# data reports



IUCrData

ISSN 2414-3146

Received 20 October 2016 Accepted 25 October 2016

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; 1H-1,2,3-triazole.

CCDC reference: 1511398

Structural data: full structural data are available from iucrdata.iucr.org

# 1-(2'-Ethoxy-4'-fluoro-[1,1'-biphenyl]-4-yl)-4phenyl-1*H*-1,2,3-triazole

Maryam Gilandoust,<sup>a</sup> S. Naveen,<sup>b</sup> K. B. Harsha,<sup>a</sup> N. K. Lokanath<sup>c</sup> and K. S. Rangappa<sup>a</sup>\*

<sup>a</sup>Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, <sup>b</sup>Institution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, and <sup>c</sup>Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India. \*Correspondence e-mail: rangappaks@chemistry.uni-mysore.ac.in

In the title compound,  $C_{22}H_{18}FN_3O$ , the triazole ring is planar. The plane of the triazole ring makes dihedral angles of 19.31 (10), 20.52 (10) and 39.82 (9)° with the planes of the benzene rings, indicating the overall nonplanarity of the molecule. No classical hydrogen bonds were observed in the structure.



#### Structure description

Nitrogen-containing heterocyclic compounds, such as 1,2,3-triazoles, have a wide-ranging biological spectrum, including anticancer activity (Duan *et al.*, 2013), antitubercular activity (Somu *et al.*, 2006), anti-HIV activity, antibacterial activity, antiallergic activity and selective  $\beta_3$ -adrenergic receptor agonism (Brockunier *et al.*, 2000). They also have a wide range of other applications, such as dyes, corrosion inhibition, photostabilizers, photographic materials, and in the field of agrochemicals. Owing to their wide range of biological and technical interest and as a part of our ongoing research on triazoles (Ashwini *et al.*, 2016), the title compound was synthesized from the 1,3-dipolar cyclo-addition of an azide an and alkyne in the presence of a copper(I) catalyst to form a 1,4-disubstituted triazoles, contributing to the popularization of 'click' chemistry as a highly effective method for the functionalization of triazoles.

In the title compound (Fig. 1), the triazole ring is planar, with atom N1 deviating by 0.004 (1) Å from the mean plane. The plane of the triazole ring makes dihedral angles of 19.31 (10), 20.52 (10) and 39.82 (9)°, respectively, with the planes of the C3–C8, C9–C14 and C15–C20 benzene rings, indicating the non-planarity of the molecule as a whole. The ethoxy group lies in the plane of the fluorophenyl ring and is in an antiperiplanar





Figure 1

A view of the title molecule, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

conformation, as indicated by the torsion angle of  $-175.08 (16)^{\circ}$ . No classical hydrogen bonds were observed in the structure.

### Synthesis and crystallization

1-(4-Bromophenyl)-4-phenyl-1,2,3-triazole (1 mmol), 2-ethoxy-4-fluorobenzenboronic acid (1.2 mmol) and K<sub>2</sub>CO<sub>3</sub> (3 mmol) were added to a mixture of ethanol, water and 1,4dioxane in the ratio of 1:1:5 and taken into a pressure tube. The reaction mixture was stirred for 15 min in the presence of nitrogen gas to create inert atmosphere. Then Dikis, i.e. [PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>], was added as a catalyst (0.1 mmol) to the reaction mass. The reaction mass was heated between 393 to 403 K for 30 min in a sealed tube and the progress of the reaction was monitored by thin-layer chromatography. The resultant mixture was filtered through a Celite bed and the filtrate concentrated under reduced pressure to remove the ethanol using a roto-evaporator. The reaction mass was extracted with ethyl acetate followed by a brine wash and dried over anhydrous sodium sulfate. The organic layer was evaporated under reduced pressure to get a crude product which was purified by column chromatography using 60:120 silica gel and EtOAc-hexane as a eluent to get the desired triazole as a white solid. Single crystals suitable for X-ray diffraction studies were obtained by the slow evaporation method by using ethanol as the solvent.

#### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

| $C_{22}H_{18}FN_3O$                        |
|--------------------------------------------|
| 359.39                                     |
| Monoclinic, $P2_1/c$                       |
| 296                                        |
| 24.392 (3), 5.9336 (8), 12.3651 (16)       |
| 100.828 (8)                                |
| 1757.8 (4)                                 |
| 4                                          |
| Cu Ka                                      |
| 0.75                                       |
| $0.30 \times 0.27 \times 0.26$             |
|                                            |
| Bruker X8 Proteum                          |
| Multi-scan ( <i>SADABS</i> ; Bruker, 2013) |
| 0.805 0.828                                |
| 12946 2882 2093                            |
| 12910, 2002, 2095                          |
| 0.062                                      |
| 0.585                                      |
|                                            |
| 0.046, 0.140, 1.04                         |
| 2882                                       |
| 246                                        |
| H-atom parameters constrained              |
| 0.23, -0.16                                |
|                                            |

Computer programs: *APEX2* and *SAINT* (Bruker, 2013), *SHELXS97* and *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

## Acknowledgements

The authors are thankful to IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

#### References

Table 1

- Ashwini, N., Naveen, S., Rakesh, K. S., Lokanath, N. K. & Rangappa, K. S. (2016). *IUCrData*, **1**, x152458.
- Brockunier, L. L., Parmee, E. R., Ok, H. O., Candelore, M. R., Cascieri, M. A., Colwell, L. F. Jr, Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, J., Fisher, M. H. & Weber, A. E. (2000). *Bioorg. Med. Chem. Lett.* **10**, 2111– 2114.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duan, Y. C., Ma, Y. C., Zhang, E., Shi, X. J., Wang, M. M., Ye, X. W. & Liu, H. M. (2013). Eur. J. Med. Chem. 62, 11–19.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Somu, R. V., Boshoff, H., Qiao, C., Bennett, E. M., Barry, C. E. & Aldrich, C. C. (2006). J. Med. Chem. A49, 31–34.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# full crystallographic data

# *IUCrData* (2016). **1**, x161712 [https://doi.org/10.1107/S2414314616017120]

# 1-(2'-Ethoxy-4'-fluoro-[1,1'-biphenyl]-4-yl)-4-phenyl-1H-1,2,3-triazole

Maryam Gilandoust, S. Naveen, K. B. Harsha, N. K. Lokanath and K. S. Rangappa

1-(2'-Ethoxy-4'-fluoro-[1,1'-biphenyl]-4-yl)-4-phenyl-1H-1,2,3-triazole

Crystal data

C<sub>22</sub>H<sub>18</sub>FN<sub>3</sub>O  $M_r$  = 359,39 Monoclinic, P2<sub>1</sub>/c Hall symbol: -P 2ybc a = 24.392 (3) Å b = 5.9336 (8) Å c = 12.3651 (16) Å  $\beta$  = 100.828 (8)° V = 1757.8 (4) Å<sup>3</sup> Z = 4

# Data collection

Bruker X8 Proteum diffractometer Radiation source: Rotating Anode Graphite monochromator Detector resolution: 18.4 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2013)  $T_{\min} = 0.805$ ,  $T_{\max} = 0.828$ 

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.046$  $wR(F^2) = 0.140$ S = 1.042882 reflections 246 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 752  $D_x = 1.358 \text{ Mg m}^{-3}$ Cu Ka radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 2093 reflections  $\theta = 7.2-64.5^{\circ}$   $\mu = 0.75 \text{ mm}^{-1}$  T = 296 KRectangle, white  $0.30 \times 0.27 \times 0.26 \text{ mm}$ 

12946 measured reflections 2882 independent reflections 2093 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.062$  $\theta_{max} = 64.5^\circ, \ \theta_{min} = 7.2^\circ$  $h = -28 \rightarrow 24$  $k = -6 \rightarrow 6$  $l = -14 \rightarrow 14$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0787P)^2 + 0.0093P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.23$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.16$  e Å<sup>-3</sup> Extinction correction: SHELXL97 (Sheldrick, 2008), FC\*=KFC[1+0.001XFC<sup>2</sup>A<sup>3</sup>/SIN(2\Theta)]<sup>-1/4</sup> Extinction coefficient: 0.0014 (4)

