CrossMark

data reports

open 👌 access

Crystal structure of (7-fluoro-2-oxo-2*H*chromen-4-yl)methyl morpholine-4carbodithioate

B. R. Anitha,^a A. Thomas Gunaseelan,^b M. Vinduvahini,^c H. D. Kavitha^d and H. C. Devarajegowda^a*

^aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, ^bDepartment of Physics, St Philomena's College (Autonomous), Mysore 570 015, Karnataka, India, ^cDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, and ^dDepartment of Physics, Govt. Science College, Hassan 573 201, Karnataka, India. *Correspondence e-mail: devarajegowda@yahoo.com

Received 5 November 2015; accepted 8 November 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{15}H_{14}FNO_3S_2$, the 2*H*-chromene ring system is close to being planar (r.m.s. deviation = 0.024 Å) and the morpholine ring adopts a chair conformation. The dihedral angle between the 2*H*-chromene ring system and the morpholine ring (all atoms) is 88.21 (11)°. In the crystal, inversion dimers linked by pairs of very weak C-H···F hydrogen bonds generate $R_2^2(8)$ loops; C-H···O hydrogen bonds connect the dimers into [010] chains. Weak aromatic π - π stacking interactions between the pyran rings of the chromene systems [centroid–centroid distance = 3.6940 (16) Å] are also observed.

Keywords: crystal structure; 2*H*-chromene; morpholine-4-carbodithioate; ester; coumarin; hydrogen bonding.

CCDC reference: 1435782

1. Related literature

For applications of coumarins, see: Starčević *et al.* (2011); Lodeiro *et al.* (2010); Danko *et al.* (2011). For a related structure and further synthetic details, see: Kant *et al.* (2012).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{15}H_{14}FNO_{3}S_{2} \\ M_{r} = 339.39 \\ Triclinic, P\overline{1} \\ a = 7.0285 \ (3) \ \mathring{A} \\ b = 7.8845 \ (3) \ \mathring{A} \\ c = 14.8151 \ (6) \ \mathring{A} \\ \alpha = 74.779 \ (2)^{\circ} \\ \beta = 87.653 \ (2)^{\circ} \end{array}$

 $\gamma = 74.241 (2)^{\circ}$ $V = 762.01 (5) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.37 \text{ mm}^{-1}$ T = 296 K $0.24 \times 0.20 \times 0.12 \text{ mm}$

2.2. Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{min} = 0.770, T_{max} = 1.000$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.126$ S = 1.092683 reflections

 $\begin{array}{l} 199 \mbox{ parameters} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.87 \mbox{ e } \mbox{A}^{-3} \\ \Delta \rho_{min} = -1.15 \mbox{ e } \mbox{ A}^{-3} \end{array}$

10293 measured reflections

 $R_{\rm int} = 0.171$

2683 independent reflections

1352 reflections with $I > 2\sigma(I)$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14\cdots F1^{i}$ $C17-H17A\cdots O5^{ii}$	0.93	2.56	3.451 (3)	161
	0.97	2.45	3.346 (3)	153

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x, y + 1, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL2014*.

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for CCD X-ray facilities – X-ray data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7537).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Danko, M., Szabo, E. & Hrdlovic, P. (2011). Dyes Pigm. 90, 129-138.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104–o1105.

Lodeiro, C., Lippolis, V. & Mameli, M. (2010). Macrocycl. Chem. pp. 159-212.

- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Starčević, S., Brožić, P., Turk, S., Cesar, J., Lanišnik Rižner, T. & Gobec, S. (2011). J. Med. Chem. 54, 248–261.

supporting information

Acta Cryst. (2015). E71, o928–o929 [https://doi.org/10.1107/S2056989015021179]

Crystal structure of (7-fluoro-2-oxo-2*H*-chromen-4-yl)methyl morpholine-4carbodithioate

B. R. Anitha, A. Thomas Gunaseelan, M. Vinduvahini, H. D. Kavitha and H. C. Devarajegowda

S1. Comment

Coumarin derivatives have many uses as antibiotics, antiviral, antimicrobial and anticoagulants agents and as pH indicators in biological systems and medical sciences (Starčević *et al.*, 2011; Lodeiro *et al.*, 2010; Danko *et al.*, 2011).

