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ABSTRACT 

Recommender systems are software applications deployed on the Internet to help 

people find useful items (e.g. movies, books, music, products) by providing 

recommendation lists. Before deploying recommender systems online, researchers and 

practitioners generally conduct offline evaluations to compare the accuracy of top-𝑁𝑁 

recommendation lists among candidate algorithms using users’ history consumption data. 

These offline evaluations typically use metrics and methodologies borrowed from 

machine learning and information retrieval and have several well-known biases that 

affect the validity of their results, including popularity bias and other biases arising from 

the missing-not-at-random nature of the data used. The existence of these biases is well-

established, but their extent and impact are not as well-studied. In this work, we employ 

controlled simulations with varying assumptions about the distribution and structure of 

users’ preferences and the rating process to estimate the distributions of the errors in 

recommender experiment outcomes as a result of these biases. We calibrate our simulated 

datasets to mimic key statistics of existing public datasets in different domains and use 

the simulated data to assess the error in estimating true accuracy with observable rating 

data. We find inconsistency of the evaluation metric scores and the order in which they 

rank recommendation algorithms in the synthetic true preference and the observation 

dataset. Simulation results show that offline evaluations are sometimes fooled by intrinsic 

effects in the data generation process into mistakenly ranking algorithms. The extent of 

these effects is sensitive to assumptions. 
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CHAPTER ONE: INTRODUCTION 

Recommender systems have long been used to reduce information overload 

people are facing on the Internet by presenting them with recommendation lists of 

interesting items (e.g. movies, books, music, and products). These systems learn overall 

or individual user tastes from data sets collected through user-item interactions (e.g. 

ratings or purchases). For example, if a user gives a rating of “like” to action movies, 

then a system may recommend more action movies to the user. 

To evaluate the effectiveness of a proposed new recommender system, the 

standard method is to conduct an online evaluation using an A/B test. An A/B test 

randomly splits users into two test groups, exposes each group of users to a different 

recommender, and monitors users’ response to each recommender; it then compares 

metrics that are relevant to the business’s goals such as sales volume. Online evaluation 

directly measures business goals and users’ satisfaction about recommended items, but it 

is costly and time-consuming: a new recommender may hurt the experience of users who 

are used to the old system, and it also takes months to develop and test. Further, for 

academic researchers, much research can only be done offline since accessing a large 

number of users for online experiments is not always feasible. Even in commercial 

settings that perform A/B tests, an offline evaluation is often done before an online 

evaluation to first gain confidence with a new algorithm. 

However, the data sets collected for offline training and evaluating recommender 

systems are very sparse (i.e. relevance information about most items is missing), and the 
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information present is usually not a random sample of user preferences due to the 

complexities of user interactions with the system and its products. For example, users 

may be more likely to know about popular items and may also be more likely to consume 

items they like, so data on items they would like is missing not uniformly at random. This 

causes a number of well-known problems for recommender systems in general but has 

particular impact on offline evaluations of their effectiveness. 

Figure 1 shows an example of how these problems can affect the computation of a 

common metric, the precision of a recommendation list. Precision measures the fraction 

of recommended items that are relevant to the user. The first column contains two 

recommendation lists for a user. In the test data, we can observe relevance information of 

movies (green color) the user has rated “like” but not unrated ones (grey color). The 

standard assumption is that unrated items are not relevant to the user. Based on this 

assumption and the observed relevance information, the evaluation result says that Rec. A 

Figure 1: An example of evaluation metric computation. 
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is better than Rec. B. But what if the user would actually like Zootopia, Dumbo, and 

Tangled if the user saw them? In this case, Rec. B would be a good recommendation list 

since it helps the user not only find movies they would like, but to find novel movies that 

they would like and have not seen. Assume the user’s complete true preferences, which 

we cannot obtain in the traditional offline evaluation practice, are shown as in the last 

column. This “true precision” prefers Rec. B over Rec. A, which contradicts the 

evaluation result on observed data. Another evaluation issue shown in Figure 1 is 

popularity bias. In Rec. A, all movies are much more popular than ones in Rec. B (as 

measured by rating count on MovieLens). Since movies in Rec. A are popular movies 

they are more likely to be rated and to appear in the test data. A popular recommender 

like Rec. A that just recommends popular items can achieve a higher observed precision 

than a personalized recommender like Rec. B, even though Rec. B recommends more 

novel items that the user would like. 

Unfortunately, while this missing data causes significant challenges for evaluating 

recommender effectiveness, its exact impact on experimental outcomes remains 

unknown. Specifically, we do not know how often missing data skews recommendation 

list evaluations, or how much effect this has on the outcomes of evaluation experiments. 

For commonly-used data sets, we do not know the underlying ground truth, and we also 

do not know the particular observation process (the process by which users discover and 

rate movies, turning preferences into observable data). We cannot look behind to 

compare the true metric values with the observed values to know how often these issues 

happen. This gives rise to metric error, which we define as the difference between 

experimental results with observable data and the results that would be obtained if 
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complete user-item relevance information were available. To study how much the metric 

error impacts on evaluation outcomes, we are interested in how it is distributed. Current 

research, however, lacks a good understanding of the distribution of the error in 

experimental outcomes. 

In this work, we present a simulation study that estimates the extent of missing 

data errors by comparing experimental outcomes on observable data with outcomes on 

complete data in simulated conditions. We use publicly-available data sets in multiple 

domains to calibrate our simulation models to produce realistic data, and then run offline 

evaluation experiments on these synthetic data sets. Finally, we compare commonly used 

evaluation metrics computed from observable data sets with ones computed from 

simulated true preference data sets. 

1.1 Thesis Statement 

Commonly-used evaluation metrics, including Precision, Recall, Mean Reciprocal 

Rank (MRR), and Normalized Discounted Cumulative Gain (nDCG), exhibit errors in 

estimating their true values. Simulations show that the degree of error varies between 

algorithms and assumptions on the data generation. Evaluation metrics on observable 

data generally underestimate the true metrics except Recall, and sometimes are fooled 

into mis-ranking algorithms. 

1.2 Research Outline 

In this thesis, we present a simulation study that estimates the extent of missing 

data errors by comparing experimental outcomes on observable data with outcomes on 

complete data in controlled conditions. We use publicly-available data sets in multiple 
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domains to calibrate our simulation models to produce realistic data. Our study is driven 

by the following research questions: 

1. How do different simulation models and parameter tuning processes compare in 

their ability to replicate real data? 

2. What error does missing data cause in evaluation metrics? 

3. How does metric error change as we change the data generation process (i.e. 

assumptions about the data)? 

4. What incorrect decisions does missing data cause? 
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CHAPTER TWO: RELATED WORK 

Recommender systems are software applications deployed on the Internet to help 

people find useful items by providing recommendation lists. These recommendation lists 

are generated by different techniques that can be taxonomized in various ways. One 

categorization particularly relevant to this work is the degree of personalization: non-

personalized recommenders, semi-personalized recommenders, and personalized 

recommenders [2]. The popular recommender is a typical non-personalized recommender 

that recommends the 𝑁𝑁 most popular items to all the users. Semi-personalized 

recommenders usually recommend the same items to users in the same group in terms of 

their demographic information (e.g. local news recommendations based on the physical 

location of the user’s IP address). Personalized recommenders recommend different 

personalized items to individual users based on their unique characteristics and 

consumption history (e.g. movie recommendations based on the user’s profile of watched 

movies). One of the most common and successful personalized recommendation 

techniques is the collaborative filtering family of algorithms, including user based and 

item based nearest-neighbor, matrix factorization, and machine learning algorithms that 

mine patterns from user-item interactions for personalized recommendations [3]. 

