# research papers



Received 20 July 2017 Accepted 8 August 2017

Edited by A. L. Spek, Utrecht University, The Netherlands

**Keywords:** cyclic cluster; fluorophore; copper; crystal structure; water-perchlorate cluster.

CCDC reference: 1562837

**Supporting information**: this article has supporting information at journals.iucr.org/c



© 2017 International Union of Crystallography

# A fluorophore-labelled copper complex: crystal structure, hybrid cyclic water-perchlorate cluster and biological properties

# Satish S. Bhat,<sup>a</sup>\* Vidyanand K. Revankar,<sup>a</sup>\* Naveen Shivalingegowda<sup>b</sup> and N. K. Lokanath<sup>c</sup>

<sup>a</sup>Department of Chemistry, Karnatak University, Pavate Nagar, Dharwad, Karnataka 580 003, India, <sup>b</sup>Institution of Excellence, University of Mysore, Mysuru, Karnataka 570 006, India, and <sup>c</sup>Department of Studies in Physics, University of Mysore, Mysuru, Karnataka 570 006, India. \*Correspondence e-mail: bhatsatish111@gmail.com, vkrevankar@rediffmail.com

A fluorophore-labelled copper(II) complex, aquabis(dimethylformamide- $\kappa O$ )-(perchlorato- $\kappa O$ )[2-(quinolin-2-yl)-1,3-oxazolo[4,5-*f*][1,10]phenanthroline]copper(II) perchlorate monohydrate, [Cu(ClO<sub>4</sub>)(C<sub>22</sub>H<sub>12</sub>N<sub>4</sub>O)(C<sub>3</sub>H<sub>7</sub>NO)<sub>2</sub>(H<sub>2</sub>O)]-ClO<sub>4</sub>·H<sub>2</sub>O, has been synthesized and characterized. A cyclic hydrogen-bonded water-perchlorate anionic cluster, *i.e.* [(ClO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2-</sup>, has been identified within the structure. Each cyclic anionic cluster unit is interconnected by hydrogen bonding to the cation. The cations join into an infinite hydrogenbonded chain running in the [010] direction. Furthermore, interaction of the complex with calf-thymus DNA (CT-DNA) and cellular localization within the cells was explored. Spectroscopic studies indicate that the compound has a good affinity for DNA and stains the nucleus of the cells.

#### 1. Introduction

Transition-metal complexes having DNA interaction properties have attracted attention due to their potential applications, such as gene engineering, footprinting agents, sequence specific binding, structural probes and in drug development (Orvig & Abrams, 1999; Hambley, 2007; Liu et al., 2004; Steinreiber & Ward, 2008; Jiang et al., 2007; Pitié & Pratviel, 2010). These complexes offer a wide range of reactivities/ properties due to their variable coordination number and geometries, available redox states, kinetic and thermodynamic properties and intrinsic properties of the metal ion and ligand itself. Cisplatin is one of the most widely used metal-based drugs in the treatment of various types of cancers (Boulikas & Vougiouka, 2003; Wong & Giandomenico, 1999; Jamieson & Lippard, 1999) and, although highly effective in the treatment of a variety of cancers, it possesses inherent limitations, such as serious side effects (Jung & Lippard, 2007), general toxicity and acquired drug resistance (Jamieson & Lippard, 1999). Because of these problems, considerable attempts have been made to develop alternative strategies based on different metals with improved pharmacological properties aimed at different targets (Bruijnincx & Sadler, 2008). Researchers have tried various transition-metal complexes, viz. Ru<sup>II</sup>, Co<sup>II</sup>, Zn<sup>II</sup>, Ni<sup>II</sup>, Cu<sup>II</sup>, etc., of which copper complexes have shown encouraging perspectives (Santini et al., 2014; Tardito & Marchiò, 2009; Marzano et al., 2009; Tisato et al., 2010; Duncan & White, 2012). Copper, being a bio-essential metal ion, may be less toxic to normal cells than to cancer cells; its complexes with tunable coordination geometries in a redox-active

environment could find better application at the cellular level. The artificial nuclease activity of copper complexes has been studied frequently due to their high cleavage efficiency and alterable cleavage behaviour (Santini *et al.*, 2014; Sigman *et al.*, 1993; Maheswari *et al.*, 2008). Sigman and co-workers reported the first chemical nuclease based on a bis(1,10-phenan-throline)copper(I) complex that efficiently cleaves DNA in the presence of a reducing agent (Sigman *et al.*, 1993; Pope & Sigman, 1984; Sigman, 1990; Kuwabara & Sigman, 1987). In recent years, there has been a substantial increase in the design and study of DNA binding and cleavage properties of copper(II) complexes and the development of new copper-based metallodrugs (Santini *et al.*, 2014; Li *et al.*, 2009; Bhat *et al.*, 2011; Li *et al.*, 2011; Childs *et al.*, 2006; Rodríguez Solano *et al.*, 2011; Maheswari *et al.*, 2006).

The majority of copper complexes reported up to now have no intrinsic fluorescence to aid vizualization within the cell, so they need to be modified with a fluorescent tag to monitor their localization within the cell. In an effort to study the structure–activity relationships of copper complexes, we report herein the synthesis, structural characterization, DNA interaction properties, anticancer activity and cellular localization of the newly synthesized fluorophore-labelled copper complex [Cu(ClO<sub>4</sub>)(qip)(DMF)<sub>2</sub>(H<sub>2</sub>O)]ClO<sub>4</sub>·H<sub>2</sub>O, (I), where qip is 2-(quinolin-2-yl)-1,3-oxazolo[4,5-*f*][1,10]phenanthroline and DMF is dimethylformamide. Furthermore, we have structurally characterized a cyclic hybrid water–perchlorate cluster, *i.e.* [(ClO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2–</sup>, within the crystal structure of copper(II) complex (I).



#### 2. Experimental

Dulbecco's Modified Eagle Medium (DMEM) was purchased from HiMedia Laboroteries Pvt. Ltd, Mumbai, India, and was used as received. 1,10-Phenanthroline-5,6-dione (phendione) was synthesized according to the literature procedure of

| Experimental details.                                                      |                                                                   |
|----------------------------------------------------------------------------|-------------------------------------------------------------------|
| Crystal data                                                               |                                                                   |
| Chemical formula                                                           | $[Cu(ClO_4)(C_{22}H_{12}N_4O)(C_3H_7-NO)_2(H_2O)]ClO_4\cdot H_2O$ |
| M <sub>r</sub>                                                             | 793.02                                                            |
| Crystal system, space group                                                | Monoclinic, C2/c                                                  |
| Temperature (K)                                                            | 173                                                               |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                         | 48.675 (3), 8.3750 (5), 16.3155 (9)                               |
| β (°)                                                                      | 100.716 (2)                                                       |
| $V(Å^3)$                                                                   | 6535.1 (6)                                                        |
| Ζ                                                                          | 8                                                                 |
| Radiation type                                                             | Cu Ka                                                             |
| $\mu \ (\mathrm{mm}^{-1})$                                                 | 3.12                                                              |
| Crystal size (mm)                                                          | $0.28 \times 0.22 \times 0.17$                                    |
| Data collection                                                            |                                                                   |
| Diffractometer                                                             | Bruker X8 Proteum                                                 |
| Absorption correction                                                      | Multi-scan (SADABS; Bruker, 2010)                                 |
| $T_{\min}, T_{\max}$                                                       | 0.482, 0.505                                                      |
| No. of measured, independent and                                           | 29422, 5417, 4790                                                 |
| observed $[I > 2\sigma(I)]$ reflections                                    |                                                                   |
| R <sub>int</sub>                                                           | 0.071                                                             |
| $(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$                       | 0.586                                                             |
| Refinement                                                                 |                                                                   |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.047, 0.132, 1.02                                                |
| No. of reflections                                                         | 5417                                                              |
| No. of parameters                                                          | 504                                                               |
| No. of restraints                                                          | 157                                                               |
| H-atom treatment                                                           | H-atom parameters constrained                                     |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 0.77, -0.48                                                       |

Table 1

Computer programs: SAINT (Bruker, 2010), SMART (Bruker, 2010), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Masaki *et al.* (1992). All chemicals and solvents were purchased commercially and were used as received.  $Cu(ClO_4)_2 \cdot 6H_2O$  and calf-thymus DNA (CT-DNA) were purchased from SRL, Kolkata (India), and used as received. Quinoline-2-carbaldehyde was purchased from Sigma– Aldrich, Bangalore, India. <sup>1</sup>H NMR spectra were recorded on a Jeol ECX-400 spectrometer at room temperature. The IR spectra of solid samples dispersed in KBr were recorded on a Nicolet USA model–Nicolet 6700 FT–IR spectrometer. Microanalysis (C, H and N) was carried out with a PerkinElmer 2400 series II analyzer. The absorption spectrum of the complex was measured on a Jasco V670 spectrophotometer and the emission spectra was measured on a Hitachi F-7000 at room temperature.

#### 2.1. Synthesis and crystallization

2.1.1. Synthesis of 2-(quinolin-2-yl)-1,3-oxazolo[4,5-f]-[1,10]phenanthroline (qip). A mixture of quinoline-2-carbaldehyde (0.30 g, 1.91 mmol), 1,10-phenanthroline-5,6-dione (0.4 g, 1.91 mmol) and ammonium acetate (1.47 g, 19.1 mmol) in glacial acetic acid was refluxed for 4 h, then cooled to room temperature and diluted with cold water (30 ml). Addition of dilute aqueous ammonia gave a white product, which was collected by filtration and washed repeatedly with water. The crude product obtained was purified by recrystallization from methanol (yield: 495 mg, 75%). <sup>1</sup>H NMR (400 MHz, DMSO-





The molecular structure of complex (I). Displacement ellipsoids are draw at the 30% probability level. One of the perchlorate anions is disordered in a 2:1 ratio.

