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Summary. — The self-similar collapse of three point vortices moving on the surface
of a sphere of radius R is analysed and compared with known results from the
corresponding planar problem described in (AREF H., Motion of three vortices, Phys.
Fluids, 22 (1979) 393-400; NOVIKOV E. A., Dynamics and statistics of a system of
vortices, Sov. Phys. JETP, 41 (1975) 937-943; NOVIKOV E. A. and SEDOV Y., Vortex
collapse, Sov. Phys. JETP, 50 (1979) 297-301; SYNGE J. L., On the motion of three
vortices, Can. J. Math., 1 (1949) 257-270). An important conserved quantity is the
center of vorticity vector c4 (!i41

3 Gi xi )O!i41
3 Gi , which must have length R for

collapse to occur. Collapse trajectories occur in pairs, called “partner states”, which
have two distinct collapse times t2Et1. The collapse time that is achieved for a
given configuration depends on the sign of the parallelpiped volume formed by the
vortex position vectors, hence depends on whether the vortices (G1 , G2 , G3 ) are
arranged in a right-handed or left-handed sense. From a given collapsing
configuration, one can obtain the partner state by reversing the signs of the Gi’s, or,
alternatively, by using a discrete symmetry associated with the initial configuration
that leaves all relative distances unchanged, but reverses the sign of the
parallelepiped volume. In the plane, there is only one collapse time associated with a
given configuration—the partner state is one that expands self-similarly (AREF H.,
Motion of three vortices, Phys. Fluids, 22 (1979) 393-400). Formulas for the
collapsing trajectories are derived and compared with the planar formulas. The
collapse trajectories are then projected onto the stereographic plane where a new
Hamiltonian system is derived governing the vortex motion. In this projected plane,
the solutions are not self-similar. In the last section, the collapse process is studied
using tri-linear coordinates, which reduces the system to a planar one.

PACS 92.10.Lq – Turbulence and diffusion.
PACS 47.32 – Rotational flow and vorticity.
PACS 47.32.Cc – Vortex dynamics.
PACS 01.30.Cc – Conference proceedings.
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1. – Introduction

When three point vortices of differing signs move on the surface of a sphere, it is
possible for them to collapse self-similarly in finite time [1]. The corresponding collapse
process for planar point vortices has been well studied [2-5], yet despite the fact that
the spherical problem is more geophysically relevant [6, 7], spherical collapse has only
recently been studied [1]. In this paper, we describe the collapse process in detail, and
contrast it with the planar collapse process for which much more is known. Aside from
its inherent mathematical interest, there is recent evidence [8, 9] that three vortex
collapse in the plane and on the sphere is the most frequent interaction for finite-sized
vortices in dilute 2D turbulence simulations. In general terms, the motion of vortices on
a sphere is important if one wants to understand the large scale mixing and dynamics
associated with atmospheric and oceanographic structures that evolve over large
distances and have long lifetimes. In this case, the curvature of the Earth becomes
important and one can no longer use the tangent plane approximation. There are, of
course, other important physical mechanisms at work in most settings of this type,
including rotation, diffusion, and vertical density stratification, but we will limit
ourselves here to include only the effect of the single layer spherical geometry on the
collapse process.

The equations of motion for three vortices moving either in the plane or on the
surface of a sphere of radius R are [1]

x
.

i4 !
jc i

3 Gj

2p

nj3 (xi2xj )

Vxi2xj V
2

,

where Gj is the vortex strength, while nj is the unit normal vector to the surface at the
vortex location xj. For the planar problem [2, 3, 5], nj4ez , where ez is the constant unit
normal to the plane and xjf (xj , yj ) is the vortex position. In this case, since the normal
vector is constant, one need not include it and the equations are additionally simplified
by using complex notation zj4xj1 iyj , as is well known [10, 11]. On a sphere of radius
R, the normal vector is given by nj4xj /R, with the position vector xjf (xj , yj , zj )
pointing from the center of the sphere to the vortex Gj . On the sphere, one also has the
constraint Vxj V4R. This unified way of writing either the planar or spherical system
mimicks the Biot-Savart law [11].

