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ABSTRACT: 

 

The goal of this work is to assess a method for supporting decisions regarding identification of most suitable areas for two types of 

harvesting approaches in forestry: skyline vs. forwarder. The innovative aspect consists in simulating the choices done during the 

planning in forestry operations. To do so, remote sensing data from an aerial laser scanner were used to create a digital terrain model 

(DTM) of ground surface under vegetation cover. Features extracted from the DTM are used as input for several machine learning 

predictors. Features are slope, distance from nearest roadside, relative height from nearest roadside and roughness index. Training 

and validation is done using areas defined by experts in the study area. Results show a K value of almost 0.92 for the classifier with 

best results, random forest. Sensibility of each feature is assessed, showing that both distance and height difference from nearest 

road-side are more significant than overall DTM value.   

 

 

 

1. INTRODUCTION 

In the last decades, the interest in forest planning has been 

renewed with the use of high-resolution remote sensing data 

and with the use of advanced spatial analysis techniques 

(Baskent and Keles, 2005; Li et al., 2007). Spatial analysis has 

also been applied successfully to wood harvesting and wood 

transportation both at the tactical and operational level  

(Grigolato et al., 2017). However, planning wood harvesting 

operations in complex situations, such as in wet-area (Murphy 

et al., 2007), roughness terrain (Duka et al., 2017), steep terrain 

(Bont et al., 2012; Kuhmaier and Stampfer, 2010) and low 

density of forest road network (Cavalli and Grigolato, 2010; 

Najafi and Richards, 2013) is challenging. Considering wood 

harvesting operations, the main phases are the following: (i) 

felling, (ii) tree processing, (iii) yarding and (iv) loading and 

hauling. Generally, in term of transportation, wood harvesting 

can be split into primary transportation and haul (or secondary 

transportation) (Owende, 2004).  The primary transportation 

consists of extracting logs from the stump site to the nearest 

road along which logs are loaded into a truck for long 

transportation to the final wood processing sites. In the context 

of primary transportation, steep slope terrain together with a 

widespread terrain roughness force the choice of forest 

utilization systems based on highly specialized machines 

(Mologni et al., 2016). The main forest machines used in very 

steep slope terrain are an overhead system of the cinch-driven 

cable such as cable cranes (Proto et al., 2016) and articulated 

chassis tractors such as forwarders (Strandgard and Mitchell, 

2015). Recently, the introduction of winch assisted machine 

systems lets also forwarders expand to work also in steeper 

terrain up to 70-80% (Mologni et al., 2018).  

 

Setting up spatial analysis models for supporting forest 

technicians in the medium-term planning of wood harvesting is 

a very important task. The current availability of high-resolution 

earth surface information such as the one derived from laser 

identification detection and ranging (lidar) can give an 

advantage in terms of awareness also in forest environment 

(Pirotti et al., 2017). Certainly, the complexity of the spatial 

analysis (Grigolato et al., 2017) depends on a large number of 

variables, data sets and software. In fact, in addition to the slope 

and roughness of terrain, other important factors are the forest 

growing stock distribution, stand parameters and distance from 

the forest roads.  

 

Remote sensing plays an important role in supporting forestry 

operation plans. Geographic information systems (GIS) can 

validly support decision-makers with data analysis (Martin et 

al., 2016; Piragnolo et al., 2014). The information derived from 

close- and far- range sensing using lidar and/or optical data is 

used for modelling vegetation, geomorphology(Rutzinger et al., 

2018), erosion, hazards  (Pirotti et al., 2015). The combination 

of lidar-derived features and machine learning can obtain 

positive results that exceed the traditional approaches. Machine 

learning methods have been applied in several studies, in 

particular in land use / land cover (Pirotti et al., 2016). It can be 

effective using geological maps, lithology, digital elevation 

model (DEM) and morphological information e.g. altitude, 

slope, distance from road (Pradhan, 2013). Positive results in 

many fields of research led to choosing this type of approach in 

the presented work.  

 

The goal of this research is to assess classification methods that 

use remote sensing derived data to support decision-makers. 

Morphological information is processed and fed to machine 

learners to identify suitable areas for two classes of forestry 

harvesting methods: skyline and forwarder. Both techniques aim 

at carrying trees or part of trees from cutting from the forest to 

the side of the road. Skyline uses cables to slide trees to the side 

of the road, whereas forwarders are vehicles on wheels with 

mechanized arms to load trees and carry them out by driving. 
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Defining which of the two methods is best using geospatial data 

and spatial modelling can bring innovation in the field of 

forestry planning and management, simulating decisions in the 

field of forestry harvesting operations. 