2.1 Traditional Evaluation Methodologies 

Recommender systems are driven by business goals (e.g. return on investment 

and user satisfaction). To select a recommender system that meets business goals, R&D 

engineers must evaluate a range of candidate algorithms on metrics that indicate or reflect 
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the business goals. The two main categories of approaches for evaluating recommender 

systems are online evaluation and offline evaluation. 

2.1.1 Online Evaluation 

The gold standard method for evaluating a recommender system’s effectiveness 

or usefulness is online evaluation. Online evaluations deploy candidate algorithms online 

simultaneously and observe users’ interactions with the systems or solicit user feedback 

on the recommendations and experience. Online tests can assess not only the 

recommendation itself, but also the user experience in which they are presented. 

A/B Test 

An A/B test is an online experiment that compares an existing recommendation 

algorithm with an alternative one in terms of business metrics. It randomly splits users 

into two test groups, exposing each group of users to a different test algorithm, then 

monitors users’ interactions with the system to compute a metric relevant to the business 

such as conversion rate, click through rate, or sales volume. Statistical tests for randomly-

controlled trials can determine if the metrics measured for these two groups have 

statistically significant differences, guiding the decision of whether to deploy the new 

algorithm [4]. 

User Study 

A user study measures users’ subjective perceptions and opinions about the 

system under experimentation through surveys and questionnaires. This provides insight 

to user behaviors and satisfaction that are available through observation [5]. 

The advantage of online evaluations of either type is that they directly measure 

recommender system performance in a way that is explicitly correlated with business or 
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user goals. However, they are costly and time-consuming: users who have bad 

experiences with the test algorithm may no longer use the system in the future, and online 

deployment of a new algorithm usually takes months to develop and test to make it ready 

for evaluation. 

Online evaluations are also difficult to repeat or replay just using the data 

collected in previous experiments, making publicly-available datasets not suitable for 

redoing online experiments. For academic researchers, accessing a large number of users 

for online experiments is not always feasible. Much research can only be done offline, 

and even when online experimentation is available, it is better to first do an offline 

evaluation to gain confidence with a new algorithm before deploying it for online 

evaluation. 

2.1.2 Offline Evaluation 

Traditional offline evaluations use metrics and methodologies borrowed from 

machine learning and information retrieval to estimate the performance of 

recommendations. These methods follow a train-test evaluation procedure [5]: 

1. partition users’ consumption data into the training set and the test set. 

2. train recommendation algorithms on the training set. 

For each user: 

3. generate a list of recommendations from a set of candidate items (typically 

the items that the user has not rated in the training set). 

4. test prediction accuracy or ranking effectiveness using the withheld test 

data as the ground truth. 

5. average the metric scores across all test users. 
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Offline evaluation metrics typically measure prediction accuracy or top-𝑁𝑁 

accuracy. Prediction accuracy is measured with the error in predicting ratings, typically 

using either Root Mean Square Error (RMSE) or Mean Absolute Error (MAE). Metrics 

that measure top-𝑁𝑁 accuracy include Precision, Recall, Normalized Discounted 

Cumulative Gain (nDCG) [6], and Mean Reciprocal Rank (MRR) [7]. Early work 

focused on choices of evaluation metrics [8], specifically prediction accuracy vs. top-N 

accuracy, and comparison of predictive performance among various recommendation 

algorithms [9] using the values of these metrics. Accuracy differences measured by these 

metrics, however, are subtle in reflecting user goals for some tasks, and are sensitive to 

different data sets in use [8]. Herlocker, et al. [8] discussed the factors of data selection to 

perform evaluation, investigated the correlations between metrics, and explored new 

metrics that evaluate perspectives other than accuracy. Bellogín, et al. [10] studied the 

impact of the way that splits train test sets on the evaluation results. 

2.2 Evaluation Problems 

To measure prediction or top-N accuracy of recommender systems, the offline 

evaluation procedure requires relevance information of all recommended items to 

compute evaluation metrics. This information is available in supervised machine learning 

and controlled IR settings (e.g. TREC competitions). Recommendation scenarios, 

however, rarely have this ground truth information due in large part to the personalized 

notion of relevance for individual users. The standard practice for recommender 

evaluation is to assume that items missing relevance information are not relevant to the 

user; while this assumption is reasonable for individual items [11], its validity degrades 

as more items are considered (e.g. a recommendation list), particularly when relevance 
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data are not missing at random [12, 13]. There are several manifestations of this problem, 

including unknown relevant items and popularity bias. 

2.2.1 Unknown Relevant Items 

Unknown relevant items arise when the user would like an item but has not rated 

it in either the training or the test data. This item should be a good item to recommend, 

but since the evaluation protocol treats unrated items as irrelevant to the user, the 

recommender is penalized for recommending it. This is problematic in many applications 

where the goal of recommender systems is to recommend novel items to users that they 

would like. Because of unknown relevant items, offline evaluations reject excellent 

recommendations of novel items the user would enjoy because they were not known to 

the user in the system from which data was collected and are therefore missing from the 

test data. 

2.2.2 Popularity Bias 

Popularity bias is the effect that evaluations favor recommendations of popular 

items significantly beyond the usefulness of popularity in producing good 

recommendations. It arises because popular items are more likely to be exposed to users, 

then to be rated in both the training set and the test set, and the evaluation result is an 

average score of an evaluation metric across all users in the test set. A popular 

recommender often achieves a higher evaluation score than a personalized one just 

because popular items are more commonly the ‘right’ answer. 

2.2.3 Impact 

These problems cause significant challenges for evaluating recommender 

effectiveness, but their exact impact on experimental outcomes remains unknown. 
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Specifically, the field currently lacks a good understanding of the distribution of the error 

these problems induce in experimental outcomes, where error is the difference between 

the experimental results with available data and the results that would be obtained if 

complete user-item relevance information were available. 

There are several existing lines of work on the validity of offline evaluations, 

including changing the protocol [14], unbiased estimators [15, 16], counterfactual 

evaluation [17, 18], and simulations [19]. 

2.3 Evaluation Protocols 

The experimental protocol for an offline evaluation protocol defines strategies to 

partition data into training and test sets and selecting candidate items for recommendation 

for each test user. Different partitioning strategies serve different objectives and can also 

affect the results of an evaluation [10]. One approach to evaluation difficulties is to 

change the protocol, particularly the way that test items and candidate items are selected 

or analyzed, to neutralize popularity biases and reduce the likelihood of recommending 

misclassified decoys. 

2.3.1 Popularity Treatment 

Bellogı́n [14] proposed an alternative data splitting strategy to address popularity 

bias that aim to compensate for the rate at which different items appear in the test set. 

This strategy samples the test data so that each item appears as a test item an equal 

number of times; grouping data by item and sampling 𝑁𝑁 users who have rated that item 

will accomplish this. The author also proposed a way to analyze evaluation results in 

order to mitigate popularity effect. This method aggregates evaluation metrics by 

popularity quantile; this enables analysis of the algorithm’s effectiveness at different 
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popularity levels, and ensures that the least popular quantile of items influences the final 

score as much as the most popular quantile. 