*d*<sub>6</sub>): δ 9.20 (*m*, 2H), 8.97 (*dd*, 1H), 8.93 (*dd*, 1H), 8.69 (*d*, 1H), 8.58 (*d*, 1H), 8.27 (*d*, 1H), 8.13 (*d*, 1H), 7.95 (*m*, 3H), 7.68 (*t*, 1H). Analysis calculated (%) for  $C_{22}H_{12}N_4O$ : C 75.85, H 3.47, N 16.08%; found: C 75.91, H 3.53, N 15.97%.

**2.1.2.** Synthesis of  $[Cu(ClO_4)(qip)(DMF)_2(H_2O)]ClO_4-H_2O$ , (I). To a solution of qip (0.2 g, 0.574 mmol) in DMF (5 ml) was added a solution of Cu(ClO\_4)\_2·6H\_2O (0.212 g, 0.574 mmol) in water (5 ml) with stirring. The solution immediately turned dark green and was stirred for 4 h at room temperature. The resulting solution was left to stand for slow evaporation at room temperature and single crystals of (I) were obtained after five weeks and collected by filtration (yield 0.320 g, 72%). Analysis calculated (%) for C<sub>28</sub>H<sub>30</sub>-Cl<sub>2</sub>CuN<sub>6</sub>O<sub>13</sub>: C 42.41, H 3.81, N 10.60%; found: C 42.32, H 3.85, N 10.47%. IR: 3440 (*bt*), 3055, 3008, 2928, 1667, 1614, 1544, 1520, 1447, 1143, 1109, 1080, 658, 626.

#### 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H-atom positions were calculated geometrically and refined using a riding model. The free and bound water molecules were refined as rigid groups and with  $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O})$ . The perchlorate anion is disordered over two positions and was refined with fixed occupancies of  $\frac{1}{3}$  and  $\frac{2}{3}$  for Cl2/O6/O7/O8/O9 and Cl1/O10/O11/O13/O14, respectively, along with various bond and displacement-parameter restraints.

#### 2.3. DNA binding studies

The concentration of CT-DNA was calculated from its known extinction coefficient at 260 nm (6600  $M^{-1}$  cm<sup>-1</sup>).

## **712** Bhat et al. • $[Cu(ClO_4)(C_{22}H_{12}N_4O)(C_3H_7NO)_2(H_2O)]ClO_4 \cdot H_2O$

#### 2.4. Ethidium bromide displacement assay

The apparent binding constant  $(K_{app})$  of the complex was determined by competitive binding of (I) with ethidium bromide (EtBr) bound CT-DNA solution in phosphate buffer (pH 7.2). The changes in fluorescence intensities of EtBr (546 nm excitation) bound to DNA were monitored with an increasing concentration of (I). EtBr was non-emissive in phosphate buffer (pH 7.2) medium due to fluorescence quenching of the free EtBr by the solvent molecules. In the presence of DNA, EtBr showed enhanced emission intensity due to its intercalative binding to DNA. A competitive binding of the copper complex to CT-DNA resulted in the displacement of the bound EtBr, thus decreasing its emission intensity.

#### 2.5. Emission titration

Emission titration experiments were carried out by the addition of an increasing concentration of DNA to the copper complex in the buffer. A typical concentration of metal complex used was 10  $\mu$ M and [DNA]/[Cu] ratios were in the range 0–20. Before the measurement of the emission spectra, the DNA–complex solution was allowed to react for 15 min.

#### 2.6. Cytotoxicity: cell-viability assay

The cell viability after appropriate treatment was determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma Chemical Co.) assay (Chen *et al.*, 2004). Briefly, cells were plated (4000 cells/well per 0.2 ml DMEM medium) in 96-well microtiter plates and incubated overnight. Complex (I) was then added at indicated concentrations to quadruplicate wells. After a reaction time of 48 h, MTT was added to each well at a final volume of 0.5 mg ml<sup>-1</sup> and the microplates were incubated at 310 K for 3 h. After that, the supernatant was removed, the formazan salt resulting from the reduction of MTT was solubilized in dimethyl sulfoxide (DMSO, Sigma Chemical Co.) and the absorbance was read at 570 nm using an automatic plate reader (Thermo Corporation). The cell viability was extrapolated from optical density (OD) 570 nm values and expressed as percent survival.

#### 2.7. Fluorescence microscopy studies

Hela Cells were grown on sterile glass cover slips in a 35 mm tissue culture dish and incubated at 310 K under a 5%  $CO_2$  atmosphere for 48 h. The culture medium was replaced with a medium containing a 10  $\mu$ M concentration of complex (I). After incubation for 1 h, the cells were washed gently with PBS (3 × 2 ml; PBS is phosphate buffered saline). After washing with PBS, the cover slips were mounted onto slides for the measurements. The images were taken in a Carl Zeiss Axio Scope A1 fluorescence microscope.

For DAPI costaining (DAPI is 4',6-diamidino-2-phenylindole), the cells were washed and incubated with a medium containing 10  $\mu$ M complex (I) for 1 h at 310 K under 5% CO<sub>2</sub>. The cells were washed with PBS and cultured with a medium containing DAPI (1  $\mu$ g ml<sup>-1</sup>) for another 5 min. Cell-imaging experiments were then performed after the cells were washed with PBS three times.

#### 3. Results and discussion

#### 3.1. Synthesis and characterization

2-(Quinolin-2-yl)-1,3-oxazolo[4,5-*f*][1,10]phenanthroline (qip) was synthesized by condensation of 1,10-phenanthroline-5,6dione with quinoline-2-carbaldehyde in the presence of ammonium acetate in glacial acetic acid. The crude product obtained was purified by column chromatography and characterized by IR, <sup>1</sup>H NMR and mass and elemental analyses. The corresponding copper complex was synthesized by reac-



Figure 2

A view of the cyclic  $[(H_2O)_2(ClO_4)_2]^{2-}$  cluster in (I). Only the major disorder form of the perchlorate anion is shown. [Symmetry code: (ii)  $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$ .]

tion of copper perchlorate with qip in DMF in a 1:1 molar ratio (see Scheme 1). Complex (I) was characterized by IR spectroscopy, elemental analysis, UV–Visible spectroscopy and single-crystal X-ray structure determination.

#### 3.2. Crystal structure

Single crystals of complex (I) suitable for X-ray diffraction were grown by slow evaporation of the complex in a DMF and water mixture at room temperature. Complex (I) crystallized in the monoclinic crystal system with the C2/c space group and the molecular structure is shown in Fig. 1. The Cu<sup>II</sup> atom is sixcoordinated, with an N<sub>2</sub>O<sub>4</sub> donor set, forming a distorted octahedral geometry. The mean Cu–N distance is 2.00 (2) Å and the N–Cu–N bite angle is 82.09 (9)°, which is similar to the values reported for similar copper complexes (Bhat *et al.*, 2011; Onawumi *et al.*, 2008).

#### 3.3. Cyclic hybrid water-perchlorate cluster in (I)

Recently, the recognition of hydrated forms of anions has attracted a great deal of attention due to their role in many chemical, environmental and biological processes (Chen *et al.*, 2013; Mascal *et al.*, 2006). Inorganic anions are familiar in nature and take part in natural processes occurring in water (Ohmine & Saito, 1999; Ludwig, 2001). Thus, the structural characterization of inorganic anion–water clusters is of vital importance for understanding the hydration phenomena of







Crystal packing diagrams of complex (I), showing (a) the waterperchlorate cluster channels and (b) a spacefilling model showing the water-perchlorate-filled channel. The views are approximately along the c axis.

Table 2Hydrogen-bond geometry (Å,  $^{\circ}$ ).

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|----------------|-------------------------|--------------|-----------------------------|
| $O4-H4A\cdots O5$           | 0.91           | 1.94                    | 2.808 (3)    | 160                         |
| $O4-H4B\cdots O32^{i}$      | 0.91           | 1.96                    | 2.782 (3)    | 151                         |
| $O5-H5A\cdots O11^{ii}$     | 0.85           | 2.02                    | 2.862 (18)   | 170                         |
| $O5-H5B\cdots O10$          | 0.85           | 1.95                    | 2.790 (13)   | 171                         |
| $O5-H5A\cdots O7^{ii}$      | 0.85           | 2.11                    | 2.954 (7)    | 174                         |
| $O5-H5B\cdots O6$           | 0.85           | 2.07                    | 2.905 (7)    | 165                         |

Symmetry codes: (i) x, y - 1, z; (ii)  $-x + \frac{3}{2}$ ,  $-y + \frac{1}{2}$ , -z + 1.

inorganic anions in nature and biological systems (Sodaye *et al.*, 2006; Kumar *et al.*, 2011). Inorganic anion–water clusters remain relatively unexplored compared to the large number of reports on water clusters (Barbour *et al.*, 1998; Moorthy *et al.*, 2002; Dai *et al.*, 2008; Jin *et al.*, 2010). In the case of inorganic anion–water clusters, most of the studies reported up to now have focused on water–chloride clusters in a variety of crystal systems, examples being  $\{[(H_2O)_{20}Cl_4]^{4-}\}_n$  (Fernandes *et al.*, 2008),  $[(H_2O)_6Cl_2]^{2-}$  (Butchard *et al.*, 2006),  $[(H_2O)_{10}Cl_2]^{2-}$  (Mascal *et al.*, 2006),  $\{[(H_2O)_4Cl_2]^{2-}\}_n$  (Saha & Bernal, 2005),  $\{[(H_2O)_7(HCl_2)]^{2-}\}_n$ 



Figure 4

The (*a*) absorption and (*b*) emission spectra of (I) in dimethylformamide. The excitation wavelength is 350 nm.