The asymmetric unit of (7-fluoro-2-oxo-2*H*-chromen-4-yl)methyl morpholine-4-carbodithioate is shown in Fig. 1. The 2*H*-chromene ring systems (O4/C8–C16) is nearly planar, with a maximum deviation of 0.0591 (30) Å for atoms C8 and the morpholine ring adopts a chair conformation. The dihedral angle between best plane through the 2*H*-chromene(O4/C8–C16) ring system and the morpholine (N7\O6\C19–C22) ring is 88.21 (11)°. In the crystal, inversion-related C14—H14…F1 hydrogen bonds, forming inversion dimers with an R_2 ²(8) ring motif. In the crystal, weak C—H…O hydrogen bonds (Table 1) with π – π interactions between pyran rings of chromene (C11—C16) [shortest centroid–centroid distance = 3.6940 (16) Å] are observed (Figure 2).

S2. Experimental

The title compound was synthesized according to the reported method (Rajni Kant *et al.*, 2012). The compound is recrystallized from an ethanol-chloroform mixture as colourless needles. Yield = 77%. m.p.:413–415 K; IR (KBr, cm⁻¹): 997, 1271, 1423, and 1716. GCMS: m/e: 339. 1H NMR (400 MHz, CDCl₃, δ , p.p.m): d 7.40 (dd, 1H, Ar—H), 7.31 (q, 1H, Ar—H), 7.24 (dd, 1H, Ar—H), 6.58 (s, 1H, Ar—H), 4.68 (s, 2H, CH₂), 4.32 (s, 2H, CH₂), 3.90 (s, 2H, CH₂), 3.73 (s, 4H, CH₂). Mol. Formula: C15H14FNO3S2. Elemental analysis: C, 53.08; H, 4.16; N, 4.13 (calculated); C, 53.12; H, 4.12; N, 4.18(found).

S3. Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C —H = 0.96 Å for methyl H,and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.

(7-Fluoro-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithioate

Crystal data	
$C_{15}H_{14}FNO_3S_2$	b = 7.8845 (3) Å
$M_r = 339.39$	c = 14.8151 (6) Å
Triclinic, $P\overline{1}$	$\alpha = 74.779 \ (2)^{\circ}$
a = 7.0285 (3) Å	$\beta = 87.653 \ (2)^{\circ}$

Cell parameters from 2683 reflections

 $\theta = 1.4 - 25.0^{\circ}$

 $\mu = 0.37 \text{ mm}^{-1}$ T = 296 K

Plate, colourless

 $0.24 \times 0.20 \times 0.12 \text{ mm}$

 $\gamma = 74.241 (2)^{\circ}$ $V = 762.01 (5) \text{ Å}^{3}$ Z = 2 F(000) = 352 $D_x = 1.479 \text{ Mg m}^{-3}$ Melting point: 413 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker SMART CCD	10293 measured reflections
diffractometer	2683 independent reflections
Radiation source: fine-focus sealed tube	1352 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.171$
ω and φ scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Sheldrick, 2007)	$k = -9 \rightarrow 8$
$T_{\min} = 0.770, \ T_{\max} = 1.000$	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.0425P)^2]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
2683 reflections	$(\Delta/\sigma)_{ m max} = 0.001$
199 parameters	$\Delta ho_{ m max} = 0.87$ e Å $^{-3}$
0 restraints	$\Delta \rho_{\min} = -1.15 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates an	d isotropic or e	quivalent isotropic	displacement	parameters	$(Å^2)$
		1		P	(/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.9653 (3)	0.2708 (3)	0.50738 (15)	0.0859 (8)	
S2	0.29218 (11)	0.78840 (9)	0.14758 (6)	0.0461 (3)	
S3	-0.06235 (10)	0.70598 (9)	0.07735 (7)	0.0518 (3)	
04	0.4232 (3)	0.1520 (2)	0.38952 (16)	0.0527 (7)	
05	0.1885 (3)	0.0795 (2)	0.32697 (18)	0.0719 (9)	
06	0.4365 (3)	0.7772 (3)	-0.19559 (19)	0.0646 (8)	
N7	0.2427 (3)	0.7703 (3)	-0.0227 (2)	0.0398 (8)	
C8	0.2533 (5)	0.2013 (4)	0.3352 (3)	0.0501 (11)	
C9	0.1673 (4)	0.3931 (3)	0.2956 (2)	0.0439 (10)	
H9	0.0452	0.4306	0.2640	0.053*	
C10	0.2554 (4)	0.5204 (3)	0.3023 (2)	0.0388 (9)	
C11	0.4419 (4)	0.4640 (3)	0.3540 (2)	0.0391 (9)	
C12	0.5198 (4)	0.2788 (3)	0.3958 (2)	0.0428 (9)	
C13	0.5487 (5)	0.5827 (4)	0.3661 (2)	0.0506 (10)	
H13	0.4997	0.7074	0.3394	0.061*	