These methods affect absolute metric values, but not necessarily the relative 

performance of algorithms [10]. 

2.3.2 Unknown Relevant Items Treatment 

Similarly, changing how the experimental protocol selects candidate items — the 

items the recommender considers when producing a top-𝑁𝑁 list for each user — may be 

useful in addressing misclassified decoys. 

Standard evaluations use all items that aren’t in the user’s set of training ratings as 

candidates. If instead we use a candidate set consisting of the user’s test items plus a 

random sample of unrated items (sampled anew for each user), we can decrease the 

likelihood of misclassified decoys. This is because unknown relevant items are relatively 

rare, so they are probably not going to be picked as a part of the sample [20]. 

However, this method’s usefulness relies on unrealistically strong assumptions of 

the rareness of unknown relevant items, and it likely exacerbates popularity bias [11]. Its 

efficiency is therefore suspect and in need of further study. 

2.4 Unbiased Estimators 

Another proposed solution is to select evaluation metrics that admit statistically 

unbiased estimators using the observed data. 

Under assumptions that (1) ratings for relevant items are missing at random and 

(2) the non-relevant ratings have a higher probability of being missing than the relevant 

ones, computing top-𝑁𝑁 hit rate (recall) using observed data is an unbiased estimator for 

the true value [16]. Under the same assumptions, computing non-normalized discounted 
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cumulative gain with observed implicit feedback data is an unbiased estimator for the 

true value based on complete data [15]. 

There are two significant limitations to this approach. First, it limits the choice of 

metrics; in assessing recall, Steck [16] observes that computing precision with observed 

data is not an unbiased estimator. Lim, et al. [15] show that the more common normalized 

discounted cumulative gain is biased, so producing an unbiased estimate requires 

sacrificing normalization. 

In general, therefore, this approach requires a tradeoff between statistical validity 

and appropriateness of the metric to the task. If the recommendation task is best captured 

by a metric without an unbiased estimator, then effectiveness for that task cannot be 

reliably assessed. Second, the necessary assumptions are unlikely to hold in realistic 

scenarios. Ratings or consumption events are not sampled at random from the relevant 

items; the user's choice of items to rate arises from a complex discovery process based on 

user knowledge, social networks, and existing discovery tools. 

2.5 Counterfactual Evaluation 

One particularly powerful means of addressing the weaknesses of offline 

evaluation is to reframe the recommendation and evaluation problem as a counterfactual 

learning problem [17, 21, 18]. This approach aims to reconstruct from offline data an 

estimate of how the user would have responded had they received a different 

recommendation. 

Counterfactual evaluation has the enormous benefit of actually measuring the 

problem that we most often care about, particularly from business and user response 

perspectives: the ability to recommend items the user will accept. Its downside is that it 
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represents a substantial break from historical practice and often is not applicable to 

commonly-used data sets. The largest available data set for counterfactual evaluation, 

from Criteo [21], is valuable but also opaque: the lack of descriptors for item features 

means that less insight can be obtained about algorithm behavior and performance. 

While we should — and do — welcome such breaks when they move the field 

forward substantially, we would also like to understand how much knowledge under the 

old paradigm can be carried forward, and develop techniques when possible that can be 

used with more common data sets. 

2.6 Simulation 

Neither reframing the problem to avoid the pitfalls of classical evaluation nor 

choosing provably unbiased estimators answers a key question for interpreting previous 

results: just how wrong are they? Further, the widespread availability of data, metrics, 

instructions, and tools for classical evaluations makes them relatively easy to perform; if 

there is a way to improve their accuracy that can be deployed in existing scenarios, such 

techniques would significantly improve the reliability of recommender systems research 

and testing. 

The most promising technique we see for this work is simulation. Since, by its 

very nature, we cannot know the underlying ground truth for observed data, and we do 

not know the particular process by which the observed data was generated, we can't 

(except in a few limited circumstances) look behind the data to compare observed metric 

values to what they would be if we had complete relevance data. Simulation, however, 

lets us open the curtain: by generating complete and observed data under a range of 
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scenarios, we can look at how the observed results vary based on different possible 

observation processes. 

Chaney et al. [22] models the feedback loop between user consumption behavior 

and recommender systems to analyze the impact of algorithmic confounding on user 

utility. Their simulations found the feedback loop increases homogenization of user 

behavior without gaining utility, and it also affects the distribution of item consumption. 

Their work focuses on the impact of the feedback loop on the resulting user utility matrix 

rather than evaluation metrics. Cañamares & Castells [19] built a probabilistic model to 

analyze the conditions that determine the usefulness of popularity in recommender 

systems and better understand popularity bias under various conditions. They defined 

optimal ranking strategies that maximize the true or observed precision@1 for non-

personalized recommendation. By changing conditional independence among three 

variables —item relevance, item discovery, and item rating — the authors analyzed how 

the popular recommender and the average rating recommender perform compared to 

optimal and random recommenders under both observable and true precision. They found 

that the most-popular recommender is close to the optimal recommender in observed 

precision and the average-rating recommender is close to optimal in true precision if 

rating presence is conditionally independent of relevance or no independence 

assumptions are made. 
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CHAPTER THREE: METHODS 

As discussed in chapter one, the goal of this research is to estimate the 

distribution of metric error in offline evaluations, where metric error is the difference 

between metrics computed with observable data and those computed with true preference 

data. To estimate these error distributions, we need to know users’ underlying true 

preferences for recommended items. Commonly-used public data sets, however, lack this 

true information, and the particular observation process that produced these data sets is 

also unknown. Therefore, we cannot “look behind” a data set to compare observed metric 

values against the “true” metric values. 

To overcome these problems, we simulate the entire recommender system 

experiment, from preference construction through data collection to offline evaluation. 

With access to the ground truth data, because it is generated by the simulator, we can 

measure what the precision or reciprocal rank of a recommendation list would be if the 

data set were not missing data and compare that value to the metric obtained from the 

observable data an experiment would ordinarily employ. This allows us to produce a first 

approximation of the error in experimental results where we cannot access unbiased truth. 

The simulated true preferences also enable us to test experimental protocols on oracle 

recommenders that omnisciently return the most relevant items, irrespective of 

observation process. By comparing evaluation results of the oracle recommender with 

other recommenders, we can answer how often the evaluation mistakenly ranks a 
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baseline recommender over a perfect recommender under different generation 

assumptions. 

Figure 2 shows our simulation architecture. We employ a two-step data 

generation process: we first simulate complete (binary) user-item relevance data, then 

sample observations (ratings or purchases) from this complete truth. This two-step data 

generation has two main advantages: 1. it provides flexibility in data modeling, allowing 

us to produce observable data with similar distributions from different true preference 

models; and 2. it enables us to investigate the impact of true preference assumptions and 

observation processes separately on the resulting metric values. For example, we can 

encode popularity effects into the true preference model and the missing-at-random 

assumption into the observation process through this data generation process. 

To ensure that our simulated data is reasonably realistic, we tune the parameters 

of our simulations to mimic key statistics of existing public data sets. We then split the 

simulated observations into training and test data, generate recommendations for the 

simulated users, and measure the quality of these recommendations using both the 

observed test data and the underlying true preferences as ground truth. 