In spherical coordinates (see fig. 1), the equations of motion become [12-14, 1]

u
.

i42
1

4pR 2
!
jc i

3 Gj sin (u j ) sin (f i2f j )

12cos (g ij )
,

sin (u i ) f
.

i4
1

4pR 2
!
jc i

3 Gj (sin (u i ) cos (u j )2cos (u i ) sin (u j ) cos (f i2f j ) )

12cos (g ij )
,

where cos (g ij )fcos (u i ) cos (u j )1sin (u i ) sin (u j ) cos (f i2f j ). Note that the denom-
inator is the chord distance between two vortices R 2 (12cos (g ij ) )4 l 2

ijfVxi2xj V
2.

This system is in Hamiltonian form, with the Hamiltonian given by

H 4
1

4pR 2
!
iE j

Gi Gj ln (l 2
ij ) .(1.1)
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Fig. 1. – Defining features of the three vortex problem. Location of vortex Gi in spherical
coordinates (left); vortex triangle (right).

The canonically conjugate variables are PifkNGi Ncos (u i ) and QifkNGi Nf i giving
rise to the standard equations

P
.

i4
¯ H

¯Qi

,

Q
.

i42
¯ H

¯Pi

.

In addition to the Hamiltonian which represents the interaction energy of the vortices,
one has the following quantities expressing the conservation of momentum:

Q4
1

R
!
i41

3

Gi xif!
i41

3

Gi sin (u i ) cos (f i ) ,

P4
1

R
!
i41

3

Gi yif!
i41

3

Gi sin (u i ) sin (f i ) ,

S4
1

R
!
i41

3

Gi zif!
i41

3

Gi cos (u i ) .

The Poisson bracket algebra for the sphere was introduced in [1], where it was shown
that the three-vortex problem on the sphere is integrable. It follows from the
conservation of Q, P and S that the center of vorticity vector

c4 g!
i41

3

Gi xihOs(1.2)
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is conserved, with s4!i41
3 Gic0 being the total vorticity. Since it is always possible to

orient the axes so that the vector c is aligned with the z-axis, we will use this
convention. In addition, the vortices must collapse in finite time at the tip of the center
of vorticity vector, so we have the condition

VcV4R .(1.3)

Our analysis is based on the equations for the chord lengths (l12 , l23 , l31 ):

d(l 2
12 )

dt
4

G3 V

pR
k 1

l 2
23

2
1

l 2
31
l ,(1.4)

d(l 2
23 )

dt
4

G1 V

pR
k 1

l 2
31

2
1

l 2
12
l ,(1.5)

d(l 2
31 )

dt
4

G2 V

pR
k 1

l 2
12

2
1

l 2
23
l ,(1.6)

where V is the volume of the parallelepiped formed by the vectors (x1 , x2 , x3 ), i.e.

V4x1 Q (x23x3 ) .

The vector normal to the triangle plane is given by

n4 (x12x2 )3 (x22x3 )

4x13x21x23x31x33x1 .

Written in terms of the chord lengths, the volume formula is

Vf6
1

2
(16R 2 A 22 l 2

12 l 2
23 l 2

31 )1/2 ,

where A is the triangle area

Af6
1

4
(2 l 2

12 l 2
2312 l 2

23 l 2
3112 l 2

31 l 2
122 l 4

122 l 4
232 l 4

31 )1/2 .

The 6 sign depends on whether the three vortices form a right-handed (1) or
left-handed (2) system. The volume V can also be written in terms of A , R, and a,
where a is the radius of the circle in which the vortex triangle is embedded:

V462ARo12
a 2

R 2
.

In the limiting case, where a/R is small, it is easy to see that the leading term is given
by VA2AR, in which case our equations agree with the planar equations studied by
Aref and Synge [2, 5]. In this limit therefore, the vortex motion should correspond to
the planar motion. Hence, we would expect that (asymptotically) near the collapse time,
the dominant behavior should agree with the planar problem, which is known to be of
power law form [2].
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Two useful alternative ways of writing the volume V are

V4c Qn4xi Qn

which gives a simple constraint:

(c2xi ) Qn40 .(1.7)

This condition states that the vector (c2xi ) must lie in the plane of the vortex
triangle.