(Prabhakar *et al.*, 2006), {[ $(H_2O)_{11}Cl_7$ ]<sup>7</sup>}<sub>n</sub> (Lakshminarayanan *et al.*, 2006), {[ $(H_2O)_{14}Cl_5$ ]<sup>5-</sup>}<sub>n</sub> (Deshpande *et al.*, 2006, {[ $(H_2O)_{18}Cl_8$ ]<sup>8-</sup>}<sub>n</sub> (Bhat & Revankar, 2016), {[ $(H_2O)_{10}Cl_2$ ]<sup>2-</sup>}<sub>n</sub> (Bhat *et al.*, 2015) and {[ $(H_2O)_{14}Cl_4$ ]<sup>4-</sup>}<sub>n</sub> (Reger *et al.*, 2006). To the best of our knowledge, there are only a few reports on discrete perchlorate–water clusters, which include [ $H_2O_{2}(ClO_4)_2$ ]<sup>2-</sup> (Hedayetullah Mir & Vittal, 2008; Li *et al.*, 2012).

Interestingly, the crystal structure packing of complex (I) contains extensive hydrogen-bonding interactions between the lattice water molecules and the perchlorate anions (Table 2), leading to the formation of an anionic hybrid cyclic water-perchlorate cluster, *i.e.* the  $[(H_2O)_2(ClO_4)_2]^{2-}$  unit shown in Fig. 2. Each anionic cyclic cluster is made up of two water molecules and two perchlorate anions, and is interconnected by hydrogen bonding with the cationic units. Anion-water clusters are stabilized by hydrogen bonding involving the coordinated water and perchlorate ligand of the cationic complex. Further intermolecular hydrogen bonding in the crystal packing leads to the formation of a nonpolar onedimensional water-perchlorate anionic channel, as shown in Fig. 3. In the crystal packing of (I), the one-dimensional anionic hybrid water-perchlorate  $[(H_2O)_2(ClO_4)_2]^{2-}$  clusters occupy the free space between the hydrophobic arrays of the metal-organic part, with an interlayer separation of 11.22 Å. A spacefilling model of the packing (Fig. 3b) shows the waterchloride clusters along the b axis. Selected hydrogen-bonding parameters are given in Table 2.

#### 3.4. Photophysical properties

The absorption and emission spectra of (I) are given in Fig. 4. The electronic spectrum of the complex recorded in DMF is dominated by high-energy bands in the region 220–350 nm attributed to  $\pi \rightarrow \pi^*$  transitions of the aromatic quinoline-containing nitrogen-donor ligand (Li *et al.*, 2014;



Figure 5

The effect of the addition of an increasing concentration of (I) on the emission intensity of the EtBr-bound CT-DNA phosphate buffer (pH 7.2); [EtBr] =  $20 \ \mu M$  and [DNA] =  $20 \ \mu M$ . The decrease in emission intensity from highest to lowest corresponds to successive addition of 0, 5, 10, 20, 30, 40, 60 and 100  $\mu M$  of (I).

Rajendiran *et al.*, 2007). Compound (I) is highly fluorescent (Fig. 4*b*), with the emission centred around 430 nm. Interestingly, no quenching of the fluorescence is observed in water.

#### 3.5. Ethidium bromide (EtBr) displacement assay

To study the DNA interaction properties of (I), a competitive binding assay was performed. For competitive binding studies, changes in the emission intensity of EtBr bound to DNA were monitored as a function of an increasing concentration of (I). Emission of EtBr in the buffer solution is completely quenched by solvent molecules (Dhar et al., 2005), but it emits intensively in the presence of DNA due to the strong intercalative mode of binding with DNA (Mever-Almes & Porschke, 1993). The enhanced fluorescence of EtBr bound to DNA can be quenched by the addition of another molecule (Baguley & Le Bret, 1984); this reduction in the emission intensity is via the replacement of a molecular fluorophore (Pasternack et al., 1991). An appreciable decrease in fluorescence intensity was observed upon addition of (I) to the EtBr-DNA solution (Fig. 5), which was due to intercalation of (I) with DNA by replacement of EtBr molecules bound to DNA. The apparent binding constant  $(K_{app})$  has been calculated from equation (1) (Lee et al., 1993),

$$K_{\rm EtBr}[\rm EtBr] = K_{\rm app}[\rm Complex], \tag{1}$$

where  $K_{\text{EtBr}}$  is  $1 \times 10^7 M^{-1}$  and the concentration of EtBr is 20  $\mu M$ ; [Complex] represents the concentration of the complex causing a 50% reduction in the emission intensity of EtBr. The  $K_{\text{app}}$  value for (I) is  $2 \times 10^6 M^{-1}$ . The higher values of  $K_{\text{app}}$  indicate that this complex binds strongly to DNA.

#### 3.6. Emission titration

Changes in the emission spectra of complexes in the presence of DNA are a diagnostic means to determine DNA binding (Deshpande *et al.*, 2009; Bhat *et al.*, 2010; Pellegrini & Aldrich-Wright, 2003). The changes in the steady-state emis-



Figure 6

Emission spectra of (I) (10  $\mu$ M) with increasing [CT-DNA]/[Cu] ratio (0–20) in phosphate buffer (pH 7.2) at 298 K.



Figure 7

Cytotoxicity evaluation of (I) against the HeLa cell line. The cell viability was measured after 48 h by MTT assay. Each data point represents the mean of three separate experiments. The units for [Complex] are  $\mu M$ .

sion spectra of (I) with successive addition of CT-DNA (phosphate buffer pH 7.2) are shown in Fig. 6.

#### 3.7. Cytotoxicity studies

The *in vitro* cytotoxicity of complex (I) against the cancer cell line HeLa (cerevical) has been tested by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Complex (I) exhibits significant cytotoxicity in a concentration-dependent manner (Fig. 7). The percent cell viability of the HeLa cells in the presence of (I) was measured in the concentration range 10–60  $\mu$ *M*, wherein the compound tested was found to be active at lower concentrations. The IC<sub>50</sub> value is 20±0.08  $\mu$ *M* for (I), which is similar to the value reported for [Cu<sub>2</sub>(1,4-tpbd)(DMSO)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub>](OH)<sub>2</sub>·6H<sub>2</sub>O and [Cu<sub>2</sub>-(1,4-tpbd)(OAC)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub>]·5H<sub>2</sub>O [1,4-tpbd is *N*,*N*,*N*',*N*'-tetra-kis(pyridin-2-ylmethyl)benzene-1,4-diamine], with IC<sub>50</sub> values of 13.67 and 16.58  $\mu$ *M*, respectively, against the HeLa cell line (Li *et al.*, 2011).

#### 3.8. Cellular uptake and cellular localization studies

The cellular uptake of complex (I) was monitored using fluorescence microscopy because of its intrinsic fluorescence. One of the advantages of this complex for fluorescence microscopy is that there is no overlap between the absorption and emission spectra, since the overlap of spectra results in interference of the excitation light in the collection of the emission image, which decreases the image contrast. As shown in Fig. 8 the complex stains the nucleus of the cells.



Figure 8 Fluorescence microscopy image of HeLa cells incubated (for 1 h) with 10  $\mu M$  of (I).

## research papers



Fluorescence microscopy images of HeLa cells incubated (for 1 h) with 10  $\mu$ M of (I) and the DNA-specific stain DAPI, shown (a) with (I), (b) with DAPI and (c) as an overlay image.

Furthermore, to confirm the nuclear localization of the complex, a costaining experiment with commercially available nuclear staining DAPI was carried out. As shown in Fig. 9, complete overlap of the DAPI and complex signals within the cells confirms the nuclear localization of the complex within the cells.

#### Acknowledgements

The authors thank SIF, NMR Research Centre, IISC Bangalore, CDRI–Lucknow, USIC Karnatak University, Dharwad, and Institute of Excellence, University of Mysore, India, for providing NMR, ESI–MS data and single-crystal X-ray data.

#### **Funding information**

Funding for this research was provided by: Science and Engineering Research Board, Department of Science and Technology, New Delhi, India (Start-Up-Grant (Young Scientist) project No. YSS/2014/000546 to SB).

#### References

- Baguley, B. C. & Le Bret, M. (1984). Biochemistry, 23, 937-943.
- Barbour, L. J., Orr, G. W. & Atwood, J. L. (1998). *Nature*, **393**, 671–673.
- Bhat, S. S., Kumbhar, A. A., Heptullah, H., Khan, A. A., Gobre, V. V., Gejji, S. P. & Puranik, V. G. (2011). *Inorg. Chem.* 50, 545–558.
- Bhat, S. S., Kumbhar, A. S., Lönnecke, P. & Hey-Hawkins, E. (2010). *Inorg. Chem.* 49, 4843–4853.
- Bhat, S. S. & Revankar, V. K. (2016). J. Chem. Crystallogr. 46, 9-14.
- Bhat, S. S., Revankar, V. K., Khan, A., Butcher, R. J. & Thatipamula, K. (2015). New J. Chem. 39, 3646–3657.
- Boulikas, T. & Vougiouka, M. (2003). Oncol. Rep. 10, 1663-1682.
- Bruijnincx, P. C. & Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197–206.
- Bruker (2010). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butchard, J. R., Curnow, O. J., Garrett, D. J. & Maclagan, R. G. A. R. (2006). Angew. Chem. Int. Ed. 45, 7550–7553.
- Chen, J. S., Konopleva, M., Andreeff, M., Multani, A. S., Pathak, S. & Mehta, K. (2004). J. Cell. Physiol. 200, 223–234.
- Chen, W., Long, L., Huang, R. & Zheng, L. (2013). Cryst. Growth Des. 13, 2507–2513.
- Childs, L. J., Malina, J., Rolfsnes, B. E., Pascu, M., Prieto, M. J., Broome, M. J., Rodger, P. M., Sletten, E., Moreno, V., Rodger, A. & Hannon, M. J. (2006). *Chem. Eur. J.* **12**, 4919–4927.
- Dai, F., He, H. & Sun, D. (2008). J. Am. Chem. Soc. 130, 14064-14065.
- Deshpande, M. S., Kumbhar, A. A., Kumbhar, A. S., Kumbhakar, M., Pal, H., Sonawane, U. B. & Joshi, R. R. (2009). *Bioconjugate Chem.* 20, 447–459.
- Deshpande, M. S., Kumbhar, A. S., Puranik, V. G. & Selvaraj, K. (2006). Cryst. Growth Des. 6, 743–748.

- Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). J. Inorg. Biochem. 99, 805–812.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Duncan, C. & White, A. R. (2012). Metallomics, 4, 127-138.
- Fernandes, R. R., Kirillov, A. M., da Silva, M. F. C. G., Ma, Z., da Silva, J. A. L., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2008). *Cryst. Growth Des.* 8, 782–785.
- Hambley, T. W. (2007). Dalton Trans. pp. 4929-4937.
- Hedayetullah Mir, M. & Vittal, J. J. (2008). Cryst. Growth Des. 8, 1478–1480.
- Jamieson, E. R. & Lippard, S. J. (1999). Chem. Rev. 99, 2467-2498.
- Jiang, Q., Xiao, N., Shi, P., Zhu, Y. & Guo, Z. (2007). Coord. Chem. Rev. 251, 1951–1972.
- Jin, C.-M., Zhu, Z., Chen, Z.-F., Hu, Y.-J. & Meng, X.-G. (2010). Cryst. Growth Des. 10, 2054–2056.
- Jung, Y. & Lippard, S. J. (2007). Chem. Rev. 107, 1387-1407.
- Kumar, R., Pandey, A. K., Sharma, M. K., Panicker, L. V., Sodaye, S., Suresh, G., Ramagiri, S. V., Bellare, J. R. & Goswami, A. (2011). J. Phys. Chem. B, 115, 5856–5867.
- Kuwabara, M. D. & Sigman, D. S. (1987). *Biochemistry*, **26**, 7234–7238.
- Lakshminarayanan, P. S., Suresh, E. & Ghosh, P. (2006). Angew. Chem. Int. Ed. 45, 3807–3811.
- Lee, M., Rhodes, A. L., Wyatt, M. D., Forrow, S. & Hartley, J. A. (1993). *Biochemistry*, **32**, 4237–4245.
- Li, M.-J., Lan, T.-Y., Cao, X.-H., Yang, H.-H., Shi, Y., Yi, C. & Chen, G.-N. (2014). *Dalton Trans.* **43**, 2789–2798.
- Li, D.-D., Tian, J.-L., Gu, W., Liu, X., Zeng, H.-H. & Yan, S.-P. (2011). *J. Inorg. Biochem.* **105**, 894–901.
- Li, D., Tian, J., Kou, Y., Huang, F., Chen, G., Gu, W., Liu, X., Liao, D., Cheng, P. & Yan, S. (2009). *Dalton Trans.* pp. 3574–3583.
- Li, Z.-Y., Yang, J.-S., Liu, R.-B., Zhang, J.-J., Liu, S.-Q., Ni, J. & Duan, C.-Y. (2012). *Dalton Trans.* **41**, 13264–13266.
- Liu, C., Wang, M., Zhang, T. & Sun, H. (2004). Coord. Chem. Rev. 248, 147–168.
- Ludwig, R. (2001). Angew. Chem. Int. Ed. 40, 1808-1827.
- Maheswari, P. U., Roy, S., den Dulk, H., Barends, S., van Wezel, G., Kozlevčar, B., Gamez, P. & Reedijk, J. (2006). J. Am. Chem. Soc. 128, 710–711.
- Maheswari, P. U., van der Ster, M., Smulders, S., Barends, S., van Wezel, G. P., Massera, C., Roy, S., den Dulk, H., Gamez, P. & Reedijk, J. (2008). *Inorg. Chem.* 47, 3719–3727.
- Marzano, C., Pellei, M., Tisato, F. & Santini, C. (2009). Anticancer Agents Med. Chem. 9, 185–211.
- Masaki, Y., Yoshihito, T., Yasuyuki, Y., Shigeyasu, K. & Ichiro, S. (1992). Bull. Chem. Soc. Jpn, 65, 1006–1011.
- Mascal, M., Infantes, L. & Chisholm, J. (2006). *Angew. Chem. Int. Ed.* **45**, 32–36.
- Meyer-Almes, F. J. & Porschke, D. (1993). *Biochemistry*, **32**, 4246–4253.
- Moorthy, J. N., Natarajan, R. & Venugopalan, P. (2002). Angew. Chem. Int. Ed. 41, 3417–3420.
- Ohmine, I. & Saito, S. (1999). Acc. Chem. Res. 32, 741-749.
- Onawumi, O. O. E., Faboya, O. O. P., Odunola, O. A., Prasad, T. K. & Rajasekharan, M. V. (2008). *Polyhedron*, 27, 113–117.
- Orvig, C. & Abrams, M. J. (1999). Chem. Rev. 99, 2201-2204.
- Pasternack, R. F., Caccam, M., Keogh, B., Stephenson, T. A., Williams, A. P. & Gibbs, E. J. (1991). J. Am. Chem. Soc. 113, 6835– 6840.
- Pellegrini, P. P. & Aldrich-Wright, J. R. (2003). Dalton Trans. pp. 176-183.
- Pitié, M. & Pratviel, G. (2010). Chem. Rev. 110, 1018-1059.
- Pope, L. E. & Sigman, D. S. (1984). Proc. Natl Acad. Sci. USA, 81, 3-7.
- Prabhakar, M., Zacharias, P. S. & Das, S. K. (2006). Inorg. Chem. Commun. 9, 899–902.
- Rajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). *Inorg. Chem.* 46, 8208–8221.

- Reger, D. L., Semeniuc, R. F., Pettinari, C., Luna-Giles, F. & Smith, M. D. (2006). Cryst. Growth Des. 6, 1068–1070.
- Rodríguez Solano, L. A., Aguiñiga, I., López Ortiz, M., Tiburcio, R., Luviano, A., Regla, I., Santiago-Osorio, E., Ugalde-Saldívar, V. M., Toscano, R. A. & Castillo, I. (2011). *Eur. J. Inorg. Chem.* pp. 3454– 3460.
- Saha, M. K. & Bernal, I. (2005). Inorg. Chem. Commun. 8, 871-873.
- Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). *Chem. Rev.* **114**, 815–862.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Sigman, D. S. (1990). Biochemistry, 29, 9097-9105.
- Sigman, D. S., Mazumder, A. & Perrin, D. M. (1993). Chem. Rev. 93, 2295–2316.
- Sodaye, S., Suresh, G., Pandey, A. K. & Goswami, A. (2006). *Radiochim. Acta*, **94**, 347–350.
- Steinreiber, J. & Ward, T. R. (2008). Coord. Chem. Rev. 252, 751–766.
- Tardito, S. & Marchiò, L. (2009). *Curr. Med. Chem.* **16**, 1325–1348. Tisato, F., Marzano, C., Porchia, M., Pellei, M. & Santini, C. (2010).
- Med. Res. Rev. 30, 708–749. Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451–2466.

### Acta Cryst. (2017). C73, 710-717 [https://doi.org/10.1107/S2053229617011639]

## A fluorophore-labelled copper complex: crystal structure, hybrid cyclic waterperchlorate cluster and biological properties

## Satish S. Bhat, Vidyanand K. Revankar, Naveen Shivalingegowda and N. K. Lokanath

**Computing details** 

Data collection: *SAINT* (Bruker, 2010); cell refinement: *SMART* (Bruker, 2010); data reduction: *SAINT* (Bruker, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Aquabis(dimethylformamide- $\kappa O$ )(perchlorato- $\kappa O$ )[2-(quinolin-2-yl)-1,3-oxazolo[4,5-f] [1,10]phenanthroline]copper(II) perchlorate monohydrate

Crystal data

```
 \begin{bmatrix} Cu(ClO_4)(C_{22}H_{12}N_4O) \\ (C_3H_7NO)_2(H_2O) \end{bmatrix} ClO_4 \cdot H_2O \\ M_r = 793.02 \\ Monoclinic, C2/c \\ a = 48.675 (3) Å \\ b = 8.3750 (5) Å \\ c = 16.3155 (9) Å \\ \beta = 100.716 (2)^{\circ} \\ V = 6535.1 (6) Å^3 \\ Z = 8 \\ \end{bmatrix}
```

#### Data collection

Bruker X8 Proteum diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2010)  $T_{\min} = 0.482, T_{\max} = 0.505$ 29422 measured reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.047$  $wR(F^2) = 0.132$ S = 1.025417 reflections 504 parameters 157 restraints F(000) = 3256  $D_x = 1.612 \text{ Mg m}^{-3}$ Cu K\alpha radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 4790 reflections  $\theta = 1.9-64.5^{\circ}$   $\mu = 3.12 \text{ mm}^{-1}$  T = 173 KRectangle, green  $0.28 \times 0.22 \times 0.17 \text{ mm}$ 

5417 independent reflections 4790 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.071$  $\theta_{max} = 64.5^\circ, \ \theta_{min} = 5.4^\circ$  $h = -56 \rightarrow 54$  $k = -9 \rightarrow 9$  $l = -15 \rightarrow 19$ 