 

Figure 2: Simulation architecture. 
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3.1 True Preference Generators 

We employ three different models for simulating items being relevant to users: a 

uniform model, a preferential attachment process [23, 24], and a correlated preference 

model [25]. These models each encode different assumptions about user-item 

interactions. Each sampling process produces a set 𝑈𝑈 of users and sets 𝐼𝐼𝑢𝑢 ⊆ 𝐼𝐼 of items 

liked by each user. Our current models simulate binary preference (“like” or “don’t 

like”); continuous preference is a natural next step that we leave for future work. 

3.1.1 Uniform Model 

The uniform model assumes each user likes each item with an equal probability 

for a given number of items the user likes. The uniform model removes the popularity 

effect in users' true preferences. While it is not a realistic model, it enables us to analyze 

the evaluation process without popularity biases. 

The uniform model is implemented as follows: 

1. Draw |𝐼𝐼𝑢𝑢� | (the number of items the user likes) from a Poisson distribution 

with mean 𝜆𝜆. 

2. Sample |𝐼𝐼𝑢𝑢� | items without replacement uniformly from a total of |𝐼𝐼| items. 

3.1.2 Popularity Based Model 

User consumption data in recommender systems exhibits strong popularity effects 

[14], often following a long-tailed distribution with power law behavior [26]. The latent 

structure that generates this kind of observed data can be modeled as a preferential 

attachment process [23]; such processes are commonly modeled using the “Indian buffet 

process” (IBP). In this thesis, we employ the three-parameter generalized IBP proposed 

by Teh & Görür [24]. This model is capable of producing data exhibiting power law 
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behavior, unlike a traditional IBP [27]. The IBP model with parameters 𝛼𝛼 > 0, 𝜎𝜎 ∈

 [0, 1), and 𝑐𝑐 > −𝜎𝜎 is defined as follows: 

1. The first user likes Poisson(𝛼𝛼) items. 

2. User (𝑛𝑛 +  1) likes previously-known item 𝑖𝑖 with probability 𝑚𝑚𝑖𝑖−𝜎𝜎
𝑛𝑛+𝑐𝑐

 (where 𝑚𝑚𝑖𝑖 is 

the number of users who like item 𝑖𝑖) and likes Poisson(𝛼𝛼 Γ(1+𝑐𝑐)Γ(𝑛𝑛+𝑐𝑐+𝜎𝜎)
Γ(𝑛𝑛+1+𝑐𝑐)Γ(𝑐𝑐+𝜎𝜎)

) new 

items. 

𝑐𝑐 controls how likely the user is to rate new vs. old items. 𝜎𝜎 governs the power-

law behavior of the generated preference matrix; 𝜎𝜎 = 0 yields a traditional IBP [28], with 

larger values yielding stronger power-law distributions of item popularity. 𝛼𝛼 controls the 

density of the generated preference matrix. When 𝜎𝜎 > 0, the process generates on 

average 𝛼𝛼 ∗ |𝑈𝑈|𝜎𝜎 items [24]; when 𝜎𝜎 = 0 and 𝑐𝑐 = 1, it generates approximately 𝛼𝛼 ∗

(log|𝑈𝑈| + 𝛾𝛾) items on average, where 𝛾𝛾 is Euler's constant [23]. 

The IBP model assumes that users like items independently; if a user likes item 𝑖𝑖, 

it says nothing about their preference for item 𝑗𝑗. This property allows us to scale up the 

simulation size through parallelism at the expense of realism. 

3.1.3 Correlated Preference Model 

The independence assumption is deeply questionable, however, because item 

preferences often are correlated, and exploiting those correlations is fundamental to many 

recommendation techniques. Latent feature models provide a mechanism for representing 

correlations between items, as a user who likes an item that loads strongly on a feature is 

more likely to like other items that also load on the feature. One such model, suitable to 

simulating binary data, is the latent Dirichlet allocation model (LDA) [25]. The LDA 

generation process for 𝐾𝐾 latent features is as follows: 
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1. Draw 𝐾𝐾 feature-item vectors 𝜙𝜙�⃑ 𝑘𝑘 ∈ [0,1]|𝐼𝐼| from Dirichlet(𝛽𝛽). 

2. For each user: 

a. Draw a latent feature vector 𝜃⃑𝜃𝑢𝑢 ∈  [0,1]𝐾𝐾 from Dirichlet(𝛼𝛼). 

b. Draw 𝑛𝑛𝑢𝑢 (the number of items) from Poisson(𝜆𝜆). 

c. Draw items 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛𝑢𝑢 liked by user 𝑢𝑢 by drawing feature 𝑘𝑘𝑥𝑥 ∼

Multinomial �𝜃⃑𝜃𝑢𝑢� and 𝑖𝑖𝑥𝑥 ∼ Multinomial(𝜙𝜙�⃑ 𝑘𝑘𝑥𝑥). 

3. De-duplicate user-item pairs to produce implicit user preference samples. 

To reduce the number of parameters for fitting efficiency, we use symmetric 

LDA, where 𝛼𝛼 is a constant vector with all values equal to 𝑎𝑎 > 0, and likewise 𝛽𝛽 is 

constant 𝑏𝑏 > 0. These parameters 𝑎𝑎 and 𝑏𝑏 control the breadth of user preferences; when 

𝑎𝑎 < 1, the values of 𝜃⃑𝜃𝑢𝑢 concentrate on a few of 𝐾𝐾 dimensions, making the user’s 

preferences concentrate on a few of items if 𝑏𝑏 < 1. The parameter 𝜆𝜆 controls the average 

number of items each user likes. The parameter 𝐾𝐾 controls the size of the latent feature 

space, affecting the diversity of user-item preference patterns in the whole true preference 

data. 

3.2 Observation Samplers 

We turn simulated preference into synthetic “rating” data sets by sampling 

observations of user consumption from the true preferences. We use two different models 

for this sampling; these encode different assumptions about the process by which users 

discover and consume items they like. The result is a set 𝐼𝐼𝑢𝑢 ⊆ 𝐼𝐼𝑢𝑢�  for each user. 

3.2.1 Profile Size Controller 

Both observation models start by drawing 𝑛𝑛𝑢𝑢, the number of items a user will 

rate. Since each observable user consumes at least one item (or some larger number, such 
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as 20 for MovieLens data sets [29]) and user activity levels follow a heavy-tailed 

distribution, we draw 𝑛𝑛𝑢𝑢 from a truncated Pareto distribution rounded to an integer in the 

range [1, |𝐼𝐼𝑢𝑢� |]1. The generation of random variables from the truncated Pareto 

distribution is implemented by inverse transform sampling with three parameters: 

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 > 0, the scale parameter controlling the lower bound of the distribution; 𝛼𝛼 > 0, the 

shape parameter; 𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ > 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙, the upper bound of the distribution. Inverse transform 

sampling draws a random sample 𝑝𝑝 from Unif(0,𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ)) and returns 

𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−1 (𝑝𝑝), where 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) is the cumulative distribution function of Pareto 

distribution. 

3.2.2 Uniform Sampling 

The uniform sampler samples 𝑛𝑛𝑢𝑢 items uniformly at random from 𝐼𝐼𝑢𝑢�  to form 𝐼𝐼𝑢𝑢. 

