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ARTICLE INFO ABSTRACT

Keywords: This paper analyzes two state-of-the-art Neural Information Retrieval (NeulR) models: the Deep
Neural information retrieval Relevance Matching Model (DRMM) and the Neural Vector Space Model (NVSM). Our contributions
Reproducibility include: (i) a reproducibility study of two state-of-the-art supervised and unsupervised NeulR

Neural vectors

models, where we present the issues we encountered during their reproducibility; (ii) a perfor-
Deep learning

mance comparison with other lexical, semantic and state-of-the-art models, showing that tradi-
tional lexical models are still highly competitive with DRMM and NVSM,; (iii) an application of
DRMM and NVSM on collections from heterogeneous search domains and in different languages,
which helped us to analyze the cases where DRMM and NVSM can be recommended; (iv) an
evaluation of the impact of varying word embedding models on DRMM, showing how relevance-
based representations generally outperform semantic-based ones; (v) a topic-by-topic evaluation
of the selected NeulR approaches, comparing their performance to the well-known BM25 lexical
model, where we perform an in-depth analysis of the different cases where DRMM and NVSM
outperform the BM25 model or fail to do so. We run an extensive experimental evaluation to
check if the improvements of NeulR models, if any, over the selected baselines are statistically
significant.

1. Introduction

Recently, Neural Information Retrieval (NeulR) has attracted a great deal of attention from the research community. A dedicated
workshop series was held at the ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR) (Craswell,
Croft, Guo, Mitra, & de Rijke, 2016; Craswell, Croft, de Rijke, Guo, & Mitra, 2017), an in depth monograph (Mitra & Craswell, 2018)
and a special issue in the Information Retrieval Journal (IRJ) (Craswell, Croft, de Rijke, Guo, & Mitra, 2018) have been published in
2018. Moreover, at SIGIR, papers employing deep learning are increasing at a fast pace — i.e., from one article published in 2015 to
eleven articles published in 2017 (Agosti, Fabris, & Silvello, 2019).

Nevertheless, the burst of enthusiasm contrasts the concerns about the actual efficiency and effectiveness of NeulR
methods Lin (2019). To this end, Wei, Kuang, Y., and Lin (2019) critically examined the advances in NeulR regarding the re-
producibility of the systems, the data on which they are tested and the improvements over robust and well-tuned baselines.

The issue of reproducibility of search algorithms regards the IR field as a whole, not the only NeulR. Reproducibility is now a
central research topic for the IR community with dedicated workshops (Arguello, Crane, Diaz, Lin, & Trotman, 2015; Clancy et al.,
2019; Ferro et al., 2016) which raised awareness and proposed a reproducibility model - i.e., PRIMAD (Fuhr, 2016); with a specific
track at the European Conference on Information Retrieval (ECIR) since 2015; and, with dedicated journal special issues (Ferro, Fuhr,
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& Rauber, 2018a; 2018b). Reproducibility efforts focused on several core topics in IR ranging from reproducing baselines (Lin et al.,
2016; Yang, Fang, & Lin, 2018) and core system components (Silvello et al., 2018) to evaluation (Ferro & Silvello, 2015; Hopfgartner
et al., 2018) and advanced applications (Hasibi, Balog, & Bratsberg, 2016). Some works have focused on reproducing neural ar-
chitectures for question answering (Diir, Rauber, & Filzmoser, 2018), reproducing and generalizing the linear transformation of word
embeddings (Yang, Ounis, McCreadie, Macdonald, & Fang, 2018), or replicating neural search models on ad-hoc test
collections (Ferro, Marchesin, Purpura, & Silvello, 2019). However, there has been no specific effort towards the reproducibility and
generalization of NeulR systems.

A NeulR system is an ecosystem of components. Its reproducibility is quite challenging, even when the source code is available.
Such systems often include text processing methods, lexical ranking models, word embeddings, optimizers, query expansion methods,
and other traditional Information Retrieval (IR) and Natural Language Processing (NLP) components. These are used to feed a
shallow or deep neural network. Every single component has a sizable impact on the performances of the system, but its interactions
have not been accurately investigated. For instance, how documents are pre-processed has implications on the creation of term
embeddings. In turn, they affect the optimizer and parameter selection. Even though this domino effect holds true for almost all
advanced IR systems, it is particularly accentuated in NeulR systems — where it is hard (or even impossible) to understand why we get
a specific output and thus how to detect the component which may be not working correctly. To reproduce the results achieved by
NeulR models, each system component needs to be finely tuned. Describing a neural network architecture in detail or providing the
source code is usually not sufficient to reproduce the system successfully. When generalizing the application of NeuIR models on
collections from different domains or in different languages, the problem is even more significant, as it needs to adapt and optimize
many components on a different setting: i.e. from English news to German news, Web pages or medical documents.

Hence, with the increasing popularity of NeulR models, the analysis of these approaches, especially through reproducibility
studies, becomes crucial for in-depth understanding. In fact, the more we understand single system components and their interac-
tions, the more we can generalize the approach and successfully transfer its performances to different domains.

However, the complexity of NeuIR models is not the only obstacle for their reproducibility. In many cases, NeulR approaches
work and are tested only on big sets of interaction proprietary data (Borisov, Markov, de Rijke, & Serdyukov, 2016; Mitra, Diaz, &
Craswell, 2017; Zamani, Mitra, Song, Craswell, & Tiwary, 2018) which may not be easily accessible or available at all. On the other
hand, to reproduce an experiment we require the original dataset or a reasonable approximation of it. Luckily, there are also several
NeulR approaches working on shared TREC collections (Boytsov, Novak, Malkov, & Nyberg, 2016; Guo, Fan, Ai, & Croft, 2016a;
Van Gysel, de Rijke, & Kanoulas, 2018b; Zuccon, Koopman, Bruza, & Azzopardi, 2015), especially in an ad-hoc retrieval setting.

In this paper, we reproduce and thoroughly evaluate two NeulR systems: Deep Relevance Matching Model (DRMM) and Neural
Vector Space Model (NVSM). DRMM (Guo et al., 2016a) was presented at the 25th ACM International Conference on Information and
Knowledge Management (CIKM 2016). DRMM achieved competitive results on re-ranking tasks in ad-hoc retrieval and it is still one of
the reference NeulR approaches. NVSM was published in the ACM Transactions of Information Systems in
2018 (Van Gysel, de Rijke et al., 2018b) and evaluated on shared TREC test collections, yielding competitive results in ad-hoc
retrieval. NVSM is one of the very few completely unsupervised existing NeuIR models, therefore it has excellent potential for
generalization since it does not need any interaction data nor labeled data, which is a scarce resource in a typical IR experimental
setting.

We replicate the experimental results in the paper presenting DRMM, leveraging on the source code shared by the authors.
Whereas, we re-implement NVSM from scratch in Python, relying on widely-used and consolidated libraries like TensorFlow." This
choice enables a straightforward comparison of NVSM with many other NeuIR models available in public repositories.? We reproduce
the results of the original paper on the test collections used by the authors not only for NVSM, but also for the main baselines
considered. Our aim is to check if we could reproduce the results achieved both with NVSM and the proposed baselines.

We consider four different perspectives in the analysis of DRMM and NVSM. First of all, we perform an in-depth evaluation of
DRMM and NVSM and compare them with the most widely adopted lexical IR models such as TF-IDF, BM25, Query Likelihood Model
(QLM), Divergence from Randomness (DFR), and other basic semantic models based on Word2Vec. The goal is to evaluate the
potential of NeulR approaches compared to a few widely-used and not necessarily heavily tuned IR models. Understanding NeulR
strengths and weaknesses can enhance their integration into full-stack IR systems, which employ a variety of pre- and post-retrieval
components such as query expansion and relevance feedback.

Secondly, we test DRMM and NVSM on new search domains for which they were not initially designed: (i) the multilingual
domain, where we consider Italian, German and Farsi (Agirre, Di Nunzio, Ferro, Mandl, & Peters, 2009; Di Nunzio, Ferro, Mandl, &
Peters, 2007) news document collections from Conference and Labs of the Evaluation Forum (CLEF); (ii) the medical domain, where
we consider the OHSUMED collection (Hersh, Buckley, Leone, & Hickam, 1994) composed of references/documents from MEDLINE
(the online life sciences/biomedicine information database); (iii) the Web domain, where we consider a small Web collection, namely
the Text REtrieval Conference (TREC) WT2g (Hawking, Voorhees, Craswell, & Bailey, 1999). Since NVSM does not scale to large
document collections due to memory and time constraints, we chose collections of the same order of magnitude as those adopted in
the original paper.

Thirdly, we perform an analysis of the impact of different word vector representations (i.e., word embedding models) on DRMM —
considering other embedding models such as FastText (Bojanowski, Grave, Joulin, & Mikolov, 2016), Word2Vec (Mikolov, Sutskever,

! https://www.tensorflow.org/.
2 https://github.com/NTMC-Community/MatchZoo.
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Table 1
Statistics of the AP88-89, FT, LA, WSJ, Robust04 and NY collections.
AP88-89 FT LA NY Robust04 WSJ
Vocabulary 247,725 437,511 197,024 1,062,137 760,467 184,717
Document count 164,597 210,158 131,896 1,855,658 528,155 173,252
Query count 149 144 143 50 249 150

Chen, Corrado, & Dean, 2013) and the word embeddings computed by NVSM (Van Gysel, de Rijke et al., 2018b). Regarding NVSM,
we cannot perform the same analysis as the joint learning of word and document embeddings is an inherent part of the model.

Finally, we perform a topic-by-topic analysis and comparison of selected NeulR systems to the well-known BM25 lexical retrieval
model. We highlight the performance differences among systems, describing the topics where NeulR approaches are performing
better than lexical models, and vice versa. The aim is to understand whether the two approaches are orthogonal, if they share
common features, when it is more convenient to use a lexical model or a neural model.

1.1. Contributions

The contributions of this paper include: (i) a reproducibility study of DRMM and NVSM on the original experimental collections;
(ii) a comparison of DRMM and NVSM to widely-used lexical and semantic IR models; (iii) an application of specific NeuIR models in
heterogeneous search domains; (iv) an evaluation of the impact of different word embedding models on DRMM; and, (v) a topic-by-
topic evaluation of selected NeulR approaches, based on a comparison of NVSM, DRMM and the BM25 retrieval model. The source
code and the settings we used for this study are available at the following URL: https://github.com/giansilv/NeurallR.

1.2. Outline

The rest of the paper is organized as follows: in Section 2, we describe the experimental setup employed in our tests; in Sections 3
and 4, we describe the DRMM and NVSM models respectively, along with the results of our reproducibility experiments; in Section 5,
we report a comparison of the selected NeulR systems with traditional lexical approaches and other state-of-the-art models; in
Section 6, the robustness of DRMM and NVSM is evaluated over a set of collections in different languages and from distinct domains;
Section 7 assesses the impact of different word embedding models on DRMM; in Section 8, we perform an in-depth topic-by-topic
analysis of the characteristics of the selected NeuIlR models; and finally, in Section 10, conclusions are drawn with a discussion on the
lessons learnt.

2. Experimental setup

To evaluate DRMM and NVSM, we use eleven experimental collections in different languages from various domains. The col-
lections characteristics are indicated in Tables 1 and 2. For the retrieval experiments, we consider three combinations of the topic
fields: the title (T) field only, the description (D) field only, or both the title and description (TD) fields. We compare the selected NeulR
models to other well-known semantic and lexical approaches for retrieval. The semantic models include Word2Vec and Latent
Dirichlet Allocation (LDA), while the lexical ones refer to QLM, BM25, TF-IDF, and the Poisson estimation for randomness using
Laplace succession for normalisation (PL2) model (Amati & Van Rijsbergen, 2002) (hereafter DFR). In particular, for Word2Vec we
consider the approaches originally proposed in (Vuli¢ & Moens, 2015), which define a document representation as the weighted sum
of its word embeddings. We consider the unweighted sum, referred to as Word2Vec (add), and the sum weighted by the term’s self-
information,” referred to as Word2Vec (si). Whereas, for QLM, we consider the approaches with Jelinek-Mercer smoothing, referred
to as QLM (jm), and with Dirichlet smoothing, referred to as QLM (dir) (Zhai & Lafferty, 2004).

2.1. Reproducibility experiments

In the reproducibility experiments of DRMM, we employ the Robust04 collection (Harman, 1992), which is one of the two
collections where the model was evaluated in the reference paper (Guo et al., 2016a).

In the reproducibility experiments of NVSM, we use the same set of 6 newswire article collections from TREC — see Table 1 —
adopted in the reference paper (Van Gysel, de Rijke et al., 2018b). Four of the collections considered herein are subsets of the
TIPSTER corpus (Harman, 1992): Associated Press 88-89 (AP 88-89), Financial Times (FT), LA Times (LA) and Wall Street Journal
(WSJ) (Harman, 1993). The remaining two collections are the Robust04 collection — based on TIPSTER Disk 4&5 minus CR - and the
New York Times (NY) collection — which consists of articles written and published by the New York Times between 1987 and 2007.