# Special details

**Geometry**. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The observed criterion of  $F^2$  > 2sigma( $F^2$ ) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

|     | x           | У          | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|------------|---------------|-----------------------------|--|
| F1  | 0.05300 (5) | 0.8669 (2) | -0.28028 (9)  | 0.0837 (5)                  |  |
| 01  | 0.11703 (5) | 0.4164 (2) | 0.03622 (10)  | 0.0574 (5)                  |  |
| N1  | 0.31578 (6) | 0.5776 (2) | 0.40783 (12)  | 0.0492 (5)                  |  |
| N2  | 0.32422 (7) | 0.3614 (3) | 0.44199 (15)  | 0.0703 (7)                  |  |
| N3  | 0.35374 (8) | 0.3674 (3) | 0.54193 (15)  | 0.0696 (7)                  |  |
| C1  | 0.33979 (7) | 0.7201 (3) | 0.48777 (14)  | 0.0498 (7)                  |  |
| C2  | 0.36432 (7) | 0.5852 (3) | 0.57278 (15)  | 0.0487 (7)                  |  |
| C3  | 0.39749 (7) | 0.6463 (3) | 0.68042 (15)  | 0.0491 (7)                  |  |
| C4  | 0.42250 (8) | 0.8577 (3) | 0.69861 (16)  | 0.0575 (7)                  |  |
| C5  | 0.45458 (9) | 0.9110 (4) | 0.79905 (17)  | 0.0654 (8)                  |  |
| C6  | 0.46224 (9) | 0.7563 (4) | 0.88317 (17)  | 0.0699 (9)                  |  |
| C7  | 0.43748 (9) | 0.5467 (4) | 0.86671 (16)  | 0.0668 (8)                  |  |
| C8  | 0.40571 (8) | 0.4912 (4) | 0.76674 (15)  | 0.0574 (7)                  |  |
| C9  | 0.28234 (7) | 0.6239 (3) | 0.30256 (15)  | 0.0460 (6)                  |  |
| C10 | 0.27337 (8) | 0.4560 (3) | 0.22393 (16)  | 0.0543 (7)                  |  |
| C11 | 0.23700 (8) | 0.4932 (3) | 0.12618 (15)  | 0.0538 (7)                  |  |
| C12 | 0.20939 (7) | 0.6977 (3) | 0.10390 (14)  | 0.0460 (6)                  |  |
| C13 | 0.22149 (8) | 0.8679 (3) | 0.18198 (15)  | 0.0514 (7)                  |  |
| C14 | 0.25738 (8) | 0.8324 (3) | 0.28107 (16)  | 0.0519 (7)                  |  |
| C15 | 0.16868 (7) | 0.7360 (3) | -0.00005 (14) | 0.0467 (7)                  |  |
| C16 | 0.12240 (8) | 0.5936 (3) | -0.03169 (14) | 0.0477 (7)                  |  |
| C17 | 0.08372 (8) | 0.6410 (3) | -0.12668 (15) | 0.0551 (7)                  |  |
| C18 | 0.09231 (9) | 0.8241 (4) | -0.18843 (15) | 0.0583 (7)                  |  |
| C19 | 0.13686 (9) | 0.9642 (4) | -0.16214 (16) | 0.0619 (8)                  |  |
| C20 | 0.17441 (8) | 0.9187 (3) | -0.06678 (15) | 0.0545 (7)                  |  |
| C21 | 0.06654 (8) | 0.2878 (3) | 0.01397 (16)  | 0.0559 (7)                  |  |
| C22 | 0.06763 (9) | 0.1172 (4) | 0.10339 (17)  | 0.0650 (8)                  |  |
| H1  | 0.33970     | 0.87680    | 0.48550       | 0.0600*                     |  |
| H4  | 0.41740     | 0.96370    | 0.64220       | 0.0690*                     |  |
| Н5  | 0.47120     | 1.05240    | 0.81010       | 0.0780*                     |  |
| H6  | 0.48400     | 0.79250    | 0.95100       | 0.0840*                     |  |
| H7  | 0.44240     | 0.44250    | 0.92390       | 0.0800*                     |  |
| H8  | 0.38950     | 0.34910    | 0.75630       | 0.0690*                     |  |
| H10 | 0.29180     | 0.31860    | 0.23690       | 0.0650*                     |  |
| H11 | 0.23080     | 0.37900    | 0.07380       | 0.0650*                     |  |
| H13 | 0.20510     | 1.00880    | 0.16720       | 0.0620*                     |  |
| H14 | 0.26470     | 0.94760    | 0.33280       | 0.0620*                     |  |
| H17 | 0.05250     | 0.54980    | -0.14780      | 0.0660*                     |  |
| H19 | 0.14180     | 1.08580    | -0.20670      | 0.0740*                     |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# data reports