This strategy encodes the missing-at-random (MAR) assumption, allowing us to 

compare our simulation results with analyses of unbiased estimators [16]. 

3.2.3 Popularity Sampling 

The popularity-weighted sampler embodies the idea that users are more likely to 

consume items that they are exposed to, and they are more likely to be exposed to 

popular items than unpopular ones. This is one way in which observed data may violate 

the missing-at-random assumption underlying other work. 

This strategy also samples 𝑛𝑛𝑢𝑢 items from 𝐼𝐼𝑢𝑢� , but each item's selection probability 

is proportional to |𝑈𝑈𝚤𝚤� |, where 𝑈𝑈𝚤𝚤�  is the set of users who like item 𝑖𝑖 in the true preference 

                                                 

1 We also tested the truncated beta-binomial distribution, its performance is similar to the 
truncated Pareto; rejection-sampling when 𝑛𝑛𝑢𝑢 > |𝐼𝐼𝑢𝑢� | produced slightly better simulations than clamping at 
substantial computational expense. 
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data. This accounts for the popularity effect in observation in the way that items liked by 

more users are more likely to be consumed in the observable data than items liked by less 

users, because they are more widely known. 

3.3 Data Sets 

To realistically reason about the impact of varying assumptions about the data 

generation, we need a reference point with which we can compare simulated observable 

data sets from our different models to assess their realism. We use three data sets from 

different domains as reference points for calibrating the simulation process, summarized 

in Table 1. 

ML1M [29] contains 1M ratings of 3,706 movies from 6,040 users, where each 

user has at least 20 ratings. 

AZM5 [30] contains 65K reviews with 5-star ratings of 3.6K digital music albums 

from 5.5K users, where each user and each item has at least 5 reviews (the “5-core”). 

STMV1 [31] contains 5M purchases of 11K video games by 71K Australian users 

of the Steam game distribution service. 

Table 1: Summary of data sets 

Datasets Users Items Pairs Density 

ML1M 6,040 3,706 1,000,209 4.47% 

AZM5 5,541 3,568 64,706 0.33% 

STMV1 70,912 10,978 5,094,082 0.65% 

 

These data sets cover different data sparsity, user activity, and item popularity 

distributions, allowing us to examine the robustness of our data generation process and 

assess the influence of modeling parameters on evaluation results. 
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3.4 Calibration 

We calibrate our simulations to produce synthetic observation data sets that 

mimic key statistics of our reference data sets. We compare synthetic data from our 

simulator to our reference data sets using the K-L divergence [32] between synthetic and 

observed distributions of four properties: item popularity, user activity, item-item 

correlation, and user-user correlation. While these key statistics are not complete, they 

provide a good starting point since they capture data dynamics in both item and user 

dimensions, and data patterns reflected by these statistics are usually mined by 

collaborative filtering algorithms. A realistic simulation data set should be comparable to 

the reference data set on at least these statistics. Our goal of this calibration is to converge 

simulated data sets produced by various models to the same reference data set (as 

measured by similarity in statistical distributions) so we can investigate the impact of 

assumptions about the data generation on the distribution of evaluation results. We do not 

need to be able to compare individual users or items between synthetic and published 

data, like what matrix factorization does, to assess the distribution of evaluation results; 

we can think of the reference data set as one sample drawn from our data generation 

distribution with specific user and item index orders. 

3.4.1 Item Popularity & User Activity 

We construct item popularity and user activity distributions by counting the 

frequency of each popularity or activity level (profile size) in the observed data set. 

If a model is producing realistic data, then the distributions of item popularity and 

user profile size should be comparable to those distributions in a real data set. 
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3.4.2 Pairwise Correlation 

We compute item (and user) correlation distributions by sampling 1M unique 

item (user) pairs and computing the cosine similarity between their rating vectors, where 

a vector element is 1 if the user consumed the item and 0 otherwise. We exclude items 

(and users) with fewer than 5 ratings to keep the prevalence of 0-correlations (due to data 

sparsity) from overwhelming the comparison — if we did not do this, the metric only 

assessed the simulation's ability to produce a suitable number of 0s and did not 

meaningfully measure the distribution of nonzero correlations. We compare the 

distribution of these similarity values between the synthetic and reference data. To 

construct the distribution of these similarity values, we use Numpy’s histogram function 

with default settings [33] and normalize the histogram to a density distribution with 

support of (-1, 1). 

3.4.3 Parameter Optimization 

We use Gaussian process minimization, as implemented by Scikit-Optimize [34], 

to find simulation parameters that minimize the K-L divergence from synthetic data to 

observed data on each distribution. Gaussian process minimization is much more efficient 

than commonly-used grid search or random search for large numbers of tunable 

parameters, particularly for non-differentiable models such as our simulation procedures. 

We optimized parameters for all six models (each combination of preference and 

observation models) using each of the distributions on each of the data sets, yielding 3 ×

2 × 4 × 3 = 72 models. By searching parameters optimized for a single distribution, we 

found that parameters optimized for one statistic distribution may not necessarily result in 

optimized results for other distributions. Unfortunately, K-L divergence is not amenable 
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to multi-objective optimization because values are not comparable across target 

distributions; a K-L divergence of 0.5 on item popularity does not mean the same thing as 

a divergence of 0.5 on user similarity. To overcome this limitation, we computed the 

relative loss on each statistic. Relative loss is the ratio of the K-L divergence on a statistic 

to the best K-L divergence obtained by optimizing our family of models for that statistic 

on that data set. These relative loss values are on a scale that can be compared; for 

example, LDA-Pop's fit on Item Popularity for ML1M is 6.9% worse than the best 

known model, while its fit on User Activity is 82.3% worse. We then compute the 

average loss for a model by taking the mean of the relative loss across all four statistics, 

providing a single score for which models can be optimized. This score weights all 

distributions equally; exploring the impact of different relative weightings is future work. 

3.5 Evaluation Experiments 

Finally, we use synthetic data from tuned simulation models to simulate 

recommender evaluation experiments that measure top-𝑁𝑁 accuracy. 

3.5.1 Evaluation Protocols 

We held out 20% of each user's observed items as testing data, generated 50-item 

recommendation lists, and computed commonly-used recommendation accuracy metrics 

using LensKit [35]. 

We computed each metric two ways: once with the held-out observable test data 

as ground truth, and again with the simulated true preference data as truth. We repeated 

each experiment, including data generation, 100 times. 

3.5.2 Recommenders 

We test evaluation metrics on three recommenders: 
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• The Oracle recommender knows all relevant items and always 

recommends top-N relevant candidate items for each user. This relevance 

information is produced by preference models that models users’ complete 

true preferences. This basic Oracle recommender allows us to estimate 

evaluation results on a perfect recommender. Our current Oracle does not 

do anything to specifically promote novelty, but will recommend relevant 

items that are not in the test data as a result of its design. 

• The Popular recommender recommends the most popular items using 

popularity statistics from the observable training data. This allows us to 

study how the popularity effect impact on the evaluation metrics, 

particularly when the sampling process is popularity-weighted sampling. 

• The Random recommender recommends random unrated items for each 

user. This gives us the lower bound of estimating evaluation error: do 

evaluation metrics prefer the Random over the Oracle recommender? 