Equations (1.4), (1.5), (1.6) have the two invariants:

C14G1 G2 l 2
121G2 G3 l 2

231G3 G1 l 2
31f0 ,(1.8)

C24 (l 2
12 )1/G3 Q (l 2

23 )1/G1 Q (l 2
31 )1/G2(1.9)

which arise from the conservation of momentum and energy. The first invariant is zero
due to the fact that the chord lengths vanish at collapse. This implies that the vortex
strengths cannot all have the same sign, so we use the convention G1D0, G2D0, G3E
0. A useful formula is given by

VcV24R 22C1 /s(10)

from which we conclude C140 ` VcV4R, assuming sc0.

2. – Collapse process

We start with the ansatz that the relative distances between vortices remain
constant throughout their motion:

l 2
124l 1 l 2

31 ,(2.1)

l 2
234l 2 l 2

31 ,(2.2)

where

l 14 g l12 (0)

l31 (0)
h2

,

l 24 g l23 (0)

l31 (0)
h2

.

The second conserved quantity, C2 yields

(l 2
31 (t) )!1/Gi4const

implying

!
i41

3 1

Gi

40 .
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We can now state the necessary and sufficient conditions for spherical collapse to
occur:

1. VcV4R.

2. !
i41

3 1

Gi

40.

3. The vortices are not in equilibrium.

The proof is given in [1], where all equilibrium configurations have also been
categorized. Their nonlinear stability properties are studied in [15]. There are two
other observations one can make regarding the first two conditions. Using these
conditions together, it is possible to prove that neither equilateral, nor isosceles
triangles can collapse, hence l12c l23c l31 . Furthermore, if we make the assumption
that G1 , G2D0, G3E0, then l12 , which is the chord length joining the two vortices of
like sign, must have length lying in between the other two.

To understand the collapse process further, and in particular why there are two
distinct collapse times (which we denote 0Et2Et1EQ) associated with a set of
initial conditions to (1.4), (1.5), (1.6), we make use of the constraint (1.7). Figure 2 shows
the relevant geometry, with the tip of the c vector, denoted C *, lying at the North Pole.
The vortex plane, denoted P, always intersects this point, hence the vortices lie on the
circles formed by intersecting the plane with the sphere. Our first goal is to compute
the angle between c and n, which we denote a(t). Hence,

c Qn4VcV VnV cos (a)4V .

Since VnV42NANF0 and VcV4R, we have

cos (a)4V/2NANR46k12a 2 /R 2 .(2.3)

Fig. 2. – C * lies on sphere surface and on the vortex plane P (left); family of intersections of P with
the sphere. Vortices are squeezed to the North Pole as P becomes tangent there (right).
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Differentiating this formula gives

a
.
4

1

R 2 sin (2a)

d

dt
(a 2 ) ,

which, after using some identities, gives

a
.
4

r

sin (2a)

G2 V

pR
g 1

l 2
12

2
1

l 2
23
h ,(2.4)

where

r4
l 1 l 2

R 2 [2(l 11l 2 )2 (l 12l 2 )221]
D0 .

From (2.3) we can infer that

– VF0 ¨ 0EaG (p/2 ) ¨ sin (2a)F0,

– VE0 ¨ (p/2 )EaEp ¨ sin (2a)E0.

Thus, from (2.4) it is clear that

– a
.
D0 if l12E l23 ,

– a
.
E0 if l12D l23 .

Suppose we have the collapsing configuration shown in fig. 3(a), which we call
configuration (I). It is set up so that G1 , G2D0, G3E0, l12D l23 and V(0)D0. Then by
(2.4), we have a

.
E0 and hence aI0 as tKt2. To get the partner state associated with

configuration (I), consider the same set-up, but with the signs of the G’s reversed.
Because it is the partner state associated with (I), we label this configuration ( Ip ). We
have a

.
D0, hence aHp as tKt1. The partner states are related to each other by the

opposite directions in which the plane P swings in order to become tangent to the
sphere at the North Pole, thereby squeezing the vortices to their ultimate collapse.
Another way of achieving the partner state related to (I) is by using the discrete
symmetries inherent in the problem [1]. Consider a configuration (II) obtained by
reversing the signs of the x and/or y coordinates of configuration (I). All the chord
lengths lij remain as in (I), as do the vortex strengths G1 , G2D0, G3E0. Once again,
a
.
E0, hence aI0 as tKt1. Then, configuration ( IIp ) is obtained by reversing the

signs of the G’s, giving a
.
D0, aHp as tKt2.

