

Abstract— Code smells are the fragments in the source code that

indicates deeper problems in the underlying software design.

These code smells can hinder software evolution and maintenance.

Out of different code smell types, the God Class (GC) code smell is

one of the many important code smells that directly affects the

software evolution and maintenance. The GC is commonly defined

as a much larger class in systems that either know too much or do

too much as compared to other classes in the system. God Classes

are generally accidentally created overtime during software

evolution because of the incremental addition of functionalities to

it. Generally, a GC indicates a bad design choice and it must be

detected and mitigated in order to enhance the quality of the

underlying software. However, sometimes the presence of a GC is

also considered a good design choice, especially in compiler design,

interpreter design and parser implementation. This makes the

developer’s feedback important for the correct classification of a

class as a GC or a normal class. Therefore, this paper proposes a

new approach that detects and proposes refactoring opportunities

for GC code smell. The proposed approach makes use of different

code metrics in combination along with utilizing user feedback as

an important aspect while correctly identifying the GC code smell.

The proposed approach that considers combined use of code

metrics, is based on two newly proposed code metrics in this paper.

The first newly proposed metric is a new approach of measuring

the connectivity of a given class with other classes in the system

(also termed as coupling). The second newly proposed code metric

is proposed to measure the extent to which a given classes make

use of foreign member variables. Finally, the proposed approach

is also empirically evaluated on two standard open-source

commonly used software systems. The obtained result indicates

that the proposed approach is capable of correctly identifying the

GC code smell.

Keywords— Code Smell, God Class, Refactoring, Software

Evolution, Maintenance, Quality.

I. INTRODUCTION

n software engineering, software maintenance is a continuous

 and mandatory activity that helps implement the corrective,

Manuscript received February 24, 2019; revised April 1, 2019. Date of

publication July 25, 2019. Date of current version July 25, 2019. The associate

editor prof. Tihana Galinac Grbac has been coordinating the review of this

manuscript and approved it for publication.

Authors are with the Department of Computer Science & Engineering,

Maharishi Markandeshwar (Deemed to be University), India.

adaptive, perfective, and preventive steps in a software

development life cycle. These steps are the result of a change in

user requirement, environmental change, bug fixing need,

quality improvement of the underlying software system, or

other maintenance activity that is carried out on the system.

Moreover, the long-term modification in the underlying code of

software may weaken the underlying design of the system. This

may be due to the lack of knowledge of the software developer,

market demands or other careless activities during the software

development process. The degraded design results in the

decreased quality and the increased maintenance cost of the

system. The issues that result in the poor underlying design and

also worsen the software maintainability are termed as code

smells [9]. Therefore, it is mandatory to detect and mitigate

these smells in order to improve software durability. The

process of mitigating the identified code smell is termed as

refactoring. Refactoring helps us to boost various quality

parameters of the code/design like maintainability,

extensibility, and understandability. The refactoring aims at

altering the underlying structure of the system without

modifying the actual working of the system.

The author in [9] identifies and categories different poor

symptoms present in the source-code into different types of

code smells. Out of these different code smells, some of the

commonly perceived, more concerned, and highly rated as

sever from the developer’s perspective are Complex Class,

Spaghetti Code, Long Method, and God Class [20]. Out of these

important code smells, we target identifying God Class (GC)

code smell in this paper. Further, the identified GC code smell

is resolved by suggesting Extract Class refactoring suggestions

to the software maintainer team after considering team feedback

[9][30].

Several studies in literature targets detection and refactoring

of the code smells present in the source code of a software

system [15, 9, 6, 1, 13]. These studies targets using various

traditional code metrics and machine learning algorithms to

detect code smells.

E-mails:randeeppoonia@gmail.com,amitbindal@mmumullana.org,

mailtodr.ashok@rediffmail.com).
Digital Object Identifier (DOI): 10.24138/jcomss.v15i3.720

A User Feedback Centric Approach for

Detecting and Mitigating God Class Code

Smell Using Frequent Usage Patterns

Randeep Singh, Amit Bindal, and Ashok Kumar

I

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019 245

1845-6421/09/720 © 2019 CCIS

mailto:randeeppoonia@gmail.com
FESB
Typewritten Text
Original scientific paper

FESB
Typewritten Text

Besides these, various automated and semi-automated tools are

proposed and compared in literature for the purpose of code

smell detection and removal [8, 16, 24, 19]. To the best of

author’s familiarity, these various approaches already proposed

in the literature make use of different metrics in a combination

that is defined in an ad-hoc manner. The suitability of such a

combination of different metrics needs to be determined for the

correct identification of the code smells. Moreover, it is

necessary to determine if a new combination of code metrics

can improve the accuracy of code-smells detection. Further,

even if the same set of metrics are used the threshold limit used

by them may be different. The constant threshold limit used

may not be feasible always. This is more explained in the study

design section of the paper. These approaches also miss out the

user intelligence (available in the form of feedback) during GC

identification process. It is the opinion of the author’s in this

paper that this feedback can play an important role in the correct

identification of the GC code smell. Moreover, due to the

abstract definition of various kinds of smells in [9], ambiguity

is always present and different developers are having different

perspectives on these code smells [23]. This makes the user

knowledge (mainly developer engaged with the maintenance

team) important that can highly deviate the overall accuracy in

determining correct code-smell. User feedback can help

determine more accurate code-smells and thus help in reducing

the overall maintenance cost of the underlying software system

(due to less number of classes on which the maintenance team

need to work). These identified limitations in the literature

become the research gap for this paper.

