec. A that just recommends popular items can achieve a higher observed precision

than a personalized recommender like Rec. B, even though Rec. B recommends more

novel items that the user would like.

Unfortunately, while this missing data causes significant challenges for evaluating

recommender effectiveness, its exact impact on experimental outcomes remains

unknown. Specifically, we do not know how often missing data skews recommendation

list evaluations, or how much effect this has on the outcomes of evaluation experiments.

For commonly-used data sets, we do not know the underlying ground truth, and we also

do not know the particular observation process (the process by which users discover and

rate movies, turning preferences into observable data). We cannot look behind to

compare the true metric values with the observed values to know how often these issues

happen. This gives rise to metric error, which we define as the difference between

experimental results with observable data and the results that would be obtained if

4

complete user-item relevance information were available. To study how much the metric

error impacts on evaluation outcomes, we are interested in how it is distributed. Current

research, however, lacks a good understanding of the distribution of the error in

experimental outcomes.

In this work, we present a simulation study that estimates the extent of missing

data errors by comparing experimental outcomes on observable data with outcomes on

complete data in simulated conditions. We use publicly-available data sets in multiple

domains to calibrate our simulation models to produce realistic data, and then run offline

evaluation experiments on these synthetic data sets. Finally, we compare commonly used

evaluation metrics computed from observable data sets with ones computed from

simulated true preference data sets.

1.1 Thesis Statement

Commonly-used evaluation metrics, including Precision, Recall, Mean Reciprocal

Rank (MRR), and Normalized Discounted Cumulative Gain (nDCG), exhibit errors in

estimating their true values. Simulations show that the degree of error varies between

algorithms and assumptions on the data generation. Evaluation metrics on observable

data generally underestimate the true metrics except Recall, and sometimes are fooled

into mis-ranking algorithms.

1.2 Research Outline

In this thesis, we present a simulation study that estimates the extent of missing

data errors by comparing experimental outcomes on observable data with outcomes on

complete data in controlled conditions. We use publicly-available data sets in multiple

5

domains to calibrate our simulation models to produce realistic data. Our study is driven

by the following research questions:

1. How do different simulation models and parameter tuning processes compare in

their ability to replicate real data?

2. What error does missing data cause in evaluation metrics?

3. How does metric error change as we change the data generation process (i.e.

assumptions about the data)?

4. What incorrect decisions does missing data cause?

6

CHAPTER TWO: RELATED WORK

Recommender systems are software applications deployed on the Internet to help

people find useful items by providing recommendation lists. These recommendation lists

are generated by different techniques that can be taxonomized in various ways. One

categorization particularly relevant to this work is the degree of personalization: non-

personalized recommenders, semi-personalized recommenders, and personalized

recommenders [2]. The popular recommender is a typical non-personalized recommender

that recommends the 𝑁𝑁 most popular items to all the users. Semi-personalized

recommenders usually recommend the same items to users in the same group in terms of

their demographic information (e.g. local news recommendations based on the physical

location of the user’s IP address). Personalized recommenders recommend different

personalized items to individual users based on their unique characteristics and

consumption history (e.g. movie recommendations based on the user’s profile of watched

movies). One of the most common and successful personalized recommendation

techniques is the collaborative filtering family of algorithms, including user based and

item based nearest-neighbor, matrix factorization, and machine learning algorithms that

mine patterns from user-item interactions for personalized recommendations [3].

2.1 Traditional Evaluation Methodologies

Recommender systems are driven by business goals (e.g. return on investment

and user satisfaction). To select a recommender system that meets business goals, R&D

engineers must evaluate a range of candidate algorithms on metrics that indicate or reflect

7

the business goals. The two main categories of approaches for evaluating recommender

systems are online evaluation and offline evaluation.

2.1.1 Online Evaluation

The gold standard method for evaluating a recommender system’s effectiveness

or usefulness is online evaluation. Online evaluations deploy candidate algorithms online

simultaneously and observe users’ interactions with the systems or solicit user feedback

on the recommendations and experience. Online tests can assess not only the

recommendation itself, but also the user experience in which they are presented.

A/B Test

An A/B test is an online experiment that compares an existing recommendation

algorithm with an alternative one in terms of business metrics. It randomly splits users

into two test groups, exposing each group of users to a different test algorithm, then

monitors users’ interactions with the system to compute a metric relevant to the business

such as conversion rate, click through rate, or sales volume. Statistical tests for randomly-

controlled trials can determine if the metrics measured for these two groups have

statistically significant differences, guiding the decision of whether to deploy the new

algorithm [4].

User Study

A user study measures users’ subjective perceptions and opinions about the

system under experimentation through surveys and questionnaires. This provides insight

to user behaviors and satisfaction that are available through observation [5].

The advantage of online evaluations of either type is that they directly measure

recommender system performance in a way that is explicitly correlated with business or

8

user goals. However, they are costly and time-consuming: users who have bad

experiences with the test algorithm may no longer use the system in the future, and online

deployment of a new algorithm usually takes months to develop and test to make it ready

for evaluation.

Online evaluations are also difficult to repeat or replay just using the data

collected in previous experiments, making publicly-available datasets not suitable for

redoing online experiments. For academic researchers, accessing a large number of users

for online experiments is not always feasible. Much research can only be done offline,

and even when online experimentation is available, it is better to first do an offline

evaluation to gain confidence with a new algorithm before deploying it for online

evaluation.

2.1.2 Offline Evaluation

Traditional offline evaluations use metrics and methodologies borrowed from

machine learning and information retrieval to estimate the performance of

recommendations. These methods follow a train-test evaluation procedure [5]:

1. partition users’ consumption data into the training set and the test set.

2. train recommendation algorithms on the training set.

For each user:

3. generate a list of recommendations from a set of candidate items (typically

the items that the user has not rated in the training set).

4. test prediction accuracy or ranking effectiveness using the withheld test

data as the ground truth.

5. average the metric scores across all test users.

9

Offline evaluation metrics typically measure prediction accuracy or top-𝑁𝑁

accuracy. Prediction accuracy is measured with the error in predicting ratings, typically

using either Root Mean Square Error (RMSE) or Mean Absolute Error (MAE). Metrics

that measure top-𝑁𝑁 accuracy include Precision, Recall, Normalized Discounted

Cumulative Gain (nDCG) [6], and Mean Reciprocal Rank (MRR) [7]. Early work

focused on choices of evaluation metrics [8], specifically prediction accuracy vs. top-N

accuracy, and comparison of predictive performance among various recommendation

algorithms [9] using the values of these metrics. Accuracy differences measured by these

metrics, however, are subtle in reflecting user goals for some tasks, and are sensitive to

different data sets in use [8]. Herlocker, et al. [8] discussed the factors of data selection to

perform evaluation, investigated the correlations between metrics, and explored new

metrics that evaluate perspectives other than accuracy. Bellogín, et al. [10] studied the

impact of the way that splits train test sets on the evaluation results.

2.2 Evaluation Problems

To measure prediction or top-N accuracy of recommender systems, the offline

evaluation procedure requires relevance information of all recommended items to

compute evaluation metrics. This information is available in supervised machine learning

and controlled IR settings (e.g. TREC competitions). Recommendation scenarios,

however, rarely have this ground truth information due in large part to the personalized

notion of relevance for individual users. The standard practice for recommender

evaluation is to assume that items missing relevance information are not relevant to the

user; while this assumption is reasonable for individual items [11], its validity degrades

as more items are considered (e.g. a recommendation list), particularly when relevance

10

data are not missing at random [12, 13]. There are several manifestations of this problem,

including unknown relevant items and popularity bias.