Hydrogen site location: mixed H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0731P)^2 + 16.1488P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.002$  $\Delta\rho_{max} = 0.77 \text{ e} \text{ Å}^{-3}$  $\Delta\rho_{min} = -0.48 \text{ e} \text{ Å}^{-3}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x           | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|-------------|--------------|-----------------------------|-----------|
| Cul | 0.63808 (2) | 0.76800 (5) | 0.33515 (3)  | 0.01822 (15)                |           |
| O2  | 0.67770 (4) | 0.8210 (3)  | 0.37130 (13) | 0.0231 (5)                  |           |
| 01  | 0.64467 (4) | 0.6953 (3)  | 0.22641 (13) | 0.0232 (5)                  |           |
| O3  | 0.54145 (4) | 1.1271 (2)  | 0.48962 (12) | 0.0212 (4)                  |           |
| O4  | 0.65005 (5) | 0.5336 (3)  | 0.39334 (14) | 0.0283 (5)                  |           |
| H4A | 0.668680    | 0.514138    | 0.399543     | 0.042*                      |           |
| H4B | 0.641311    | 0.452483    | 0.362216     | 0.042*                      |           |
| N2  | 0.59662 (5) | 0.7598 (3)  | 0.29512 (15) | 0.0172 (5)                  |           |
| N1  | 0.62665 (5) | 0.8758 (3)  | 0.43273 (14) | 0.0187 (5)                  |           |
| N4  | 0.51555 (5) | 1.0462 (3)  | 0.36830 (15) | 0.0176 (5)                  |           |
| N7  | 0.71619 (5) | 0.9632 (3)  | 0.36123 (16) | 0.0231 (6)                  |           |
| N5  | 0.49830 (5) | 1.2951 (3)  | 0.53244 (15) | 0.0189 (5)                  |           |
| 05  | 0.70583 (5) | 0.4386 (3)  | 0.44686 (19) | 0.0468 (7)                  |           |
| H5A | 0.718900    | 0.438323    | 0.418626     | 0.070*                      |           |
| H5B | 0.706890    | 0.347375    | 0.470057     | 0.070*                      |           |
| N6  | 0.66992 (5) | 0.5341 (3)  | 0.15751 (17) | 0.0284 (6)                  |           |
| C5  | 0.58248 (5) | 0.8501 (3)  | 0.34240 (17) | 0.0164 (6)                  |           |
| C6  | 0.59897 (6) | 0.9109 (3)  | 0.41920 (18) | 0.0171 (6)                  |           |
| C4  | 0.55404 (5) | 0.8880 (3)  | 0.31771 (17) | 0.0171 (6)                  |           |
| C1  | 0.58274 (6) | 0.7023 (3)  | 0.22309 (18) | 0.0195 (6)                  |           |
| H1  | 0.592133    | 0.636716    | 0.191453     | 0.023*                      |           |
| C26 | 0.68925 (6) | 0.9459 (4)  | 0.35209 (19) | 0.0236 (7)                  |           |
| H26 | 0.677914    | 1.030785    | 0.330107     | 0.028*                      |           |
| C3  | 0.54021 (6) | 0.8312 (3)  | 0.23980 (18) | 0.0196 (6)                  |           |
| H3  | 0.521589    | 0.857181    | 0.219960     | 0.024*                      |           |
| C11 | 0.55818 (6) | 1.0365 (3)  | 0.44858 (18) | 0.0183 (6)                  |           |
| C23 | 0.66611 (6) | 0.6122 (4)  | 0.22322 (19) | 0.0234 (7)                  |           |
| H23 | 0.679992    | 0.606736    | 0.270749     | 0.028*                      |           |
| C22 | 0.47685 (6) | 1.3819 (3)  | 0.55422 (19) | 0.0209 (6)                  |           |
| C7  | 0.58712 (6) | 1.0027 (3)  | 0.47580 (18) | 0.0186 (6)                  |           |
| C13 | 0.51640 (6) | 1.1273 (3)  | 0.43692 (19) | 0.0208 (6)                  |           |
| C12 | 0.54243 (6) | 0.9866 (3)  | 0.37484 (18) | 0.0184 (6)                  |           |
| C2  | 0.55461 (6) | 0.7368 (4)  | 0.19342 (19) | 0.0212 (6)                  |           |
| H2  | 0.545639    | 0.695999    | 0.142404     | 0.025*                      |           |
| C8  | 0.60458 (6) | 1.0527 (4)  | 0.54982 (19) | 0.0246 (7)                  |           |
| H8  | 0.597389    | 1.111196    | 0.589469     | 0.030*                      |           |
| C15 | 0.46711 (6) | 1.2196 (4)  | 0.4050 (2)   | 0.0227 (6)                  |           |
| H15 | 0.464676    | 1.164073    | 0.354847     | 0.027*                      |           |
| C10 | 0.64288 (6) | 0.9274 (4)  | 0.50227 (19) | 0.0228 (6)                  |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