3 Self-information is a term specificity measure similar to IDF (Cover & Thomas, 2012).
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Table 2
Statistics of the WT2G, OHSUMED, CLEF-DE, CLEF-FA and CLEF-IT collections.
WT2g OHSUMED CLEF-DE CLEF-FA CLEF-IT
Vocabulary 1,049,056 265,923 739,053 399,185 232,335
Document count 247,491 348,566 223,132 166,774 157,558
Query count 50 97 95 100 90

2.2. Comparison with other lexical and semantic models

In this set of experiments, we compare DRMM and NVSM to other lexical (i.e. BM25, TF-IDF, DFR, QLM) and semantic models (i.e.
Word2Vec (si)) on the Robust04 and NY collections. The aim is to compare the performance of NeulR models considered to lexical
and semantic matching techniques and to state-of-the-art retrieval approaches. The performances of other competitive approaches as
the BM25+RM3 model in Anserini (Yang, Fang et al., 2018) and the one presented in (Yang, Zhang, & Lin, 2019) using BERT
(Devlin, Chang, & Toutanova, 2018) to perform retrieval, are also considered for reference. We also report the performances of the
best TREC systems when available.

2.3. Collection-based evaluation

In this set of experiments, we evaluate the impact of the domain and/or language of different collections on the performance of
selected NeulR models. The DRMM and NVSM models are evaluated on five collections from different domains and languages:

® WT2g: is a collection of documents crawled from the Web, used in TREC 1999 Web Track (Hawking et al., 1999);

o OHSUMED: consists of a set of 348,566 references/documents from MEDLINE, an on-line life sciences/biomedicine information
database, consisting of titles and/or abstracts from many published medical journals.* OHSUMED contains 106 topics, divided
into 63 official topics and 43 pre-test topics that were rejected from official TREC-9 runs for a variety of reasons, often because
they had too few relevance judgments. Topic fields are: title (patient description) and description (information need) (Hersh et al.,
1994).

e CLEF: document sets in different languages form the CLEF corpora but with common features: the same genre and period (Agirre
et al., 2009; Di Nunzio et al., 2007). The Italian and German corpora are composed of newspaper articles from 1994 to 1995 and
the Persian corpus (i.e., Farsi) from 1996 to 2002. The German and Italian news agency dispatches are all gathered from the Swiss
news agency and comprise of the same corpus translated in different languages.

The detailed characteristics of the collections are reported in Table 2.
For reference, we also report — whenever possible — the performance of the best TREC and CLEF systems on the experimental
collections relative to the evaluation measures we consider.

2.4. Embedding-based evaluation

In this set of experiments, we evaluate DRMM on the Robust04, NY, WT2g and OSHUMED collections using word embeddings
generated with different techniques. Indeed, different word representations can have a sizeable impact on the performance of neural
models. This is also shown in MacAvaney, Yates, Cohan, and Goharian (2019), where the authors evaluate BERT (Devlin et al., 2018)
and ELMo (Peters et al., 2018) representations for retrieval. We consider four different types of word embeddings:

W2V Word2Vec embeddings trained on each collection used to perform retrieval with Gensim (Rehfifek & Sojka, 2010),
following the instruction in the DRMM reference paper (Guo et al., 2016a). To train this model, we consider a context
window size of 10, an embeddings size of 300, 10 negative samples, a subsampling of frequent words of 1074, and we
discard all terms appearing less than 10 times. We empirically select 10 as the best number of training epochs for the
model after evaluating the system performance with a model trained for 5, 15 and 20 epochs. We also decided to apply
punctuation and stopwords removal (using the INQUERY Callan, Croft, & Broglio, 1995 stoplist), stemming
(Krovetz, 1993) and to remove all terms containing one or more digits or shorter than three characters as a pre-
processing step on the document corpus before training the model.

FastText FastText (Bojanowski et al., 2016) embeddings trained with Gensim on each collection used to perform retrieval.
FastText is an extension of Word2Vec to compute word representations based on character n-grams. In this case, we
consider an embeddings size of 300, a context window of size 10, a subsampling of frequent words of 107#, 10 negative
samples, and we discard words appearing in the collection less than 10 times. We train this model for 10 epochs on each
of the selected experimental collections.

NVSM WE The set of word embeddings learned and used by the NVSM model. The NVSM retrieval model works by learning both

*https://www.nlm.nih.gov/bsd/medline.html.
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word and document representations from scratch in an unsupervised fashion and then using them to perform retrieval.
Details on the training and retrieval processes are described in Section 4. Since NVSM embeddings are learned - like
Word2Vec embeddings — based on the cosine similarity metric, we can use them in the DRMM model without any
modifications. As done for the other embedding models, we train a new model on each of the considered collections.

W2V Google Word2Vec embeddings trained by Google on part of Google News dataset (about 100 billion words). The model con-
tains 300-dimensional vectors for 3 million words and phrases.®

2.5. Topic-based evaluation

In this set of experiments, we conduct a topic-by-topic analysis on the performance of the selected NeulR models and the BM25
model. The aim is to perform an in-depth comparison between lexical and semantic retrieval models. We consider Robust04, NY,
WT2g, OHSUMED and CLEF collections. Each plot in Section 8 represents the Average Precision at Rank 1000 (AP) of BM25 (x-axis)
and NVSM or DRMM (y-axis).

We also employ the Kernel Density Estimation (KDE) (Wand & Jones, 1995) to estimate the Probability Density Function (PDF) of
the AP of BM25, NVSM and DRMM models for all the topics. Then, we compute the Kullback-Leibler Divergence (KLD) (Kullback &
Leibler, 1951) between these PDFs to get an estimate of the difference in AP distribution values for each model.

3. DRMM: Reproducibility of a supervised neural model
3.1. Model description

The Deep Relevance Matching Model (DRMM) (Guo et al., 2016a) is a supervised system for ad-hoc retrieval which implements
the following strategies for relevance matching:

e it considers exact matching signals between query and document terms;

e it enables a different importance weight of query terms;

e it complies with different matching requirements, i.e., verbosity and scope hypotheses. The verbosity hypothesis assumes that a long
document is like a short document, covering a similar scope with more words. Vice versa, the scope hypothesis assumes that, in
longer documents, only portions of the content may be relevant, the whole document is therefore not needed to be relevant for a

query.

Based on word embeddings, DRMM considers local interactions between each pair of terms in a query and a document. For each
query term, it maps the variable-length local interactions into a fixed-length matching histogram. Then, these matching histograms
are fed into a feed-forward neural network that outputs a matching score for each pair of query/document terms. Finally, a weighted
sum of these scores for each term pair is computed in order to produce a global matching score for each query. The scheme of this
architecture is depicted in Fig. 1.

The local interactions between each query and document term are obtained computing the cosine similarity between each term
vector. Scores are then aggregated in matching histograms which discretize the interval [-1, 1] into a set of k bins. For instance, if we
take 0.5 as the bin size, each bin will contain the cosine similarity scores respectively in the intervals: [-1, —0.5), [—0.5, 0.5), [0.5, 1).
The interval [1, 1], considers the exact match scores in a separate bin. The authors propose three different ways to map the values in
the matching histograms:

e Count-based Histogram (CH): considers the count of local interactions in each bin as the histogram value;
o Normalized Histogram (NH): normalizes the count value in each bin by the total count;
e LogCount-based Histogram (LCH): applies logarithm over the count value in each bin.

In our experiments and in the reference paper, the number of bins considered is 30, and we only evaluate the results of the best
performing matching-histograms configuration which is LCH.

The feed-forward network, in its best-performing configuration, has two layers, the first one of 5 nodes and the second one of a
single node, both using tanh as the activation function and a bias term.

The matching scores returned by the network are then weighted with coefficients computed by a term gating network. The term
gating network optimizes the function reported below in order to estimate the best values of the coefficients g for the aggregation of
the matching scores at the query level:

(@
epwe ™) .
P = M . 1= 1, ...,M,
>, exp(w, x@)
j=1 8% (€Y

where w, is the weight vector of the term network, and x?, i =1, ..,M denotes the ith query term. The authors developed different

® The model is available at: https://code.google.com/archive/p/word2vec/.
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Fig. 1. Architecture of Deep Relevance Matching Model (DRMM).

types of weighting functions which require different input values:

e Term Vector (TV): in this case, x¥ denotes the ith query term vector, and w, is a weight vector of the same size of the term
vectors;

e Inverse Document Frequency (IDF): in this case, x? denotes the inverse document frequency of the ith query term, and W is a
coefficient with a single parameter.

From the experiments in Guo et al. (2016a), the best performing approach to compute these weights is the second one. For this
reason, we employ the IDF weighting scheme in our tests.
Finally, the training of the system is performed minimizing the following hinge loss:

Lo(g, d*, d7) = max (0, 1 — s(q, d*) + s(q, d7)), (2)

where d* is a document ranked higher than d~ given a query g, © represent the system parameters to be optimized and s(-) is the
function that computes the matching scores.

3.2. Evaluation measures

For this reproducibility experiment we consider the same evaluation measures adopted in the DRMM reference paper (Guo et al.,
2016a): Mean Average Precision at Rank 1000 (MAP), Normalized Discounted Cumulated Gain at Cutoff 20 (nDCG@20) and Pre-
cision at Cutoff 20 (P@20).

3.3. Model configuration

The authors of DRMM share the input data and the implementation of the system in a public repository. However, in order to
replicate the original results and to generalize DRMM to other collections, we defined a new document pre-processing pipeline and
developed a new training script for the word embeddings required by the retrieval model. We considered only the best configuration
of the model with the LCH matching histograms with 30 bins and the IDF coefficients in the term gating network. Finally, we set the
first feed-forward layer size to 5. This is the default configuration of the network as described in the reference paper (Guo et al.,
2016a).
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Table 3
Results of our reproducibility experiments of DRMM. Bold values represent the highest scores among the models. We report between the par-
entheses the difference between the reproduced results and those reported in the DRMM reference paper — QLM (original) and DRMM (original).

Robust04 (T) Robust04 (D)

MAP nDCG@20 P@20 MAP nDCG@20 P@20
QLM (original) 0.253 0.415 0.369 0.246 0.391 0.334
QLM (reproduced) 0.248 (—0.005) 0.415 (0.000) 0.355 (—0.014) 0.246 (0.000) 0.392 (+0.001) 0.326 (—0.008)
DRMM (original) 0.279 0.431 0.382 0.275 0.437 0.371
DRMM (Gensim WE) 0.268 (—0.011) 0.441 (+0.010) 0.376 (—0.006) 0.249 (—0.026) 0.411 (—0.026) 0.343 (0.028)
DRMM (original WE) 0.270 (—0.009) 0.442 (+0.011) 0.377 (—0.005) 0.252 (—0.023) 0.415 (—0.022) 0.347 (—0.024)

Moreover, since DRMM performs a re-ranking of a pre-existing run, we compute it using a modified version of Terrier
v.4.1 (Macdonald, McCreadie, Santos, & Ounis, 2012)° with the Query Likelihood Model (QLM) with Dirichlet smoothing (Zhai &
Lafferty, 2004), the INQUERY stop list (Callan et al., 1995) and Krovetz stemmer (Krovetz, 1993) as done in the reference paper
(Guo et al., 2016a). We do not perform any optimization of the parameters of the model and keep the Terrier default smoothing value
u = 2500. We also keep this experimental setup for all the experiments with DRMM throughout the paper.

The most critical element among the inputs of DRMM is the set of word embeddings of terms in the corpus. The authors share a
pre-trained Word2Vec model (Mikolov, Sutskever et al., 2013) which contains the required word embeddings trained on the col-
lections used in their original experiments. However, to replicate their experiments on the Robust04 collection — and to use DRMM on
other collections — we train a new Word2Vec model following their instructions with the Word2Vec implementation available in
Gensim. The model was trained as described in Section 2, in the embedding based evaluation paragraph. The Word2Vec hy-
perparameters are the same as the ones indicated in the reference paper. However, differently from what stated in Guo et al. (2016a),
we experimented with different number of training epochs, and employed the gradient decay option available in the Word2Vec
Gensim implementation. The corpus on which we evaluate the model is the Robust04 collection, where we consider the complete set
of 249 topics. Finally, we evaluate DRMM considering the title (T) and the description (D) fields as done in the experiments of the
reference paper (Guo et al., 2016a).

3.4. Experimental results

In Table 3, we report the experimental results we obtain using the shared DRMM code with our document pre-processing
pipeline. In this experiment we also used (i) the Word2Vec embeddings trained with Gensim on the Robust04 collection (Gensim
WE), and (ii) the word embeddings model shared in the official DRMM repository (Original WE).” We also compare our per-
formance to those of the QLM model implementation in Terrier and the shared results in the DRMM reference paper (Guo et al.,
2016a). From the results reported in Table 3, we observe that our document pre-processing pipeline and the strategy we adopted
for the training of the word embeddings leads to a similar performance to the one reported in the DRMM reference paper
(Guo et al., 2016a).

In general, we obtain slightly lower MAP, nDCG@20 and P@20 values than the ones reported in Guo et al. (2016a) when
considering only the title (T) or description (D) fields alone, with a larger difference in the second case. Interestingly, if we repeat
the experiments considering both the title and description (TD) fields of the topics, we obtain better rankings than the ones
computed using only the title or description - in this case, we obtain MAP, nDCG@20 and P@20 values respectively of 0.279,
0.451 and 0.386.

Given our experimental results, we consider our document pre-processing pipeline and word embedding training strategy as
reliable enough to reproduce the DRMM performance.

3.5. Discussion

From the results we obtained in these reproducibility experiments, we found a sizeable impact of the word embeddings quality on
the performance of the whole system. We highlight that Guo et al. (2016a) lacks a sufficiently detailed description of the embedding
training process for the replication of the results. In fact, we had to perform numerous experiments with different combinations of
parameters in order to train a word embedding model comparable to the one in Guo et al. (2016a). We first performed the training of
the word embedding model with the official Word2Vec package shared by Google and the hyperparameter configuration indicated in
Section 2. In this case, we obtained a MAP value of 0.249 on Robust04 (T). Afterwards, we tried the Word2Vec implementation
available in Gensim — the one we later decided to adopt for all of our experiments — that with the same hyperparameters configuration
led to a MAP of 0.268 in the same experiment.