2.2.1 Unknown Relevant Items

Unknown relevant items arise when the user would like an item but has not rated

it in either the training or the test data. This item should be a good item to recommend,

but since the evaluation protocol treats unrated items as irrelevant to the user, the

recommender is penalized for recommending it. This is problematic in many applications

where the goal of recommender systems is to recommend novel items to users that they

would like. Because of unknown relevant items, offline evaluations reject excellent

recommendations of novel items the user would enjoy because they were not known to

the user in the system from which data was collected and are therefore missing from the

test data.

2.2.2 Popularity Bias

Popularity bias is the effect that evaluations favor recommendations of popular

items significantly beyond the usefulness of popularity in producing good

recommendations. It arises because popular items are more likely to be exposed to users,

then to be rated in both the training set and the test set, and the evaluation result is an

average score of an evaluation metric across all users in the test set. A popular

recommender often achieves a higher evaluation score than a personalized one just

because popular items are more commonly the ‘right’ answer.

2.2.3 Impact

These problems cause significant challenges for evaluating recommender

effectiveness, but their exact impact on experimental outcomes remains unknown.

11

Specifically, the field currently lacks a good understanding of the distribution of the error

these problems induce in experimental outcomes, where error is the difference between

the experimental results with available data and the results that would be obtained if

complete user-item relevance information were available.

There are several existing lines of work on the validity of offline evaluations,

including changing the protocol [14], unbiased estimators [15, 16], counterfactual

evaluation [17, 18], and simulations [19].

2.3 Evaluation Protocols

The experimental protocol for an offline evaluation protocol defines strategies to

partition data into training and test sets and selecting candidate items for recommendation

for each test user. Different partitioning strategies serve different objectives and can also

affect the results of an evaluation [10]. One approach to evaluation difficulties is to

change the protocol, particularly the way that test items and candidate items are selected

or analyzed, to neutralize popularity biases and reduce the likelihood of recommending

misclassified decoys.

2.3.1 Popularity Treatment

Bellogı́n [14] proposed an alternative data splitting strategy to address popularity

bias that aim to compensate for the rate at which different items appear in the test set.

This strategy samples the test data so that each item appears as a test item an equal

number of times; grouping data by item and sampling 𝑁𝑁 users who have rated that item

will accomplish this. The author also proposed a way to analyze evaluation results in

order to mitigate popularity effect. This method aggregates evaluation metrics by

popularity quantile; this enables analysis of the algorithm’s effectiveness at different

12

popularity levels, and ensures that the least popular quantile of items influences the final

score as much as the most popular quantile.

These methods affect absolute metric values, but not necessarily the relative

performance of algorithms [10].

2.3.2 Unknown Relevant Items Treatment

Similarly, changing how the experimental protocol selects candidate items — the

items the recommender considers when producing a top-𝑁𝑁 list for each user — may be

useful in addressing misclassified decoys.

Standard evaluations use all items that aren’t in the user’s set of training ratings as

candidates. If instead we use a candidate set consisting of the user’s test items plus a

random sample of unrated items (sampled anew for each user), we can decrease the

likelihood of misclassified decoys. This is because unknown relevant items are relatively

rare, so they are probably not going to be picked as a part of the sample [20].

However, this method’s usefulness relies on unrealistically strong assumptions of

the rareness of unknown relevant items, and it likely exacerbates popularity bias [11]. Its

efficiency is therefore suspect and in need of further study.

2.4 Unbiased Estimators

Another proposed solution is to select evaluation metrics that admit statistically

unbiased estimators using the observed data.

Under assumptions that (1) ratings for relevant items are missing at random and

(2) the non-relevant ratings have a higher probability of being missing than the relevant

ones, computing top-𝑁𝑁 hit rate (recall) using observed data is an unbiased estimator for

the true value [16]. Under the same assumptions, computing non-normalized discounted

13

cumulative gain with observed implicit feedback data is an unbiased estimator for the

true value based on complete data [15].

There are two significant limitations to this approach. First, it limits the choice of

metrics; in assessing recall, Steck [16] observes that computing precision with observed

data is not an unbiased estimator. Lim, et al. [15] show that the more common normalized

discounted cumulative gain is biased, so producing an unbiased estimate requires

sacrificing normalization.

In general, therefore, this approach requires a tradeoff between statistical validity

and appropriateness of the metric to the task. If the recommendation task is best captured

by a metric without an unbiased estimator, then effectiveness for that task cannot be

reliably assessed. Second, the necessary assumptions are unlikely to hold in realistic

scenarios. Ratings or consumption events are not sampled at random from the relevant

items; the user's choice of items to rate arises from a complex discovery process based on

user knowledge, social networks, and existing discovery tools.

2.5 Counterfactual Evaluation

One particularly powerful means of addressing the weaknesses of offline

evaluation is to reframe the recommendation and evaluation problem as a counterfactual

learning problem [17, 21, 18]. This approach aims to reconstruct from offline data an

estimate of how the user would have responded had they received a different

recommendation.

Counterfactual evaluation has the enormous benefit of actually measuring the

problem that we most often care about, particularly from business and user response

perspectives: the ability to recommend items the user will accept. Its downside is that it

14

represents a substantial break from historical practice and often is not applicable to

commonly-used data sets. The largest available data set for counterfactual evaluation,

from Criteo [21], is valuable but also opaque: the lack of descriptors for item features

means that less insight can be obtained about algorithm behavior and performance.

While we should — and do — welcome such breaks when they move the field

forward substantially, we would also like to understand how much knowledge under the

old paradigm can be carried forward, and develop techniques when possible that can be

used with more common data sets.

2.6 Simulation

Neither reframing the problem to avoid the pitfalls of classical evaluation nor

choosing provably unbiased estimators answers a key question for interpreting previous

results: just how wrong are they? Further, the widespread availability of data, metrics,

instructions, and tools for classical evaluations makes them relatively easy to perform; if

there is a way to improve their accuracy that can be deployed in existing scenarios, such

techniques would significantly improve the reliability of recommender systems research

and testing.

The most promising technique we see for this work is simulation. Since, by its

very nature, we cannot know the underlying ground truth for observed data, and we do

not know the particular process by which the observed data was generated, we can't

(except in a few limited circumstances) look behind the data to compare observed metric

values to what they would be if we had complete relevance data. Simulation, however,

lets us open the curtain: by generating complete and observed data under a range of

15

scenarios, we can look at how the observed results vary based on different possible

observation processes.

Chaney et al. [22] models the feedback loop between user consumption behavior

and recommender systems to analyze the impact of algorithmic confounding on user

utility. Their simulations found the feedback loop increases homogenization of user

behavior without gaining utility, and it also affects the distribution of item consumption.

Their work focuses on the impact of the feedback loop on the resulting user utility matrix

rather than evaluation metrics. Cañamares & Castells [19] built a probabilistic model to

analyze the conditions that determine the usefulness of popularity in recommender

systems and better understand popularity bias under various conditions. They defined

optimal ranking strategies that maximize the true or observed precision@1 for non-

personalized recommendation. By changing conditional independence among three

variables —item relevance, item discovery, and item rating — the authors analyzed how

the popular recommender and the average rating recommender perform compared to

optimal and random recommenders under both observable and true precision. They found

that the most-popular recommender is close to the optimal recommender in observed

precision and the average-rating recommender is close to optimal in true precision if

rating presence is conditionally independent of relevance or no independence

assumptions are made.

16

CHAPTER THREE: METHODS

As discussed in chapter one, the goal of this research is to estimate the

distribution of metric error in offline evaluations, where metric error is the difference

between metrics computed with observable data and those computed with true preference

data. To estimate these error distributions, we need to know users’ underlying true

preferences for recommended items. Commonly-used public data sets, however, lack this

true information, and the particular observation process that produced these data sets is

also unknown. Therefore, we cannot “look behind” a data set to compare observed metric

values against the “true” metric values.

To overcome these problems, we simulate the entire recommender system

experiment, from preference construction through data collection to offline evaluation.