| 1110           | 0.661022                | 0.005007              | 0.5110.00              | 0.007*          |        |
|----------------|-------------------------|-----------------------|------------------------|-----------------|--------|
| HIO            | 0.661922                | 0.905087              | 0.511060               | 0.027*          |        |
| C17            | 0.44993 (6)             | 1.3887 (4)            | 0.5025 (2)             | 0.0242 (7)      |        |
| C14            | 0.49310 (6)             | 1.2182 (3)            | 0.46072 (18)           | 0.0181 (6)      |        |
| C9             | 0.63232 (6)             | 1.0138 (4)            | 0.5625 (2)             | 0.0263 (7)      |        |
| H9             | 0.644151                | 1.045097              | 0.611341               | 0.032*          |        |
| C16            | 0.44565 (6)             | 1.3050 (4)            | 0.4270 (2)             | 0.0269 (7)      |        |
| H16            | 0.428264                | 1.307446              | 0.391828               | 0.032*          |        |
| C21            | 0.48177 (7)             | 1.4658 (4)            | 0.6303 (2)             | 0.0278 (7)      |        |
| H21            | 0.499320                | 1.461098              | 0.664476               | 0.033*          |        |
| C18            | 0.42873 (7)             | 1.4798 (4)            | 0.5304 (2)             | 0.0339 (8)      |        |
| H18            | 0.410916                | 1.484971              | 0.497807               | 0.041*          |        |
| C20            | 0.46102 (8)             | 1.5540 (4)            | 0.6545 (2)             | 0.0364 (9)      |        |
| H20            | 0.464707                | 1.610582              | 0.704394               | 0.044*          |        |
| C19            | 0.43436 (8)             | 1.5600 (4)            | 0.6050 (3)             | 0.0396 (9)      |        |
| H19            | 0.420330                | 1.618773              | 0.622661               | 0.048*          |        |
| C27            | 0.72853 (8)             | 1.1103 (4)            | 0.3384 (2)             | 0.0389 (8)      |        |
| H27A           | 0.713995                | 1.185541              | 0.317883               | 0.058*          |        |
| H27B           | 0.739200                | 1.088833              | 0.295681               | 0.058*          |        |
| H27C           | 0.740586                | 1.153987              | 0.386435               | 0.058*          |        |
| C24            | 0.64950 (9)             | 0.5388 (6)            | 0.0826 (3)             | 0.0556 (12)     |        |
| H24A           | 0.632332                | 0.581308              | 0.094368               | 0.083*          |        |
| H24B           | 0 646343                | 0 432703              | 0.060585               | 0.083*          |        |
| H24C           | 0.656075                | 0.605475              | 0.042465               | 0.083*          |        |
| C28            | 0.73515(7)              | 0.8364 (5)            | 0.3937(3)              | 0.003           |        |
| H28A           | 0.725217                | 0.755903              | 0.418378               | 0.078*          |        |
| H28R           | 0.729217                | 0.878560              | 0.435268               | 0.078*          |        |
| H28C           | 0.742904                | 0.790148              | 0.340225               | 0.078*          |        |
| C25            | 0.742904<br>0.60518 (0) | 0.770140<br>0.4426(5) | 0.547225<br>0.1565 (3) | 0.078           |        |
| U25 A          | 0.09310(9)              | 0.451478              | 0.1505 (5)             | 0.077*          |        |
| 1125A<br>1125B | 0.707412                | 0.431478              | 0.209748               | 0.077*          |        |
| H25C           | 0.704433                | 0.403230              | 0.115303               | 0.077*          |        |
| C12            | 0.090400                | 1 10401 (0)           | 0.145405               | $0.077^{\circ}$ |        |
| 022            | 0.01373(2)              | 1.19401(9)            | 0.20001(3)             | 0.0271(2)       |        |
| 032            | 0.02313(0)              | 1.2378(3)             | 0.55522(10)            | 0.0450(0)       |        |
| 031            | 0.62935 (5)             | 1.0488 (3)            | 0.25145(15)            | 0.0358 (6)      |        |
| 033            | 0.62201 (5)             | 1.3185 (3)            | 0.21300(17)            | 0.0414 (6)      |        |
| 034            | 0.58625 (5)             | 1.1691 (4)            | 0.2537 (2)             | 0.0533 (8)      | 0.000  |
| CI2            | 0.72028 (14)            | 0.06/1 (/)            | 0.6164 (4)             | 0.0330 (12)     | 0.6667 |
| 06             | 0.72004 (11)            | 0.1404 (8)            | 0.5356 (3)             | 0.0508 (14)     | 0.6667 |
| 07             | 0.74955 (14)            | 0.0373 (12)           | 0.6530 (4)             | 0.0347 (14)     | 0.6667 |
| 08             | 0.70409 (11)            | -0.0720 (6)           | 0.6185 (4)             | 0.0594 (13)     | 0.6667 |
| 09             | 0.71221 (14)            | 0.1840 (7)            | 0.6718 (4)             | 0.0653 (18)     | 0.6667 |
| Cl1            | 0.7185 (2)              | 0.0605 (13)           | 0.6059 (8)             | 0.0297 (19)     | 0.3333 |
| O10            | 0.7077 (3)              | 0.1569 (17)           | 0.5390 (9)             | 0.075 (3)       | 0.3333 |
| 011            | 0.7465 (3)              | 0.040 (3)             | 0.6321 (12)            | 0.061 (4)       | 0.3333 |
| O13            | 0.71045 (14)            | -0.0957 (9)           | 0.5766 (6)             | 0.0345 (16)     | 0.3333 |
| 012            | 0.7028 (2)              | 0.1098 (15)           | 0.6623 (7)             | 0.062 (3)       | 0.3333 |
|                |                         |                       |                        |                 |        |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | <i>U</i> <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|------------------------|
| Cu1 | 0.0134 (2)  | 0.0240 (3)  | 0.0190 (3)  | 0.00191 (15) | 0.00771 (17) | -0.00228 (17)          |
| O2  | 0.0155 (10) | 0.0281 (11) | 0.0273 (11) | 0.0012 (8)   | 0.0081 (8)   | 0.0001 (9)             |
| O1  | 0.0179 (10) | 0.0317 (11) | 0.0217 (11) | 0.0055 (8)   | 0.0081 (8)   | -0.0015 (9)            |
| O3  | 0.0188 (10) | 0.0232 (11) | 0.0244 (11) | 0.0035 (8)   | 0.0116 (8)   | -0.0004 (9)            |
| O4  | 0.0319 (12) | 0.0250 (11) | 0.0287 (12) | 0.0029 (9)   | 0.0075 (9)   | 0.0020 (9)             |
| N2  | 0.0173 (12) | 0.0187 (12) | 0.0178 (13) | 0.0007 (9)   | 0.0092 (10)  | 0.0011 (10)            |
| N1  | 0.0174 (12) | 0.0224 (12) | 0.0177 (13) | -0.0008 (9)  | 0.0070 (10)  | 0.0009 (10)            |
| N4  | 0.0168 (12) | 0.0162 (12) | 0.0230 (13) | 0.0009 (9)   | 0.0125 (10)  | 0.0019 (10)            |
| N7  | 0.0224 (13) | 0.0245 (13) | 0.0244 (14) | -0.0028 (10) | 0.0091 (10)  | -0.0018 (11)           |
| N5  | 0.0196 (12) | 0.0185 (12) | 0.0212 (13) | 0.0001 (9)   | 0.0111 (10)  | 0.0032 (10)            |
| O5  | 0.0396 (15) | 0.0463 (16) | 0.0588 (18) | 0.0157 (12)  | 0.0204 (13)  | 0.0135 (13)            |
| N6  | 0.0282 (14) | 0.0332 (15) | 0.0278 (15) | 0.0035 (11)  | 0.0152 (12)  | -0.0062 (12)           |
| C5  | 0.0171 (13) | 0.0164 (14) | 0.0177 (14) | -0.0015 (11) | 0.0086 (11)  | 0.0019 (11)            |
| C6  | 0.0164 (13) | 0.0182 (14) | 0.0188 (15) | -0.0014 (11) | 0.0086 (11)  | 0.0016 (12)            |
| C4  | 0.0168 (13) | 0.0167 (14) | 0.0206 (15) | -0.0028 (11) | 0.0110 (11)  | 0.0036 (11)            |
| C1  | 0.0210 (14) | 0.0215 (15) | 0.0185 (15) | -0.0017 (11) | 0.0103 (12)  | -0.0013 (12)           |
| C26 | 0.0235 (16) | 0.0230 (16) | 0.0244 (17) | 0.0019 (12)  | 0.0046 (12)  | -0.0025 (13)           |
| C3  | 0.0154 (13) | 0.0228 (15) | 0.0227 (16) | -0.0017 (11) | 0.0086 (11)  | 0.0047 (12)            |
| C11 | 0.0195 (14) | 0.0162 (14) | 0.0231 (16) | 0.0006 (11)  | 0.0141 (12)  | -0.0006 (12)           |
| C23 | 0.0217 (15) | 0.0276 (16) | 0.0233 (16) | -0.0001 (12) | 0.0105 (12)  | -0.0010 (13)           |
| C22 | 0.0253 (15) | 0.0151 (14) | 0.0263 (16) | 0.0023 (11)  | 0.0154 (13)  | 0.0051 (12)            |
| C7  | 0.0198 (14) | 0.0198 (14) | 0.0191 (15) | 0.0005 (11)  | 0.0108 (12)  | 0.0007 (12)            |
| C13 | 0.0173 (14) | 0.0172 (14) | 0.0310 (17) | 0.0005 (11)  | 0.0129 (12)  | 0.0066 (13)            |
| C12 | 0.0180 (14) | 0.0164 (14) | 0.0232 (16) | 0.0009 (11)  | 0.0105 (12)  | 0.0038 (12)            |
| C2  | 0.0213 (15) | 0.0261 (16) | 0.0173 (15) | -0.0061 (12) | 0.0064 (12)  | -0.0021 (12)           |
| C8  | 0.0260 (16) | 0.0299 (16) | 0.0204 (16) | -0.0006 (13) | 0.0105 (13)  | -0.0041 (13)           |
| C15 | 0.0220 (15) | 0.0240 (16) | 0.0236 (16) | -0.0015 (12) | 0.0080 (12)  | -0.0008 (12)           |
| C10 | 0.0171 (14) | 0.0299 (16) | 0.0219 (16) | 0.0008 (12)  | 0.0052 (12)  | -0.0010 (13)           |
| C17 | 0.0223 (15) | 0.0200 (15) | 0.0345 (18) | 0.0022 (12)  | 0.0162 (13)  | 0.0059 (13)            |
| C14 | 0.0191 (14) | 0.0148 (14) | 0.0234 (16) | 0.0008 (11)  | 0.0119 (12)  | 0.0030 (12)            |
| C9  | 0.0245 (15) | 0.0362 (18) | 0.0184 (16) | -0.0022 (13) | 0.0043 (12)  | -0.0046 (13)           |
| C16 | 0.0164 (14) | 0.0281 (17) | 0.0368 (19) | 0.0009 (12)  | 0.0063 (13)  | 0.0050 (14)            |
| C21 | 0.0393 (18) | 0.0216 (16) | 0.0265 (18) | 0.0007 (13)  | 0.0165 (14)  | 0.0055 (13)            |
| C18 | 0.0248 (16) | 0.0272 (17) | 0.055 (2)   | 0.0093 (13)  | 0.0221 (16)  | 0.0100 (16)            |
| C20 | 0.061 (2)   | 0.0200 (16) | 0.037 (2)   | 0.0024 (15)  | 0.0318 (18)  | 0.0028 (14)            |
| C19 | 0.049 (2)   | 0.0232 (17) | 0.059 (3)   | 0.0109 (15)  | 0.042 (2)    | 0.0075 (17)            |
| C27 | 0.0381 (19) | 0.0350 (19) | 0.044 (2)   | -0.0129 (15) | 0.0093 (16)  | 0.0012 (16)            |
| C24 | 0.056 (3)   | 0.076 (3)   | 0.036 (2)   | 0.014 (2)    | 0.0115 (19)  | -0.019 (2)             |
| C28 | 0.0207 (17) | 0.039 (2)   | 0.096 (3)   | 0.0010 (15)  | 0.0124 (19)  | 0.018 (2)              |
| C25 | 0.057 (2)   | 0.054 (3)   | 0.049 (2)   | 0.027 (2)    | 0.029 (2)    | -0.005 (2)             |
| Cl3 | 0.0253 (4)  | 0.0231 (4)  | 0.0345 (4)  | -0.0010 (3)  | 0.0093 (3)   | 0.0036 (3)             |
| 032 | 0.0667 (18) | 0.0310 (13) | 0.0356 (15) | -0.0074 (12) | 0.0161 (13)  | -0.0069 (11)           |
| 031 | 0.0470 (14) | 0.0308 (13) | 0.0329 (13) | 0.0096 (10)  | 0.0157 (11)  | 0.0021 (10)            |
| 033 | 0.0415 (14) | 0.0339 (13) | 0.0506 (16) | -0.0068 (11) | 0.0132 (12)  | 0.0131 (12)            |
| 034 | 0.0236 (13) | 0.0569 (17) | 0.078 (2)   | -0.0019 (12) | 0.0051 (12)  | 0.0301 (16)            |

| Cl2 | 0.035 (2)   | 0.0304 (14) | 0.0318 (15) | -0.0038 (10) | 0.0015 (10)  | 0.0079 (10) |
|-----|-------------|-------------|-------------|--------------|--------------|-------------|
| O6  | 0.058 (3)   | 0.061 (3)   | 0.031 (2)   | 0.020 (3)    | 0.003 (2)    | 0.013 (2)   |
| O7  | 0.030 (3)   | 0.042 (3)   | 0.030 (3)   | 0.001 (2)    | -0.0012 (19) | 0.010 (2)   |
| 08  | 0.0562 (19) | 0.0482 (18) | 0.068 (2)   | -0.0204 (14) | -0.0038 (16) | 0.0132 (16) |
| 09  | 0.087 (5)   | 0.054 (3)   | 0.069 (4)   | 0.010 (3)    | 0.049 (3)    | 0.000 (3)   |
| Cl1 | 0.023 (3)   | 0.027 (2)   | 0.041 (4)   | -0.0043 (18) | 0.012 (3)    | 0.003 (2)   |
| O10 | 0.108 (9)   | 0.052 (5)   | 0.063 (5)   | 0.023 (6)    | 0.013 (5)    | 0.026 (5)   |
| O11 | 0.021 (3)   | 0.048 (7)   | 0.111 (12)  | -0.004 (3)   | 0.006 (4)    | -0.003 (8)  |
| O13 | 0.019 (3)   | 0.030 (2)   | 0.052 (5)   | 0.000 (2)    | 0.000 (3)    | 0.001 (3)   |
| 012 | 0.054 (6)   | 0.084 (7)   | 0.052 (4)   | 0.032 (5)    | 0.018 (5)    | -0.005 (5)  |
|     |             |             |             |              |              |             |