| H20<br>H21A  | 0.20480            | 1.01430            | -0.04640           | 0.0650*            |
|--------------|--------------------|--------------------|--------------------|--------------------|
| H21R<br>H21B | 0.03460            | 0.38660            | 0.01090            | 0.0670*            |
| H22A<br>H22B | 0.10050<br>0.03500 | 0.02550<br>0.02350 | 0.10880<br>0.08660 | 0.0980*<br>0.0980* |
| H22C         | 0.06810            | 0.19290            | 0.17210            | 0.0980*            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|-----------------|
| F1  | 0.0920 (10) | 0.0886 (10) | 0.0600 (8)  | 0.0091 (7)   | -0.0124 (7)  | 0.0138 (6)      |
| 01  | 0.0568 (9)  | 0.0542 (9)  | 0.0559 (8)  | -0.0108 (6)  | -0.0027 (6)  | 0.0035 (6)      |
| N1  | 0.0496 (9)  | 0.0376 (9)  | 0.0565 (9)  | -0.0019 (7)  | -0.0003 (7)  | 0.0027 (7)      |
| N2  | 0.0877 (13) | 0.0413 (11) | 0.0711 (12) | 0.0010 (9)   | -0.0126 (10) | 0.0049 (8)      |
| N3  | 0.0853 (13) | 0.0454 (12) | 0.0675 (11) | 0.0005 (9)   | -0.0126 (10) | 0.0052 (8)      |
| C1  | 0.0464 (11) | 0.0408 (12) | 0.0590 (11) | -0.0039 (8)  | 0.0018 (9)   | 0.0015 (9)      |
| C2  | 0.0451 (11) | 0.0430 (12) | 0.0566 (11) | 0.0010 (8)   | 0.0058 (9)   | 0.0049 (9)      |
| C3  | 0.0433 (11) | 0.0487 (12) | 0.0536 (11) | 0.0057 (9)   | 0.0046 (9)   | 0.0036 (9)      |
| C4  | 0.0575 (12) | 0.0529 (14) | 0.0580 (12) | 0.0006 (9)   | 0.0004 (10)  | 0.0045 (9)      |
| C5  | 0.0657 (14) | 0.0556 (14) | 0.0690 (14) | 0.0025 (10)  | -0.0023 (11) | -0.0058 (11)    |
| C6  | 0.0723 (15) | 0.0705 (17) | 0.0603 (13) | 0.0116 (12)  | -0.0045 (11) | -0.0079 (11)    |
| C7  | 0.0704 (14) | 0.0714 (17) | 0.0561 (12) | 0.0140 (12)  | 0.0052 (11)  | 0.0100 (11)     |
| C8  | 0.0569 (13) | 0.0531 (13) | 0.0606 (12) | 0.0046 (9)   | 0.0067 (10)  | 0.0064 (10)     |
| C9  | 0.0425 (10) | 0.0415 (11) | 0.0516 (10) | -0.0029 (8)  | 0.0026 (8)   | 0.0026 (8)      |
| C10 | 0.0547 (12) | 0.0430 (12) | 0.0627 (12) | 0.0061 (9)   | 0.0043 (10)  | -0.0028 (9)     |
| C11 | 0.0561 (12) | 0.0451 (12) | 0.0579 (11) | -0.0005 (9)  | 0.0050 (10)  | -0.0087 (9)     |
| C12 | 0.0470 (11) | 0.0407 (11) | 0.0501 (10) | -0.0034 (8)  | 0.0088 (8)   | -0.0010 (8)     |
| C13 | 0.0567 (12) | 0.0373 (11) | 0.0572 (11) | 0.0011 (8)   | 0.0028 (9)   | 0.0025 (8)      |
| C14 | 0.0557 (12) | 0.0418 (12) | 0.0541 (11) | -0.0035 (9)  | -0.0002 (9)  | -0.0041 (9)     |
| C15 | 0.0522 (12) | 0.0433 (12) | 0.0445 (10) | 0.0011 (8)   | 0.0088 (8)   | -0.0045 (8)     |
| C16 | 0.0554 (12) | 0.0430 (12) | 0.0432 (10) | 0.0023 (9)   | 0.0056 (9)   | -0.0031 (8)     |
| C17 | 0.0572 (12) | 0.0554 (13) | 0.0497 (11) | 0.0016 (10)  | 0.0026 (9)   | -0.0073 (9)     |
| C18 | 0.0662 (14) | 0.0624 (14) | 0.0425 (10) | 0.0133 (11)  | 0.0003 (10)  | 0.0013 (9)      |
| C19 | 0.0777 (15) | 0.0546 (14) | 0.0539 (12) | 0.0080 (11)  | 0.0140 (11)  | 0.0102 (10)     |
| C20 | 0.0584 (13) | 0.0490 (13) | 0.0572 (11) | -0.0002 (9)  | 0.0134 (10)  | -0.0005 (9)     |
| C21 | 0.0475 (12) | 0.0567 (13) | 0.0612 (12) | -0.0070 (9)  | 0.0042 (9)   | -0.0070 (10)    |
| C22 | 0.0634 (13) | 0.0575 (15) | 0.0721 (14) | -0.0083 (10) | 0.0074 (11)  | 0.0008 (10)     |