With access to the ground truth data, because it is generated by the simulator, we can

measure what the precision or reciprocal rank of a recommendation list would be if the

data set were not missing data and compare that value to the metric obtained from the

observable data an experiment would ordinarily employ. This allows us to produce a first

approximation of the error in experimental results where we cannot access unbiased truth.

The simulated true preferences also enable us to test experimental protocols on oracle

recommenders that omnisciently return the most relevant items, irrespective of

observation process. By comparing evaluation results of the oracle recommender with

other recommenders, we can answer how often the evaluation mistakenly ranks a

17

baseline recommender over a perfect recommender under different generation

assumptions.

Figure 2 shows our simulation architecture. We employ a two-step data

generation process: we first simulate complete (binary) user-item relevance data, then

sample observations (ratings or purchases) from this complete truth. This two-step data

generation has two main advantages: 1. it provides flexibility in data modeling, allowing

us to produce observable data with similar distributions from different true preference

models; and 2. it enables us to investigate the impact of true preference assumptions and

observation processes separately on the resulting metric values. For example, we can

encode popularity effects into the true preference model and the missing-at-random

assumption into the observation process through this data generation process.

To ensure that our simulated data is reasonably realistic, we tune the parameters

of our simulations to mimic key statistics of existing public data sets. We then split the

simulated observations into training and test data, generate recommendations for the

simulated users, and measure the quality of these recommendations using both the

observed test data and the underlying true preferences as ground truth.

Figure 2: Simulation architecture.

18

3.1 True Preference Generators

We employ three different models for simulating items being relevant to users: a

uniform model, a preferential attachment process [23, 24], and a correlated preference

model [25]. These models each encode different assumptions about user-item

interactions. Each sampling process produces a set 𝑈𝑈 of users and sets 𝐼𝐼𝑢𝑢 ⊆ 𝐼𝐼 of items

liked by each user. Our current models simulate binary preference (“like” or “don’t

like”); continuous preference is a natural next step that we leave for future work.

3.1.1 Uniform Model

The uniform model assumes each user likes each item with an equal probability

for a given number of items the user likes. The uniform model removes the popularity

effect in users' true preferences. While it is not a realistic model, it enables us to analyze

the evaluation process without popularity biases.

The uniform model is implemented as follows:

1. Draw |𝐼𝐼𝑢𝑢� | (the number of items the user likes) from a Poisson distribution

with mean 𝜆𝜆.

2. Sample |𝐼𝐼𝑢𝑢� | items without replacement uniformly from a total of |𝐼𝐼| items.

3.1.2 Popularity Based Model

User consumption data in recommender systems exhibits strong popularity effects

[14], often following a long-tailed distribution with power law behavior [26]. The latent

structure that generates this kind of observed data can be modeled as a preferential

attachment process [23]; such processes are commonly modeled using the “Indian buffet

process” (IBP). In this thesis, we employ the three-parameter generalized IBP proposed

by Teh & Görür [24]. This model is capable of producing data exhibiting power law

19

behavior, unlike a traditional IBP [27]. The IBP model with parameters 𝛼𝛼 > 0, 𝜎𝜎 ∈

 [0, 1), and 𝑐𝑐 > −𝜎𝜎 is defined as follows:

1. The first user likes Poisson(𝛼𝛼) items.

2. User (𝑛𝑛 + 1) likes previously-known item 𝑖𝑖 with probability 𝑚𝑚𝑖𝑖−𝜎𝜎
𝑛𝑛+𝑐𝑐

 (where 𝑚𝑚𝑖𝑖 is

the number of users who like item 𝑖𝑖) and likes Poisson(𝛼𝛼 Γ(1+𝑐𝑐)Γ(𝑛𝑛+𝑐𝑐+𝜎𝜎)
Γ(𝑛𝑛+1+𝑐𝑐)Γ(𝑐𝑐+𝜎𝜎)

) new

items.

𝑐𝑐 controls how likely the user is to rate new vs. old items. 𝜎𝜎 governs the power-

law behavior of the generated preference matrix; 𝜎𝜎 = 0 yields a traditional IBP [28], with

larger values yielding stronger power-law distributions of item popularity. 𝛼𝛼 controls the

density of the generated preference matrix. When 𝜎𝜎 > 0, the process generates on

average 𝛼𝛼 ∗ |𝑈𝑈|𝜎𝜎 items [24]; when 𝜎𝜎 = 0 and 𝑐𝑐 = 1, it generates approximately 𝛼𝛼 ∗

(log|𝑈𝑈| + 𝛾𝛾) items on average, where 𝛾𝛾 is Euler's constant [23].

The IBP model assumes that users like items independently; if a user likes item 𝑖𝑖,

it says nothing about their preference for item 𝑗𝑗. This property allows us to scale up the

simulation size through parallelism at the expense of realism.

3.1.3 Correlated Preference Model

The independence assumption is deeply questionable, however, because item

preferences often are correlated, and exploiting those correlations is fundamental to many

recommendation techniques. Latent feature models provide a mechanism for representing

correlations between items, as a user who likes an item that loads strongly on a feature is

more likely to like other items that also load on the feature. One such model, suitable to

simulating binary data, is the latent Dirichlet allocation model (LDA) [25]. The LDA

generation process for 𝐾𝐾 latent features is as follows:

20

1. Draw 𝐾𝐾 feature-item vectors 𝜙𝜙�⃑ 𝑘𝑘 ∈ [0,1]|𝐼𝐼| from Dirichlet(𝛽𝛽).

2. For each user:

a. Draw a latent feature vector 𝜃⃑𝜃𝑢𝑢 ∈ [0,1]𝐾𝐾 from Dirichlet(𝛼𝛼).

b. Draw 𝑛𝑛𝑢𝑢 (the number of items) from Poisson(𝜆𝜆).

c. Draw items 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛𝑢𝑢 liked by user 𝑢𝑢 by drawing feature 𝑘𝑘𝑥𝑥 ∼

Multinomial �𝜃⃑𝜃𝑢𝑢� and 𝑖𝑖𝑥𝑥 ∼ Multinomial(𝜙𝜙�⃑ 𝑘𝑘𝑥𝑥).

3. De-duplicate user-item pairs to produce implicit user preference samples.

To reduce the number of parameters for fitting efficiency, we use symmetric

LDA, where 𝛼𝛼 is a constant vector with all values equal to 𝑎𝑎 > 0, and likewise 𝛽𝛽 is

constant 𝑏𝑏 > 0. These parameters 𝑎𝑎 and 𝑏𝑏 control the breadth of user preferences; when

𝑎𝑎 < 1, the values of 𝜃⃑𝜃𝑢𝑢 concentrate on a few of 𝐾𝐾 dimensions, making the user’s

preferences concentrate on a few of items if 𝑏𝑏 < 1. The parameter 𝜆𝜆 controls the average

number of items each user likes. The parameter 𝐾𝐾 controls the size of the latent feature

space, affecting the diversity of user-item preference patterns in the whole true preference

data.

3.2 Observation Samplers

We turn simulated preference into synthetic “rating” data sets by sampling

observations of user consumption from the true preferences. We use two different models

for this sampling; these encode different assumptions about the process by which users

discover and consume items they like. The result is a set 𝐼𝐼𝑢𝑢 ⊆ 𝐼𝐼𝑢𝑢� for each user.