## Geometric parameters (Å, °)

| Cu1—O2  | 1.960 (2) | C13—C14  | 1.477 (4) |
|---------|-----------|----------|-----------|
| Cu1—O1  | 1.958 (2) | C2—H2    | 0.9300    |
| Cu1—O4  | 2.211 (2) | C8—H8    | 0.9300    |
| Cu1—N2  | 2.003 (2) | C8—C9    | 1.367 (4) |
| Cu1—N1  | 1.997 (2) | C15—H15  | 0.9300    |
| Cu1—O31 | 2.713 (2) | C15—C14  | 1.414 (4) |
| O2—C26  | 1.255 (4) | C15—C16  | 1.367 (4) |
| O1—C23  | 1.264 (4) | C10—H10  | 0.9300    |
| O3—C11  | 1.375 (3) | C10—C9   | 1.393 (4) |
| O3—C13  | 1.355 (4) | C17—C16  | 1.399 (5) |
| O4—H4A  | 0.9082    | C17—C18  | 1.425 (4) |
| O4—H4B  | 0.9052    | С9—Н9    | 0.9300    |
| N2-C5   | 1.356 (4) | C16—H16  | 0.9300    |
| N2-C1   | 1.332 (4) | C21—H21  | 0.9300    |
| N1—C6   | 1.357 (4) | C21—C20  | 1.368 (5) |
| N1-C10  | 1.328 (4) | C18—H18  | 0.9300    |
| N4—C13  | 1.303 (4) | C18—C19  | 1.372 (6) |
| N4—C12  | 1.386 (3) | C20—H20  | 0.9300    |
| N7—C26  | 1.300 (4) | C20—C19  | 1.396 (6) |
| N7—C27  | 1.449 (4) | C19—H19  | 0.9300    |
| N7—C28  | 1.442 (4) | C27—H27A | 0.9600    |
| N5-C22  | 1.372 (4) | C27—H27B | 0.9600    |
| N5-C14  | 1.319 (4) | C27—H27C | 0.9600    |
| O5—H5A  | 0.8521    | C24—H24A | 0.9600    |
| O5—H5B  | 0.8497    | C24—H24B | 0.9600    |
| N6-C23  | 1.298 (4) | C24—H24C | 0.9600    |
| N6-C24  | 1.425 (5) | C28—H28A | 0.9600    |
| N6-C25  | 1.451 (4) | C28—H28B | 0.9600    |
| C5—C6   | 1.449 (4) | C28—H28C | 0.9600    |
| C5—C4   | 1.404 (4) | C25—H25A | 0.9600    |
| С6—С7   | 1.405 (4) | C25—H25B | 0.9600    |
| C4—C3   | 1.406 (4) | C25—H25C | 0.9600    |
| C4—C12  | 1.437 (4) | Cl3—O32  | 1.449 (3) |
| C1—H1   | 0.9300    | Cl3—O31  | 1.428 (2) |
| C1—C2   | 1.395 (4) | Cl3—O33  | 1.430 (2) |
|         | • •       |          | • •       |

| С26—Н26                                              | 0.9300               | Cl3—O34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.427 (3)         |
|------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| С3—Н3                                                | 0.9300               | Cl2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.452 (6)         |
| C3—C2                                                | 1.373 (4)            | Cl2—O7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.460 (6)         |
| C11—C7                                               | 1 424 (4)            | C12—08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1410(7)           |
| C11-C12                                              | 1.121(1)<br>1.366(4) | $C_{12}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1435(7)           |
| C12 U22                                              | 0.0200               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.435(7)          |
| $C_{23} = C_{123}$                                   | 1,421,(4)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.360(13)         |
|                                                      | 1.421 (4)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.358 (12)        |
| C22—C21                                              | 1.407 (5)            | CII—013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.423 (11)        |
| С7—С8                                                | 1.405 (4)            | Cl1—O12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.365 (12)        |
|                                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| O2—Cu1—O4                                            | 84.60 (9)            | C9—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.8 (3)         |
| O2—Cu1—N2                                            | 168.83 (9)           | С9—С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.6             |
| O2—Cu1—N1                                            | 93.56 (9)            | C14—C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.9             |
| O2—Cu1—O31                                           | 90.49 (8)            | C16—C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.9             |
| O1—Cu1—O2                                            | 91.45 (8)            | C16—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118.2 (3)         |
| O1—Cu1—O4                                            | 92.21 (8)            | N1-C10-H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.9             |
| 01— $Cu1$ — $N2$                                     | 91.07 (9)            | N1 - C10 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.2 (3)         |
| O1  Cu1  N1                                          | 168 47 (9)           | $C_{0}$ $C_{10}$ $H_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118.0             |
| $O_1 = C_{11} = O_1^{-1}$                            | 100.47(9)            | $C_{2}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.9<br>112.2(2) |
| 01 - 01 - 031                                        | 01.37(0)             | $C_{22} - C_{17} - C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.3(3)          |
| 04— $031$                                            | 1/1.83 (8)           | C16-C17-C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118.2 (3)         |
| N2—Cu1—O4                                            | 106.18 (9)           | C16—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123.5 (3)         |
| N2—Cu1—O31                                           | 79.14 (8)            | N5—C14—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117.1 (3)         |
| N1—Cu1—O4                                            | 98.60 (9)            | N5-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124.6 (3)         |
| N1—Cu1—N2                                            | 82.09 (9)            | C15—C14—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118.3 (3)         |
| N1—Cu1—O31                                           | 88.20 (8)            | C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.1 (3)         |
| C26—O2—Cu1                                           | 125.1 (2)            | С8—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.0             |
| C23—O1—Cu1                                           | 118.96 (19)          | С10—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.0             |
| C13-03-C11                                           | 103.7 (2)            | C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.8 (3)         |
| Cu1 - 04 - H4A                                       | 112.6                | C15—C16—H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.1             |
| Cu1 - O4 - H4B                                       | 111.5                | $C_{17}$ $C_{16}$ $H_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.1             |
|                                                      | 106.5                | $C_{22}$ $C_{21}$ $H_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.6             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 112.50 (10)          | $C_{22} = C_{21} = H_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.0             |
| $C_{3}$ $N_{2}$ $C_{1}$                              | 112.50 (19)          | $C_{20} = C_{21} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.7 (3)         |
| CI—N2—Cui                                            | 127.96 (19)          | C20—C21—H21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.6             |
| C1—N2—C5                                             | 118.4 (2)            | C17—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7             |
| C6—N1—Cu1                                            | 112.56 (18)          | C19—C18—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.5 (3)         |
| C10—N1—Cu1                                           | 128.20 (19)          | C19—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7             |
| C10—N1—C6                                            | 118.9 (2)            | C21—C20—H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7             |
| C13—N4—C12                                           | 104.1 (2)            | C21—C20—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.6 (3)         |
| C26—N7—C27                                           | 121.5 (3)            | С19—С20—Н20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7             |
| C26—N7—C28                                           | 121.5 (3)            | C18—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.4 (3)         |
| C28—N7—C27                                           | 116.9 (3)            | C18—C19—H19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.8             |
| C14—N5—C22                                           | 117.3 (3)            | C20—C19—H19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.8             |
| H5A05H5B                                             | 104.4                | N7-C27-H27A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5             |
| $C^{23}$ _N6_C <sup>24</sup>                         | 120.7(3)             | N7_C27_H27B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5             |
| $C_{23} = N_{0} = C_{24}$                            | 120.7(3)<br>121 8(2) | N7 C27 H27C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.5             |
| $C_{23}$ $M_{C_{23}}$ $C_{24}$ $M_{C_{25}}$ $C_{25}$ | 121.0(3)<br>117.5(2) | $\frac{1}{107} \frac{1}{107} \frac{1}$ | 107.3             |
| $U_{24}$ NO- $U_{23}$                                | 117.5 (5)            | $\Pi \angle A = U \angle A = U \angle B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5             |
| N2-C5-C6                                             | 115.5 (2)            | H2/A—C2/—H2/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5             |
| N2                                                   | 122.7 (3)            | H27B—C27—H27C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5             |