Our goal of this study is to evaluate the evaluation process of recommender 

systems rather than recommender systems themselves. Oracle and Random recommender 

provide us an upper bound and a lower bound of the recommendation quality in complete 

data sets. Given these two reference points, we can compare how much an assumption 

about the data generation impact on evaluation results. For example, we can answer does 

the popularity assumption make evaluation favor Popular recommender over Oracle 

recommender? 

We report results for commonly-used top-𝑁𝑁 evaluation metrics: Precision, Recall, 

MRR, and nDCG. 
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CHAPTER FOUR: RESULTS 

This section presents the results of running our simulations. We start by reporting 

the optimization results of each model with respect to each reference data set on the 

average relative loss of the best known K-L divergence scores, and then we use simulated 

observable data generated from each model with optimized parameters to run 

recommender experiments and compare the metric scores on both simulated true 

preference and observable data sets. 

4.1 Calibration Results 

To answer RQ1, we tune parameters of our preference models and observation 

models with Gaussian process minimization as implemented by scikit-optimize, running 

for 150 iterations. In each iteration, scikit-optimize generates a set of parameters for our 

models in its search space; we then generate synthetic data with this set of parameters and 

compute the K-L divergence of the distribution (e.g. item popularity or item-item 

similarity values) from simulated data to the reference data, and scikit- optimize uses the 

results of this measurement to update the search direction. Table 2 summarizes the 

parameter spaces of our models. For each preference model, we use the number of users 

and items in the reference data sets as the corresponding model parameters. In the Unif 

model, 𝜆𝜆 controls the expected number of items a user likes; we select a search space of 

(5, 2000) to cover all data sets. For IBP, 𝛼𝛼 affects the number of items |𝐼𝐼| and the density 

of simulated data sets. As mentioned in Section 3, |𝐼𝐼| can be approximated by 𝛼𝛼 × |𝑈𝑈|𝜎𝜎 
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Table 2: Summary of model parameters. 

Model Param. Description Search Space 

ML1M AZM5 STMV1 

Unif |𝑈𝑈| Number of users 6040 5541 70912 

|𝐼𝐼| Number of items 3706 3568 10978 

𝜆𝜆 Expected number of likes 
for a user 

(5, 2000) (5, 2000) (5, 2000) 

IBP |𝑈𝑈| Number of users 6040 5541 70912 

𝛼𝛼 Mass parameter 
controlling |𝐼𝐼|. 

(20, 
1000) 

(10, 1000) (10, 500) 

𝑐𝑐 Concentration parameter (0.01, 
100) 

(0.01, 100) (0.01, 100) 

𝜎𝜎 Stability exponent 
controlling power-law 
behavior 

(0, 0.99) (0, 0.99) (0, 0.99) 

LDA |𝑈𝑈| Number of users 6040 5541 70912 

|𝐼𝐼| Number of items 3706 3568 10978 

𝐾𝐾 Number of latent features (5, 200) (5, 200) (5, 200) 

𝜆𝜆 Mean of Poisson(λ) (5, 2000) (5, 2000) (100, 
2000) 

𝑎𝑎 The element value of 𝛼𝛼 (0.01, 1) (0.01, 1) (0.01, 1) 

𝑏𝑏 The element value of 𝛽𝛽 (0.01, 1) (0.01, 1) (0.01, 1) 

Truncated 
Pareto 

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 Lower bound of the 
truncated Pareto 
distribution 

(16, 24) (4, 6) (1, 1.2) 

𝛼𝛼 The shape parameter (0.1, 20) (0.1, 20) (0.1, 20) 

𝑚𝑚ℎ𝑖𝑖𝑖𝑖ℎ Upper bound of the 
truncated Pareto 
distribution 

(1851, 
2777) 

(462, 694) (2000, 
9238) 
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for a large number of items and users, so we restrict the search space of 𝛼𝛼 to a small 

space for simulating large data sets to avoid generating very dense data sets that takes 

large memory and simulation time. 

Figure 3 – Figure 8 show key statistic distributions of our six models optimized 

for average relative loss on ML1M data set in a form suitable for graphical inspection 

[36], where the distribution of I-I Sim (and U-U Sim) is plotted using 1M samples of 5-

core item-item (user-user) pairs. Unif-based models seem to only fit on the user activity 

distribution due to our profile size controller, while IBP-based models and LDA-based 

models can fit on all statistics. 

Figure 9 – Figure 14 show calibration results for AZM5 data set. Both IBP-based 

models and LDA-based models have good fitting qualities on all statistics. This may 

because the reference data set is composed of users and items with at least 5 ratings, 

making users and items more correlated with each other than other reference data sets, 

then more suitable to our models. IBP-based models also have better fit on item 

popularity than LDA-based models. This may be due to the stability exponent parameter 

𝜎𝜎 that enables IBP models more adaptable to various power-law behavior. 

Figure 15 – Figure 20 show calibration results for STMV1 data set. Most of our 

models are not able to fit on this reference data set as well as on other reference data sets. 

One possible cause is that STMV1 data set is much more sparse than other two data sets 

and has larger user and item dimensions. Due to our limit of the search space, our models 

are more likely to produce extremely sparse data sets in which most users have a profile 

size lower than 5. Then scikit-optimize has a high chance of not finding good initial 

parameters during the first 25 iterations of initial random search stage. In the future work, 
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we hope to explore more relations between parameter search spaces and the reference 

data properties (e.g. density), then we can derive a proper search spaces from the 

reference data properties. 
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Figure 3: Key statistics of Unif-Unif model optimized to ML1M data. 
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Figure 4: Key statistics of Unif-Pop model optimized to ML1M data. 
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Figure 5: Key statistics of IBP-Unif model optimized to ML1M data. 
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Figure 6: Key statistics of IBP-Pop model optimized to ML1M data. 
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Figure 7: Key statistics of LDA-Unif model optimized to ML1M data. 
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Figure 8: Key statistics of LDA-Pop model optimized to ML1M data. 
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Figure 9: Key statistics of Unif-Unif model optimized to AZM5 data. 
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Figure 10: Key statistics of Unif-Pop model optimized to AZM5 data. 
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Figure 11: Key statistics of IBP-Unif model optimized to AZM5 data. 
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Figure 12: Key statistics of IBP-Pop model optimized to AZM5 data. 
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Figure 13: Key statistics of LDA-Unif model optimized to AZM5 data. 
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Figure 14: Key statistics of LDA-Pop model optimized to AZM5 data. 
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Figure 15: Key statistics of Unif-Unif model optimized to STMV1 data. 
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Figure 16: Key statistics of Unif-Pop model optimized to STMV1 data. 
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Figure 17: Key statistics of IBP-Unif model optimized to STMV1 data. 
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Figure 18: Key statistics of IBP-Pop model optimized to STMV1 data. 
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Figure 19: Key statistics of LDA-Unif model optimized to STMV1 data. 
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Figure 20: Key statistics of LDA-Pop model optimized to STMV1 data. 



49 

 

Findings: model parameters optimized for average relative loss can produce 

simulated data sets that capture all four statistics of reference data sets reasonably well, 

while parameters optimized for one statistic do not necessarily result in good fit on other 

statistics, demonstrated in Appendix A. Both LDA and IBP models can fit well on 

ML1M and AZM5 data sets, and IBP-Pop model fit the best on STMV1 data set in search 

spaces we explored. 

