
Original Citation:

Efficient Parameter Estimation for Information Retrieval Using Black-Box Optimization

IEEE Computer Society
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3311783 since: 2019-10-03T13:41:19Z

10.1109/TKDE.2017.2761749

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

1

Efficient Parameter Estimation for Information
Retrieval using Black-box Optimization

Alberto Costa, Emanuele Di Buccio, Massimo Melucci, and Giacomo Nannicini

Abstract—The retrieval function is one of the most important components of an Information Retrieval (IR) system, because it
determines to what extent some information is relevant to a user query. Most retrieval functions have “free parameters” whose value
must be set before retrieval, significantly affecting the effectiveness of an IR system. Choosing the optimum values for such parameters
is therefore of paramount importance. However, the optimum can only be found after a computationally expensive process, especially
when the generalization error is estimated via cross-validation. In this paper, we propose to determine free parameter values by solving
an optimization problem aimed at maximizing a measure of retrieval effectiveness. We employ the black-box optimization paradigm,
since the analytical expression of the measure of effectiveness with respect to the free parameters is unknown. We consider different
methods for solving the black-box optimization problem: a simple grid-search over the whole domain, and more sophisticated
techniques such as line search and surrogate model based algorithms. Experimental results on several test collections not only provide
useful insight about effectiveness, but also about efficiency: they indicate that with appropriate optimization techniques, the
computational cost of parameter optimization can be greatly reduced without compromising retrieval effectiveness, even when taking
generalization into account.

Index Terms—Information Retrieval, Optimization, Parameter Estimation.

F

1 INTRODUCTION

INFORMATION RETRIEVAL (IR) is the complex of activities
that represent information as data and retrieves the data

representing information relevant to the user’s information
needs. An IR system is a computer system performing in-
dexing and retrieval activities. Current technology requires
a retrieval model to be effective and allow prediction. A
retrieval model is a set of algebraic structures that describes
documents and queries. The model’s core is a retrieval func-
tion that maps these information structures to the numeric
real field. Choosing the right model is therefore a key step
of the deployment of an IR system.

Leaving indexing aside, we focus on the parametric
retrieval function. Many such functions involve an array
of parameters that are called “free” because their values
can in principle be set irrespective of the specific set of
documents and queries. This allows researchers to tune the
retrieval function to maximize retrieval effectiveness, i.e.,
the proportion of documents that are relevant to an informa-
tion need and are retrieved from a query representing this
need. Indeed, [1] states that “traditional retrieval functions
have few free parameters, but nevertheless these parameters
need to be set to some value, and this choice affects the
resulting performance”. Examples of free parameters in
retrieval functions are the λ parameter when performing
smoothing with the Jelinek-Mercer method, the µ parameter
in the Dirichlet smoothing method [2], the c parameter
in Information-based Models [3], or the α, β, γ parameters

• A. Costa is with the National University of Singapore and ETH Zurich,
Future Resilient Systems Program, Singapore.
E-mail: costa@lix.polytechnique.fr

• E. Di Buccio and M. Melucci are with the University of Padova, Italy.
• G. Nannicini is with IBM Research, T.J. Watson research center, NY,

USA.

in the Rocchio Feedback Model [4]. Another widely used
retrieval function is Best Match 25 (BM25) [5]. This paper
employs BM25 and a field-based version of it called BM25F
[6]. The latter function in particular has several free param-
eters, and is well-suited for the investigation of algorithms
to set free parameters.

IR researchers often compare parameter configurations
and struggle to obtain the most effective configuration. We
claim that efficient algorithms to select free parameters of
retrieval functions are needed in several practically relevant
scenarios. We now provide examples of such scenarios.

A parameter configuration that performs well can typi-
cally be found by testing many values for every parameter
on some training set, and selecting the values that maximize
a certain retrieval measure. To this end, a common approach
is to divide each parameter range into many equal-size sub-
ranges and pick one value from each subrange. Exploring
all these values is called grid search. If the subranges are
very small, the grid is fine-grained and this type of search
is quite exhaustive. Although grid search for the optimal
parameter values may become inefficient, it has two main
advantages: it is simple to implement, and it can be applied
to any retrieval function and retrieval effectiveness measure.
The problem is that the degree of inefficiency grows expo-
nentially with the number of parameters, since dividing n
parameters into k subranges would require testing O(kn)
different configurations. This can be very inefficient for
as little as three parameters. In fact, studies in machine
learning reveal that even random search (testing several
random values sampled from a uniform distribution) can
work better than grid search [7].

Furthermore, parameters are typically optimized only
at the time of construction and indexing of the document
collection, but optimization should be performed whenever

2

document collections grow, or queries evolve from one style
to the other: for example, three query styles – informational,
navigational and transactional – were found in the context of
the Web [8]. Therefore, the overall effectiveness of a retrieval
system is harmed by the inefficiency of performing repeated
parameter optimization for every situation, i.e., collection or
query set.

Finally, to address the rapid evolution of data and va-
riety of collections and queries, parameter values should
be chosen taking generalization performance into account,
to avoid overfitting. Generalization can be estimated e.g.,
using cross-validation. Unfortunately, cross-validation com-
pounds the problem of inefficient search for parameter val-
ues of the retrieval function, increasing the computational
effort required.

All these examples support our claim that efficient al-
gorithms to select free parameters of retrieval functions are
needed. This paper aims to address the crucial issue of ef-
ficiently finding the parameter values of retrieval functions
that yield the most effective system. The main contribution
of this paper consists in casting the parameter optimization
problem as a mathematical program solved by black-box
optimization methods that do not require an analytical
description of the objective function, and in empirically
showing that (i) black-box optimization is significantly more
efficient than grid search on a benchmark set, and (ii) black-
box optimization reliably and efficiently (i.e., in a short time)
finds effective parameter values even when generalization
is a requirement and/or the retrieval function has many
parameters. The rest of the paper is organized as follows.
Section 2 provides an overview of existing literature relevant
to our work. Section 3 introduces black-box optimization
and the techniques used in the our experiments. Section 4
provides more detail on how black-box optimization can
be used in the context of IR, in particular discussing the
choice of objective function and how to evaluate it. A com-
putational evaluation is discussed in Section 5 to compare
efficacy and efficiency of the proposed methods. Finally,
conclusions are presented in Section 6.

2 RELATED WORK

The subject of this paper is optimization in the context of IR.
This area has been extensively studied since the early sixties,
when researchers started to investigate retrieval functions
and their optimization, suggesting algorithms that can au-
tomatically refine queries and update document ranking by
leveraging parameters optimized on the basis of the user’s
feedback, see [9].

A limitation of such algorithms is the difficulty of deal-
ing with increasing number of parameters: there could be as
many parameters as the documents assessed by users, and
optimizing many parameters may lead to computational in-
efficiency, thus making the considered algorithm too expen-
sive for practical applications. Another limitation is the risk
of overfitting, due to the computational burden of assessing
generalization. Therefore, even though the emphasis of op-
timization in the context of IR has been effectiveness rather
than efficiency, the latter has become an important aspect
to consider when dealing with complex retrieval functions.
An example of the importance of this aspect is found in

the context of automatic query expansion. A crucial step
of automatic query expansion is the ranking of candidate
expansion features [10]: at a high level, an algorithm for
automatic query expansion has three parameters, namely
the number of documents that provide terms, the number
of terms provided by each document, and the number of
terms related to each term. Even with just three parameters,
evaluating all their combinations in order to find the optimal
one would be too computationally challenging.

Another prominent application domain of optimization
in IR is that of parametric retrieval functions. Most retrieval
functions have parameters that stem from design choices or
mathematical properties. For example, language modeling
consists of ranking documents by a mixture of probabilities
interpolated by way of parameters [11]. Binary indepen-
dence retrieval models are enhanced by smoothing param-
eters that reduce the side-effects of lack of term-occurrence
statistics, e.g., undesired 0/0 situations, as illustrated in [12].
In the case of Bernoulli or binomial retrieval functions, these
smoothing parameters may be beta random variables. When
based on maximum likelihood, optimization can leverage
the continuity of retrieval functions. However, in almost all
relevant cases the assumption of continuity does not hold;
an example is optimization based on maximum retrieval
effectiveness, which is a discrete function and requires
algorithms such as those illustrated in [1] and [13]. The
emergence of learning-to-rank raised the issue of parameter
optimization at a scale larger than that encountered in ad-
hoc retrieval, see e.g., [14]. An interesting application of
learning-to-rank related to our work is presented in [15],
where the authors propose a method to optimize the config-
uration of an IR system and to deal with discrete values for
system setting, while in this paper, we deal with continuous
values. The approach by [15] can choose values in a contin-
uous space only insofar as a finite set of possible values for
the continuous is preselected, for example via discretization.
The aim of our paper is to study the intrinsic parameter
optimization of a retrieval model (e.g., BM25) rather than
the whole IR system. However, these approaches may be
integrated to further improve the overall performance.