For these reasons, we conclude that sharing the training script for the word embeddings model and specifying the library used are

© The modified version of Terrier we used for our experiments is available at the URL: https://github.com/gridofpoints.
7 https://github.com/faneshion/DRMM.
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important requirements to reproduce the results of a NeulR system.

Another issue we encountered in the reproducibility process concerns the preparation of the other input data required by
DRMM. The shared implementation of the algorithm requires seven files: a run in TREC format to be re-ranked; a word em-
bedding model to be used by the system; a file containing the document and corpus frequency for each term in the collection; a
file containing each document of the corpus with its identifier (the same used in the run to rerank), its length, and the frequency
of each term in it; a file with the ideal discounted cumulative gain value for each considered topic; a file with the list of terms for
each topic along with the topic identifier (the same used in the run to re-rank); the relevance judgments in TREC format for the
given topics and the documents in the collection. However, the authors do not share a tool or describe, with enough detail, the
process employed to compute the input in this format. Therefore, a few assumptions about the preprocessing steps to be applied
to the collection were necessary. For instance, simply whitespace tokenizing, applying stemming and removing stopwords from
the collection, as indicated in the reference paper, leads to the addition of great noise to the input of the system. For this reason,
we first extract the text from the TREC-formatted documents, remove the tags, remove all punctuation, and finally perform the
tokenization, stemming and stopwords removal. Nonetheless, we obtain about 0.9M distinct terms compared to the 0.7M terms
present in the shared input file. Therefore, applying more aggressive preprocessing steps on the collection might lead to further
performance improvements of DRMM.

In conclusion, we believe that for the authors of NeulR research papers it would be a good practice to share the scripts and the
libraries used during document pre-processing, and, when required, also for the training of word embeddings models. This would
allow a better and more straightforward reproducibility of their experiments. In fact, the pre-processing step is often underspecified,
despite its sizeable impact on the global performance of NeulR models.

4. NVSM: Reproducibility of an unsupervised neural model
4.1. Model description

The Neural Vector Space Model (NVSM) (Van Gysel, de Rijke et al., 2018b) extends two unsupervised representation learning
models for expert (Van Gysel, de Rijke, & Worring, 2016) and product (Van Gysel, de Rijke, & Kanoulas, 2016) search to ad-hoc
retrieval. NVSM jointly learns distinct word and document representations by optimizing an unsupervised loss function which
minimizes the distance between sequences of n words (i.e. n-grams) and the documents containing them. Such optimization objective
imposes that n-grams extracted from a document should be predictive of that document. Unlike the models from which it derives,
NVSM integrates a notion of term specificity (Robertson, 2004; Sparck Jones, 1972) in the learning process of word and document
representations. In fact, while optimizing the n-gram representations to be close to the corresponding documents, words that are
discriminative for the target documents learn to contribute more to the n-gram representations. Therefore, words associated with
many documents will be neglected due to low predictive power. After training, the learned word and document representations are
used to perform retrieval. Queries are seen as n-grams and matched against documents in the feature space. Documents are then
ranked in decreasing order of the cosine similarity computed between query and document representations.® A detailed description of
NVSM components follows.

Given a document collection D and a word vocabulary V, the model considers the vector representations w; € R*w and E; € Rkd for
w; € Vand d; € D, respectively, where k,, and ks denote the dimensionality of word and document representations. Due to the different
dimensionality of word representations w; and document representations EJ) the model requires a transformation f: R*w — R* from
the word feature space to the document feature space. The considered transformation is linear:

f&) = wx, 3

where X is a k,,-dimensional vector and W is a kq X k,, parameter matrix that is learned using gradient descent. A sequence of n words

(i.e. an n-gram) (wj;).; extracted from a document d; is obtained by averaging its constituent word representations as follows:

1 — —
gLy = = ) W
nia @
Representations of words and documents are learned using mini-batches B of m n-gram/document pairs such that an n-gram re-
presentation is projected close to the document that contains it.
During training, an auxiliary function that L2-normalizes a vector of arbitrary dimensionality is further introduced:

-
P

norm(xX) = ——

1l ()

Therefore, the projection of an n-gram into the k;-dimensional document feature space can be written as the following composition
function:

T ((w;)izy) = (fonormog)(w;)izy)- (6)

8 Note that NVSM performs retrieval and then ranking on the whole document collection.
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By estimating the per-feature sample mean and variance over batch B, the standardized projection of the n-gram representation is
obtained as follows:

~ A~

T (w0 — E[T ((w;,)iz0)] w8

T ((w;,)iz)) = hard — tanh o
\/W [T((Wj,i);;l)] @

The n-gram representation is optimized to be close to the corresponding document. The composition function g in combination with
the L2-normalization norm causes words to compete for contributing to the resulting n-gram representation. Therefore, words that are
discriminative for the target document learn to contribute more to the n-gram representation, and consequently, the L2-norm of the
representations of discriminative words is larger than the L2-norm of non-discriminative words. This incorporates a notion of term
specificity into the model. Moreover, standardization forces n-gram representations to distinguish themselves solely in the dimen-
sions that matter for matching.

The similarity of two representations in latent vector space is defined as:

-
P(SIdj, (w;)izy) = o (d;-T ((w;,)iz)), (€))
where o (t) = m denotes the sigmoid function and S is a binary indicator that states whether the representation of document d;

is similar to the projection of its n-gram (wj;)iz, or not. The probability of a document d;, given its n-gram (wj;)i;, is then ap-

proximated by uniformly sampling z contrastive examples (Gutmann & Hyvarinen, 2010):

Z

D n +1 n n
logP(ol,-|(w,-,i>i:1)>=ZZZ zlogP(Sld;, W)L |+ Y, log(1.0 = P(Sldy, . ))) | |,
k=1,
di~U(D) 9

where U(D) represents the uniform distribution over documents D used to obtain contrastive examples. Then, the loss function used to
optimize the model, averaged over the instances in batch B, is:

1 m . 1 V1 IDI N
L(@IB) = =— 3 logP(djI(w D) + — | D Wil + X I + IWIE |
m j=1 m\ o j=1 (10)

N
where 6 is the set of parameters (W}, {d; ‘ji'l, W, B and A is a weight regularization hyperparameter.

After training, a query q is projected into the document feature space by the composition of f and g: (fog)(q) = h(q). The matching
score between a document d; and a query q is given by the cosine similarity between their representations in document feature space:

h(q)“a;
IR (@2 11, an

Documents are ranked in decreasing order of score(q, d;) for a query q.

score(q, d;) =

4.2. Evaluation measures

In this reproducibility experiment, we employ the same measures reported in Van Gysel, de Rijke et al. (2018b) to evaluate
retrieval effectiveness: MAP, Normalized Discounted Cumulated Gain at Cutoff 100 (nDCG@100), and Precision at Cutoff 10 (P@10).
To test statistical significance, we perform a two-tailed paired Student’s t-test between Word2Vec (si) and NVSM as in
Van Gysel, de Rijke et al. (2018b).

4.3. Model configuration

We re-implement NVSM from scratch in Python, relying on widely-used and consolidated libraries. We employ Whoosh,” a fast
Python search engine library, to index document collections. Whoosh allows easy access to the underlying tokenized document
collections, providing the same functionalities as pyndri (Van Gysel, Kanoulas, & de Rijke, 2017) which was used in the reference
paper. During indexing and querying, stopwords are removed using the Indri stoplist'® and no stemming is performed. We implement
the NVSM architecture using TensorFlow.

One of the biggest challenges we found to reproduce the results presented in Van Gysel, de Rijke et al. (2018Db) lies in the choice of
the model’s parameters and hyperparameters. The reference paper and the associated GitHub repository'' lack a comprehensive
description of all the parameters and hyperparameters used by NVSM, which are crucial to reproduce results. Therefore, to select the

° https://whoosh.readthedocs.io/en/latest/.
10 http://www.lemurproject.org/stopwords/stoplist.dft.
" https://github.com/cvangysel/cuNVSM/.
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parameters and hyperparameters used in this study, we relied on the reference paper (Van Gysel, de Rijke et al., 2018b), the authors’
GitHub repository and an additional paper (Van Gysel, de Rijke, & Kanoulas, 2016) on which (Van Gysel, de Rijke et al., 2018b) is
based on.'? For each setting, the reference source(s) are reported below.

4.3.1. Word vocabulary

e Vocabulary size is limited to 2'® words (GitHub repository: /scripts/functions.sh, (Van Gysel, de Rijke, & Kanoulas, 2016)), or to
60,000 words (NVSM reference paper (Van Gysel, de Rijke et al., 2018b), gihub repository: /cpp/main.cu);

® Words containing numbers are not considered (GitHub repository: /cpp/main.cu, (Van Gysel, de Rijke, & Kanoulas, 2016));

e Words with a document frequency lower than 2 and greater than 50% are not considered (GitHub repository: /cpp/main.cu).

4.3.2. Model parameters

e Pseudo-random number generator seed equal to 0 (GitHub repository: /cpp/main.cu);

e The number of batches for a single epoch is computed as [% > iep (1dl — n + 1)], where m is the batch size (NVSM reference paper
Van Gysel, de Rijke et al., 2018b);

e Word representations, document representations and the parameter matrix W are uniformly sampled in the range

[- [ 60 [ 6.0
\/m+n’\/m+n

repository, Van Gysel, de Rijke, & Kanoulas, 2016).

] for an m X n matrix - following the initialization scheme presented in Glorot and Bengio (2010) (GitHub

4.3.3. Model hyperparameters

e Word representation dimension k,, = 300 (NVSM reference paper Van Gysel, de Rijke et al., 2018b);

Document representation dimension kg € {64, 128, 256} (NVSM reference paper Van Gysel, de Rijke et al., 2018b);

n-gram size n€ {4, 6, 8, 10, 12, 16, 24, 32} (NVSM reference paper Van Gysel, de Rijke et al., 2018b);

Batch size m = 51200 (NVSM reference paper Van Gysel, de Rijke et al., 2018b);

The number of epochs to train the model is 15 (NVSM reference paper Van Gysel, de Rijke et al., 2018b);

Number of negative examples z = 10 (NVSM reference paper Van Gysel, de Rijke et al., 2018b);

Adam optimizer with parameters o = 0.001, 8, = 0.9, 8, = 0.999 (NVSM reference paper Van Gysel, de Rijke et al., 2018b reports
only a, Van Gysel, de Rijke, & Kanoulas, 2016 reports also ; and S5);

® Regularization 4 = 0.01 (NVSM reference paper Van Gysel, de Rijke et al., 2018b).

For each collection considered (see Section 2), the given set of topics is split into validation and test sets'® and only the title (T)
field is used. The size of document representations k; € {64, 128, 256} and of the n-grams n € {4, 6, 8, 10, 12, 16, 24, 32} is optimized
on the validation set and then employed on the test set. The optimal hyperparameters combinations, are not reported in the reference
paper.

In our experiments, we set the vocabulary size to 2!® and we select ky = 256 according to the results reported in Fig. 3 of the
reference paper Van Gysel, de Rijke et al. (2018b). Similarly, for each considered collection, we chose the n-gram size that provides
the best scores in terms of MAP. The rest of the parameters and hyperparameters are kept as above. We train the model for 15 epochs
and we select the model iteration that performs best in terms of MAP on the validation set. The best model is then evaluated on the
test set. Table 4 shows the comparison between the results obtained with the NVSM original version and our reproduced version.

4.4. Baseline configuration

As semantic baselines, we reproduce Word2Vec (add), Word2Vec (si) and LDA. Following Van Gysel, de Rijke et al. (2018b), we
rely on Gensim to implement Word2Vec (skip-gram architecture) and LDA. For Word2Vec approaches, we adopted the same choices
made for NVSM regarding word vocabulary, seed value, negative examples, one-sided window size (i.e., n-gram size n/2) and number
of epochs. The embedding size is set to 256 to be consistent with NVSM. Documents are ranked in decreasing order of cosine
similarity between the document representation and the average of the word embeddings in the query. Once again, we selected the
model iteration that performs best in terms of MAP on the validation set and we evaluated it on the test set. For LDA, we set the
number of topics K = 256 and a = 8 = 0.1. The model is trained until topic convergence is achieved. At query time, documents are
ranked in decreasing order of the cosine similarity between the query topic distribution and the document topic distribution.

Regarding lexical baselines, we have reproduced QLM (jm) and QLM (dir). As in Van Gysel, de Rijke et al. (2018b), we relied on
Indri (Strohman, Metzler, Turtle, & Croft, 2005) to index and query the collections considered. To be consistent with semantic
models, stopwords are removed using the Indri stoplist and no stemming is performed. Smoothing hyperparameters
A€ {xlk e N*, k <20, x = k/20} and pe {125, 250, 500, 750, 1000, 2000, 3000, 4000, 5000} for QLM (jm) and QLM (dir),

121t is worth mentioning that relevant information is scattered across all these sources and none of them provide an off-the-shelf description of all
the required settings.
13 Splits can be found at: https://github.com/cvangysel/cuNVSM/tree/master/resources/adhoc-splits.
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Table 4

Result comparison between original versions of QLM, Word2Vec, and NVSM (as in Van Gysel, de Rijke et al., 2018b) and their reproduced versions.
For each experimental collection, the first row reports the scores of the original model version on MAP, nDCG@100 and P@10, the second row
reports the scores of the reproduced version and the third row reports the difference between original and reproduced versions; a negative difference
indicates that the reproduced baselines are stronger than those employed in the reference paper. Bold values represent the best model (original and
reproduced), whereas italic values represent differences greater than 0.02. A two-tailed paired Student’s t-test is computed between Word2Vec (si)
and NVSM. Statistical significance is marked as * for p < 0.1, ** for p < 0.05 and *** for p < 0.01.