This paper targets filling these identified gaps by

incorporating the user feedback (of mainly developers) during

the process of GC code smell detection. The proposed approach

in this paper recommends and proposes a new set of metrics that

together can increase the accuracy while detecting GC code

smell. Moreover, the threshold limit that is used in the proposed

approach is also not kept constant and it can be easily changed

as per the comments provided by the feedback team. The

proposed approach differs from the others in that 1) it makes

combined use of two new more robust and dynamic metrics; 2)

it considers user feedback as important and it can help reduce

the overall maintenance cost by correctly identifying GC code

smell, and 3) the used threshold are not kept constant, instead,

they are dynamic in nature. The main contribution of this paper

can be summarized as follows:

1. To propose a new coupling metric that can measure how

much a given class is dependent on the rest of the classes

in the system.

2. To propose a new metric for measuring the extent to

which a given class makes use of the foreign class

member variable.

The whole paper is divided into the following six sections.

Section II gives details about the literature work that is devoted

to code smell detection and mitigation. Section III describes the

proposed approach in detail and section IV provides details

about how the whole study designed and conducted in order to

evaluate the proposed approach. Section V gives discussion

details about the obtained results as part of the experimental

evaluation of the proposed approach. Finally, section VI

provides the concluding remarks and possible subsequent work

directions.

II. LITERATURE SURVEY

This section in the research paper gives information about the

work already carried out in the field of code smell detection and

mitigation using refactoring. The study of code smells detection

strategies is always remains a subject of recent studies in the

literature. Most of these studies are based on utilizing the

knowledge obtained from the underlying source-code and

usually uses different metrics in combinations [4, 5, 14, 12, 25].

Fowler categorized and classified different symptoms of poor

design into 22 types (code smells) and gives details about the

possible refactoring opportunities for different code smells [9].

The authors in [2] specified a total of 40 anti-patterns present in

the source code that may give rise to worse design for the

underlying system. The authors in [11] studied the code smell

detection as a distributed optimization problem using parallel

evolutionary algorithms. The process of code smell detection is

also targeted by applying different machine learning algorithms

[8]. The authors performed the largest experimental evaluation

by considering 16 different machine learning algorithm which

is applied to a total of 74 software systems belonging to

different domains. Similarly, the authors in [13] present an

approach named SMURF for detecting anti-patterns using the

machine learning algorithms and considering the practitioner’s

feedback into account. The authors in [29] studied different

versions of the same software system for determining when and

why code smells are introduced during development. The

authors carried out a large investigation of 200 open source

systems.

The literature work also focusses on determining the

relationship between identified code smells and different

qualities of the software system. Yamashita et al. perform a

detailed investigation for determining the extent to which the

maintainability of software can be predicted based on the

known code smells [25]. The authors in [7] perform an

empirical study on a software belonging to different domains

aiming at identifying different code smells and determining a

possibility of correlation among code smells that affects each of

the domains. The authors in [12] presented details about various

object-oriented (OO) metrics and show how these metrics can

be efficiently and effectively used in code-smell detection. This

use is based on the combined use of various OO metrics. The

authors also presented various visualization techniques that

help us easily understand complex software systems.

Several semi/ fully- automatic tools are also proposed in the

literature that aims at detecting underlying code smells and

applying the refactoring in order to improve the underlying

code quality [26, 15, 27]. The authors in [28, 6] surveyed

different tools and also performed a comparison of different

tools in order to determine their capability for code smell

detection.

There are basically two main differences between our

246 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019

proposed approach in this paper and the approaches proposed

by various researchers in literature. First, different approaches

in literature do not take user feedback during code smell

detection. However, different developers have different

perception about a code smell. Therefore, considering user

feedback can highly deviate the obtained results for a code

smell. Secondly, different researchers have used a combination

of different metrics for detecting code smell and they have used

different thresholds for the metric values. The choice of the

Fig. 1. Proposed Approach for Detecting and Mitigating God Class (GC) Smell.

threshold value is arbitrary and/ or is based on some specific

software under study. Therefore, it is our belief that the same

threshold may or may not hold on other software too. These

identified two research gaps are targeted in this paper.