3.2.1 Profile Size Controller

Both observation models start by drawing 𝑛𝑛𝑢𝑢, the number of items a user will

rate. Since each observable user consumes at least one item (or some larger number, such

21

as 20 for MovieLens data sets [29]) and user activity levels follow a heavy-tailed

distribution, we draw 𝑛𝑛𝑢𝑢 from a truncated Pareto distribution rounded to an integer in the

range [1, |𝐼𝐼𝑢𝑢� |]1. The generation of random variables from the truncated Pareto

distribution is implemented by inverse transform sampling with three parameters:

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 > 0, the scale parameter controlling the lower bound of the distribution; 𝛼𝛼 > 0, the

shape parameter; 𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ > 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙, the upper bound of the distribution. Inverse transform

sampling draws a random sample 𝑝𝑝 from Unif(0,𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ)) and returns

𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−1 (𝑝𝑝), where 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) is the cumulative distribution function of Pareto

distribution.

3.2.2 Uniform Sampling

The uniform sampler samples 𝑛𝑛𝑢𝑢 items uniformly at random from 𝐼𝐼𝑢𝑢� to form 𝐼𝐼𝑢𝑢.

This strategy encodes the missing-at-random (MAR) assumption, allowing us to

compare our simulation results with analyses of unbiased estimators [16].

3.2.3 Popularity Sampling

The popularity-weighted sampler embodies the idea that users are more likely to

consume items that they are exposed to, and they are more likely to be exposed to

popular items than unpopular ones. This is one way in which observed data may violate

the missing-at-random assumption underlying other work.

This strategy also samples 𝑛𝑛𝑢𝑢 items from 𝐼𝐼𝑢𝑢� , but each item's selection probability

is proportional to |𝑈𝑈𝚤𝚤� |, where 𝑈𝑈𝚤𝚤� is the set of users who like item 𝑖𝑖 in the true preference

1 We also tested the truncated beta-binomial distribution, its performance is similar to the
truncated Pareto; rejection-sampling when 𝑛𝑛𝑢𝑢 > |𝐼𝐼𝑢𝑢� | produced slightly better simulations than clamping at
substantial computational expense.

22

data. This accounts for the popularity effect in observation in the way that items liked by

more users are more likely to be consumed in the observable data than items liked by less

users, because they are more widely known.

3.3 Data Sets

To realistically reason about the impact of varying assumptions about the data

generation, we need a reference point with which we can compare simulated observable

data sets from our different models to assess their realism. We use three data sets from

different domains as reference points for calibrating the simulation process, summarized

in Table 1.

ML1M [29] contains 1M ratings of 3,706 movies from 6,040 users, where each

user has at least 20 ratings.

AZM5 [30] contains 65K reviews with 5-star ratings of 3.6K digital music albums

from 5.5K users, where each user and each item has at least 5 reviews (the “5-core”).

STMV1 [31] contains 5M purchases of 11K video games by 71K Australian users

of the Steam game distribution service.

Table 1: Summary of data sets

Datasets Users Items Pairs Density

ML1M 6,040 3,706 1,000,209 4.47%

AZM5 5,541 3,568 64,706 0.33%

STMV1 70,912 10,978 5,094,082 0.65%

These data sets cover different data sparsity, user activity, and item popularity

distributions, allowing us to examine the robustness of our data generation process and

assess the influence of modeling parameters on evaluation results.

23

3.4 Calibration

We calibrate our simulations to produce synthetic observation data sets that

mimic key statistics of our reference data sets. We compare synthetic data from our

simulator to our reference data sets using the K-L divergence [32] between synthetic and

observed distributions of four properties: item popularity, user activity, item-item

correlation, and user-user correlation. While these key statistics are not complete, they

provide a good starting point since they capture data dynamics in both item and user

dimensions, and data patterns reflected by these statistics are usually mined by

collaborative filtering algorithms. A realistic simulation data set should be comparable to

the reference data set on at least these statistics. Our goal of this calibration is to converge

simulated data sets produced by various models to the same reference data set (as

measured by similarity in statistical distributions) so we can investigate the impact of

assumptions about the data generation on the distribution of evaluation results. We do not

need to be able to compare individual users or items between synthetic and published

data, like what matrix factorization does, to assess the distribution of evaluation results;

we can think of the reference data set as one sample drawn from our data generation

distribution with specific user and item index orders.

3.4.1 Item Popularity & User Activity

We construct item popularity and user activity distributions by counting the

frequency of each popularity or activity level (profile size) in the observed data set.

If a model is producing realistic data, then the distributions of item popularity and

user profile size should be comparable to those distributions in a real data set.

24

3.4.2 Pairwise Correlation

We compute item (and user) correlation distributions by sampling 1M unique

item (user) pairs and computing the cosine similarity between their rating vectors, where

a vector element is 1 if the user consumed the item and 0 otherwise. We exclude items

(and users) with fewer than 5 ratings to keep the prevalence of 0-correlations (due to data

sparsity) from overwhelming the comparison — if we did not do this, the metric only

assessed the simulation's ability to produce a suitable number of 0s and did not

meaningfully measure the distribution of nonzero correlations. We compare the

distribution of these similarity values between the synthetic and reference data. To

construct the distribution of these similarity values, we use Numpy’s histogram function

with default settings [33] and normalize the histogram to a density distribution with

support of (-1, 1).

3.4.3 Parameter Optimization

We use Gaussian process minimization, as implemented by Scikit-Optimize [34],

to find simulation parameters that minimize the K-L divergence from synthetic data to

observed data on each distribution. Gaussian process minimization is much more efficient

than commonly-used grid search or random search for large numbers of tunable

parameters, particularly for non-differentiable models such as our simulation procedures.

We optimized parameters for all six models (each combination of preference and

observation models) using each of the distributions on each of the data sets, yielding 3 ×

2 × 4 × 3 = 72 models. By searching parameters optimized for a single distribution, we

found that parameters optimized for one statistic distribution may not necessarily result in

optimized results for other distributions. Unfortunately, K-L divergence is not amenable

25

to multi-objective optimization because values are not comparable across target

distributions; a K-L divergence of 0.5 on item popularity does not mean the same thing as

a divergence of 0.5 on user similarity. To overcome this limitation, we computed the

relative loss on each statistic. Relative loss is the ratio of the K-L divergence on a statistic

to the best K-L divergence obtained by optimizing our family of models for that statistic

on that data set. These relative loss values are on a scale that can be compared; for

example, LDA-Pop's fit on Item Popularity for ML1M is 6.9% worse than the best

known model, while its fit on User Activity is 82.3% worse. We then compute the

average loss for a model by taking the mean of the relative loss across all four statistics,

providing a single score for which models can be optimized. This score weights all

distributions equally; exploring the impact of different relative weightings is future work.

3.5 Evaluation Experiments

Finally, we use synthetic data from tuned simulation models to simulate

recommender evaluation experiments that measure top-𝑁𝑁 accuracy.

3.5.1 Evaluation Protocols

We held out 20% of each user's observed items as testing data, generated 50-item

recommendation lists, and computed commonly-used recommendation accuracy metrics

using LensKit [35].

We computed each metric two ways: once with the held-out observable test data

as ground truth, and again with the simulated true preference data as truth. We repeated

each experiment, including data generation, 100 times.

3.5.2 Recommenders

We test evaluation metrics on three recommenders:

26

• The Oracle recommender knows all relevant items and always

recommends top-N relevant candidate items for each user. This relevance

information is produced by preference models that models users’ complete

true preferences. This basic Oracle recommender allows us to estimate

evaluation results on a perfect recommender. Our current Oracle does not

do anything to specifically promote novelty, but will recommend relevant

items that are not in the test data as a result of its design.

• The Popular recommender recommends the most popular items using

popularity statistics from the observable training data. This allows us to

study how the popularity effect impact on the evaluation metrics,

particularly when the sampling process is popularity-weighted sampling.

• The Random recommender recommends random unrated items for each

user. This gives us the lower bound of estimating evaluation error: do

evaluation metrics prefer the Random over the Oracle recommender?

