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Abstract. Our team at the INAF-Astronomical Observatory of Padova and
the University of Padova is engaged in the design, construction and operations
of instruments with very high time accuracy in the optical band for applica-
tions to High Time Resolution Astrophysics and Quantum Astronomy. Two
instruments were built to perform photon counting with sub-nanosecond tem-
poral accuracy, Aqueye+ and Iqueye. Aqueye+ is regularly mounted at the
1.8m Copernicus telescope in Asiago, while Iqueye was mounted at several
4m class telescopes around the world and is now attached through the Iqueye
Fiber Interface to the 1.2m Galileo telescope in Asiago. They are used to per-
form coordinated high time resolution optical observations and, for the first
time ever, experiments of optical intensity interferometry on a baseline of a
few kilometers. We report on recent technological developments and scientific
results obtained within the framework of this project.

Key words: Astronomical instrumentation, methods and techniques – Instru-
mentation: photometers – Techniques: interferometric – Occultations – pulsars:
general – pulsars: individual: PSR J0534+2200 – X-rays: binaries – X-rays: in-
dividual: MAXI J1820+070

1. Introduction

The origin of the AQUEYE+IQUEYE project1 dates back to September 2005,
when we completed an instrument design study (QuantEYE, the ESO Quan-
tum Eye; Dravins et al. 2005) within the framework of the proposal for new
instrumentation for the 100 m diameter Overwhelmingly Large (OWL) tele-
scope. The main objective of the study was to demonstrate the possibility to
reach picosecond time resolution in the optical band, needed to bring Quantum
Optics concepts into the astronomical domain. We had two main scientific goals
in mind: measuring the entropy of light through the statistics of the photon
arrival times and performing optical High Time Resolution Astrophysics with
sub-ms time resolution.

1https://web.oapd.inaf.it/zampieri/aqueye-iqueye/index.html
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Starting from the QuantEYE design, we realized two similar instruments,
Aqueye+ and Iqueye. They are non-imaging photon-counting instruments ded-
icated to performing very fast optical photometry, with a field of view of few
arcsec and the capability of time tagging the detected photons with sub-ns time
accuracy. This instrumentation is extremely versatile because the photon event
lists are stored in a mass memory and the data analysis is entirely done in
post-processing with a selection of time bins (from nanoseconds to minutes). In
addition, simultaneous observations with distant telescopes can be made, be-
cause a suitable synchronization of the signals is implemented. This fact allows
us to correlate the simultaneous acquisitions from the two instruments.

The first instrument that was realized is Aqueye, the Asiago Quantum Eye,
mounted on the AFOSC instrument at the Copernicus telescope in Asiago (Bar-
bieri et al., 2009). The second step was Iqueye, the Italian Quantum Eye, de-
signed for applications to 4 m class telescopes (Naletto et al., 2009). It was
mounted on the ESO 3.5 m New Technology Telescope in La Silla, and the
Telescopio Nazionale Galileo and the William Herschel Telescope in La Palma.

In 2014 Aqueye become an independent instrument, called Aqueye+ and no
longer attached to AFOSC (Naletto et al., 2013). It is now remotely controlled
and regularly mounted at the 1.8 m Copernicus telescope in Asiago (Zampieri
et al., 2015). The acquisition electronics was moved to a dedicated room and is
kept under stable temperature and humidity conditions. In 2015 Iqueye returned
to Asiago for a general refurbishment and was mounted at the 1.2 m Galileo
telescope to perform experiments of intensity interferometry (Zampieri et al.,
2016). A direct mount at the Cassegrain focus was soon discarded because of
potential mechanical problems. We opted for a soft-mount solution, installing
a dedicated optical bench at the Nasmyth focus of the Galileo telescope and
connecting Iqueye to it through an optical fiber.

Since 2015 the two instruments have been used to perform coordinated high
time resolution optical observations and, for the first time ever, exploratory
experiments of stellar intensity interferometry on a baseline of a few kilome-
ters. Some of the results obtained within the framework of these programs are
reported here.

2. Instrumentation

Both instruments, Aqueye+ and Iqueye, adopt a very convenient optical de-
sign (Barbieri et al. 2009; Naletto et al. 2009). The detectors are Single Photon
Avalanche Photodiodes (SPADs), photon counting detectors with high quantum
effciency (∼ 50%) and very high time resolution (30-50 ps), but rather small
effective area. To better couple the small detectors effective area to the telescope
pupil and to increase the maximum sustainable count rate, Aqueye+ and Iqueye
implement the same concept of splitting the telescope entrance pupil proposed
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for QuantEYE. The pupil is divided in four parts, each of them focused on a
single detector.