III. PROPOSED METHODOLOGY

In this part of the paper, we describe the details of the newly

proposed approach, which is designed for detecting the GC

code smell. The newly proposed approach aims at detecting the

GC code smell from an object-oriented software system. After

detecting the GC code smell, the proposed approach mitigates

it by proposing an extract class refactoring to the software

maintainer team. In the proposed approach of this paper is based

on the two newly proposed code metrics. The first newly

proposed metric (COUPGC) measures the coupling among

different classes of a software system. This newly proposed

metric is based on utilizing the Frequent Usage Patterns (FUPs)

for measuring more accurate coupling. These FUPs are

available in the form of member variable usage patterns in the

source code of a software system. The second newly proposed

metric is the Attributes Usage Ratio (AUR). This metric

measures the extent to which a given class uses the attributes of

other classes in the system. Moreover, we also propose a new

combination of code metrics that can detect the GC presence

with more accuracy. Finally, a new GC detection metric is

proposed based on the previous code metric combination and

the feedback of the developers. Figure-1 shows the overview of

the working of the proposed approach.

The proposed approach considers utilizing user feedback

while detecting the GC code smell. This feedback is obtained

from the experts in the maintenance team or the special experts

specially hired for this purpose. Based on the manual inspection

of the various code-smell lists (various code-smell detection

tools), it is observed that the lists differ from each other. This

gives rise to the possibility of false detection by different tools.

Further, tackling all these smells together results in increased

maintenance cost of the underlying software system. At this

stage, the expert knowledge can help in reducing maintenance

cost by eliminating the false detections. The detailed working

of the proposed approach is given in the following sub-

sections:-

A. FUP Information Extraction

This step of the proposed approach aims at extracting FUP

information by parsing the source-code of different classes

belonging to the software system. All those member variables,

associated with different classes of the software, which are

either directly or indirectly used within the class constitutes the

FUP information for the said class. This information is available

as sets of member variable names. Here, the indirect usage

refers to the member variable usage due to a function call to the

same or different classes. The scope of the identified FUP set is

the whole software system and it may contain names of foreign

member variables (member variables belonging to other

classes). This FUP information is further represented in the

form of a vector called FUP vector. The size of this vector is N

and it represents the count of distinct member variables

belonging to the whole software system. In the vector

representation, the index denotes the unique member variable

in the system and the value at that index represents the

frequency (count) of the usage for the corresponding member

God Class

Detection

(GCD) Metric

Object-

Oriented

Software

System

(INPUT)

Metric Extraction

FUP

Information

Extraction

Coupling

Measurement

Size Metric

KLOC

Attributes

Usage Ratio

(AUR) metric

List of God

Classes

User Feedback

Refactoring

Suggestions

(OUTPUT)

R. SINGH et al.: A USER FEEDBACK CENTRIC APPROACH FOR DETECTING AND MITIGATING GOD CLASS CODE 247

variable. Here, if a class does not use any of the member

variables then its corresponding frequency is zero.

B. FUP Information Extraction

This step of the proposed approach aims at extracting FUP

information by parsing the source-code of different classes

belonging to the software system. All those member variables,

associated with different classes of the software, which are

either directly or indirectly used within the class constitutes the

FUP information for the said class. This information is available

as sets of member variable names. Here, the indirect usage

refers to the member variable usage due to a function call to the

same or different classes. The scope of the identified FUP set is

the whole software system and it may contain names of foreign

member variables (member variables belonging to other

classes). This FUP information is further represented in the

form of a vector called FUP vector. The size of this vector is N

and it represents the count of distinct member variables

belonging to the whole software system. In the vector

representation, the index denotes the unique member variable

in the system and the value at that index represents the

frequency (count) of the usage for the corresponding member

variable. Here, if a class does not use any of the member

variables then its corresponding frequency is zero.

Figure-2 shows a typical representation of a FUP vector for a

system containing three classes A, B, and C having two member

variables each. Here, the frequency for the usage of member

variable B.M2 (second member variable of class B) is zero. It

denotes that class A is not using the member variable M2 of

class B.

Fig.2. A typical FUP vector representation used for the denoting the FUP set of

class ‘A’.

B. FUP Based Coupling Measurement

This phase of the proposed approach aims to measure the

coupling strength of a given class with the rest of the other

classes in the system. The extracted FUP information is the key

in this step and these are used as input in this phase. For

measuring the coupling strength, a new metric called COUPGC

is proposed. This proposed metric is defined in equation (1) of

this paper.

 𝐶𝑂𝑈𝑃𝐺𝐶[𝑖] =

{

N

∀
j=1;j ≠i

(
∑𝑅𝑒𝑓𝐼𝑛𝑡𝑟𝑎[𝑗]

𝑅𝑒𝑓𝑇𝑜𝑡𝑎𝑙[𝑖]
)

 0; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

Here, 𝑅𝑒𝑓𝐼𝑛𝑡𝑟𝑎[𝑗] is the total number of non-zero references

made for member variable of class 𝑗 within the class 𝑖. The

𝑅𝑒𝑓𝑇𝑜𝑡𝑎𝑙[𝑖] is the total number of non-zero references made by

the class 𝑖 for the rest of the classes in the system. These two

values are computed from the FUP vector representation of

FUP information of the class 𝑖. The coupling of the class 𝑖 with

itself is zero as indicated within the formula in equation (1). The

value of the 𝐶𝑂𝑈𝑃𝐺𝐶 is always in the range [0…1]. The

measured coupling value is stored in a square matrix of

dimension N x N. here, N represents the count of the classes in

the software.