 

2. MATERIALS AND METHOD 

2.1 Study area 

The study area is in the southern part of the Altopiano dei Sette 

Comuni in the Veneto region in Northern Italy, (Figure 2). The 

study area is 34.32 km2. The Pre-Alps area is largely covered by 

forests, which are an important economical asset of the region. 

Two types of approaches are used for wood harvesting, 

forwarders and skylines. The road network is an important 

factor affecting choice of best approach (Figure 2), but is not 

the only one. 

 
Figure 1. Study area. 

 

 
Figure 2. Location of harvesting sites used for training and 

validation, divided by wood harvesting approach. 

 

2.2 Dataset 

The digital terrain model (DTM) is derived from an aerial laser 

scanning mission that  surveyed with Optech ALTM GEMINI 

1064 nm wavelength, 167 kHz max pulse repetition frequency 

(PRF), 0.25 mrad (1/e) beam divergence. The point cloud 

average density was about 2 points per square meter. The points 

were processed using Terrasolid© software, which provides a 

progressive triangulation densification algorithm for ground 

points classification (Axelsson, 1999).  

 

The final DTM resolution was set to 1 m x 1 m, which covered 

the area with more then 2 million cells. Based on the DTM, a 

slope and roughness map were calculated. Forestry forwarders 

can work only with slope lower than 40% and a maximum 

roughness of 70 centimetres. Otherwise, a skyline is preferable. 

Up to now, slope and roughness a map was used for indicating 

preference between forwarder and skyline solutions. In our case 

we have added two extra layers to test, via machine learners, if a 

better result can be obtained. The two layers are the elevation 

difference between each cell the nearest road, and the distance 

from the nearest road. The reason is to simulate decisions taken 

during the forestry operations. In our simulation, the decision 

maker is inside the harvesting site, and defining for each cell the 

best choice for harvest type. We assume that it is more natural 

to focus the attention on the accessibility of the area rather than 

to estimate the morphological aspect, such as slope or 

roughness. Therefore, the decision maker will use the most 

intuitive solution by identifying the minimum elevation 

difference between the place where he is standing (cell) and the 

nearest road.  

 

The distance and elevation difference from the nearest road has 

been recognized for each cell in our area, which represents the 

position. Then, the road elevation has been extracted for all the 

pixels over the road network, and the elevation difference has 

been calculated. The choice of nearest road cell was done using 

fast k-nearest neighbour (KNN) search, using cell centers as 

points.   

 

The final dataset used for input in machine learners is composed 

of six layers: the DTM, the CHM, the slope, the roughness, the 

distance from between the roads, and the elevation difference 

between each cell and the nearest cell of the road (see Table 1). 

To clarify the terminology, in the following part of this article 

we use "layer"  to identify the single raster of the stack, whereas 

use "input" to identify the raster layer used as input in the 

sensitivity analysis. 

 

Raster base 

layer 

Raster Stack layer (1x1 m resolution) 

DTM  

DTM  

Slope 

Roughness 

Elevation difference from DTM and the 

nearest road 

CHM  CHM  

Road’s 

network 
Distance from nearest road 

Table 1. Summary of the layers that compose the raster stack. 

 

2.3 Machine learning 

The six layers described in the previous section were used as 

input features for several machine learning algorithms. The 

algorithms tested are conditional inference trees (Ctree), k-

nearest neighbours (KNN), linear discriminant analysis (LDA), 

logistic regression (LR), multi-layered perceptron (MLP), 

multi-layered perceptron ensemble (MLPE), naïve, naivebayes 

(NB), and random forest (RF). Training and validation was 

done with areas defined by an expert in the field (see Figure 2), 

which knows the area very well and for this specific research, 

provided a careful evaluation of ideal areas for the two types of 

harvesting methods (forwarder and skyline). 

 

The Ctree uses a tree to partition recursively the covariate M 

that influence the variable Y. M is an m-dimensional covariate 

vector X=(X1…., Xm). The algorithm fits a learning sample, 

where the learning sample is a random sample composed of n 

observations vector. Consequently, the algorithm works 

recursively on the vector. The steps of binary partitioning are: 

testing the null hypothesis between the m covariate and Y and 
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selecting the covariate Xi with the strongest association with Y. 