The core of the instrumentation is its very accurate acquisition and timing
system. The instruments time tag and store the arrival time of each detected
photon with a ≃ 100 ps relative time accuracy and < 500 ps absolute time
accuracy (compared to UTC; Naletto et al. 2009). All recorded times are stored
in event lists that can be analyzed in post-processing (Zampieri et al. 2015). At
present the most important limitation is the maximum data rate, of the order
of few MHz (in the linear regime).

3. Interfacing the instruments with optical fibers

In order to connect Iqueye to the 1.2 m Galileo telescope, we were forced to opt
for a soft-mount solution. To avoid potential problems related to the mechanics
of the telescope, we installed a dedicated optical bench at the telescope lateral
focus and connected Iqueye to it by means of an optical fiber (Zampieri et al.,
2016). Besides facilitating the mounting of the instrument, this solution has
also the advantage of maintaining Iqueye in a separate room under controlled
temperature and humidity conditions (reducing potential systematics related to
varying ambient conditions). At the same time, it mitigates scheduling require-
ments related to the time needed to mount and dismount the instrument.

Since 2015, the bench has been modified and upgraded, becoming an inde-
pedent instrument, the Iqueye Fiber Interface (IFI; Figure 1). The alignment,
focusing and overall optical efficiency of IFI (including the optical fiber) have
been tested in the laboratory. Taking into account the loss on the beam splitter
(that re-directs 8% of the light to the field camera) the total transmittance ef-
ficiency is ∼ 80%. At present, IFI can be mounted and used independently for
fiber-coupling also other instruments and/or performing imaging and photome-
try with the field camera.

Building on the experience gained with IFI, a parallel work for the imple-
mentation of an optical fiber interface is under way also for Aqueye+. In this
case, the main purpose is to trigger a prompt use of Aqueye+ in the ToO mode
for targeting transient or short duration events. As for Iqueye, this solution has
also the advantage of maintaining Aqueye+ in a dedicated, thermally controlled
room in the telescope dome. The final solution adopted for fiber-coupling Aqu-
eye+ is different from that of Iqueye, because the Nasmyth focus of the Coper-
nicus telescope is not available. After considering other possibilities (Zampieri
et al., 2016), eventually we opted for positioning an optical fiber directly at the
telescope focal plane, exploiting the mechanical support provided by AFOSC
and the telescope field camera for pointing and guiding. This activity is still
ongoing.

For both instruments, a major concern is the efficiency of the optical cou-
pling. In this respect, a crucial problem to face is to minimize the losses when



88 L. Zampieri et al.

Figure 1. Top: Iqueye Fiber Interface (IFI). Opto-mechanical interface for coupling

Iqueye with the 1.2 m Galileo telescope, attached at the Nasmyth focus. Bottom:

Optical design and main opto-mechanical components of IFI. After the telescope focus

the incoming beam is collimated through an achromatic lens doublet (I1) and then

focused on the optical fiber (OF) with a second achromatic doublet (I2). A beam

splitter (I3) is inserted in the collimated portion of the beam. S1, S2 and S3 are the

corresponding opto-mechanical supports, and OC is the fiber connector. I3 reflects 8%

of the incoming light towards a field camera (FC), and transmits the remaining 92% to

the optical fiber. The focal lengths of the two doublets are f1 = 200 mm and f2 = 100

mm, leading to an overall demagnification of 1:2. The core of the (multimode) optical

fiber has a diameter of 365 micrometers, that corresponds to 12.5 arcsec. The image

of the field camera has a plate scale of 62.3 arcsec/mm and a field of view of 11.8 x

7.4 arcmin2. Filters can be inserted in the collimated beam between I1 and I3.
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injecting light into the instruments. To this end, one needs to carefully select
the properties of the optical fiber and to insert additional optical elements. The
light injection from the fiber into each instrument is realized by means of a
dedicated opto-mechanical module (module Z), that acts as a focal multiplier.
A module is placed in front of each instrument, and is properly centered and
focussed. For Iqueye the magnification of this module is 2.5, while for Aqueye+
it is 2.

4. Scientific goals, experiments and projects

As mentioned above, one of the main goals of the AQUEYE+IQUEYE project is
achieving tens of ps time resolution, needed to bring Quantum Optics concepts
into the astronomical domain. We are pursuing it in exploratory experiments, in
particular the measurement of the second order correlation of star light through
a modern version of the Hanbury Brown and Twiss Intensity Interferometry
experiment (Hanbury Brown et al. 1974 and references therein). In 2016 we
started an experiment of stellar intensity interferometry on a km baseline using
the Asiago telescopes and our instrumentation (Zampieri et al., 2016; Naletto
et al., 2016). Nowadays, there is renewed interest for this technique because of
the possibility of exploiting multiple and very long (km) baselines to image and
resolve stellar environments on sub-milli-arcsec angular scales.