4.2 Simulation Results 

With the optimized models, we simulate recommender evaluations, running each 

simulation 100 times. We report the error of each metric, defined as 𝑀𝑀obs −𝑀𝑀truth where 

𝑀𝑀obs is the metric value using observable test data as ground truth and 𝑀𝑀truth is the 

metric value using true preference data. 

4.2.1 Recall 

Figure 21 shows Recall values on observable test data and true preference data, 

faceting rows and columns by preference models and combined observation samplers and 

reference data sets, and Figure 22 shows its error, faceting rows and columns by 

preference models and observation samplers. With the uniform observation sampler, 

recall has no bias (error is symmetrically distributed about 0), as expected since this is the 

assumption under which it is an unbiased estimator [16]. Recall on Unif-Pop model also 

exhibits no bias because the sampling probability of our popularity-weighted sampler is 

computed by the popularity statistic of the preference data set; when preference data is 

uniformly distributed, this probability is also uniformly across all items, then the 

popularity-weighted sampler reduced to a uniform sampler. 
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Figure 21: Recall with observable data and true preference data. 

 
Figure 22: Error in Recall (Recallobs - Recalltruth). 

When observations are popularity-biased, however, observed data tends to 

overestimate true recall. On simulated data sets optimized with respect to ML1M and 

STMV1, the popular recommender outperforms the oracle recommender on the 
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observable data sets while comparable to the oracle recommender on the true preference 

data sets. This may indicate that the popularity effect can exacerbate Recall biases to 

more severely overestimate the Popular recommender’s effectiveness. 

4.2.2 Precision 

Figure 23 and Figure 24 show Precision and the error in estimating it. Observed 

data generally underestimates precision substantially. Since our simulation models do not 

have users consuming irrelevant items, the set of relevant items in the true data is a 

superset of the observed items, increasing the opportunity for recommendations to be 

“correct” on the true preference data. For all models, observed data underestimates 

precision more for the Oracle recommender than for Popular (Oracle has smaller negative 

errors than Popular); this calls into question an experiment’s ability to assess the 

performance of algorithms relative to each other, particularly when one performs 

extremely well. 

 
Figure 23: Precision with observable data and ground true data. 
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Figure 24: Error in Precision (Precisionobs - Precisiontruth). 

4.2.3 MRR 

Figure 25 and Figure 26 show mean reciprocal rank and its estimation error. MRR 

exhibits approximately the same relevant patterns as precision; observable data 

underestimates true MRR (error is distributed below 0). On simulated data sets generated 

by IBP-Pop model optimizing with respect to ML1M and STMV1, the Popular 

recommender outperforms the Oracle recommender on the observable data set while 

comparable to the Oracle recommender on the true preference data set. 
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Figure 25: MRR with observable data and ground true data. 

Figure 26: Error in MRR (MRRobs - MRRtruth). 
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4.2.4 nDCG 

 
Figure 27: nDCG with observable data and ground true data. 

 
Figure 28: Error in nDCG (nDCGobs - nDCGtruth). 
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Figure 27 and Figure 28 show nDCG and its error. It is also biased, but its 

particular biases vary more between experimental conditions and recommenders. For 

example, errors for the Oracle recommender are greater than -0.4 for most reference data 

sets if preference models are Unif and IBP, while errors are less than -0.4 if preference 

model is LDA. This inconsistency means it would likely be more difficult to correct for 

missing data errors in evaluations using nDCG. 

4.2.5 Summary 

Findings: simulations validate Steck’s paper [16] that Recall is unbiased when 

relevant items are missing uniformly at random. When observations are popularity-

biased, observed data sets tend to overestimate true Recall, particularly for the Popular 

recommender. Observed data generally underestimates true Precision due in part to our 

model assumption that users only consume relevant items, and it underestimates more for 

the Oracle recommender than for Popular. MRR manifests similar results to Precision 

that observed data underestimates true MRR and generally underestimates the 

performance of Oracle more than that of the Popular recommender. nDCG is also biased, 

and its errors vary between assumptions and recommenders. If an evaluation metric 

underestimates all algorithms equally regardless of assumptions, then this observed 

metric can still reliably assess the relative performance of different algorithms; this 

inconsistency in nDCG errors suggests that nDCG is not reliable; the sensitivity to 

assumptions makes it difficult to correct for missing data errors. 

4.3 Algorithm Ranking 

We finally look at the prevalence of relative performance inversions: how often 

would an experiment rightly conclude that the Oracle recommender is more effective 
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than Popular? Table 3 shows these results. While the experimental outcomes were 

usually correct, there were a number of cases in which they were reliably wrong. In some 

cases, such as IBP with Popular observations, this is may be because popularity bias 

severely fooled the evaluator on the observable data. LDA did not produce this effect 

(except MRR on ML1M), indicating that extent of this error is sensitive to assumptions. 

Across all data sets, there are some cases in which MRR prefers the Popular 

recommender over the Oracle recommender when the underlying assumption is IBP-Pop. 

One possible explanation is that MRR is more sensitive to the popularity effect than other 

metrics we experimented. 

Findings: evaluations sometimes are fooled by the popularity effect to mis-

ranking the Oracle and Popular recommender. Its extent is sensitive to assumptions about 

the data generation. 
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Table 3: Percentage of runs where Oracle beats Popular. 

Data Pref Obs P@50 Recall MRR nDCG 

ML1M Unif Unif 100 100 100 100 

Pop 100 100 100 100 

IBP Unif 87 58 47 65 

Pop 0 0 0 0 

LDA Unif 100 100 100 100 

Pop 100 100 89 100 

AZM5 Unif Unif 100 100 99 100 

Pop 100 100 100 100 

IBP Unif 100 100 100 100 

Pop 100 100 99 100 

LDA Unif 100 100 100 100 

Pop 100 100 100 100 

STMV1 Unif Unif 100 100 100 100 

Pop 100 100 100 100 

IBP Unif 100 100 86 100 

Pop 100 5 0 85 

LDA Unif 100 100 100 100 

Pop 100 100 100 100 

 

 



58 

 

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK 

In this thesis, we conducted simulations to estimate error and bias in the results of 

offline evaluations of recommendation algorithms. To make realistic reference data, we 

calibrated our simulation models by comparing their results to existing data sets on 

several key statistics. We presented simulation approaches that generate synthetic data 

sets comparable to reference data sets used them to empirically estimate evaluation 

results on commonly used evaluation metrics and recommender systems under evaluation 

protocols. Our simulation techniques are generalizable to a wide range of offline metrics 

and evaluation protocols. 

5.1 Summary of Findings 

We found that optimization on average relative loss of K-L divergence is capable 

of capturing many dynamics of three reference data sets, while optimization on a single 

statistic does not necessarily result in good fitting on all statistics as shown in Appendix 

A. 

With the exception of recall in the case where it is already known to be an 

unbiased estimator, we find substantial error — usually underestimation — in evaluation 

metrics. This may be due in part to our assumption that users only consume items they 

like, which makes relevant items in the true preference data be superset of ones in the 

observable data. Most concerningly, we find that the degree of error varies between 

algorithms in the same data and experimental condition, undermining estimates of 

relative differences in algorithm performance using offline evaluation protocols. For 
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example, even though evaluation results on the observable data prefers the Oracle 

recommender over Popular recommender in most cases, it underestimate true differences 

in performance between these two algorithms: 

MOracle
obs − MOracle

truth ≤ MPopular
obs − MPopular

truth ⇒  MOracle
obs − MPopular

obs ≤ MOracle
truth − MPopular

truth . 