Measuring the associated P-values. Running the algorithm until 

the hypothesis is accepted. Splitting the variable into two 

subgroups, and repeating the previous steps. In case of the 

covariate Xi is missing, a new split can be calculated leading the 

same division of original split. When the null hypothesis is 

accepted, the algorithm stops (Hothorn et al., 2015) 

The KNN is based on a distance metric. Then, it finds the k 

nearest neighbours of the sample, and it assigns the sample with 

a majority vote among the K-nearest Neighbors. The method 

advantage is to adapt to a new training data set, but the 

computational request and storage space is significant. The key 

to avoiding overfitting and the underfitting problem is the right 

choice of k, for example, using the standardized Euclidean 

distance. The steps are: choose the number of k nearest 

neighbours and a distance metric. Determine the k nearest 

neighbours. Count the majority vote and assign the class label 

(Raschka, 2015). The LDA is an algorithm for solving multi-

class classification problems. The LDA is based on the dataset 

normality assumption and the independence feature assumption. 

The goal is to find the best variable combination for dividing 

the space into regions using a linear boundary. (Venables and 

Ripley, 2002). The LR is an algorithm for linear and binary 

classification based on neural network, where the classes are 

linearly separable. The binary classification is extended to 

multiclass classification using the One-vs-Rest (OvR) method. 

The OvR trains one classifier for a class. Then, it assigns a 

positive value to the class membership, and all other classes are 

considered as negative values. Iterating n times, where n is the 

number of classes a specific sample is assigned to a class 

considering the probability of membership. Logistic regression 

tries to maximize the likelihoods of the training data (Cheng et 

al., 2006). The MLP and the MLPE are neural networks 

composed of two perceptron layers. The perceptron algorithm 

has been developed in the 50s, and it is a single layer neural 

network with a threshold activation function, where the inputs 

are connected directly output using connected with adaptive 

weights. The advantage of the perceptron is to find a solution in 

a finite number of steps as studied by several authors (Arbib, 

1987)(Duda and Hart, 1973) (Hand, 1985) (Hertz et al., 

1991)(Minsky and Papert, 1988)(Van Der Malsburg, 1986). 

However, when the dataset is not linearly separable data the 

learning algorithm cycle to infinite and never terminate. The 

multi-layer perceptron is a perceptron network composed of 

layers with adaptive weights. Thus, the input units of the first 

layer are connected to the output layer through intermediate 

layers (Atkinson and Tatnall, 1997) (Benz et al., 2004). The 

naive and NB algorithm tries to solve the classification problem 

using a simple and direct way. It could be described as a query 

that starts from the source to the end of the dataset. The NB 

uses the probability theorem to classify a normally distributed 

dataset, where the class feature is independent. Nevertheless, in 

the case of weak violation of independence assumptions in a 

small sample, the NB still tend to perform well. In case of 

strong violation of independence assumptions or non-linear 

classification, very poor performance is obtained (Raschka, 

2014). The RF is a decision tree based on a bootstrap technique 

that creates a large number of training sets to compute the 

statistics. Hence, it draws randomly a sample of size n with no 

replacement, and the value of n controls the bias and the 

variance. Replacement means an element can appear multiple 

times in the sample. On one hand, large values of n reduce 

randomness and increase the overfitting risk, on the other hand, 

small values of n reduce risk and model performance. Then, a 

decision tree grows, selecting d feature without replacement, so 

an element can appear only once in the sample. The tree nodes 

are split and the procedure is repeated k times. Consequently, 

the class label is assigned by majority vote to the aggregated 

classification (Breiman, 2001). 

 

2.4 Training and validation 

The training and validation cells are picked randomly, to avoid 

spatial autocorrelation. To obtain a robust accuracy assessment, 

a stratified sample of 10% of the total cells was taken. Previous 

literature (Piragnolo et al., 2017) shows that using a lower 

number of cells for training can decrease accuracy, and that 

more does not improve results significantly. This, of course, 

depends on the case, the number of features used, on the 

sensitivity of each feature and on the number of classes, which 

in our case is two. The 10% was used as on indicative amount 

for choosing the training set size. The machine learning 

framework has been tested using a similar approach to the 

framework described in (Pirotti et al., 2016).  The training 

phase uses regions of interest (ROIs) that correspond to two 

types of harvesting site where forwarder and skyline machines 

have been used. During the training and the testing phase, the 

accuracy has been evaluated using three metrics applying k-fold 

cross-validation. The metrics are: are kappa (K), accuracy 

(ACC) and classification error (CE), and the execution time. 