The other main goal of the project is performing optical High Time Resolu-
tion Astrophysics with ms or sub-ms time resolution to study rapidly varying
phenomena in different types of astrophysical sources. We are pursuing it in a
number of regular observing programs tailored to:

– Optical pulsars (in synergy with facilities operating at other wavelengths), to
study with unprecedented accuracy their timing behaviour and pulse shape.

– Timing of optical transients and counterparts of binary systems with com-
pact objects, to search for rapid optical variability.

– Lunar occultations (in synergy with other telescopes in Europe), to measure
stellar radii/asymmetries with milli-arcsec angular resolution and determine
the binary nature and separation of tight binary systems.

– Transits/occultations of Trans-Neptunian Objects, to determine their orbit
and physical properties.

In the following we will report on recent results obtained from the first two
programs.
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Figure 2. Delay between the time of arrival of the main pulse of the Crab pulsar in the

radio band and that in the optical band. Different points refer to measurements taken

by different authors (as indicated) with different instruments since 1996. Results before

year 2000 may be affected by significant systematic errors. We have been regularly

monitoring this delay since 2008.

5. Scientific results

5.1. Very fast photometry (timing) of optical pulsars

Within this program we perform a regular monitoring of the Crab pulsar with
both Aqueye+@Copernicus (e.g. Germanà et al. 2012) and IFI+Iqueye@Galileo.
At present, this is the only regular optical monitoring program of the Crab
pulsar and represents the optical analogue of the Jodrell Bank radio monitoring
program2. Observations of the Crab pulsar were taken also with Iqueye@NTT in
two runs (Jan, Dec) in 2009 (Zampieri et al., 2014), when very fast photometry
(timing) of a number of optical pulsars including PSRB 0540-69 (Fermi LAT
Collaboration et al., 2015) and the Vela pulsar (Spolon et al., 2019), was carried
out.

One of the main goals of this program is to study the evolution of the delay
between the time of arrival of the main pulse in the radio band and that in the
optical band. It is quite well established that, since at least the beginning of 2000,
the pulse in the optical leads that in the radio by 150–250 µs (e.g. Oosterbroek
et al. 2008 and references therein). Our most recent measurements, taken since
2008, confirm these findings (Figure 2; see Germanà et al. 2012; Zampieri et al.
2014). The optical and radio beams are probably misaligned (1.5–3 deg) because
at the position where electrons emit optical photons the magnetic field has a
slightly different orientation. Regular monitoring observations are carried out to

2http://www.jb.man.ac.uk/ pulsar/crab.html
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search for a possible evolution of this delay, that may be induced by a significant
reconfiguration of the magnetic field of the pulsar or by a change in the geometry
of the emission region.

Besides a delay, the optical timing solution calculated on a timescale of a
few days shows a significant drift from the radio ephemeris. This difference
may be related to the optical measurements tracking the intrinsic daily/weekly
pulsar noise (Čadež et al., 2016) and/or to dispersion measure variations not
completely removed from radio data (while optical data do not depend on them).
In this respect, optical data provide a robust and independent confirmation
of the radio timing solution and a means to study the “typical” Crab pulsar
frequency noise on a daily timescale. Another reason to monitor the timing
history of the Crab pulsar in the optical band is to study its short term evolution
after the occurrence of glitches and/or flares in the Crab nebula (e.g. Čadež et al.
2016).

5.2. Very fast photometric monitoring of optical transients

MAXI 1820+070 is a bright and uncatalogued X-ray transient source discov-
ered on Mar 11, 2018 by Kawamuro et al. (2018), later identified with the optical
transient ASASSN-18ey. The source was proposed to be a candidate black hole
X-ray binary by Baglio et al. (2018). It shows pronounced and fast variabil-
ity/flaring activity in both the X-ray and optical bands (Tucker et al., 2018).

After the discovery of the source, in April 2018 we promptly started a fast-
photometry monitoring campaign with IFI+Iqueye and Aqueye+ (Zampieri
et al., 2018a,b; Fiori et al., 2018). This effort was carried out in synergy with the
SMARTNet multiwavelength network3. A joint photometric and spectroscopic
campaign was simultaneously undertaken with the Asiago and ANS Collabora-
tion telescopes (Munari et al., 2018a,b). We found that, compared to a nearby
reference star, in Apr and Jun 2018 the power spectrum of MAXI J1820+070
shows significant red noise and quasi periodic oscillations (QPOs).