# Geometric parameters (Å, °)

| F1-C18 | 1.366 (2) | C15—C20 | 1.385 (3) |
|--------|-----------|---------|-----------|
| O1-C16 | 1.367 (2) | C16—C17 | 1.390 (3) |
| O1-C21 | 1.431 (2) | C17—C18 | 1.367 (3) |
| N1—N2  | 1.354 (2) | C18—C19 | 1.358 (3) |
| N1-C1  | 1.348 (2) | C19—C20 | 1.377 (3) |
| N1-C9  | 1.427 (2) | C21—C22 | 1.496 (3) |
| N2—N3  | 1.309 (3) | C1—H1   | 0.9300    |
| N3—C2  | 1.358 (3) | C4—H4   | 0.9300    |
|        |           |         |           |

| C1—C2                              | 1.367 (3)                 | С5—Н5                                                          | 0.9300      |
|------------------------------------|---------------------------|----------------------------------------------------------------|-------------|
| C2—C3                              | 1.467 (3)                 | С6—Н6                                                          | 0.9300      |
| C3—C4                              | 1.395 (3)                 | С7—Н7                                                          | 0.9300      |
| C3—C8                              | 1.395 (3)                 | C8—H8                                                          | 0.9300      |
| C4—C5                              | 1.375 (3)                 | C10—H10                                                        | 0.9300      |
| C5—C6                              | 1.374 (3)                 | C11—H11                                                        | 0.9300      |
| C6—C7                              | 1.381 (3)                 | C13—H13                                                        | 0.9300      |
| С7—С8                              | 1.370 (3)                 | C14—H14                                                        | 0.9300      |
| C9—C10                             | 1.381 (3)                 | C17—H17                                                        | 0.9300      |
| C9—C14                             | 1.382 (3)                 | C19—H19                                                        | 0.9300      |
| C10-C11                            | 1.376 (3)                 | C20—H20                                                        | 0.9300      |
| C11—C12                            | 1.390 (3)                 | C21—H21A                                                       | 0.9700      |
| C12—C13                            | 1.390 (3)                 | C21—H21B                                                       | 0.9700      |
| C12—C15                            | 1.487 (2)                 | C22—H22A                                                       | 0.9600      |
| C13—C14                            | 1.382 (3)                 | C22—H22B                                                       | 0.9600      |
| C15-C16                            | 1.406 (3)                 | C22—H22C                                                       | 0.9600      |
|                                    | 1.100 (5)                 |                                                                | 0.9000      |
| C16-01-C21                         | 118.06 (14)               | C15—C20—C19                                                    | 122,56 (18) |
| N2-N1-C1                           | 110.23 (15)               | 01-C21-C22                                                     | 108 89 (16) |
| $N_2 - N_1 - C_9$                  | 119.62 (14)               | N1-C1-H1                                                       | 127.00      |
| C1 - N1 - C9                       | 130.03(14)                | $C^2 - C^1 - H^1$                                              | 127.00      |
| N1—N2—N3                           | 107.05 (16)               | $C_3 - C_4 - H_4$                                              | 120.00      |