In this paper, we propose a new coupling metric and in

literature there are a number of other coupling metrics such as

CBO, RFC (in CK-metric suite), Afferent and Efferent (in

Martin metric suite), etc. Our proposed coupling metric differs

from the already existing coupling metrics in the following

ways:-

1. The existing coupling metrics consider the interaction

among different classes based on the direct use of the

method and member variables. These metrics lack

considering dependencies arising due to the indirect

calling of methods between classes.

2. Based on our manual inspection, it was determined

that dependencies arising due to method calls are not

always harmful because sometimes methods present

in a class are only informative in nature (methods that

prints some message/ information and do not access/

change any member variables). This kind of

dependencies is avoided in our proposed approach by

considering FUP relations.

C. Size Metric Extraction

This part depicted in the approach proposed in figure-1 aims

at extracting the size of different classes using a well-known

size metric called KLOC. The size metric in our proposed

metric is used to measure another dimension of the complexity

of the underlying classes. In our proposed approach, the size

metric is computed for each of the class belonging to the

software. This metric is chosen because generally, a large class

is difficult to understand and modify and hence increased

maintenance cost.

D. Attributes Usage Ratio (AUR) Metric

This phase of the proposed approach measures the extent to

which a given class uses foreign member variables. For this

purpose, a new metric has been proposed as shown in equation

(3). The proposed metric is computed as an average and is based

on the usage factor 𝑈𝑠𝑎𝑔𝑒𝑖 [𝑗]. The usage factor measures the

extent to which a given class, say i, uses the member variables

of other class say j. The definition of this metric is as shown in

equation (2).

𝑈𝑠𝑎𝑔𝑒𝑖 [𝑗]

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑒𝑚𝑏𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑜𝑓 𝑗 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑒𝑚𝑏𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑗
 (2)

Index A.M1 A.M2 B.M1 B.M2 C.M1 C.M2

A 5 9 1 0 7 6

248 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019

𝐴𝑈𝑅𝐺𝐶 [𝑖] = ∑ 𝑈𝑠𝑎𝑔𝑒𝑖

𝑁

j = 1; j ≠ i

[𝑗] 𝑁⁄ (3)

E. God Class Detection (GCD) Metric

This phase of the proposed approach aims at detecting the

presence of God Class (GC) in a software system. In our

proposed approach, a GC is detected based on the following

three factors:

1. Lower inner-class cohesion and higher coupling. The

proposed 𝐶𝑂𝑈𝑃𝐺𝐶[𝑖] metric is used to measure the

degree of coupling of a class with other classes. The

overall coupling of a given class is computed as the

average of the coupling values of the classes on which it

is dependent. A threshold value is used to select the

minimum coupling value that distinguish between a GC

and a normal class.

2. A high complexity. In our proposed approach, the

underlying complexity of a class is measured using the

standard KLOC metric proposed in the literature. This

metric is found to be a good indicator for measuring

program complexity [10]. This is because the authors in

[10] found strong empirical evidence of having a strong

linear relationship between Cyclomatic Complexity and

Lines of Code metric. We have chosen this standard

metric to measure complexity because it is easy to

measure and is also used by other researchers to detect

code smells.

3. High usage for foreign member variables. The proposed

𝐴𝑈𝑅𝐺𝐶 [𝑖] metric is used to measure the extent to which

a given classes uses the foreign member variables. A

class showing high usage to member variables of other

classes gives an indication towards the presence of GC

code smell.

Based on the above mentioned three factors, the proposed

GCD metric for identifying god classes is presented as follows

in equation (4):-

𝐺𝐶𝐷 =⋁(𝐶𝑂𝑈𝑃𝐺𝐶[𝑖] > 𝛼) AND (𝐾𝐿𝑂𝐶

𝑁

𝑖=1

> 𝛽) AND (𝐴𝑈𝑅𝐺𝐶 [𝑖] > 𝛾) (4)

The proposed 𝐺𝐶𝐷 metric makes use of three constraints

𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 for the three considered metrics. These constraints

are used as a threshold and above this threshold value, the

corresponding metric value indicates towards the GC smell

presence. The three constraints consolidates the user knowledge

and are user-specific (developer’s feedback) In this paper, their

current values are taken as the average of the corresponding

metrics over the software level rather than keeping them as

constant. In the equation (4), the process of detecting GC is

dependent on the user feedback, which is the maintenance team

1 http://ptolemy.cs.iastate.edu/design-study/#mobilemedia

understanding for the presence/ absence of GC code-smell in

the specified class of the software system. As the user feedback

is obtained based on the expertise of the maintenance team and

different members can have different feedback on the GC code-

smell.

Therefore, in order to reduce the bias, we collected their

independent feedback and then obtained the final feedback

score by averaging their independent scores.