Our goal of this study is to evaluate the evaluation process of recommender

systems rather than recommender systems themselves. Oracle and Random recommender

provide us an upper bound and a lower bound of the recommendation quality in complete

data sets. Given these two reference points, we can compare how much an assumption

about the data generation impact on evaluation results. For example, we can answer does

the popularity assumption make evaluation favor Popular recommender over Oracle

recommender?

We report results for commonly-used top-𝑁𝑁 evaluation metrics: Precision, Recall,

MRR, and nDCG.

27

CHAPTER FOUR: RESULTS

This section presents the results of running our simulations. We start by reporting

the optimization results of each model with respect to each reference data set on the

average relative loss of the best known K-L divergence scores, and then we use simulated

observable data generated from each model with optimized parameters to run

recommender experiments and compare the metric scores on both simulated true

preference and observable data sets.

4.1 Calibration Results

To answer RQ1, we tune parameters of our preference models and observation

models with Gaussian process minimization as implemented by scikit-optimize, running

for 150 iterations. In each iteration, scikit-optimize generates a set of parameters for our

models in its search space; we then generate synthetic data with this set of parameters and

compute the K-L divergence of the distribution (e.g. item popularity or item-item

similarity values) from simulated data to the reference data, and scikit- optimize uses the

results of this measurement to update the search direction. Table 2 summarizes the

parameter spaces of our models. For each preference model, we use the number of users

and items in the reference data sets as the corresponding model parameters. In the Unif

model, 𝜆𝜆 controls the expected number of items a user likes; we select a search space of

(5, 2000) to cover all data sets. For IBP, 𝛼𝛼 affects the number of items |𝐼𝐼| and the density

of simulated data sets. As mentioned in Section 3, |𝐼𝐼| can be approximated by 𝛼𝛼 × |𝑈𝑈|𝜎𝜎

28

Table 2: Summary of model parameters.

Model Param. Description Search Space

ML1M AZM5 STMV1

Unif |𝑈𝑈| Number of users 6040 5541 70912

|𝐼𝐼| Number of items 3706 3568 10978

𝜆𝜆 Expected number of likes
for a user

(5, 2000) (5, 2000) (5, 2000)

IBP |𝑈𝑈| Number of users 6040 5541 70912

𝛼𝛼 Mass parameter
controlling |𝐼𝐼|.

(20,
1000)

(10, 1000) (10, 500)

𝑐𝑐 Concentration parameter (0.01,
100)

(0.01, 100) (0.01, 100)

𝜎𝜎 Stability exponent
controlling power-law
behavior

(0, 0.99) (0, 0.99) (0, 0.99)

LDA |𝑈𝑈| Number of users 6040 5541 70912

|𝐼𝐼| Number of items 3706 3568 10978

𝐾𝐾 Number of latent features (5, 200) (5, 200) (5, 200)

𝜆𝜆 Mean of Poisson(λ) (5, 2000) (5, 2000) (100,
2000)

𝑎𝑎 The element value of 𝛼𝛼 (0.01, 1) (0.01, 1) (0.01, 1)

𝑏𝑏 The element value of 𝛽𝛽 (0.01, 1) (0.01, 1) (0.01, 1)

Truncated
Pareto

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 Lower bound of the
truncated Pareto
distribution

(16, 24) (4, 6) (1, 1.2)

𝛼𝛼 The shape parameter (0.1, 20) (0.1, 20) (0.1, 20)

𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ Upper bound of the
truncated Pareto
distribution

(1851,
2777)

(462, 694) (2000,
9238)

29

for a large number of items and users, so we restrict the search space of 𝛼𝛼 to a small

space for simulating large data sets to avoid generating very dense data sets that takes

large memory and simulation time.

Figure 3 – Figure 8 show key statistic distributions of our six models optimized

for average relative loss on ML1M data set in a form suitable for graphical inspection

[36], where the distribution of I-I Sim (and U-U Sim) is plotted using 1M samples of 5-

core item-item (user-user) pairs. Unif-based models seem to only fit on the user activity

distribution due to our profile size controller, while IBP-based models and LDA-based

models can fit on all statistics.

Figure 9 – Figure 14 show calibration results for AZM5 data set. Both IBP-based

models and LDA-based models have good fitting qualities on all statistics. This may

because the reference data set is composed of users and items with at least 5 ratings,

making users and items more correlated with each other than other reference data sets,

then more suitable to our models. IBP-based models also have better fit on item

popularity than LDA-based models. This may be due to the stability exponent parameter

𝜎𝜎 that enables IBP models more adaptable to various power-law behavior.

Figure 15 – Figure 20 show calibration results for STMV1 data set. Most of our

models are not able to fit on this reference data set as well as on other reference data sets.

One possible cause is that STMV1 data set is much more sparse than other two data sets

and has larger user and item dimensions. Due to our limit of the search space, our models

are more likely to produce extremely sparse data sets in which most users have a profile

size lower than 5. Then scikit-optimize has a high chance of not finding good initial

parameters during the first 25 iterations of initial random search stage. In the future work,

30

we hope to explore more relations between parameter search spaces and the reference

data properties (e.g. density), then we can derive a proper search spaces from the

reference data properties.

31

Figure 3: Key statistics of Unif-Unif model optimized to ML1M data.

32

Figure 4: Key statistics of Unif-Pop model optimized to ML1M data.

33

Figure 5: Key statistics of IBP-Unif model optimized to ML1M data.

34

Figure 6: Key statistics of IBP-Pop model optimized to ML1M data.

35

Figure 7: Key statistics of LDA-Unif model optimized to ML1M data.

36

Figure 8: Key statistics of LDA-Pop model optimized to ML1M data.

37

Figure 9: Key statistics of Unif-Unif model optimized to AZM5 data.

38

Figure 10: Key statistics of Unif-Pop model optimized to AZM5 data.

39

Figure 11: Key statistics of IBP-Unif model optimized to AZM5 data.

40

Figure 12: Key statistics of IBP-Pop model optimized to AZM5 data.

41

Figure 13: Key statistics of LDA-Unif model optimized to AZM5 data.

42

Figure 14: Key statistics of LDA-Pop model optimized to AZM5 data.

43

Figure 15: Key statistics of Unif-Unif model optimized to STMV1 data.

44

Figure 16: Key statistics of Unif-Pop model optimized to STMV1 data.

45

Figure 17: Key statistics of IBP-Unif model optimized to STMV1 data.

46

Figure 18: Key statistics of IBP-Pop model optimized to STMV1 data.

47

Figure 19: Key statistics of LDA-Unif model optimized to STMV1 data.

48

Figure 20: Key statistics of LDA-Pop model optimized to STMV1 data.

49

Findings: model parameters optimized for average relative loss can produce

simulated data sets that capture all four statistics of reference data sets reasonably well,

while parameters optimized for one statistic do not necessarily result in good fit on other

statistics, demonstrated in Appendix A. Both LDA and IBP models can fit well on

ML1M and AZM5 data sets, and IBP-Pop model fit the best on STMV1 data set in search

spaces we explored.

4.2 Simulation Results

With the optimized models, we simulate recommender evaluations, running each

simulation 100 times. We report the error of each metric, defined as 𝑀𝑀obs −𝑀𝑀truth where

𝑀𝑀obs is the metric value using observable test data as ground truth and 𝑀𝑀truth is the

metric value using true preference data.

4.2.1 Recall

Figure 21 shows Recall values on observable test data and true preference data,

faceting rows and columns by preference models and combined observation samplers and

reference data sets, and Figure 22 shows its error, faceting rows and columns by

preference models and observation samplers. With the uniform observation sampler,

recall has no bias (error is symmetrically distributed about 0), as expected since this is the

assumption under which it is an unbiased estimator [16]. Recall on Unif-Pop model also

exhibits no bias because the sampling probability of our popularity-weighted sampler is

computed by the popularity statistic of the preference data set; when preference data is

uniformly distributed, this probability is also uniformly across all items, then the

popularity-weighted sampler reduced to a uniform sampler.