| N2 - N3 - C2                       | 109.44 (17)               | C5-C4-H4                                                       | 120.00      |
| N1 - C1 - C2                       | 105 29 (15)               | C4                                                             | 120.00      |
| N3 - C2 - C1                       | 107.98 (16)               | C6-C5-H5                                                       | 120.00      |
| $N_3 - C_2 - C_3$                  | 122.21 (17)               | C5-C6-H6                                                       | 120.00      |
| C1 - C2 - C3                       | 122.21(17)<br>129.81(17)  | C7-C6-H6                                                       | 120.00      |
| $C_{2}^{-}C_{3}^{-}C_{4}^{-}$      | 121.23 (16)               | С6С7Н7                                                         | 120.00      |
| $C_2 - C_3 - C_8$                  | 121.23(10)<br>120.43(17)  | C8 - C7 - H7                                                   | 120.00      |
| $C_2 = C_3 = C_8$                  | 120.43(17)<br>118.32(17)  | C3 - C8 - H8                                                   | 120.00      |
| $C_{4} = C_{5} = C_{6}$            | 120.68 (18)               | C7 - C8 - H8                                                   | 120.00      |
| $C_{4} - C_{5} - C_{6}$            | 120.30(10)                | C9-C10-H10                                                     | 120.00      |
| $C_{1} - C_{2} - C_{0}$            | 120.3(2)<br>119.8(2)      | $C_{11} - C_{10} - H_{10}$                                     | 120.00      |
| $C_{6} = C_{7} = C_{8}$            | 119.5(2)<br>120 5(2)      | C10-C11-H11                                                    | 119.00      |
| $C_{3} - C_{8} - C_{7}$            | 120.5(2)<br>120.5(2)      | C12— $C11$ — $H11$                                             | 119.00      |
| N1 - C9 - C10                      | 119.43 (16)               | C12 $C13$ $H13$                                                | 119.00      |
| N1 - C9 - C14                      | 120 22 (16)               | C14-C13-H13                                                    | 119.00      |
| C10-C9-C14                         | 120.22(10)<br>120.31(17)  | C9-C14-H14                                                     | 120.00      |
| $C_{10} - C_{10} - C_{11}$         | 119 58 (17)               | $C_{13}$ $C_{14}$ $H_{14}$                                     | 120.00      |
| $C_{10}$ $C_{11}$ $C_{12}$         | 119.50(17)<br>121.50(17)  | C16-C17-H17                                                    | 121.00      |
| $C_{11} = C_{12} = C_{13}$         | 121.30(17)<br>117.70(16)  | $C_{10} = C_{17} = H_{17}$                                     | 121.00      |
| $C_{11} = C_{12} = C_{15}$         | 121.66 (16)               | C18 C19 H19                                                    | 121.00      |
| $C_{11} = C_{12} = C_{15}$         | 121.00 (10)               | $C_{10} = C_{10} = H_{10}$                                     | 121.00      |
| $C_{13} = C_{12} = C_{13}$         | 120.04(10)<br>121.45(17)  | $C_{20} - C_{19} - H_{119}$                                    | 121.00      |
| $C_{12} - C_{13} - C_{14}$         | 121.43(17)<br>110 22 (17) | $C_{13} - C_{20} - H_{20}$                                     | 119.00      |
| $C_{12} = C_{14} = C_{15}$         | 117.32(17)<br>121.22(16)  | $O_{1} = O_{2} = O_{1} = O_{2}$                                | 119.00      |
| C12 - C13 - C10<br>C12 - C15 - C20 | 121.32(10)<br>120.50(16)  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$           | 110.00      |
| C12 - C13 - C20                    | 120.39 (10)               | $C_{1}$ $C_{21}$ $T_{121}$ $C_{22}$ $C_{21}$ $T_{21}$ $T_{21}$ | 110.00      |
| U10-U13-U20                        | 118.03 (10)               | U22—U21—H21A                                                   | 110.00      |