C14	0.7248 (5)	0.5187 (4)	0.4167 (3)	0.0581 (11)
H14	0.7959	0.5983	0.4237	0.070*
C15	0.7935 (5)	0.3342 (5)	0.4566 (3)	0.0576 (11)
C16	0.6958 (4)	0.2118 (4)	0.4476 (2)	0.0540 (11)
H16	0.7458	0.0876	0.4754	0.065*
C17	0.1662 (4)	0.7184 (3)	0.2536 (2)	0.0455 (10)
H17A	0.1744	0.7928	0.2953	0.055*
H17B	0.0276	0.7377	0.2387	0.055*
C18	0.1546 (4)	0.7529 (3)	0.0590 (2)	0.0358 (9)
C19	0.1388 (5)	0.7751 (4)	-0.1081 (3)	0.0513 (11)
H19A	0.0697	0.9005	-0.1387	0.062*
H19B	0.0410	0.7068	-0.0910	0.062*
C20	0.2771 (5)	0.6969 (4)	-0.1743 (3)	0.0647 (12)
H20A	0.3295	0.5666	-0.1473	0.078*
H20B	0.2047	0.7139	-0.2318	0.078*
C21	0.5445 (4)	0.7488 (4)	-0.1116 (3)	0.0568 (11)
H21A	0.6569	0.7993	-0.1262	0.068*
H21B	0.5948	0.6187	-0.0837	0.068*
C22	0.4230 (4)	0.8337 (4)	-0.0435 (3)	0.0468 (10)
H22A	0.3857	0.9654	-0.0683	0.056*
H22B	0.5005	0.8042	0.0140	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0668 (14)	0.1122 (16)	0.077 (2)	-0.0272 (13)	-0.0263 (14)	-0.0140 (14)
S2	0.0509 (5)	0.0439 (4)	0.0471 (9)	-0.0193 (4)	-0.0053 (5)	-0.0104 (4)
S3	0.0364 (5)	0.0581 (5)	0.0627 (9)	-0.0154 (4)	-0.0008(5)	-0.0158 (5)
O4	0.0643 (14)	0.0439 (11)	0.049 (2)	-0.0201 (11)	-0.0109 (13)	-0.0038 (11)
O5	0.0950 (19)	0.0548 (12)	0.077 (2)	-0.0418 (14)	-0.0197 (16)	-0.0102 (12)
O6	0.0576 (16)	0.1042 (16)	0.047 (2)	-0.0387 (13)	0.0110 (14)	-0.0294 (15)
N7	0.0360 (15)	0.0413 (13)	0.047 (3)	-0.0110 (11)	-0.0068 (14)	-0.0177 (14)
C8	0.063 (2)	0.0512 (18)	0.043 (3)	-0.0255 (18)	0.0008 (19)	-0.0129 (17)
C9	0.0493 (18)	0.0480 (16)	0.037 (3)	-0.0183 (14)	-0.0009 (17)	-0.0094 (15)
C10	0.0443 (17)	0.0392 (14)	0.034 (3)	-0.0112 (13)	0.0029 (16)	-0.0113 (14)
C11	0.0480 (18)	0.0463 (16)	0.027 (3)	-0.0158 (14)	0.0042 (17)	-0.0140 (15)
C12	0.0501 (19)	0.0433 (16)	0.038 (3)	-0.0154 (15)	0.0008 (17)	-0.0130 (15)
C13	0.059 (2)	0.0541 (17)	0.044 (3)	-0.0217 (16)	0.0030 (19)	-0.0158 (17)
C14	0.060(2)	0.076 (2)	0.054 (3)	-0.0350 (19)	-0.001 (2)	-0.025 (2)
C15	0.048 (2)	0.081 (2)	0.046 (3)	-0.0198 (19)	-0.006(2)	-0.019 (2)
C16	0.054 (2)	0.0603 (19)	0.041 (3)	-0.0108 (17)	-0.001(2)	-0.0068 (18)
C17	0.0507 (19)	0.0425 (14)	0.047 (3)	-0.0081 (14)	-0.0015 (18)	-0.0221 (15)
C18	0.0373 (16)	0.0292 (12)	0.040 (3)	-0.0037 (12)	-0.0061 (16)	-0.0115 (14)
C19	0.0430 (19)	0.0588 (18)	0.057 (3)	-0.0119 (16)	-0.0049 (19)	-0.0240 (18)
C20	0.055 (2)	0.087 (2)	0.067 (4)	-0.030 (2)	0.001 (2)	-0.036 (2)
C21	0.0397 (19)	0.0622 (19)	0.074 (4)	-0.0163 (16)	0.000 (2)	-0.024 (2)
C22	0.0393 (17)	0.0498 (16)	0.058 (3)	-0.0168 (14)	-0.0002(18)	-0.0195 (17)