AP88-89 (T) FT (T) LA (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10 MAP nDCG@100 P@10
original 0.199 0.346 0.365 0.218 0.356 0.283 0.182 0.331 0.221
QLM(jm) reproduced 0.199 0.346 0.364 0.209 0.337 0.258 0.178 0.319 0.214
diff. 0.000 0.000 +0.001 +0.009 +0.019 +0.025 +0.004 +0.012 +0.007
original 0.216 0.370 0.392 0.240 0.381 0.296 0.198 0.348 0.239
QLM(dir) reproduced 0.217 0.368 0.397 0.230 0.362 0.270 0.198 0.341 0.233
diff. —0.001 +0.002 —0.005 +0.01 +0.019 +0.026 0.000 +0.007 +0.006
original 0.039 0.077 0.078 0.009 0.028 0.013 0.004 0.015 0.010
LDA reproduced 0.052 0.091 0.077 0.013 0.026 0.015 0.007 0.028 0.015
diff. —0.013 —0.014 +0.001 —0.004 +0.002 —0.002 —0.003 —0.013 —0.005
original 0.216 0.370 0.393 0.125 0.230 0.195 0.105 0.212 0.159
W2V(add) reproduced 0.234 0.395 0.416 0.140 0.252 0.214 0.075 0.165 0.116
diff. —0.018 —0.025 —0.023 —0.015 -0.022 —0.019 +0.030 +0.047 +0.043
original 0.230 0.383 0.418 0.141 0.250 0.204 0.131 0.242 0.179
W2V(si) reproduced 0.240 0.400 0.419 0.148 0.261 0.226 0.109 0.215 0.172
diff. —0.010 —0.017 —0.001 —0.007 —0.011 —0.022 +0.022 +0.027 +0.007
original 0.257** 0.418** 0.425 0.172%* 0.302%** 0.239* 0.166** 0.300%** 0.209*
NVSM reproduced 0.257 0.414 0.429 0.175** 0.304*** 0.220 0.180*** 0.316%*** 0.208**
diff. 0.000 +0.004 —0.004 —0.002 —0.002 +0.019 —0.014 —0.016 +0.001
NY (T) Robust04 (T) WSJ (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10 MAP nDCG@100 P@10
original 0.158 0.270 0.376 0.201 0.359 0.369 0.175 0.315 0.345
QLM(jm) reproduced 0.180 0.292 0.382 0.199 0.351 0.358 0.178 0.319 0.347
diff. -0.022 —-0.22 —0.006 +0.002 +0.008 +0.011 —0.003 —0.004 —0.002
original 0.188 0.318 0.486 0.224 0.388 0.415 0.204 0.351 0.398
QLM(dir) reproduced 0.213 0.343 0.500 0.222 0.376 0.411 0.205 0.355 0.391
diff. —0.025 —0.025 —0.014 +0.002 +0.012 +0.004 —0.001 —0.004 +0.007
original 0.009 0.027 0.022 0.003 0.010 0.009 0.038 0.082 0.076
LDA reproduced 0.024 0.053 0.064 0.004 0.015 0.014 0.041 0.074 0.060
diff. —0.015 —0.026 —0.042 —0.001 —0.005 —0.005 —0.003 +0.008 +0.016
original 0.081 0.160 0.216 0.075 0.177 0.194 0.175 0.322 0.372
W2V(add) reproduced 0.100 0.196 0.252 0.065 0.158 0.184 0.181 0.326 0.393
diff. —0.019 —0.036 —0.036 +0.010 +0.019 +0.010 —0.006 —0.004 —0.021
original 0.092 0.173 0.220 0.093 0.208 0.234 0.185 0.330 0.391
W2V(si) reproduced 0.113 0.209 0.284 0.083 0.192 0.214 0.190 0.336 0.393
diff. —0.021 —0.036 —0.064 +0.010 +0.016 +0.020 —0.005 —0.006 —0.002
original 0.117 0.208 0.296* 0.150%** 0.287*** 0.298*** 0.208** 0.351 0.370
NVSM reproduced 0.110 0.205 0.290 0.138%*** 0.270%** 0.289%** 0.213%** 0.359%** 0.408
diff. +0.007 +0.003 +0.006 +0.012 +0.017 +0.009 —0.005 —0.008 —0.038

respectively, are optimized on the validation set. The comparison between the results obtained with the original baselines and our
reproduced versions is also shown in Table 4.

4.5. Rank fusion configuration

We also reproduce the fusion of three individual rankers, that is QLM (dir), Word2Vec (si) and NVSM, that provide a mixture of
lexical and semantic matching. In Van Gysel, de Rijke et al. (2018b), the combination of individual rankers is performed through a
grid search on the weights of a linear combination using 20-fold cross validation on the topic test sets. Feature weights are swept
between 0.0 and 1.0 with increments of 0.0125 on the fold training set. Individual features are normalized per query so that their
values lie between 0 and 1. The coefficients configuration that achieves the highest MAP on the fold training set is selected and used
to score the fold test set. During scoring of the fold test set, the pool of the top-1k documents ranked by the individual rankers is used
as candidate set.

Due to the extensive memory/time requirements demanded by such approach,’* we have to limit the number of documents in
each fold of the training set to the pool of the top-1k documents produced by the individual rankers. In addition, feature weights are

4 The approach could not finish the first training fold, due to OOM, when considering the entire document collection and an incremental step of
0.0125. The machine used to run the experiments is a 2018 Alienware Area-51 with 36 cores and 64Gb of RAM.
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swept between 0.0 and 1.0 with increments of 0.1, which is the minimum step we could support on our machine. Along with the
supervised approach presented in Van Gysel, de Rijke et al. (2018b), we also employ three classic, fast rank fusion methods, first
proposed in Fox and Shaw (1993): CombSUM, CombMNZ and CombANZ.

In Table 6, we evaluate the results obtained with our version of the supervised approach and the three classic methods on the
Robust04 collection. The best approach in terms of MAP is then employed on all the considered collections and compared to the
supervised approach of the reference paper, as shown in Table 7.

4.6. Experimental results

In Table 4, we present a comparison between the versions of QLM, LDA, Word2Vec and NVSM described in the reference paper
and our reproduced versions. For each collection, we report the results from the reference paper, the results obtained with our
reproduced versions and the difference among them.

If we consider the lexical baselines, we see that the original and the reproduced versions present similar values, for both QLM (jm)
and QLM (dir), on AP88-89, LA, Robust04 and WSJ — where an absolute difference greater than 0.01 is achieved by QLM (dir) only in
the nDCG@100 on Robust04, and by QLM (jm) in the nDCG@100 and P@10 on LA and Robust04, respectively. A larger difference
between the two versions of QLM (jm) and QLM (dir) can be observed on the FT and NY collections. The results obtained on FT show
a marked difference between the original and the reproduced versions of QLM (jm) and QLM (dir) for nDCG@100 and P@10. The
original version of QLM (jm) outperforms the reproduced version by an absolute difference of 0.019 in nDCG@100 and of 0.025 in
P@10, whereas the original version of QLM (dir) outperforms the reproduced version by an absolute difference of 0.019 in the
nDCG@100 and of 0.026 in the P@10. An opposite behavior is observed on the NY collection, where the reproduced versions of QLM
(jm) and QLM (dir) outperform the original versions in all measures, with an absolute difference greater than 0.02 for the MAP and
nDCG@100. Overall, QLM (dir) achieves the best results for all measures on FT, LA, NY, Robust04 and, only for the original version,
for the nDCG@100 and P@10 on WSJ.

Regarding semantic baselines, the reproduced version of LDA performs similarly to the original version on all the collections
considered. The most notable exceptions are the nDCG@100 and P@10 values on the NY collection, where the reproduced LDA
model outperforms the original one with an absolute difference of 0.026 and 0.042, respectively. Concerning Word2Vec-based
models, the reproduced version of Word2Vec (add) outperforms the original version on AP88-89, FT, WSJ, and NY according to all of
the performance measures, whereas the original version achieves better results on LA and Robust04. In relation to performance
difference, a more marked gap is found between the two versions only on the LA and NY collections, with differences of + 0.030 in
MAP, + 0.047 in nDCG@100 and + 0.043 in P@10 on LA, and of — 0.036 in nDCG@100 and — 0.036 in P@10 on NY. A similar trend
can also be observed for Word2Vec (si), where the reproduced version outperforms the original version on AP88-89, FT, WSJ, and
NY, while the original version achieves better results on LA and Robust04. The absolute differences between the two versions are
lower than or close to 0.02 on all collections, except for the NY and LA. In particular, the absolute differences are higher than 0.02 for
all measures on the NY collection, with a difference of — 0.064 for P@10 — which is the highest (absolute) difference amongst all
measures and collections. It is also worth mentioning that, by achieving a score of 0.284 for P@10 on the NY collection, the
reproduced version of Word2Vec (si) closes the gap with NVSM and results in a competitive neural baseline.

Regarding NVSM, the results obtained with the reproduced version are close to those reported in the reference paper. Considering
the performance difference, the only measure that presents an absolute difference greater than 0.02 is P@10 on the WSJ collection
(— 0.038). On AP88-89 and NY, the absolute differences are lower than 0.01 for all the measures. NVSM outperforms the semantic
baselines on all the considered collections except on the NY, where Word2Vec (si) shows better performance in MAP and nDCG@100.
Furthermore, NVSM achieves the best results overall on AP88-89 and WSJ.

The results reported in Table 4 indicate that we successfully reproduced NVSM and that the baselines adopted in the original
paper are generally aligned with their reproduced versions. The optimal n-gram size and the epoch at which we obtain the best model
for NVSM are indicated in Table 5, for each collection considered.

In Table 6, we present the results obtained with the reproduced version of the supervised approach and the three classic methods:
CombSUM, CombMNZ and CombANZ, applied on the Robust04 collection. For each combination of QLM (dir) with Word2Vec (si)
and NVSM, we can observe that the reproduced version of the supervised approach performs consistently worse than its original
version. Since the two versions of QLM (dir) perform similarly, it indicates that we could not successfully reproduce the supervised
rank fusion approach presented in Van Gysel, de Rijke et al. (2018b). Overall, the best method is CombSUM and the worst is
CombANZ. Therefore, we employ CombSUM on all the considered collections and compare its performance to the original supervised

Table 5
NVSM optimal n-gram size and best epoch for each collection.
n-gram size Best epoch
AP88-89 16 13
FT 16 11
LA 10 10
WsJ 16 14
Robust04 16 11
NY 16 1
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Table 6

Result comparison on the Robust04 collection between our version of the supervised rank fusion approach, presented in
Van Gysel, de Rijke et al. (2018b), and the three classic methods originally proposed in Fox and Shaw (1993): CombSUM, CombMNZ and CombANZ.
The first two rows report, for reference, the scores of the original and the reproduced versions of QLM (dir) for MAP, nDCG@100 and P@10. Then,
for each combination of QLM (dir) with Word2Vec (si) and NVSM, the first two rows report the scores of the original and the reproduced versions of
the supervised approach. Subsequent rows report the scores of CombSUM, CombMNZ and CombANZ, respectively. Bold values represent the best
method amongst the supervised approach (reproduced) and the three classic methods.

Robust04 (T)

MAP nDCG@100 P@10
QLM(dir) original 0.224 0.388 0.415
reproduced 0.222 0.376 0.411
original 0.232 0.399 0.428
reproduced 0.190 0.344 0.346
QLM(dir) + W2V(si) CombSUM 0.199 0.358 0.378
CombMNZ 0.191 0.353 0.366
CombANZ 0.179 0.325 0328
original 0.247 0.411 0.448
reproduced 0.204 0.357 0.375
QLM(dir) + NVSM CombSUM 0.230 0.391 0.424
CombMNZ 0.229 0.392 0.419
CombANZ 0.199 0.352 0.373
original 0.247 0.412 0.446
reproduced 0.1836 0.336 0.344
QLM(dir) + W2V(si) + NVSM CombSUM 0.206 0.368 0.385
CombMNZ 0.202 0.363 0.373
CombANZ 0.175 0.323 0.338

rank fusion approach in Table 7.

In Table 7, we can observe that AP88-89 is the only collection where CombSUM achieves similar results as those of the supervised
approach — with differences between the two versions of QLM(dir) + Word2Vec(si) + NVSM of + 0.015 for MAP, + 0.005 for nDCG@
100 and + 0.005 for P@10. Overall, CombSUM shows positive performance gains in all the combinations of the individual rankers on
AP88-89, FT and WSJ. The performance gains on LA are positive for QLM(dir) + NVSM and QLM(dir) + Word2Vec(si) + NVSM,
whereas they are negative for QLM(dir) + Word2Vec(si). In particular, the CombSUM version of QLM(dir)+NVSM consistently
outperforms the original supervised approach on all the measures. On RobustO4, the only combination that improves over the
baseline is QLM(dir) + NVSM. However, when compared to the original supervised approach, the CombSUM version of QLM(dir)
+NVSM presents a performance gap of about 0.020 on all the measures. Regarding the NY collection, each combination of individual
rankers using CombSUM achieves lower performances than the baseline. In particular, the difference between the original supervised
approach and the CombSUM version of QLM(dir) + Word2Vec(si) + NVSM is + 0.100 for P@10.