F. Refactoring Suggestions

This final part of the approach depicted in figure-1 aims at

providing refactoring suggestions. After the GC list is identified

in the above step using a metric combination and user feedback,

the GCs are refactored using the Extract Class method. The

proposed approach does not automatically refactor the

underlying software system, instead, it only gives suggestions

to the maintainer team regarding extract class opportunities.

IV. STUDY DESIGN

In this part of the paper, we provide details about the

experiment conducted in order to empirically evaluate the

proposed approach for detecting GC code smell. This section is

split into the following sub-sections:

A. Target Systems

In order to empirically evaluate the proposed approach, we

consider two Object-Oriented software systems whose details

are presented in the Table-I. These software systems are

selected because they are widely being used among researchers

in code smell evaluation and other software maintenance-

related studies [19, 3, 31]. The first system, MobileMedia1

(MM), is an open-source software product line project that

manipulates photos, videos, and music on mobile devices.

Similarly, the Health Watcher2 (HW) is a web-based software

system designed to help the user to register, manage the

complaints in a public health care system.

TABLE I

 METRICS FOR TARGET SYSTEMS

S.No. System Name Version
No. of

Class

Size

(KLOC)

No. of

Methods

1
MobileMedia

(MM)
9 55 3.216 290

2
Health

Watcher (HW)
10 118 8.702 671

B. GC Code Smell Reference List

Before performing the experimental evaluation, the

underlying source code of the considered systems is

systematically analyzed. The aim is to discover the actual traces

of GC code smell present within these systems. For this

purpose, we sent an invitation to 15 developers having at least

5 years of expertise in software development and project

2 http://ptolemy.cs.iastate.edu/design-study/#healthwatcher

R. SINGH et al.: A USER FEEDBACK CENTRIC APPROACH FOR DETECTING AND MITIGATING GOD CLASS CODE 249

management. This invitation is sent to multiple IT companies

and they were asked to nominate different experts. Finally, the

team members are randomly selected and they are unaware of

each other and our motive. After selecting the team, each

member is presented with the source code of the software under

study. Each team member is asked to identify the god classes

present within the software system based on the source-code

presented to them and their domain knowledge. Each of the

team members finally returns a list of god classes present within

the software.

After receiving the lists, a common consensus is made among

the team by arranging a meeting and promoting discussion

among them. Finally, a single list containing the names of god

classes regarding the considered software is prepared. This final

list is ultimately used as a reference list to compare our results.

Table-II shows the final reference list of GCs in the two

considered software systems.

TABLE II
 GOD CLASS REFERENCE LIST FOR THE TARGET SYSTEMS

Software

Name

Number

of God

Class

Classes belonging to the Reference List

Health
Watcher(HW)

2
HealthWatcherFacade,

HealthWatcherFacadeInit

Mobile

Media(MM)
7

AlbumController, CaptureVideoScreen,
MediaAccessor, MediaController,

MediaUtils, PhotoViewCntroller,

SmsMessaging

C. Evaluation Criteria Used

In order to evaluate the proposed approach, we rely on three

key information retrieval metrics namely Precision, Recall, and

F-Measures [21].

These metrics compare our obtained results against the

obtained reference list. The precision metric is used to measure

the accuracy and is defined as the number of identified relevant

GC code smells by the total number of identified code smells.

Similarly, the recall metric is used to measure the completeness

of the obtained results. It is defined as the ratio of the total

number of identified relevant GC code smells and the total

number of god classes in the reference list. Here, a high value

of precision indicates that the proposed approach is capable of

correctly identifying the god classes. Similarly, a score for the

recall metric indicates that nearly all the god classes in the

reference list are in the obtained results.

V. RESULTS AND DISCUSSION

This section of the paper discusses the experimental results

and finally provides a discussion on the analysis of the obtained

results. In order to analyze and discuss the obtained results, the

following research questions are formulated in this paper:-

RQ1. How the proposed approach performs in detecting

the GC code smell?

3 http://loose.upt.ro/iplasma/

RQ2. How the proposed approach does differ in

comparison to traditional metric-based approach?

A. Summary of the Detected GC Code Smells

Table-III shows the details about the total number of the

detected GC code smells identified using our proposed

approach. Table-II specifies the count of the GC code smell

detected in different systems for two scenarios viz when the said

systems are analyzed by the proposed approach and the

reference list as obtained from a team of experts.

TABLE III

 TOTAL NUMBER OF IDENTIFIED GC CODE SMELL

S.No. System Name
of GC Code

Smell Detected

of GC Code

Smells in the

Reference List

1
MobileMedia

(MM)
9 7

2
Health Watcher

(HW)
3 2

RQ1. How the proposed approach performs in detecting the GC

code smell?

The capability of the proposed approach in detecting the GC

code smells is evaluated using the standard information

retrieval metrics as specified in the section above. The table-4

shows the results of the evaluation. In the presented results the

obtained average precision value is 95% and it indicates that the

proposed approach is capable of accurately predicting the GC

code smells. Similarly, the obtained recall value is 100% and it

indicates that the proposed approach detects all the GC code

smells as listed in the reference list. From the results depicted

in the table-IV, it can be concluded that the proposed approach

in this paper stands firm in detecting GC code smell. Moreover,

the original definition of GC as proposed by [12] is also tested

on the considered software systems using the iPlasma tool3.