3 BLACK-BOX OPTIMIZATION

Without loss of generality, a single-objective mathematical
optimization problem can be written as follows1:

max f(x) (1)
s.t. x ∈ X . (2)

In the specific case studied in this paper, X = {x ∈
Rn ∩ [xL,xU]} and xL,xU are the vectors of lower and
upper bounds on the parameters. In general X may in-
volve other constraints, such as integrality requirements,
but this is not the case for the problem studied in this
paper. Problem (1)-(2) is called black-box when the analytical
expression of the objective function f is not known. The
only assumptions about f is that given x ∈ X , we can
evaluate f(x) through an oracle (convergence proofs for
specific algorithms typically require further assumptions,

1. Bold symbols represent vectors.

3

e.g., some inherent smoothness). Black-box optimization is
also known as derivative-free.

The black-box optimization framework applies naturally
to the problem of parameter tuning in IR: in this case, x
is the vector of parameters of an IR model, e.g., b and k1
in BM25, and these parameters are usually defined within
some range. Given a collection of documents and a set of
queries, one usually wants to maximize some performance
measure such as Mean Average Precision (MAP) [16] or Nor-
malized Discounted Cumulative Gain (NDCG) [17]. This
measure can be viewed as the unknown objective function
of a black-box problem: we do not know how to express it
in terms of the parameters that we want to tune, but when
b and k1 are set, MAP or NDCG can be evaluated on the
ranking lists given as output by a system that uses BM25.
More details are provided in Section 4. Here we discuss the
black-box optimization framework in general, and present
specific algorithms that can be used to solve Problem (1)-(2).

Many approaches to solve black-box optimization prob-
lems have been proposed. As mentioned above, simple
grid search does not scale well and is often impractical,
especially when the evaluation of the oracle for f requires
a significant amount of time. Some methodologies rely on
metaheuristics, such as genetic algorithms, simulated an-
nealing, and particle swarm. However, in many applications
such methods present a slow convergence, i.e., the quality of
the best solution found improves very slowly with respect to
the number of function evaluations. The mathematical op-
timization community regards metaheuristics as a method
of last resort [18], and prefers other types of approaches, in
particular direct search methods [19] or methods based on
surrogate models.

The defining characteristic of methods based on surro-
gate models is that, unlike direct search method, they try to
build an approximate model for the function f . This model
can then be used in many ways, e.g., to estimate gradients
or determine candidate optima. Among the approaches
to implementing surrogate modes there are the kriging-
based EGO (Efficient Global Optimization) method [20],
Gutmann’s Radial Basis Function (RBF) method [21], and
the stochastic RBF method [22]. These approaches build a
global model of the function f , in contrast to the local mod-
els employed by other methodologies such as trust regions
[18]. This guarantees convergence to the global optimum
from a theoretical standpoint if the number of iterations is
large enough, and the capability of identifying solutions of
good quality within a limited number of iterations from a
practical point of view.

In this paper we compare the performance of three
methods to solve the problem of parameter tuning in IR:

1) grid search, arguably the most popular methodol-
ogy;

2) line search, a direct search method already em-
ployed in [1];

3) an approach based surrogate models, and more
specifically, we employ the variant of the Metric
Stochastic Response Surface Method (MSRSM) [22]
implemented in the open-source library RBFOpt
[23].

We choose RBFOpt among the many approaches proposed

by the mathematical optimization community, because it
can handle potentially nonconvex problems, it has already
shown its effectiveness in empirical comparisons with many
existing methods on several types of problems (e.g., math-
ematical benchmarks [23], neural networks [24], and archi-
tectural design, see in particular the recent benchmarks [25],
[26]), and because its implementation is open-source. We
now discuss the main features of line search and the MSRSM
algorithm as implemented in RBFOpt.

3.1 Line search
Line search is a simple optimization methodology that can
be employed to solve black-box optimization problems,
because it only requires zero-order information (i.e., it does
not require gradients). In this paper, we refer to the version
of line search applied to IR in [1], which will be our bench-
mark. We now provide a brief description of the algorithm.

For j = 1, . . . , n, we denote by xj the j-th component of
the point x ∈ X , and by ej the j-th unit vector. Line search
tries to iteratively improve the objective function value
by determining an ascent direction. At a given iteration,
let x be the current point. Starting from x, the algorithm
samples along each direction ej according to a given step
size, and records the value xpj corresponding to the best
point found along direction ej , j = 1, . . . , n. Then, the
point xp = (xp1, . . . , x

p
n) is used to define the next sampling

direction: we perform another round of sampling along the
line connecting x to xp. If a point better than x is found,
x is updated and the whole procedure, called epoch in [1],
is repeated. The algorithm stops when we either reach a
maximum of 24 epochs, or there are 3 consecutive epochs
without improvement. The computation of the initial step
size is not specified in [1]. In our implementation we sample
10 points along each direction j = 1, . . . , n, and the initial

step size for direction j is ∆0
j =

xU
j −x

L
j

9 . The update rule for
the step size, i.e., the formula to compute the step size ∆i+1

at epoch i+ 1, is ∆i+1 = 0.85∆i, following [1].
Given a starting point x0, Line Search can be summa-

rized as follows:
Require: Starting point x0

1: for all dimension j = 1, . . . , n do
2: ∆0

j ← (xUj − xLj) / 9
3: end for
4: i← 0
5: x← x0

6: repeat
7: for all dimension j = 1, . . . , n do
8: Starting from x sample along the direction ej with

step size ∆i
j

9: save the best point found in xpj
10: end for
11: Sample along the line between x and xp with step size

(||xp − x||) / 9
12: Set x to the best point found in the current cycle
13: if i ≥ 2 AND x has not changed in the last 3 epochs

then
14: BREAK
15: end if
16: for all dimension j = 1, . . . , n do
17: ∆i+1

j ← 0.85∆i
j

4

18: end for
19: i← i+ 1
20: until i = 24
21: return x

3.2 Optimization using a RBF surrogate model
Optimization algorithms based on surrogate models typ-
ically build, at every major iteration, a model of the un-
known objective function using the points evaluated so far.
In the specific approach employed in this paper, and in
several others discussed in the literature, this interpolant
is built by means of RBFs. RBFs are functions of the form
φ(||x − y||) : R+ → R where y is a given vector, i.e.,
they depend solely on the Euclidean distance r = ‖x − y‖
of the argument x from the point y that is called the
center of the RBF. There are different types of RBFs; the
most commonly employed are the cubic RBF φ(r) = r3

and the thin plate spline RBF φ(r) = r2 log(r). Given k
distinct points x1, . . . ,xk ∈ [xL,xU] and corresponding
values f(xi), the RBF surrogate model sk that interpolates
the points (x1, f(x1)), . . . , (xk, f(xk)) can be expressed as:

sk(x) =
k∑

i=1

λiφ(||x− xi||) + p(x), (3)

where φ is the chosen RBF, λ ∈ Rk, and p(x) is a polynomial
in x. The polynomial guarantees existence and uniqueness
of an interpolant of the form (3), and its degree depends
on the type of RBF φ employed, see [21] for details. For the
commonly used cubic and thin plate spline RBFs, p is of
degree 1, i.e., it is of the form a>x + b with a ∈ Rn and
b ∈ R. From now on we assume that this is the form of
the interpolant. All the coefficients λ,a, b can be found by
solving a linear system imposing that sk(xi) = f(xi) with
additional technical conditions, see [23].

Let k be the function evaluation counter, and
let MAX EVAL be the maximum number of allowed
function evaluations. The MSRSM method used
by default by RBFOpt can be summarized as
follows.
Require: m starting points x1, . . . ,xm

1: S ← {(x1, f(x1)), . . . , (xm, f(xm))}
2: k ← m
3: repeat
4: Compute the RBF interpolant sk to the points in S

according to (3)
5: Determine the trade-off α ∈ [0, 1] between exploration

and exploitation
6: Find a point xk+1 with large value of

mini=1,...,k ‖xk+1 − xi‖ and large value of sk(xk+1),
using the weight α to balance these two criteria

7: Evaluate f at xk+1 to obtain f(xk+1)
8: S ← S ∪ {(xk+1, f(xk+1))}
9: k ← k + 1

10: until k = MAX EVAL
11: return the best solution from among those in S
We remark that RBFOpt implements additional optimiza-
tion algorithms, in particular Gutmann’s RBF method [21],
but we limit our discussion to MSRSM because it is the
default setting and it is employed in our experiments. We
now provide more details on steps 1, 5 and 6.