| C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.8 (2)            | N6—C24—H24A                                                             | 109.5                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|---------------------------|
| N1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.0 (2)            | N6—C24—H24B                                                             | 109.5                     |
| N1—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.9 (3)            | N6—C24—H24C                                                             | 109.5                     |
| C7—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.1 (2)            | H24A—C24—H24B                                                           | 109.5                     |
| C5—C4—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.6 (2)            | H24A—C24—H24C                                                           | 109.5                     |
| C5-C4-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115.4 (3)            | H24B—C24—H24C                                                           | 109.5                     |
| C3—C4—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126.9 (3)            | N7—C28—H28A                                                             | 109.5                     |
| N2—C1—H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.8                | N7—C28—H28B                                                             | 109.5                     |
| $N_2$ $C_1$ $C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.4 (3)            | N7—C28—H28C                                                             | 109.5                     |
| C2-C1-H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.8                | H28A—C28—H28B                                                           | 109.5                     |
| 02 - C26 - N7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 123 6 (3)            | $H_{28A}$ $C_{28}$ $H_{28C}$                                            | 109.5                     |
| 02 - C26 - H26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.2                | $H_{28B} - C_{28} - H_{28C}$                                            | 109.5                     |
| N7-C26-H26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.2                | N6-C25-H25A                                                             | 109.5                     |
| C4-C3-H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.5                | N6-C25-H25B                                                             | 109.5                     |
| $C_{2}-C_{3}-C_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1191(3)              | N6-C25-H25C                                                             | 109.5                     |
| C2—C3—H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.5                | H25A - C25 - H25B                                                       | 109.5                     |
| 03-C11-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126.8 (3)            | $H_{25A} = C_{25} = H_{25D}$                                            | 109.5                     |
| $C_{12}$ $C_{11}$ $C_{13}$ $C$ | 1081(2)              | $H_{25R} = C_{25} = H_{25C}$                                            | 109.5                     |
| $C_{12} = C_{11} = C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.1(2)<br>1251(2)  | 031 - C13 - 032                                                         | 109.5                     |
| $01 - C^{23} - N6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123.9(3)             | 031 - C13 - 032                                                         | 100.10(15)<br>110.89(15)  |
| $01 - C^{23} - H^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118 1                | 033 - C13 - 032                                                         | 110.35(15)                |
| N6-C23-H23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.1                | 034 - C13 - 032                                                         | 107.92 (18)               |
| $N_{5}$ $C_{22}$ $C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1220(3)              | 034 $-C13$ $-031$                                                       | 107.52(10)<br>109.61(17)  |
| $N_{5} = C_{22} = C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.0(3)<br>1187(3)  | 034-013-033                                                             | 109.82 (16)               |
| $C_{21}$ $C_{22}$ $C_{21}$ $C_{22}$ $C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.3 (3)            | $C_{13} - C_{13} - C_{11}$                                              | 109.02(10)<br>133(25(13)) |
| C6-C7-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.5(3)<br>1140(3)  | $06-C^{12}-07$                                                          | 106.6(5)                  |
| C6-C7-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1181(3)              | 08-C12-06                                                               | 100.0(5)<br>1174(5)       |
| C8 - C7 - C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1279(3)              | 08 - C12 - 07                                                           | 117.4(5)<br>110.9(5)      |
| 03-C13-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 127.5(3)<br>118.6(3) | 08-012-09                                                               | 109.2(5)                  |
| N4-C13-O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115.0(3)<br>115.2(2) | $09 - C^{12} - 06$                                                      | 109.2(5)                  |
| N4-C13-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.2(2)<br>126.2(3) | $09 - C^{12} - 07$                                                      | 102.0(5)                  |
| N4 - C12 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.2(3)<br>129.5(3) | 010-C11-013                                                             | 102.7(0)<br>103.4(10)     |
| $C_{11}$ $C_{12}$ $N_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 129.5(3)<br>109.0(2) | 011 - 011 - 010                                                         | 103.4(10)<br>122.3(12)    |
| C11 - C12 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0(2)<br>121.5(3) | 011-010                                                                 | 122.3(12)                 |
| C1 - C2 - H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.5 (5)            | 011 - C11 - 012                                                         | 101.0(11)<br>118.5(13)    |
| $C_1 = C_2 = H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.8 (3)            | 012 C11 010                                                             | 110.3(13)                 |
| $C_3 = C_2 = H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.8 (5)            | 012-Cl1-010                                                             | 100.2(10)                 |
| $C_{2}$ $C_{2}$ $H_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.1                | 012-011-015                                                             | 110.5 ())                 |
| C/C8118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0                |                                                                         |                           |
| $Cu1_02_02_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1645(2)             | $C_{3}$ $C_{4}$ $C_{12}$ $C_{11}$                                       | -1790(3)                  |
| Cu1 = 02 = C20 = N7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 166.9(2)             | $C_{11} = C_{12} = C_{11} = C_{12} = C_{13} = N_4$                      | 179.0(3)                  |
| Cu1 - 01 - 025 - 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -10.3(3)             | C11 - 03 - C13 - C14                                                    | -1787(2)                  |
| Cu1 = N2 = C5 = C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 167.4(2)             | $C_{11} = C_7 = C_8 = C_9$                                              | -176.7(2)                 |
| Cu1 - N2 - C3 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1642(2)             | $C_{11} = C_{12} = C_{13}$                                              | 170.7(3)<br>179.0(2)      |
| Cu1 - N2 - C1 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64(3)                | $C_{22} = N_{5} = C_{14} = C_{15}$                                      | 0.3(4)                    |
| Cu1 - N1 - C0 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1727(2)             | $C_{22}$ $C_{13}$ $C_{14}$ $C_{15}$ $C_{22}$ $C_{17}$ $C_{16}$ $C_{15}$ | 0.2(4)                    |
| Cu1 = N1 = C0 = C/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2.7(2)<br>1741(2)  | $C_{22} = C_{17} = C_{10} = C_{13}$                                     | 0.2(7)                    |
| $C_{11}$ $C_{10}$ $C_{9}$ $C_{11}$ $C_{7}$ $C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1770(2)             | $C_{22} = C_{17} = C_{10} = C_{19}$                                     | 1.2 (5)                   |
| 03-011-07-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1/1.9(3)            | UZZ-UZI-UZU-UIY                                                         | 1.5 (5)                   |

| O3—C11—C7—C8   | 0.7 (5)    | C7—C11—C12—N4   | -178.0 (3)  |
|----------------|------------|-----------------|-------------|
| O3—C11—C12—N4  | 0.3 (3)    | C7—C11—C12—C4   | 2.0 (4)     |
| O3—C11—C12—C4  | -179.6 (2) | C7—C8—C9—C10    | 0.6 (5)     |
| O3—C13—C14—N5  | 0.4 (4)    | C13—O3—C11—C7   | 177.8 (3)   |
| O3—C13—C14—C15 | 179.2 (2)  | C13—O3—C11—C12  | -0.5 (3)    |
| N2-C5-C6-N1    | 2.6 (4)    | C13—N4—C12—C4   | 179.9 (3)   |
| N2—C5—C6—C7    | -178.3 (2) | C13—N4—C12—C11  | 0.0 (3)     |
| N2—C5—C4—C3    | -1.2 (4)   | C12—N4—C13—O3   | -0.3 (3)    |
| N2-C5-C4-C12   | -179.2 (2) | C12—N4—C13—C14  | 178.8 (3)   |
| N2—C1—C2—C3    | -1.1 (4)   | C12—C4—C3—C2    | -179.6 (3)  |
| N1—C6—C7—C11   | 175.9 (2)  | C12—C11—C7—C6   | 0.1 (4)     |
| N1—C6—C7—C8    | -2.7 (4)   | C12—C11—C7—C8   | 178.7 (3)   |
| N1-C10-C9-C8   | -2.2 (5)   | C10—N1—C6—C5    | -179.6 (3)  |
| N4—C13—C14—N5  | -178.7 (3) | C10—N1—C6—C7    | 1.3 (4)     |
| N4—C13—C14—C15 | 0.0 (4)    | C17—C22—C21—C20 | -0.4 (4)    |
| N5-C22-C17-C16 | -0.7 (4)   | C17-C18-C19-C20 | 0.3 (5)     |
| N5-C22-C17-C18 | 179.1 (3)  | C14—N5—C22—C17  | 0.5 (4)     |
| N5-C22-C21-C20 | 179.9 (3)  | C14—N5—C22—C21  | -179.8 (2)  |
| C5—N2—C1—C2    | 2.6 (4)    | C14—C15—C16—C17 | 0.5 (4)     |
| C5—C6—C7—C11   | -3.1 (4)   | C16—C15—C14—N5  | -0.8 (4)    |
| C5—C6—C7—C8    | 178.2 (3)  | C16-C15-C14-C13 | -179.5 (3)  |
| C5—C4—C3—C2    | 2.7 (4)    | C16—C17—C18—C19 | -179.6 (3)  |
| C5—C4—C12—N4   | 178.9 (3)  | C21—C22—C17—C16 | 179.6 (3)   |
| C5-C4-C12-C11  | -1.2 (4)   | C21—C22—C17—C18 | -0.6 (4)    |
| C6—N1—C10—C9   | 1.2 (4)    | C21—C20—C19—C18 | -1.3 (5)    |
| C6—C5—C4—C3    | 176.3 (2)  | C18—C17—C16—C15 | -179.7 (3)  |
| C6-C5-C4-C12   | -1.8 (4)   | C27—N7—C26—O2   | -179.8 (3)  |
| C6—C7—C8—C9    | 1.7 (4)    | C24—N6—C23—O1   | 0.4 (5)     |
| C4—C5—C6—N1    | -175.0 (2) | C28—N7—C26—O2   | 0.9 (5)     |
| C4—C5—C6—C7    | 4.1 (4)    | C25—N6—C23—O1   | 178.9 (3)   |
| C4—C3—C2—C1    | -1.6 (4)   | O32—Cl3—O31—Cu1 | 46.4 (2)    |
| C1—N2—C5—C6    | -179.0 (2) | O33—Cl3—O31—Cu1 | 167.57 (17) |
| C1—N2—C5—C4    | -1.4 (4)   | O34—Cl3—O31—Cu1 | -71.0 (2)   |
| C3—C4—C12—N4   | 1.1 (5)    |                 |             |

## Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H  | H···A | D····A     | D—H··· $A$ |
|------------------------------------|------|-------|------------|------------|
| O4—H4 <i>A</i> ···O5               | 0.91 | 1.94  | 2.808 (3)  | 160        |
| O4—H4 <i>B</i> ···O32 <sup>i</sup> | 0.91 | 1.96  | 2.782 (3)  | 151        |
| O5—H5 <i>A</i> …O11 <sup>ii</sup>  | 0.85 | 2.02  | 2.862 (18) | 170        |
| O5—H5 <i>B</i> ···O10              | 0.85 | 1.95  | 2.790 (13) | 171        |
| O5—H5 <i>A</i> …O7 <sup>ii</sup>   | 0.85 | 2.11  | 2.954 (7)  | 174        |
| O5—H5 <i>B</i> ···O6               | 0.85 | 2.07  | 2.905 (7)  | 165        |
|                                    |      |       |            |            |

Symmetry codes: (i) x, y-1, z; (ii) -x+3/2, -y+1/2, -z+1.