The k-fold cross-validation method splits the subset in 10 folds, 

thus using 90% for training and the remaining information for 

testing, and helps to reduce overfitting problems. 

  

2.5 Sensitivity analysis 

The trained model has been tested for sensitivity analysis (SA). 

The SA is a technique to interpret a black box model, which 

was used in this work to analyse and interpret our six input 

layers. Indeed, a black box model produces one output ( ) using 

M inputs. Applying the sensitivity samples to the fitted model, 

the model responses are obtained as equation below: 

  (1) 

where is the value predicted by the model,  is the function 

used to build the predicted value and  is the data sample. 

Consequently, the input variable { : a ϵ {1, M}} ranges 

through minimum to maximum with L levels. Calculating the 

input sensitivity for each input variable, the most relevant input 

can be identified through the variation of the input level. In this 

method all inputs are kept at their average value, and one is 

changed, assuming the L value (Kewley et al., 2000). For 

example, using a One-dimensional SA (1D-SA) with 7 levels, 

the  ranges [0, 1], and the values are  (0.0, 0.14, 0.29, 

0.57, 0.71, 0.86, 1.0). The following formula describes the 

model (2): 

 
 

(2) 

 

where is the  response. 

 

The input importance can be calculated using the input 

sensitivity. The sensitivity measure is calculated using the 

Average Absolute Distance (AAD) from the median ( ) 

proposed by (Cortez and Embrechts, 2013). A relevant input 

can be identified through the variation of the input level, and a 

variation of input levels produce output changes. The AAD is a 

robust method few sensitive to out layers, where a high value 

indicates high input relevance, as stated in equation (3). 

 

 

 

(3) 
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The sensitivity measure is calculated from the responses of , 

and a high value indicates high relevance. The relative 

importance (4) is: 

 

 

 

(4) 

 

 = relative importance 

= sensitivity for input  

 

The sensitivity values have been plotted using the Variable 

Effect Curve (VEC) that plot input aj versus the  responses. 

In the paper, the input variables are the layers of the raster stack 

previous described. Consequently, I1 is the DTM layer, I2 is the 

CHM, I3 is the slope, I4 is the roughness, I5 is the distance 

from DTM and the roads and I6 is elevation difference between 

a DTM cell and nearest roads cell. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Collinearity 

It is well known in literature that correlated features are not 

helpful in classification methods, and might decrease accuracy. 

It is true that tree-based machine learning methods are very 

robust with respect of collinearity in input features. 

Nevertheless a check on correlation between the input features 

was done and resulted in very weak correlation, thus proving 

that using all six features will result in a diverse set of 

information that the machine learning algorithms can used to fit 

the prediction model. The statistical analysis evidences weak 

and very weak correlation, so it reasonable think to a limited 

effect in the classification process. The scatterplot (Figure 3) 

shows a very low correlation between DTM and stack's layers. 

 

3.2 Classification result 

The accuracy metrics range between 0-100, and are reported in 

Table 2 and Table 3. The three best algorithms in terms of K 

and process time are the RF, the KNN, and the Ctree, and they 

have been used for the testing. The K value for RF is 95.49, for 

KNN is 91.04, and for the Ctree is 84.36. In contrast, the faster 

algorithm is the KNN, whereas the slower algorithm is the RF. 

 

Model 
Train. 

time (s) 
K ACC CE 

Classif. 

time (s) 

RF 292.35 95.49 97.60 2.40 9690.19 

KNN 0.01 91.04 95.23 4.77 0.33 

Ctree 34.87 84.36 91.70 8.30 1155.80 

Mlpe 136.64 63.56 80.60 19.40 4529.05 

Mlp 136.76 62.80 80.20 19.80 4533.03 

Lr 9.59 54.99 75.95 24.05 317.87 

NB 0.36 54.65 75.61 24.39 11.93 

Lda 0.37 52.04 73.67 26.33 12.26 

Naive 0.01 0.01 52.64 47.36 0.33 

Table 2. Accuracy metric for the training set. The table reports 

also the time estimation for the classification for the 

full dataset. 

 

 

 

Figure 3. Scatterplot to visualize large dataset.  

 

The result of machine learning using the test set is reported in 

the following Table 3 and Figure 4. Likewise, in the training 

phase, RF has the higher K value, and the Ctree has the lowest 

K value. In comparison to the training phase, the values have 

has been decreased. 