3.2.1 Initial sample points

To guarantee existence of a unique interpolant of the form
(3), we need at least n+1 distinct interpolation points. There
are several ways to choose these initial points. In the context
of optimization algorithms based on RBF surrogate models,
a simple strategy proposed in early work [21] consists in
using the 2n vertices of the hypercube [xL,xU]. Such a
strategy, labeled all corners in Section 5.4, is only practical
when n is small, but empirical evidence suggests that it is a
stable approach whenever practical. The default approach of
RBFOpt is to use a Latin hypercube design [27] with exactly
n + 1 points, generated as follows: 50 Latin hypercube
designs are constructed at random, and the one that maxi-
mizes the minimum Euclidean distance between the sample
points is selected. This strategy is labeled lhd maximin in
Section 5.4.

3.2.2 Selection of the next search point

The choice of the next point at which the objective function
f should be evaluated is based on two criteria: the distance
from previously evaluated points, and the objective function
value of the surrogate model, both of which are to be
maximized. Typically these criteria are conflicting, as the
surrogate model is unlikely to attribute very large objective
function values to regions of the search space that are very
far from existing interpolation points, in particular those
with high values. Prioritizing the distance criterion leads to
an exploration phase, because it results in evaluating points
in a previously unexplored region, whereas prioritizing the
objective function value estimated by the surrogate model
leads to an exploitation phase.

The algorithm uses a cyclic strategy that prioritizes each
criterion in turn, by choosing a weight that determines the
relative trade-off between distance and objective function
value. More precisely, the parametrization of RBFOpt used
for the computational evaluation presented in this paper
works as follows. Let α ∈ [0, 1] be a given weight and sup-
pose we are at iteration k. We apply a genetic algorithm on
a bi-objective optimization problem with the two objective
functions:

g(x) := min
i=1,...,k

‖x− xi‖, h(x) := sk(x),

where sk is defined as in (3). After an initial population P of
points is generated, each point x ∈ P is assigned the score:

α
g(x)−miny∈P g(y)

maxy∈P g(y)−miny∈P g(y)
+

h(x)−miny∈P h(y)

maxy∈P h(y)−miny∈P h(y)
,

which is a weighted sum of a normalization of the values
of the two objective functions g and h. Larger scores are
better. A fraction of the population with large score is
retained and randomly mutated or combined, whereas the
remaining part of the population is discarded and replaced
by new points generated uniformly at random within the
box [xL,xU]. The weight α varies from 0 to 1 in a periodic
way with a period of length 6. Details on the implemen-
tation can be found in [28]. We remark that this approach
is slightly different from MSRSM as described in [22], but

5

the underlying ideas are similar and in our experience the
version proposed here works better in practice.

4 OPTIMIZATION OF RETRIEVAL FUNCTIONS

The black-box optimization framework presented in the
previous section is general. We now specialize it to the op-
timization of retrieval functions, discussing several choices
for the objective function f of Problem (1)-(2) in the context
of retrieval functions with free parameters.

4.1 Retrieval Functions with Free Parameters
In this section, we provide a brief overview of BM25 with
the goal of explaining the meaning of its free parameters,
which will be thoroughly analyzed in the remainder of the
paper. We refer the reader to [5] for a detailed description of
the derivation of BM25.

The description of the retrieval functions reported be-
low uses the notation introduced in [29]. Let t be a term
appearing in document d; according to BM25, the weight
wBM25(t, d) assigned to the term t in the document d is:

wBM25(t, d) =
n′L(t, d)

k1 + n′L(t, d)
wRSJ(t, c)

(k3 + 1) nL(t, q)

k3 + nL(t, q)
,

(4)
where:

• nL(t, q) is the number of locations at which the term
t occurs in the query q, i.e., the term frequency of term
t in query q.

• nL(t, d) is the number of locations at which the term
t occurs in the document d, i.e., the term frequency of
term t in document d.

• n′L(t, d) is the normalized term frequency. The nor-
malization is with respect to the length of the docu-
ment, NL(d) =

∑
t∈d nL(t, d):

n′L(t, d) =
nL(t, d)

(1− b) + bNL(d)
avgdl

, (5)

where avgdl is the average document length of the
collection. The free parameter 0 ≤ b ≤ 1 controls the
extent of document length normalization: when b =
1 we consider a full document length normalization
since n′L(t, d) = nL(t,d)

NL(d) · avgdl, whereas when b = 0
no document length normalization is adopted since
n′L(t, d) = nL(t, d).

• k1 is a free parameter that controls the saturation of
the (document) term frequency. Saturation is intro-
duced to derive a retrieval function such that the
score assigned to a term t increases monotonically
with nL(t, d) but asymptotically approaches a max-
imum value as nL(t, d) → ∞; in other words, the
term score “cannot exceed a saturation point (the
asymptotic limit), however frequently it occurs in the
document” [5].

• k3 is a free parameter that controls the saturation of
the query term frequency, nL(t, q).

• wRSJ(t, c) is the Robertson-Sparck Jones weight that
in absence of relevance information is the Inverse
Document Frequency (IDF) [30] and is computed as:

wRSJ(t, c) =
ND(c)− nD(t, c) + 0.5

nD(t, c) + 0.5
, (6)

where ND(c) is the total number of documents in the
collection c, and nD(t, c) is the number of documents
in the collection where the term t occurs.

Despite its popularity, BM25 has some limitations. In many
application domains, documents are structured, since they
are composed of multiple fields such as title, abstract, and
body, or result from multiple streams; for example webpages
can be characterized by title, body, terms occurring in the
URL and anchor text. The BM25 retrieval function was not
intended to deal with information on multiple fields or
streams. In such a context, BM25 can be still adopted by
merging all document fields/streams into a non-structured
form, i.e., obtaining a unique stream as a concatenation of
the multiple streams. The limitation of this approach is that
we cannot exploit structure and associate a weight to each
stream. BM25F was proposed to address this issue, and this
paper studies the optimization of BM25F as well as BM25.

The simplest version of BM25F [6] employs a weighted
variant of the total term frequency and of the document
length, see Section 3.6.3 of [5] for details. If s ∈ {1, . . . , T}
refers to the available streams, the free parameters in this
simple BM25F version are the stream weights {v1, . . . , vT },
b, and k1. The number of free parameters is therefore T + 2.

Another version of BM25F was proposed in [1]. Therein,
a stream-specific value of b is adopted:

ñL(t, d) =
T∑

s=1

vs
nL(t, s, d)

(1− bs) + bs
NL(s,d)
avgdl(s)

0 ≤ bs ≤ 1, (7)

where:

• nL(t, s, d) is the number of locations at which the
term t occurs in stream s of document d;

• NL(s, d) is the length of stream s in document d, i.e.,
the total number of locations for that stream;

• avgdl(s) is the average length of stream s in the
collection.

The BM25F weight for a term t in a document d is therefore:

wBM25F(t, d) =
ñL(t, d)

ñL(t, d) + k1
wRSJ(t, c). (8)

When multiple streams are present and no relevance in-
formation is available at the level of document fragments,
wRSJ(t, c) can be computed as the IDF on the entire collec-
tion disregarding streams [1], [6]; this is also the approach
adopted in this paper. Notice also that k3 does not appear
in (8), since BM25F assumes that each term appears only
once in the query. The number of free parameters in the
second version of BM25F is 2T + 1: k1, plus two free
parameters for each stream, bs and vs. Our paper focuses on
the (2T + 1)-parameter version of BM25F: the wide array of
free parameters provides additional degrees of freedom to
researchers who aim to improve retrieval effectiveness, and
it becomes a ground on which efficiency can significantly be
improved.

4.2 Choice of Objective Function
In this section, the choice of the objective function for the
optimization of BM25 or BM25F is discussed. In this discus-
sion, we ultimately map a given value of the parameters for

6

the retrieval functions to a single real number, so as to have
a problem of the form (1)-(2). Hence, we need a measure of
retrieval effectiveness, which in turn requires an evaluation
on a given set of queries and documents. Given a set of
queries Q, a corpus of documents, and a set of relevance
judgements about the documents with respect to each query,
there are three natural approaches to estimate a measure of
retrieval effectiveness:

(a) The entire set Q is used to discover the best free pa-
rameter values for the ranking function considered.
This procedure has the severe drawback of being
likely to overfit the training set, yielding poor gener-
alization. However, in our experimental evaluation
this is a reasonable procedure to investigate the best
parameters values in a “best case” situation.