The collapse times are obtained analytically by using (1.4), (1.5), (1.6) along with
(2.1),(2.2) to get a scalar equation for l 2

31 :

d

dt
(l 2

31 )4
G1

pR
g l 121

l 1 l 2
h V/l 2

31

4
G2

pR
g l 22l 1

l 1 l 2
h V/l 2

31

4
G3

pR
g 12l 2

l 1 l 2
h V/l 2

31 ,
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Fig. 3. – Partner states (a) I, (b) Ip , (c) II, (d) IIp. Configurations I and IIp collapse at time t2,
while Ip and II collapse at time t1. In all cases the initial lengths are the same.

which gives a relationship to be satisfied among the vortex strengths and the initial
conditions:

G1 (l 121)4G2 (l 22l 1 )4G3 (12l 2 ) .

These conditions can be derived from the previous conditions (1.8) and (1.9).
After some algebra (see [1] for more details), one can derive the solution

lij (t)4 lij (0) g11 t

tZ

h1/2g12 t

t6 h1/2

,(2.5)

where

t64
4pR 2 kg

G2 N(l 12l 2 )N
(16b)D0 ,

t1Dt2
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with

g42(l 11l 2 )2 (l 12l 2 )221,

b4k12rl 2
13 (0) ,

r4l 1 l 2 /R 2 g .

Near collision, (2.5) has the asymptotic expansion

lij (t)AA Q g12 t

t6 h1/2

1B Q g12 t

t6 h3/2

1O gg12 t

t6 h5/2h
with constants A and B given in [1]. The planar result of Aref [2] gives the exact
collapse formula

lij (t)4 lij (0) Q g12 t

t
h1/2

.

Another important quantity is the vortex azimuthal velocity, f
.

ifv i , whose formula is
given by

v i4
v p2 (Gj1Gk ) /8pR 2

11 (Gj Gk l 2
jk /4Gi R 2 s)

,

where v p is the planar angular velocity given by

v p4
1

4p
!

i , j41

3 Gi1Gj

l 2
ij

.

See [1] for more details.
Hence, there are three differences between the spherical collapse process and the

planar collapse process:

– The spherical collapse has two distinct collapse times, whereas the planar
collapse has one. In the plane, the analogue of the partner state is a self-similar
expanding state [2] which cannot occur on the sphere because of the extra length scale
R which puts an upper bound on the maximum chord length.

– The exact formulas for chord lengths are different for the sphere and the
plane, however the leading term near collapse agrees with the planar result, with
higher-order corrections due to the spherical geometry.

– In the plane, the vortices all rotate with the same angular velocity as they
collapse, whereas on the sphere, each has a distinct angular velocity.

3. – Stereographic projection

The change of variable

ri4 tan (u i /2 )

results in a stereographic projection of the vortex Gi onto the extended complex plane
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Fig. 4. – Stereographic projection of three vortices.

C which is tangent to the sphere at the North Pole, as shown in fig. 4. This point of
tangency is at the origin of C, while the South Pole maps to the point at infinity. An
important aspect of the stereographic projection is that it is conformal [16] and vector
fields on the sphere are mapped in a one-to-one fashion to vector fields on C.

By a straightforward computation, one gets the new Hamiltonian in C as

H 4
1

8pR 2
!
iE j

Gi Gj log u ri
21rj

222ri rj cos (f i2f j )

(11ri
2 )(11rj

2 )
v(3.1)

with the new equations of motion

Gi
d

dt
(ri

2 )42(11ri
2 )2 ¯ H

¯f i

,

Gi
df i

dt
4 (11ri

2 )2 ¯ H

¯ri
2

,

where (ri , f i ) are the polar coordinates of the vortex Gi in the complex plane C.
Our main goal in this section is to show that the collision process in the

stereographic plane is not self-similar. To prove this, we will show that the ratios r12 /r23

and r12 /r31 are functions of time, where rij is the distance between vortices Gi and Gj in
C. It is straightforward to show that