4.7. Discussion

The results reported in Table 4 illustrate that the reproduced and original versions of NVSM perform similarly. Therefore, based
on the parameter and hyperparameter choices presented in the model configuration, we can reproduce the results of the reference
paper. However, we have had to look into different sources to get appropriate values, since the configuration data are scattered across
the reference paper, the GitHub repository and a previous paper (Van Gysel, de Rijke, & Kanoulas, 2016). Furthermore, the lack of
information regarding which are the best hyperparameters to use, for the results reported in Table 2 of the reference paper, has led us
to identify such hyperparameters differently. We relied on Fig. 3 from the reference paper, which allowed us to identify the optimal
choices and to obtain results with the reproduced version of NVSM that are close to those reported in
Van Gysel, de Rijke et al. (2018b).

Another critical aspect when reproducing NVSM is the lexicon. For example, when considering the Robust04 collection, NVSM
does not retrieve any document for the following four topics: topic 312 “Hydroponics”; topic 316 “Polygamy Polyandry Polygyny”;
topic 348 “Agoraphobia” and topic 379 “mainstreaming”. If we analyze the content of such topics, we see that three out of four topics
are composed of a single word. Therefore, since the word vocabulary does not contain any of those query terms, NVSM cannot
retrieve any document for them. To faithfully reproduce results, it is pivotal to know the exact lexicon used in the original paper.
Otherwise, we cannot identify whether the differences between the original and the reproduced versions are related to im-
plementation nuances or different preprocessing steps.

Regarding lexical baselines, we relied on the same search engine, i.e. Indri, and performed the same operations reported in
Van Gysel, de Rijke et al. (2018b) for indexing, querying and hyperparameters optimization. The differences between the original and
the reproduced versions of QLM (jm) and QLM (dir) might lie on the different tokenization process applied to topics. In fact, we relied
on Indri for both indexing and querying, whereas in Van Gysel, de Rijke et al. (2018b) pyndri is used to perform querying.

Regarding semantic baselines, for LDA, we followed the same configuration presented in Van Gysel, de Rijke et al. (2018b).
However, the Gensim implementation of LDA presents many more parameters than those mentioned in the reference paper. Thus, not
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Table 7

Result comparison between CombSUM rank fusion (Fox & Shaw, 1993) and the supervised rank fusion proposed in
Van Gysel, de Rijke et al. (2018b). For each experimental collection, the scores of the original and the reproduced versions of QLM (dir) on MAP,
nDCG@100 and P@10 are reported for reference. For each of the three combinations of QLM (dir) with Word2Vec (si) and NVSM, the first row
reports the original scores of the supervised rank fusion while the second row reports the scores of the CombSUM rank fusion. The third row
illustrates the difference between the original scores of the supervised approach and the scores obtained with CombSUM; a negative difference
indicates that CombSUM achieves higher scores than those of the supervised approach used in the reference paper. Bold values represent the best
method (original and reproduced), whereas italic values represent differences greater than 0.02. The percentage gain (or loss) over the baseline
method is reported next to each rank fusion approach.

AP88-89 (T) FT (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10
QLM(dir) original 0.216 0.370 0.392 0.240 0.381 0.296
reproduced  0.217 0.368 0.397 0.230 0.362 0.270
original 0.279 (+29%)  0.437 (+18%) 0.450 (+14%) 0.251 (+4%) 0.393 (+3%) 0.313 (+6%)
QLM(dir) + W2V(si) CombSUM 0.275 (+27%)  0.441 (+20%) 0.446 (+12%) 0.242 (+5%) 0.381 (+5%) 0.293 (+9%)
diff. +0.004 —0.004 +0.004 +0.009 +0.012 +0.020
original 0.289 (+33%) 0.444 (+20%) 0.473 (+20%) 0.251 (+4%) 0.401 (+5%) 0.322 (+9%)
QLM(dir) + NVSM CombSUM 0.269 (+24%)  0.428 (+16%) 0.456 (+15%) 0.233 (+1%) 0.378 (+4%) 0.286 (+6%)
diff. +0.020 +0.016 +0.017 +0.018 +0.023 +0.036
original 0.307 (+42%) 0.466 (+26%) 0.498 (+27%) 0.258 (+7%) 0.406 (+6%) 0.322 (+9%)
QLM(dir) + W2V(si) + NVSM CombSUM 0.292 (+35%) 0.461 (+25%) 0.493 (+24%) 0.244 (+6%) 0.386 (+7%) 0.297 (+10%)
diff. +0.015 +0.005 +0.005 +0.014 +0.020 +0.025
LA (T) NY (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10
QLM(dir) original 0.198 0.348 0.239 0.188 0.318 0.486
reproduced  0.198 0.341 0.233 0.213 0.343 0.500
original 0.212 (+7%) 0.360 (+3%) 0.236 (-1%) 0.206 (+9%) 0.333 (+4%) 0.494 (+1%)
QLM(dir) + W2V(si) CombSUM 0.191 (—4%) 0.326 (—4%) 0.229 (—2%) 0.194 (—9%) 0.325 (—5%) 0.436 (—13%)
diff. +0.021 +0.034 +0.007 +0.012 +0.008 +0.058
original 0.220 (+11%)  0.376 (+7%) 0.244 (+1%) 0.222 (+18%)  0.355 (+11%)  0.520 (+6%)
QLM(dir) + NVSM CombSUM 0.232 (+17%) 0.381 (+12%) 0.255 (+9%) 0.198 (—7%) 0.333 (—3%) 0.476 (—5%)
diff. —0.012 —0.005 —0.011 +0.024 +0.022 +0.044
original 0.226 (+14%)  0.378 (+8%) 0.250 (+4%) 0.222 (+18%)  0.353 (+10%) 0.526 (+8%)
QLM (dir) + W2V(si) + NVSM CombSUM 0.214 (+8%) 0.366 (+7%) 0.251 (+7%) 0.182 (-14%) 0.320 (-7%) 0.426 (-15%)
diff. +0.012 +0.012 —0.001 +0.040 +0.033 +0.100
Robust04 (T) WSJ (T)
MAP nDCG@100 P@10 MAP nDCG@100 P@10
QLM(dir) original 0.224 0.388 0.415 0.204 0.351 0.398
reproduced  0.222 0.376 0.411 0.205 0.355 0.391
original 0.232 (+3%) 0.399 (+2%) 0.428 (+2%) 0.254 (+24%) 0.410 (+16%) 0.454 (+13%)
QLM(dir) + W2V(si) CombSUM 0.199 (—10%) 0.358 (—5%) 0.378 (-8%) 0.238 (+16%) 0.399 (+12%) 0.449 (+15%)
diff. +0.033 +0.041 +0.050 +0.016 +0.011 +0.005
original 0.247 (+10%)  0.411 (+6%) 0.448 (+7%) 0.248 (+21%) 0.396 (+12%) 0.425 (+6%)
QLM(dir) + NVSM CombSUM 0.230 (+4%) 0.391 (+4%) 0.424 (+3%) 0.244 (+19%) 0.403 (+14%) 0.443 (+13%)
diff. +0.017 +0.020 +0.024 +0.004 —0.007 —-0.018
original 0.247 (+10%)  0.412 (+6%) 0.446 (+7%) 0.271 (+32%)  0.426 (+21%)  0.456 (+14%)
QLM(dir) + W2V(si) + NVSM CombSUM 0.206 (—7%) 0.369 (—2%) 0.385 (—6%) 0.251 (+22%)  0.416 (+17%)  0.455 (+16%)
diff. +0.041 +0.043 +0.061 +0.020 +0.010 +0.001

knowing which values to assign to these parameters prevents the reproducibility of the results. For what concerns Word2Vec-based
retrieval approaches, we adopt the same hyperparameter values of NVSM on every collection. The resulting versions of Word2Vec (si)
and Word2Vec (add) present sizable differences compared to the original ones. Most likely, our hyperparameter choices are different
than those used in Van Gysel, de Rijke et al. (2018b), especially if we consider the results obtained with the reproduced versions on
the NY collection. However, in the reference paper, there is no description of the optimal choices found for Word2Vec, nor any figure
that allows us to identify a subset of candidate choices. Moreover, the same considerations that are true for NVSM about the word
vocabulary are also true for Word2Vec methods. Nevertheless, the results of the two-tailed paired Student’s t-tests between the
reproduced versions of Word2Vec (si) and NVSM are consistent with those presented in Van Gysel, de Rijke et al. (2018b). The only
notable variations are in AP88-89 — where no statistical difference is found between the reproduced versions of Word2Vec (si) and
NVSM - and in WSJ — where for nDCG@100 there is a statistical difference between the two reproduced versions.

Regarding rank fusion, the main issues relate to the extensive memory/time requirements of the supervised rank fusion approach.
The choices we made to reproduce it were insufficient to obtain comparable results as those presented in
Van Gysel, de Rijke et al. (2018b). On the other hand, classic and fast rank fusion techniques like CombSUM produced mixed results,
which tended to even worsen the performance of the QLM (dir) baseline on some collections. Nevertheless, the trade-off between
effectiveness and efficiency provided by CombSUM shows that far less expensive fusion methods can be employed to improve
performance, achieving, on some collections, performance gains similar to those reported in Van Gysel, de Rijke et al. (2018b).
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Fig. 2. Significance tests for the results reported in Table 8 (top group highlighted). All pairwise comparisons are calculated with Tukey’s HSD
confidence intervals and a significance level « = 0.05. Each row depicts the comparisons made for MAP, NDCG at rank 100 and P@10 for a specific
collection.

5. Comparison with other lexical and semantic retrieval models

In this section, we compare the performance of NVSM and DRMM (re-ranking over QLM (dir)) to other lexical and semantic
models considering the Robust04 (T) and NY (T) collections. Other retrieval models we consider in this comparison are: QLM (dir),
DFR, BM25, TF-IDF (all with Krovetz stemmer) and Word2Vec (add and self-information versions). We also employ NVSM to re-rank
the same QLM (dir) runs used by DRMM in its experiments where the objective is to investigate how well a neural unsupervised
model like NVSM performs within a re-ranking scenario. Finally, we perform a statistical significance analysis with Tukey’s T-test to
assess the statistical significance of performance differences of the retrieval models. The evaluation measures used in this set of
experiments are: MAP, nDCG@100 and P@10.

5.1. Experimental results

The results in Table 8 show that the lexical models considered perform better than all the Word2Vec-based approaches or the
NeulR models on the NY collection. On the other hand, we also notice that DRMM outperforms both the lexical models and NVSM on
the Robust04 collection. Instead, NVSM always performs better than the semantic matching models, but is never competitive with
other lexical models nor with DRMM. In the re-ranking task, NVSM outperforms DRMM on the NY collection, but not on the
Robust04. Furthermore, we observe that performing re-ranking with NVSM on QLM (dir) always leads to a performance improvement
over NVSM alone. However, the re-ranking produced by NVSM significantly worsens the performance of the QLM (dir) baseline on
both collections.

For reference, we report the best values for MAP and P@10 obtained in the TREC 2004 Robust Retrieval Track (Voorhees, 2004)
on the Robust04 collection, and the best value for MAP in the TREC 2017 Common Core Track (Allan et al., 2017; Van Gysel, Li, &
Kanoulas, 2018) on the NY collection. On Robust04 (T), the best value for MAP is 0.333 and for P@10 is 0.513. On NY, the best value
for MAP is 0.538.

5.2. Significance tests

In Fig. 2, we report the results of Tukey’s T-test on the runs produced by the systems in Table 8. Firstly, we notice that on the NY
collection there is no statistical difference between considered lexical models (i.e. QLM (dir), DFR, TF-IDF and BM25). Additionally,
pure lexical models always perform statistically better than semantic models (i.e. Word2Vec (add), Word2Vec (si), QLM(dir)/NVSM,
DRMM and NVSM). If we consider the tests on the Robust04 collection, we observe that DRMM belongs to the top group and
statistically outperforms the other semantic matching models, including the re-ranking of the QLM (dir) run performed by NVSM —
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Table 8

Results comparison between reproduced versions of DRMM, NVSM and QLM(dir)/NVSM and other lexical and neural baselines: DRM, BM25, TF-
IDF, QLM and Word2Vec. For each experimental collection used, the scores on MAP, Normalized Discounted Cumulated Gain (nDCG) at rank 100
AND P@10 are reported for each model. Bold values represent the highest scores among the models.

NY (T) Robust04 (T)

MAP nDCG P@10 MAP nDCG P@10
QLM(dir) 0.232 0.370 0.522 0.248 0.411 0.424
BM25 0.234 0.347 0.468 0.242 0.404 0.431
TF-IDF 0.228 0.499 0.472 0.242 0.405 0.431
DFR 0.225 0.350 0.478 0.227 0.390 0.425
Word2Vec (add) 0.100 0.196 0.252 0.062 0.150 0.175
Word2Vec (si) 0.113 0.209 0.284 0.081 0.185 0.205
DRMM 0.141 0.211 0.274 0.268 0.435 0.455
NVSM 0.110 0.205 0.290 0.139 0.269 0.279
QLM(dir)/NVSM 0.152 0.252 0.328 0.157 0.289 0.287

i.e., when NVSM performs the same task as DRMM. However, it is worth mentioning that QLM(dir)/NVSM is an unsupervised re-
ranking model, whereas DRMM is a supervised one. Therefore, while NVSM performs re-ranking relying only on word and document
representations learned from the collection, DRMM exploits relevance judgments to learn how to rank documents given a query.
These observations apply to all the performance measures considered - i.e. MAP, nDCG@100, and P@10.