(b) Q is randomly partitioned into k groups; then, for
i = 1, . . . , k, the ith part is used for test, and the
remaining k − 1 parts are used for training. This
approach is called cross-validation. Effectiveness can
then be computed as the average of the effectiveness
measure over the k distinct test sets. This procedure
is significantly more robust than the previous ap-
proach, but it has a higher computational cost.

(c) Q is split into a training set consisting of x% of the
queries, and a test set consisting of the remaning
(100 − x)% of the queries. The retrieval function is
tuned on the training set using cross-validation as
in (b), but the performance of the best parameter
settings found using cross-validation is assessed on
the (unseen) test set.

In the experiments reported in this paper, we exploit all
three approaches to tune BM25 with two free parameters,
while (a) is used to tune BM25F as well as BM25 with three
parameters. Although (a) is simpler, approaches (b) and (c)
allows us to better estimate generalization capabilities of the
models discovered by the parameter optimization methods,
thus investigating whether some methodologies are more
susceptible to overfitting.

5 EXPERIMENTS

5.1 Research Questions
We evaluate the performance of an optimization method to
tune the free parameters of retrieval functions in terms of
effectiveness and efficiency.

A method should be able to discover values of the free
parameters that yield the highest value of the adopted
performance metric, e.g., MAP or NDCG, on a given test
collection. Hence, a natural research question is to inves-
tigate the effectiveness of the optimization methods dis-
cussed in Section 3. While Grid Search and Line Search2

are “traditional” approaches in the IR community, RBFOpt
has experimentally shown to be a very effective black-box
optimization tool [23], [24] in other contexts. Therefore, our
first research question is:

RQ1 Is there anything to gain in terms of effectiveness
of the IR function, by switching from the traditional

2. We use capital letters to specify the particular implementation of
these methodologies employed in this paper.

search methodologies to a more sophisticated black-
box approach?

If the effectiveness of the tested methodologies is compa-
rable, the next research question concerns their efficiency.
When tuning IR functions, efficiency is measured in terms
of the number of objective function evaluations, or “runs”,3

needed to discover the values of the free parameter yielding
the highest value of the adopted effectiveness measure. This
measure of efficiency is independent of computer architec-
ture and widely used as a metric in the black-box opti-
mization literature. As for the problem under consideration,
each evaluation of the objective function requires training
and testing a retrieval function on a large dataset; it is
therefore very time consuming, whereas the optimization
algorithm itself requires an amount of computing time that
is negligible in comparison. Hence, a method that is more
efficient in terms of number of function evaluations is also
faster in terms of CPU time.4 For this reason, if two or
more methodologies have the same effectiveness, we should
prefer the one that discovers the (supposedly) optimal free
parameter values with fewer evaluations, because it requires
fewer computational resources. Our second research ques-
tion is therefore:

RQ2 Which parameter optimization method is the most
efficient?

Of course, while we would like to determine the most
efficient parameter optimization method overall, our em-
pirical evaluation is limited by its computational cost, and
we cannot afford to test all optimization methodologies
described in the literature. Hence, we focus on the three
approaches discussed in this paper as representatives of
different classes of optimization algorithms.

5.2 Test Collections and Effectiveness Measures
The experiments are carried out on a set of diverse IR test
collections designed to measure the effectiveness in ad hoc
settings, where “ad hoc requests are searched against a fixed
document collection” [31]. Each test collection consists of
a document corpus, a set of topics and a set of relevant
judgements provided for (a subset of) topic-document pairs.
Each topic refers to a user information need; three textual
descriptions are available for each topic: title, description,
and narrative. In ad hoc IR settings, it is customary to use
the topic title to simulate the query submitted by the user
to express the information need related to the topic; when
other topic descriptions are used, it will be explicitly stated.
A brief description and some statistics on the adopted test
collections are reported in Table 1.

Effectiveness is measured in terms of MAP and
NDCG@20. The Average Precision (AP) for a topic is com-
puted as the average of the precision values (the ratio of

3. It is useful to note that here, “evaluation” has a different meaning
than the one usually considered in IR. In the context of this paper,
and in the black-box optimization literature, “evaluation” refers to the
process of computing the value of the objective function.

4. In our experiments, even the algorithm that has the slowest per-
iteration time spends at least 97% of the total CPU time evaluating the
objective function. More specifically, RBFOpt requires approximately
0.15 seconds per iteration, while LineSearch requires a few millisec-
onds, but training and testing the retrieval function takes several
seconds, which accounts for the vast majority of the CPU time.

7

relevant documents over retrieved documents) at each of
the relevant documents in the ranked sequence; MAP is
the mean of the AP computed over all the topics. The
second measure, NDCG@20, is adopted to investigate the
model capability to rank highly relevant documents at high
rank positions. Unlike MAP, NDCG can take into account
not only binary relevance (i.e., if a retrieved document is
relevant or not relevant to the topic), but also information
on relevance grades: for instance, if a retrieved document is
marginally or highly relevant to the topic. We use the NDCG
variant adopted in the TREC2010 Web Track: NDCG@k =
DCG@k / IDCG@k, where

DCG@k =
k∑

i=1

(2reli − 1)/ log2(i+ 1),

and IDCG@k is the DCG@k computed on the top k relevant
documents in the pool, ranked by their (descending) degree
of relevance; reli denotes the relevance grade of documents
at the i-th position. The relevance grades reli vary according
to the test collection: for instance, in wt00-01 relevant doc-
uments have relevance grade reli = 1 and highly relevant
documents have relevance grade reli = 2. The NDCG cut-
off k was set to 20 in accordance with the guideline of the
TREC 2010 Web Track [32].

The number of results m to compute the MAP is set to
m = 1000 for the robust-04 and the wt00-01 test collections;
m = 10000 is employed for the tb04-06 and the wt10-12
test collections, following guidelines reported respectively
in [33] and [32].

5.3 Experimental Methodology

We optimize the free parameters of the two retrieval models
described in Section 4: BM25 and BM25F.

BM25 has three free parameters: b, k1 and k3. The default
values are b = 0.75, k1 = 1.2 and k3 = 0. We carry
out two sets of experiments on the optimization of BM25
parameters. In the first set, we optimize only b and k1, for
the following reasons:

• k3 determines the effect of the frequency of a term
t in the query, nL(t, q); however, in ad hoc settings
a query coincides with the title of the topic, which
is usually short and results in nL(t, q) = 1. For
example, in the robust-04 test collections there are no
title queries with nL(t, q) > 1, while in wt00-01 there
are only three such title queries.

• By focusing on two parameters only, we can perform
optimization via Grid Search with fine granularity.
Since Grid Search is a popular approach, this allows
us to verify if this popularity is justified in an ideal
setting.

In the second set of experiments we optimize all three
free parameters. Since k3 affects the BM25 weight only if
nL(t, q) > 1, and this is a rare occurence in our test collec-
tions when considering title descriptions, we consider two
different test collections. The first one, labeled robust-04n,
is the robust-04 test collection with narrative description: in
195 of the 250 topic narrative descriptions nL(t, q) > 1, and
the range for the maximum values of nL(t, q) for term t

among those topics is [2, 6]. The second one, labeled robust-
04v, is the robust-04 test collection developed in [34] to
investigate verbose queries. A verbose query is defined as
one that is “too long, detailed, uses or is expressed in more
words than are needed” [34]. This test collection relies on
a subset of the topics of robust-04: 30 topics are selected
and verbose queries are built by extracting some passages
from the documents that are relevant to the topic; these
passages contain information relevant to the topic, that is,
these passages are what an assessor would read if he or
she assessed a document as relevant. Additional details on
the robust-04v test collection and the verbose queries can be
found in [34]. In this test collection nL(t, q) > 1 for 29 of the
30 topics, and the range for the maximum values of nL(t, q)
for the term t among those topics is [2, 10].

The ranges of the free parameters of BM25 are:

b ∈ [0, 1] k1 ∈ [0, 10] k3 ∈ [0, 1000].

The range for k1 is selected in accordance with the objec-
tive function contours for the 2-parameter model (BM25)
reported in [1]. The range for k3 is suggested in [35].

In the set of experiments involving only 2 free pa-
rameters, we perform a grid search on the range [0, 1]
with a step of 0.01 for the parameter b, and the range
[0, 10] with a step 0.1 for the parameter k1. This leads to
(1 + 1/0.01) · (1 + 10/0.1) = 10201 tested configurations for
each test collection.

The BM25F version adopted in [1] has 2S+1 free param-
eters5; in this paper the following ranges are investigated:

bs ∈ [0, 1] vs ∈ [0, 100] k1 ∈ [0, 10].