50

Figure 21: Recall with observable data and true preference data.

Figure 22: Error in Recall (Recallobs - Recalltruth).

When observations are popularity-biased, however, observed data tends to

overestimate true recall. On simulated data sets optimized with respect to ML1M and

STMV1, the popular recommender outperforms the oracle recommender on the

51

observable data sets while comparable to the oracle recommender on the true preference

data sets. This may indicate that the popularity effect can exacerbate Recall biases to

more severely overestimate the Popular recommender’s effectiveness.

4.2.2 Precision

Figure 23 and Figure 24 show Precision and the error in estimating it. Observed

data generally underestimates precision substantially. Since our simulation models do not

have users consuming irrelevant items, the set of relevant items in the true data is a

superset of the observed items, increasing the opportunity for recommendations to be

“correct” on the true preference data. For all models, observed data underestimates

precision more for the Oracle recommender than for Popular (Oracle has smaller negative

errors than Popular); this calls into question an experiment’s ability to assess the

performance of algorithms relative to each other, particularly when one performs

extremely well.

Figure 23: Precision with observable data and ground true data.

52

Figure 24: Error in Precision (Precisionobs - Precisiontruth).

4.2.3 MRR

Figure 25 and Figure 26 show mean reciprocal rank and its estimation error. MRR

exhibits approximately the same relevant patterns as precision; observable data

underestimates true MRR (error is distributed below 0). On simulated data sets generated

by IBP-Pop model optimizing with respect to ML1M and STMV1, the Popular

recommender outperforms the Oracle recommender on the observable data set while

comparable to the Oracle recommender on the true preference data set.

53

Figure 25: MRR with observable data and ground true data.

Figure 26: Error in MRR (MRRobs - MRRtruth).

54

4.2.4 nDCG

Figure 27: nDCG with observable data and ground true data.

Figure 28: Error in nDCG (nDCGobs - nDCGtruth).

55

Figure 27 and Figure 28 show nDCG and its error. It is also biased, but its

particular biases vary more between experimental conditions and recommenders. For

example, errors for the Oracle recommender are greater than -0.4 for most reference data

sets if preference models are Unif and IBP, while errors are less than -0.4 if preference

model is LDA. This inconsistency means it would likely be more difficult to correct for

missing data errors in evaluations using nDCG.

4.2.5 Summary

Findings: simulations validate Steck’s paper [16] that Recall is unbiased when

relevant items are missing uniformly at random. When observations are popularity-

biased, observed data sets tend to overestimate true Recall, particularly for the Popular

recommender. Observed data generally underestimates true Precision due in part to our

model assumption that users only consume relevant items, and it underestimates more for

the Oracle recommender than for Popular. MRR manifests similar results to Precision

that observed data underestimates true MRR and generally underestimates the

performance of Oracle more than that of the Popular recommender. nDCG is also biased,

and its errors vary between assumptions and recommenders. If an evaluation metric

underestimates all algorithms equally regardless of assumptions, then this observed

metric can still reliably assess the relative performance of different algorithms; this

inconsistency in nDCG errors suggests that nDCG is not reliable; the sensitivity to

assumptions makes it difficult to correct for missing data errors.

4.3 Algorithm Ranking

We finally look at the prevalence of relative performance inversions: how often

would an experiment rightly conclude that the Oracle recommender is more effective

56

than Popular? Table 3 shows these results. While the experimental outcomes were

usually correct, there were a number of cases in which they were reliably wrong. In some

cases, such as IBP with Popular observations, this is may be because popularity bias

severely fooled the evaluator on the observable data. LDA did not produce this effect

(except MRR on ML1M), indicating that extent of this error is sensitive to assumptions.

Across all data sets, there are some cases in which MRR prefers the Popular

recommender over the Oracle recommender when the underlying assumption is IBP-Pop.

One possible explanation is that MRR is more sensitive to the popularity effect than other

metrics we experimented.

Findings: evaluations sometimes are fooled by the popularity effect to mis-

ranking the Oracle and Popular recommender. Its extent is sensitive to assumptions about

the data generation.

57

Table 3: Percentage of runs where Oracle beats Popular.

Data Pref Obs P@50 Recall MRR nDCG

ML1M Unif Unif 100 100 100 100

Pop 100 100 100 100

IBP Unif 87 58 47 65

Pop 0 0 0 0

LDA Unif 100 100 100 100

Pop 100 100 89 100

AZM5 Unif Unif 100 100 99 100

Pop 100 100 100 100

IBP Unif 100 100 100 100

Pop 100 100 99 100

LDA Unif 100 100 100 100

Pop 100 100 100 100

STMV1 Unif Unif 100 100 100 100

Pop 100 100 100 100

IBP Unif 100 100 86 100

Pop 100 5 0 85

LDA Unif 100 100 100 100

Pop 100 100 100 100

58

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK

In this thesis, we conducted simulations to estimate error and bias in the results of

offline evaluations of recommendation algorithms. To make realistic reference data, we

calibrated our simulation models by comparing their results to existing data sets on

several key statistics. We presented simulation approaches that generate synthetic data

sets comparable to reference data sets used them to empirically estimate evaluation

results on commonly used evaluation metrics and recommender systems under evaluation

protocols. Our simulation techniques are generalizable to a wide range of offline metrics

and evaluation protocols.

5.1 Summary of Findings

We found that optimization on average relative loss of K-L divergence is capable

of capturing many dynamics of three reference data sets, while optimization on a single

statistic does not necessarily result in good fitting on all statistics as shown in Appendix

A.

With the exception of recall in the case where it is already known to be an

unbiased estimator, we find substantial error — usually underestimation — in evaluation

metrics. This may be due in part to our assumption that users only consume items they

like, which makes relevant items in the true preference data be superset of ones in the

observable data. Most concerningly, we find that the degree of error varies between

algorithms in the same data and experimental condition, undermining estimates of

relative differences in algorithm performance using offline evaluation protocols. For

59

example, even though evaluation results on the observable data prefers the Oracle

recommender over Popular recommender in most cases, it underestimate true differences

in performance between these two algorithms:

MOracle
obs − MOracle

truth ≤ MPopular
obs − MPopular

truth ⇒ MOracle
obs − MPopular

obs ≤ MOracle
truth − MPopular

truth .

Evaluations are sometimes into mis-ranking algorithms. Two out of three

reference data sets, Recall, MRR, nDCG consistently reject the Oracle beating Popular on

the observable data under the IBP-Pop model. The LDA model, however, doesn’t show

this result, indicating that the extent of this effect is sensitive to assumptions.

5.2 Implications for Recommender Research

The finding that metric errors vary across algorithms on the same data and

experimental conditions – and that they are more likely to underestimate the performance

of a perfect recommender – casts doubt on the reliability of offline evaluations in

assessing the relative differences between algorithms’ performance. This forms a basis

for the long-existing question: why is the popular recommender hard to beat by a

personalized recommender?

Evaluations are sometimes into mis-ranking recommender systems. This gives

implications for algorithm comparison using offline evaluations. Researchers who

evaluate newly proposed algorithms over baseline algorithms using publicly-available

data sets and offline evaluations should take into account these effects to see whether the

new algorithms are picking up overall effects in data generation or truly improving

individual user utility. Unfortunately, we do not yet know precisely how to do this for a

specific experiment.

60

5.3 Limitations and Future Work

The simulations we present here are relatively simple, and in particular do not

account for rating values or relative preference in any way. In future work, we can

incorporate continuous preference and observation models in the data generation

procedure. The observable preference can be implemented by a continuous distribution

with support of (0, 1), then the observable ratings can be computed by multiplying this

preference matrix with a rating scale value.