5.3. Discussion

From the results reported in Table 8, our first observation has to do with the performance of DRMM which differs in the two
considered collections. In fact, DRMM improves the ranking of QLM (dir) and it is the best system on the Robust04 collection; but, it
worsens the ranking computed by the QLM (dir) baseline, provided in input on the NY collection. This result reflects one of the
weaknesses of supervised NeulR models: i.e., their inability to generalize when trained on a limited number of topics. Compared to
Robust04, which presents 249 topics, the NY collection has only 50 topics — about one fifth of the topics of Robust04. Therefore, on
the NY collection DRMM suffers from the lack of topics to learn from, compared to the large size of the collection. In fact, the large
number of documents — combined with the intrinsic characteristics of the collection and the queries — generates a wide variety of
matching signals to be interpreted by the model. This makes it harder for DRMM to learn how to discriminate between relevant and
non-relevant documents without seeing larger parts of the collection during training. This claim is also confirmed by our experiments
on the WT2g collection in Section 6. Indeed, the WT2g collection has the same number of topics of the NY collection, but contains
seven times less documents. This difference in size reduces the effect of the lack of training topics on DRMM which performs similarly
to other lexical models on this collection. Conversely, on the Robust04 collection, where the model is trained on a larger number of
topics, DRMM outperforms all the other baselines. On the other hand, the re-ranking performed by NVSM always worsens the
performance of the QLM (dir) baseline. This suggests that NVSM does not effectively re-rank the results provided by a lexical model
like QLM (dir). As shown in Table 7, a rank fusion approach that combines lexical and semantic signals together is better suited for
NVSM than a simple re-ranking approach.

When considering other state-of-the-art approaches that use different ranking strategies — such as Yang et al. (2019), an appli-
cation of BERT to IR that achieves a MAP of 0.328 on the Robust04, or the BM25 +RM3 model in Anserini (Yang, Fang et al., 2018)
that achieves a MAP of 0.2903'° — we have observed that DRMM and NVSM are not competitive with such approaches. However,
these two NeulR models remain relevant as they are unsupervised (NVSM) and supervised (DRMM) innovative neural architectures
for document retrieval which do not rely on any auxiliary data source or component, like relevance feedback or query expansion.
Indeed, the advancement proposed by DRMM and NVSM is more methodological rather than performance oriented. Nevertheless, the
combination of DRMM and NVSM with pre-trained NLP models, such as BERT, or other IR techniques, such as RM3, may still lead to
better performance than state-of-the-art.

6. Collection-based evaluation

In this set of experiments, we evaluate the ability of DRMM and NVSM models to generalize in the presence of different domains
and tasks. The considered collections and topic fields include: CLEF-DE (TD), CLEF-FA (TD), CLEF-IT (TD), WT2G (TD), and
OHSUMED (D). We select the above combinations of topic fields, since they are the ones that lead to the best retrieval performance on
each collection and the most widely used. Additionally, we also compare the performance of DRMM and NVSM to those of lexical IR
models, that is BM25, DFR, TF-IDF and QLM (dir). To perform retrieval on CLEF multilingual collections, all the considered models
rely on publicly available stop lists specifically defined for the target language.'® The evaluation measures we consider for this set of

!5 https://github.com/castorini/anserini/blob/master/docs/experiments-robust04.md.
16 http://members.unine.ch/jacques.savoy/clef.
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experiments are: MAP, nDCG@100, and P@10. Furthermore, we rely on post-hoc Tukey’s T-test to assess statistical significance.
6.1. Hyperparameter tuning

The performance measures of DRMM are obtained according to the steps described in Section 2, where a re-ranking of the
documents in each QLM (dir) run is performed. The main hyperparameters of DRMM are the number of bins in the matching
histograms and the size of the hidden layer. The number of bins in the matching histograms should be high enough to allow the
representation of different degrees of word similarity. At the same time, it should be small enough to maintain the generalization
power of the model and keep computational complexity low.

We performed hyperparameter optimization on the OHSUMED and WT2g collections — which are the corpora that differ the most
from the ones used in the DRMM reference paper — to assess whether the changes to the mentioned hyperparameters could improve
the performance of the model. We considered all the combinations of the following hyperparameters: number of bins in the matching
histograms, in the range {5, 10, 15, 20, 25, 30, 35} and hidden layer size, in the range {5, 10, 15, 20, 25}. In our experiments, we
noticed a performance improvement — an increase of 0.02 or higher in MAP, nDCG@100 and P@10 - only on the WT2g collection
with 20 bins in the matching histograms, and 15 units in the hidden layer. We will keep this configuration of DRMM also for the other
experiments on this collection. On the other hand, we did not notice any sizable performance increase on the OHSUMED collection
changing the hyperparameters of the DRMM model.

Regarding NVSM, we adopted the same experimental setup described in Section 4. For every collection, we optimize the following
hyperparameters:

e Vocabulary size |V| € {2'6, 2'7};

e Document representation dimension k; € {128, 256};
e n-gram size ne {4, 6, 8, 10, 12, 16, 24, 32},

e Batch size m € {12800, 25600, 51200};

® Regularization A € {0.01, 0.1, 1.0}.

The rest of the hyperparameters are kept as in Section 4. Due to the prohibitive time required to perform grid search over the
hyperparameters, we first optimize the n-gram size by keeping the default values for [Vl = 2!, k; = 256, m = 51, 200, and 4 = 0.01.
Then, for each collection we keep the n-gram size that performs best in terms of MAP and we optimize the rest of the hyperpara-
meters. From this optimization we did not detect any improvement related to different combinations of kg4 m, and A. However, the
impact of the vocabulary size has shown to be significant on two collections: WT2g and CLEF-DE. For WT2g, NVSM goes from MAP:
0.206, nDCG@100: 0.356, and P@10: 0.370, with |V = 216, to MAP: 0.225, nDCG@100: 0.380, and P@10: 0.402, with V| = 2'7,
Similarly, for CLEF-DE the model goes from MAP: 0.194, nDCG@100: 0.322, and P@10: 0.281, with VI = 2%, to MAP: 0.211,
nDCG@100: 0.343, and P@10: 0.301, with IVl = 217. Therefore, we adopt |V| = 217 for WT2g and CLEF-DE collections and we keep
the rest of the hyperparameters as default. The optimal n-gram size, vocabulary size, and the epoch at which we obtain the best model
for NVSM are reported in Table 9 for every collection.

6.2. Experimental results

Table 10, illustrates the retrieval results related to the WT2g and OHSUMED collections. In such case, we first observe that DRMM
always improves the ranking of the runs produced with QLM (dir). We also employed DRMM to re-rank the runs obtained with BM25
and TF-IDF, but we found no substantial improvement over the baselines. Conversely, NVSM performances are the worst overall on
WT2g and outperform only those of QLM (dir) on OHSUMED. In particular, the performance gap between NVSM and all the other
models is more accentuated on WT2g than on OHSUMED. This may be due to the fact that NVSM derives from two approaches that
are specifically tailored to product and expert search (Van Gysel, de Rijke, & Kanoulas, 2016; Van Gysel, de Rijke, & Worring, 2016).
Therefore, the model has a robust domain-specific nature and for heterogeneous collections like WT2g, where documents have
different contents and scopes, it generalizes worse than for homogeneous collections like OHSUMED. Indeed, NVSM achieves better
results than QLM (dir) on OHSUMED for all the evaluation measures considered.

For reference, we report the best value for MAP obtained in the TREC-8 Web Track (Hawking et al., 1999) on the WT2g collection,
and the best value for MAP obtained on the OHSUMED collection according to Qin, Liu, Xu, and Li (2010). These are 0.383 and 0.450
on WT2g and OHSUMED, respectively.

Table 9
NVSM optimal n-gram size, vocabulary size, and best epoch for each collection.
n-gram size Vocabulary Best epoch

WT2g 16 131, 072 11
OHSUMED 16 65, 536 12
CLEF-IT 20 65, 536 14
CLEF-DE 8 131, 072 13
CLEF-FA 16 65, 536 15
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In Table 11, we report the experimental results on CLEF collections. If we consider the performances of DRMM and compare them
to QLM (dir), we do not observe the same trend for all the experimental collections. DRMM outperforms QLM (dir) on CLEF-IT and
CLEF-FA collections, whereas it worsens the performance of QLM (dir) on CLEF-DE. Overall, the performance of DRMM and the
lexical baselines follow the same trend of the previous set of experiments, where BM25 and TF-IDF are the two best baselines. The
results of NVSM also represent a similar behavior as those reported for the two previous collections when compared to BM25, TF-IDF,
and DFR. Nevertheless, NVSM shows competitive results with QLM (dir) on CLEF-IT and CLEF-DE, and it outperforms QLM (dir) on
CLEF-FA. When compared to DRMM, NVSM achieves lower results on CLEF-IT and CLEF-FA, but it outperforms DRMM on CLEF-DE.

For reference, we report the best values for MAP obtained in the CLEF 2006 Ad Hoc Track (Di Nunzio et al., 2007) on the CLEF-IT
and CLEF-DE collections, and the best value for MAP obtained in the CLEF 2009 Ad Hoc Track (Ferro & Peters, 2009) on the CLEF-FA
collection. On CLEF-IT (TD) and CLEF-DE (TD), the best values for MAP are 0.419 and 0.483, respectively. On CLEF-FA (TD), the best
value for MAP is 0.494.

6.3. Significance tests

From Tukey’s T-tests conducted with a significance level & = 0.05 reported in Fig. 3, we observe a similar behavior as in the results
reported in Tables 10 and 11. NVSM is never in the top group — except when we consider the P@10 on the CLEF-FA collection — while
DRMM is in the top group for most of the collections (i.e. CLEF-FA, WT2g, and OHSUMED). Regarding lexical models, BM25, TF-IDF
and DFR are almost always the best performing systems, while QLM (dir) is in general the worst performing one — often being out of
the top group (e.g. in the CLEF-FA, CLEF-IT, and OHSUMED collections).

6.4. Discussion

From the experimental results described above, we can conclude that DRMM does not always statistically improve the ranking
produced by the QLM (dir) baseline. The only collections where there is a statistically significant improvement of DRMM over QLM
(dir) are CLEF-FA and OHSUMED. The same behavior can be found when DRMM is trained and used to re-rank runs produced by
different lexical models (i.e., TF-IDF and BM25), where it often fails to produce a substantial improvement. For these reasons, it is
unclear whether the improvement brought by DRMM in the re-ranking task is more attributable to DRMM itself, or to the lexical
model used to compute the input run — which might be good at finding relevant documents but bad at ranking them. In fact, we
observe that DRMM tends to achieve competitive performances only when those of QLM (dir) are particularly low compared to other
lexical models, e.g. on the OHSUMED and CLEF-FA collections. On the other hand, if we consider WT2g or CLEF-DE, where QLM (dir)
achieves performances closer to those of other lexical models, the re-ranking of DRMM is less effective or even detrimental. Indeed,
DRMM worsens the QLM (dir) baseline in all measures on CLEF-DE. However, the overall results on CLEF-DE — compared to those
obtained on the other CLEF collections — suggest that CLEF-DE is a more difficult collection to perform retrieval on. Nevertheless, we
cannot exclude that, if more topics were provided in the training step, DRMM would improve the ranking of QLM (dir) also on this
collection.

Regarding NVSM, we observe that it is not competitive with traditional lexical models. The only exception is QLM (dir), that
achieves results that are comparable to or lower than NVSM on the OHSUMED and CLEF collections. Results from Tables 10 and 11
show that NVSM struggles to generalize when considering heterogeneous data. The reason why NVSM suffers more with the WT2g
collection than on OHSUMED and CLEF collections may be related to its inherent domain-specific nature. Indeed, NVSM derives from
Van Gysel, de Rijke, and Kanoulas (2016); Van Gysel, de Rijke, and Worring (2016), which are two approaches targeting product and
expert search, respectively.

7. Embedding-based evaluation

This section, evaluates the effect of different word embedding models on DRMM. We performed the evaluation on the Robust04
(T), NY (T), WT2g (TD), and OHSUMED (D) collections.

In fact, DRMM allows the usage of different word embedding models, regardless of their characteristics. Differently from NVSM,
which learns its own words and documents representation, DRMM does not learn any representation. But rather, it learns to interpret
the interactions between each document and query term, given a certain word representation. For this reason, we have investigated
here how sensitive DRMM can be to different word embedding models.

We consider the word embedding models described in Section 2: (i) Word2Vec word embeddings computed with the im-
plementation available in Gensim (W2V), (ii) FastText word embeddings obtained again with the FastText implementation from
Gensim (FastText), (iii) the word embeddings obtained with NVSM (NVSM Embeddings), (iv) a set of word embeddings trained by
Google on a Google News corpus. All the models, except the last one, have been trained on the experimental collections on which we
later performed the retrieval experiments. We also report the performance of NVSM on each collection as a baseline.

7.1. Experimental results
From the results reported in Table 12, we observed the robustness of DRMM when using different embedding models. Indeed,
there is no sizeable difference between the Gensim Word2Vec and the FastText embeddings on the Robust04, NY and OHSUMED

collections. However, on the NY and WT2g collections FastText embeddings lead to a slightly higher performance. In general, none of
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Fig. 3. Significance tests for the results reported in Tables 10 and 11 (top group highlighted). All pairwise comparisons are calculated with Tukey’s
HSD confidence intervals and a significance level a = 0.05. Each row depicts the comparisons made for MAP, nDCG@100 and P@10 for a specific
collection.

Table 10
Generalization experiments results on the Web (WT2g) and medical (OHSUMED) domain. The highest score amongst the models is in bold. The
considered evaluation measures are MAP, nDCG@100 and P@10.