Geometric parameters (Å, °)

F1—C15	1.350 (3)	C12—C16	1.382 (4)	
S2—C18	1.783 (3)	C13—C14	1.373 (4)	
S2—C17	1.804 (3)	C13—H13	0.9300	
S3—C18	1.660 (3)	C14—C15	1.374 (4)	
O4—C8	1.374 (3)	C14—H14	0.9300	
O4—C12	1.375 (3)	C15—C16	1.362 (4)	
O5—C8	1.203 (3)	C16—H16	0.9300	
O6—C20	1.417 (3)	C17—H17A	0.9700	
O6—C21	1.419 (4)	C17—H17B	0.9700	
N7—C18	1.329 (4)	C19—C20	1.484 (4)	
N7—C19	1.473 (4)	C19—H19A	0.9700	
N7—C22	1.478 (3)	C19—H19B	0.9700	
C8—C9	1.437 (4)	C20—H20A	0.9700	
C9—C10	1.340 (3)	C20—H20B	0.9700	
С9—Н9	0.9300	C21—C22	1.472 (4)	
C10—C11	1.446 (4)	C21—H21A	0.9700	
C10—C17	1.504 (3)	C21—H21B	0.9700	
C11—C12	1.390 (3)	C22—H22A	0.9700	
C11—C13	1.398 (4)	C22—H22B	0.9700	
C18—S2—C17	104.01 (14)	C10-C17-S2	111.30 (19)	
C8—O4—C12	121.2 (2)	C10—C17—H17A	109.4	
C20—O6—C21	108.9 (3)	S2—C17—H17A	109.4	
C18—N7—C19	121.1 (2)	C10—C17—H17B	109.4	
C18—N7—C22	124.6 (3)	S2—C17—H17B	109.4	
C19—N7—C22	112.4 (3)	H17A—C17—H17B	108.0	
O5—C8—O4	116.7 (3)	N7—C18—S3	124.0 (3)	
O5—C8—C9	126.3 (3)	N7—C18—S2	113.0 (2)	
O4—C8—C9	117.0 (3)	S3—C18—S2	123.0 (2)	
С10—С9—С8	122.8 (3)	N7—C19—C20	111.8 (3)	
С10—С9—Н9	118.6	N7—C19—H19A	109.2	
С8—С9—Н9	118.6	C20—C19—H19A	109.2	
C9—C10—C11	119.0 (3)	N7—C19—H19B	109.2	
C9—C10—C17	120.7 (3)	C20—C19—H19B	109.2	
C11—C10—C17	120.3 (2)	H19A—C19—H19B	107.9	
C12—C11—C13	117.5 (3)	O6—C20—C19	112.9 (3)	
C12-C11-C10	117.9 (2)	O6—C20—H20A	109.0	
C13—C11—C10	124.6 (3)	C19—C20—H20A	109.0	
O4—C12—C16	116.1 (2)	O6—C20—H20B	109.0	
O4—C12—C11	121.7 (3)	C19—C20—H20B	109.0	
C16—C12—C11	122.1 (3)	H20A—C20—H20B	107.8	
C14—C13—C11	121.2 (3)	O6—C21—C22	112.4 (3)	
C14—C13—H13	119.4	O6—C21—H21A	109.1	
С11—С13—Н13	119.4	C22—C21—H21A	109.1	
C15—C14—C13	118.5 (3)	O6—C21—H21B	109.1	
C15—C14—H14	120.7	C22—C21—H21B	109.1	