In this thesis, we also do not reflect users consuming the occasional item they do

not like; in future work we hope to extend these techniques to capture a wider array of

user and algorithm behavior. One particularly common factor in user rating behavior is

selection bias. We can model this selection bias as a random variable that depends on the

interplay of the popularity effect and user continuous preferences. This can capture the

case that we sometimes consume popular items even though we do like them.

Our simulations only consider static preference and observation models at a single

point in time and do not account for the feedback loop of user and recommender systems.

One simple extension would be integrating the data generation process with

recommender systems and calibrating observable data sets with multiple subsets of

reference data sets held by timestamps. For example, we could first split users and items

in the reference data by timestamps, generate observable data that simulates the earliest

users and items, conduct offline evaluations on different recommender systems, introduce

new items to recommend and users to interact with new items using user and item

dimensions in the second time period of the reference data, simulate observable data for

these newly added users and items, repeat this process until the final timestamp.

61

Future work will also explore more recommendation algorithms, including

probabilistic Oracle recommenders and collaborative filtering recommender systems. A

probabilistic Oracle recommender can be implemented by randomly recommending 𝑀𝑀%

relevant items on top-𝑁𝑁 recommendation list. This always gives us 𝑀𝑀% precision,

allowing us to research its impact on other metrics in controlled conditions.

Simulation is a promising tool for better understanding the recommender

evaluation process. Our simulations demonstrate the unreliability of offline evaluations in

assessing the relative differences and ranking between algorithms. In future work, we

hope to extend these simulations to explore more causes of evaluation errors.

62

REFERENCES

[1] Boise State’s Research Computing Department, R2: Dell HPC Intel E5v4 (High

Performance Computing Cluster), Boise, ID, USA: Boise State University,

2017.

[2] K. Falk, Practical Recommender Systems, Shelter Island, NY, USA: Manning

Publications Co., 2019.

[3] M. D. Ekstrand, J. T. Riedl and J. A. Konstan, "Collaborative Filtering

Recommender Systems," Foundations and Trends in Human-Computer

Interaction, vol. 4, pp. 81-173, 2 2011.

[4] R. Kohavi, R. Longbotham, D. Sommerfield and R. M. Henne, "Controlled

Experiments on the Web: Survey and Practical Guide," Data Mining and

Knowledge Discovery, vol. 18, pp. 140-181, 01 2 2009.

[5] G. Shani and A. Gunawardana, "Evaluating Recommendation Systems," in

Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira and P. B.

Kantor, Eds., Boston, MA: Springer US, 2011, pp. 257-297.

[6] K. Järvelin and J. Kekäläinen, "Cumulated Gain-based Evaluation of IR

Techniques," ACM Transactions on Information Systems, vol. 20, no. 4, pp.

422-446, Oct. 2002.

[7] P. B. Kantor and E. Voorhees, "Report on the TREC-5 Confusion Track," in

Proceedings of the Fifth Text REtrieval Conference, Gaithersburg,

Maryland, USA, 1997.

63

[8] J. L. Herlocker, J. A. Konstan, L. G. Terveen and J. T. Riedl, "Evaluating

Collaborative Filtering Recommender Systems," ACM Transactions on

Information Systems, vol. 22, pp. 5-53, 1 2004.

[9] J. S. Breese, D. Heckerman and C. Kadie, "Empirical Analysis of Predictive

Algorithms for Collaborative Filtering," in Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence, San Francisco, CA,

USA, 1998.

[10] A. Bellogín, P. Castells and I. Cantador, "Precision-oriented Evaluation of

Recommender Systems: An Algorithmic Comparison," in Proceedings of

the Fifth ACM Conference on Recommender Systems, New York, NY, USA,

2011.

[11] M. D. Ekstrand and V. Mahant, "Sturgeon and the Cool Kids: Problems with

Random Decoys for Top-N Recommender Evaluation," in Proceedings of

the Thirtieth International Florida Artificial Intelligence Research Society

Conference, Palo Alto, CA, USA, 2017.

[12] B. M. Marlin, R. S. Zemel, S. Roweis and M. Slaney, "Collaborative Filtering and

the Missing at Random Assumption," in Proceedings of the Twenty-Third

Conference on Uncertainty in Artificial Intelligence, Arlington, Virginia,

United States, 2007.

[13] B. M. Marlin and R. S. Zemel, "Collaborative Prediction and Ranking with Non-

random Missing Data," in Proceedings of the Third ACM Conference on

Recommender Systems, New York, NY, USA, 2009.

[14] A. Bellogı́n, "Recommender System Performance Evaluation and Prediction: An

Information Retrieval Perspective," Universidad Autónoma de Madrid,

Madrid, 2012.

64

[15] D. Lim, J. McAuley and G. Lanckriet, "Top-N Recommendation with Missing

Implicit Feedback," in Proceedings of the 9th ACM Conference on

Recommender Systems, New York, NY, USA, 2015.

[16] H. Steck, "Training and Testing of Recommender Systems on Data Missing Not at

Random," in Proceedings of the 16th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York, NY,

USA, 2010.

[17] L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles, D. M. Chickering, E.

Portugaly, D. Ray, P. Simard and E. Snelson, "Counterfactual Reasoning

and Learning Systems: The Example of Computational Advertising,"

Journal of Machine Learning Research, vol. 14, pp. 3207-3260, 2013.

[18] A. Swaminathan and T. Joachims, "Batch Learning from Logged Bandit Feedback

through Counterfactual Risk Minimization," Journal of Machine Learning

Research, vol. 16, pp. 1731-1755, 2015.

[19] R. Cañamares and P. Castells, "Should I Follow the Crowd?: A Probabilistic

Analysis of the Effectiveness of Popularity in Recommender Systems," in

The 41st International ACM SIGIR Conference on Research & Development

in Information Retrieval, New York, NY, USA, 2018.

[20] P. Cremonesi, Y. Koren and R. Turrin, "Performance of Recommender Algorithms

on Top-n Recommendation Tasks," in Proceedings of the Fourth ACM

Conference on Recommender Systems, New York, NY, USA, 2010.

[21] A. Gilotte, C. Calauzènes, T. Nedelec, A. Abraham and S. Dollé, "Offline A/B

Testing for Recommender Systems," in Proceedings of the Eleventh ACM

International Conference on Web Search and Data Mining, New York, NY,

USA, 2018.

[22] A. J. B. Chaney, B. M. Stewart and B. E. Engelhardt, "How Algorithmic

Confounding in Recommendation Systems Increases Homogeneity and

65

Decreases Utility," in Proceedings of the 12th ACM Conference on

Recommender Systems, New York, NY, USA, 2018.

[23] T. L. Griffiths and Z. Ghahramani, "The Indian Buffet Process: An Introduction and

Review," Journal of Machine Learning Research, vol. 12, pp. 1185-1224, 7

2011.

[24] Y. W. Teh and D. Görür, "Indian Buffet Processes with Power-law Behavior," in

Proceedings of the 22Nd International Conference on Neural Information

Processing Systems, USA, 2009.

[25] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent Dirichlet Allocation," Journal of

Machine Learning Research, vol. 3, pp. 993-1022, 3 2003.

[26] H. Steck, "Item Popularity and Recommendation Accuracy," in Proceedings of the

Fifth ACM Conference on Recommender Systems, New York, NY, USA,

2011.

[27] T. L. Griffiths and Z. Ghahramani, "Infinite Latent Feature Models and the Indian

Buffet Process," in Proceedings of the 18th International Conference on

Neural Information Processing Systems, Cambridge, 2005.

[28] Z. Ghahramani, T. L. Griffiths and P. Sollich, "Bayesian Nonparametric Latent

Feature Models," Bayesian Statistics, vol. 8, pp. 1-25, 2007.