 

Model Time K ACC CE 

RF 770.2 91.85 95.67 4.33 

KKN 57.45 87.07 93.13 6.87 

Ctree 50.52 77.93 88.33 11.67 

Table 3. Accuracy metric for the test set 

 

Figure 4, Time vs K accuracy for the test set. 
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Specifically, the RF is the slower algorithm, but it has a high K 

score of 91.85. KNN has K of 87.07. In contrast to the training 

set result, the KNN is slower than the Ctree. The Ctree is the 

fastest algorithm with a K of 77.93.  

 

3.3 Sensitivity results 

Finally, the sensitivity analysis has been conducted for the three 

algorithms, RF KNN and CTree, using the AAD metric. The 

AAD metric measures the relative importance of RF inputs as 

reported in Figure 5. Results show that the most important 

inputs are the elevation difference between the DTM and the 

roads, followed by the DTM values, and the distance between 

road and cell. In contrast, the CHM, the slope and the 

roughness have less importance. To understand the contribution 

of each input in the classification process, a detailed analysis of 

the inputs has been done using the VEC plot as a report in 

Figure 6. The values are summarized in Table 4. 

 

The elevation difference, which ranges between negative values 

and 50 metres, has a high sensitivity in the forwarder class. In 

contrast, the skyline label is assigned when the elevation 

difference is greater than 100 metres. Between 0 and 50 metres, 

the sensitivity is 0.5 for both classes. 

The DTM has a threshold of 1300 metres that clearly 

discriminates the forwarder and the skyline classes. 

 

 
Figure 5. Random Forest relative importance of the input 

variables. The x-axis reports the AAD metric. 

 

 

Figure 6. Sensitivity for the two classes of the RF classification.  

The distance from roads affects the forwarder class for values 

lower than 100 metres. In contrast, the skyline is recognized for 

values greater than 200 metres. Between 100 and 200 metres, 

there classification is not clear, and both classes have a value of 

0.5. The CHM sets a threshold of 6 metres that discriminates 

well the forwarder and the skyline classes. 

The slope of 20 degrees is the threshold that discriminates the 

forwarder and the skyline. Indeed, the forwarder sensitivity 

ranges between 0 and 20 degrees, whereas the skyline ranges 

from 20 degrees to 40 degrees. 

The roughness sensitivity can be found for values lower than 1 

metre, but the flat trend suggests a low importance of this input 

for the classification. 

Input 
Forwarder 

Sensitivity 

Skyline 

Sensitivity 

Elevation difference < 50 m > 100 m  

DTM < 1300 m > 1300 m 

Distance from roads < 100 m > 200 m 

CHM < 6 m > 6 m 

Slope < 20° 20° - 40° 

Roughness - - 

Table 4. Class sensitivity for the input layers using RF 

The KKN has a K score of 87.07, and it is faster than RF. The 

inputs relative importance for the KNN is reported in Figure 7. 

The most important input is the elevation difference between 

the DTM and the roads. Then, the distance between roads and 

CHM. The slope, the roughness and the DTM are fewer 

important for the classification process. 

 

The specific VEC plots are reported in Figure 8, and the values 

are summarized in Table 5. The sensitivity of the elevation 

difference is similar to the RF. The forwarder label is assigned 

for values lower than 50 metres, whereas the skyline is assigned 

for values greater than 50 metres.  

The distance from the roads shows a saw shape curve. The 

forwarder sensitivity ranges between 0.2 and 1, and the skyline 

sensitivity ranges between 0.1 and 0.7. Still, the peak of one 

class corresponds to the minimum of the other class. 

Consequently, in this range, there is a high sensitivity for all the 

classes, but the forwarder has slight higher values. However, the 

skyline sensitivity reaches the top when the distance is greater 

than 300 metres.  

The CHM trend highlight the value of 6 metres is significant to 

define the two classes. Below 6 metres of the tree height, the 

forwarder has the maximum sensitivity. Above 6 metres, the 

skyline is defined.  

The slope has a clear peak at 40 degrees. The sensitivity for the 

forwarder reaches the maximum below the threshold of 40 

degrees. In addition, above 60 degrees, forwarder gets a high 

score, but the result is not  is not significant. Indeed, the limit 

operation of the forestry machine is 40 degrees. Instead, the 

skyline has a high value between 20 degrees and 60 degrees, 

where the maximum is 40 degrees.  

 

Input Forwarder 

Sensitivity 

Skyline 

Sensitivity 

Elevation difference < 50 m > 50 m  

Distance from roads < 300 m > 300 m 

CHM < 6 m > 6 m 

Slope < 40° > 40° 

Roughness < 1 > 1 

DTM - - 

Table 5. Class sensitivity for the input layers using KNN. 
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Figure 7. KNN relative importance of the input variables. The 

x-axis reports the AAD metric. 