r 2
ij4

l 2
ij

4R 2 [11 (Gj Gk /4R 2 sGi ) l 2
jk ][11 (Gk Gi /4R 2 sGj ) l 2

ki ]
,
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where ic jck, i , j , k41, R , 3. Then we can write l12 and l23 in terms of l31 to get

r 2
124

l 1

4R 2

l 2
31

(11a 1 l 2
31 )(11a 2 l 2

31 )
,

r 2
234

l 2

4R 2

l 2
31

(11a 2 l 2
31 )(11a 3 l 2

31 )
,

r 2
314

1

4R 2

l 2
31

(11a 1 l 2
31 )(11a 3 l 2

31 )
,

where

a 14
G2 G3 l 2

4R 2 sG1

,

a 24
G3 G1

4R 2 sG2

,

a 34
G1 G2 l 1

4R 2 sG3

.

From these formulas, it is clear that

– rijK0 as tKt6,

– r12 /r23 and r12 /r31 are functions of time unless a 14a 24a 3 , which is not
possible. This shows that the collapse is not self-similar.

We end this section with several remarks:

1. As shown in the previous section, the angle a between c and n is not constant,
which is the reason the collapse formulas on the projected C plane are not self-similar.

2. The Hamiltonian system (3.1) is useful for several other purposes as well. In
particular, in studying the streamline topology for the N-vortex problem on the sphere,
it is advantageous to study the projected streamlines on the C plane. This is currently
being pursued [17].

4. – Tri-linear phase plane

In the papers of Aref [2] and Synge [5], special tri-linear coordinates were
introduced in order to reduce the system (1.4), (1.5), (1.6) to a planar one. For the
spherical problem, these same coordinates were used in [1] and we refer the reader to
these papers for more detailed discussions. For our purposes, we are interested only in
using the coordinates to shed light on the collapse process, hence we introduce the
following coordinates based on the chord lengths:

b14 l 2
23 /4G1 R 2 , b24 l 2

31 /4G2 R 2 , b34 l 2
12 /4G3 R 2 ,
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so that we have the following identity:

b11b21b34C1 /4R 2 (G1 G2 G3 )40 .

Then, one can eliminate the coordinate b3 in favor of b1 and b2, and based on the
conserved quantity C1 , one gets

g b1

b11b2
h1/G1

Q g b2

b11b2
h1/G2

4const ,

which implies that b1 /b24const . Because of the finite-size sphere radius, only a
bounded region of the (b1 , b2 )-plane is accessible, the region defined by the condition
V 2F0, which one can write as

2(G1 G2 b1 b21G2 G3 b2 b31G3 G1 b3 b1 )2G1
2 b1

22G2
2 b2

22G3
2 b3

2F4G1 G2 G3 b1 b2 b3 .

It is useful to think of the phase plane as having two faces, the front corresponding to
VD0 and the back corresponding to VE0, with the boundary joining the two being
V40 which corresponds to great circle states. Figure 5 shows the (b1 , b2 ) phase plane,
with each collapsing trajectory lying on a ray going through the origin. For
definiteness, we show the case G14G241, G3421/2. The partner states associated
with a given collapsing configuration are shown on the diagram. The partner states
shown in fig. 3(a) and (c) have identical lij’s and G’s, therefore are located by the same
point P. However, for case (a) we have VD0, while for case (c) we have VE0. In both

Fig. 5. – Phase plane showing the partner collapsing states. Both states start off at P, but on
opposite faces. The one on the front face collapses directly towards the origin, the other evolves
first to Q on the V40 curve, before collapsing to the origin on the front face.
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cases, the sign of V
.

is the same. For case (a), the trajectory evolves straight to the
origin along the ray (on the front face VD0), collapsing at time t2. State (c) evolves
away from the origin (on the back face VE0) until it hits the V40 curve,
corresponding to a great circle configuration, then evolves to the origin on the front
face VD0, collapsing at the later time t1Dt2. The difference between this process
and the corresponding one in the plane, described in [2], is that for the planar problem,
there is nothing to bound the coordinates from above, hence the accessible region is
unbounded. As a result, the trajectory analogous to state (c) continues to travel away
from the origin on the same ray, representing a self-similarly expanding state. An
analogous explanation can be given for the partner states shown in fig. 3(b) and (d).
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