[29] F. M. Harper and J. A. Konstan, "The MovieLens Datasets: History and Context,"

ACM Transactions on Interactive Intelligent Systems, vol. 5, no. 4, pp. 19:1-

19:19, 12 2015.

[30] R. He and J. McAuley, "Ups and Downs: Modeling the Visual Evolution of Fashion

Trends with One-Class Collaborative Filtering," in Proceedings of the 25th

International Conference on World Wide Web, Republic and Canton of

Geneva, Switzerland, 2016.

[31] A. Pathak, K. Gupta and J. McAuley, "Generating and Personalizing Bundle

Recommendations on Steam," in Proceedings of the 40th International

66

ACM SIGIR Conference on Research and Development in Information

Retrieval, New York, NY, USA, 2017.

[32] S. Kullback, Information Theory and Statistics, Mineola, New York, USA: Dover

Publications, 1997, p. 432.

[33] T. E. Oliphant, Guide to NumPy: 2nd Edition, Scotts Valley, CA, USA:

CreateSpace Independent Publishing Platform, 2015, p. 364.

[34] T. Head, MechCoder, G. Louppe, I. Shcherbatyi, fcharras, Z. Vinícius, cmmalone,

C. Schröder, nel215, N. Campos, T. Young, S. Cereda, T. Fan, rene-rex, K.

(. Shi, J. Schwabedal, carlosdanielcsantos, Hvass-Labs, M. Pak,

SoManyUsernamesTaken, F. Callaway, L. Estève, L. Besson, M. Cherti, K.

Pfannschmidt, F. Linzberger, C. Cauet, A. Gut, A. Mueller and A. Fabisch,

scikit-optimize/scikit-optimize: v0.5.2, 2018.

[35] M. D. Ekstrand, "The LKPY Package for Recommender Systems Experiments:

Next-Generation Tools and Lessons Learned from the LensKit Project,"

CoRR, vol. abs/1809.03125, 2018.

[36] A. Gelman, H. S. Stern, J. B. Carlin, D. B. Dunson, A. Vehtari and D. B. Rubin,

"Model Checking," in Bayesian Data Analysis, New York, NY, USA,

Chapman and Hall/CRC, 2013, pp. 141-163.

67

APPENDIX A

A.1 Calibration Results

This section presents calibration results optimized for each single statistic.

68

Figure 29: IBP-UNIF optimized for I-I Sim on ML1M.

69

Figure 30: IBP-UNIF optimized for U-U Sim on ML1M.

70

Figure 31: IBP-UNIF optimized for Item Pop on ML1M.

71

Figure 32: IBP-UNIF optimized for User Act on ML1M.

72

Figure 33: IBP-Pop optimized for I-I Sim on ML1M.

73

Figure 34: IBP-Pop optimized for U-U Sim on ML1M.

74

Figure 35: IBP-Pop optimized for Item Pop on ML1M.

75

Figure 36: IBP-Pop optimized for User Act on ML1M.

76

Figure 37: LDA-Unif optimized for U-U Sim on ML1M.

77

Figure 38: LDA-Unif optimized for I-I Sim on ML1M.

78

Figure 39: LDA-Unif optimized for Item Pop on ML1M.

79

Figure 40: LDA-Unif optimized for User Act on ML1M.

80

Figure 41: LDA-Pop optimized for I-I Sim on ML1M.

81

Figure 42: LDA-Pop optimized for U-U Sim on ML1M.

82

Figure 43: LDA-Pop optimized for Item Pop on ML1M.

83

Figure 44: LDA-Pop optimized for User Act on ML1M.

84

Figure 45: IBP-Unif optimized for I-I Sim on AZM5.

85

Figure 46: IBP-Unif optimized for U-U Sim on AZM5.

86

Figure 47: IBP-Unif optimized for Item Pop on AZM5.

87

Figure 48: IBP-Unif optimized for User Act on AZM5.

88

Figure 49: IBP-Pop optimized for I-I Sim on AZM5.

89

Figure 50: IBP-Pop optimized for U-U Sim on AZM5.

90

Figure 51: IBP-Pop optimized for Item Pop on AZM5.

91

Figure 52: IBP-Pop optimized for User Act on AZM5.

92

Figure 53: LDA-Unif optimized for U-U Sim on AZM5.

93

Figure 54: LDA-Unif optimized for I-I Sim on AZM5.

94

Figure 55: LDA-Unif optimized for Item Pop on AZM5.

95

Figure 56: LDA-Unif optimized for User Act on AZM5.

96

Figure 57: LDA-Pop optimized for I-I Sim on AZM5.

97

Figure 58: LDA-Pop optimized for U-U Sim on AZM5.

98

Figure 59: LDA-Pop optimized for Item Pop on AZM5.

99

Figure 60: LDA-Pop optimized for User Act on AZM5.

100

Figure 61: IBP-Unif optimized for I-I Sim on STMV1.

101

Figure 62: IBP-Unif optimized for U-U Sim on STMV1.

102

Figure 63: IBP-Unif optimized for Item Pop on STMV1.

103

Figure 64: IBP-Pop optimized for I-I Sim on STMV1.

104

Figure 65: IBP-Pop optimized for U-U Sim on STMV1.

105

Figure 66: IBP-Pop optimized for Item Pop on STMV1.

106

Figure 67: IBP-Pop optimized for User Act on STMV1.

107

Figure 68: LDA-Unif optimized for U-U Sim on STMV1.

108

Figure 69: LDA-Unif optimized for I-I Sim on STMV1.

109

Figure 70: LDA-Unif optimized for Item Pop on STMV1.

110

Figure 71: LDA-Unif optimized for User Act on STMV1.

111

Figure 72: LDA-Pop optimized for I-I Sim on STMV1.

112

Figure 73: LDA-Pop optimized for U-U Sim on STMV1.

113

Figure 74: LDA-Pop optimized for Item Pop on STMV1.

114

Figure 75: LDA-Pop optimized for User Act on STMV1.

	ESTIMATING ERROR AND BIAS OF OFFLINE RECOMMENDER SYSTEM EVALUATION RESULTS
	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	1.1 Thesis Statement
	1.2 Research Outline

	CHAPTER TWO: RELATED WORK
	2.1 Traditional Evaluation Methodologies
	2.1.1 Online Evaluation
	A/B Test
	User Study

	2.1.2 Offline Evaluation

	2.2 Evaluation Problems
	2.2.1 Unknown Relevant Items
	2.2.2 Popularity Bias
	2.2.3 Impact

	2.3 Evaluation Protocols
	2.3.1 Popularity Treatment
	2.3.2 Unknown Relevant Items Treatment

	2.4 Unbiased Estimators
	2.5 Counterfactual Evaluation
	2.6 Simulation

	CHAPTER THREE: METHODS
	3.1 True Preference Generators
	3.1.1 Uniform Model
	3.1.2 Popularity Based Model
	3.1.3 Correlated Preference Model

	3.2 Observation Samplers
	3.2.1 Profile Size Controller
	3.2.2 Uniform Sampling
	3.2.3 Popularity Sampling

	3.3 Data Sets
	3.4 Calibration
	3.4.1 Item Popularity & User Activity
	3.4.2 Pairwise Correlation
	3.4.3 Parameter Optimization

	3.5 Evaluation Experiments
	3.5.1 Evaluation Protocols
	3.5.2 Recommenders

	CHAPTER FOUR: RESULTS
	4.1 Calibration Results
	4.2 Simulation Results
	4.2.1 Recall
	4.2.2 Precision
	4.2.3 MRR
	4.2.4 nDCG
	4.2.5 Summary

	4.3 Algorithm Ranking

	CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK
	5.1 Summary of Findings
	5.2 Implications for Recommender Research
	5.3 Limitations and Future Work

	REFERENCES
	APPENDIX A
	A.1 Calibration Results