This tool is mentioned in the [19] and is based on the detection

strategies as defined by Lanza and Marinescu [12]. This tool is

unable to detect any presence of GC code-smell in the two

considered software systems.

TABLE IV
 EVALUATION OF THE PROPOSED APPROACH

S.No. System Name Precision Recall F-Measure

1 MobileMedia (MM) 92.6% 100% 96.2%

2 Health Watcher (HW) 97.3% 100% 98.6%

RQ2. How the proposed approach does differ in comparison to

traditional metric-based approach?

This research question aims at comparing our proposed

approach with the closest rival approach present in the

250 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019

literature. The authors in [18] conclude that the KLOC (Line Of

Count per Thousand) and WMC (Weighted Method Count) are

the keys in detecting the GC code smells. Therefore, we have

considered an approach proposed by [17] for comparison

purposes. The authors consider evaluating GC code-smell in

three open-source software systems. They are focused on

determining the trend of GC code-smell along with the

evolution of the considered software. Here, the authors have

used WMC metric along with other traditional metrics namely

Tight Class Coupling (TCC) and Access to Foreign Data

(ATFD) for detecting the GC code smell. The authors used

these three metrics in combination for detecting the GC code

smell with different thresholds for the metrics. Here, it is

necessary to note that the experimental study conducted by the

authors in [17] is based on the same approach as proposed by

the authors in [12].

TABLE V

COMPARISON OF THE GC DETECTION

 Table-V shows the comparison results for the two

approaches. Column 4 and 5 shows the total number of GC

detected by different approaches. The column number 6 and 7

show the percentage classes that are affected by GC code smell

in the considered software system. The last column shows the

percentage change in the god classes present in the system.

From the values, it is clear that the GC’s present in the Xerces

system is higher and it correlates with the pattern observed by

the authors in [17] based on the study of the different timelines

of the considered system. They observed that GC’s count keep

on increasing with the timeline of the development of the

Xerces system. Similar are the results for the rest of the

considered systems. The obtained results in table-4 indicate that

our proposed approach is more capable of identifying the GC

opportunities which can be easily mitigated using the extract

class refactoring. This is due to the fact that the authors in [17]

missed out the important KLOC metric as per the author’s

investigation in [18]. Further, the table-6 gives details about the

class names that are affected by GC code-smell. In this table,

the list is shown only for Log4j software system because the

authors in [17] do not provide an exhaustive list of class names

that are affected with the GC code-smell for all the software

systems under study. Here, we rely on the iPlasma tool for

getting class names that are affected with the GC code-smell as

per the rival approach. From the list mentioned in the table-6, it

is noted that the CronExpression.java class is not detected by

rival approach and further all the classes detected by the

approach proposed by [12] are also detected by our proposed

approach. By manual inspection of the CronExpression.java

class, we came to know that the rival approach is unable to

detect it as GC because the value of the ATFD metric value is

<5. However, this class is highly coupled and together is hard

to understand due to its large size.

VI. CONCLUSIONS AND FUTURE WORK

The maintainability of a software system broadly affected by

the choice of the suitable metrics that are capable of accurately

detecting the code smells present in the system. The source code

metrics are being widely used in software maintenance and

code smell detection. The present study in this paper aims at

detecting the GC code smell in a software system. The detection

process is based on the use of a traditional metric (KLOC) and

two newly proposed source-code metrics namely 𝐶𝑂𝑈𝑃𝐺𝐶 and

𝐴𝑈𝑅𝐺𝐶 metric. The proposed approach is based on the

simultaneous occurrence of three conditions namely 1)

presence of a highly coupled class, 2) the presence of a complex

class, and 3) high usage for the foreign members within a class.

TABLE VI

 SUMMARY OF THE GC NAMES

Approach God Class Names

Rival Approach [17] CommandLine, FastDatePrinter, FastDateParser,

DatePatternConverterTest, Interpreter,

PluginBuilder, RollingFileManager, Server,

SLF4JLogger, FixedDateFormat

Proposed Approach CommandLine, FastDatePrinter, FastDateParser,

Interpreter, PluginBuilder, RollingFileManager,

Server, SLF4JLogger, DatePatternConverterTest,

FixedDateFormat, CronExpression

These conditions are detected with the help of source-code

metrics. Further, as part of the investigation, the proposed

approach is also compared with the approach proposed by [17].