Evaluations are sometimes into mis-ranking algorithms. Two out of three 

reference data sets, Recall, MRR, nDCG consistently reject the Oracle beating Popular on 

the observable data under the IBP-Pop model. The LDA model, however, doesn’t show 

this result, indicating that the extent of this effect is sensitive to assumptions. 

5.2 Implications for Recommender Research 

The finding that metric errors vary across algorithms on the same data and 

experimental conditions – and that they are more likely to underestimate the performance 

of a perfect recommender – casts doubt on the reliability of offline evaluations in 

assessing the relative differences between algorithms’ performance. This forms a basis 

for the long-existing question: why is the popular recommender hard to beat by a 

personalized recommender? 

Evaluations are sometimes into mis-ranking recommender systems. This gives 

implications for algorithm comparison using offline evaluations. Researchers who 

evaluate newly proposed algorithms over baseline algorithms using publicly-available 

data sets and offline evaluations should take into account these effects to see whether the 

new algorithms are picking up overall effects in data generation or truly improving 

individual user utility. Unfortunately, we do not yet know precisely how to do this for a 

specific experiment.
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5.3 Limitations and Future Work 

The simulations we present here are relatively simple, and in particular do not 

account for rating values or relative preference in any way. In future work, we can 

incorporate continuous preference and observation models in the data generation 

procedure. The observable preference can be implemented by a continuous distribution 

with support of (0, 1), then the observable ratings can be computed by multiplying this 

preference matrix with a rating scale value. 

In this thesis, we also do not reflect users consuming the occasional item they do 

not like; in future work we hope to extend these techniques to capture a wider array of 

user and algorithm behavior. One particularly common factor in user rating behavior is 

selection bias. We can model this selection bias as a random variable that depends on the 

interplay of the popularity effect and user continuous preferences. This can capture the 

case that we sometimes consume popular items even though we do like them. 

Our simulations only consider static preference and observation models at a single 

point in time and do not account for the feedback loop of user and recommender systems. 

One simple extension would be integrating the data generation process with 

recommender systems and calibrating observable data sets with multiple subsets of 

reference data sets held by timestamps. For example, we could first split users and items 

in the reference data by timestamps, generate observable data that simulates the earliest 

users and items, conduct offline evaluations on different recommender systems, introduce 

new items to recommend and users to interact with new items using user and item 

dimensions in the second time period of the reference data, simulate observable data for 

these newly added users and items, repeat this process until the final timestamp. 
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Future work will also explore more recommendation algorithms, including 

probabilistic Oracle recommenders and collaborative filtering recommender systems. A 

probabilistic Oracle recommender can be implemented by randomly recommending 𝑀𝑀% 

relevant items on top-𝑁𝑁 recommendation list. This always gives us 𝑀𝑀% precision, 

allowing us to research its impact on other metrics in controlled conditions. 

Simulation is a promising tool for better understanding the recommender 

evaluation process. Our simulations demonstrate the unreliability of offline evaluations in 

assessing the relative differences and ranking between algorithms. In future work, we 

hope to extend these simulations to explore more causes of evaluation errors.  
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APPENDIX A 

A.1 Calibration Results 

This section presents calibration results optimized for each single statistic. 
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Figure 29: IBP-UNIF optimized for I-I Sim on ML1M. 
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Figure 30: IBP-UNIF optimized for U-U Sim on ML1M. 
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Figure 31: IBP-UNIF optimized for Item Pop on ML1M. 
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Figure 32: IBP-UNIF optimized for User Act on ML1M. 
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Figure 33: IBP-Pop optimized for I-I Sim on ML1M.  
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Figure 34:  IBP-Pop optimized for U-U Sim on ML1M. 
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Figure 35: IBP-Pop optimized for Item Pop on ML1M. 
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Figure 36: IBP-Pop optimized for User Act on ML1M. 
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Figure 37: LDA-Unif optimized for U-U Sim on ML1M. 
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Figure 38: LDA-Unif optimized for I-I Sim on ML1M. 
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Figure 39: LDA-Unif optimized for Item Pop on ML1M. 
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Figure 40: LDA-Unif optimized for User Act on ML1M. 
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Figure 41: LDA-Pop optimized for I-I Sim on ML1M. 
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Figure 42: LDA-Pop optimized for U-U Sim on ML1M. 
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Figure 43: LDA-Pop optimized for Item Pop on ML1M. 
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Figure 44: LDA-Pop optimized for User Act on ML1M. 
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Figure 45: IBP-Unif optimized for I-I Sim on AZM5. 
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Figure 46: IBP-Unif optimized for U-U Sim on AZM5. 
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Figure 47: IBP-Unif optimized for Item Pop on AZM5. 
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Figure 48: IBP-Unif optimized for User Act on AZM5. 
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Figure 49: IBP-Pop optimized for I-I Sim on AZM5. 
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Figure 50: IBP-Pop optimized for U-U Sim on AZM5. 
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Figure 51: IBP-Pop optimized for Item Pop on AZM5. 
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Figure 52: IBP-Pop optimized for User Act on AZM5. 
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Figure 53: LDA-Unif optimized for U-U Sim on AZM5. 
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Figure 54: LDA-Unif optimized for I-I Sim on AZM5. 

 



94 

 

 

 
Figure 55: LDA-Unif optimized for Item Pop on AZM5. 
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Figure 56: LDA-Unif optimized for User Act on AZM5. 
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Figure 57: LDA-Pop optimized for I-I Sim on AZM5. 
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Figure 58: LDA-Pop optimized for U-U Sim on AZM5. 

 
 



98 

 

 
Figure 59: LDA-Pop optimized for Item Pop on AZM5. 
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Figure 60: LDA-Pop optimized for User Act on AZM5. 
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Figure 61: IBP-Unif optimized for I-I Sim on STMV1. 
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Figure 62: IBP-Unif optimized for U-U Sim on STMV1. 
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Figure 63: IBP-Unif optimized for Item Pop on STMV1. 

 

 



103 

 

 
Figure 64: IBP-Pop optimized for I-I Sim on STMV1. 
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Figure 65: IBP-Pop optimized for U-U Sim on STMV1. 
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Figure 66: IBP-Pop optimized for Item Pop on STMV1. 
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Figure 67: IBP-Pop optimized for User Act on STMV1. 
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Figure 68: LDA-Unif optimized for U-U Sim on STMV1. 
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Figure 69: LDA-Unif optimized for I-I Sim on STMV1. 
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Figure 70: LDA-Unif optimized for Item Pop on STMV1. 
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Figure 71: LDA-Unif optimized for User Act on STMV1. 
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Figure 72: LDA-Pop optimized for I-I Sim on STMV1. 
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Figure 73: LDA-Pop optimized for U-U Sim on STMV1. 
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Figure 74: LDA-Pop optimized for Item Pop on STMV1. 
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Figure 75:  LDA-Pop optimized for User Act on STMV1. 
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