 

The roughness shows a saw shape trend, where the minimum 

and the maximum are alternated. The sensitivity is high, but the 

roughness values do not match with the real operation limits. 

Finally, the DTM has high sensitivity without variation for both 

classes, which implicates a low relative importance.  

 

 
Figure 8. Inputs sensitivity analysis for the two classes of the 

KNN classification.  

 

The Cree classifier has a K score of 77.93, and it is the fastest 

algorithms used in the test. The AAD metric and the relative 

importance are reported in Figure 9. The VEC plots for the two 

classes, forwarder and skyline, are reported in Figure 10, and 

the values are summarized in Table 6.  

A high sensitivity has been found for the distance from roads. 

Both classes range between 0.2 and 1. Thus, the threshold can 

be set at 300 metres distance.  

The forwarder is defined below the 300 metres and the skyline 

above the 300 metres distance. Regarding the elevation 

difference input, the forwarder has high sensitivity when the 

elevation difference ranges between -100 metres and 50 metres. 

In contrast, the skyline gets a high score only when the 

elevation difference is greater than 50 metres. 

Analysing the DTM, forwarder has high sensitivity when the 

elevation is lower than 1300 metres, whereas the skyline above 

the 1300 metres of elevation. 

 

The slope threshold for the two classes is defined at 20 degrees. 

Indeed, below 20 degrees forwarder has a score of 1, whereas 

above 20 degrees the skyline sensitivity increases. The 

sensitivity of tree height is high until 2 metres, where forwarder 

sensitivity is high at 0 metres and forwarder at 2 metres. Two 

metres is a low height for a for a coppice, and it suggests that 

CHM can be omitted from the dataset. Finally, roughness does 

not produce relative important output. 

 
Figure 9. Relative Importance of the input variables using 

Ctree. The x-axis reports the AAD metric. 
 
 

 
Figure 10 Inputs sensitivity analysis for the two classes of the 

Ctree classification.  
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Input Forwarder 

Sensitivity 

Skyline 

Sensitivity 

Distance from roads < 300 m > 300 m  

Elevation difference < 50 m > 50 m 

DTM < 1300 m > 1300 m 

Slope < 10° m 10° - 40° 

CHM - - 

Roughness - - 

Table 6. Class sensitivity for the input layers using Ctree. 

 

 

4. CONCLUSIONS 

In this paper, we propose to use spatial and morphological 

information, such as the DTM, the CHM, the slope, the 

roughness, the elevation difference and the distance from 

roads using machine learning for testing several algorithms 

and classifying a suitability map for two forestry machine 

types: forwarder and skyline. Forestry machine operates in a 

defined range of technical specifications and parameters, 

and the parameters are considered by the decision maker for 

defining the harvesting area. The novel approach consists to 

integrate the information on the accessibility of the area for 

simulating the worker choices. The benchmark shows the 

RF has the best performance in terms of K, but it is the 

slower in comparison to the KNN and the Ctree. However, 

the KNN process has a high accuracy, and the processing is 

very fast. Finally, Ctree is fastest, but it has the lower 

accuracy. To support a decision-maker, understanding and 

interpretability of the data model is a key issue. For this 

purpose, the SA analysis has been conducted. The SA 

evidences the inputs relative importance for the RF, the 

KNN and the Ctree, where the accessibility have higher 

relative importance rather than the morphological aspect. 

The accessibility is described through of the harvesting site 

describes through the distance from the roads, and the 

elevation difference between the roads. Consequently, the 

slope and the roughness are less important for the 

classification. The forestry machine has some operation 

limits, specified in terms of maximum slope or roughness of 

the harvesting site. However, the choice of the route based 

on the accessibility of the area is a human decision. In 

addition, the VEC plots report the sensitivity of each input. 

Then, the RF uses the elevation and the distance from the 

roads network for making the prediction, and all inputs can 

give a contribution to the classification. The KNN is similar 

to the RF, and it considers the CHM as an important input. 

On the other hand, the roughness and the DTM do not add 

significant information. 

Finally, the Ctree takes into consideration the accessibility 

of the harvesting site, but the CHM provides an information 

that has no evidence in the real domain. Moreover, the 

roughness does not influence the classification. Considering 

the low relative importance of some inputs, more studies 

can be conducted using only the important inputs as a 

strategy to improve the performance and reducing the 

computing time. 
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