The range for k1 is selected as for BM25. Ranges for vs
are not explicitly discussed in [6] and [1]; however, in [6]
the contour plots in the case of BM25F with title, body
and anchor streams suggest vs ∈ [0, 100] for the “simple”
BM25F version and vs ∈ [0, 1] for the second version6;
moreover, when considering title and body fields, [6] states
that “the range of weights explored is between 0 and 3”. We
investigate a wide range [0, 100], since the literature exhibits
little agreement in the range of free parameters when certain
stringent mathematical properties such as the range of the
parameters bs cannot be considered. The experiments on
BM25F are carried out on the wt00-01 test collection; each
document is represented using four streams: title and body
extracted from the Web page, anchor text, and terms ex-
tracted from the URL.

5.4 Experimental System and Settings

All experiments are carried out via Apache Lucene version
4.7.2 [36]. Retrieval models are re-implemented using the
index API, and Porter stemmer is adopted both for indexing
and retrieval. No stopping list is adopted to build the
index; the stoplist available in the Lemur Toolkit is adopted
at retrieval time. The anchors are extracted through the
Galago [37] functionality to harvest links.

5. The number of parameters could be reduced by 1 as suggested
in [1] by setting one vs arbitrarily to 1.

6. Remarks reported on the second version suggest [0, 1] as a good
range for searching vs values.

8

TABLE 1
Description of the test collections adopted in the experiments.

Test Collection Corpus Number of documents Topic sets

robust-04 Financial Times (FT), Federal Register (FR), 528,155 301-450; 600-700
Foreign Broadcast Inf. Serv. (FBIS), the LA Times (LATIMES)

wt00-01 WT10g 1,692,096 451-550
tb04-06 Gov2 25,205,179 700-850
wt10-12 ClueWeb09 Cat B 50,220,423 51-200

The value of the measures of effectiveness is computed
through the Lemur Toolkit Utility ireval, since it can be easily
included in our pipeline for free parameter tuning of IR
functions.

For the optimization, the Line Search methodology de-
scribed in Section 3.1 and based on [1] is implemented in
Python. The initial point is set to x0 = 0. We use RBFOpt
version 2.0.0, available at [28]. All parameters for RBFOpt
are left to their default values, except for the initialization
strategy, for which we try all corners and lhd maximin as
described in Section 3.2.1.

5.5 Results

5.5.1 BM25 with 2 free parameters

The results for the optimization of b and k1 are reported
in Table 2 and Table 3 for the MAP and the NDCG@20
effectiveness measure, respectively. The column labels are
explained in the caption of the tables.

We adopt the paired t-test to check whether the differ-
ences among the results obtained are statistically significant
at a significance level of α = 0.05. In the context of this
paper, the t-test is applied to the population determined
by the performance measure (MAP or NDCG@20) recorded
on individual queries. Thus, the number of samples is the
number of queries in the experiment, and each algorithm
has the same sample size. When marked with an asterisk,
a result exhibits a statistically significant difference (p-value
< 0.05) from the result with the default parameter values.

In terms of MAP, the three optimizations methods are
able to improve the effectiveness over the baseline: the
differences from the results with the default parameter val-
ues are statistically significant for all test collections except
wt10-12. The same results are observed when optimizing in
terms of NDCG@20: differences from the results with the
default parameter values are statistically significant for all
test collections except wt10-12.

Looking at e@hY , i.e., the number of evaluations re-
quired by algorithm “Y ” (where “G”, “L”, and “R” refer
to Grid Search, Line Search, and RBFOpt, respectively) to
find the highest value of MAP and NDCG@20, neither
Line Search nor RBFOpt is able to clearly outperform the
other across all the collections. However, Tables 2 and 3
report only the evaluation at which the highest value is
observed for each algorithm. A more comprehensive pic-
ture on the efficiency of the methods can be obtained by
comparing, after every objective function evaluation, the
highest value of the effectiveness measure reached until that
point. Fig. 1 reports the highest value of NDCG@20 obtained

by BM25 at each evaluation. We focus on NDCG@20 since
the analysis of the two-dimensional contour plots (b, k1)
showed a similar behavior for both MAP and NDCG@20
in most collections (robust-04, wt00-01, tb04-06), while the
contour plot of NDCG@20 was relatively rough in wt10-12
(see Figure 2a), thus providing a challenging environment
for assessment of optimization algorithms. Fig. 1 shows
that RBFOpt reaches its maximum quickly when the initial
sample points are selected by the default strategy (RBFOpt
lhd maximin, dotted curve in the plots).

To further investigate this claim, Table 4 reports: the
number of evaluations e@hY needed to obtain the highest
NDCG@20 value, hY ; the number of evaluations e@fY≈hY
needed to obtain a value of NDCG@20 for which no statisti-
cally significant difference is detected from the highest value
obtained with the same optimization method; the number
of evaluations e@fL≈hR needed by Line Search to obtain
a value of NDCG@20 for which no statistically significant
difference is detected from the highest value obtained by
RBFOpt at the same evaluation7. Looking at these results,
more specifically e@fL≈hL and e@fR≈hR, we conclude that
RBFOpt reaches close-to-maximum NDCG@20 values not
later, and at times even earlier, than Line Search. RBFOpt’s
ability to reach near-optimal parameter values much earlier
than Line Search indicates that it can be more efficient
than Line Search in an IR context that requires adapting a
retrieval function to diverse queries and collections.

To further investigate RBFOpt’s capabilities of finding
effective parameter values within a small number of objec-
tive function evaluations, we compare the two initialization
strategies lhd maximin and all corners: results in terms of
NDCG@20 are reported in Table 5. There is no signifi-
cant difference between the two in terms of the value of
NDCG@20 attained. In three out of four test collections
(wt00-01, tb04-06 and wt10-12), all corners finds a maximum
within fewer evaluations than lhd maximin; however, look-
ing at the curves in Fig. 1, a greater number of evaluations
is needed by all corners to obtain a NDCG@20 value close to
the highest one, see the dashed curve.

In terms of the actual points evaluated in the 2-
dimensional free parameter space (b, k1), lhd maximin and
all corners behave differently: Fig. 2 reports the points eval-
uated by the Line Search (Fig. 2b), RBFOpt with lhd maximin
(Fig. 2c), and RBFOpt with all corners (Fig 2d). Interestingly,
all corners is able to find a different region (b ∈ [0.05, 0.25],

7. We remark that not detecting a difference at a given significance
level does not imply that the values being compared are the same (i.e.,
that the null hypothesis is true), but it gives an indication that their
distribution may look similar.

9

TABLE 2
MAP in a “best case” situation when tuning BM25 parameters b and k1. hG, hL and hR denote the highest values obtained respectively by Grid
Search (G), Line Search (L) and RBFOpt (R). e@hL and e@hR denote the number of evaluations needed to obtain hL and hR. #e is the total

number of evaluation performed by the optimization methods. The values in parentheses are the number of evaluations needed to obtain a MAP
value equal or greater than that obtained by Grid Search. Results marked with an asterisk are significantly different from the results with the

default parameter values.

Collection Default Grid Search Line Search RBFOpt

b k1 hG b k1 hL e@hL #e b k1 hR e@hR #e
robust-04 0.2352 0.30 0.7 0.2545∗ 0.3066 0.6976 0.2546∗ 38 (38) 90 0.3050 0.6962 0.2546∗ 21 (20) 165
wt00-01 0.1720 0.21 0.6 0.2101∗ 0.2480 0.4960 0.2096∗ 14 (-) 60 0.2206 0.6041 0.2099∗ 165 (-) 165
tb04-06 0.2670 0.33 0.9 0.3166∗ 0.3488 0.6976 0.3158∗ 15 (-) 65 0.3292 0.8860 0.3167∗ 27 (26) 162
wt10-12 0.0885 0.00 3.3 0.0903 0.0000 3.4450 0.0903 40 (40) 100 0.2919 4.6228 0.0900 9 (-) 165

TABLE 3
NDCG@20 in a “best case” situation when tuning BM25 parameters b and k1.