WT2g (TD) OHSUMED (D)

MAP nDCG P@10 MAP nDCG P@10
QLM(dir) 0.264 0.418 0.418 0.212 0.326 0.305
BM25 0.296 0.454 0.484 0.250 0.369 0.364
TF-IDF 0.234 0.389 0.419 0.250 0.370 0.364
DFR 0.267 0.426 0.452 0.236 0.354 0.344
DRMM 0.289 0.455 0.434 0.272 0.407 0.375
NVSM 0.225 0.380 0.402 0.214 0.335 0.319

Table 11
Generalization experiments results on CLEF collections in Italian (IT), German (DE) and Persian (FA). The highest score amongst the models is in

bold. The considered evaluation measures are MAP, nDCG@100 and P@10.

CLEF-IT (TD) CLEF-DE (TD) CLEF-FA (TD)

MAP nDCG P@10 MAP nDCG P@10 MAP nDCG P@10
QLM(dir) 0.334 0.510 0.319 0.209 0.350 0.324 0.200 0.340 0.405
BM25 0.437 0.627 0.402 0.253 0.395 0.373 0.408 0.550 0.594
TF-IDF 0.438 0.628 0.408 0.251 0.392 0.367 0.411 0.553 0.601
DFR 0.415 0.605 0.393 0.241 0.382 0.350 0.421 0.565 0.619
DRMM 0.357 0.557 0.349 0.188 0.329 0.316 0.375 0.551 0.623
NVSM 0.345 0.522 0.317 0.211 0.343 0.301 0.342 0.494 0.567

Table 12

Comparison between NVSM and DRMM using with different word embedding models: Word2Vec trained on the experimental collection (W2V),
FastText trained on the experimental collection (FastText), NVSM word embeddings trained on the experimental collection (NVSM WE), pre-trained
Word2Vec model by Google on Google News (W2V Google). The considered evaluation measures are MAP, nDCG@100 and P@10.

Robust04 (T) NY (T) WT2g (TD) OHSUMED (D)

MAP NDCG P@10 MAP NDCG P@10 MAP NDCG P@10 MAP NDCG P@10
NVSM 0.139 0.269 0.279 0.141 0.211 0.274 0.225 0.380 0.402 0.214 0.335 0.319
DRMM (W2V) 0.268 0.435 0.455 0.141 0.211 0.274 0.289 0.455 0.434 0.272 0.407 0.375
DRMM (FastText) 0.262 0.427 0.456 0.153 0.226 0.276 0.309 0.471 0.468 0.268 0.402 0.368
DRMM (NVSM WE) 0.270 0.434 0.458 0.130 0.207 0.232 0.294 0.458 0.442 0.273 0.405 0.397

DRMM (W2V Google) 0.261 0.428 0.455 0.126 0.215 0.268 0.309 0.455 0.460 0.238 0.361 0.360

the embedding models considered outperforms the others on all the collections and for all the measures. However, we observe that
the Word2Vec embeddings trained by Google lead to the lowest performances overall — despite the significantly larger corpus used to
train such model. Conversely, the word embeddings generated by NVSM outperform all the others on Robust04 and OHSUMED in
MAP and P@10.

7.2. Discussion

The results in Table 12 suggest that DRMM has the tendency to learn to match documents leveraging more on strong exact
matching signals or collection-based co-occurrence signals (NVSM WE) rather than latent semantic ones (W2V or FastText).
Otherwise, DRMM would have achieved better retrieval results using a Word2Vec model trained on a very large corpus - like Google
News — compared to an embedding model trained on each experimental collection. Indeed, we expect a model trained on a much
larger corpus to be better at representing semantic relations between words.

Interestingly, the results obtained with the embeddings generated by NVSM (NVSM WE) — trained to model term specificity along
with co-occurrence relations between terms — are the best on Robust04 and OHSUMED. This result suggests that NVSM embeddings
are better at modeling the collection-based co-occurrence relations between terms than Word2Vec-based approaches. This also leads
to more useful matching signals that may be used to perform retrieval on the collection they are trained on. For DRMM, we can
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therefore conclude that matching signals based on collection-based co-occurrence relations have a more positive effect on perfor-
mances than semantic ones.

Also, since there is no relevant performance difference between all the considered embedding models, we can conclude that
DRMM learns to assign more importance to exact matching signals — associated to a separate bin in the histograms received in input
(see Section 3) — than the other ones. Indeed, as shown in Purpura, Maggipinto, Silvello, and Susto (2019), word embedding models
such as Word2Vec or FastText, learn very different word representations and produce different matching scores for the same terms.
Hence, since the component with less variability in the matching histograms is the one associated to exact matching signals and the
performance of the model is very similar for different embedding models, we conclude that DRMM learns to rely more on this
dimension of the input.

8. Topic-based evaluation

In this section, we perform a topic-by-topic analysis of the runs of NVSM and DRMM, comparing their per-topic AP to that
obtained with BM25 on the Robust04 (T), NY (T), WT2g (TD), OHSUMED (D) and CLEF (TD) collections.

We also employ Kernel Density Estimation (KDE) (Wand & Jones, 1995) to estimate the PDF of the APs of BM25, NVSM and
DRMM for all topics.

8.1. Discussion

In Fig. 4, we present the scatter plots of the per-topic AP of NVSM, DRMM and BM25 on different collections. For each collection,
we compare each model with the others.

We begin to consider the results on the Robust04 collection. If we compare DRMM and BM25, we observe that most of the points
are close to the bisector. This indicates that, in general, the two models have a similar performance on most of the topics. On the other
hand, the comparison between NVSM and BM25, reveals that the majority of the points is concentrated below the bisector, meaning
that BM25 outperforms NVSM on most of the topics. If we analyze the results of the comparison between NVSM and DRMM, we
observe a similar point distribution as in the previous chart, once again indicating, on this collection, DRMM’s greater effectiveness
over NVSM.

Considering the results on NY, DRMM reveals a worse performance than BM25 on most of the topics, and so does NVSM.
However, in comparing the two NeulR models, we see that DRMM outperforms NVSM on a large number of topics. The large
performance difference between DRMM and BM25 is likely due to the fact that the NY collection only has 50 topics, which are not
enough for DRMM to learn a good ranking model as done in other collections. However, since DRMM re-ranks on a set of 2000
documents previously retrieved with QLM (dir), it has an advantage over NVSM which is also confirmed by its performance dif-
ference. Examining the documents retrieved by NVSM in greater detail, and comparing them with the ones returned by BM25, we
noted that NVSM can return relevant documents which do not contain any query term. For instance, on topic 442 (“heroic acts”)
NVSM returns a relevant document — with doc id “1036498” — which does not contain any query term and is not returned by BM25. In
this case, terms like “heroism” and “sacrifices” are used in the documents instead of those of the query. Similar situations for other
topics are observable in other collections (i.e. OHSUMED).

On CLEF collections, we observe similar relative performances as in the two previous collections. DRMM performed overall
similarly to BM25 except for a few topics where it outperforms it, i.e., topic 200 in CLEF-DE, and topic 148 in CLEF-IT; or vice versa,
where BM25 performs better by a large margin, i.e., topics 141, 149, and 161 on CLEF-DE, topic 628 on CLEF-FA and topics 161 and
44 on CLEF-IT. On the other hand, NVSM is in general outperformed by BM25 on all the collections for most of the topics. This time
however, the difference is less marked than on the Robust04 and NY collections. Finally, if we compare DRMM and NVSM on the
same set of collections, we observe a performance difference of the two models for a large number of topics mostly on the CLEF-IT
collection — where the points in the scatterplot are in general further from the bisector — while we observe a similar performance on
the other two collections in the majority of the topics with just a few outliers where NVSM outperforms DRMM by a larger margin on
CLEF-DE.

On the WT2g collection, we observe that DRMM is performing once again in the majority of the topics in a very similar way to
BM25 - with the exception of topics 423 and 410 where BM25 outperforms DRMM by a large margin. NVSM on the other hand is
outperformed by the two other models on the vast majority of the topics. However, we also observe that in a handful of topics, DRMM
and NVSM both manage to outperform BM25. This happens for topic 416: “Three Gorges Project What is the status of The Three
Gorges Project?”. In this case, the documents containing the topic keywords are very long and BM25 does not recognize many of them
as relevant.

Finally, on OHSUMED, we observe a similar relative performance of the models as on the Robust04 collection. Where DRMM is
performing on all topics in a similar way as BM25, and NVSM is in general outperformed by the two other models in most of the
topics. Here, as in the NY collection, there are some topics, for which NVSM returns relevant documents which do not contain any
query term. This is the case for topic OHSU7 (“lactase deficiency therapy options”) and document with doc id “91359745” which
contains none of the query terms but only their synonyms or closely related terms (i.e. “lactose” and “intolerance”).

Overall, we can conclude that DRMM and BM25 have a very similar performance across all topics, with a few outliers only on
CLEF-DE and NY, while NVSM is usually outperformed by both BM25 and DRMM on most of the topics and collections. If we consider
the differences between NVSM and the two other models we also observe that these are always larger than DRMM and BM25. This is
likely due to the fact that DRMM performs a re-ranking on the top 2000 documents retrieved with QLM (dir) — a lexical model like
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Fig. 4. Scatter plots of the AP for each topic of Robust04, NY, CLEF-DE, CLEF-FA, CLEF-IT, WT2g and OHSUMED collections, obtained with DRMM,
NVSM and BM25 retrieval models.
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Fig. 4. (continued)

BM25. For this reason, we expect the rankings of NVSM to contain a more diverse set of documents than the ones in the runs produced
by DRMM or BM25 since NVSM relies solely on the neural model without explicitly considering exact term matches.

Considering the charts in Fig. 5, we can assess the differences in the systems’ behavior that is otherwise not identifiable when
observing the average measures across all topics. In this case, we see that on the Robust04, NY, CLEF-DE, WT2g and OHSUMED
collections, the MAP value is highly influenced by the low performances of the systems on a large number of topics - this situation is
especially true for NVSM. In fact, in all these charts there is a high peak associated to low AP values. Conversely, the experiments on
the CLEF-IT, CLEF-FA collections, highlight that the final MAP value is dominated by a large number of topics where the systems
obtain an AP around 0.3 - except for NVSM which also has a high peak close to 0.1.

The quantitative distance in the distribution of AP values across different topics can be measured considering the Kullback-Leibler
Divergence (KLD) between the AP distributions reported in Fig. 5. Table 13 illustrates the distances between the AP distribution
associated to the BM25, NVSM and DRMM models.

Considering the distances among the distributions on the Robust04, CLEF-DE, CLEF-IT, OHSUMED and WT2g collections, we
notice that DRMM and BM25 are often the closest systems. This indicates that DRMM and BM25 have a comparable number of topics
where they obtain a similar AP. Worth noting that the set of topics with a similar AP might be different since we are only considering
the distribution of the AP values, ignoring any corresponding topic ids. On the NY and CLEF-FA collections instead, DRMM and NVSM
are the two closest systems, implying that they have a similar number of topics with comparable AP values. This also corresponds to
the results reported in Fig. 5, where both models show very high peaks associated to AP values around 0.1 and 0.2 on the NY and
CLEF-FA collections, respectively.

In conclusion, the main advantage observed of the considered NeulR models is the ability to retrieve documents which do not
contain any query term. Moreover, in a few cases we observed that NeulR models have the ability to rank higher than lexical models
very long documents containing relatively short relevant passages related to a query. Nevertheless, we did not find enough empirical
evidence to strongly support this claim.

Finally, NeulR systems do not outperform in general traditional lexical approaches such as BM25. It can however be noticed that
DRMM is competitive with lexical models on certain collections (Robust04, WT2g and OHSUMED), and outperforms BM25 on a few
topics.

9. Related work

In the past few years, the increased availability of data and the success of deep neural networks in the NLP field, has promoted the
diffusion of neural models even in the IR field. Existing NeulR approaches can be classified into representation- and interaction-based
models (Onal et al., 2018).

The aim of representation-based models is to learn how to represent a query and a document and then use it to estimate their
similarity. Within this class, one of the earliest neural models is the Deep Structured Semantic Model (DSSM). DSSM is trained by
maximizing the conditional likelihood of clicked documents given a query using click-through data. The model employs word
hashing, which allows DSSM to scale up and handle large vocabularies which are common in large-scale Web search applications.
Architectural variants of this model are Convolutional Latent Semantic Model (CLSM) (Yelong, Xiaodong, Jianfeng, Li, & Mesnil,
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Fig. 5. PDF of the AP relative to WT2g, OHSUMED, CLEF-IT, CLEF-DE, and CLEF-FA collections, of NVSM and BM25 retrieval models. Note that on
the x-axis there are the AP values distributed into 100 bins (from 0 to 1 with 0.01 step) and on the y-axis the density estimation.