The comparison results indicate that our proposed approach is

S.No. System Name # Classes

Detected God Classes (GC) % Classes with GC Smell
% Change in

#GC The approach by

[17]

Our Proposed

Approach

The approach by

[17]

Our Proposed

Approach

1 Lucene 651 26 30 3.99% 4.61% 0.62%

2 Xerces 712 57 69 8.00% 9.69% 1.69%

3 Log4j 337 10 11 2.96% 3.26% 0.30%

R. SINGH et al.: A USER FEEDBACK CENTRIC APPROACH FOR DETECTING AND MITIGATING GOD CLASS CODE 251

capable of identifying more GC code smells. Moreover, as the

proposed approach is tested on the Java software systems,

however, it can be easily applied to the software systems

designed in another language. This is because the metric used

in the proposed approach can easily be computed on other

software systems (written in another language) and they are not

confined only to the systems designed in Java language.

The future work related to our present work is many. First of

all, an experimental evaluation can be carried out in order to

determine whether the proposed approach can outperform the

various machine learning technique. Secondly, the suitability of

other metrics can be evaluated for the purpose of detecting the

GC code smell. Thirdly, the proposed approach can be tested or

modified for its ability to detect another kind of code smells.

Finally, we are preparing a prototype of a tool that can fully

automate the proposed approach of this paper.

REFERENCES

[1] L. Amorim, E. Costa, N. Antunes, B. Fonseca and M. Ribeiron,”

Experience Report: Evaluating the Effectiveness of Decision Trees for

Detecting Code Smells”, in Proc. of the IEEE 26th International
Symposium of Software Reliability Engineering(ISSRE), IEEE Computer

Society, Washington, DC, USA, pp. 261-269, 2015.

[2] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and T.
J. Mowbray, “AntiPatterns: Refactoring Software, Architectures, and

Projects in Crisis”, 1st ed., John Wiley and Sons, March 1998.

[3] J.M. Conejero et al.” On the Relationship of Concern Metrics and
Requirements Maintainability”, Inf. and Sof. Technology (IST), 2011.

[4] M. Eaddy et al.” Do Crosscutting Concerns Cause Defects”, IEEE Trans.

on Software Engineering, pp. 497-515, 2008.
[5] F. Ferrari, et al. ”An Exploratory Study of Fault-Proneness in Evolving

Aspect-Oriented Programs”, in Proc. of the Int'l Conf. on Software

Engineering (ICSE), pp. 65-74,2010.
[6] F. A. Fontana, et al. “Automatic Detection of Bad Smells in Code: An

Experimental Assessment.”, Journal of Object Technology, vol. 11(2), no.

5, pp. .1-38,2012.
[7] F. A. Fontana, V. Ferme, A. Marino, B. Walter, and P. Martenka,

"Investigating the Impact of Code Smells on System's Quality: An

Empirical Study on Systems of Different Application Domains,", IEEE
International Conference on Software Maintenance, Eindhoven, pp. 260-

269,2013.

[8] F. A. Fontana, M. V. Mantyla, M. Zanoni, and A. Marino,” Comparing
and experimenting machine learning techniques for code smell detection”,

Empirical Softw. Engg. , vol. 21, no. 3, pp. 1143-1191, June 2016.

[9] M. Fowler, “Refactoring – Improving the Design of Existing Code”, 1st

ed., Addison-Wesley, June 1999.

[10] G. Jay, J. Hale, R. Smith, D. Hale, N. Kraft, and C. Ward, "Cyclomatic

Complexity and Lines of Code: Empirical Evidence of a Stable Linear
Relationship", Journal of Software Engineering and Applications, vol. 2,

no. 3, pp. 137-143,2009.

[11] K. Wael, et al. “A cooperative parallel search-based software engineering
approach for code-smells detection”, IEEE Transactions on Software

Engineering, vol. 40, no. 9, pp. 841-861,2014.

[12] M. Lanza., R. Marinescu., “Object-Oriented Metrics in Practice”,
Springer-Verlag, New York, Inc., 2006.

[13] A. Maiga., N. Ali, N. Bhattacharya, A. Sabane, Y-G. Gueheneuc and E.

Aimeur, “SMURF: SVM-based Incremental Anti-pattern Detection
Approach.” 19th Working Conference on Reverse Engineering, pp. 466–

475, 2012.

[14] R. Marinescu, ”Detection Strategies: Metrics-Based Rules for Detecting
Design Flaws”, in Proc. of Int'l Conf. on Software Maintenance (ICSM),

pp. 350-359,2004.
[15] N. Moha, Y. Gueheneuc, L. Duchien, and A. Le Meur, "DECOR: A

Method for the Specification and Detection of Code and Design Smells,"

IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20-36,
Jan.-Feb, 2010.

[16] E. Murphy-Hill, A. Black, “An interactive ambient visualization for code

smells”, In Proceedings of the 5th international symposium on software
visualization, ACM, pp 5–14,2010.

[17] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg, "Are all code smells

harmful? A study of God Classes and Brain Classes in the evolution of
three open source systems”, IEEE International Conference on Software

Maintenance, Timisoara, pp. 1-10, 2010.

[18] J. Padilha, J. Pereira , E. Figueiredo , J. Almeida , A. Garcia, C.
Sant’Anna,” On the Effectiveness of Concern Metrics to Detect Code

Smells: An Empirical Study”, In Jarke M. et al. (eds) Advanced

Information Systems Engineering. CAISE. Lecture Notes in Computer
Science, vol. 8484, Springer, Cham, 2014.