Collection Default Grid Search Line Search RBFOpt

b k1 hG b k1 hL e@hL #e b k1 hR e@hR #e
robust-04 0.3975 0.39 1.0 0.4177∗ 0.3976 0.9395 0.4171∗ 42 (-) 95 0.3920 0.9931 0.4181∗ 39 (25) 165
wt00-01 0.2941 0.33 2.2 0.3297∗ 0.3312 2.322 0.3285∗ 67 (-) 131 0.3157 2.1683 0.3283∗ 117 (-) 165
tb04-06 0.3865 0.43 1.4 0.4444∗ 0.4244 1.6976 0.4450∗ 16 (16) 70 0.4298 1.3899 0.4445∗ 156 (27) 165
wt10-12 0.1248 0.03 0.1 0.1262 0.0000 1.4555 0.1265 56 (11) 105 0.0015 0.0001 0.1282 160 (44) 165

TABLE 4
Comparison between RBFOpt and Line Search in terms of number of evaluations. hL and hR denote the highest value of NDCG@20 obtained

respectively by Line Search (L) and RBFOpt (R); e@hL and e@hR denote the number of evaluations needed to obtain those values. fY≈hY
denotes the first value obtained by method Y and not statistical different from hY; e@fY≈hY denotes the number of evaluations needed by method

Y to obtain fY≈hY.

Collection Line Search RBFOpt

hL e@hL fL≈hL e@fL≈hL fL≈hR e@fL≈hR hR e@hR fR≈hR e@fR≈hR
robust-04 0.4171 42 0.4155 16 0.4158 17 0.4181 39 0.4149 9
wt00-01 0.3285 67 0.3159 14 0.3159 14 0.3283 117 0.3221 11
tb04-06 0.4450 16 0.4397 15 0.4321 14 0.4445 156 0.4402 13
wt10-12 0.1265 59 0.1252 7 0.1252 7 0.1282 156 0.1234 1

TABLE 5
Comparison in terms of NDCG20 in a “best scenario” situation when tuning BM25 parameters b and k1 with two different starting point strategies:

all corners and lhd maximin (RBFOpt default). Differences between the NDCG@20 values obtained by the two strategies are not statistically
significant.

Collection RBFOpt lhd maximin RBFOpt all corners

b k1 hR e@hR #e b k1 hR e@hR #e
robust-04 0.3920 0.9931 0.4181 39 165 0.3913 0.9781 0.4183 105 154
wt00-01 0.3157 2.1683 0.3283 117 165 0.3269 2.3268 0.3285 80 154
tb04-06 0.4298 1.3899 0.4445 156 165 0.4371 1.3095 0.4444 75 154
wt10-12 0.0015 0.0001 0.1282 160 165 0.2099 6.1563 0.1259 20 154

k1 ∈ [4, 6.2]) where the contour plot shows high values of
NDCG@20; this is evident also from the values of (b, k1)
reported in Table 3 and Table 5 for wt10-12: while the
optimal parameter values obtained by Grid Search, Line
Search and RBFOpt with lhd maximin are approximately in
the same area (b ≈ 0 and small values of k1), RBFOpt with
all corners provides parameter values in a different part of
the space (b = 0.2099, k1 = 6.1563).

In the remainder of this paper we rely on lhd maximin,
because Fig. 1 suggests that it is more efficient than
all corners, and all corners is impractical when optimizing
a large number of parameters.

We conclude this section devoted to the optimization
of two-parameter BM25 and summarize our results with
respect to the two research questions RQ1 and RQ2 stated
earlier in the paper, relative to the tuning of b and k1 only.

10

101 102
0

0.1

0.2

0.3

0.4

0.5

Evaluation (log)

N
D

C
G

@
20

Line Search

RBFOpt lhd maximin

RBFOpt all corners

(a) robust-04

101 102
0

0.1

0.2

0.3

0.4

0.5

Evaluation (log)

N
D

C
G

@
20

Line Search

RBFOpt lhd maximin

RBFOpt all corners

(b) wt00-01

101 102
0

0.1

0.2

0.3

0.4

0.5

Evaluation (log)

N
D

C
G

@
20

Line Search

RBFOpt lhd maximin

RBFOpt all corners

(c) tb04-06

101 102
0

0.1

0.2

0.3

0.4

0.5

Evaluation (log)

N
D

C
G

@
20

Line Search

RBFOpt lhd maximin

RBFOpt all corners

(d) wt10-12

Fig. 1. Highest NDCG@20 obtained at a given evaluation by BM25 for the diverse test collections; plots stop at the maximum number of evaluations
performed by Line Search.

(a) Contour Plot

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

b

k1

(b) Line Search

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

b

k1

(c) RBFOpt lhd maximin

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

b

k1

(d) RBFOpt all corners

Fig. 2. Contour plot of NDCG@20 obtained with Grid Search (Fig. 2a), points (b,k1) evaluated by Line Search (Fig. 2b), RBFOpt with lhd maximin
(Fig. 2c) and RBFOpt with all the corners (Fig. 2d) when tuning BM25 in the wt10-12 test collection. The plot in Fig. 2a was obtained using 26
contour levels; lighter colors denote areas with higher NDCG@20; for k1 ∈ [0, 0.1] contour lines are spaced close to each other, meaning that
NDCG@20 values change rapidly. Plots in Fig. 2c and Fig. 2d are based on the first 105 evaluations, i.e. the total number of evaluations performed
by Line Search for wt10-12 — see Table 3.

RQ1 Empirical results show that there is no significant
gain in terms of effectiveness of the retrieval function
when switching from the traditional search method-
ologies to a more sophisticated black-box approach.

RQ2 Both Line Search and RBFOpt can be efficient, since
they are able to find effective free parameter settings
even with a small number of evaluations.

We now proceed to investigate these questions in the context

of retrieval functions with a larger number of free parame-
ters.

5.5.2 BM25 with three free parameters and BM25F
Table 6 reports results obtained when optimizing b, k1 and
k3. There is no significant difference among the highest
MAP and NDCG@20 values obtained by Line Search and
RBFOpt. On the other hand, the number of evaluations

11

required by RBFOpt to obtain the highest value of the effec-
tiveness measure is lower than the number of evaluations
required by Line Search, both when considering the highest
value hY, and when considering the first value fL greater
than the highest obtained by RBFOpt. Fig. 3 reports the
maximum MAP and NDCG@20 obtained at a given eval-
uation: these plots show trends similar to those observed
when optimizing two parameters, but a higher number of
evaluations is needed by Line Search to achieve the same
MAP/NDCG@20 values obtained by RBFOpt.

Results for the optimization of nine free parameters of
BM25F are reported in Table 7. The differences between the
highest value of MAP and NDCG@20 values obtained by
Line Search and RBFOpt are significant (p-value < 0.05);
however, there is no significant difference between the high-
est value hR obtained by RBFOpt, and the first value fL
greater than hR and obtained by Line Search, or the highest
value within the first 200 evaluations (the maximum num-
ber of evaluations performed by RBFOpt). However, notice
that there is a large difference between the total number
of evaluation performed by Line Search and RBFOpt: 999
vs 200 when optimizing in terms of NDCG@20. Thus, we
investigate if better results in terms of NDCG@20 can be
obtained by increasing the maximum number of allowed
function evaluations in RBFOpt. To this end, we performed
another experiment, allowing RBFOpt to perform as many
evaluations as Line Search.8 The highest value of NDCG@20
obtained with these settings was 0.3251, only marginally
smaller than Line Search, and required 355 evaluations; the
difference with the highest value obtained by Line Search
was not statistically significant (p-value=0.3666), and the
number of evaluations required (355) was smaller than that
required by Line Search (682), similarly to the previous
experiment.

In Fig. 4 we plot the maximum value of MAP and
NDCG@20 obtained at a given evaluation for the opti-
mization of BM25F. The plots show that RBFOpt attains
high values of the performance metrics very quickly, much
faster than Line Search, although in some cases Line
Search eventually finds parameters yielding slightly larger
MAP/NDCG@20 values.

To conclude this section, we go back to our research
questions, now taking into account the optimization of a
larger number of free parameters.

RQ1 We reach a similar conclusion: even when optimizing
a larger number of parameters, there is no significant
gain in terms of effectiveness of the IR function by
switching from a more traditional search methodol-
ogy, i.e., Line Search, to a more sophisticated black-
box approach such as RBFOpt.

RQ2 RBFOpt may provide effective parameter settings in
a much smaller number of evaluations.

Our findings concerning RQ2 indicate that for application
scenarios in which each evaluation of a parameter configu-
ration is time-consuming, Line Search may not be a viable
option. As previously mentioned, a situation in which this
scenario may occur is that of using a training/test split

8. The settings adopted for RBFOpt were: max evaluations=1000;
max iterations=1000.

of the query set or a cross-validation approach, to avoid
overfitting; in such a case, each evaluation may require long
computing times, and efficiency is a key requirement. Ex-
periments reported in the next section investigate precisely
this scenario.