Table 13

KLD values between the PDF of the AP values obtained with BM25, NVSM and DRMM on the Robust04, NY, CLEF-DE, CLEF-FA, CLEF-IT,
OHSUMED, and WT2g collections. KLD € [0, +o0), it denotes the divergence between the two distributions (Burnham & Anderson, 2002); therefore,
0 means that the two models behave in the same way for all the topics in the collection; + co means that for no topic the two models behave in the

same way.
Robust04 NY CLEF-DE CLEF-FA CLEF-IT OHSUMED WT2g
BM25 - DRMM 10.86 63.29 21.76 18.58 14.48 16.91 27.08
BM25 - NVSM 20.57 40.69 28.15 22.70 26.65 49.60 61.22
DRMM - NVSM 31.52 23.85 24.06 16.45 18.69 71.66 76.29
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2014) and LSTM Deep Structured Semantic Model (LSTM-DSSM) (Palangi et al., 2014). On the other hand, recent advances in
building unsupervised low-dimensional text representations (Chen, 2017; Le & Mikolov, 2014; Mikolov, Chen, Corrado, & Dean,
2013; Pennington, Socher, & Manning, 2014) has led the IR community to consider them for retrieval. We can identify two main lines
of work: (i) approaches that incorporate features from neural language models (Ai, Yang, Guo, & Croft, 2016; Ganguly, Roy, Mitra, &
Jones, 2015; Guo, Fan, Ai, & Croft, 2016b; Zuccon et al., 2015) and (ii) methods that learn representations of words and documents
from scratch and use them directly for retrieval (Van Gysel, de Rijke, & Kanoulas, 2016; Van Gysel, de Rijke et al., 2018b; Van Gysel,
de Rijke, & Worring, 2016; Vuli¢ & Moens, 2015). Within (i), the effectiveness of Doc2Vec (PV-DBOW architecture) is evaluated for
ad-hoc retrieval in Ai et al. (2016). The Generalized Language Model (GLM) is presented in Ganguly et al. (2015) where the mutual
independence between a pair of words no longer holds and word embeddings are used to derive the transformation probabilities
between words. A similar idea is proposed in Zuccon et al. (2015) where word embeddings are used to estimate probabilities in a
translation model that is combined with traditional retrieval models. In Guo et al. (2016b), a semantic matching model based on the
Bag-of-Word-Embeddings (BoWE) representation is introduced. The model represents every document as a matrix of the word em-
beddings occurring in it and the matching between queries and documents is seen as a non-linear word transportation problem.
Within (ii), the approach presented in Vuli¢ and Moens (2015) proposes to compose document representations as the weighted sum of
their word embeddings using the self-information (Cover & Thomas, 2012) value of each word as its weighting operator. The idea is
that IDF-inspired weights assign more importance to words bearing more information content during the compositional process. The
works presented in Van Gysel, de Rijke, and Kanoulas (2016); Van Gysel, de Rijke, and Worring (2016) introduce an unsupervised
end-to-end representation learning model for product and expert search, respectively. The NVSM model (Van Gysel, de Rijke et al.,
2018b) extends (Van Gysel, de Rijke, & Kanoulas, 2016; Van Gysel, de Rijke, & Worring, 2016) to ad-hoc retrieval by incorporating
term specificity in the learned word representations. Finally, an extension of NVSM that integrates text matching and product
substitutability for product search is presented in Van Gysel, de Rijke, and Kanoulas (2018a).

Differently from representation-based approaches, interaction-based models tackle the problem of predicting the relevance score
between a query and a document computing the interactions between the query and document terms. DRMM is one of these ap-
proaches and the first that outperforms similar previous existing NLP techniques for text matching such as ARC-II (Hu, Lu, Li, & Chen,
2014), and MatchPyramid (Pang et al., 2016). Other successful approaches which belong to this category are Match-SRNN
(Wan et al., 2016), Hlerarchical Neural maTching model (HiNT) (Fan et al., 2018), Kernel based Neural Ranking Model (K-NRM)
(Xiong, Dai, Callan, Liu, & Power, 2017), Convolutional Kernel-based Neural Ranking Model (Conv-KNRM) (Dai, Xiong, Callan, & Liu,
2018), A Position-Aware Neural IR Model for Relevance Matching (PACRR) (Hui, Yates, Berberich, & de Melo, 2017) and A Context-
Aware Neural IR Model for Ad-hoc Retrieval (Co-PACRR) (Hui, Yates, Berberich, & de Melo, 2018). The architecture of Match-SRNN
models the interaction between two texts as a recursive process. This means that the interaction of two texts at each position can be
considered as a combination of interactions between their prefixes and words at a given position. This approach is similar to the one
employed in MatchPyramid (Pang et al., 2016), even though it uses a Spatial Recurrent Neural Network (SRNN) instead of a regular
Convolutional Neural Network (CNN). HiNT focuses on the diverse relevance patterns in a document given a query. This means that a
document may be completely or partially relevant to a query as long as it provides sufficient information for users needs. For this
reason, HiNT allows relevance signals at different granularities to compete with each other for final relevance assessment through a
hierarchy of matching layers. K-NRM uses a translation matrix that models word-level similarities via word embeddings, a kernel-
pooling technique that uses kernels to extract multi-level soft match features, and a learning-to-rank layer that combines those
features into the final ranking score. Conv-KNRM is similar to K-NRM but computes the similarity between word n-grams after
computing their representation with a CNN on the word embeddings layer. PACRR and Co-PACRR compute the relevance score of a
query-document pair from multiple word n-gram similarity matrices processed first with a CNN and then with a Recurrent Neural
Network (RNN). In Co-PACRR, Hui et al. propose to employ — as an extension of the model proposed in PACRR - a context vector to
enrich the matching signals, and replace the RNN with a simpler Feed Forward Neural Network (FFNN).

Along with the growing importance of NeulR models, their reproducibility is becoming a central topic in the IR community. As we
mentioned above, Lin criticized the “neural hype” in a recent SIGIR Forum paper (Lin, 2019) and more recently Wei et al. (2019)
critically examined the baselines used for assessing NeulR improvements pointing out that “weak baselines (still) pervade the [IR]
literature”. The comparison to weak baselines is a long-standing problem in the community (Armstrong, Moffat, Webber, & Zobel,
2009) that needs to be seriously addressed to prevent unreliable claims and statistical analyses. For this reason, in this work we also
focused on comparing some NeulR models with generally good performing “classic” IR models. Wei et al. (2019) shows that, cur-
rently, only one NeulR system actually outperforms a well-tuned RM3 model on the Robust04 collection in a re-ranking task; in this
paper we further investigate this aspect and, amongst other findings, we extend and confirm Wei et al. findings by showing that
classic retrieval models like BM25 and TF-IDF are still highly competitive or better than NeulR models both for retrieval and re-
ranking tasks on a variety of collections.

10. Conclusion

In this work, we analyzed the key components and some relevant issues related to Neural Information Retrieval (NeuIR) models.
The neural models we selected are prominent examples of the current NeulR wave and they report competitive results for ad-hoc
retrieval. Deep Relevance Matching Model (DRMM) is a supervised approach which performs a re-ranking of the documents retrieved
by another retrieval model. This approach relies on a set of pre-trained word embeddings — obtained with Word2Vec - to extract
semantic matching signals which, in turn, are used to perform the re-ranking of documents. The Neural Vector Space Model (NVSM),
on the other hand, is an unsupervised model which performs retrieval on the whole collection. NVSM extends two unsupervised
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representation learning models for expert (Van Gysel, de Rijke, & Worring, 2016) and product (Van Gysel, de Rijke, & Kanoulas,
2016) search to ad-hoc retrieval. It integrates the notion of term specificity (Robertson, 2004; Sparck Jones, 1972) in the learning
process of word and document representations. Both models have been tested on shared experimental collections, which play a
fundamental role in enabling the reproducibility of the results.

First, we studied the most important factors for the reproducibility of DRMM and NVSM. From the experiments on DRMM, we
noticed the importance of sharing the tool used for document pre-processing (i.e. the tool used to compute the input data for the
model). This step is often overlooked in the description of the experimental setup of a new NeulR model. However, it has a great
impact on the model performance. An additional factor to consider while using a word embedding model which is not publicly
available, is to share the script and tools used to train it. Small changes in the training parameters can lead to very different word
embeddings and largely impact the retrieval phase. Regarding NVSM, we have drawn similar conclusions. The lack of information
regarding the pre-processing steps — and especially the creation of the word vocabulary — hampers the reproduction of the results
presented in Van Gysel, de Rijke et al. (2018b).

Secondly, we compared DRMM and NVSM to several lexical retrieval models (i.e. BM25, TF-IDF, DFR, and QLM (dir)), semantic
approaches (i.e. Word2Vec (add) and Word2Vec (si) Vuli¢ & Moens, 2015) and other state-of-the-art approaches (i.e. BM25+RM3
Yang, Fang et al., 2018, as well as an application of BERT to IR Yang et al., 2019). From the comparison analysis, we observed that
DRMM outperforms traditional lexical models on the Robust04 collection. Therefore, its combination with state-of-the-art retrieval
methods, such as BM25+RM3 (Yang, Fang et al., 2018) or BERT-based applications for IR like (Yang et al., 2019), could further
improve the retrieval effectiveness. On the other hand, the limited number of topics available on the NY collection combined with its
large size and the differences between the documents hampers the learning process of DRMM, leading to poor retrieval performance
which worsen the QLM (dir) baseline used for re-ranking. Regarding NVSM, the comparison analysis on the Robust04 showed that it
outperforms Word2Vec (add) and Word2Vec (si) (Vuli¢ & Moens, 2015) semantic baselines. Nevertheless, the gap between NVSM and
lexical models is still significant. On the NY collection, DRMM, NVSM, and Word2Vec (si) show comparable results — far from those
obtained by lexical models. We also evaluated the effectiveness of NVSM when used to perform re-ranking. The results showed that
NVSM significantly deteriorates the performance of the QLM (dir) baseline on which it performs re-ranking. Our intuition is that
NVSM, by learning exclusively from the document collection and not relying on any interaction or labeled data, does not exploit the
lexical signals provided by the QLM (dir) baseline. In fact, unlike DRMM which considers exact matching signals between query and
document terms to minimize a supervised loss function, NVSM performs a semantic matching between the latent representations of
words and documents obtained by minimizing an unsupervised loss function. Thus, the unsupervised nature of NVSM suits better for
rank fusion techniques (e.g. CombSUM Fox & Shaw, 1993), where lexical and semantic signals are combined with promising results
(see Table 7), or for providing additional features to supervised re-ranking models like DRMM (see Table 12) or Learning-to-Rank.

Thirdly, we evaluated the robustness of the NeuIR models on collections from different domains and in different languages. We
considered three CLEF collections, i.e. CLEF-DE, CLEF-FA and CLEF-IT, respectively in German, Farsi and Italian; one Web collection,
i.e. WT2g; and, one collection from the medical domain, i.e. OHSUMED. We performed hyperparameters tuning for both DRMM and
NVSM, obtaining significant improvements over the default values on WT2g, for DRMM and NVSM, and on CLEF-DE, for NVSM.
Regarding DRMM, we reduced the number of bins in the matching histogram and increased the hidden layer size. For NVSM instead,
the performance improvement was obtained by tuning the vocabulary size. Our intuition is that the default vocabulary size of NVSM
(i.e. 2'° words) is not sufficient to represent CLEF-DE and WT2g collections, which present bigger vocabularies compared to those of
the other collections considered (see Table 2). Thus, by increasing NVSM’s vocabulary size we managed to obtain higher results —
even outperforming DRMM on CLEF-DE. However, improving effectiveness comes at the expense of efficiency since a higher number
of vocabulary words means a higher number of word embeddings, which in turn means higher memory requirements. Therefore, it is
necessary to find a trade-off between the NVSM’s vocabulary size and the collection size. The same considerations also apply to the
collections employed in the original NVSM paper (Van Gysel, de Rijke et al., 2018b), where Robust04 and NY present vocabulary
sizes similar to those of CLEF-DE and WT2g, respectively (see Table 1). Additionally, we found that NVSM struggles more on
heterogeneous collections, like WT2g, than in domain-specific ones, like OHSUMED. The reason might be related to the fact that
NVSM derives from two approaches specifically tailored to product (Van Gysel, de Rijke, & Kanoulas, 2016) and expert
(Van Gysel, de Rijke, & Worring, 2016) search, thus presenting a strong domain-specific nature.

Fourthly, we evaluated the impact of different word embedding models (i.e. Word2Vec, FastText and NVSM embeddings) on
DRMM. From this analysis, we conclude that collection-based co-occurrence representations of words such as the ones learned by
NVSM lead to a performance improvement over traditional embedding models which are trained to represent semantic relations.
Also, we did not detect any relevant performance difference when using different semantic-based embedding models (i.e. Word2Vec
and FastText), concluding that DRMM learns to rely more on exact matching signals than semantic ones. We also experimented with
different hyperparameter settings during the training of Word2Vec embeddings (i.e. learning rate decay, and number of training
epochs). These often overlooked hyperparameters variations had a great influence on the overall performance of the model, showing
the impact of small differences in word representations on the overall performance of DRMM.

Fifthly, we conducted an in-depth per topic analysis of the performance of DRMM and NVSM, analyzing the different cases where
these models outperform the BM25 lexical model or vice-versa. The experiments have shown that DRMM performs better than BM25
on certain topics. In particular, a few relevant documents where the frequency of query terms is low have ranked higher than BM25.
On the other hand, through semantic matching, NVSM can retrieve documents which do not contain any query term. This char-
acteristic is however insufficient to outperform BM25 on average. In other words, when semantic matching is required, or there is the
need to focus on a limited portion of the document containing relevant information, NeulR models tend to outperform lexical ones.
However, in the considered collections the number of topics where these characteristics are needed is quite limited. As a
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consequence, the effect of semantic matching has a minor impact on average performances.

We believe that understanding NeulR strengths and weaknesses can enhance their integration into full-stack IR systems, which
employ a variety of pre- and post-retrieval components such as query expansion and relevance feedback. We think that this work and
the insights resulting from it can shed some light on NeuIR models and their potentialities, inspiring others to further investigate their
differences with traditional lexical models and how their complementary nature can be leveraged to the best.
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