| 01 - C16 - C15             | 117 13 (15)            | C22_C21_H21B                        | 110.00       |
|----------------------------|------------------------|-------------------------------------|--------------|
| 01 - C16 - C17             | 123 12 (17)            | $H_{21} = C_{21} = H_{21} B$        | 108.00       |
| $C_{15}$ $C_{16}$ $C_{17}$ | 119 72 (16)            | $C_{21}$ $C_{22}$ $H_{22}$ $H_{22}$ | 109.00       |
| $C_{16}$ $C_{17}$ $C_{18}$ | 118.82 (18)            | $C_{21} = C_{22} = H_{22}B$         | 109.00       |
| F1 - C18 - C17             | 117.08 (19)            | $C_{21} = C_{22} = H_{22}C$         | 109.00       |
| F1 - C18 - C19             | 119.37 (19)            | $H_{22} = C_{22} = H_{22} = H_{22}$ | 109.00       |
| $C_{17}$ $C_{18}$ $C_{19}$ | 123 55 (19)            | $H_{22}A = C_{22} = H_{22}D$        | 109.00       |
| $C_{17} = C_{10} = C_{17}$ | 123.33(1))<br>117.3(2) | $H_{22}R = C_{22} = H_{22}C$        | 109.00       |
| 018-019-020                | 117.5 (2)              | 1122 <b>D</b>                       | 110.00       |
| C21—O1—C16—C15             | 171.58 (16)            | N1                                  | 173.95 (17)  |
| C21—O1—C16—C17             | -6.3 (2)               | C14—C9—C10—C11                      | -3.5 (3)     |
| C16—O1—C21—C22             | -175.08 (16)           | N1-C9-C14-C13                       | -174.70 (17) |
| C1—N1—N2—N3                | -0.7 (2)               | C10-C9-C14-C13                      | 2.8 (3)      |
| C9—N1—N2—N3                | -177.13 (16)           | C9—C10—C11—C12                      | 0.8 (3)      |
| N2—N1—C1—C2                | 0.9 (2)                | C10-C11-C12-C13                     | 2.7 (3)      |
| C9—N1—C1—C2                | 176.86 (17)            | C10-C11-C12-C15                     | -177.98 (17) |
| N2—N1—C9—C10               | -19.9 (2)              | C11—C12—C13—C14                     | -3.4 (3)     |
| N2—N1—C9—C14               | 157.63 (17)            | C15—C12—C13—C14                     | 177.19 (17)  |
| C1—N1—C9—C10               | 164.46 (18)            | C11—C12—C15—C16                     | 55.8 (2)     |
| C1—N1—C9—C14               | -18.1 (3)              | C11—C12—C15—C20                     | -126.4(2)    |
| N1—N2—N3—C2                | 0.2 (2)                | C13—C12—C15—C16                     | -124.8(2)    |
| N2—N3—C2—C1                | 0.4 (2)                | C13—C12—C15—C20                     | 53.0 (2)     |
| N2—N3—C2—C3                | -178.95 (17)           | C12—C13—C14—C9                      | 0.8 (3)      |
| N1—C1—C2—N3                | -0.8 (2)               | C12—C15—C16—O1                      | -1.1(3)      |
| N1—C1—C2—C3                | 178.51 (18)            | C12—C15—C16—C17                     | 176.85 (17)  |
| N3—C2—C3—C4                | 159.79 (19)            | C20-C15-C16-O1                      | -178.96 (16) |
| N3—C2—C3—C8                | -18.8 (3)              | C20-C15-C16-C17                     | -1.0 (3)     |
| C1—C2—C3—C4                | -19.4 (3)              | C12—C15—C20—C19                     | -178.16 (18) |
| C1—C2—C3—C8                | 162.00 (19)            | C16—C15—C20—C19                     | -0.3 (3)     |
| C2—C3—C4—C5                | -178.43 (18)           | O1—C16—C17—C18                      | 179.02 (18)  |
| C8—C3—C4—C5                | 0.2 (3)                | C15—C16—C17—C18                     | 1.2 (3)      |
| C2—C3—C8—C7                | 178.86 (18)            | C16-C17-C18-F1                      | -179.11 (17) |
| C4—C3—C8—C7                | 0.2 (3)                | C16—C17—C18—C19                     | -0.1 (3)     |
| C3—C4—C5—C6                | -0.3 (3)               | F1-C18-C19-C20                      | 177.84 (18)  |
| C4—C5—C6—C7                | -0.2 (3)               | C17—C18—C19—C20                     | -1.2 (3)     |
| C5—C6—C7—C8                | 0.6 (3)                | C18—C19—C20—C15                     | 1.4 (3)      |
| C6—C7—C8—C3                | -0.6 (3)               |                                     | ~ /          |
|                            |                        |                                     |              |