5.5.3 Evaluation by cross-validation
Table 8 reports results when performance is measured by 5-
fold cross validation. Line Search and RBFOpt were compa-
rable in terms of effectiveness: the only significant difference
is that between the results on fold 3, where RBFOpt was
able to outperform Line Search. Table 9 reports results when
optimization is performed using 5-fold cross validation over
a training set, and performance assessment takes place on
a separate test set. The free parameter settings obtained
by both optimization methods outperformed the default
values, and RBFOpt performed slightly better than Line
Search (differences are statistically significant). We remark
that the partitioning of the training set into folds is the same
for both optimization methods.

Results in this section are in line with our previous
analysis: all the tested methods are similarly effective (RQ1),
but the plots of the maximum value of NDCG@20 at a given
evaluation show that RBFOpt is more efficient (RQ2).

We conclude our analysis with final remarks. Our ex-
periments indicate that performance metrics and datasets
studied in this paper seem to yield objective functions with
few, if any, local optima with large basin of attraction: even
a simple local ascent method such as line search always
manages to find a point with near-optimal (as far as we
know) objective function value. This indicates that black-box
optimization methods that only perform local search may
be a good choice for these problems. Of course, structural
properties are unknown a priori, hence a global search
method remains a safer choice. Furthermore, while tested
methods achieve comparable values of the performance
metrics, RBFOpt is considerably more efficient, quickly find-
ing parameterizations of the retrieval function yielding high
performance – much faster than line search.

6 CONCLUSION

In this paper, we reported our findings on the problem
of automatically tuning the free parameters of retrieval
functions with the aim of improving the effectiveness of an
IR system. We addressed this problem in terms of mathe-
matical optimization with a computable but not analytically
available objective function.

After comparing the performance of several optimiza-
tion approaches to solving this problem, we showed that
there is little – if any – room for improvement when it comes
to identifying more effective parameters of the retrieval
function by using more sophisticated algorithms. However,
our experiments indicate that there is a lot to gain in terms
of efficiency. In particular, a black-box optimization method-
ology can quickly find parameters yielding near-optimal (as
far as we know) performance: our tests used the algorithm
implemented in the open-source library RBFOpt.

For applications in which efficiency plays an important
role, the computational evaluation provided in this paper
shows that black-box optimization can yield great benefits

12

TABLE 6
BM25 Optimization of b, k1 and k3 for the robust-04v and the robust-04n test collections. hL and hR denote the highest value of the effectiveness

measure obtained by Line Search (L) and RBFOpt (R), while e@hL and e@hR the evaluation at which the hL and hR were obtained. #e is the total
number of evaluations performed by the optimization method. fL is the first value of the effectiveness measure obtained by Line Search and greater

than hR, and e@fL is the evaluation at which the value fL was attained. Differences among MAP and NDCG@20 are not statistically significant.

Test Collection Metric Line Search RBFOpt

hL e@hL #e fL e@fL hR e@hR #e

robust-04n MAP 0.1270 124 228 0.1270 124 0.1262 72 170
NDCG@20 0.2498 325 403 0.2461 60 0.2457 40 170

robust-04v MAP 0.2230 237 470 – – 0.2233 102 170
NDCG@20 0.5497 599 903 0.5487 466 0.5484 162 170

101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

Evaluation (log)

M
A

P

Line Search

RBFOpt lhd maximin

(a) MAP - Narrative

101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

Evaluation (log)

M
A

P

Line Search

RBFOpt lhd maximin

(b) MAP - Verbose

101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

Evaluation (log)

N
D

C
G

@
20

Line Search

RBFOpt lhd maximin

(c) NDCG@20 - Narrative

101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

Evaluation (log)

N
D

C
G

@
20

Line Search

RBFOpt lhd maximin

(d) NDCG@20 - Verbose

Fig. 3. Maximum MAP and NDCG@20 obtained at a given evaluation by BM25 with three free parameters.

TABLE 7
Optimization of BM25F. hY denotes the value of the effectiveness measure by method Y . e@hY denotes the evaluation at which the highest value

hY of the effectiveness measure was obtained. #e is the total number of evaluation performed by the optimization method. fL is the first value of
the effectiveness measure obtained by Line Search and greater than the highest obtained by RBFOpt, and e@fL is the evaluation at which fL was

attained. Results marked with an asterisk are significantly different both from fL and hR.

Metric Line Search RBFOpt

hL e@hL #e fL e@fL hR e@hR #e

MAP 0.2105∗ 1716 2084 0.2073 143 0.2065 90 200
NDCG@20 0.3270∗ 682 999 0.3152 143 0.3096 126 200

13

101 102
0

0.1

0.2

0.3

0.4

0.5

Evaluation (log)

M
A

P

Line Search

RBFOpt lhd maximin

(a) MAP

101 102
0

0.1

0.2

0.3

0.4

0.5

Evaluation (log)

N
D

C
G

@
20

Line Search

RBFOpt lhd maximin

(b) NDCG@20

Fig. 4. Maximum MAP and NDCG@20 obtained at a given evaluation by BM25F for wt00-01.

TABLE 8
NDCG@20 using 5-fold cross-validation on robust-04. A subset of 245
topics is extracted at random from the 249 topics of the robust-04 test
collections. The subset is randomly split in 5 parts: 4 parts were used

for training and the remaining one for testing. The best value for the ith
training set (best tsi) is evaluated on the corresponding test set (test),

i.e. the part (fold) not in the ith training set. The asterisk denotes a
NDCG@20 value statistically different from default with p-value < 0.05.

Opt Configuration #e NDCG@20

b k1 training test
LS best ts1 0.3899 0.9395 40 0.4239 0.3852

best ts2 0.3984 0.9395 39 0.4049 0.4619
best ts3 0.2076 0.9950 91 0.4166 0.4050
best ts4 0.3976 0.9395 42 0.4183 0.4083
best ts5 0.3975 0.9395 43 0.4189 0.4064
average 0.4134

RBFOpt best ts1 0.3851 1.1232 31 0.4251 0.3861
best ts2 0.2246 1.1028 99 0.4069 0.4473
best ts3 0.3751 1.0521 38 0.4166 0.4183∗

best ts4 0.3826 1.1381 117 0.4200 0.4052
best ts5 0.3965 0.9015 111 0.4190 0.4060
average 0.4126

over commonly used approaches such as grid search and
line search. Although we cannot give a definitive answer
to the ultimate question of what is the best methodology to
choose a retrieval function and its parameters, we presented
compelling evidence that state-of-the-art mathematical op-
timization techniques can help take such decision in an
efficient and effective way.

ACKNOWLEDGMENTS

The authors would like to thank the editor and the reviewers
for the useful comments which helped to improve signifi-
cantly the quality of the paper. The research of A. C. was
partially conducted at the Future Resilient Systems at the
Singapore-ETH Centre (SEC). The SEC was established as
a collaboration between ETH Zurich and National Research

TABLE 9
NDCG@20 on robust-04 using 2 random splits, one for training using

5-fold cross-validation and one for testing. Each fold consists of 40
topics, each training set consists of 160 topics and each validation

consists of 40 topics. The test set comprises 49 topics. The
configuration with highest average NDCG@20 over all the validation
folds (h avg val) is evaluated on the test set (last column). d and l
denote an NDCG@20 value statistically different (p-value < 0.05)

respectively from the default and from Line Search.

Opt Configuration #e NDCG@20

b k1 h avg val test
- default 0.75 1.2 - - 0.3699
LS best ts1 0.4006 0.8488 37 0.4231 -

best ts2 0.4244 0.8488 16 0.4218 -
best ts3 0.3939 1.1119 130 0.4235 0.3930d

best ts4 0.3988 0.9395 60 0.4234 -
best ts5 0.3939 0.8488 70 0.4225 -

RBFOpt best ts1 0.2911 1.0336 155 0.4230 -
best ts2 0.2123 1.1717 39 0.4229 -
best ts3 0.3915 1.1304 59 0.4242 0.3943l,d

best ts4 0.3983 1.1733 39 0.4234 -
best ts5 0.384 1.0743 144 0.4238 -

Foundation (NRF) Singapore (FI 370074011) under the aus-
pices of the NRF’s Campus for Research Excellence and
Technological Enterprise (CREATE) programme.

The research of E. Di B. and M. M. has partially been
funded by the European Union’s Horizon 2020 Research and
Innovation Programme under the Marie Skłodowska-Curie
Grant Agreement No. 721321.

REFERENCES

[1] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and C. Burges,
“Optimisation methods for ranking functions with multiple pa-
rameters,” in Proceedings of the 15th ACM International Conference
on Information and Knowledge Management, ser. CIKM ’06. New
York, NY, USA: ACM, 2006, pp. 585–593.