The power spectrum of 3600s of data taken on Apr 18-19, 2018 is shown in
Figure 3. We detect a significant quasi-periodic oscillation (QPO) on the top
of three broad-band noise components (in part induced by the sky background;
Zampieri et al. 2018a). The QPO has a centroid frequency of 128±2 mHz, a
full-width-half-maximum of 24±5 mHz, and a fractional root-mean-square (rms)
variability of 3.1±0.3%. Another QPO-like feature at a lower frequency and with
lower significance is present in the power spectrum with a centroid frequency of
71±4 mHz, a full-width-half-maximum of 36±16 mHz, and a fractional rms vari-
ability of 3.2±0.6%. The properties (frequency and width) of the 128 mHz opti-
cal QPO are also consistent with those of the QPO at ∼0.12 Hz detected in the
power spectrum of quasi-simultaneous Swift observations of MAXI J1820+070
taken between Apr 16 and 20, 2018. Furthermore, the 128 mHz QPO has a

3https://www.isdc.unige.ch/SMARTNet/
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width consistent with that of the optical QPO reported in Yu et al. (2018). The
frequency difference between the two measurements, that are approximately 3.7
days apart, is 29 mHz. The fractional increment of the centroid frequency is
consistent with that calculated for a similar QPO detected in the X-rays with
NuSTAR and reported in Buisson et al. (2018).

Figure 3. Power density spectrum (Lehay normalized) of MAXI 1820+070 taken with

IFI+Iqueye on Apr 18-19, 2018 (Zampieri et al., 2018a). Four observations for a total

duration of 3600s were considered. Power spectra were computed from the non-back-

ground subtracted light curves with a time bin of 1 ms and were then averaged over

intervals of 130s duration.

On June 9-10, 2018, we detected other two QPO-like features (Fiori et al.,
2018). The power spectra of 4500s of data, calculated with a time bin of 1 ms
and then averaged over intervals of 65s duration, show two broad peaks on the
top of a broad-band noise component. The higher frequency QPO-like feature
has a centroid frequency of 268±12 mHz, a full-width-half-maximum of 150±39
mHz, and a fractional rms variability of 1.9±0.2%. The lower frequency QPO
is less significant and has a centroid frequency of 151±6 mHz, a full-width-half-
maximum of 33±16 mHz, and a fractional rms variability of 1.2±0.3%. We ob-
tained acceptable fits of the power spectrum also with two harmonically-related
QPOs, that have width and significance similar to those reported above. Accept-
able fits are obtained for 1:2, 2:3, or 3:5 centroid frequency ratios. A fit with
harmomically-related QPOs performed on the April IFI+Iqueye observations
gives similar results for the same harmonic ratios (1:2, 2:3 or 3:5).
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The origin of the low frequency X-ray QPOs detected in black hole X-ray bi-
naries has been matter of intense debate. They are thought to originate from the
LenseThirring (LT) precession of the hot inner part of the accretion disc, tilted
from the equatorial plane of the central rotating black hole (Ingram et al., 2009).
The recent detection of QPOS in the optical and infrared band, in addition to the
X-ray band, provides precious additional information to understand this phe-
nomenon. Optical and infrared QPOs may be produced directly from the inner
disc through synchrotron emission, modulated at the LT precession frequency
(Veledina et al., 2015). Or, the inner disc undergoes LT precession and illumi-
nates varying outer regions of the accretion disc, generating a reprocessed optical
QPO (Veledina & Poutanen, 2015). If the optical/infrared emission comes from
a jet launched from the accretion disc, jet precession/modulation may be driven
by LT precession of the disc (Malzac et al., 2018).

6. Conclusions

Aqueye+ and IFI+Iqueye are two very fast photon counters operating in Asiago.
They are used for performing very fast photometry of astrophysical sources and
modern implementation experiments of the Hanbury Brown and Twiss Intensity
Interferometer. Iqueye is fiber-fed through an independent instrument (IFI).

As part of our very-fast photometry observing programs, we have been reg-
ularly monitoring the Crab pulsar radio-optical delay since 2008. No significant
variation of the delay has occurred, indicating that the relative position and
geometry of the radio and optical emission regions have not changed. We car-
ried out also a monitoring campaign of the X-ray transient MAXI J1820+070,
detecting a number of QPOs in the power spectrum that will provide precious
additional information on this phenomenon. We plan to continue the presently
active experiments and observing programs, and to make Aqueye+@Copernicus
fiber-fed and permanently available in the ToO mode. We may in principle ex-
port this technique for coupling instruments at other meter-class facilities.

Very fast optical multicolor photometry allows a variety of prime interest
scientific questions to be addressed in the domain of High Time Resolution
Astrophysics even with meter-class telescopes. Coordinated multi-wavelength
campaigns most often benefit from the support of small telescopes world-wide
to guarantee adequate temporal coverage. At the same time, forefront instru-
mentation allows for unique observations to be made. Highly experimental pro-
grams, technological development activities, and training of young astronomers
can be run almost exclusively on such facilities.
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