C13—C14—H14	120.7	H21A—C21—H21B	107.9
F1-C15-C16	118.2 (3)	C21—C22—N7	111.6 (2)
F1-C15-C14	118.8 (3)	C21—C22—H22A	109.3
C16—C15—C14	123.0 (3)	N7—C22—H22A	109.3
C15—C16—C12	117.6 (3)	C21—C22—H22B	109.3
C15—C16—H16	121.2	N7—C22—H22B	109.3
C12-C16-H16	121.2	H22A—C22—H22B	108.0
C12—O4—C8—O5	173.5 (3)	F1-C15-C16-C12	179.7 (3)
C12—O4—C8—C9	-8.1 (5)	C14—C15—C16—C12	0.0 (6)
O5—C8—C9—C10	-175.2 (3)	O4—C12—C16—C15	-178.9 (3)
O4—C8—C9—C10	6.6 (5)	C11—C12—C16—C15	-0.3 (5)
C8—C9—C10—C11	-2.1 (5)	C9—C10—C17—S2	-101.8 (3)
C8—C9—C10—C17	175.5 (3)	C11—C10—C17—S2	75.8 (4)
C9-C10-C11-C12	-0.9 (5)	C18—S2—C17—C10	92.2 (2)
C17—C10—C11—C12	-178.5 (3)	C19—N7—C18—S3	9.0 (3)
C9—C10—C11—C13	179.9 (3)	C22—N7—C18—S3	172.21 (18)
C17—C10—C11—C13	2.3 (6)	C19—N7—C18—S2	-170.17 (18)
C8—O4—C12—C16	-176.0 (3)	C22—N7—C18—S2	-7.0 (3)
C8—O4—C12—C11	5.4 (5)	C17—S2—C18—N7	-170.21 (18)
C13—C11—C12—O4	178.5 (3)	C17—S2—C18—S3	10.60 (18)
C10-C11-C12-O4	-0.7 (5)	C18—N7—C19—C20	-149.2 (3)
C13-C11-C12-C16	0.1 (5)	C22—N7—C19—C20	45.7 (3)
C10-C11-C12-C16	-179.2 (3)	C21—O6—C20—C19	59.9 (4)
C12—C11—C13—C14	0.5 (5)	N7-C19-C20-O6	-53.0 (4)
C10-C11-C13-C14	179.7 (3)	C20—O6—C21—C22	-61.1 (3)
C11—C13—C14—C15	-0.9 (6)	O6—C21—C22—N7	55.4 (4)
C13—C14—C15—F1	-179.1 (3)	C18—N7—C22—C21	148.5 (3)
C13—C14—C15—C16	0.6 (6)	C19—N7—C22—C21	-47.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C14— $H14$ ···F1 ⁱ	0.93	2.56	3.451 (3)	161
C17—H17A····O5 ⁱⁱ	0.97	2.45	3.346 (3)	153

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y+1, z.