[2] C. Zhai and J. Lafferty, “A study of smoothing methods for
language models applied to information retrieval,” ACM TOIS,
vol. 22, no. 2, pp. 179–214, 2004.

14

[3] S. Clinchant and E. Gaussier, “Information-based models for ad
hoc ir,” in Proceedings of the 33rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, ser. SIGIR
’10. New York, NY, USA: ACM, 2010, pp. 234–241.

[4] J. J. Rocchio, Relevance Feedback in Information Retrieval, 1971, pp.
313–323.

[5] S. Robertson and H. Zaragoza, “The Probabilistic Relevance
Framework: BM25 and Beyond,” Foundations and Trends R© in In-
formation Retrieval, vol. 3, no. 4, pp. 333–389, 2009.

[6] S. Robertson, H. Zaragoza, and M. Taylor, “Simple BM25 extension
to multiple weighted fields,” in Proceedings of the Thirteenth ACM
conference on Information and knowledge management - CIKM ’04.
New York, New York, USA: ACM Press, 2004, p. 42.

[7] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13, pp.
281–305, 2012.

[8] A. Broder, “A taxonomy of web search,” SIGIR Forum, vol. 36,
no. 2, pp. 3–10, 2002.

[9] J. J. Rocchio and G. Salton, “Information search optimization and
interactive retrieval techniques,” in Proceedings of the November 30–
December 1, 1965, Fall Joint Computer Conference, Part I, ser. AFIPS
’65 (Fall, part I). New York, NY, USA: ACM, 1965, pp. 293–305.

[10] C. Carpineto and G. Romano, “A survey of automatic query ex-
pansion in information retrieval,” ACM Computing Surveys, vol. 44,
no. 1, pp. 1–50, 2012.

[11] W. Croft and J. Lafferty, Eds., Language Modeling for Information
Retrieval, ser. Kluwer International Series on Information Retrieval.
Kluwer Academic Publishers, 2002, vol. 13.

[12] S. Robertson and K. Spärck Jones, “Relevance weighting of search
terms,” Journal of the American Society for Information Science,
vol. 27, pp. 129–146, 1976.

[13] M. Taylor, J. Guiver, S. Robertson, and T. Minka, “SoftRank:
Optimizing Non-smooth Rank Metrics,” in Proceedings of the 2008
International Conference on Web Search and Data Mining, ser. WSDM
’08. New York, NY, USA: ACM, 2008, pp. 77–86.

[14] K. Z. Hongyuan Zha Yi Chang and G.-R. Xue, “Learning the gain
values and discount factors of discounted cumulative gains,” IEEE
TKDE, vol. 26, no. 2, pp. 391–404, 2014.

[15] R. Deveaud, J. Mothe, and J.-Y. Nie, “Learning to Rank System
Configurations,” in Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management - CIKM ’16.
New York, New York, USA: ACM Press, 2016, pp. 2001–2004.

[16] C. Buckley and E. Voorhees, “Retrieval System Evaluation,” in
TREC: Experiment and Evaluation in Information Retrieval. The MIT
Press, 2005, ch. 3.

[17] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation
of IR techniques,” ACM TOIS, vol. 20, no. 4, pp. 422–446, 2002.

[18] A. Conn, K. Scheinberg, and L. Vicente, Introduction to Derivative-
Free Optimization, ser. MOS-SIAM series on optimization. Society
for Industrial and Applied Mathematics (SIAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104), 2009.

[19] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by
direct search: New perspectives on some classical and modern
methods,” SIAM Review, vol. 45, no. 3, pp. 385–482, 2003.

[20] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
Optimization, vol. 13, no. 4, pp. 455–492, 1998.

[21] H.-M. Gutmann, “A radial basis function method for global opti-
mization,” Journal of Global Optimization, vol. 19, no. 3, pp. 201–227,
2001.

[22] R. G. Regis and C. A. Shoemaker, “A stochastic radial basis func-
tion method for the global optimization of expensive functions,”
INFORMS Journal on Computing, vol. 19, no. 4, pp. 497–509, 2007.

[23] A. Costa and G. Nannicini, “RBFOpt: an open-source library for
black-box optimization with costly function evaluations,” Opti-
mization Online, Tech. Rep. 2014-09-4538, 2017.

[24] G. I. Diaz, A. Fokoue, G. Nannicini, and H. Samulowitz, “An
effective algorithm for hyperparameter optimization of neural
networks,” IBM Journal of Research and Development, vol. 61, no.
4/5, 2017.

[25] T. Wortmann, A. Costa, G. Nannicini, and T. Schroepfer, “Advan-
tages of surrogate models for architectural design optimization,”
Artificial Intelligence for Engineering Design, Analysis and Manufac-
turing, vol. 29, pp. 471–481, 2015.

[26] T. Wortmann, C. Waibel, G. Nannicini, R. Evins, T. Schroepfer,
and J. Carmeliet, “Are genetic algorithms really the best choice

for building energy optimization?” in Symposium on Simulation for
Architecture & Urban Design (SimAUD), 2017.

[27] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison
of three methods for selecting values of input variables in the
analysis of output from a computer code,” Technometrics, vol. 21,
no. 2, pp. 239–245, 1979.

[28] “Rbfopt library for black-box optimization.” [Online]. Available:
https://github.com/coin-or/rbfopt/releases/tag/2.0.0

[29] T. Roelleke, Information Retrieval Models: Foundations and Relation-
ships, 1st ed. Morgan & Claypool Publishers, 2013.

[30] K. Spärck Jones, “A statistical interpretation of term specificity and
its application in retrieval,” Journal of Documentation, vol. 28, no. 1,
pp. 11–21, 1972.

[31] D. Harman, Information Retrieval Evaluation, 1st ed. Morgan &
Claypool Publishers, 2011.

[32] C. L. A. Clarke, N. Craswell, I. Soboroff, and G. V. Cormack, “BIT
at TREC 2010 blog track: Faceted blog distillation,” in Proceedings
of The Nineteenth Text REtrieval Conference, TREC 2010, Gaithersburg,
Maryland, USA, November 16-19, 2010, vol. Special Publication 500-
294. NIST, 2010.

[33] S. Büttcher, C. L. A. Clarke, and I. Soboroff, “The TREC 2006 ter-
abyte track,” in Proceedings of the Fifteenth Text REtrieval Conference,
TREC 2006, Gaithersburg, Maryland, USA, November 14-17, 2006,
vol. Special Publication 500-272. NIST, 2006.

[34] E. Di Buccio, M. Melucci, and F. Moro, “Detecting verbose queries
and improving information retrieval,” Information Processing and
Management, vol. 50, no. 2, pp. 342–360, 2014.

[35] S. Walker, S. E. Robertson, M. Boughanem, G. J. F. Jones, and K. S.
Jones, “Okapi at TREC-6 automatic ad hoc, VLC, routing, filtering
and QSDR,” in Proceedings of The Sixth Text REtrieval Conference,
TREC 1997, Gaithersburg, Maryland, USA, November 19-21, 1997,
vol. Special Publication 500-240. NIST, 1997, pp. 125–136.

[36] “Apache Lucene Core.” [Online]. Available: http://lucene.apache.
org/core/

[37] “Lemur Project Components: Galago.” [Online]. Available:
http://lemurproject.org/galago.php

Alberto Costa is a Postdoctoral Researcher at
the National University of Singapore. He holds
B.Eng and M.Eng degrees from the University
of Padova, Italy, and a Ph.D. in Operations Re-
search from École Polytechnique, France. Dr.
Costa’s research interests include black-box and
robust optimization, clustering in complex net-
works, and information retrieval.

Emanuele Di Buccio is a Postdoctoral Re-
searcher at University of Padova, Italy. He holds
B.Eng and M.Eng degrees in Computer Engi-
neering, and he received a PhD in Informa-
tion Engineering in 2011 from the University
of Padova, Italy. His research interests include
information access and retrieval models, dis-
tributed search, digital geolinguistics, and com-
putational social science.

Massimo Melucci received the PhD in Com-
puter Engineering in 1996 from the University of
Padova, Italy. Associate Professor at the Univer-
sity of Padova, his scientific research ranges in
modeling and experimenting advanced methods
for indexing, retrieving and ranking documents.

Giacomo Nannicini received a PhD in Com-
puter Science from École Polytechnique, France,
in 2009. He is a Research Staff Member at
the IBM T. J. Watson research center, NY.
His research spans several areas of optimiza-
tion, including network optimization, integer and
dynamic programming, derivative-free optimiza-
tion. He is the recipient of several awards, includ-
ing the 2012 Glover-Klingman prize, the 2015
Robert Faure prize, and the 2016 COIN-OR Cup.