[19] T. Paiva, A. Damasceno., E. Figueiredo et al. “On the evaluation of code

smells and detection tools”, J Softw Eng Res Dev, vol. 5, no. 7,2017.
[20] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia,” Do

They Really Smell Bad? A Study on Developers' Perception of Bad Code

Smells”, Proceedings of the IEEE International Conference on Software
Maintenance and Evolution, pp.101-110, September 29-October 03,

2014.

[21] W. J. Perry, K. Allen, B. M. Madeline, "Machine literature searching X.
Machine language; factors underlying its design and development",

American Documentation., vol. 6, no. 4,pp. 242,1955.

[22] R. Ghulam, and Z. Arshad, “A review of code smell mining techniques”,
Journal of Software: Evolution and Process, vol. 27, no. 11, pp. 867-895,

2015.

[23] J.A.M. Santos, M.G.D. Mendonça, and C.V.A. Silva, ”An exploratory
study to investigate the impact of conceptualization in god class

detection”, In Proceedings of the 17th International Conference on

Evaluation and Assessment in Software Engineering, EASE ’13, New
York, USA. ACM, pp. 48–59, 2013.

[24] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, ”JDeodorant: identification

and removal of type-checking bad smells”, in Proceedings of the 12th
European conference on software maintenance and reengineering. IEEE,

pp 329–331, 2008.

[25] A. Yamashita, L. Moonen,” To what extent can maintenance problems be
predicted by code smell detection? An empirical study”, Inf. Softw.

[26] Technol., vol. 55, no. 12, pp. 2223–2242, 2013.

[27] C. Marinescu, R. Marinescu, PF. Mihancea, D. Ratiu, R. Wettel,
”iPlasma: an integrated platform for quality assessment of object-oriented

design”, In Proceedings of the 21st IEEE international conference on

software maintenance. IEEE, pp. 25–30, 2005.
[28] N. Zazworka, C. Ackermann, ”CodeVizard: a tool to aid the analysis of

software evolution”, in Proceedings of the 4th international symposium
on empirical software engineering and measurement, ACM, article 63,

2010.

[29] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo,” A
review-based comparative study of bad smell detection tools”, In:

Proceedings of the 20th international conference on evaluation and

assessment in software engineering (EASE '16, ACM, article 18, 2016.
[30] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. D. Lucia

and D. Poshyvanyk, “When and why your code starts to smell bad”, In

Proceedings of the 37th international conference on software
engineering. IEEE Press, pp. 403–414, 2015.

[31] S.A. Vidal, C. Marcos, & Díaz-Pace, “An approach to prioritize code

smells for refactoring”, J.A. Autom Softw Eng ,vol. 23, no. 3,pp. 501-
532,2016. https://doi.org/10.1007/s10515-014-0175-x

[32] A. Shatnawi, A. Seriai, H. Sahraoui, “Recovering Architectural

Variability of a Family of Product Variants”, In: Schaefer I., Stamelos I.
(eds) Software Reuse for Dynamic Systems in the Cloud and Beyond. ICSR

2015, Lecture Notes in Computer Science, vol 8919. Springer, Cham,

2014.

Randeep Singh is a Research Scholar in Department of

Computer Science & Engineering, M. M. Engineering

College, M. M. (Deemed to be University) Mullana,
Ambala, Haryana, India. Randeep Singh received M. Tech

from Kurukshetra University. Randeep Singh is in

teaching and Research & Development since 2008. He has
published about 10 research papers in International,

National Journals and Refereed International Conferences.

His current research interests are in Software Engineering.

252 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 3, SEPTEMBER 2019

Dr. Amit Kumar Bindal is an Associate Professor in

Department of Computer Science & Engineering, M. M.
Engineering College, M. M. (Deemed to be University)

Mullana, Ambala, Haryana, India. Dr. Bindal received

Ph.D. from Maharishi Markandeshwar University, M.
Tech (Computer Engineering) from Kurukshetra

University and B. Tech. in Computer Engineering .from

Kurukshetra University Kurukshetra. Dr. Bindal is in
teaching and Research & Development since 2005. He has

published about 60 research papers in International, National Journals and

Refereed International Conferences. His current research interests are in
Wireless Sensor Networks, Underwater Wireless Sensor Networks, Sensors,

and IOT, etc.

Dr. Ashok Kumar is an Ex-Professor in Department of

Computer Science & Engineering, M. M. Engineering
College, M. M. (Deemed to be University) Mullana,

Ambala, Haryana, India &former Professor of

Kurukshetra University. Dr. Kumar is in teaching and
Research & Development from more than 40 years. He has

published many research papers in International, National

Journals and Refereed International Conferences. His
current research interests are in Software Engineering,

Digital Image Processing.

R. SINGH et al.: A USER FEEDBACK CENTRIC APPROACH FOR DETECTING AND MITIGATING GOD CLASS CODE 253

